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Stochastic Processes 2 Introduction

Introduction

This is the ninth book of examples from Probability Theory. The topic Stochastic Processes is so big
that T have chosen to split into two books. In the previous (eighth) book was treated examples of
Random Walk and Markov chains, where the latter is dealt with in a fairly large chapter. In this book
we give examples of Poisson processes, Birth and death processes, Queueing theory and other types
of stochastic processes.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series and the Ventus:
Complex Function Theory series, and all the previous Ventus: Probability c1-c7.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
27th October 2009
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Stochastic Processes 2 1. Theoretical background

1 Theoretical background

1.1 The Poisson process

Given a sequence of independent events, each of them indicating the time when they occur. We
assume

1. The probability that an event occurs in a time interval I € [0, +oo[ does only depend on the length
of the interval and not of where the interval is on the time axis.

2. The probability that there in a time interval of length ¢ we have at least one event, is equal to
A+ te(t),
where A > 0 is a given positive constant.
3. The probability that we have more than one event in a time interval of length ¢ is ¢ (¢).

It follows that

4. The probability that there is no event in a time interval of length is given by
1 — At +te(t).

5. The probability that there is precisely one event in a time interval of length ¢ is At + t £(¢).

Here £(t) denotes some unspecified function, which tends towards 0 for ¢t — 0.

360°
thinking.
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Stochastic Processes 2 1. Theoretical background

Given the assumptions on the previous page, we let X (¢) denote the number of events in the interval
10,¢], and we put

Py(t) :== P{X(t) = k}, for k € Np.
Then X (¢) is a Poisson distributed random variable of parameter At. The process
{X(®) |t €[0,+o0[}
is called a Poisson process, and the parameter \ is called the intensity of the Poisson process.
Concerning the Poisson process we have the following results:
1) Ift =0, (i.e. X(0) =0), then
1, for k=0,

P, =
0, for k € N.

2) If t > 0, then Pj(t) is a differentiable function, and
MP_1(t) — Pe(t)}, for k € Nand ¢t > 0,

Py(t) =
A Py(t), for k=0and t > 0.

When we solve these differential equations, we get

At)k
Pi(t) = ( k') e M, for k € Ny,

proving that X (t¢) is Poisson distributed with parameter At.

Remark 1.1 Even if Poisson processes are very common, they are mostly applied in the theory of
tele-traffic. .

If X(¢) is a Poisson process as described above, then X (s 4 ¢) — X (s) has the same distribution as
X(t), thus

()"
k!

P{X(s+t)— X(s)} = e M, for k € No.

If 0 <t <ty <tz < ty, then the two random variables X (t4) — X (¢3) and X (t2) — X (t1) are
independent. We say that the Poisson process has independent and stationary growth.

The mean value function of a Poisson process is
m(t) = E{X(t)} = At
The auto-covariance (covariance function) is given by

C(s,t) = Cov(X(s), X(t)) = A min{s,t}.
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Stochastic Processes 2 1. Theoretical background

The auto-correlation is given by

R(s,t) = E{X(s)- X(t)} = XA min(s,t) + \?st.

The event function of a Poisson process is a step function with values in Ny, each step of the size
+1. We introduce the sequence of random variables T, T, ..., which indicate the distance in time
between two succeeding events in the Poisson process. Thus

Yo=T1+T1Tr+ ---+T,

is the time until the n-th event of the Poisson process.

Notice that T is exponentially distributed of parameter X, thus
P{Ty >t} =P{X(t) =0} =e*,  fort>0.

All random variables Ty, T, ..., T),, are mutually independent and exponentially distributed of pa-
rameter A\, hence

y% :ZJH +'15 +""+'7%
. L 1
is Gamma distributed, Y, € T’ (n, X)

Connection with Erlang’s B-formula. Since Y,, 11 > t, if and only if X (t) < n, we have
P{X(t) <n} = P{Yny1 > t},

from which we derive that
An+1

S (At)k —At e n_,—A
Z X ) y"te Y dy.

k=1

We have in particular for A =1,

"tk et

K onl

+oo
/ y" e Y dy, n € Ny.
k=0 t

1.2 Birth and death processes

Let {X(t) | t € [0,400[} be a stochastic process, which can be in the states Eg, E1, Es, .... The
process can only move from one state to a neighbouring state in the following sense: If the process is
in state Fj, and we receive a positive signal, then the process is transferred to Fj41, and if instead
we receive a negative signal (and k € N), then the process is transferred to Ej_;.

We assume that there are non-negative constants A\ and ug, such that for £ € N,
1) P{one positive signal in |¢t,t + h[| X(¢t) = k} = A\ h + he(h).
2) P{one negative signal in |¢,t + h[| X(t) = k} = ux h + he(h).
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Stochastic Processes 2 1. Theoretical background

3) P{nosignalin |t,t+h[ X(t) =k} =1— (A + ux) h+ he(h).

We call A\ the birth intensity at state Ej, and uy is called the death intensity at state Ej, and the
process itself is called a birth and death process. If in particular all up = 0, we just call it a birth
process, and analogously a death process, if all A\, = 0.

A simple analysis shows for k € N and h > 0 that the event {X (¢ + h) = k} is realized in on of the
following ways:

e X(t) =k, and no signal in |t,t + h[.
e X(t) =k — 1, and one positive signal in ¢, + h[.
e X(t) =k + 1, and one negative signal in | ¢, ¢t + h[.
e More signals in |t,t + h[.
We put
Py(t) = P{X(t) = k}.

By a rearrangement and taking the limit o~ — 0 we easily derive the differential equations of the
process,

Py(t) = —Xo Po(t) 4 p1 Pi(t), for k =0,

P(t) = — (M + pe) Pre(t) + M1 Po—1(t) + g1 P (8), for k € N.
In the special case of a pure birth process, where all p, = 0, this system is reduced to

Pol(t) = —)\0 ]30(7f)7 for k = O7

P,é(t) = -\ Pk(t) + A1 Pk_l(t), for k € N.
If all A\ > 0, we get the following iteration formula of the complete solution,

Py(t) = coe Pt for k =0,

Pr(t) = A e Mt fot eMNT P_1(T) dr + cp ek, for k € N.

From Py(t) we derive Py (t), etc.. Finally, if we know the initial distribution, we are e.g. at time ¢t = 0
in state F,,, then we can find the values of the arbitrary constants cg.

Let {X(t) | t € [0,+00[} be a birth and death process, where all A\, and py are positive, with the
exception of g = 0, and Ay = 0, if there is a final state E. The process can be in any of the states,
therefore, in analogy with the Markov chains, such a birth and death process is called irreducible.
Processes like this often occur in queueing theory.

If there exists a state Ej, in which A\ = ug, then Ej is an absorbing state, because it is not possible
to move away from Ej.

For the most common birth and death processes (including all irreducible processes) there exist non-
negative constants py, such that

Py(t) — pg and PL(t)—0 for t — +o0.
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Stochastic Processes 2 1. Theoretical background

These constants fulfil the infinite system of equations,

Hk+1 Pk41 = Ak Pk, for k € No,
which sometimes can be used to find the py.

If there is a solution (py), which satisfies
+oo
pr >0 for all k € Ny, and Zpkzl,
k=0

we say that the solution (py) is a stationary distribution, and the py are called the stationary proba-
bilities. In this case we have

Pp(t) — px for t — 4o0.

If {X(t) |t € [0,+00[} is an irreducible process, then

_ Ak—1Ak—2 - Ao
Mk fe—1 " - H2 1

Dk - Po = ax Po, for k € Ny,

where all ap > 0.

The condition of the existence of a stationary distribution is then reduced to that the series ), ay is

1
convergent of finite sum a > 0. In this case we have pg = —.
a
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Stochastic Processes 2 1. Theoretical background

1.3 Queueing theory in general

Let {X(t) | t € [0,+00[} be a birth and death process as described in the previous section. We
shall consider them as services in a service organization, where “birth” corresponds to the arrival of a
new customer, and “death” correspond to the ending of the service of a customer. We introduce the
following:

1) By the arrival distribution (the arrival process) we shall understand the distribution of the arrivals
of the customers to the service (the shop). This distribution is often of Poisson type.

2) Tt the arrivals follow a Poisson process of intensity A\, then the random variable, which indicates
the time difference between two succeeding arrivals exponentially distributed of parameter . We
say that the arrivals follow an exponential distribution, and X is called the arrival intensity.

3) The queueing system is described by the number of shop assistants or serving places, if there is
the possibility of forming queues or not, and the way a queue is handled. The serving places are
also called channels.

4) Concerning the service times we assume that if a service starts at time ¢, then the probability that
it is ended at some time in the interval |¢,¢ + A is equal to

wh+he(h), where p1 > 0.

Then the service time is exponentially distributed of parameter p.
If at time ¢ we are dealing with &k (mutually independent) services, then the probability that one
of these is ended in the interval |t,t + h[ equal to

kh + he(h).

We shall in the following sections consider the three most common types of queueing systems. Concern-
ing other types, cf. e.g. Villy Bek Iversen: Teletraffic Engineering and Network Planning Technical
University of Denmark.

1.4 Queueing system of infinitely many shop assistants

The model is described in the following way: Customers arrive to the service according a Poisson
process of intensity A, and they immediately go to a free shop assistant, where they are serviced
according to an exponential distribution of parameter p.

The process is described by the following birth and death process,
{X(t) |t €[0,400[} med A\ = X and pp = kp  for alle k.
The process is irreducible, and the differential equations of the system are given by
Pj(t) = =APo(t) + p Pi(t), for k=0,
Pl(t) = =N+ Ekp)Pr(t) + A Pe_1(t) + (k+ 1) Prya (2), for k € N.
The stationary probabilities exist and satisfy the equations

(k+ D pprs1 = Apr, k € Ny,
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Stochastic Processes 2 1. Theoretical background

of the solutions

1 /2" A
P =737\ eEXp|\—— 1/, k € Ny.
KU\ p Iz

These are the probabilities that there are k customers in the system, when we have obtained equilib-
TIUm.

The system of differential equations above is usually difficult to solve. One has, however, some partial
results, e.g. the expected number of customers at time t, i.e.

“+o0
m(t) ==k Pi(t),
k=1

satisfies the simpler differential equation
m/(t) + pm(t) =\
If at time ¢ = 0 there is no customer at the service, then

m(t) = % (1—e ", for t > 0.
1.5 Queueing system of a finite number of shop assistants, and with form-
ing of queues

We consider the case where

1) the customers arrive according to a Poisson process of intensity A,

2) the service times are exponentially distributed of parameter p,

3) there are N shop assistants,

)
)
)
)

4) it is possible to form queues.

Spelled out, we have N shop assistants and a customer, who arrives at state Fp. If K < N, then the
customer goes to a free shop assistant and is immediately serviced. If however kK = N, thus all shop
assistants are busy, then he joins a queue and waits until there is a free shop assistant. We assume
here queueing culture.

With a slight change of the notation it follows that if there are N shop assistants and k customers
(and not k states as above), where k > N, then there is a common queue for all shop assistants
consisting of k — N customers.

This process is described by the following birth and death process {X(t) | t € [0,4+o0[} of the
parameters

k , for k < N,

A=A and L
N p, for k> N.
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Stochastic Processes 2 1. Theoretical background

The process is irreducible. The equations of the stationary probabilities are
(k—’—l)/’cpk-i-l :Aplm fOI'k<N,
N p@pgt1 = A pg, for k > N.

We introduce the traffic intensity by

A
0:= Nop

Then we get the stationary probabilities

M1 oF NF

; 'EPOZT'ADO’ for k < N,
Pr = .

A 1 oF - NN

(ﬁ) CNENLO NPT TN P for = -

Remark 1.2 Together with the traffic intensity one also introduce in teletraffic the offer of traffic.
By this we mean the number of customers who at the average arrive to the system in a time interval of

A
length equal to the mean service time. In the situation above the offer of traffic is —. Both the traffic

intensity and the offer of traffic are dimensionless. They are both measured in the unit Erlang.$

The condition that (pj) become stationare probabilities is that the traffic intensity o < 1, where

— NV k (e N)N

==
= N! (1-1p0)-N!

If, however, o > 1, it is easily seen that the queue is increasing towards infinity, and there does not
exist a stationary distribution.

We assume in the following that o < 1, so the stationary probabilities exist
1) If N =1, then
pe = 0"(1 — o), for k € Np.

2) If N =2, then

1—-0

, for k =0,
1+o

200 . —=, for k € N.

3) If N > 2, the formulae become somewhat complicated, so they are not given here.
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Stochastic Processes 2 1. Theoretical background

The average number of customers at the service is under the given assumptions,

L, for N =1,
I—-o
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Stochastic Processes 2 1. Theoretical background

The waiting time of a customer is defined as the time elapsed from his arrival to the service of him
starts. The staying time is the time from his arrival until he leaves the system after the service of
him. Hence we have the splitting

staying time = waiting time 4 service time.

The average waiting time is in general given by
+oo
kE—N+1
V= Z TM Pk,
k=N
which by a computation is

_ e
w(l—o)’

oV . NN-1
jp-NL (1 -2 P

for N =1,
V =

generelt.

In the special case of N = 1 the average staying time is given by

0 1
O=—°" 4=~
pl—o) p  p=A

The average length of the queue (i.e. the mean number of customers in the queue) is

S _ oM N
N1 -2 7

1.6 Queueing systems with a finite number of shop assistants and without
queues

We consider here the case where

1) the customers arrive according to a Poisson process of intensity A,

)
2) the times of service are exponential distributed of parameter p,
3) there are N shop assistants or channels,

4) it is not possible to form a queue.

The difference from the previous section is that if a customer arrives at a time when all shop assistants
are busy, then he immediately leaves the system. Therefore, this is also called a system of rejection.
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Stochastic Processes 2 1. Theoretical background

In this case the process is described by the following birth and death process {X(¢) | ¢t € [0, +oo[}

with a finite number of states Fy, E1, ..., En, where the intensities are given by
A, for k < N,
Ak = and e =k .
0, for k> N,

This process is also irreducible. The corresponding system of differential equations is

Py(t) = =X Po(t) + u Pi(t), for k=0,
Pl(t) = =N+ kpu)Py(t) + A Po_1(t) + (k + 1)p Pesa (2), for 1<k <N-1,
P]/V(t)ZfN,uPN(t)+)\PN_1(t), for k = N.

In general, this system is too complicated for a reasonable solution, so instead we use the stationary
probabilities, which are here given by Erlang’s B-formula:

1A
k' \

N 1/
= (3)

The average number of customers who are served, is of course equal to the average number of busy
shop assistants, or channels. The common value is

Pk = fork=0,1,2,..., N.

We notice that py can be interpreted as the probability of rejection. This probability py is large,
when A >> p. We get from

A

N J exp <_> +oo
1
) -‘;(é) :7/‘/ yN eV dy,
Ny

j:oj‘ © /1

the probability of rejection

)

o 1<A)] R v ey

=01\
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Stochastic Processes 2 1. Theoretical background

1.7 Some general types of stochastic processes

Given two stochastic processes, {X(t) | t € T} and {Y(s) | s € T}, where we assume that all the
moments below exist. We define

1) the mean value function,

m(t) .= E{X(t)}, fort €T,

2) the auto-correlation,

R(x,t) == E{X(s)X (1)}, for s, t €T,

3) the auto-covariance,

C(s,t) := Cov(X(s), X (t)), for s, t €T,

4) the cross-correlation,

Rxvy(s,t) .= E{X(s)Y(t)}, for s, t €T,

5) the cross-covariance,

Cxy(s,t) := Cov(X(s),Y (1)), fors,teT.

A stochastic process {X (t) | t € R} is strictly stationary, if the translated process {X(t + h) | t € R}
for every h € R has the same distribution as {X(¢) | t € R}.

In this case we have for all n € N, all 1, ..., x,, € R, and all £1, ..., t, € R that
P{X{t1+h) <z A ANX({tn+h) <z,}

does not depend on h € R.

Since P{X (t) < x} does not depend on ¢ for such a process, we have
m(t) =m,

and the auto-covariance C(s,t) becomes a function in the real variable s — ¢t. We therefore write in
this case,

C(s,t) :==C(s—1t).
Analogously, the auto-correlation is also a function only depending on s and ¢, so we write

R(s,t) := R(s —t).

Conversely, if m(t) = m and C(s,t) = C(s — t), then we call the stochastic process {X(¢) | ¢t € R}
weakly stationary.
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Stochastic Processes 2 1. Theoretical background

Let us consider a stochastic process {X(¢) | t € R} of mean 0 and auto-correlation
R(r)=E{X(t+7)X(t)}.
If R(7) is absolutely integrable, we define the effect spektrum by
+oo
S(w) = / €97 R(7) dr
— 00

i.e. as the Fourier transformed of R(7). Furthermore, if we also assume that S(w) is absolutely
integrable, then we can apply the Fourier inversion formula to reconstruct R(7) from the effect
spectrum,

1 e —iwT
R(r) = ﬂ/ e S(w) dw.

In particular,

E{IXOP} =RO) = - [ S(w)dw.

A stochastic process {X(t) | t € T} is called a normal process, or a Gaufiann process, if for every
n € N and every ¢y, ..., t, € T the distribution of {X (¢1), ..., X (¢,)} is an n-dimensional normal
distribution. A normal process is always completely specified by its mean value function m(t) and its
auto-covariance function C(s,t).

The most important normal process is the Wiener process, or the Brownian movements
{W(t) [t =0}
This is characterized by

W(0) =

1)
) m(t) =
)
)

2
3) VW ()} = at, where « is a positive constant,

4

mutually independent increments.
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Stochastic Processes 2 2. The Poisson process

2 The Poisson process

Example 2.1 Let {X(¢), t € [0,00[} be a Poisson process of intensity X, and let the random variable
T denote the time when the first event occurs.
Find the conditional distribution of T', given that at time to precisely one event has occurred, thus find

P{T <t|X(tg) =1}.

When t € [0,t0], then the conditional distribution is given by
P{X(t)=1A X (to) =1} P{X(t)=1A X (to) — X(t) =0}

PIT<t|X (t) =

1} = P{X (ty) =1} B P{X (to) = 1}
_OP{X(t)=1}-P{X (to) = X(t) =0} _ AteM.eMbo-D ¢
- P{X (tO) = 1} N )\toe—Atu %7
because
Pu(t) = P{X(t) = k} = (Akt!)’“ M ken,

and where we furthermore have applied that X (t9) — X (¢) has the same distribution as X (¢t — t).

The conditional distribution is a rectangular distribution over 0, ¢][.

~
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Stochastic Processes 2

2. The Poisson process

Example 2.2 Let {X;(t), t > 0} and {Xa(t), t > 0} denote two independent Poisson processes of

intensity A\ and A\, resp., and let the process {Y (t), t > 0} be defined by
Y(t) = X1(t) + Xa(2).
Prove that {Y (t), t > 0} is a Poisson process.

We first identify

Po(t) = P{X(t) =n} = % .

and
Qn(t) =P{X(t)=n} = % o~ hat

We get from X (t) and Xo(t) being independent that
P{Y(t)=n} = P{Xi1(t)+ Xa(t) =n}

= Y P{Xi(t)=j} P{Xs(t) =n—j}
j=0

I
[
—
>

>
=

n—j
e~ Mt ()‘2t) e~ A2t

(n—3)!

- =i U —(uta no\ yiyn—i U —(uta
_ A{,A2J,He(1+z)tzz< ')A{)QJ'EC(H_Z”

2 i) 2\ ;
n "
= ()\1+/\2) -H~exp(—()\1+>\2)t).

Tt follows that {Y(¢), t > 0} is also a Poisson process (of intensity A; + Az).

Example 2.3 A Geiger counter only records every second particle, which arrives to the counter.
Assume that the particles arrive according to a Poisson process of intensity . Denote by N(t) the
number of particles recorded in ]0,t], where we assume that the first recorded particle is the second to

arrive.

1. Find P{N(t) =n}, n € Np.

2. Find E{N(t)}.

Let T denote the time difference between two succeeding recorded arrivals.
3. Find the frequency of T.

4. Find the mean E{T}.

1. It follows from
(At)"

Po(t) = —e™, neN,
that
2n 2n+1
P{N(t) =n} = Po(t)+ Ponsa(t) = { (();2)! ((2Avi)+ ! } o
- (;it—f:)!(?wl“t)e”’ n € No.
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Stochastic Processes 2 2. The Poisson process

2. The mean is

BV} = ZnP{N<t>=n}=e—”{z"(”)." +ZM}

oy ot (2n)! / (2n +1)!
_ &i (A +i (n+ )™ 1 g (!
- ° 2 22t A 20+ 1) 2 2~ (2n+ 1)

(
(
At \; !
— oM {7 -sinh A\t + ) (cosh At — 1) — 3 (sinh At — /\t)}

At 1 At 1 1
A A A - —2A
= € t{?~€t1(€t€ t)}71+16 t.

1
3. & 4. It follows from T' =T + T that T € T (2, X)’ thus the frequency is

ANge for x > 0,
fla) =
0 for z <0,

and the mean is

E{T} = ;

Example 2.4 From a ferry port a ferry is sailing every quarter of an hour. Each ferry can carry N
cars. The cars are arriving to the ferry port according to a Poisson process of intensity A (measured
in quarter~!).

Assuming that there is no car in the ferry port immediately after a ferry has sailed at 9°°, one shall

1) find the probability that there is no car waiting at 915 (immediately after the departure of the next
ferry),

2) find the probability that no car is waiting at 939 (immediately after the departure of the next ferry).

3) A motorist arrives at pmé. What is the probability that he will not catch the ferry at p'®, but
instead the ferry at 9302

Measuring ¢ in the unit quarter of an hour we have

P{X(t)=n} = ()\;‘)n e M, n € No.

1) From t = 1 follows that the wanted probability is

2) We have two possibilities:
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a) Either there has arrived during the first quarter of an hour < N cars, which are all carried
over, so we allow during the next quarter N cars to arrive,

b) or during the first quarter N + j cars have arrived, 1 < j < N, and at most N — j cars in the
second quarter.

We therefore get the probability

P{X(1) <N} -P{X(1) < N} + ZP{X = N+j}-P{X(1) <N —j}
j=1

N ; N—j N N-—j
/\N+j _x A\ y o )\n /\N+g+n
E ~ o € . E — € =e€ E + E
j=1 (N+])' n= n! 0 j=1 n=0 n'(N—‘,—j

o [ (AT NN N
- (Z —> t L A

n=0 n=0 j=1

3) Now the time 9073 corresponds to t = %, so the probability is

Srfx(§)-neif-en(-3) S5 (3)"

Jj=0

Example 2.5 PARADOX OF WAITING TIME.

FEach morning Mr. Smith in X-borough takes the bus to his place of work. The busses of X-borough
should according to the timetables run with an interval of 20 minutes. It is, however, well-known in
X-borough that the busses mostly arrive at random times to the bus stops (meaning mathematically

that the arrivals of the busses follow a Poisson process of intensity \ = 2 min~ !, because the average

time difference between two succeeding busses is 20 minutes).
One day when Mr. Smith is waiting extraordinary long time for his bus, he starts reasoning about how
long time he at the average must wait for the bus, and he develops two ways of reasoning:

1) The time distance between two succeeding buses is exponentially distributed of mean 20 minutes,
and since the exponential distribution is “forgetful”, de average waiting time must be 20 minutes.

2) He arrives at a random time between two succeeding busses, so by the “symmetry” the average
waiting time is instead % - 20 minutes = 10 minutes.

At this time Mr. Smith’s bus arrives, and he forgets to think of this contradiction.
Can you decide which of the two arguments is correct and explain the mistake in the wrong argument?

The argument of (1) is correct. The mistake of (2) is that the length of the time interval, in which
Mr. Smith arrives, is not exponentially distributed. In fact, there will be a tendency of Mr. Smith to
arrive in one of the longer intervals.

This is more precisely described in the following way. Let ¢ denote Mr. Smith’s arrival time. Then
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P{wait in more than x minutes} = P{N(t +z) — N(t) = 0} = P{N(z) = 0} = e~ ",
1
This shows that the waiting time is exponentially distribution of the mean Y= 20 minutes.
2) Let X1, Xo, ..., denote the lengths of the succeeding intervals between the arrivals of the busses.
By the assumptions, the X are mutually independent and exponentially distributed of parameter

A
Put

The surprise is that the X, for which

k k1
SE = ZXk <t < ZX]' = Sk+1,
j=1 J+1
have the frequency
Nz e A7, 0<z<t,
(1) fi(z) =
A1+ M)e=e, t <.
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Stochastic Processes 2 2. The Poisson process

We shall now prove (1). First notice that the frequencies of the S,, are given by

A" n—1_—Az
gn(x) = (n_ 1)! le=A R x> 0.

(a) First assume that @ < t. Then the even occurs that the interval has the length < z, if
Sn=1y and t—y < Xp41 <z,

for some combination of n and y, where t —z < y < t.
Then

Fi(z) = i/t; gn(y) {e"\(t_y) _ e—/\x} dy = /t; {ign@)} . {e—)\(t—y) _ e—m} dy

t t
= / A {e*/\te)‘y — e*)‘w} dy = )\e*)‘t/ eNdy — Aze ™ =1 — e — \ze 7,
t—x

t—x

where we have used that
(o) o0
Ay)" 1y
Dogny) =AY e M= A
n=1 n=1 (n - 1)
By a differentiation,
fi(z) = N2ze for x < t.
(b) Then let z > t. The event occurs that the interval has length < z, if either

Sn=1vy and t—y< X,41 <z

for some combination of n and y, or if Sy € [¢, z].
Then

00 t
@ = 3 [ {0 -y ()
n=1
t

_ )\/ {e—x(t—y) _ e—)\ac} dy + {e—/\t _ e—/\w}
0
= l—e MMM 4pe MM =1 (1+M)e .

By differentiation,

fe(z) = X1+ Xt)e 2, for x > t.
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We have now found the distribution, so we can compute the mean

oo t 00
/ xfi(x)de = / NaZe M dy + / (14 At)e 2 dx
t

0 0

Q)

t e8]
= [—)\xge_)‘x]g + 2/ e da 4 (1 + A\t) / Aze N dy
0 ¢

o0

i 1
= [—Amze*’\z—Qme*)‘m];+2/ e dz+ (14-Xt) [—:re’\“”—xe)‘m]

0 t

2 1
= —MZe M —2te”M 4 X (1—e )+ 1+ (te_”\t + X e_)‘t>
2 2 1
— MZe M 9pe ML S 2 N N T Ny N2 A g
AA A
2 1
= X - X € .

An interpretation of this result is that for large values of ¢, i.e. when the Poisson process has been

2
working for such a long time that some buses have arrived, then the mean is almost equal to v and

1
definitely not v which Mr. Smith tacitly has used in his second argument.
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Stochastic Processes 2 2. The Poisson process

Example 2.6 Denote by {X(t), t > 0} a Poisson process of intensity a, and let & be a fized positive
number. We define a random variable V' by

V =inf{v > £ | there is no event from the Poisson process in the interval Jv — &, v]}.

(On the figure the T; indicate the times of the i-th event of the Poisson process, V the first time when
we have had an interval of length § without any event).

1) Prove that the distribution function F(v) of V' fulfils
67a5+f0€F(v—x)ae*”dx, v >E,

(2) F(v) =
0, v < €.

2) Prove that the Laplace transform of V' is given by

(a4 N)e~(at+2E

LV = g e=ne

HINT: Use that

/ Fw)e Mdv= % L(X) for A > 0.
0

3) Find the mean E{V}.

(In one-way single-track street cars are driving according to a Poisson process of intensity a; a pedes-
trian needs the time & to cross the street; then V indicates the time when he has come safely across

the street).

The assumptions are

P{X(t) =n} = (“;!)n e~ neN,

and

P{T) >t} = P{X(t) =0} = e .
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1) Clearly, F(v) =0if v <{. If v =&, then
F(v) = F(§) = P{T1 > &} = P{X(§) =0} = ™.

Ifo>¢ then =v—E&and v—2x €lv—¢, for z € [0,¢], and we are led to the following
computation

Flv) = P{V<v}=P{V=¢+P{<V<uv}=e®+PE<V <}
(3) = e—a5+/v P{V = z}dP{T >v -z}
r=v—§
0 0
—a& — _ —a& _ —ax
e +/§ P{V=v—z}dP{T >z} =c¢ —l—/& F(v—x)de
3
= e %4 / Flv—z)ae “dx.

0

Here (3) is a generalized sum (i.e. an integral), where V' =z and T > v — x, which of course will
contribute to F'(v).

) If L(A fo M dy then the Laplace transform of V' is

/ F(v)e Ndv= l/ fw)e ™ dv = = L(\)  for A > 0.
0 AJo A

When we Laplace transform the result of (2), then

1 1 <t
—L(\) = Te e g / / Fv—z)ae “dx e dv
A A 0

= ! e (atNE 4 /{/OOF’U—.’L‘ A“dv}ae“mdm
0 0

)\
1 ([
= — a+)‘5+/ {/ Flv—2x)e )‘”dv}ae“:”dx
¢ 0
1 S [
- = —(a+)\)§ + {/ F —>\v dv}e Az cae % dr
)\ 0 0
1 1
= e e~ (@t NE | LI / Oty g,
= Le@me Ly @ {1_6 <a+A>£}
A A a-+ A ’
thus
A+ ae(@tNE
—(@NE .91 - Y el ey AT T
c ) { a+)\+a+/\e ) a+ A\ ’
and hence
Ae—(a+M)¢
L) = (a+MNe

A+ ae(atAE
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3) The mean is

E{v} = -L'(0)
y e (@FNE _ g(a+ N)em(@FNE (a4 N)em(TTVE L (1 — ¢ em (@)
= lim —
o Ataelort (/\ +a e—(a+>\)f)2
_ et ogaert aer(1-alen™) | et gac 1 -afe ™
B ae (a e—a€)? - ae—ak
l—e 2 1
= = = (e —1).
a e a (6 )

Example 2.7 To a taxi rank tazis arrive from the south according to a Poisson process of intensily
a, and independently there also arrive tazis from the north according to a Poisson process of intensity
b.

We denote by X the random wvariable which indicates the number of taxies, which arrive from the
south in the time interval between two succeeding taxi arrivals from the north.

Find P{X =k}, k € Ny, as well as the mean and variance of X.

The length of the time interval between two succeeding arrivals from the north has the frequency
f@)=be ™  t>0.

When this length is a (fixed) ¢, then the number of arriving taxies from the south is Poisson distributed
of parameter at. By the law of total probability,

0 t k b k 00
P{X =k} = / (at) et pektdr = 20 / the=(at0)t gt
o K K,
ba* k! a \* b
= 2. = : keN
k! (a+b)ktt <a+b) a+b’ <o

b
so X € NB <17 a—-l-b> is negative binomially distributed..
It follows by some formula in any textbook that

., a_a _ala+d) a a
B{X}=1-Z=7 and V{x}="0 *b(Hb)'
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Example 2.8 The number of car accidents in a given region is assumed to follow a Poisson process
{X(t), t € [0,00[} of intensity X, and the number of persons involved in the i-th accident is a random
variableY;, which is geometrically distributed,

P{Y;=k}=pd""', keN,

where p >0, ¢ >0 and p+q =1. We assume that the Y; are mutually independent, and independent
of {X(t), t > 0}.

1. Find the generating function of X (t).
2. Find the generating function of Y;.
Denote by Z(t) the total number of persons involved in accidents in the time interval ]0,t].

3. Describe the generating function of Z(t) expressed by the generating function of Y; and the gener-
ating function of X (t).
HiNnT: Use that

P{Z(t) :k}:iP{X(t) —iAYi+ Yt +Y; =k}
i=0
4. Compute E{Z(t)} and V{Z(t)}.

1) Since X(t) is a Poisson process, we have

P{X(t) =k} = (Akt,)k e M, k € N.

We find its generating function by using a table,
Px(1)(s) = exp(At(s — 1)).

2) Also, by using a table, the generating function of Y; is

Py,(s) = %.

The Y; are mutually independent, so the generating function of Y7 + - -- 4+ Y; is given by

ps ‘
(1—qs)’ 1 €N,

3) The generating function of Z(t) is

Pyu(s) = iP{Z(t) =k} s :i{ 3 P{X(t)=iAYi+ - +Y; :kz}}sk
k=0 0

k=0

_ iP{X(t) _ (ip{yl ey, = k>8k>
=1 E—0

_ iP{X(t) i} (1 fsqs) = Px (%) =P (At <1 fqu - 1))

- e (122)) G )

1=
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4) Tt follows from

PlZ(t) (S) = )\t . 3 PZ(t) (S) med Pé(t)(]‘) = —,

_r
(1—qs)

and

(1—gs)? (1—gs
where
M2 2
Py(1) = (;) + At 2
that
At
E{Z(t)} = Py,)(1) = D
and
V{Z(t)} P"(1)+ P'(1) — (P’(t))2 = <ﬁ>2 Mt 24 + M (&)2
P P p P
2 1
VR b S VR
P P
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Stochastic Processes 2 2. The Poisson process

Example 2.9 (CONTINUATION OF EXAMPLE 2.8).

Assume that the number of car accidents in a city follows a Poisson process {X(t), t € [0,00[} of
intensity 2 per day. The number of persons involved in one accident is assumed to be geometrically
distributed with p = %

Find the mean and variance of the number of persons involved in car accidents in the city per week.

It follows from Example 2.8 that

1+4¢
p?

E{Z(t)}:% and  V{Z(t)} = \t-

In the specific case the intensity is A = 2, and the time span is t = 7 days. Furthermore, p = ¢ =
thus

1
27

2.
Bz = 27 — 28
2
and
1+ 1
V{Zz(h}y=2-7- +22 =2.7-6=384.

—
N [=
~—

Example 2.10 Given a service to which customers arrive according to a Poisson process of intensity
A (measured in the unit minut™*).
Denote by Iy, Is and I3 three succeeding time intervals, each of the length of 1 minute.

1. Find the probability that there is mo customer in any of the three intervals.

2. Find the probability that there is precisely one arrival of a customer in one of these intervals and
none in the other two.

3. Find the probability that there are in total three arrivals in the time intervals 11, Is and I3, where
precisely two of them occur in one of these intervals.

4. Find the value of A, for which the probability found in 3. is largest.

Then consider 12 succeeding time intervals, each of length 1 minute. Let the random variable Z denote
the number of intervals, in which we have no arrival.

5. Find the distribution of Z.
6. For A =1 find the probability P{Z = 4} (2 dec.).

1) Let
I :]Oa 1]7 12:]1a2]7 132}233]
Then

P{no event in I; UL U I3 =]0,3]} = (e_)‘)3 =e 3N
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2) By a rearrangement,

P{one event in one interval, none in the other two} = P{one event in ]0,3]} = 3\e 3.

3) We have

P{two events in one interval, one in another one, and none in the remaining one}

= P{two events in one interval, one in the remaining two intervals}
/\2
=3- 5 e 22 e =3 33

4) We conclude from 3. that g(\) = 3\3%¢™3* > 0 for A\ > 0 with g(A\) — 0 for A\ — 0+, and for
A — oo. By a differentiation,

g(N) = (9N =9N) e =9N*(1—-N)e =0 for A=1>0,

thus the probability is largest for A = 1 med g(1) = 3e=3.
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Stochastic Processes 2 2. The Poisson process

5) Assume now that we have 12 intervals. From

A

P{no arrival in an interval} = e™ ",

we get

P{Z =k} = ( 1]3 )e_)‘k(l—e_’\)u_k, k=0,1,2, ..., 12,

thus Z € B (12,6*’\).
6) By insertion of A =1 an k = 4 into the result of 5. we get

4
P{Z =4} = ( i > {e7t(1=e)’} =495 (03679 0.6321%)" = 0.2313 ~ 0.23.

Example 2.11 A random variable X is Poisson distributed with parameter a.

1. Compute the characteristic function of X.

2. Prove for large values of a that X is approzimately normally distributed of mean a and variance a
(more precisely,

X —a

lim P{ 7 gaz} = d(x) for all x € R).

n—00

To a service customers arrive according to a Poisson process of intensity X\ = 1 minut™'. Denote by
X the number of customers who arrive in a time interval of length 100 minutes.

3. Apply Chebyshev’s inequality to find an lower bound of

(4) P{80 < X < 120}.

4. Find an approzimate expression of (4) by using the result of 2..

1) We get from

ak
P{X=k}="5¢"  keN,

the characteristic function
k _ S iwk ak —a __ _—a - 1 iw k _ _—a w\ w
X(w)—;_%e e e Zg(e a) =e “-exp(a-e) =exp(a(e” —1)).

2) Put
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Then the characteristic function of X, is given by

kx, (w) = Zexp(iuwwa)%e“:ew‘/a-eG;E{a-eXpG%)}

0

iV gma . LW o o w 1 )
. e <o [ a-exo (i —exp(alexn | — | — —wVa .
It follows from
ale i —1p —iwva = a 1—|—i—w—lw—2‘|‘lg ! -1l —iwva
Xp \/a - \/a 2! a a a
1

that

1
k(w) = lim kx, (w)=exp <——w2) )
a—o00 2
hence k(w) is the characteristic function of a normally distributed random variable from N(0, 1).
It follows that {X,} for a — oo converges in distribution towards the normal distribution N (0, 1),
thus

X —
QEIEOP{ \/aa < x} = ®(x) for every z € R.

3) If t = 100 and A\ = 1 minut ™', then
1 n
P{X =n}= 0—? e 100, n € N,
n!

hence @ = 100 and 02 = 100. Then by Chebyshev’s inequality
100 1

_ > < - =
P{IX —100] > 20} < 555 = 1.

SO

1 3
P{80 < X <120} =1 - P{|X —100[ > 20} > 1 — - = .

4) An approximate expression of
X — 100

is then by 2. given by
D(2) — P(—2) =2P(2) — 1 ~2-0.9772 — 1 = 0.9544.

However, since X is an integer, we must here use the correction of continuity. Then the interval
should be 80.5 < x < 119.5. We get the improved approximate expression,

P{80.5 < X < 119.5}

X —100
P{|X —100| < 19.5} = P {‘T’ < 1.95}

= ®(1.95) — $(1.95) = 28(1.95) — 1
2.0.9744 — 1 = 0, 9488.
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Remark 2.1 For comparison a long and tedious computation on a pocket calculator gives

P{80 < X <120} ~ 0.9491. ¢

Example 2.12 In a shop there are two shop assistants A and B. Customers may freely choose if they
will queue up at A or at B, but they cannot change their decision afterwards. For all customers at A
their serving times are mutually independent random variables of the frequency

Ae AT x> 0,
flx) = (X is a positive constant),
0, z <0,

and for the customers at B the serving times are mutually independent random variables of frequency

22 e, y >0,

9(y) =
0, y <Q0.

At a given time Andrew arrives and is queueing up at A, where there in front of him is only one
customer, and where the service of this customer has just bequn. We call the serving time of this
customer X1, while Andrew’s serving time is called X5.

At the same time Basil arrives and joins the queue at B, where there in front of him are two waiting
customers, and where the service of the first customer has just bequn. The service times of these two
customers are denoted Y1 and Ya, resp..

1. Find the frequencies of the random variables X1 + X5 and Y7 + Ys.

2. Ezpress by means of the random variables Y1, Yo and X the event that the service of Basil starts
after the time when the service of Andrew has started, and find the probability of this event.

3. Find the probability that the service of Basil starts after the end of the service of Andrew.
Assume that the customers arrive to the shop according to a Poisson process of intensity .
4. Find the expected number of customers, who arrive to the shop in a time interval of length t.

5. Let N denote the random variable, which indicates the number of customers who arrive to the shop
during the time when Andrew is in the shop (thus X1+ Xs). Find the mean of N.

1 1
1) Since X; €T (1, X) is exponentially distributed we have X; + X5 € T <2, X)’ thus

Nge AT, x>0,

[xivx,(z) =
0, x <0,

1 1
Since Y; € T’ (1, ﬁ)’ we have Y1 + Yo € T (2, ﬁ) with the frequency

4/\2y e‘”‘y, y >0,

9y14Y> (y) =
0, y < 0.
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2) The event is expressed by X7 < Y7 + Y5. The probability of this event is
P{X; <Y1 +Yy} = // Ne % 4NZy e 2N d dy
{0<z<y}
00 Yy
/ AN2y e {/ Ne A dx} dy
0 0
= /0 AN2y e [—e”‘ﬂizo dy
= / 4Ny e dy —/ 4Ny e 3 dy
0 0

/ te_tdt——/ te tdt==.
0 9 Jo 9

3) We must have in this case that X; + X5 < Y] 4+ Y5. Hence the probability is

P{Xi+Xo <Y1 +Yo} = / Nze M AN2y e N dx dy
{0<z<y}

[e%e} Y e} Y
= / 4NPy e 2 (/ Nge A dw) dy = / AN2y e {[—)\m e*)‘ﬂg —|—/ Ne ™ dx} dy
0 0 0 0
[eS) Yy [eS)
:/ 4Ny 6_2’\1// Ne ™ dy: —/ AN3y2e 3N dy
0 0 0

4 [ 15 — 7
=P{X; <Y1 +Ys} - —/ (3\)3y2e 3N dy = b8
0

4
T T T Toar

O] Ut

27

4) Tf X(¢t) indicates the number of arrived customers in ]0, ¢], then

P{X(t)=n}= (ant?n e, neN,
and
m(t) = BX(0) = Y0 O oot~ g,
n=0 ’

5) Finally, (cf. 4.),

E{N}aE{X1+X2}a{—+;} _ 2

> =
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3 Birth and death processes

Example 3.1 Consider a birth process {X (t),t € [0,00[} of states Ey, E1, Ea, ... and positive birth
intensities \,. The differential equations of the process are

P(I)(t) = 7A0P0(t)a
P];(t) = —)\kpk(t) + )\}Cflpkfl(t), keN,

and we assume that the process at t = 0 is in state Ey. It can be proved that the differential equations
have a uniquely determined solution (Py(t)) satisfying

Py(t) >0, iPk(t) <1.
k=0

One can also prove that either Y o~ o Pi(t) =1 for allt >0, or > ;" Py(t) <1 for allt > 0.
Prove that

1
oo Pe(t) =1 for allt > 0, if and only if > -, — is divergent.
k=0 k=0 A

k

HiNT: First prove that

1 t
—a(t)g/ Pu(s)ds < keNy, >0,
0

Ak

where a(t) =1— Y 72 o Piu(t).
We get by a rearrangement and recursion,
MePi(t) = —Ph(t) + Me—1Pe1(t) = —Ph(t) = Ph_y(8) + Mo Pra(t) = - = = > Pj(1),

hence by integration,

t

¢ k k k
Ak/o Pus)ds = |- S Pi(s)| =S BP0 =1- 3 Py(t),
Jj=0 j=0

o J=0 J

because at time ¢ = 0 we are in state Ey, so Py(0) =0, and P;(0) =0, j € N.
Thus we have the estimates

o] k t
a(t)zl—ZPj(t)SI—ZPj(t):)\k/ Pu(s)ds <1,
j=0 j=0 0
from which
x (t)</tP()d <L
)\ka =, k(S S_Ak.
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Assume that Y 2 Px(t) = 1. Applying the theorem of monotonous convergence (NB The Lebesgue
integral!) it follows from the right hand inequality that

[e%e) 1 [e%} t t o0 t
Z— ZZ/ Pk(s)ds:/ ZPk(s)ds:/ ldt=t for alle t € Ry,
AU w0 0 k=0 0

1
proving that the series > ., " is divergent.
k

Then assume that > -, Pe(¢) < 1, thus

£) :l—iPk(t) >0
k=0

Using the theorem of monotonous convergence and the left hand inequality we get

1 = [
> — -a(t)SZ/ Pu(s)ds <t  forallteR,.
oo M k=00

Now a(t) > 0, so this implies that
vl <o
b=o M alt)

1
and the series >, oW is convergent.
k
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Stochastic Processes 2 3. Birth and death processes

Example 3.2 To a carpark, cars arrive from 9°° (t = 0) following a Poisson process of intensity \.
There are in total N parking bays, and we assume that no car leaves the carpark. Let E,, n =0, 1,
..., N, denote the state that n of the parking bays are occupied.

1) Find the differential equations of the system.
2) Find P,(t),n=0, 1, ..., N.
3) Find the stationary probabilities p,, n =0, 1, ..., N.

Put A =1 minute™* and N = 5. Find the probability that a car driver who arrives at 9% cannot find
a vacant parking bay.

1) This is a pure birth process with

A forn=0,1,..., N—1,
Ap =
0 for n = N,

and the system of differential equations

Pi(t) = —AP(b),
Pl(t) = =AP,(t)+APy_1(t), n=12,...,N—1,
Py(t) = APn_1(t),

and initial conditions

1 for n =0,
P,(0) =
0 for n > 0.

2) The system of 1. can either be solved successively or by consulting a textbook,

)™
e*)\t( )’ n:0’1’2,...,N71,
n!
Po(t) =
1 (A)™
1_257,\[:01<n!) e_/\t7 n=n.

3) Tt follows immediately that

0, n<N,
P,(t) — { | n=N for t — oo,
thus
0, n <N,
Pn =
1, n=n
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4) First identify
A = 1 minute ™!, t=3 and N =5.

Then by insertion,

4

4
P {no parking bay at 9%} = P5(3) =1 — Z P,(3)=1- Z
n=0

n=0

STL
nl

e™3 =0.1847 ~ 0.185.

Example 3.3 Given a stochastic birth and death process X (t),t € [0,00[}, which can be in the states

E4, E5, E6 and E7.
Assume that the birth intensity Ay is in state Ej given by

A = ak(7 — k),
and that the death intensity py in state Ey is equal to
Hk = ﬂk(k - 4)7

where o and 3 are positive constants.
Find the stationary probabilities in each of the two cases below

1) B=a,
2) B =2a.

The equations of equilibrium are here

Prt1Pk+1 = Aepr for k=4,5, 6.
Thus
_ My 120 12 /a)
ps = u5p4—5ﬂp4 5 \ 3 P4,
_ X Wa 12a, (a)
Ps = H6p5_125 55_ 3 P4,
_ X, Ga et fa)’
pr = u7p6—215 3) 7\ yz
Furthermore,

P4+ ps +ps +p7r = 1.

However, the exact values can first be found when we know the relationship between o and (3.

1) If B = «, then

1= 1—1—12—1—2—i-4
= P4 5 7

209

35+ 84470+20 209
- 35

35

ba =

P4,
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hence
_ 35 _ 12 35 &
P4= 5097 P5 =75 500 T 209
_ 70 _ 4035 20
P6 = 909 PT=7"%090 " 249

SO

1
P = (p4,ps,p6,07) = =— (35, 84,70, 20).

T 209
2) Tt = 2a, then & = 1
= 42X en — = — ence
) 6 27
6 1 1
p5—5p4, P6f2p4, p7f14p4,

and

1 1Yy 70+84+35+5 97
5 2 14 70 35

6
1:P4+P5+P6+p7=p4<1+—+—+— = e =,

from which

35 42 35 5

p4:§7 p5:§7 pGZMa _1947

i.e.

1
= =— 4 .
P = (P4, 15,16, P7) = 19, (70,84,35,5)

American online
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Example 3.4 Given a birth and death process of the states Eg, F1, Ea, ..., birth intensities Ay and

death intensities uj. Assume furthermore that
a. A\, = pup = ka, k € Ny, (where a is a positive constant).

b. Pi(0) = 1.

1. Find the differential equations of the process.
One may now without proof use that under the assumptions above,

Py(t) = m
2. Find Py(t), Py(t) and Ps(t).

3. Sketch the graph of Py(t) + Pi(t).
4. Sketch the graph of Pa(t).

5. Find lim;_o P, (t) for every n € Ny.

1) We have
Pé(t) = —)\opo(t) + M1P1(t> = OzP1<t),

and

Pl(t) = —(\k+pk) Pe(t) + M1 Pio—1(t) + prr1 Peta ()

= (k—1)aPr_1(t) — 2kaPy(t) + (k+ 1)aPr1(t) for k € N.

2) If P1(0) =1, then P;(0) =0 for k € Ny \ {1}. It follows from

«

Py(t) = a Pi(t) = A+ a2

by an integration that

¢ t

adr 1 1 ot
P t - = |— :1— = .
b(®) /0 (14 ar)? [ 1+a7]0 1+at 1+4+at

If k =1, we get by a rearrangement,

2

Py(t) = %{p{(t)0~Po(t)+2aP1(t)}%{ -

1 1 at

1+at)? (Q4at)d (14 at)?

TETE

(1+at)?

|
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If kK =2, we get by a rearrangement,

Pt) = 3% (P() — a Py(t) + 4a Py(t)}
1 3a 2 « 4o 4o
T 3a { (4ot (I4at)? (1+al)?  (tal? (1+ai)? }

N i 3o - 6 + 3«
 3a | (T+at)t (I+at)3  (1+at)?

I+ at)-204at)+1 P
N (1+ at)? 1+ at)t
Summing up,
at 1
Py(t) = —— P(t)= ——,
b(®) 1+ at’ 1) (1+ at)?
at a’t?
P(t) = ——= Ps(t) = .
2 (t) (1+at)?’ 3(1) (1+at)?
0.8
0.6
0.4
0.2
0 05 1 15 2 25 3
Figure 1: The graph of 1 — ﬁ with z = at.
x
3) It follows that
at 1 _1tat+ a?t? at

Py(t) + Pi(t)

“Trat  Uta? . (Qtat)? O (U4a)?
If we put x = at, we see that we shall only sketch

1 x 1 1 n 1
(1+2)2 14z (1+x)?

which has a minimum for = 1, and has y = 1 as an asymptote.
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0.8

0.6

0.4+

0.24

Figure 2: The graph of % withz = at.

(1+2)°

4) If we put = = at, it follows that we shall only sketch
x
T
From
(@) = 1 B3 120
PET O e T Attt Qta)®

1
follows that we have a maximum for z = 37 corresponding to

ORI

5) Clearly,
at
lim Py(t) = li =
A Polt) = i T

We conclude from

Y Pt)=1 and  Py(t) >0,
n=0

that
lim P,(t) =0,
t—oo ot
hence
tlim P,(t)=0 for alle n € N.
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Example 3.5 A power station delivers electricity to N customers. If a customer at time t uses
electricity there is the probability puh + he(h) that he does not use electricity at time t + h, and
probability 1 — ph + he(h) that he is still using electricity at time t + h.

Howewver, if he to time t does not use electricity, then there is the probability Ah + he(h) that he uses
electricity at time t + h, and probability 1 — Ah + he(h) that he does not do it.

The customers are using electricity mutually independently.

Denote by Ey, the state that k consumers use electricity, k=0, 1, ..., N.

Find the differential equations of the system.

Find the stationary probabilities.

We put X (t) = 1, if the k-th customer uses electricity at time ¢, and Xy (¢) = 0, if he does not do it.
Let n and j € {0, 1, ..., N}, and assume that the system is in state Ej;, i.e.

M=

Xp(t) =14 at time t.
k=1

How can we realize that we are in state F,, at time ¢ + h?

There must be an m € {0, 1, ..., j}, such that j —m of the customers who were using electricity at
time t, still are using electricity at time ¢ + h.

Furthermore, n — j + m of the customers, who did not use electricity at time ¢, must use electricity
at time ¢t + h, is we are in state F,,.

Thus we get the condition m > j —n, so

m € {max{0,j —n}, ..., min{j, N —n}}, and je{0,1,..., N}

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N
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Summing up, if the conditions above are fulfilled, then

1) m of the customers, who used electricity at time ¢, do not do it at time ¢ + h.
2) j — m use electricity both at time ¢ and at time ¢ + h.

3) n— j+m did not use electricity at time ¢, but they do it at time ¢ + h.

4) N —n — m neither use electricity at time ¢ nor at time ¢ + h.

For fixed j this can be done of the probability

min{j,N—n}

3 (gl>{uh+h5(h)}m{1—,uh+hs(h)}j‘m

m=max{0,j—n}

( n ]_Vji_:m ) {)\h + h&(h)}n—j—‘rm{l — M+ h&‘(h)}N_n_m.

When we multiply this equation by P;(t) and then sum with respect to j, we get

(5) Pu(t+h) = jépj(t) min{i\]n} (%)(anij>x

m=max{0,j—n}
x{ph + he(h)}™ {1 — ph + he(h)} ™™ x
s {\h + he(h)}" I {1 = A+ he(h)}N =™

If m = 0 in the inner sum, then j < n, and we isolate the term

n—J

( é ) < N ) {ph + he(R)}°{1 — ph + he(h) P {\h + he(h)}" 7 {1 — Ah + he(h)}¥ "

= < JZ__; > {1 fthrha(h)}j{l _ >\h+hé‘(h)}Nﬁnhnij{A+5(h)}n*]—.

It follows clearly that if j # n, n — 1, then we get terms of the type he(h),
If furthermore j = n, then we get the term

0
= (1 —ph)"(1 = AN ™" 4 he(h) =1 — nuh + (N — n)Ah + he(h).

< N = >{1uh+h5(h)}”{1/\h+hs(h)}N”~1

If instead j = n — 1, then we get the term

<N—n+1

. ) {1 — ph + he(h)}" "1 — M+ he(h)}N 1 h- (A + he(h))

= (N —n+1)hX+ he(h).
If m =1 in the inner sum of (5), then
j—n<n<min{j, N —n},

thus 1 < 7 <n+ 1. For such j we get the contribution

< ! ) ( Wi ) ph(1 = ph) =L AR (L = AN e ().
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It follows immediately that if j # n + 1, then all these terms are of the type he(h).
For j =n + 1 we get the contribution

< nl ) ( N‘g‘l >uh(1—ph)”(1—>\h)N"m+hs(h) — (n+ Vph + he(h),

If m > 2, we only get terms of the type he(h).

We now include € functions. Then (5) is reduced by this analysis forn =1, ..., N — 1, to

Put+h) = Po{l—npuh— (N —n)Ah+he(h)} + Pa_y(t) - (N — n+ 1)hA + he(h)
+Poya(t) - (n+1) - wh + he(h),

thus by a rearrangement

P, (t+h) — P,(t)
— —h {(np+ (N = )N Pa(®)} + h(N = 1+ DAPa_1(8) + h(n + VP () + he(h),

and hence dividing by h, followed by taking the limit A — 0,
Pl(t)=—{nu+ (N —=n)A}P,(t) + (N —n+ DAP,—1(t) + (n+ 1) uPpy1(2).
There are some modifications for n = 0 and n = NN, in which cases we get instead
Py(t) = =N A Po(t) + p Pi(t),
and
Py(t) = =N pPy(t)+ A Pn_1(2).

Then we have for the stationary probabilities,

0 = —NApo+ppi,
0 = _{nu+(N_n))‘}pn—’_(N_n—’_l))‘pnfl+(n+1)ﬂpn+1v n= 13"'7N_]-7
0 = —Nupy+Apn_1,
hence
A
p1=N-—pg
1

B n +N—n é _N—n+1 é
Pnt1 = n+1 n+1 p
1A

PN = N : MpN—l-

In order to find the pattern we compute po, i.e. we put n = 1 into the general formula

1 N—-1 A N [\ N A N(N =1) [A\° N A
p2 = |(gt—5— - n—5 |- |Jpo=5 —p+t—F— |- P05 —" Po
2 2 2 \p 2 p 2 j %

(2)C)m
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Now

e () m= () ()

so we guess that we in general have

(N A\
Pn = n ; Po-
This is true for n =0, 1, 2.
Assume that the claim holds for all indices up to n. If n < N — 1, then

n N-—-n A N-n+1 A
n+1 n+1 p bn n-+1 upn*l

n N! AMN", N-n N! A\
: -] + : - Po
n+1 nl(N—-n)l \u n+1 nl(N-—-n) \pu

N-n+1 N A"
ntl  (m-DIN—-n+)l \x) P

Pn+1

N (3)“ - NI
n+1)-n-DIN—n)! \u) 7 (a+ Dn— DN —n)!

N! A\
O T ] <;> Po

N A n+1
- ()G e

and the claim follows by induction. Then

N N n N N
Z Z N A A A+

b= b= 0 ( n )<_) p0.<1+_) po( M) ,
n=0 n=0 K H H

hence

e (0 65 - () )

n
)po

The solution above is somewhat clumsy, though it follows the ordinary way one would solve problems

of this type without too much training.

ALTERNATIVELY we see that we have a birth and death process of states Fy, E1, ..., Ey, and

intensities
e = (N — k), Wi = ki, ke{0,1,...,N}.
The corresponding system of differential equations becomes
Py(t) = =NAPy(t) + pPi(t),

Pi(t) = {(N=k)A+kp} Pi(t)+ (N —=k+1)AP; 1 (t) +(k+1)uPria (1),
for 1<k<N—1,
PI/V(t) = 7N[LPN(t) + )\PN_l(t).
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The stationary probabilities p; are found from
PkPE = Ak—1Pk—1, k=1,2,...,N,

thus

N—k+1 A
Pk=——F "~ Pk-1-
k 1%

Then by recursion,
kDN -k+2)-N A W NNy A
P = k-(k—1) 1 ) P i\ T Uk ) ) P

Finally, it follows from

N N k N N
N A A A+
1:Zpk:p°z<k>(_> :pO{_“} ZPO( M)
k=0 k=0 H H H

that

n= (D)6 = ()0 65) (V) ) ()

A A
for k=0,1,2,..., N, so we get a binomial distribution B <N, —) of mean N - ——.
A At

/
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Example 3.6 Given a stochastic process {X (t), t € [0,00[} by the following: At time t = 0 there are
N cars in a carpark. No car arrives, and the cars leave the carpark mutually independently. If a car
is staying at its parking bay at time t, then there is the probability uh + he(h) [where p is a positive
constant] that it leaves the carpark in the time interval |t,t + h].

Put X(t) =k, k=0, 1, ..., N, if there are k cars in the carpark at time t, and put

P(t) = P{X(t) = k}.
Prove that we have a death process with i = kp, k=0, 1, ..., N.
Find the differential equations of the system.

Find the stationary probabilities.

Ll

Prove that the mean value function

m(t) = 3k Pult)
k=1

is a solution of the differential equation

dx
i -0
i + px ;

and then find m(t).
5. Given that X (t) is binomially distributed, find the probabilities Py(t), k=0, 1, ..., N.
We introduce a random variable T' by putting T = t, if the last car leaves the carpark at time t.

6. Find the distribution function and the frequency of T.

1) This follows e.g. from the fact that the probability that one of the k cars leaves the carpark in the
time interval ]¢, ¢ + h] is

E{uh + he(h)} - {1 — ph + he(h)}F~! = kuh + he(h),
from which we conclude that p, = kpu.
2) The differential equations are immediately found to be
P(t) = —kpPy(t) + (k + 1) Py (2), 0<k<N-1,
Piy(t) = —NuPx(1).
3) The stationary probabilities become
kpr =0, k=0,1,..., N.
Since ZkN:o pr = 1, we get
pr =20 fork=1,2,..., N and po = 1.

This result is of course obvious, because the carpark at last is empty.
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4) If we multiply the k-th equation of 2. by k, and then sum from 1 to N, we get

2

—1

N N
STEPLt) = —pY EPe(t)+p Y k(k+1)Peya(t)
k=1 k=1

=11

N N
= —pd KP(t)+pd (k—1=jPc(t)=—pY_ kPut),
k=1 k=1

=~
Il

1

which is also written

N
m/(t)+pm(t) =0,  m(t)=>_ kPt).
k=1

From m(0) = N follows that m(t) = N e™ .

5) Since X () is binomially distributed of parameter of numbers N, and since we also know the mean,
we can find the probability parameter, thus

X(t) € B(N,e "),

and

Py(t) = < JZ )ek"t (1—e )" k=0,1,..., N

6) Now, T' < t, if and only if X(¢) = 0. Hence

Po(t) = (1 — e r)N for t > 0,
F(t) =
0 for t <0,
and finally by differentiation
N((1- eil“t)N_1 pe Ht for ¢ > 0,
ft) =
0, for t < 0.
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4 Queueing theory

Example 4.1 Customers arrive to a shop by a Poisson process of intensity \. There are 2 shop
assistants and possibility of forming a queue. We assume that the service times are exponentially

distributed of parameter p.
1
It is given that there are no customers in the shop in at the average 10 % of the time and that 3= 11.

1
Find —.
1
Then find the probability that both shop assistants are busy.

1 1
m and 3= 11. In fact, it was given that Py(t) — po = 10 % for ¢t — oc.

The traffic intensity p is for N = 2 given by

Here, N =2 and pg =

1-0p 1 b ¢
= — = — ora. = —.
Po= 9, T 1o vorat e = g

On the other hand, the traffic intensity is defined by

1 1
A A = 2 dvs. — = 18.
1

°T Ny T2 2-11p 11

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
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N
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Hence

1o 9
L A TR Ti)

S
[

and therefore,

1 1 1
P{both shop assistants busy} =1—py—p1 =1— — — 18 _ 3

10 110 110"

Example 4.2 Customers arrive to a shop following a Poisson process of intensity X. We have 1
shop assistant and it is possible to form a queue. We assume that the service times are exponentially

6
distributed of parameter . It is assumed that the traffic intensity is ¢ = —, where it is well-known

that this implies that the system does not work properly (the queue increases indefinitely). Compare
the advantages of the following two possibilities:

1) Another shop assistant is hired (of the same service time distribution as the first one).
2) Improvement of the service, such that the average service time is lowered to its half.
We have a queueing system with possibility of forming a queue. The parameters are

6
N =1, 925 and A, L.
. 6 .
Since o = 5 > 1, this system does not work properly.

1) If another shop assistant is hired, then the parameters are changed to

N =2, 0= g and A, g unchanged.

_l—g_l
p0_1+g_4'

The average waiting time is
4 \5
Vi=——F— =
1 , 9 2
Hes

and the average staying time is

=

9
16

9 1 1 25 1

O,=—. = = .
' 16 u+u 16 u
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Remark 4.1 It should here be added that one can also find

15
the average number of customers = —

)

6
the average number of busy shop assistants = R

27
the average length of the queue = 0 %

2) If instead the service is improved as indicated, then the parameters become

3

N =1, 0= =R A unchanged, 1 is doubled.

The average waiting time is then

e _121
2u(l—0) 16 4’

and the average staying time is

Vo =

12 1 120 1

Oy— 2.2 - _ 2 1
2= %6 n T 16

Remark 4.2 Again we add for completeness,

the average number of customers = —,

3
ther average number of busy shop assistants = =

the average length of the queue = % O

By comparing the two cases we get
Vi< Vs, and on the contrary 01 > 09,

and the question does not have a unique answer.

The customer will prefer that the sum of waiting time and service time is as small as possible. Since

34 1 32 1
= — . — d —_ . —
Vi+ 0O 6 1 an Vo + 02 6

it follows that the customer will prefer the latter system, while it is far more uncertain what the shop

would prefer, because we do not know the costs of each of the two possible improvements.
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Example 4.3 We consider an intersection which is not controlled by traffic lights. One has noticed
that cars doing a left-hand turn are stopped and therefore delay the cars which are going straight on.
Therefore, one plans to build a left-hand turn lane. Assuming that arrivals and departures of the cars

1
doing the left-hand turn are exponentially distributed with the parameters A\ and p, where — = 3 one

shall compute the smallest number of cars of the planned left-hand turn lane, if the probability is less
than 5 % of the event that there are more cars than the new lane can contain.

Here N =1, so the capacity of the system is

a1
Q_N,u_2'

The stationary probabilities are

kt1
pr=0"(1-0)= (§> ; k € Np.

Let n denote the maximum number of cars in the left turn lane. Then we get the condition

00 %) 1 k+1 1 1
Sn=% (3) g <% g

k=n+1 k=n+1

thus 2% < 11—0, which is fulfilled for n > 4.

Example 4.4 Given a queueing system of exponential distribution of arrivals and exponential distri-

bution of service times (the means are called X and —, resp.). The number of service places is 2. We
1

furthermore assume that it is possible to form a queue. Assuming that % =1 (minute) and % =1
(minute),

1. find the average waiting time,

2. find the average staying time.

For economic reasons the number of service places is cut down from 2 to 1, while the service at the
same time is simplified (so the service time is decreased), such that the customer’s average staying
time is not prolonged. Assuming that the constant X is unchanged,

1
3. find the average service time —, such that the average staying time in the new system is equal to
1
the average staying time in the previous mentioned system,

4. find in which of the two systems the probability is largest for a customer to wait.

1 1
Here N = 2, Y= 1 and — = 1. This gives the traffic intensity
1
A 11 1 -0 1
= = — = — an —_ — = =
=Ny T2 2 P=1 073
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1) The average waiting time is

me NV ()

V= -
peoN(1=0)  1.21(1-1)°

1 ;
= — minute.
3

2) The staying time is the waiting time plus the serving time, so the average staying time is

1 1 4
O=V+=-=>-+1= — minute.
w3 3

3) In the new system the traffic intensity is

— )\ —
Nipr

01 idet Ny = 1.

7

The average waiting time is for N7 given by some theoretical formula,

01 1

Vi = = s
YT —o) m(u-1)

and the average staying time is for N; = 1 given by

1 1
O1=Vi+—= .
pr o opr—1

Iy
1 |
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4
We want that O = O = 3" Hence, 1 — 1 = z, ie pup = g, and

4
p T

4) The probability of waiting in the old system is

1—o0 1-—
l—po—pr=1-—2 292

1_
140 Q1+g

1
3
The probability of waiting in the new system is
1 4
0 ( 1) 1 o7

We see by comparison that there is largest probability of waiting in the new system.
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Example 4.5 Given a service (a shop) of which we assume:

a.
b.

C.

There is only one shop assistant.
It is not possible to form a queue.
The customers arrive according to a Poisson process of intensity .

The service time is exponentially distributed of mean p.

. Find the differential equations of this system.

. Solve these under the assumption that at time t = 0 there is no customer.

A
Assume from now on that — = 6.
1

3.

Find the stationary probabilities and the probability of rejection.

Assuming that the probability of rejection is too large, we change the system, such that there are two
shop assistants A and B, and the service is changed, such that a customer at his arrival goes to A
and is served by him, if A is vacant at the arrival of the customer. If on the other hand A is busy,
then the customer will turn to B in order to be serviced. If also B is busy, the customer is rejected.
The assumptions of the arrivals and service times are the same as before. We want to compute in this
system:

4.
5.

The stationary probabilities and the probability of rejection.

The probability that A and B, res., are busy.

6. Finally, find the smallest number of shop assistants, for which the probability of rejection is smaller

1
than —.
an 5

1) Since N =1, the differential equations of the system are

Po(t) = =ABo(t) + pnPi(t),
Pi(t) = APy(t) — pPi(2),

thus written in the form of a matrix equation,

ilne )= (3 ) (R6)

2) The characteristic polynomial (in R) is

‘—A—R w

\ _M_R‘(R+A)(R+u))\uR2+(A+u)R.

The roots are R =0 and R = —\ — p.
For R = 0 we get the eigenvector (u, \).
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For R = —\ — pu we get the eigenvector (1,—1).
The complete solution is

(3)-a(8)-r (1)

The initial conditions are Py(0) = 1 and P;(0) = 0, thus

1 = per + ¢,
0= Ac1 — co,
and hence
1 A
g =—-, o = ——,
! A p 2 A

and the solution becomes

1% A
Py(t) = —— + ——— e~ M1t
b(t) A p )\+ue
Pi(t) = A A e~ (At
Ap A+p
A
3) If = =6, then
I
A
A o 6 1
—— =5t—=: and S =,
A+ S+l 7 Adp 7
and A + p = Tp, thus
6
Po(t) = = + = exp(=Tut),
t>0.
Pi(t) = 2 — 2 exp(~Tpt),

The stationary probabilities are obtained by letting ¢ — oo, thus

1 6
== and  p=z.

6
In particular, the probability of rejection is p; = =

4) We have the following states:

FEy: No customer in the system.
FEq: A serves a customer, while B does not.
FEs: A is vacant, while B serves a customer.

FEs5: Both A and B serve customers.
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There is no change for A, so by 3.,

1 6
Py(t) + Pa(t) = -tz exp(—T7ut),

6 6
Py(t) 4 Ps(t) = Ty exp(—Tut),

By taking the limit ¢ — oo we get

+ L d + 6
= — an = —.
Po T P2 7 P1 T+ P3 z

We can realize Py(t + h) in the following ways, if the system at time ¢ is in state

(i) Eo, and no customer arrives,
Py(t) - {1 = Ah+ he(h)}.
(ii) Ey, some customer arrive, and they are served until they are finished,
he(h).
(iii) F4, and there is no customer coming, and A’s customer is serviced to the end,

Py(t) - {uh + he(h)}.

[ ]
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how is crucial to running a large proportion of the
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=
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(iv) FEi, and there arrive customers, who are served,
he(h).
(v) Es, and no new customer is coming, and B’s customer is served to the end,
Py(t) - {psh + he(h)}.
(vi) FE2 in all other cases,
he(h).
(vii) FEj3 in general,
he(h).
By adding these we get
Po(t+h) = Po(t) - {1 = Xh+he(h)} + {P1(t) + Pa(t)} - {puh + he(h)} + he(h).
Then compute the derivative in the usual way by taking the limit. This gives
Po(t) = lim {Po(t +h) = Po(t)} = =APo(t) + p{P1 (1) + Pa(1)} -
Then by taking the limit ¢t — oo,
0= —=Xpo + p{p1 +p2} = —6ppo + p{p1 + p2},
hence
6po = p1 + pa-

We are still missing one equation, when we want to find the stationary probabilities. We choose
to realize P3(t + h). This can be done, if the system at time ¢ is in state

(i) Ep, and at least two customers arrive,
he(h).

(ii) Eq, and at least one customer arrives, and neither A nor B finish their customers,
Py(t) - {\h + he(h)} - {1 — ph + he(h)}2.

(iii) F», and at least one customer arrives, and neither A nor B finish their customers,
Py(t) - {\h + he(h)} - {1 — ph + he(h)}>.

(iv) FEj3, and neither A nor B finish their customers,
Ps(t) - {1 — ph + he(h)}>.

(v) Other, all of probability

he(h).
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When we add these probabilities we get

Py(t+h) = {Pu(t)+ Pa(t)} - {\v+ he(h)} - {1 — ph + he(h)}?
+P5(t) - {1 — ph + he(h)}? + he(h).

A rearrangement followed by a reduction gives
P3(t+ h) — P3(t) = A {P1(t) + Pa(t)} — 2phP3(t) + he(h).
Then divide by h and let h — 0. This will give us the differential equation
Pi(t) = M{Pi(t) + Pa(t)} — 2uP5(t),
hence by taking the limit ¢ — oo,
0= A(p1 +02) = 2ups = 6yt (p1 + p2) — 2pp3,
SO
p3 =3 (p1+p2) = 18po.

Summing up we have obtained the four equations

1 1
po+p2 = 7 Po + p2 = o
+ _ ¢ 18pg + _ ¢
P1 P3 - 77 thus Po P1 - 7)
6po = p1+Dp2, 6po —p1 —p2 = 0,
D3 = 18po, D3 = 18pg.

1
By addition of the former three equations, we get 25py = 1, thus pg = %5 Then

6 18 6 24

200 o5_91)=
PL= g T o5 T 1y P20 =
and

1118 . 18
P2=7 79 Ty Y BT o

SO

( (L2418 1y
Po,P1,P2,P3) = 2571757175a25 )

and the probability of rejection is

18

Pszﬁ'
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5)

The probability that A is busy is

O
P1 P377-

The probability that B is busy is

tp =18 18 14 6
P27 D3 = 905 T o5 T 175 7)"

We have in the general case of N shop assistants, where F; denotes that j customers are served,
the system of differential equations

Fy(t) = =APo(t) + pPr(t),
PU(t) = A+ k) Pe(t) + APy () + (k + DpPesa(t), 1<k <N -1,
Py (t) = —NpPn(t) + APn_1(t).
Hence by taking the limit ¢t — oo,
0= —Apo + pp1,
0=—(A\+kp)pr + g1+ (k+Dppry1, 1<k<N-1,

0=—Nppn + Apn_1.
A L
Since — = 6, we get by a division by u, followed by a rearrangement that
1

0 = 6po — p1,
6pr, — (k+ D)pr1 = 6pr—1 —kpr, 1<k N-—1,
0=6pn_1— Npn.
Then by recursion, 6pg_—1 — kpr = 0, thus
kpy, = 6pg—1, 1<k<N.

The easiest way to solve this recursion formula is to multiply by

k—1)!
ED!

and then do the recursion,

k! (k—1)! 0!

G_kpp:@ci,lpkflz"'zes—opozpo, k=0,1,..., N,
thus
6k
pkzypo, k=0,1,..., N.
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Since p is a probability vector, we get the condition

al N 6k 1
1:ZPkZPOZHa thus pozw-
k=0 k=0 SN
=0 k!

The task is to find IV, such that the probability of rejection py

IA
N | =

. Using

ﬂ 6N N—-1 6k

N1 :
PN = SN—Tgr o8 =50 if ~7 = Z Ik
2k=0 & T N1 N k=0 w

we compute the following table,

N | =

k 0[1] 2] 3] 4
6k
|| t] 618|365
6

S |l <| 1] 7|25 61

1
It follows that N > 4 gives py < 3 so we shall at least apply 4 service places.

Vowo Toucxs | Rewanr Tovcks | Mack Toueks | Vowo Buses | Vowo Coxsteucrion Ecuresent | Wowo Pesm | Vowo Aemo | Vowo IT

Vowo Fieskcer Sepaces | Vowo 3P | Vowo Powemreaim | Vowo Paers | Vowo Techwowosy | Vowo Loasncs | Busieess Anes Asie
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Example 4.6 At a university there are two super computers A and B. Computer A is used for
university tasks, while computer B is restricted to external tasks. Both systems allow forming queues,
and the service times (i.e. the times used for computation of each task) is approximately exponentially

1
distributed of mean — = 3 minutes. The university tasks arrive to computer A approximately as a

1
Poisson process of intensity g = R min~ !, while the tasks of computer B arrive as a Poisson process

1

3
of intensity \gp = 10 min~ . Apply the stationary probabilities for the two computers A and B to

compute
1. The fraction of time, A (resp. B) is vacant.
2. The average waiting time at A (resp. B).

It is suggested to join the two systems to one, such that each computer can be used to university tasks
as well external tasks. This means that we have a queueing system with two “shop assistants”. Use
again the stationary probabilities of this system to compute

3. The fraction of time both computers are vacant.
4. The fraction of time both computers are busy.

5. The average waiting time.

1) In both cases, N = 1.
For A we have the capacity
Aa 3

= = th =1 = 2
= = us =1—pga=".
0A N/JfA 5’ Po,A 0A 5

For B we have the capacity

AB 9 1
= . th =1 E——
0B Nug 10’ us Po,B OB 10

These probabilities indicate the fraction of time, in which the given computer is vacant.

2) Since N = 1, the respective average waiting times are

3
0A 5 9 .
Vi = =3 = — minutes,
p(l—o0a) 1-2 2
and
0B 2
Vg = =3. 10 5 = 27 minutes.
w(l—o8B) 1-2

3) The sum of two Poisson processes is again a Poisson process, here with the parameter

A=da+Ap=
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Hence the capacity
A 11 3
Q = — = — + — - 3 = —.
Np 2 2 4

The fraction of time, in which none of the computers is busy, is

4) The probability that both computers are busy is

1 1—p 1 31 14-2-3 9
l—-po—-p=1---20—=1-2--2- - o= ——— = —.
bo— 7 1+, 7T 14 14
5) The average waiting time is
N ATN-—1 2
poo’’ N 1/3 1 1 1 1 9 3 .
V=2 7 _Z(2) .9t.3. .- _Z-.Z . 9.2 16=2" t
- NI(1— 0)2 7<4> 28 T2 HHLes

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Example 4.7 Given a birth and death process of the states Ey, E1, Es, ..., where the birth intensity
Ak in state Ey, decreases in increasing k as follows,

«

Ap = —
k k+17

where « s a positive constant, while the death intensities uy are given by

K k €N,
i = where > 0.
0, k=0,

1. Find the stationary probabilities.
The above may be viewed as a model of a queueing process, where
a. it is possible to form a queue,

b. there is only 1 channel,
1
c. the service time is exponentially distributed of mean —,
1

d. the arrival frequency decreases with increasing queue length according to the given formula. (Some
customers will avoid a long queue and immediately leave the queue ).

2. Compute for o = i the probability that there are at most 3 customers in the system (3 dec.).

3. Compare the probability of 2. with the corresponding probability in the case of one shop assistant
and A\, = a constant and p = 3o (3 dec.).

1) The system of differential equations for A\ = and p > 0 is given by

«
k+1
Py(t) = —aPy(t) + uPi(t),

«

@
/ — —
Pk(t)— (k+1+u> Pk(t)'i‘kpkfl(t)""ﬂpkjtl(t), k e N.
By taking the limit ¢ — oo we get

0= —apo + up1,

(6% (0%
0=—(—0 = pie keN
(k+1+ﬂ)pk+kpk 1+ UDk+1, e N,
thus
(0% o
__* = —Zp_ =...=0 keN
k+1pk+ﬂpk+1 7 P 1+ Upk ) e,
and hence
«
WPk = 3 Ph=1, ke N.
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When this equation is multiplied by

k—1

0,

it follows by a recursion that

k! (g)kpk = (k-1 (g)kilpkq = =0 (g)opo = po,

hence

1 [« k
Pk = 37| — Po, ke No.
k! \ p

It follows from

> =1 [« «
EnenS ) -eee(2)
];k Zk 0 .

k=0

that

o
Po = €xXp <——) )
1

thus

1 k
Pk = 73 4 exp - , k € Np.
k' \ p J

2) Put a = pu. The probability that there are at most 3 customers in the system is

1 1 1 16
Po+p1+p2+p3=—91l+— + + = — ~ 0.9810.
e 1' 3! 6e

3) The differential equations of the new system are
Pl(t) = —aPy(t) + 3aP(t),
P/ (t) = —4aPy(t) + aPy_1(t) + 3aPr41(t), ke N.
By taking the limit ¢ — oo we get the equations of the stationary probabilities,
0 = —apo + 3ap1,
0 = —4apr + apr—1 + 3apkt1, ke N.
We rewrite these and get by a reduction,
3Pk+1 — Pk =3Pk — Pk—1 ="+ =3p1 —po =0, k eN,
thus 3pr = pr—1. Multiply this equation by 3*~! in order to get

3Fpr =3"pp_1 = = 3%y = 0y,
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hence
1
Pk = 35 Po; k € No.
It follows from
%) o'} 1 k
1:Zpk=poz(§) —po- iy =
k=0 k=0 3

, and the probability that there are at most three customers in this system is

2
thatp():g
1 1 1 2 214+9+3+1 80
_ 14+ —4+—)==.=—" =  ~ — —~ ~(0.9877.
Do +p1+Dp2+p3 PO( +3+32+33> 3 27 81

There is a slightly higher probability in this case that there are at most three customers in this

system than in the system which was considered in 2..

o N

This e-book
ismadewith SETASIGN
SetaPDF h V' 4
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Example 4.8 Given the following queueing model: M machines are working mutually independently
of each other and they need no operation by men, except in the case when they break down. There are
in total N service mechanics (where N < M) for making repairs. If a machine is working at time t,
it is the probability Ah + he(h) that it breaks down before time t + h, and probability 1 — Ah + he(h)
that it is still working. Analogously, if it is repaired at time t, then there is the probability ph + he(h)
that it is working again before t + h, and probability 1 — puh + he(h) that it is not working. When a
machine breaks down, it is immediately repaired by a service mechanic, if he is vacant. Otherwise, the
machine is waiting in o queue, until a service mechanic becomes vacant. We define the coefficient of
loss of a machine as

U average number of machines in the queue,

and the coefficient of loss of a service mechanic as

N overage number of vacant service mechanics.

Denote by Ey, the state that k machines do not work, k=0, 1, ...
1) Prove that the constants A\, and ux are given by
M = (M = k)X, = kp, 0<k<N

Ao = (M — k), k= N, N<k<M

2) Find a recursion formula for py (express py+1 by pr).

3) Find the average number of machines in the queue (expressed by the pp-erne), and prove in par-
ticular that if N = 1 this can be written

A+
M- ().
4) Find the probability that there are precisely 0, 1, 2, ..., N vacant service mechanics.

5) Find the coefficients of loss of a machine and a service mechanics in the case of

Ao M=6  N=L
I

It should be mentioned for comparison that in the case when
A
—=0,1; M = 20; N =3,
"

the coefficient of loss of a machine is 0.0169 and the coefficient of loss of a service mechanics is
0.4042. Which one of the two systems is best?

This problem of machines was first applied in the Swedish industry.
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1) Let 0 < k < M, and assume that we are in state Ej, thus k machines are being repaired or
are waiting for reparation, and M — k machines are working. The latter machines have each the
probability

A+ he(h)

of breaking down in the time interval |¢, ¢ + h] of length h. Since M — k machines are working, we
get

A= (M —Ek)A for 0 < k < M.

If we are in state Ej, where 0 < k < N, then all £ machines are being repaired. Each of these
have the probability

ph + he(h)
for being repaired before time ¢ + h, thus
e = ku, for 0 <k < N.
If instead N < k < M, then all service mechanics are working, so

we = Np, for N < k < M.
2) By a known formula,

Mk 1Pk+1 = AEDk,
thus

A
—kpn, forn=0,1,..., M —1.
Hk+1

When we insert the results of 1., we get

Pk+1 =

(M — k)X
= for k=0,1,..., N—1,
PE+1 k+ Dy Pk r
M — k)
mH%pk fork=N,..., M —1.

When the first equation is multiplied by

1 s
GaR
we get
Pr1 - (M —k)A <k> % Pk
EACERENEAEEE)
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hence
A\ F
pk:(M)(—) Do fork=0,1,..., N.
k) \w
Weputn=N+m,m=0,1,..., M — N — 1, into the second equation. Then
M~-N-m A 1 A\
proma = M e = e () (=N ) (= Mg
LN (M — N)!
N\ (M—N—m—1) "
hence

1 A\ (M -N)! B M! 1/
PNtm =N \ ) TN —m)!PY T NI - N —m)! N7\ 4 bo;
form=0,1,..., M — N.

3) The average number of machines in the queue is

M M
> (k=N)pe = (k—N)ps.
k=N+1 k=N

We get in particular for N =1,

M

M M M
Y (k=Dpe=>> kpp—> pr = kpp—(1—po).
k=1 k=1 k=1

k=1

Then by the recursion formula of 2.,

A A A
Per1 = (M — k) —pr =M —p, — — pr, k=1,...,M—1
u pttop

Hence
M M-1 M-1 PRl M u
Dokpe = ) kpetMpu=MY  pp+ Mpy - X > b1 =M pr— Mpy - szk
k=1 k=1 k=1 k=1 k=0 k=2
_ p o h p
= M@*PO)*x@*PO*ZH)*M*X(1*po)—Mpo+Xp1.

It follows from

M—-0 X A
“—po =M - — po,
0+1 u I

b1 =

by insertion that the average number of machines in the queue is for N = 1 given by

M

M
A
E(kfl)pk = E kpk*(lfpo):M*Hm(lfpo)*MpoJrﬁ'M'—po*(lfpo)
=1 =1 A A K

M—(g"‘l)(l—po):M—i/\'u(l—pof
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4) If there are n € {1,2, ..., N} vacant service mechanics, the system is in state En_,, so the
probability is

M AN\
pN—n<N_n)<;) Po, n:1,2,...,N.

If there is no vacant service mechanic, we get the probability

2 () @) e S ()6

n=1

A 1
5) If ; =10’ M =6 and N = 1, then the coefficient of loss of the machine is by 3. given by

%-{M—(1—1—%)(1—])0)}:1—%(1+10)~(1—p0)=1—%(1—190).

We shall only find py. We get by using the recursion formulae

6 5 4
PlZEPO, pQZEpla p3:1_0p2’
3 2 1
P4:Ep3, p5:EP4, p6:1—0P57
hence
: 3 1
1 = I;ka:po{urﬁ(uﬁ(1+E<1+1—0<1+E< +1—0>>)>>}
~ pp-2.0639,
S0
Do ~ 0.4845.

We also get by insertion the coefficient of loss of the machine,

11
1=+ (1 — po) ~ 0.05049.

The loss coefficient of the service mechanic is

1
— - pg = po ~ 0.4845.
N Po = Po

By comparison we see that the coefficients of loss are smallest in the system, where
- == M = 20, N =3,

so this system is the best.
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1
Example 4.9 In a shop the service time is exponentially distributed of mean —, thus the frequency
1

s given by
e HT x>0,
fz) =
0, x < 0.
Let X1, X, ... denote the service times of customer number 1, 2, .... We assume that the X; are

mutually independent and that they all have the frequency f(x) above.
In total there arrive to the shop N customers, where N is a random variable, which is independent of
all the X;, and N can have the values 1, 2, ..., of the probabilities

P{N =k}=pq"', keN,
wherep >0, ¢ >0, andp+q=1.
1) Prove that Y, = >_" | X; has the frequency

n—1
Ny
0, z < 0.

2) Find the frequency and the distribution function of Y = Zfil X, by using that

P{Yy<az}=> P{N=kAYy<a}.
k=1

3) Find mean and variance of Y.

1
1) Since X; €T (1, ), it follows that
1

YnZiXkEF(n,%),

k=1

and the frequency is

n—1
1 7((/;;8_) 01 e Hr, x>0,

fn(x) = '
0, z < 0.

2) Tt follows immediately (without using generating functions),

PIY <o) =Y PIV=kYi<o)= Y PN =k} P <o) = Yo [ )
k=1 n=1

k=1
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Thus we get for z > 0 the frequency

o) = 2 pd ) =p 2L gy e e = g e
n=1 n=1 n=0

—pT

= pue M eI = pp e P,

1
soY el (1, —> is exponentially distributed of frequency
Yo%

D e PHE for > 0,
g(x) =
0 for z <0,

and distribution function

1— e pPre for z > 0,
G(z) =
0 for x < 0.

1
3) Since Y €T (1, —), we have
pu

1 1
E{X}:ﬁ og V{X}:pzlﬂ.
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Example 4.10 An old-fashioned shop with one shop assistant to serve the customers can be con-
sidered as a queuing system of one channel with the possibility of forming a queue. The customers
arrive according to a Poisson process of intensity A, and the service time is exponentially distributed
of parameter p. It has been noticed that when the system is in its equilibrium, then the shop assistant

is in mean busy 1 of the time, and the average staying time of customers is 10 minutes.

1 1 1
1. Prove that — = — hour and — = — hour.
A 18 1

24
2. Find the probability that a customer is served immediately.
3. Find the average queue length.

The shop is closed at 173° and only the customers who are already in the shop are served by the shop
assistant, before he leaves for his home.

4. Find the probability that there at 1739 are 0, 1, 2, ... customers in the shop.

730

5. Led the random variable T denote the time from 1 until the shop assistant has served all cus-

tomers. Find the distribution of T'.

It follows from Ay = A\ and up = p that

P41 = APk, n € Np.

The traffic intensity is
A A

0= N_H = ;7

which we assume satisfies 0 < 1, so pg = 1 — p. Thus
k

Dr = %pk—l == (2) po=0"-(1-o).

1) The staying time is

1 1
= —— = 10 minutes = — hour,
w—A 6
and the shop assistant is busy
3 _1 A
-l ==

3 1
Hence \ = i and 6 =p— = h thus g =24 and A = — - 24 = 18, corresponding to

1 1
— = — hour and 1 = — hour.
A 18 L 24

2) A customer is immediately served if the system is in state Ey. The probability of this event is

3 1
:1— :1——:—.
Po 0 1 4
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3) The average queue length is

4) The probability that there are n customers in the shop at 173° (¢ ~ 00) is

1 /3\"
n = i 1 — = — . — .
po=0"(1-0) =7 ( 4)
5) Assume that there are k customers in the shop. Then the service time is Erlang distributed,

1
r (kz, ;), of frequency

(po) !
M'm@“, {17>07 ke N.

It follows that the distribution of 7" is given by

1
and
00 k _ e} k—1
1 (uz)k v 1 3 _ 3 1
F — I pr _ 2 Hx —
r(@) ;:;() 1«-1)!e TV ; i (k—1)!
= 3 e M ex T ) = —p-ex 1
= Gk p(gn u pl—7H

Then by an integration,

1f%exp(f%x>, x >0,
P{T <z} =

0, x < 0.

When we insert p = 24, found above, we get

1—§e_6m7 x>0,
P{T < 2} = 4
0, x < 0.
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and
> I /3 \ 1 1 1
_ kE_ Z =z = . =
P(s) =2 pis _42(4‘9) T 3 T 4-3s
k=0 k=0 1—-s5
4
Hence by insertion,
1
1 A+ p 1 3 M
L >\ = = :—.1 — . .
W= 1T vl
A p 4

We recognize this Laplace transform as corresponding to

1—%exp(—%m), x>0,
Fr(z) =

0, x < 0.

360°
thinking.
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Example 4.11 Given a service, where we assume:

a. There are two channels.

b. The customers arrive by a Poisson process of intensity 1 min~".

c. The service time is at each of the two channels exponentially distributed of mean 1 minute.
d. It is possible to form a queue.

1. Compute the average waiting time.

2. Find the fraction of time, in which both channels are vacant, and the fraction of time, in which
both channels are busy.

The flow of customers is then increased such that the customers now arrive according to a Poisson
process of intensity X\ = 2 min~ ' (the other assumptions are unchanged).

3. What is the impact of this change on the service?
The service is then augmented by another channel of the same type as the old ones.

4. Compute in this system for A = 2 the average waiting time.

1) The process is described by a birth and death process with
Al and pp =1, pp=2fork>N =2, thus pu=1.

The traffic intensity is

R
Q_Nu_?
We have
k—1
1—0 1 p =0 1/1
— B =920F. S __[Z for k € N.
Po=17,73 % P 7305 orke

The waiting time is given by

yo PV NYTE 1 (1) 11
 u-Nli(1-9)2 3 \2 (1 1>2 3
2

2) Both channels are vacant in the fraction of time

_ 1
P0—3~

Both channels are busy in the fraction of time
1

> 1

E —1l—py—p =1— = — = =_.
Pk Po —P1 3 3 3

k=2
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3) The only change in the new system is Ay = 2, thus
AMe=2 and p1 =1, ppr=2fork>2 andp=1.
The traffic intensity is

A2
°TNu 21 ¢

The queue will increase indefinitely.

4) Then we shift to N = 3 with A =2 and p =1, so
AMe=2, =1 pu=2 and pur=3 fork>3.

The traffic intensity is

A 2 2
= Np a1
It follows from
9’“%1\7%, k<N,
Pr = NN
Qk'ﬁpo’ k> N,
that
9 1 2\? 32
p1:§~ﬂ-3p0:2p0 and ng(g) '§p0=2p07
and
k k—1
by = (;) .z_jp():z(;) po  fork >3,
The sum is

00 o) k—2 00 k—2
2 2
1:5 = 1—|—2+2—|—2§ — = 3—1—25 - = 9po,
lf:Opl\C po{ k=3 <3) } po{ k=2 <3) } o

1
from which pg = —. The waiting time is obtained by insertion,
9

2 3 . 2 3
v pod™ NI 3 _\3 B (2)2_4
: —(2) =

80

Download free eBooks at bookboon.com



Stochastic Processes 2

4. Queueing theory

Example 4.12 Given a service for which

a.

b.

2.
3.

There are three channels.

The customers arrive according to a Poisson process of intensity 1 min ™',

. The service time for each channel is exponentially distributed of mean 1 minute.

It is possible to form a queue.

. Prove that the stationary probabilities are given by

4 1

TRk k<3,
Pk = ) 1k_3

EN

Find the fraction of time, in which all three channels are busy.

Compute the average length of the queue.

Decrease the number of channels to two while the other assumptions are unchanged. Compute in this
system,

4.
5.
6.

the stationary probabilities,
the fraction of time, in which both channels are busy,

the average length of the queue.

Finally, decrease the number of channels to one, while the other assumptions are unchanged.

7.

How will this system function?

1) The traffic intensity is

_ A _ 1 _1
°TNu 31 3
It follows from
1
Qk'yNkp()v k<Na
Pk = )
kATN
FQN Po, kZNa
that

k
1 1 1
pk:(é) T ps g fork=012.3

and

k 3 k—3
1 3 1/1
=(2) Zpo=-(2 for k > 3
Pk <3> 31 Po 6 (3> Po or kK = 9,
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hence
1 — - 5 1 1 5 1 11
1= = 141 — = e T G
];)pk po{ + + 62() } Pog5ts T P0{2+4} L PO,
B 3
, 4
from which py = 1T thus
4 1
— .= =0,1,2
11 k!’ k‘ 07 b b
= k—3
2 /1
= (= k> 3.
33(3) ' =3

2) The fraction of time, in which all three channels are busy, is given by
Sho 2y (N oz 281
Pk =33 3) T 33 I 7332 11
k=3 k=3
ALTERNATIVELY, it is given by

4 41 41 1

Y e e -
Po—p1— P2 11 111 112 1
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3) The average length of the queue is

Sk pe = S k-9 3<1)k3=3ik(
k=4 k=4 33 3 33k:1
21 1 2 19 1
33'5'(1 1)2_55'1_5
3

1-1 1
%Z_v k:07
1+3 3
Pk = .
1 1-1 1 1
2(=) - 2 —_. keN
<2> 1+4 3 2k1 <

5) The fraction of times, in which both channels are busy, is

1 _111
Po —P1 = 3 373
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6) The average length of the queue is

1 2 (1 3§3k IR 11
2k‘32k:12 1\2 3

At
(-3)

7) If there is only one channel, the traffic intensity becomes ¢ = 1, and the queue is increasing
indefinitely.

oo

S k- 2pe =S (k- 2)-
= k

k=3 =3

[SCAR )

Example 4.13 A shop serves M customers, and there is one shop assistant in the shop. It is possible

to form a queue. We assume that the service time is exponentially distributed of mean —. Assume
I
also that if a customer is not in the shop at time t, then there is the probability Ah + he(h) [where X

is a positive constant] that this customer arrives to the shop before the time t + h. Finally, assume
that the customers arrive to the shop mutually independent of each other. Thus we have a birth and
death process {X (t), t € [0,00[} of the states Eg, E, ..., En, where Ey, denotes the state that there
are k customers in the shop, k=0, 1, 2, ..., M.

1) Prove that the birth intensities A, and death intensities ux, k =0, 1, 2, ..., M, are given by

0, k=0,
Ne= (M=K =
1, k=12 ..., M.
2) Find the equations of the stationary probabilities py, k=0, 1, 2, ..., M.

3) Express the stationary probabilities py, k =0, 1, 2, ..., M, by means of py.
4) Compute the stationary probabilities py, k =0, 1, 2, ... M.

5) Find, expressed by the stationary probability po, the average number of customers, who are not in
the shop.

A
6) Compute the stationary probabilities, first in the case, when — =1 and M = 5, and then in the
1

case, when — = = and M =5.
w2

1) If we are in state Fj, then M — k of the customers are not in the shop. They arrive to the shop
before time t + h of probability

(M = k){A + () }h,

(a time interval of length h, and we divide by h before we go to the limit h — 0). Hence, the birth
intensity is

Ae=(M—Fk)X\  k=0,1,..., M.

If we are in state Fp, then no customer is served, so pg = 0.
In any other state precisely one customer is served with the intensity pu, so

e = 1, k=1,2,..., M.
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2) The equations of the stationary probabilities are

HE41Pk+1 = AkDk-

Thus, in the explicit case,

A
Pry1 = (M — k) ;Pk-

3) We get successively
A A
Po = Pos p1=M-;po, p2=M(M —1) L) o

and in general

M! A"
pk:m(;) Po, k:0,1,2,...,M.

4) Tt follows from the equation

lzfkaMliﬁ<%>kp0:po-M!<%>Mi%(§)kpo
k=0 k=0 k=0
that
M
. I o) R
wsiloy (2) 0 ey (5)
and hence
(E>M A 2 2 M! A
v M!ZkM:z%(g)k (1’M_’M(M_1)<ﬁ>’ T(M — ) <u
M M-—1 M-k
(e e
M'Z]szo%(g) M! (M —-1)! (M — k)!

5) The average number of customers who are not in the shop is by e.g. 3.,

M M-—1 M! A k M M) A k—1
Yo = Yoty () mXarm () »

k=0 k=0
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6) IfézlandM:&then
W

5
5!
1= S_k)!po:{1—|—5+20—|—60—|—120—|—120}p0:326]30,

e

Il

[}
—

and

1
p=—(1,5,20,60,120,120).

326
7) Nar — =~ og M =5, er
T Goki\z) T 2 9 T Ty Ty
and
4 5 15 15 15 1
p 109 <72,5,27274> 109(, 0, 20, 30, 30, 5)
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Example 4.14 Given two queueing systems, A and B, which are mutually independent. We assume
for each of the two systems:

a. there is one channel,
b. it is possible to form a queue,
c. the customers arrive according to a Poisson process of intensity A,

d. the service times are exponentially distributed of parameter p,

A1
. the traffic intensity is p = — = 7"
1

0]

Denote by Xy the random variable which indicates the number of customers in system A, and by Xs
the random variables which indicates the number of customers in system B.

1. Compute by using the stationary probabilities,

P{Xlik} and P{XQZIC}, kENo.

Let Z = X1 + X5 denote the total number of customers in the two systems.
2. Compute P{Z =k}, k € Ny.

3. Compute the mean of Z

Consider another queuing system C, in which we assume,

a. there are two channels,

b. it is possible to form a queue,

c. the customers arrive according to a Poisson process of intensity 2\,

d. the service times are exponentially distributed of the parameter pu,

2\ 1
e. the traffic intensity is 0 = — = —.
2u 2

Let the random variable Y denote the number of customers in system C.

4. Compute by using the stationary probabilities,

P{Y =k} and P{Y >k}, k € Np.

5. Compute the mean of Y.
6. Prove for all k € Ny that

P{Z >k} > P{Y > k}.

HINT TO 6.: One may without proof use the formula,

0 N-—1
. N—(N-1
Y gt =" V= o} Iz <1, NeN.
(1—-=)?
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1
1) The two queueing systems follow the same distribution, and N = 1 and p = 37 so we get by a

known formula,

1k+1
PEG =R =Pe==m=d(-0=(3) . kem

2) A straightforward computation gives

k

P{Z =k} = ZP{Xlzj}.P{)Q:k_j}:zk:(;)J”rl.(;)kj+1

=0 =0

1 k42

3) Tt follows from

RO R O RS =

2
k=1 k=1 (1_5)
that
e} 1 k+2 [e%e} 1 k+1 1 o) 1 k—2
E{Z} = D= = ~1)(= = ~1)(=
2y = Suean () =Sre-n(5) =g re-1(3)
k=1 k=2 k=2
1 2! B
= 3o
(+-2)
2
4) Roughly speaking, A and B are joined to get C, so we have N = 2 and ¢ = —. Then it follows that
1—-0 1
P{Y =0} =py = ==
{ }=po 10" 3
and

k—1
fqyk}QM-19§<1) , kel

1+0 2
Thus
1 /1t 1 /11 1 /1\"!
PlY kl = N - .z . ——_ .= k € Np.
V>h=2 3 (2> 3 <2> I3 (2> ’ o
j=k+1 1— -
2
5) The mean is
oS} k—1
1. /1 1 1 4
EY - —kj — = - - = —
=23 (2) 3 A
k=1 1-=
(1-3)
88

Download free eBooks at bookboon.com



Stochastic Processes 2 4. Queueing theory

6) It follows from 2. that

rize = Soe (i) =1 5()

j=k+1 J=k+
k+1 1 k+2
1 (3) " {k+2-(k+1)5 1
<. = (= A%k +4—k—1
2
E+3 /1\"' 1 /1\"!
= . (= S = P{Y > k}.

We notice that P{Y =k} = P{Y > k} for k € N, and that this is not true for k& = 0.
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Example 4.15 Given two mutually independent queueing systems A and B. We assume for each of
the two systems,

a. there is one channel,

b. it is possible to form a queue,

1
c. customers arrive to A according to a Poisson process of intensity Aa = — minute” ', and they

. ) . . . 2 _
arrive to B according to a Poisson process of intensity \g = = minute *,

d. the service times of both A and B are exponentially distributed of the parameter = 1 minute .

Let the random variable X 4 denote the number of customers in system A, and let the random variable
Xp denote the number of customers in system B. Furthermore, we let Ya and Yg, resp., denote the
number of customers in the queue at A and B, resp..

1. Find by using the stationary probabilities,
P{XA:]C} and P{XB:]{I}, k € Ny.

2. Find the average waiting times at A and B, resp..
3. Find by using the stationary probabilities,
P{YA:]C} and P{YB:k‘}, k € Np.

4. Find the means E{X 4+ Xp} and E{Ys + Yg}.
5. Compute P{Xs+ Xp =k}, k € Ny.

The two queueing systems are now joined to one queueing system of two channels, where the customers
arrive according to a Poisson process of intensity A = Aa + A, and where the serving times are
exponentially distributed of parameter p = 1 minute . Let X denote the number of customers in the
system, and let Y denote the number of customers in the queue.

6. Find by using the stationary probabilities,
P{X =k} and P{Y =k}, k € No.

7. Find the means E{X} and E{Y'}.

1 1
1A. Since Ay = — minute ! and g = 1 minute ™}, and N = 1, we get the traffic intensity pox = 3"

The stationary probabilities are

k1
P{XA:k}:pA,k:2'<§> , k € Np.

2 2
1B. Analogously, \p = 3 minute ! and ¢ = 1 minute !, and N =1, so op = 3’ and

k k+1
1 /2 1/2
P{Xp=kl=ppr—==(2) === k € No.
{Xp =k} =pBi 3<3> 2<3) , €Ny
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2A. The waiting time at A is given by

1
0A 3 1
Vi = = =
p(l—oa) 1-%2 2

2B. Analogously, the waiting time at B is
9B 3

VB: = = 2.
p(l—op) 1-3

3A. Assume that there is no queue at A. Then either there is no customer at all in the system, or
there is precisely one customer, who is served for the time being,

P{YAZO}:P{XA:0}+P{XA:1}:2'{éﬁ-%}:g.

If £ € N, then

k+2
P{YA:k}:P{XA:k+1}:2~<§> .
3B. Analogously,
1 2 5
and

1 k+2
P{YB:k}:P{XB:k+1}:§(§> . keN.

4. Tt follows from
0 k+1 oo k—1
1 2 1 2 1 1
E{X, =2 k(= == Lkl = - - _Z
=23k (5) =5k (5) —5 e

and

that
1
E{XA+XB}:§+2:—.

It follows from

0 k+2 00 k—1
1 2 1 2 1 1
E Y :2 k — = — kj - = — —— = —
Wa) kzzl (3> 77 2 (3> 1 6
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R N)
k=1 k=1 27 1_2 3
3
then
1 4 3
E{Y,+Ygt==-+-=—.
{Ya+Y5} 6 3735
5. If k € Ny, then
k
P{Xa+Xp=k} = > P{Xa=j} P{Xp=k—j}
j=0
k j+1 k—j+1 k k42
- Yo 1y b2 -y 1 gkt
- 3 2 \3 ‘ 3
7=0 7=0

k+2 k+1 k+2
Z on — 2k+2 2) . l
3
k+2 k+2 9 i
) () e

Q| =

-
-

[SVRI )

6. The traffic intensity is

IRYE R

1
Npu 2.1 2u 2

It follows that

P{X =k} =py =

Since Y = (X —2) V 0, we get

—_

P{Y:O}:P{X:O}+P{X:1}+P{X:2}:%+_+%:%

w

and
k42 k
P{Yk}P{XkJrQ};(%) %(z) , keN.

7. By a straightforward computation,
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Example 4.16 Consider a birth and death process Eqy, Ey, Fo, ..., where the birth intensities \j
are given by
Q@
Ay = ——, k € Ny,
P 0

where a is a positive constant, while the death intensities puy are given by

0, k=0,
M = 122 k=1,
24, k> 2,

where pp > 0. We assume that Y _s.
1

1. Find the equations of the stationary probabilities pi, k € Ny.

2. Prove that
g 1
pk:24 'Ep07 kEN7

and find pg.
The above can be viewed as a model of the forming of a queue in a shop, where

a. there are two shop assistants,

1
b. the service time is exponentially distributed of mean —,
"

c. the frequency of the arrivals is decreasing with increasing number of customers according to the

indicated formula.

3. Compute by means of the stationary probabilities the average number of customers in the shop. (3

dec.).

4. Compute by means of the stationary probabilities the average number of busy shop assistants. (3

dec.).

5. Compute by means of the stationary probabilities the probability that there are more than two

customers in the shop. (3 dec.).

1) We have

Mk 1Pk+1 = AkDk, k € Ny,
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thus
)\0 «
P1= —Dpo= —Po = 3po
M1
and
)\k,1 « 1 4
pr— = — .« — _ = — _ f k > 2.
Pk ik Pk—1 2 QMpk 1 kpk 1 or kK =

2) If k =1, then
1
p1 = 8po :2'ﬂp0a

and the formula is true for k = 1. Then assume that

pro1 =2-41. i Po-

(k—1)
Then

B 4 _ 9 4k
Pr = kpkq = %l Do,

and the formula follows by induction.

no.l

nine years
in a row

<
)
&
%)

Stockholm
(]
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It follows from

k

00 0 4
lzpkp0{1+2ZE}p0(2€4l)

k=0 k=1
that

1

Po =51

3) The task is now changed to queueing theory. Since py, is the probability that there are k customers
in the shop, the mean of the number of customers in the shop is

oo

0 4k‘—1 864
> kpr=2-4-po ) 1) 20l 1 ~ 4.037.
k=1 k=1

4) The average number of busy shop assistants is

0-po+1-p1+2Y pe=p1+1(1—po—p1) = 2—2po—p1=2—2po—8po
k=2
10

2 10py =2 — —— = 1.908.
Po 2t — 1

5) The probability that there are more than two customers in the shop is

= 32 25
S pr=1-po—pr—pr=1-py(1+8+5)=1- - ~0.769.
— 2 2et — 1
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Example 4.17 Consider a birth and death process of the states Ey, Ei, Fo, ...

intensities A\, are given by

o2 k=0,
LA NSV k eN,

while the death intensities uy are given by

[ o, k=0,
FE=9 4, ke N.

A
Here, \ and p are positive constants, and we assume everywhere that — = —.

, where the birth

1. Find the equations of the stationary probabilities, and prove that the stationary probabilities are

given by

3 k
pk:2'<_) Po, k:172737"'

4
and finally, find pg.

The above can be considered as a model of forming queues in a shop, where

a. there is one shop assistant,

1
b. the service time is exponentially distributed of mean —,
"

c. the customers arrive according to a Poisson process of intensity 2\. However, if there already are
customers in the shop, then half of the arriving customers will immediately leave the shop without

being served.

2. Compute by means of the stationary probabilities the average number of customers in the shop.

3. Compute by means of the stationary probabilities the average number of customers in the queue.

We now assume that instead of one shop assistant there are two shop assistants and that all arriving

customers are served (thus we have the birth intensities A\, = 2X, k € Ny ).

4. Compute in this queueing system the stationary probabilities and then find the average number of

customers in the queue.

1) The equations of the stationary probabilities are

1Pk +1 = AkDk, k € Ny,

thus
2\ 3 ) 3\'
Pl—ﬂpo—2po— 4 Po,
and
A 3
Pi = Pk-1 = 7 Ph-1, k> 2,

Download free eBooks at bookboon.com
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hence by recursion,

k—1 k
3 3
Pk (4> P (4> Po, =

We get

> =, (3\" 3 1 3
1=Zpk=po+p022-(z> =po{l+2-7-—3 =p0{1+§'4}=7p07
k=0 k=1
SO

k
1 2
Po == and pk:—-(§> , kel

2) Since py is the probability that there are k customers in the shop, the average number of customer
in the shop is

00 k—1
Z 2 3 Z 3 3 1 3 24
s ]{jl)k:?.Z k.(z) 73:—.16:7.

14 ; 27 14
(-3)

3) If there are k customers in the queue, there must also be 1 customer, who is being served, so the

average is
00 o) k—1
2 3 3 3 3 18
kpgs1 ==~ — k|- =—.24=—
;;1 Pt =777 4; <4> 28 7

where we have used the result of 2.

2\ 3
4) The traffic intensity is o = TR and since N = 2, we get
p

k
-0 1 2 /3
= === d =—_|- ke N.
Po 110 7 an Pk <>> €

We see that they are identical with the stationary probabilities found in 1..
The average length of the queue is given by (end here we get to the divergence from the previous

case)
o9 0o k 00 k+2 3 o k—1
2 3 2 3 2 3 3

M-om = iy (y) =53 (5) -5 (5) 2 ()
k=3 k=3 k=1 k=1

AN S O

7 \4 (1 3)27 4 14

4
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Example 4.18 Consider a birth and death process of states Ey, E1, Fa, ..., and with birth intensities
Ak given by
a, k=0,1,
Ak =
@
7.0 k> 27
A >
where o is a positive constant, and where the death intensities are given by
A k=0,
M m k€N,
where p > 0.

We assume in the following that @ 2.
"

1. Find the equations of the stationary probabilities py, k € Ny.

2. Prove that

2k
Pr = W Do, keN,
and find pg.
The above can be considered as a model of forming a queue in a shop where

a. there is one shop assistant,
b. the serving time is exponentially distribution of mean —,
1

c. the frequency of arrivals decreasis with increasing number of customers according to the formula
for A\ above.

3. Compute by means of the stationary probabilities the average length of the queue (3 dec.).

4. Compute by means of the stationary probabilities the average number of customers in the shop (3

dec.).

1) We have
PkiiPerr = Mpr, K €Ng,  and > pp=1.
k=0

Hence, successively,

«
Hp1 = apo, pp2 = api, and ppg = TPt for k > 3.

It follows from @ 2 that
I

2
k—1

(6) pr=2po, p2=2p1, pr= pr1, k>3, and > pp=1.
k=0
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2) We infer from (6) that p; = 2pg and py = 2ps = 4pyg, and for k > 3,

9 22 2k72 22

N (=) L S eV i e Vi Rl

A check shows that the latter formula is also true for £k = 1 and k = 2, thus

2k
Pr = me k € N.
Then we find pgy from
e’} e} 2k o0 2k—1 9
1= = 1 —— 5 = 142 — b = 142
Zpk Po +Z(k—1)! Poqyl+ Z(k—l)! po (1+2¢7),
k=0 k=1 k=1
thus
1 2k 1
Po = m (% 00634), and Pr = ke N.

(k—1)! 1+ 22’
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3) The average length of the queue is (notice that since 1 customer is served, we have here k — 1
instead of k),

i(k - i il 4i 2 4¢? 17 18T
po— ,Po— p0—1+262~~ .
k=2 = =
4) The average number of customers is
ke = Y (k—=Dpe+ > pk =4€’po+ (1 po)
k=1 k=1(2) k=1
4 2 2 2 2
S YT

1422 14+2e2 14 2e2

Example 4.19 Given a queueing system, for which
a. there is one shop assistant,
b. it is possible to form a queue,
c. the customers arrive according to a Poisson process of intensity A,
d. the serving times are exponentially distributed of parameter p,
e. the traffic intensity A s —.
no3
Let the random variable X denote the number of customers in the system, and let Y denote the number

of customers in the queue.

1. Find by means of the stationary probabilities,
P{X =k} and P{Y =k}, k € Np.

2. Find the means E{X} and E{Y}.

The system is changed by introducing another shop assistant, whenever there are 3 or more customers
in the shop; this extra shop assistant is withdrawn after ending his service, if the number of customers
then is smaller than 3. The other assumptions are unchanged.

3. Explain why this new system can be described by a birth and death process of states Ey, E1, Es,
, birth intensities A\, = X, k € Ny, and death intensities py, given by

0, k=0,
Mk = s k:1727
211, k=3,4,....

4. Find the stationary probabilities py of this system.

5. Find the average number of customers in the system,

Z kpk.
k=1
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1) Since N =1, it follows that

k
1/2
pk_§<§) ) k6N07

Py =0} = P{X0}+P{X1}é(l+z)

5
3) "o

P{Y =k}

1 /9 k+1

2) The means are

B =S =L 250 (B) o
pk—3 3 3 =4
k=1 k=1

and
ool 9 k+1 9 4
E{y}=> (k= = F{X}=-.
m=25(k3) =5rx-g

3) The birth intensities A\, = A, k € Ny, are clearly not changed, and pug = 0, 3 = p2 = p. When
k > 3, another shop assistant is also serving the customers, so uy = 2u for k > 3.

4) We have

HE41Pk+1 = AkDk-

Thus we get the equations

A 2 A 2
P1 = —DPo = 3 Po, P2 = —p1 = 35 P1,
W 3 o 3
and
A 1
= — P = = Dk, k> 2.
Pr+1 Zupk 31% =z
Hence
2 4
p1_3p05 p2_9p07
and

k—2 k
= l =3 1 for k>3
Pk = 3 D2 = 3 Po Z 9.
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It follows from

e} 9 4 o] 1 k 5 4 o] 1 7 5 4 1
1 = = 1 — — 4 — = — — — frnd j— —_ —_—
kgzopo po{ +3+9+ kg_g(?)) Po 3—|-9 EZO <3> Po 3+9 o

D E- B 1 G £ B
—P03 92—1?03 3—31007

that

_3 _2 4
p0_7a p1_7a p2_217
and

k—1

4 1

=== k>3
()

[e's) o) k—1 oo k—1
2 8 4 1 6+8 4 1 2
k = —4+ —4 = k| = = — 4+ = k(= ~1-=
kz::l Pk 7+21+7kZ <3) 221 +7{Z <3> 3}

27-20
4.3

_2+4 1 5_+495_24
37 1 3( 3 714 3/ 3 71
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Example 4.20 Given a queueing for which

a. there is one channel,

b. there is the possibility of an (unlimited) queue,

c. the customers arrive according to a Poisson process of intensity A,

d. the service times are exponentially distributed of parameter p,

A4
e. the traffic intensity — is h
1

Let the random variable X denote the number of customers in the system.

1. Find by using the stationary probabilities,

P{X =k} and P{X >k}, k € Np.

2. Find the mean E{X}.

We then change the system, such that there is only room for at most 3 waiting customers, thus only
room for J customers in total in the system (1 being served and 3 waiting). The other conditions are
unchanged. This system can be described by a birth and death process of the states Ey, Ev, Es, E3,
E4 and

' ' o A’ k:0,1,2,37
birth intensities: Ay = { 0, k=4,

. " 0, k=0,
death intensities: M = { 1, k=1,2,3,4.

Let the random variable Y denote the number of customers in this system.

3. Find by means of the stationary probabilities,

P{Y =k}, k=0,1,2234, (3 dec).

4. Find the means E{Y'} (3 dec.).

Now the intensity of arrivals X\ is doubled, while the other assumptions are the same as above. This will
imply that the probability of rejection becomes too big, so one decides to hire another shop assistant.
Then the system can be described by a birth and death process with states FEy, Fy, Es, Es, Ey, Fs,
(where Es corresponds to 2 customers being served and 3 waiting).

5. Find the equations of this system of the stationary probabilities pg, p1, P2, P3, P4, D5-

6. find the stationary probabilities (3 dec.).

1) We have

1 /4\"
P{X:kz}:pk:Qk(l—Q):g(g>, k € Ny,
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hence
(4)k+1
> 1/4\ 1 \5 4\
P{X >k} = =) == -4 == k € Np.
{>},Z5<5> 5 1 (5) e
j=k+1 1— -
5
2) The mean is
[e%s) k—1
1 4 4 4 1
B{X}=>--S k(= . S —)
X =3 5Z (5) 25 A\ 2
k=1 12
(1-3)
3) It follows from
Mk 1Pk+1 = AkDk,
that
A4 (Y
Pl—upo 5?07 b2 = 5 Po,
1’ (v
p3 = 5 Po, Pbs = 5 Po,
hence
(8
1= 1++42+43+44— ° 5444
= Po 5 5 5 5 = Po 1_% = Po 5 5
5
and
1
P{Y =0} = po = ; ~ 0.297,
5-4(5)
4
PlY=1} = p = = Po ~ 0.238,
4
PlY=2} = p = nm ~ 0.190,
4
PiY =3} = m = cp ~ 0.152,
4
PY=4} = p = ;s ~ 0.122.

4) The mean is

4 4\? 4\* A\*
E{Y} =1 p1 +2ps+3p3 +4ps = 5-1-2 5 +3 R +4 5 po ~ 1.563.
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5) The birth intensities are

N k=0,1,2 3,4,
L ) k=5,

and the death intensities are

0, k=0,
HE = Iz k'Zl,
2%, k=23, 4,5.

It follows from

Mk 1Pk+1 = ARDk,

that
_2 _8
p1 = 1 bo = 57
and
27 4
Pk = 5 Pk—1 = ¢ Pk—1 for k=2,3,4,5.
2u 5
6) Now
A\ F
pk:2<g) Po for k=1, 2, 3,4,5,
thus

4 5
1 = PN PO A L R T GRS O 1<5)
- 5 5 \5 5 5 — o 5, 4
5
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and hence

Po =

p1 =
p2 =
ps =
ps =

ps =

Excellent Economics and Business programmes at:

www.rug.nl/feb/education

1
~ 0,157,
9—-8 1\’
)

2 4 ~ 0.251

5 Po ~ . ;
4 ~ 0.201
5p1 ~ . )
4 ~ 0.161
5]92 ~ . )
4
— ~ 0.128
5p3 )
4
- ~ 0.103.
5]94
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Example 4.21 Given two queueing systems A and B, which are independent of each other. We
assume for each of the systems,

a. there is one shop assistant,

b. It is possible to have a queue,
3
c. customers are arriving to A according a Poisson process of intensity A4 = 1 minute” !, and to B
1
according to a Poisson process of intensity Ap = 3 minute™ !,

d. the service times at both A and B are exponentially distributed of parameter = 1 minute™!.

Let the random wvariable X 4 denote the number of customers in system A, and let Xp denote the
number of customers in system B.

1. Find by means of the stationary probabilities,
P{XA:k‘} and P{XBZk}, k € Np.
2. Find the average waiting times at A and B, resp..
3. Compute the probabilities P{Xp > k}, k € Ng, and then find

P{Xa < Xp}.

The arrivals of the customers at A is now increased, such that the customers arrive according to a
Poisson process of intensity 1 minute™ . For that reason the two systems are joined to one queueing
system with two shop assistants, thus the customers now arrive according to a Poisson process of
mtensity

1 3
A= <1 + 5) minute”t = 3 minute” ",

and the service times are still exponentially distributed with the parameter
=1 minut™*.

Let Y denote the number of customers in this new system.

4. Find by means of the stationary probabilities,

P{Y:k}, k € Np.

5. Prove that the average number of customers in the new system, E{Y}, is smaller than E{X s + Xp}.

A 3
1A. We get from o4 = 24 - 1 and N =1 that
1

1/3\"
P{XAZk}ZpA,kZZ(Z>, k € Ng.
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1
1B. Analogously, op = 57 50

k+1
P{Xp=k}=ppr= (2) , k € Np.

2. Since N =1, the waiting times are

3
04 4 0B
Va= = =3 and V= ———  —1.
p(l—oa) .1 P71 en)
4
3. We get
1 k42
o 1 Jj+1 5 1 k+1
S N () R O B,
j=k+1 1—-—
2
SO

(oo}

OB O
©© k
2@

k=0
The new traffic intensity is

3

)\ —
Q:—:L:

21 -1

)

S

and since N = 2, we get

k
1—0 1 r 1—o0 2/(3
:—:—7 :2 . = — - 5 k€N7
=93, "7 PT0 T, 7(4)
thus
Py —0j—L ad py—n—2(%), ken
R S r\4 ) '
Then
o0 k—1
2 3 3 3 1 3-16 24
EY = = - k — = . — —
3 7 42 (4> 14 3\ 2 14 7’
k=1 12
(-3)
and
[e%s) k—1
1 3 3 3
E{Xat=--"S"k(°% == .16=3
{Xab=1 4; (4) 16 ’
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and

o] k—1
1 1 1 1
E{XB}Zk§_1k<§> *1'7*1’

hence

24
E{Xa+Xp}=3+1=4>" =E{Y}.

Example 4.22 Given two independent queueing systems A and B, where we assume for each of them,

a. there is one shop assistant,
b. it is possible to create a queue,

1

7

) . . ) ) 3
c. the customers arrive according to a Poisson process of intensity A = £ min

d. the service times are exponentially distributed of parameter p =1 min~'.

Let the random wvariable X 4 denote the number of customers in system A, and let Xp denote the
number of customers in system B, and put Z = X 4 + Xp.

1. Compute by means of the stationary probabilities,
P{XA:k} and P{XB:k}, k € Np.

2. Find the means E{Xa}, E{Xp} and E{Z}.
3. Compute P{Z =k}, k € Ny.

The number of arrivals of customers to A is increased, so the customers are arriving according
to a Poisson process of intensity 1 minute”t. Therefore, the two systems are joined to one sys-
tem with two shop assistants, so the customers now arrive according to a Poisson process of in-

3
tensity (1 + 5) minute™t, and the service times are still exponentially distributed of parameter

=1 minute !.
Let Y denote the number of customers in this system.

4. Compute by means of the stationary probabilities,
P{Yy =k} and P{Y >k}, keNy.

5. Find the mean E{Y}.

1) The traffic intensities are

A 3

QA:QB:N—_M:g»

and since N = 1, we get

P{XA:k}:P{XB:k}:§(§>k, k € No.
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2) The means are

E{Xa}=FE{Xp}=

(S8 )
o] w

ka<§)“_£.¥_§_§
5 - 42
k=1

thus
E{Z} = E{XA} +E{XB} =3.

3) The probabilities are

j=0

4 3\ "
= —(k+D|(= .
25( + )<5> , k € Ny
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4) The traffic intensity of the new system is

3
PR
TN LT 21 75

)

and since N = 2, we get

k

1—0 1 rl—0 2[4

_ - d =20"——=-(=-), keN
po 1+0 9 and pr Ql+g 9

Thus

1 2 /4\"
P{Y =0} = and P{Y:k}:g(—> . keN,

and hence

4 k+1
P{Y >k} = i P{Y:j}:g i <§)j:§.%

j=k+1 j=k+1
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5) The mean is

BE{Y} =

o] k—1
4 4 8 1 40
e k| = - =,
> (5> 1

-5 7=
k=1 1- 2=
(1-35)

Example 4.23 Given a queueing system, for which

NeR i V)

a. There are two shop assistants.

b. The customers arrive according to a Poisson process of intensity A = 3 min 1.

c. The service times are exponentially distributed of parameter p =2 min ™.
It is possible to queue up.

Find the stationary probabilities.

Moo=

Find by means of the stationary probabilities the probability that we have more than two customers
in the shop.

3. Find by means of the stationary probabilities the average length of the queue.

Then chance the system, such that it becomes a rejection system, while the other assumptions a.—c.
are unchanged.

4. Find the probability of rejection of this system.

1) We get from
A =3, pw=2 and N =2,
that the traffic intensity is
oA 3 3
"N zaw
From N = 2 we find the p; by a known formula,.

k
pozi_izé and pk—?@k'%g'(%>, keN.
In particular,
2 3 3 2.9 9
mET T MM RTT

2) The probability that there are more than two customers in the shop is

> 8+12+9 29 27
Zpk=1—po—p1—p2=1——:1 =

56 © 56 56
k=3
ALTERNATIVELY,
i _2§: 3\ 2/3\* 1 2 3.3.3.4 2
Pk =7 1) —7\4 377 4.4.4 56
k=3 k=3 1_Z
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3) The average length of the queue is again given by a known formula,

00 3 o k—3 3
2 3 3 2 3 1 27
k—2 =—-|- k—2)( - =— (-]  — = .
2 (k=2 =7 (4) 2 (k-2 (4> 7 (4) 5\2 14
k=3 k=3 1-2
(1-3)
4) The probability of rejection is py, because N = 2. It is given by some known formula in any
textbook,
3)' 1 9
B 2 2! B 8 B 9 B g
P2 s 1 /3 '_1+§+2_8+12+9_29'
2i=077 \2 278

Example 4.24 Given a queueing system, for which

a. There are two shop assistants.

b. The customers arrive according to a Poisson process of intensity A =5 (quarter‘l).
c. The service times are exponentially distributed of parameter p =3 (quarterfl).

d. It is possible for queue up.

1. Prove that the stationary probabilities are given by

1
— k=0
117 )
Pe =

k
2 (5
— (= k> 0.
11(6)’ >0

2. Find by means of the stationary probabilities the average waiting time.
3. Find by means of the stationary probabilities the average length of the queue.

Then the service is rationalized, such that the average service time is halved. At the same time one
removes one of the shop assistants for other work in the shop.

4. Check if the average waiting time is bigger or smaller in the new system than in the old system.

1) Tt follows from N =2, A =5 and p = 3 that the traffic intensity is

A 5

5
=N T3 6

Since N = 2, we may use a known formula, so

k
1—0 1 L 1 (5
=17, A pe=200= g (6),
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and hence

Dk = ) s\ b
ﬁ'(é) , ke N.

2) The average waiting time V' is again found by some known formula,

15\ .
—pOQN.NN_l _ i 6 = 52 —§ uarter
S peN(1-0)? 3.9 (1)2 “11-3-2 33 '

6

3) Also the average length of the queue is found by a given formula,

(e (115>23i.521§ =7,
6
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Stochastic Processes 2 4. Queueing theory

5
4) We have in the new system that N =1, A=5, u =6 and p = 5
Then the average waiting time is because N =1 given by a known formula,
5
0 6 _5
V = ——— = —= = — quarter.
pl—0o 4.1 6
5

It is seen that the average waiting time is larger in the new system than in the old one.

Example 4.25 Given a queueing system, for which

a. There are two shop assistants.

b. The customers arrive according to a Poisson process of intensity A = 8 (quarter_l).
c. The service times are exponentially distributed of parameter yu = 6 (quarter‘l),

d. It is possible to queue up.

1. Prove that the stationary probabilities are given by

2 /2\"
() ken

Find by means of the stationary probabilities the average number of customers in the shop.
Find by means of the stationary probabilities the average waiting time.

Find by means of the stationary probabilities the probability that both shop assistants are busy.

AN

Find the median in the stationary distribution.

1) The traffic intensity is

_ A _ 8 2
°T“Nu 26 3

Then by a known formula,

k
1-p 1 L 2/(2
— = - =2 === keN.
Po 57 Pk 0 Po 5 (3> ) €

2) By computing the mean it follows that the average number of customers is

> > 9/2\F 92 o2& 2\ 4 1 4 9 12
kakzzk'g(g) :g'gzk'(§> =TT 1T 5
k=1 k=1 2 5 1 5

k=1
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3) The average waiting time is also found by a standard formula,

1 /2\?
) —(Z2) .9
Poo” -2 5 \3 4 )
= 5 = 5 = —— = — quarter (= 2 minutes).
w-2-(1=p) 1 5-6 15
6-2. 3

SUuPPLEMENT. The average length of queue is also easily found by some known formula,

ki_g(k—ﬁpk i(k2)§<§)kig<§)E1§@>3(112)2§<§)3

3

4) THE COMPLEMENTARY EVENT: Both shop assistants are busy with the probability

1 4 7 8

ALTERNATIVELY, the probability is given by
ip e~ 2(2)’“ 2 (2)3 5_ 8

o = Z(Z2) =2.(Z2) .3= "=,

= = 5\ 3 5 \3 15

5) The distribution is discrete, and

Fopm sl
plc—15 9’
k=2

cf. 4.. Thus
1 4 8
P0—5, p1—157 P2—45-
Finally,

> 8 1
P{XZQ}:ZPk=E>§7
k=2

and

4 8 9+12+8 29 1
+1—5+—: =

P{X <2} =po+p1+p2 = 15 T—£>§~

| =

1
Since both probabilities are > 3 the median is (X) = 2.
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5. Other types of stochastic processes

5 Other types of stochastic processes

Example 5.1 An aeroplane has 4 engines (2 on each wing), and it can carry through a flight if just
1 motor from each wing is working. At start (t = 0) all 4 engines are intact, but they may break down
during the flight. We assume (as a crude approximation) that the operating times of the 4 engines are

mutually independent and exponentially distributed of mean 1 (which hopefully is much larger than

the flight time). The system can be described as a Markov process of 4 states:

E4:

all 4 engines are working,

FEs5: 3 engines are working,

EQ:

FE1: the aeroplane has crashed.

1 engine in each wing is working,

1. Derive the system of differential equations of the probabilities

Pi(t)

= P {the process is in state E; at time t},

i=1,2,3, 4.

(Notice that this is not a birth and death process, because the probability of transition from E3 to
E; in a small time interval of length h is almost proportional to h.)

2. Find Pi(t),i=1, 2, 3, 4.

1) Tt follows from the diagram

4

E4 — E3

E3

2

- FEs
A
AN

that we have the conditions

(
(1 — 3\h)P;

(
(
(

2
- FE;

t

)
)
)

Ey

— ANR)Py(t) + he(h),

+ ANRP(t) + he(h),

(1 — 2\R) Po(t) + 2XhPs(t) + he(h),
P(t) 4+ 2\hPy(t) + AhPs(t) + he(h),

Py(t) = —A\Py(1), Py(0) = 1,
Pj(t) = —3APs(t) + AAPy(t), P3(0) =0,
Pi(t) = —2\Py(t) + 2\Ps(t), Py(0) =0,
Pl(t) = 2Py (t) + AP (1), Pi(0) =0
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0.8

0.6

0.4

0.2

Figure 3: The graphs of Py (t), ..., Pu(t) for A = 1.

2) It follows immediately that
Py(t) = e,
By insertion into the next differential equation we get
Pj(t) + 3AP3(t) = 4he™ M,

hence

¢ t
Ps(t) = 6_3)‘t/ AT ANe™ N dr = e_3>‘t/ e ™ dr = 73N (4 - 46_)\t) R A
0 0

Then by insertion into the next equation and a rearrangement,
Py(t) + 2APy(t) = 8Xe™ M —8Ae™ M,
the solution of which is
t t
P(t) = 672/\t/ e {8 — 8 e MM dr = e*QAt/ {8xe " —8e T} dr
0 0
_ e—QAt (4 _ 86—>\t 4 4e—>\t) — 46—2/\t _ 86—3>\t 4 46_4)\t.
Finally, P;(t) is found from the condition

4
S Put)=1, thus  Pi(t)=1-Py(t) — Ps(t) — Py(t),
k=1

and we get summing up,

Py(t) = e "

Py(t) = 4de 3N — 4ot

Py(t) = de 2N —8e 3 4 g 4N
Pi(t) = 1—4de M 443N — =4
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Example 5.2 Let Y and Z be independent N(0,1) distributed random variables, and let the process
{X(t), t € R} be defined by

X(t) =Y cost+ Z sint.

Find the mean value function m(t) and the autocorrelation R(s,t).

The mean value function is
m(t) = E{X(t)} = E{Y cost} + E{Z sint} = cost - E{Y'} +sint- E{Z} = 0.
The autocorrelation is
R(s,t) = E{X(s)X(t)} = E{(Y coss+ Z sins)(Y cost+ Z sint)}
= coss-cost- E{Y?} +sins-sint- E{Z?} + (coss-sint +sins - cost)E{Y Z}
= coss-cost- E{Y?} +sins-sint- E{Y?} +0(E{Z%} = E{Y?})
= cos(s —t) (V{Y}+ (BE{Y})?) = cos(s — t).

........................................................... sssssssssssssfAlcatel-Lucent @
www.alcatel-lucent.com/careers

One gerrmer:;trion’s transform;tio; is the next's status quo.
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Stochastic Processes 2 5. Other types of stochastic processes

Example 5.3 Let {X(t), t > 0} denote a Poisson process of intensity a, and let {Y (¢),t > 0} be
given by

Compute the mean value function and the autocovariance of {Y (t), t > 0}.

We have

P{X(t)=n}= e, n € Ny.

The mean value function is obtained by first noticing that

P{Tt)=n}=P{X({t+1) - X(@t)=n}=P{X(1)=n}= .l e ?,
thus Y () = X (1), (The Poisson process is “forgetful”) and
m(t) =E{Y()} =) _n ‘;—T e =a.
If s <t, then
Cov(Y(s),Y(t)) = Cov(X(s+1)—X(s),X(t+1)—X(t)=a-(s+1—min{s+1,¢t} —s+s)

a(s+1—min{s+1,t}).
If therefore s + 1 < ¢, then
Cov(Y(s),Y (t)) =0,
and if s +1 > 1, then
Cov(Y(s),T(t)) = a{s+1—t}.

Summing up,

a{l —|s—t|}, for |[s —t] < 1,
Cov(Y(s),Y(t)) =
0, for |s —t| > 1.
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Example 5.4 Let X1 and Xy be independent random variables, both normally distributed of mean 0
and variance 0. We define a stochastic process {X (t), t € R} by

X(t) = Xysint 4+ Xo cost.
1) Find the mean value function m(t) and the autocorrelation R(s,t).
2) Prove that the process {X (t), t € R} is weakly stationary.
3) Find the values of s —t, for which the random variables X (s) and X (t) are non-correlated.

4) Given the random variables X(s) and X (t), where s — t is fized as above. Are X(s) and X (t)
independent?

1) The mean value function is
m(t) = B{X(t)} =sint- E{X1} 4+ cost- E{X5} =0.
The autocorrelation is
R(s,t) = FE{X(s)X(t)} = E{(X;sins+ Xacoss) (X;sint+ Xscost)}
= sins-sint- E{X{} +coss-cost- E{X3)+ ()  BE{X1Xo}
sins-sint (V{X1} + (E{X{})) +coss-cost (V{Xo} + E{X3})+0

= (coss-cost+sins-sint)o? = cos(s — t) - o2

2) A stochastic process is weakly stationary, if m(t) = m is constant, and C(s,t) = C(s — t). In the
specific case,

m(t) =0=m,
and
Cls,t) = Cov{X(s),X(1)} = B{X ()X (D)} — B{X(s)} - E{X(1)}

R(s,t) — m(s)m(t) = o? cos(s — t),
and we have proved that the process is weakly stationary.
3) It follows from
Cov{X(s), X (t)} = C(s,t) = 0% cos(s — t),
that X (s) and X (t) are non-correlated, if

™
s:t—i—g—i—pm p € Z,

ie. if

Sft:ngpw, pEZL.
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4) Since (X (s),X(t)) with s —¢ = g +pm, p € Z, follows a two-dimensional normal distribution, and
X(s) and X (t) are non-correlated, we conclude that they are independent.

Example 5.5 Let {X(t), t € R} be a stationary process of mean 0, autocorrelation R(7) and effect
spectrum S(w).

Let {Y (t), t € R} be defined by
Yt)=X(t+a)— X(t—a), where a > 0.

Ezpress the autocorrelation and the effect spectrum of {Y (t)} by the corresponding expressions of

{X ()} (and a).

The assumptions are

m(t) =0, R(r)=E{X(t+7)X(t)} and Sw)= /00 e“TR(T) dr.

—00
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5. Other types of stochastic processes

Hence for Y'(t)

SO

Ry (1)

Sy (w)

=X(t+a)—-X

E{Y(t+7)Y(t

]-
E{Xt+7+a)X(t+a)} —E{X{t+7+a)X(t—a)}

(t—a),a>0,

J)=FE{X(t+7+a)—-X{t+7—0a)] [X({t+a)—X(t—a)l}

—E{X(t+17—a)X(t+a)} +E{X(t+7—a)X(t—a)}

Rx(T) — Rx(T

+2a) — Rx (17 —2a) + Rx(7)

2Rx(’7') — Rx(T + 2&) — Rx(’r — 2(1),

/ eiWTRy(T) dt
7woo . oo . © .
2/ e“TRx (1) dr — / e“TRx (T4 2a)dr — / e“TRx(r — 2a)dr
o —o0 -0

25x (w) — 72 Sy (w) — ¥ Sy (w) = 2{1 — cos 2aw} Sx ()
4sin? aw Sx (w).
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Example 5.6 Let {X(t), t € R} be a stationary process of mean 0 and effect spectrum S(w), and let
1 n
= —ZX(kT), hvor T > 0.
n

Prove that

1 o sin? <% an>
E{Y2} = oz / S(w) - ————F dw.

1
—00 2
—wT
Sin <20J )
HinT:

1
sin? [ = nwT n—1
2 Z —imel

/= (n — lml)e
.2
sin <§wT> m=—(n—1)

First compute
1 n
E{Y?} = —E {kz

= %E{zn:X(kT)X(kT%Lan:l zn: X(kT)X(mT)}

X(kT)X(mT)}

k=1 =1m=k+1
1 n n—1n—k
= n—z +FZZE{XkT ((k +m)T)}
k=1 k=1m=1
n 9 n—1n—k n 9 n—1n—m
= SRO)+ Y>> R(mT) = 5 RO)+ > R(mT)
k=1m=1 m=1 k=1
n 9 n—1 1 n—1
= 3 R(0) + — (n—m)R(mT) = 3 Z (n — |m|)R(|m|T).
m=1 m=—(n—1)

Using
R(—mT) = E{X(ET)X((k —m)T)} = E{X(kT)X((k +m)T)} = R(mT),

and the hint and the inversion formula we get

n—1 n—1
1 1 1 >~ —1mw
E(Y?) = o Y (-mDRmT) = S (m-lm)g [ e mTSw)de
m=—(n—1) m=—(n—1) -0

1 0o n—1 1 s sin? (% an)
_ —twmT _
- / Sw) S (n—Imle dw—m/ S(w) —— L dw,

2
27TTL — o mzf(nfl) —00 Sin2 <% WT)

and the formula is proved.
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Example 5.7 Let {W(t), t > 0} be a Wiener process..
1) Find the autocorrelation R(s,t) and the autocovariance C(s,t), s, t € R,.

2) Let0 < s < t. Find the simultaneous frequency of the two-dimensional random variable {W (s), W (¢)}.

The Wiener process is a normal process {W(t), t > 0} with
W (0) =0, m(t) =0, VW) =at (a>0),
and of independent increments. It follows from m(t) = 0 that
C(s,t) = Cov{W(s),W(t)} = R(s,t) — m(s)m(t) = R(s,t).
1) If 0 < s < t, then

R(s,t) = C(s,t) = Cov{W(s),W(t)} = Cov{W(s), W(s)+ [W(t) — W(s)]}
Cov{W(s), W (s)} + Cov{W(s), W(t) —W(s)}
= V{W(s)}+0 (independent increments)

= «-s.
Analogously, R(s,t) = C(s,t) =a-t,if 0 <t < s, thus

as, if0<s<t,

R(Svt)—c(svt)—O"min{S’t}_{ ot if0<t<s.

2) If 0 < s < t, then (W(s), W(t) — W(s)) has the simultaneous frequency
) 1 . < 1 x2> 1 . ( 1 g2 )
) = X 5 )7 X )
Y V2mas P\ 72 as 2ra(t — s) P\ alt —s)
for (x,y) € R?. Finally, it follows that

(W(s), W(t)) = (W(s), AW (t) = W(s)} + W(s))

has the frequency

olo9) = Hay =) = e o (3 { n “"”“")2}) (e,9) € .

2ra/s(t — s)
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absorbing state, 13, 25 state of a process, 4

Arcus sinus law, 10 stationary distribution, 11, 43, 50
stationary Markov chain, 10

closed subset of states, 13 stochastic limit matrix, 13

convergence in probability, 28 stochastic matrix, 10

cycle, 22 stochastic process, 4

) ) o symmetric random walk, 5, 9
discrete Arcus sinus distribution, 10

distribution function of a stochastic process, 4 transition probability, 10, 11
double stochastic matrix, 22, 39
drunkard’s walk, 5 vector of state, 11

Ehrenfest’s model, 32
geometric distribution, 124, 133

initial distribution, 11

invariant probability vector, 11, 22, 23, 25, 26,
28, 30, 32, 36, 39

irreducible Markov chain, 12, 18-23, 32, 36, 39,
41, 43, 45, 47, 50, 53, 62, 65, 67, 70,
73, 75, 78, 80, 86, 88, 91, 93, 98, 103,
106, 108, 114, 116, 122, 125, 128, 131

irreducible stochastic matrix, 83, 120

limit matrix, 13

Markov chain, 10, 18
Markov chain of countably many states, 101
Markov process, 5

outcome, 5

periodic Markov chain, 14
probability of state, 11
probability vector, 11

random walk, 5, 14, 15

random walk of reflecting barriers, 14

random walk of absorbing barriers, 14

regular Markov chain, 12, 18-23, 36, 39, 43, 47,
50, 53, 56, 62, 65, 67, 70, 73, 75, 78,
80, 83, 86, 88, 91, 100, 101, 103, 106,
108, 114, 116, 122, 125, 128, 131

regular stochastic matrix, 26, 30, 120

ruin problem, 7

sample function, 4
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