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Topological and Metric Spaces... Introduction

Introduction

This is the second volume containing examples from FUNCTIONAL ANALYSIS. The topics here are
limited to Topological and metric spaces, Banach spaces and Bounded operators.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
24th November 2009
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Topological and Metric Spaces... 1. Topological and metric spaces

1 Topological and metric spaces

1.1 Weierstraf}’s approximation theorem

Example 1.1 Let ¢ € C'([0,1]). It follows from WeierstraB’s approzimation theorem that B, ,(6)
converges uniformly towards ¢(0) and that By, . (0) converges uniformly towards ¢'(0) on [0, 1].
Prove that By, ,(0) — ¢'(0) uniformly on [0, 1].

HINT: First prove that By, ,(0) — By—1,,/(6) converges uniformly towards 0 on [0, 1].

n)

Next prove that if ¢ € C*([0,1]), then we have for every k € N that BT(MD(H) — ¥ () uniformly on
[0,1].

NOTATION. We use here the notation

B0 =3e (1) (1) -ou-or

0

for the so-called Bernstein polynomials.

) (1) glera-or

n—1
k n—1
_ / . .k _ n—1—k
go(n_l)( " )9(1 6y -1k,
k=0

First write

S|
> 3

Boul) - Bua®) = 3o

k=0

n

360°
thinking.

Deloitte.
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Topological and Metric Spaces... 1. Topological and metric spaces

Here

nd™1, for k = n,
%{9’“(1 )R = k0 A —0)"F — (n—Ek)OF(1 -0k for 0 <k <m,

—n(1—0)"1, for k= 0.

For 0 < k < n we perform the calculation

< ‘ > d%{ek(lie)nik} - l<:!(+il<:)!{k9kl(19)”k(nk)ﬂk(le)”lk}
n - n— n! e
= Goeoe O ey

_ n—1 k—1 n—=k n—1 k n—1—k
= n(k1>9 (1-9) —n( I )9(1—9) .

Hence
B o(0) = y ¥ (%) : ( i ) : d% {6 (1 —0)"*}
= 0(0)-{-n(1-0)"""}+ (1) no"" +n:§@ (%) : ( Z:} > fF=1(1 — o)+
S (0) (17" oo

n—2

= n{p) o cp(())~(19)”1}+n1;)¢<k:;1) . ( “;1 ) 05 (1 — pyn-1*

e () (i) o

k=1
SRR O (i) oo
_ M w(%)l— e () ( n—1 ) o

Whence by insertion,

Bl (0) — Bu_1.(6) :”Zl{w(%)—w(%) _@,( K )} . ( n-1 > P

n—1

We have assumed from the beginning that ¢ € C1([0,1]), thus

so(’%l— p(%) _¢,< 51> _ 15(1)
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Topological and Metric Spaces... 1. Topological and metric spaces

uniformly, so the remainder term is estimated uniformly independently of k. In fact, it follows from
the Mean Value Theorem that

p(BE) —o()

k k+1
=¢'(9), for et passende £ € ] L [,
n o on

3=

k
and as — — =— , we get
n n-—1 nin —1)

k k ‘ 1
<

n n-—1"n-1’

and since ¢’ is continuous,

4 (E) — ¢ (L) —0 ligeligt.
n n—1

From this follows precisely that

A0 (Y (B) - () ok (2)

uniformly, and the claim is proved.

Finally, we get by induction that if ¢ € C*([0,1]), then By(f?p (0) — ©*)(0) uniformly on [0, 1].

Example 1.2 Let ¢ be a real continuous function defined for x > 0, and assume that lim, . ¢(z)
exists (and is finite). Show that for e > 0 there are n € N and constants ay, k =0, 1, ..., n, such
that

<e

n
o(x) — Z a e ke
k=0

for all x > 0.

1
First note that the range of e™*, x € [0, 00], is ]0, 1], so we have t = ¢e=* €]0, 1], thus = In T The
function v (t), given by

w1 " <ln %) for ¢ €]0,1],

limg oo p(z) fort =0,

is continuous for ¢ € [0,1]. It follows from Weierstraf’s approximation theorem that there exists a
polynomial > p_ axtF, such that

b(t) =) axtt
k=0

Since p(z) =¥ (e7) for z € [0, +o0|, we conclude that

o(z) — Z ape” ke
k=0

<e for alle t € [0, 1].

<e  forevery x € [0, +o0l.
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1. Topological and metric spaces

1.2 Topological and metric spaces

Example 1.3 Let (M, d) be a metric space.

We define the open ball with centre xy and radius v > 0 by

B(xg,r) ={x € M | d(x,z0) < r}.

We denote a subset A C M open, if there for any xo € A is an open ball with centre xy contained in

A.
Show that an open ball is an open set.

Show that the open sets defined in this way is a topology on M.

B(x_0.r)

Let 1 € B(xg,7), i.e. d(zo,21) < r. Choose
ry =r—d(xg,x1) > 0.

We claim that
B(xy1, 1) & B(o, 7).

If x € B(z1,7r1), then
d(xy,z) <1 =1 —d(zg,21),

and it follows by the triangle inequality that

d(xo,x) < d(zo,21) + d(z1,7) < d(w0,71) + 7 — d(T0,71) =77,

proving that € B(zo,r).
radius r; that

B(xlarl) g B(xO)r)7

hence every open ball is in fact an open set.

This holds for every x € B(z1,r1), so we have proved with the chosen

Then we shall prove that the system 7 generated by all open balls is a topology. Thus a set T' € 7
is characterized by the property that for every x € T there exists an r > 0, such that B(z,r) & T.

9
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Topological and Metric Spaces... 1. Topological and metric spaces

1) Tt is trivial that M itself is an open set.
That @ is open follows from the formal definition:

Vag € ®Ir e Ry : B(xg,r) S 0.
Since there is no point in (), the condition is trivially fulfilled.

2) Let T'=J;c; Tj, where all T; € 7. If 2p € T', then there exists a j € J, such that z¢ € T}. Since
T € T, there ex1sts an r € Ry, such that

B(Q?(),T') g Tj g T,

thus T' € 7.

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

: :ffmf/// 4

J rg /i ‘#'\-.

b ‘}él? &

Do you like cars? Would you like to be a part of a successful brand?
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Topological and Metric Spaces... 1. Topological and metric spaces

3) Let T = ﬂ?zl Tj, where all T; € 7. If T = (), there is nothing to prove. Therefore, let zg € T.
Then zp must lie in every T € 7, j = 1, ..., n, so there are constants r; € Ry, j =1, ..., n,
such that B(zg,r;) € T;. Now put ¢ = minr; € Ry (notice that there is only a finite number of
rj > 0). Then

B(zo,7) € B(xo, ;) & T} forevery j =1, ..., n,

and hence also in the intersection,
n
B(xg,r) € (T =T.
j=1

Using the definition of 7 this means that T € 7.

We have proved that 7 is a topology.
Example 1.4 Let (M,d) be a metric space. We say that a mapping T : M — M is continuous in
xg € M if, for any € > 0 there is a § > 0 such that for all x € M we have
d(zg,z) <6 = d(Tzo,Tz)<e.
Show the T is continuous in xq if and only if
T, —xr9g —> Tx, — Txg.

Show that T is continuous if the open sets are defined as in EXAMPLE 1.3.

Recall that x,, — xo means that

(1) Vo e Ry Ing € NVn > ng : d(zp, x9) < 9.

Assume that T is continuous in zo € M and that x,, — xo. We shall prove that Tz, — Txg, i.e.
Ve eRyIng € NVn >ng: d(Tx,, Txo) < e.

Let € € Ry be arbitrary. Since T is continuous, we can find to this £ > 0 a constant 6 = d(¢) € Ry,
such that

(2) Ve e M :d(zg,z) <d = d(Txo,Tx)<e.

Using that z, — zg, we get by (1) an ng € N corresponding to § = d(¢) [in fact an ng € N
corresponding to € € R, |, such that

Vn > ng:d(@,,xe) <6 =0d(e).

It follows from the continuity condition (2) that d(T'zo, Tz,) < € for n > ng, hence
Ve eRyIng € NVn > ng: d(Ta,, Txg) < g,

and we have proved that if T is continuous in x¢ € M, then

T, —>xr9g — Tz, — Txg.

11
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Topological and Metric Spaces... 1. Topological and metric spaces

Then assume that 7" is not continuous at zg € M, thus
(3) Jee Ry VIR oz € M d(xg,x) < I A d(Txg, Tx) > €.

We shall prove that there exists a sequence (z,), such that x, — xg, while Tz, does not converge
towards T'xg.

1
Choose € > 0 as in (3). Putting 6 = — we get
n

1
VYneNJzx, € M :d(xg,x,) < — ANd(Tzo, Tx,) > €.
n

Then it follows that z,, — x¢ and T'z,, cannot be arbitrarily close to Tz, thus (T, ) does not converge
towards T'xg.

Assume that T°~1(A) is open for every open set A. Choose g € M and A = B(Tzg,c). Then A is
open, so T°~1(A) is open according to the assumption. It follows from zg € T°71(A) that there is a
0 € R4, such that

B(wo,8) € T°"1(A).

For every x¢ € B(xo,9), thus d(x,z9) < §, we get Tx € B(Txg,¢e), hence d(Tz,Txg) < e, and we
have proved that T is continuous.

Conversely, assume that 7' is continuous, and let A be an open set, thus
Veg € Adr e Ry i d(zg,z) <r — z€A.
We shall prove that T°~1(A) is open, i.e.
Vyo € T°"H(A)IR € R, : B(yo, R) S T°(A).
This is done INDIRECTLY. Assumem that
Jyo € TN (A)VR € Ry : Blyo, R) \ T°(A) #0),
thus
Jyo € T (A)VReR, 3y ¢ T°'(A) : d(yo,y) < R.
Since T is continuous at yo, it follows that
Vr e RyIR € RyVy € M : d(yo,y) < R = d(Tyo,Ty) = d(x0,Ty) < r.

We conclude that Ty € A contradicting that y ¢ T°~1(A), and the claim is proved.
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Topological and Metric Spaces... 1. Topological and metric spaces

Example 1.5 In a set M is given a function d’ from M x M to R that satisfies
d(z,y) =0 if and only if T =1,

d'(z,y) <d(z,x)+d(z,y) for all x,y, z € M.
Show that (M,d') is a metric space.

If we choose z = y in the latter assumption and then use the former one, we get
d'(z,y) <d'(y,z) +d'(y,y) =d'(y,2) + 0= d'(y, ),

proving that
d'(z,y) <d(y,x) for all z, y € M.

By interchanging x and y we obtain the opposite inequality, d’'(y,z) < d'(x,y), hence
d'(z,y) =d(y,x) for all z, y € M,

and d’ is symmetric.
Using this result on the latter assumption we get the triangle inequality

d'(z,y) <d'(z,2)+d(z,y).

It only remains to prove that d'(x,y) > 0 for all x, y € M in order to conclude that d’ is a metric.
This follows from

0=d(z,z) <d(z,y)+d(y,x)=2d(x,y),

so the two conditions of the example suffice for d’ being a metric.

Example 1.6 Let (M,d) be a metric space.
The diameter of a non-empty subset A of M is defined as

0(A) = xSESA d(z,y) (< o0).

Show that §(A) = 0 if and only if A contains only one point.

If A= {z} only contains one point, then

0(A) = sup d(z,y) =d(z,x) =0.
z,yeA

If A contains at least two points, choose x, y € A, where x # y, from which we conclude that

5(A) = sup d(t,2) = d(z,y) > 0,
t,z€A

and the claim is proved.
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Topological and Metric Spaces... 1. Topological and metric spaces

Example 1.7 Let (M,d) be a metric space. Show that dy given by

d(z,y)

di(z,y) = TS d(r,y)

forxz,ye M

is a metric on M.
Show that

01(A) = sup di(z,y) <1
z,yeA

forall AC M.
Is it possible to find a subset A with 61(A) =17
Show that dy(xy,x) — 0 if and only if d(x,,x) — 0.

1) We shall first prove that

__d,y)
dl(why)_ 1+d($,y)7 xvyeMa
is a metric.
Ijoined MITAS because e
I wanted real responsibility www.discovermitas.com

TR T S
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Topological and Metric Spaces... 1. Topological and metric spaces

a) It is trivial that dy(z,y) > 0, because d(z,y) > 0.

b) Then we see that dj(x,y) = 0, if and only if the numerator d(z,y) = 0, i.e. if and only if x = y.

c)
)

d

The condition dy(z,y) = di(y, z) follows immediately from d(z,y) = d(y, ).

It remains only to prove the triangle inequality
di(z,y) < di(z,z) + di(2,y).
Now d(z,y) < d(z,z) + d(z,y), and the function

t 1
t) = =1- t>0
) 1+1¢ 1+t =7

is increasing. Hence

tey) = o = fldte)

d(z,z) +d(z,y)

< S+ dla) = o U
_ d(z, z) d(z,y)

1+d(z,z)+d(z,y)  1+d(z,z)+d(z,y)
- d(z, 2) d(z,y)

1+d(z,z)  1+d(zvy)
= dy(z,2) +di(z,y).

Summing up, we have proved that d;(z,y) is a metric on M.

2) Tt follows from

d(z,y) 1
d - —1- <1,
e ) =7 d(z,y) 1+d(z,y) —
that
51(A) = sup di(z,y) <1
T, yeA

for every subset A.

3) a) If the metric d is not bounded on M, then there are subsets A, such that d;(A) = 1.
In fact, we choose to every n € N points x,,, y, € M, such that

A(xp,yn) >n—1 for n € N.

As mentioned previously, f(t) = is increasing, so

14+t

~1 1
T o
n n

dl(xnayn) = f(d(‘rvy)) > f(n - ]-) =
Putting

A={x,|neN}U{y, |neN}

1
it follows that d§;(4) > 1 — - for every n € N, thus 6;(A) > 1. On the other hand, we have
already proved that d1(A) < 1, so we conclude that d;(A) = 1.
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Topological and Metric Spaces... 1. Topological and metric spaces

b) If instead d is bounded on M, then M has itself a finite d-diameter, §(M) = ¢ < oo, and
__° _q_ 1
1+c¢ 1+c¢

There are many examples of such metrics. The most obvious one is the well-known

< 1.

61 (M)

_J 0 forxz=uy,
do(z,y) = { 1 forz#y,

where

0 forx =y,

do(z,y) =

for x # y.

We get another example by starting with the bounded d; above. Then

o dl (.’IJ, y) _ d(.’IJ, y)
d2(x7y) - 1_|_d1(x’y) o 1+2d(x,y)7

1
with d3(4) < 5 for every subset A & M.
4) Tt follows from
d ns =1~ T 9/ 1\
1(zn,7) 1+d(z,,x)

that the condition di(z,,z) — 0 is equivalent with 1 + d(z,,x) — 1, thus with d(z,,2) — 0, and

the claim is proved.

Example 1.8 Let (My,d;) and (Ma,ds) be metric spaces.
Show that My x My can be made into a metric space by the following definition of a metric d:

d((z1,72), (Y1,92)) = di(z1,y1) + d2(22, y2).

Show that also d* given by

d* ((z1,22), (Y1, 92)) = max {d1(z1,y1), d2(72,92) }

defines a metric on My x Ms.

1) Clearly,
d((w1,72), (y1,92)) >0 and d*((x1,22), (Y1,y2)) > 0.

2) If (z1,22) = (y1,¥2), i-e. 21 = y1 and a2 = Yo, then

d((z1,22), (y1,92)) =0 and d* ((z1,22), (y1,92)) = 0.

16
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Topological and Metric Spaces... 1. Topological and metric spaces

Conversely, if

d((z1,22), (y1,92)) =0 or d((z1,22), (y1,92)) =0,
then both
di(z1,91) =0  and  da(2,52) =0,
and it follows that 1 = y; and 29 = yo, and hence (21, z2) = (y1,y2).
3) The symmetry is obvious.
4) The triangle inequality holds for both d; and ds. Hence, it also holds for d and d*. In fact,
d((w1,72), (y1,92)) = di(w1,y1) + d2(z2,92)
<A{dy(z1,21) + di(z1,151)} + {d2(x2, 22) + da(22,y2)}

= {di(x1,21) + da(2, 22) } + {d1(21,91) + d2(22,y2) }
= d((xlﬂ $2)7 (zlv 22)) + d((zh 22)7 (y17y2 ) )

and

d* ((x1,22), (Y1, y2)) = max {d1(z1,y1), d2(z2,y2) }
< max {di (21, 21) + di(21, 1), d2 (w2, 22) + d2(22,¥2) }
< max {d1 (21, 21), d2(22, 22) } + max {di(z1,y1), d2(22,92)}
=d" ((z1,22), (21, 22)) + d" ((21, 22), (Y1, ¥2)) -

Example 1.9 Show that in any set M we can define a metric by
0 ifr=y,

1 ifz#y.

Then we call (M,d) for a discrete metric space.
Characterize the sequences in M where d(x,,x) — 0.

d(xvy) =

) Clearly, d(z,y) > 0.
) Clearly, d(x,y) = 0, if and only if 2 = y.
3) Clearly, d(z,y) = d(y, x).
) Finally, it is almost trivial that
d(z,y) < d(z, 2) + d(z,y),

because the left hand side is always < 1. If the right hand side is < 1, then both d(z,z) = 0 and
d(z,y) = 0, and we infer that © = z and z = y, hence also = y. This implies that the left hand
side d(z,y) = 0, and the triangle inequality is fulfilled.

17
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Summing up we have proved that (M, d) is a metric space.
1
If d(z,,x) — 0, then choose ¢ = 3" There exists an ng € N, such that

1
d(xn,z) <e= 5 for n > nyg.

This is only possible, if d(x,,z) = 0, i.e. if

Ty =X for all n > ng.

We conclude that all the convergent sequences are constant eventually.

~
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Example 1.10 Let (M,d) be a metric space and consider M as a topological space with the topology
stemming from the open balls (the ball topology ).

Recall that a set A is closed if M \ A is open.

Show that A C M is closed if and only if

T, €A, x,—>1r — zx€A.

Show that if (M, d) is a complete metric space and A is a closed subset of M, then (A,d) is a complete
metric space.

Assume that A is closed and let z,, € A be a convergent sequence in M, i.e. x, — x € M. We shall
prove that x € A.

INDIRECT PROOF. Assume that « ¢ A, i.e. z € M \ A, which is open.
There exists an r > 0, such that

B(z,r) & M\ A, ie. Blz,r)NA=0.
Now, x,, — x, so there exists an n,. € N, such that
d(xn, ) <7 for n > n,.,

and we see that z, € B(z,7) N A = ), which is not possible. Hence our assumption is wrong, so we
conclude that = € A.

Conversely, assume for every convergent sequence (z,) € A the limit point lies in A. We shall prove
that A is closed, or equivalently that M \ A is open.

INDIRECT PROOF. Assume that M \ A is not open. There exists an © € M \ A, such that

VreRyJye A:d(x,y) <r.

1
If we put r = —, n € N, with corresponding y = x,,, we define a sequence in A, which converges towards
n

x, thus x € A according to the assumption. This is contradicting the assumption that @ € M \ A.
Hence this assumption must be wrong, and = € A as requested.

Finally, assume that (M, d) is a complete metric space and that A is a closed subset of M. We shall
prove that (A,d) is complete.

Let (z,) be a Cauchy sequence on A. Then (z,) is also a Cauchy sequence on the complete metric
space M, thus (x,) converges in M towards the limit € M. However, A is a closed subset, so it
follows from the previous result that x € A. We have proved that every Cauchy sequence (x,,) on A
has a limit « € A, which means that (A, d) is complete.

19
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Topological and Metric Spaces... 1. Topological and metric spaces

Example 1.11 Show that
d(z,y) = | arctan x — arctan y|

defines a metric on R.

The definition includes an absolute value, hence d(x,y) > 0 for all z, y € R.

The function arctant is strictly increasing on R, hence d(z,y) = 0, if and only if = y.
Clearly, d(z,y) = d(y, ).

The triangle inequality follows from

d(z,y) = |arctan x — arctan y| < | arctan x — arctan z| + | arctan z — arctany| = d(z, z) + d(z, y).

Example 1.12 In RF we define

k
dl(xay) = Z |LIZ’1 - y7.|a
1=1

k 3
da(z,y) = (Z i — yi|> )

i=1

doo(x7y) = 1@?2% |'/L'i - y'L|

Show that dy, do and do are metrics.
Show that

doo(x7y) S d1($7y) S kdoo(x7y)a

and find a similar inequality when dy is replaced by ds.
Show that if a sequence (xr,) converges to x in one of these metrics, then we have coordinate wise
convergence:

Tpi — Ty foralli=1,2 ... k.

We first prove that

k

di(z,y) = Z |lzi — il

i=1
is a metric:
1) Clearly, di(x,y) > 0.
2) Clearly, di(x,y) =0, if and only if z = y.
3) Clearly, dy(z,y) = d1(y, x).
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Figure 1: The three unit balls for d; (innermost), ds (the disc) and do, (largest) in the case R2.

4) The triangle inequality follows by a small computation

k k
di(wy) = Y |wi—uil <Y {lw =zl + 1z — vl

i=1 i=1
K K

= Z lzi — 2] + Z |zi = yi| = di(z, 2) + di (2, y).
i=1 i=1

We have proved that d; is a metric.

Then we prove that

k 3
da(x,y) = (Z |i — yi|2>

i=1

is a metric. Again, the first three conditions are trivial. The triangle inequality,

k k k
Z|$i—yi|2§ Z|$i—2i|2+ Z\zi—yiP
i=1 i=1 i=1

is, however, more difficult to prove. There are several proofs of the triangle inequality of do. Here we
shall not choose the most elegant one, but instead the intuitively most obvious one.

Puta;=2;—z;and b; = z; —y;, i =1, ..., k. We shall prove that
k k k
D@+ bi)? <y |3 af Db
i=1 i=1 i=1

All terms are > 0, thus it is seen by squaring that we shall prove that

k k k k k ko k
Za?—i—Zb?—i—QZaibiSZa?—i—Zb?—i—Z ZZa?b?,
i=1 i=1 i=1 i—1 i—1

i=1j=1
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which is reduced to the equivalent condition

k

k k
i=1 i=1

The claim follows if we can prove the CAUCHY-SCHWARZ INEQUALITY

Another squaring shows that it suffices to prove that

k k kK
(o) (on ) <3
; = i=1 j=1
ie.

k=1 &
Za2b2+22 Z a;a;b;b; <Za2b2+z Z (a?b?—l—a?bi),

i=1 j=i+1 i=1 j=i+1

which again is equivalent with

k=1 k k=1 k
Z Z 2[)? + a?b? — 2aiajbib Z Z CLZ (ljbi)Z .
=1 =1 j=i+1

The latter is clearly satisfied. Since we everywhere have computed “<=", the claim is proved.
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Finally,
doo(mvy) = 121?2% |x1 - yz|

is a metric, because the first three conditions again are trivial, and the triangle inequality follows from

‘xl_yl‘§|xz_zl|+‘z’b_y’b| for everyi:1,...,k,
thus
‘xifyi‘ Sdoo(zaz)+doo(zay) for everyi:la RN k,

and by taking the maximum once more,
We have now proved that di, do and d., are all metrics.

We can find j € {1,...,k}, such that

k
doo(T,y) = gl%xkkfi —yil =lz; -yl < Z |z — yi| = du(2,y)
. i=1
< Zmax|xi —yil = k- deo(,y).
i=1
Analogously (with the same “maximal” j),
doo(t,y) = max |o; —yil = |z =yl = \flwj —y;l?
k k 2
<\ SR =) < 3|3 e i
k
= Z{doo(xvy)}Q = \/Edoo(w,y),
i=1

and the wanted inequality becomes

Remark 1.1 A simple squaring shows that da(z,y) < di(x,y), which can also be seen on the figure
(the simple proof is left to the reader). This means that

Using that z,; — z; for every ¢ = 1, 2, ..., k, if and only if do(z,,z) — 0, we conclude from the
inequalities
doo(l',y) S d1($7y) S k : dOO(xvy)a

dOO(mvy) < d2(x?y) < \/E : doo(x7y)7
that this is fulfilled if and only if dy(z,,0) — 0, and if and only if da(x,y) — 0.
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Example 1.13 Let ¢ denote the set of convergent complex sequences © = (x1,x2,...). Show that ¢
18 a complete metric space when equipped with the metric

doo(,y) = Sll}p lzi — vil-
HINT: Show that the space of bounded complex sequences £*° is a complete space and show then that
c 1s a closed subset, then apply Example 1.10.
Let 2™ = (a7, 2%,...), where lim;_, o 7 exists, be a Cauchy sequence from ¢, thus
Ve>03INeNVm,n>N:d(z™ z") <e.
This means that

sup |z — 27| < e.
i

In particular, (z}'),, is a Cauchy sequence on R for every 4, hence convergent,

lim z}' = ;.
n—odo

The Hint is not used, because it is not hard to prove directly that (z;) € c. It suffices to prove that
(z;) is a Cauchy sequence, i.e.

(4) Ve>03I eNVi, j>1:|z; —xj| <e.
It follows from

| — x| < lws — 2| + |2 — 2f| + |2f — @],

and (z7'), — ;, and even
sup|z; — x| — 0 for n — oo,
i
that
. €
a) Ve>03aNVn>NVi:|z; —al| < 3

b) Ve>0Vn3II(n)Vi, j>I(n): |zl —a?| < %

First choose N, such that a) is fulfilled.
Then choose I = I(N), such that b) is fulfilled for n = N.
If 7, > 1 =1(N), then

R I e A R A o R EPAE 21
L ELELE_
373737 %

which is (4), and we have proved that (z;) is a Cauchy sequence on R, hence convergent. In particular,
(z;) is bounded, so (x;) € ¢, and ¢ is complete.
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Example 1.14 In the set of bounded complex sequences £°° equipped with the metric from EXERCISE
12 we consider the sets cq consisting of the sequences converging to 0 and cog consisting of the sequences
with only a finite number of elements different from 0.

Investigate if co and/or coo are closed subsets of £°°.

1
The sequence (—) belongs to £°°, though it does not belong to c¢pg. Choose
n

1 1
n_ (1.2 ... 2.00---]).
€ <’2? 7n’77 )

1 .
Then 2™ € ¢gp and 2" — x = (—) ¢ cop, hence cog is not closed.
n

Let 2" = (z,2%,---) € ¢o be convergent in (>, i.e. lim; .o z]" = 0 for every n. There exists an
x € £°°, such that

Ve>03negVn >ng: ||z — 2" =supla; — 2| <e.
i

We shall prove that lim; ., x; = 0. Now,
|lzi| < |z — 2|+ |27] < [z — 2™||o + |27]-

First choose n, such that ||z — 2" |o < g
€
Then choose I, such that |z}| < 3 for every ¢ > I. Summing up we get for all ¢ > I that

€

2:{5.

€
|.’L‘i| < §+
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1.3 Contractions

Example 1.15 Consider the metric space (M,d), where M = [1,00], and d the usual distance. Let
the mapping T : M — M be given by

Show that T is a contraction and find the minimal contraction constant . Find also the fized point.

First compute

N e
Now, z, y > 1,50 0 < p < 1, and the function
1
@u)=5-=
has the range [—— —[. We conclude that @ = =, so = is the smallest «, for which
ll—i <a
2 xyl|

The fixpoint satisfies the equation Tz = x, thus

1
r=—+—, hence%z—, ie. 2?2 =2.

x

8|~

x
2
Since x > 1, the fixpoint must be 2 = 1/2, which also is easily seen by insertion.

1
Since a = 3 < 1, it follows from the above that it is the only fixpoint.

Example 1.16 A mapping T from a metric space (M,d) into itself is called a weak contraction if
d(Tz, Ty) < d(z,y),

forallz, ye M, x #y.
Show that T' has at most one fixed point.
Show that T does not necessarily have a fixed point.

HINT: One should take Tx = x4+ — for x > 1.
T

Let T be a weak contraction, and assume that both z and y are fixpoints, i.e. Tz = x and Ty = y.
If « # y, then

d(xv y) = d(T:C, Ty) < d(l’, y)7
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which is not possible. Hence y = x, and there is at most one fixpoint.
1

Define Ta = x + — on [1,4o0[. If 2, y € [1, 4+00[, then
x

y—x 1

Tz —Ty| =
y

1 1'
T+ ——y——| =
T Y

1
It follows from 0 < — < 1 for x, y > 1, that
Ty

Tz —Ty| <|z—y| forz#y,

and T is a weak contraction on [1,4o00].

1 1
The weak contraction Tz = x + — does not have a fixpoint, because Tx = = would imply that — = 0,
x x

which is not possible.

Example 1.17 It is very common in mathematical analysis to consider iterations of the form

Tn = g(xn—l)a

where g is a Cl-function. Show that the sequence (x,,) is convergent for any choice of xo if there is
an o, 0 < a < 1, such that

9'(@)] <«
for all x € R.

It follows from the Mean Value Theorem that one to any x and y can find ¢ = t(z,y) between x and
y, such that

l9(z) —gW)l = lg'®)] - |z —y| < afz —yl.
This proves that g is a contraction, and the claim follows from Banach’s Fixpoint Theorem.
Example 1.18 To approzimate the solution to an equation f(x) = 0, we bring the equation on the

form x = g(x) and choose an xy and use the iteration x, = g(x,_1). Assume that g is a C*-function
on the interval [xg — §; ¢ + 9], and that |¢'(z)| < a <1 for x € [xo — d;z0 + 9], and moreover

9(z0) — 20| < (1 —a)d.
Show that there is one and only one solution x € [xg — §;xo + 0] to the equation, and that x, — x.
Noticing that |¢'(x)| < o < 1 on the interval [zg — 0; xo + ], the claim follows from Banach’s Fixpoint

Theorem, if we only can prove that the iterative sequence (z,,) lies entirely in the interval [xg—J, 2¢+0].
We prove this by induction.
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It is obvious that zg € [z¢ — §, 20, ).

Assume that z,, € [x¢ — J, 29 + §]. Then we get for the following element x,,11 = g(z,),
[Znt1 —xo| = |9(zn) — 2ol

l9(zn) — g(xo)| + [g(z0) — 20

oz, — x| + (1 — )

ad~+(1—a)d =4,

IAIA TN

proving that z, 11 € [zg — J, 2 + 0], and the claim follows.

Example 1.19 Solve by iteration the equation f(z) =0 for f € C'([a,b]), f(z) < 0 < f(b) and [’
bounded and strictly positive in [a,b].
HINT: Take g(x) = x — X\ f(x) for a smart choice of \.

Putting
g@) =z —Af(x),  A#0,
it follows that f(z) =0, if and only if g(z) = x. Now,
g (x)=1-=Xf'(2) and 0 <ky < f(x) < ko,
S0
1=Ako <g'(z) <1— Nk
If we choose \ = ki’ then

2

k
0<g(@)<1—~=a<l,
ko

and the mapping ¢ : [a,b] — [a,b] is increasing and a contraction, so it has by Banach’s Fixpoint
Theorem precisely one fixpoint in [a, b].

Example 1.20 Show that it is possible to solve the equation f(x)x> +x — 1= 0 by the iteration

Ty = g(xn—l) = (1 =+ Ii—l)_l

Find x1, 2, x3 for xg = 1, and find an estimate for d(x,x,,).

1
——, thus med z(1 4 2*) = 1, which we

Let =
et g(x) —

write as

1
112 Then g(x) = x is equivalent with z =

flz)y=a234+2-1=0,
i.e. exactly the equation we want to solve.

It follows from

, o 2x
g (l’) - (1 —‘r.’IJ2>2,
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and

o 2 (=2)-22 2
A i rwar Al () el e A

1—332—1—4332}:

(1+a2)3

1
that ¢’ (z) = 0 for z = i—3. Since ¢'(x) — 0 for # — +oo, these points correspond to maximum

and minimum for ¢'(x), thus

1 2
9. =
3v/3
(@) < — Y3 _ V3 _ V3 _ <06,
Lol 168
(*3) 0

and we have proved that g is a contraction, so the equation
flay=a>4+2-1=0
can be solved by the given iteration.

Let zg = 1. Then

— glzo) = 1
Ly = 9370—1+1—2a
<1) 1 4

1‘2 = g — :—1:—’
2) . 175

R U S

G T B,

25
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Finally,

n
|x — x,| <

SO

MH W () e @) <3 @)

1_3x/§' 2) "s-33 \ s )] Ts5_3/3 \64 64
8

When we apply the iteration above on a pocket calculator, we get
x = 0.682 327 804.

Remark 1.2 The iteration above can therefore be applied, though it is far from the fastest one. If
the preset case we get by Newton’s iteration formula

flxn) 2 1 3—2z,

Flen) 373 32211

Tn+l = Tp —

from which already

x4 = 0.682 327 804. O

Example 1.21 A mapping T : R — R satisfies a Lipschitz condition with constant k, if
[Tz — Ty| < klz —y|, for all x, y € R.

1) Is T a contraction?

2) If T is a C*-function with bounded derivative, show that T satisfies a Lipschitz condition.

3) If T satisfies a Lipschitz condition, is T then a C*-function with bounded derivative?

4) Assume that Tx — Ty| < k |z —y|* for some a > 1. Show that T is a constant.

1) If k > 1, then T is not necessarily a contraction.
If instead 0 < k < 1, then T is always a contraction.

2) It follows from the Mean Value Theorem that
() =T ()l = [T"(O)] - [« = y],

where ¢t = t(z,y) lies somewhere between x and y.
Since |T(t)| < k, it is obvious that T fulfils a Lipschitz condition.

30

Download free eBooks at bookboon.com



Topological and Metric Spaces...

1. Topological and metric spaces

045 0, 1A 0.2 0.25 0.3

1
Figure 2: The graph of f(x) = 22 - sin — for 0 < 2 < 0.35.
x

3) The answer is “no”. Choose the function

1
22 .sin— for z >0,

fz) = ’

0 for x < 0.

Then f is differentiable with the derivative

1 1
2x - sin — — cos —
x x
") =4 flz) = f(0) 1
J'(x) hmIHOer)fO(:hmzH(Hm.smE:O
0

Choose z > 0, such that f/(z¢) =0, and put

for z > 0,

for x =0,

for x < 0.

0.01
/\ 01 02 03

Figure 3: An example of a function T'(z).

31

Download free eBooks at bookboon.com



Topological and Metric Spaces... 1. Topological and metric spaces

f(z0) for x > xo,
1
T(z) =< 2%-sin— for 0 <z < o,
x

0 for z <0.

Then |T"(z)| < 2z¢ + 1, and T'(z) is defined everywhere, though not continuous for z = 0, where
1

T'(z) = f'(z) =2z -sin — — cos — or 0 < & < xp does not have a limit value for x — 0+. Thus we
x x

have constructed a mapping T ¢ C!, which satisfies a Lipschitz condition. (It is of course possible

to construct far more complicated examples).

4) Assume that there exists an o > 1, such that
|Tx — Ty| < k|z —y|“.
Then

: |z —y|* . -1
0< <lmk- —— =k lim|y—z|*"" =0.
y—r T —yY y—z |z —y| y—x

. Tx—Ty’
lim ——=

This proves that T is differentiable everywhere of the derivative 0. Then 7T is a constant.

Example 1.22 Let T be a mapping from a complete metric space (M, d) into itself, and assume that
there is a natural number m such that T™ is a contraction.
Show that T has one and only one fized point.

If T™ is a contraction, then 7™ has a fixpoint z, thus T2 = x. When we apply T on this equation,
we get

Ty =T™(Tx) = T,
hence Tz is also a fixpoint of T".

Since T™ is a contraction, the fixpoint is unique, so Tx = z, and we have proved that x is a fixpoint
for T

Conversely, if x is a fixpoint for T, then «x is also a fixpoint for T, because Tx = x implies that
Ty =T Y (T2)=T" ' =... =Tzx = .

We have assumed that T is a contraction, hence the fixpoint for 7" is unique. This is true for every
fixpoint x for T', hence it must be unique.
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Example 1.23 We consider the metric space RF with the metric

k
di(z,y) = Z lzi — vil
i=1

and a mapping T : RF — RF given by Tz = Cx + b, where C = (cij) s a k x k matriz and b € RE.
Show that T is a contraction, if

k
Z|Cij|<1 forallj=1,2 ..., k.

i=1

If we instead use the metric

show that T is a contraction if
ko ok
Sy et
i=1 j=1
First note that the i-th coordinate of Tz is

k
(Ta)i = cywy+bi,  i=1,..., k.
j=1
Put y =Tx and w = Tz and
k
o = max Z\ciﬂ < 1.

1<5<k
=I=R

Then we get the estimates

k k k
di(Tz,Tz) = Z\yi—wi\ ZZ Zcij(ﬂfj—zj)
i=1 i=1 |j=1
k k k
< 3 el -z =zl <) |z — 2] = - dila, 2),
i=1 j=1 =1

and the condition o = maxi<;<y |¢i;| < 1 assures that T is a contraction in (Rk, dl).

If instead we consider the metric
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and assume that

k k
a2 = ZZ ‘Cij|2 < 1,

i=1 j=1

then we get the following estimate

{dao(z,9)}? = Zlyi—wilzzz

k k k
< YU el lw = 2] el - v — 2
4
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Then apply
lab| < ! (a® +0%)
— 2 )

which follows from the inequality (|a| — |b])? = a® + b* — 2|ab| > 0.
If we put

CL:|CM|‘LEJ72’]| a,nd b:|cij.|xef2»e|,
we get
kK k k 1
(@ wy = 3.3 > 5 el =zl +legl e - =)
i=1 j=1¢=1
1 k k
= 522 el zm—zm LS e Ziwe—zz
i=1 (=1 i=1 j=1

1 1
< 3 o {dy(z,2)}? + 5 o?{dy(z,2)}? = o®{da(x, 2)}%.
Since a? < 1, and hence also 0 < a < 1, and
da(y,w) = do(Tz, T2) < a - da(z, 2),

we conclude that T is a contraction in (Rk, dg).

Example 1.24 In connection with Banach’s Fixpoint Theorem, the inequality

(0%

<
d(z,z,) < T

d(xn—h mn)

18 often mentioned. Prove this inequality.

Given that o €10, 1[, at Tx,, = 41, and z,, — .

Choose to any € € Ry an N, such that we for all p > N have d(z,z),) <e. If p> N and p > n+1,

then
d(z,zy) < dz,zp) +dxp, x,) < e+ d(zy, )
< et d(ap, xp1) +d(zp_1,2p—2) + -+ d(Tpir, Tn)
= e+dTzrp-1,Tap_2) +d(Txp_2,Txp_3)+ - +d(Txp, TTn_1)
< c+a 1-ar" d(p_1,22)
s € 1—a n—1,+<n
< 5+%'d(xn—laxn)-

This is true for every € > 0, thus

d(z,z,) < @

T—a cd(xp—1,Xp)-
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Example 1.25 Consider the matriz equation Az +b = 0, where A = (aij)f,jzl (and the a;; real).
Put A =C — I and rewrite the equation as © = Cx + b.

If
k

(B) D el <1 fori=1,2,...,k
j=1

then there is a unique solution x, which can be found by iteration.
Prove that the condition (5) can be formulated as the following condition of the a;,

k k
ai; <0, Jaal > Y lagl, jail <2 = > layl,
Jj=1j#1 j=1,j#i

fori=1,2 ... k.

We have A5 = Cij — 57;]‘, thus Cij = 572j + Qg In particular, Cij = 1+ Qg - Since

k
Z|Cij| <1,
=1

we have |c;;| < 1, thus a;; €] —2,0[.

Furthermore, ¢;;| = |a;;| for i # j, so
k k
Sleigl= > lail+ 11+ au| <1.
=1 j=Lii

It follows that

k
Z|aij| <l—|14+ayl=1-1-|ay|| <1.

j=1
If
k
lai| <1 <2- Z lag] |
j=1,j#i
then
k
Z |(Zij| <1l—-1+ |a”| = |a”|
i=1#i
If
k
|azi| > 1 > > agl ],
Jj=1,j7#i
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then
k
D lagl < 1—lag] +1=2—aul,
=1
hence by a rearrangement,

k

lail <2— D agl,

j=1.j#i

and we derive in both cases that

k k
o lail <lail <2—= > ayl.
J=Li#i =L

Conversely, assume that a;; < 0 and that

k k
o ail <lail <2—= > ayl.
=1 J=1
Then
k
Z |aij| < 1.
=1

If |a;;| <1, then

lag| =1—1+ai; =1 —[1—lai|[ =1 =1+ ai| =1 — el

thus
k k
Z |as;| = Z lcijl < 1— el
J=15#i j=1.5#i
and hence

k
Z |cij| < 1.
=1

If |a;;| > 1, then
laii| =1 =14 |ay| =1+ ||ai| — 1| =14 |ay + 1| = 1+ |ci)],

hence by insertion

k k
1+ Jeu| <2— Z |@ijn| =2 — Z leisl,
j=1.j#i j=1,j#i

follows by a rearrangement

k

Z |Cij| < 1.

j=1
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1.4 Simple integral equations

Example 1.26 Consider the Volterra integral equation:

x(t)—,u/ k(t, $)a(s)ds = o(t),  t€ [a,b],

where v € C([a,b]), k € C([a,b]?) and u € C.
Show that the equation has a unique solution x € C([a,b]) for any p € C.
HinT: Write the equation x = Tx where
t
Tz =v(t) + ,u/ k(t, s)x(s) ds.

a

Take xo € C([a,b]) and define the iteration by xp41 = Ty, then show by induction that
t—a)™
17a(t) = 7y (0) < e 0 o),

where ¢ = max |k|. Then show (by looking at doo (T™x, T™y)) that T™ is a contraction for some m
and argue that T' then must have a unique fized point in the metric space (C([a,b]),dx).

Using the given definition of T" we see that the equation is equivalent with Tz = x. Then

Ta(t) — Ty(b)| / k(t, $)a(s) ds — / k(t, $)y(s) ds / k(t,s) - {a(s) — y(s)} ds

t
/ 1ds (t

which shows that the inequality above holds for m = 1.
Assume that for somem € N,

|l - = |ul

a)t

IN

ul - e doo(z —y) - = |ul" -t doo(2,Y),

1!

(t:ni?)m doo (T, Y)-

(6) |T™x(t) = T™y(t)] < |u|™c™ -
Then

[T a(t) =Ty =yl

/ k(t, $){T™2(s) — T™y(s)} ds

IN

lpl-c [ [T™x(s) —T™y(s)|ds

t _\m
Cmdoo(xay)/ %ds

m m S_G’erl !
— (e y) [%]
a

IA
=

3
=
3

(m+1)!
m m (t — a)m+1
= |/’l’| +1C 'f'l,m.doo(x’y)7
and (6) follows by induction for all m € N.
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We infer from (6) that

Now
= mom (b—=a)™
S e Lo e (0 - a)
m=0 ’

is convergent, thus

(b—a)m
m!

| - —0 for m — oo.

|l

There exists in particular an M € N, such that

(b—a)™
m!

a=|u|me™ - <1 for all m > M.

Thus, if m > M, then T"™ is a contraction, and 7™ has a fixpoint x. An application of EXAMPLE 1.22
shows that x is also a fixpoint for 7', and x is the unique fixpoint of T

Let 7o € C°([a,b]). Define by iteration z,,11 = Twx,. Then x,, = T™wxg. The sequence (Z,.n)
converges towards z. The same does the sequence (Z,,n4;), where j =0, 1, ..., m — 1, because

Tngy = T (TT20) = T .

Summing up we conclude that (z,,) itself converges towards x, and the claim is proved.
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Example 1.27 Solve by iteration the equation

1

fwzumziéehv@w, te[0,1],

(where u is a given continuous function), by choosing fo as u.
Find in particular the solutions in the cases

u(t) =1, u(t) = t.

Then solve the equation directly (without using iteration), assuming that u € C1([0,1]).

If we put fo(t) = u(t), then

Putting a = fol e Su(s) ds, we get
ﬂw:mw+ga

It follows that

ht) = mo+%£¥twﬂ@@:u@+%a{é¥Sm@@+géﬁsa@}
= u(t)+6t{%+%}:u(t)+2a~et.

We conclude from the structure

s =uty+e {3 [ e sis)as).

that a solution must have the form f(t) = u(t) +c-e'. We therefore guess that the n-th iteration may
be written

fn(t) =u(t) +a- ke’

We get by insertion

fasa(t) = mo+—Ae%wu9w

I

S
~—~
~
=
+
N —
(4]

e
—N
S—

i
9]
1
»
S
—
Va)
N
IS8
Va)
+
s}
5
3
S—
=
[
w
(9]
©
IS8
Va)
——

and conclude that

1
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If k,, € [0,1], then it follows that k,, < k41 < 1, thus (k,) is increasing and bounded. (Notice that
k1 = %), thus it is convergent of the limit value k. We conclude from the equation of recursions that

1
k= 3 (1+ k), thus k£ = 1. Hence the solution is given by

f&) =u(t)+ et/ e ‘u(s)ds.

0

CHECK. We get by insertion,

1 1 1
u(t) + %/0 e f(s)ds = u(t) + %et/o e ‘u(s)ds + %et/o e ‘u(s)ds = f(t),

proving that we have found a solution. ¢
If u(t) = 1, then
N t —s71 LY 4
fy=1+e e fds=1+¢"[—e ]0:1+ 1—-)e.
0

If u(t) = t, then

1
2
f(t) =t+et/ se *ds=t+e [—se_s—e_s}é:t—i— <1— —) el
0 e

As mentioned above the solution must have the form u(t) + ¢ - e. Then by insertion,

1 1
u(t) + %/0 e f(s)ds = wul(t)+ %/0 e' " {u(s) +c-e’}ds

= u(t)+ 5 {/Ole_su(s) ds—&-c} el =u(t) +c-e' = f(t),

and we conclude that ¢ = fol e %u(s) ds.

If w € C*([0,1]), then

1 /L
f@) =u(t)+ {5/ e *f(s) ds} el et
0
S0 we can ALTERNATIVELY solve the equation by differentiation with respect to ¢. It follows from

1 ! t—s _ —u
! / e~ f(s)ds = f(t) - ult),

1
P =u 0+ [ e pds = £0) +u'(0) -~ utt),
0
hence by a multiplication by e~* follows by a rearrangement,

Ftyet = f(0) e = S {et f0)} = /(e —ul)e™t = 5 {etun)},
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and we get by an integration
et f(t) = e tu(t) +c,
hence
ft) =u(t)+c-e.

The constant ¢ is determined as above. The latter variant is of course not the shortest one.
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Example 1.28 Let C°([a,b]) be equipped with the metric

d(z,y) = Jnax, lz(t) —y(t)]

We define an operator (a mapping) S by

Sa(t) = /bkz(t, $)a(s) ds,
where k is a continuous function on [a,b] x [a,b]. Let (x,) be inductively given by
(7) Zpi1 =u+ pSx,,
and put z, = x, — Tp_1. Prove that (7) equivalently can be written
(8) zpn+1 = puSzp.
Put xg = u, and prove that (7) implies the Neumann series

r= lim z, =u+ pSu+ p>S*u+---.

n—oo
We note that

b
Tt (t) = u(t) + ,u/ k(t,s)xn(s)ds = u(t) + p Swp(t).

Putting z,, = x, — x_1, we get

Zngl = Tngl — Tp =U+ pSTH — U — pSTp_q
= wuS(@,—Tp_1)=puSz,.

If || < , then z,, — z. It follows from
c

b
(b—a)
Tp =Ty —Tp-1+Tp_1—2Tp_2+Tp_o+- -+ —Tog+To=To+ 21+ -+ 2n,
and
Zpn = pSzp_1 == u"S"xy,

that > 2, is convergent, and we have

= lim z, =u+4+pSu+ p2S%u+---.
n—oo
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Example 1.29 Solve

x(t)—u/lz(s)ds:l

0

by means of the Neumann series, where we assume that ||u| < 1. Try also to solve the equation
directly.

In this case, u(t) = 1 and k(t,s) =1, a = 0 and b = 1, thus |u| < 1 is a reasonable requirement (cf.
EXAMPLE 1.28). It follows from EXAMPLE 1.28 that

r=1+pS+p?S*1+.-- .
We get from S1 = fol 1ds =1, that S?1 = 1. Then by induction, S™1 = 1, hence

9 1

We now solve the equation directly. It follows from the rearrangement

x(t) =1 —l—,u/O x(s) dx

that x(¢t) = a must be a constant. Then by insertion,

a=1+p-a,
hence
1
t: = —
x(t)=a T~

which apparently holds for every u # 1, and not just for |u| < 1.
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2 Banach spaces

2.1 Simple vector spaces

Example 2.1 In the vector space C([a,b]) we consider the functions

eo(t), er(t), ..., en(t),
where e;(t) is a polynomial of degree j, where j =0, 1, ..., n,
Show that eq, e1, ..., e, are linearly independent.

Since eg(t) = eg # 0, we infer from apeg = 0 that ag = 0, and the claim is true for k = 0.

First let eg(t) = t*, and assume that the claim is true for k =0, 1, ..., n. Now let
ap+ait+ -+ apt" +apt" =0 for t € [a,b].
We get by a differentiation,

ay + 2apt + -+ na,t" "+ (n+ Dap1t" =0 for t € [a,b],

thus kap, =0, k=1, 2, ..., n+1, according to the assumption of induction. We conclude that ax = 0
for k=1, 2, ..., n+ 1, which by insertion gives the condition ag = 0. Then it follows by induction

that {t” | n € Ng} are linearly independent.

Then let
k .
ek(t) = Z ekjtj, €Lk 75 0,
7=0

and assume that

n n k ‘ n n )
0= Z ager(t) = Z Zakekjtj = Z Zakekj t.
k=0

k=0 j=0 j=0 | k=4

It follows from the result above that

Zakekj:() forj=0,1,..., n
k=j

We get for j = n that a,e,, = 0, and since ey, # 0, we must have a,, = 0. Since ey j+; = 0 for j > 1,

the equation is reduced to

n n n n—1 n—1 | n—1
0= E E AL€Lj ) = E AL€Lj = E Ak €Lj tj,
=0 | k=j =0 | k=j =0 | k=j

where we as before conclude that a,_1 = 0. Then by recursion,

an—2:"‘:a1:a0:0-
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Example 2.2 Let Uy and Uy be subspaces of the vector space V.. Show that Uy NUs is a subspace.
Is Uy U Uy always a subspace? If no, state conditions such that Uy U Us is a subspace.

If Uy and Us are subspaces, then

VAVu,ve U, :u+ v eU, =1, 2.

If u, v € Uy N Uy, then in particular, u, v € U;, ©« = 1, 2, thus u + Av € U;, © = 1, 2, according to the
above. It follows that u + Av € U; N Uy, hence Uy NUs is also a subspace.

On the other hand, Uy U Us is rarely a subspace. E.g. the X-axis and the Y-axis are two subspaces in
R2, and it is obvious that the union of the two axes is not a subspace.

The condition is that Uy € Us, or Uy 2 Us. In fact, if one of these conditions is satisfied, then it is
obvious that Uy U Uy = U;, where i is one of the numbers 1, 2.
If this condition is not fulfilled, then there exist

U1€U1\U2 and U2€U2\U1.

Assume that uy + ug € Uy UUs, e.g. ug + uz € Uy. Then uy = (ug + uz) — uy € Uy contradicting the
assumption. Hence we conclude that u; + ug ¢ Uy U Us, and Uy U Us is not a subspace.
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Example 2.3 Let V denote the set of all real n X n matrices.

Show that V' with the usual scalar multiplication and addition is a vector space.
Is the set of all regular n x n-matrices a subspace of V¢

Is the set of all symmetric n X n matrices a subspace of V' ¢

The first question is trivial: Since 0 is the zero element, and since 0 is not regular, the set of all regular
matrices is not a subspace.

The set of all symmetric matrices is of course a subspace. In fact, if (a;;) and (b;;) are symmetric,
thus A5 = Qg4 and bij = bjia then

Aaij) + (biz) = (Naij + bij),
where
)\aij + bij = )\aji + bji)

hence (Aa;; + b;;) is again symmetric.

Example 2.4 In the space C([a,b]) we consider the sets
Uy = the set of polynomials defined on |a,b].
Us = the set of polynomials defined on [a,b] of degree < n.
Us = the set of polynomials defined on [a,b] of degree = n.
Uy = the set of all f € C([a,b]) with f(a) = f(b) = 0.

Us = C'([a,b]).

Which of the U;, i =1, 2, dots, 5, are subspaces of C([a,b])?

U, = the set of all polynomials is a subspace.

U, = the set of all polynomials of degree < n is a subspace.

Us = the set of all polynomials of degree = n is not a subspace. E.g. 0 does not belong to Us.
Uy = the set of all f € C%([a,b]) with f(a) = f(b) = 0 is a subspace.

Us = C'([a,b]) is a subspace.
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Example 2.5 In C([—1,1]) we consider the sets Uy and Uy consisting of the odd and even functions
in C([—1,1]), respectively.

Show that Uy and Uy are subspaces and that Uy N Uy = {0}.

Show that every f € C([—1,1]) can be written in the form f = fi1 + fa, where f1 € Uy and fo € Us,
and that this decomposition is unique.

If f, g are odd (even) functions, then f 4+ A g is again an odd (even) function. Hence U; and U, are
subspaces.

If f € Uy NU,, then both

f(=t)=f@) and  f(=t) =—f(1),
thus f(t) = —f(t) for all ¢, and we conclude that 2f(¢t) = 0. We conclude that f = 0.

We see from

£(t) = f(t) +2f(—t) Y —2f(—t),
where
f(t) + f(=1)

is even, and w is odd,

2
that such a splitting exists.

Assume that

f@) = f1(t) + f2(t) = g1(t) + g2(t),

where f; and g; are odd, while fy and go are even. Then
fi(t) = g1(t) = g2(t) — f2(t) € U1 N U2 = {0},

hence f1 — g1 = 0 and g2 — fo = 0. We conclude that f; = g1 and fo = go, and the splitting is unique.
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2.2 Normed spaces

Example 2.6 In the space C*([a,b]) we have the norm

[flloc = sup |f(t)]-

te(a,b]

Show that we could take sup,¢(, ) |f(t)| instead.

Show that C*([a,b]) with the sup-norm is not at Banach space.
Show that

1fl5% = sup [f(t)]+ sup |f'(¢)]
tela,b] t€la,b]

is also a norm on C'([a,b]) and that it is a Banach space with this norm.

Every f € C([a,b]) is continuous, so

sup |f(¢)] = sup [f(#)],

tela,b] te(a,b)
and we can use any of the two sup-norms.

It follows from Weierstrafy’s Approximation Theorem that the set P of polynomials on [a, ] is dense
in C°([a,b]) in the uniform norm. Since

P c C'([a,8]) € C°([a, b))

and C*([a,b]) # C°([a,b]), we infer that C!([a,b]) cannot be complete, thus (C*([a,b]),|| - ||) is not a
Banach space.

Then we shall prove that || - ||, is a norm.

I5
oo

1) Clearly, ||f]l%, = 0.
9) If

1% = sup [f(®)]+ sup [f' (&) =[]l + 1/ 0 =0,

te(a,b] t€la,b]
then in particular || f|| = 0, so f =0, because f is continuous.
3)

IAFIZ = 1A flloo + 1A flloe = AU f oo + 1 llse) = AT+ 1 lloc-

If+9llie = If +gllec + 1F" + 9'llc < I flloc + lglloe + 1 0 + [lg"llo0
(I flloo + 1 oe) + (llglloc + 19" loc) = 1% + 191l
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We have proved that || - ||%, is a norm on C*([a, b]).

It “only” remains to prove that (C'([a,b]),| - ||%,) is a Banach space.
Let (f,) be a Cauchy sequence, i.d.

Ve>03dNeNVm,neN:mn>N = | fm— folli <&
It follows from [|f[[5, = [[fllec + [1f[lsc; that || fllec < [If]I% and [[f'llc < IF[I%, thus (fn) and (f7,)

are Cauchy sequences in the Banach space (C%([a,b]),] - ||s). Hence there are continuous functions
f, g € C%Ja, b)), such that

fa—=f  and  fi—ug

Notice that it is not possible from this directly to conclude that

a) fecl([a7b])7 b) f/:g-
A proof is required:

Define a function h € C1([a, b]) by

h(x):/mg(t)dt—i—f(a), z€ab.
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We shall prove that h(xz) = f(x). It suffices to prove that f,, — h uniformly, because the limit function
f € C°%[a,b]) is unique. From f,, € C1([a,b]) follows that

— [ nwat+ @, wela,
hence for every x € [a, b],

[fn(z) = h(x)] =

IN

a

Let € > 0 be given. Since fy,(a) — f(a), and f], — ¢ uniformly for n — 400, there exists an ng € N,
such that for every n > ng,

€ €
fala) = fla)| < = and  sup |f.(t) —g(t)] < .
) =gl <5 and s 50 ~0(0)] < 5
Therefore, if n > ng, then for every « € [a, ],
e e & ¢
|fn(z) — h(2)| < /a rb_a)dt‘—i-i 5‘1’5—67

thus
lfn =Dl <€ for all n > nyg,

and we have proved that f,, — h uniformly, hence f = h. Finally, since i’ = g, the claim is proved.

Example 2.7 Let f € C([a,b]) and consider the p-norms

1

b P
nfpz{/’vmww}, P>,

and

[flloc = sup [f(?)].

t€la,b]

Show that [|fll, — |l for p — oo.
The interval [a, b] is bounded, so

b b !
nfpz{/‘uwWﬁ} S{/Hf&ﬁ} = [l ~ ).

The function f is continuous and [a, b] is compact, hence there exists a tg € [a,b], such that

[f(to)l = 1 flco-
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To every ¢ > 0 we can find an interval [cc,d.]| € [a,D], cc < de (independently of p), such that
@O = A =e)llfllc  forall i€ le,ec].

Then we get the estimate

) . : o 22
Il = { / If(t)lpdt} >{ / If(t)l”dt} >{<1—e>p|f||%:o / dt}

(1 _E)HfHoo - (de — ea)%-

Summing up we get for every € > 0 that

A=) flloe - (de — ) ¥ < |IFllp < I fllo - (b—a)?.

If £ > 0 is kept fixed, we have kv — 1 for p — o0. To every € > 0 there exists a P. > 0, such that for
every p > P,

=

(de —c)p >1—¢ and (b—a)%gl—i—a,
hence
(L =lfle < IIflly < A +&)llfllc  for every p > Pe.

This proves that lim,_, | || f||, exists and that

lim = .

S (fll = 11F 1l

Example 2.8 Let V be a normed vector space and let x1, ..., x be k linearly independent vectors
from V. Show that there exists a positive constant m, such that for all scalars a; € C, i =1, ..., k,
we have

oy + -+ agwgl] = m (Jog| + -+ |og]) -

Indirect proof. We assume that there exists a sequence (y,,), where

k k
Ym = Z ﬂi(m)xi, where Z
i=1 i=1

ggm] —1forall meN,

and where ||y,,| — 0 for m — +oo. Under these assumptions we first notice that ‘ﬂi(m)‘ < 1, such

+oo
that (ﬁl-(m)> is a bounded sequence of complex numbers. The complex numbers C being complete
1

in the absohl%g value, there exists a convergent subsequence
1 oo
(#7) e (6i7).
j=1
1

The trick is first to thin out (@m)) to the subsequence (ﬁimj)), where (m}) is given above.
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Then thin it out once more to get a convergent subsequence

(7)ot (7).

2
Because (m?) is a subsequence of (mjl), the subsequence ([ﬁmj)) is also convergent.

Continue in this way. After k steps we have obtained a subsequence (m;) from N, such that

1\ oo
(ﬂi(m])) is convergent for alli =1, 2, ..., k.
i=1

This means that (y,,) is a convergent subsequence of (y,,), hence
Ym; —y  for j — 400,

and

k
y= Z Bi;.
i=1

We conclude from
k k
@_(mj) _ Z ﬁi(mj) _ gl‘ =1- Z

k k
IS
i=1 =1 : :

= 7=

B~ B =1, for j — oo,

and from the assumption that x1, ..., z) are linearly independent that y # 0. This is contradicting

the assumption that ||y, | — 0 for m — +o0.

We infer that if Zle |B:| = 1, then there is a constant ¢ > 0, such that

k
> Bix;
i=1

We put for (aq,...,ax) # (0,...,0),

> c.

Qg

fi=
o]+ o]

Then the claim follows when we multiply by |aq|+ - -+ + |ag| # 0.

Finally, we notice that the case vy = -+ = ay = 0 follows trivially for quite other reasons.
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Example 2.9 Let V be a vector space and let || - || and ||| ||| be two norms on V. The norms are said
to be equivalent if there are positive constants m and M such that

mllz| < |llz]]| < M|z

forallz e V.
Show that all norms on a finite dimensional vector space are equivalent.
Show that all equivalent norms define the same closed sets.

Let e1, ..., er be a basis for V. It follows from EXAMPLE 2.8 that there are constants ¢; > 0 and
co > 0, such that

k
E Q€4
i=1

k
E QiCq
i=1

k
2 CQZ|Q’i|~
i=1

k
> Z la;]  and
i=1
Writing o = Zle a;e;, we get

k
E Qi€
i=1

]

k k 1 k
<3 sl fleall < 1S oyl < — 111> e
< D laul el < el - 2ol < o g el |3 e

1= Jj= Jj=

k
1 1 .
= — max e - [[lzfl] < o, maxlsis Elleill - > la] - [llea]l
j=1

Co 1<i<k
k
1 1
< — max [le;]| - max [[lej ]|+ Y Jee| < — - — max e;]| - max|[[e;]|| - |-
Co 1<i<k 1<5<k — 1 C2

/
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Thus we have proved that
ol < a- [zl <b- =],

where

1 1
a=— max |le]| >0 and b=a-— max [|e;]|| >0.
co i<i<k c1 1<j<k

When we divide by a > 0, we get
lall = 2 flall < llolll < 2 Jlall = Mz
mlz|| = — ||z T Nzl = x
a - “a ’
and we have proved that any two norms on a finite dimensional subspace are equivalent.
Since
mllz] < [[lz]]] < Mllz],  0<m <M,

and
1 1
27 Mzl < 2l < —{llzl,

are equivalent, it suffices to prove that if U is closed with respect to || - ||, then U is also closed with
respect to ||| - [|]-

It is well-known (cf. EXAMPLE 1.10) that U is closed, if and only if
z, €U andz, -2 — ze€Ul.

Assume that U is closed with respect to || - ||, and let (x,) € U be a sequence for which
llznll] — 0 for n — +oo,

thus (z,,) is convergent with respect to the norm ||| - |||. We shall prove that = € U. However,
1
lan —2|| < — |||zn — || = 0 for n — +o0,
m

so also x,, — x with respect to the norm ||-||. It follows from the condition of EXAMPLE 1.10 (applied
with respect to || - ||) that 2 € U, and the claim is proved.

Example 2.10 Show that a compact set in a normed vector space V is closed and bounded.
If V is finite dimensional, show that a closed and bounded set is compact.

Assume that U is compact in V, i.e. every sequence (z,,) € U has a subsequence (y,,), which converges
towards an element y in U. We shall prove that U is closed and bounded.

Assume that (z,,) € U is convergent in V, thus =, — x € V. It follows from EXAMPLE 1.10 that U
is closed, if we can prove that also x € U.

According to the assumption there is a subsequence (y,) of (z,), such that y,, — y € U. However,
since x, — x, also y,, — z, and since the limit value is unique in normed spaces, we conclude that
x =1y € U, and it follows that U is closed.
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Then we shall prove that if U is compact, then U is bounded. Indirect proof. Assume that U is
unbounded. Let 1 € U be arbitrarily chosen. There exists an x5 € U, such that

ol = 1+ la .
Choose inductively a sequence (x,) € U, such that
[Zns1ll = 1+ ||lznl].
Then note that if z,, and x,,1,, p € N are any two elements, then
Jnipll = 14 [niptll = 2+ [antpall = - = p+ [zall,
hence
[@n1p = Znll = lZnipll = lzall >0>1  for alle p € N,
proving that no subsequence of () is convergent, and U is not compact.
We get by contraposition that if U is compact, then U is bounded.

Assume now that V' is finite dimensional and that U is bounded and closed. Let eq ..., e, denote a
basis for V, and let the constant ¢ > 0 be chosen as in EXAMPLE 2.8, such that

k
E o.1e;

k
> c(loa] 4+ law]) =D Jal.
=1 1=1

Let , € U, z,, = Zle al'e;, be any sequence. It follows from U being bounded that ||z|| < B for
every x € U, i.e.

& 1| B
| < | < = el < =
|O‘z| > Z |051| = Zazez =7
i=1 =1
for all i = 1, ..., k. Hence the sequence (af), is bounded, and it has therefore a convergent subse-

J
quence | oy’ .
nt n?
Since | a,’ | is a bounded sequence, it has a convergent subsequence | a,’ |, etc..

After k steps we have found a sequence (n;), for which (oz;”)j is convergent for j — —+oo for every
i=1, ..., k, of limit value «;.

Putting

k
— 5
yj - CV,L' eiv
i=1

we get that (y;) is convergent of limit

k
Yi — Y= Zaiei-
i=1

Since y; € U, and U is closed, we get y € U according to EXAMPLE 1.10, and the claim is proved.
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Example 2.11 Riesz’s lemma. Let V' be a normed vector space and let U be a closed subspace of V,
U#V. Let a, 0 < a < 1, be given. Show that there is a v € V', such that

lv][ =1 and |v—ul >« for allu € U.

B(v,r/alpha)

It follows from U # V, that there exists a v € V' \ U.
The set U is closed, so V' \ U is open. Hence there exists an r > 0, such that B(v,r) N U = (), where
B(v,r) denotes the open ball of centre v and radius . This means that

9) lv—ul|>r for all u € U.

Choose r sufficiently large such that (cf. the figure)

1
B(v,r)NU =1 and B(v,ar>ﬁU7éQ).
1
Then for every ug € B (U, — r) NnU,
o

1
(10) r < lv —up| < =1
a

If we put
vV — Up
W= -—-,
l[v = ol
then [|w|| = 1.
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We have for any v € U that

v — Ug 1
= llv—uo— [lv — ol ul|.
v —uoll

o=l = | =

[[o = woll
Now u, ug € U, and U is a subspace, hence ug + ||v — ug|| v € U. By applying (9) with ug + ||v — uo|| w
instead of w, it follows from (10) that

1 r r

lw —ul = lo = (uo +[lv —wol|w)[| = T 2 7= = .

[[o = woll

We have proved that w € V satisfies

lwl=1 and |lw—u|] >« for eevery u € U.

> Apply now
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Example 2.12 [In £°°, the vector space of bounded sequences, we consider the sets Uy and Us, where
Uy denotes the set of sequences with only finitely many elements different from 0 and Us the set of
sequences with all but the N first elements equal to 0.

Are Uy and/or Us closed subspaces in £>° %

Are Uy and/or Us finite dimensional?

It follows from

11 1
n= (122,200, ) eU,
’ ( 2°3" ' n ) !

and
1

Tn — - ¢U17
(b).c.

that U; is not closed.

Of course U is a subspace, and since every finite dimensional subspace is closed (which U is not),
we conclude that U; is not finite dimensional.

On the other hand, U, and RY are isomorphic, so Us er is a closed and finite dimensional vector
space, dim U = N.
Example 2.13 Let (V.|| - ||) be a normed vector space, and let U be the unit ball,

U={zeV||zl <1}
Prove that U is compact, if and only if V' is finite dimensional.
Obviously, U is closed and bounded. If V is finite dimensional, then it follows from EXAMPLE 2.10
that U is compact. It remains to be proved that if U is compact, then V' is finite dimensional.

INDIRECT PROOF. Assume that V' is not finite dimensional. Choose any x; € U, such that ||z1] = 1.
Then x; generates a subspace Vi. Then by Riesz’s lemma (EXAMPLE 2.11) there exists an xo € U,
such that

2l =1 and ||z — Azy]| > for all \.

N | =

By induction, using Riesz’s lemma in each step, we obtain a sequence x,, € U of unit vectors, ||z,| = 1,
such that

n—1 1
=Y Nzl == f A
T jz:; JTill = B Or any Aj

We have in particular,

1
||xn_xm|| Z 5 fOI'7747é’n’L7

proving that (z,) does not contain any convergent subsequence. Hence U is not compact.

We get by contraposition that if the unit ball U is compact, then the vector space V is finite dimen-
sional.
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Example 2.14 Consider in f¥ (where 1 < p < 400) the subspace U consisting of all sequences which

are 0 eventually.
1) If 1 < p < 400, is the subspace U then dense in (P ?

2) If p = 400, is the subspace U then dense in £>°?

1) The answer is ‘yes’. In fact, if (z;);en € €7, then
400
Z |z [P < +o0.
j=1

To every € > 0 there is an N, such that

“+o00

Z |.’L‘j|p < eP.

J=N+1

Putting o = (z1,...,25,0,0,...) € U, we get

1

+oo

> layl

j=N+1

”x_xN”p: <{Ep}% =e.

2) In this case the answer is ‘no’. In fact, if x = (1,1,1,...) € £*°, then

|z —ylloo > 1 for every y € U.
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Example 2.15 On C([a,b]) we introduce the norm

b :
||fp={/ If(t)lpdt} !

1 1
Let g € C([a,b]), and let q be given by — 4+ — = 1. Prove that we by
p q

b
T,f = / ft)g(t) dt

define a linear functional on C([a,b]), and that

b a
1Tl = llgllq = {/ g(t)th}

Most of the claims have already been proved, included the estimate ||| < ||g|l1. We shall only proof
that we even get equality. The trick is to choose a suitable f € C([a,b]). We have

b
7,1 = [ st
Since g(t) is continuous, we get

g(t) = "W g(0)],
where ¢(t) can be chosen continuous in every interval, in which g(¢) # 0.

Choosing
F(t) = e W g(0)]7,
f is again continuous and
b a
1715 = /a lg®)7dt = lgllg,  thus  |Ifll, = llgllg = lglld™",
and

T, f

b b
/ F(t)g®) dt = / e ()| e~ 90 |g(1)| dt
ab . ¢ b L1 b
/ ()] 3+ dt = / (]G dt = / lg(0)] dt

lgllg = llgllg - lallg™ = llgllq - 1/ 1lp-

It follows from

Tofl =Tof = llgllallflly < NTGll- 1715,

that [|gllq < [Ty Since already [[Tg|| < lgllg, we must have [[Ty[| = [|gllq-
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2.3 Banach spaces

Example 2.16 Show that a closed subspace of a Banach space is itself a Banach space.

Let U be a closed subspace of a Banach space V. Since V' is complete, it follows from EXAMPLE 1.10
that U is also complete, hence U is a Banach space.

Example 2.17 Let V;, i =1, 2, ..., n, be normed vector spaces, with norms || -|;, i =1, 2, ..., n.
The product space Vi X Vo X -+ x V,, = ®?:1 Vi is defined by

QVi = {(w1,22,....0) | wi € Vii=1,2, ..., n}.
i=1

In @, Vi we use coordinate wise addition:

(1,22, ) + (Y1, Y25 -« oy Yn) = (T1 + Y1, T2 + Y24 - -+, T + Yn),
and scalar multiplication:

Mz, o, ... xn) = (Ax1, AXa, .., AZy),

and we define the norm by
n

(1,22, )l = 2l
i=1

Show that @, Vi with this norm is a normed vector space, and show that if all the spaces V; with
their respective norms are Banach spaces, then ®?:1 V; is a Banach space.
We shall prove the claim by induction over n. For n = 1 there is nothing to prove.

If n = 2, then clearly V; x V5 is a vector space with the operations addition and scalar multiplication
defined above. Then we shall prove that

(1, 22)|| = llzafly + [lz2ll2
is a norm.
Clearly, ||(z1,22)]| > 0, and if ||(x1, z2)|| = ||z1]l1 + ||z2]]2 = 0, then both ||z1]|1 = 0 and ||z2]|2 = 0,
thus 1 =0 og 22 = 0.
Furthermore,

A1, z2) || = [|(Azr, Azo)l| = Al + [[Azalla = [Al (2l + llz2ll2) = [A]- [ (21, 22)]]-

Finally,

[(z1 +y1, 22 +92)| = 21 + vl + [lz2 + 922
< el 4+ llyalls + llzzllz + [[y2ll2

([lz1llr + llz2ll2) + (vl + [ly21l2)
= (@, 22) | + (1, v2) I,

[(z1,22) + (Y1, y2)|

A
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and we have proved that || - || is a norm on V; x V5.

Then assume that both V; and V3 are complete, and let ((z7,2%)), be a Cauchy sequence on V; x V5.
It follows from

i =@l < [[(27 — 27", 23 —ag')|| = [[(27, 23) — (27" 25)[l,  t=1,2,

that (z}'), are Cauchy sequences on V;, i = 1, 2, hence convergent with limit values z;, i = 1, 2. By
this construction we then get

[(z1, 29) — (27, 23)|| = [lo1 — 27 [l + [l22 — 23]l = 0 for n — +oo,

proving that (a9,2%) — (x1,z2) € Vi x V5. We have proved that V3 x V5 is complete, thus
(Vi x Vo, || -||) is a Banach space.

Assume that the claims are true for some n € N (this is true by the above for n = 1 and for n = 2),
and consider ®:.l:+11 U;, where each U; is a normed vector space (a Banach space). We define

Vl = ® Ul and V2 = Un+1~
i=1

It follows from the assumption of the induction that (Vy, |- ||%) is a normed vector space (or a Banach
space) under the given assumptions, and the same is true for the space (Va, || - ||ln+1). It only remains
to notice that

[(z1, 22, za)ll} = llzalls + 22l + - |20,
hence
[(@1s- s Ty @)l = (@15 zn) [ + 20t llntr

It follows that @?:11 U; is a normed vector space (or a Banach space) under the given assumptions.

Example 2.18 Assume that V and U are normed spaces and f :V — U is a continuous mapping,
and assume that X C V is a compact subset. Show that the image f(X) C U is compact.
Show that a real function attains both maximum and minimum on a compact set.

There are several definitions of compactness. We shall here use sequential compactness, which is
defined by X being sequential compact, if every sequence on X has a convergent subsequence.

We shall prove that if f: V — U is continuous, and X C V is compact, then the image f(X) C U is
also compact.

Let (y,) C f(X) be any sequence on the image f(X). There exists a sequence (z,) C X, such that
Yn = f(x,) for every n € N. Since X is compact, (x,) has a convergent subsequence (z!,) € (x,),
where 2, — z9 € X for n — +o0.

Now, f is continuous at xy € X, so to every € > 0 there exists a 6 > 0, such that

[ f(zy,) = flzo)llv <& for [z}, — zolly < 0.
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Then (x},) — xo implies that there exists an ng € N, such that
|zl — zolly <8 for all n > ng.

We have for the same ng that
If(23) = f(zo)llu <& for all n > ny,

which means that (f(x7,)) converges towards f(zg), thus every sequence (y,) = (f(zn)) € f(X) has
s convergent subsequence (y.,) = (f(z/,)). Note for the limit point that f(zg) € f(X).

Assume that f : X — R is continuous, where X is a compact subset of a normed space. It follows
from the above that f(X) € R is compact, thus closed and bounded in R. In particular, f has both
a maximum value and a minimum value.
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Example 2.19 Show that any finite dimensional subspace of a normed vector space is a Banach
space.

Let (V,] - ||) be the normed space, and let U be a finite dimensional subspace of V. Let ey, ..., e,
denote a for U. It follows from EXAMPLE 2.8 that there exists a constant ¢ > 0 (corresponding to the
basis e1, ..., ex), such that

eif| = c(lar| +- -+ fon).

Let 2™ = Zle a'e; denote a Cauchy sequence on U, thus

Ve>03INVm,n>N:|z™ "||— <e.
Then in particular,
k
lal™ fa"|<2|a fa”|<— Z <— for m, n > N.

It follows that (aj), is a Cauchy sequence on C for every i = 1, ..., k, hence convergent, o — «;
for n — 4o0.
In this way we construct an element

k
T = Zaiei eU.
i=1

It remains to be proved that ™ — x for n — +o00. However,

oo

because every term in the finite sum tends towards O for n — +4oo. This proves that every finite
dimensional subspace of a normed vector space is a Banach space.

[l — 2" =

k
§Z |- |lesll = 0 for n — 400,
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Example 2.20 Let V be a Banach space. A series EZOZO Tk, T €V, is convergent if the sequence
(sn), where

n
Sp = E T,
k=0

18 convergent in V.

Show that Y~ ||lzk|l < oo implies that Y -, x) is convergent.
Does the convergence of Yy oz imply that Y po o [|zk]| < co?
What if the space V' is only assumed to be a normed space?

)

Given a Banach space V. Tt suffices to prove that (s,) is a Cauchy sequence.
Let € > 0 be given. Since

oo

D el < +oe,

k=0

is finite, there exists an IV, such that

oo
>l < e
k=N

It holds for n > m > N that
PIETED B
k=0 k=1

thus (s,) is a Cauchy sequence in a Banach space, hence also convergent.

n

>

k=m+1

n

o0
< D0 llmll < ) llwall <

k=m+1 k=N

|50 — smll =

It is well-known that the claim does not hold in the simplest possible Banach space (R, |-|), because
there exist conditional convergent series like e.g.

(-1

iT:an

3
—

which are not absolutely convergent,

NE
S|
\
1

Il
-

n

This is not true, either. Denote by ¢ the vector space consisting of real sequences (x,,), where
x, = 0 eventually, e.g. for n > N(x). Choose as norm,

Then c is dense in 2, and ¢ # (2.
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1
Choose z,, = — e,,. Then
n

o S-S Lo
n=1 n= 1

o ) 2
sa Y o Xy € L%

Clearly, Y | @, is not zero, eventually, while all s, = Y, x4 have this property. Hence

o0
chnHanGﬁ\c.

n=1
Example 2.21 Let (V|| - ||) denote a normed space. Let V' denote the set of all bounded linear
functionals on (V.|| -||). The set V' is organized as a vector space by the operations

(f+9)(x) = f(2)+g(x),  forallzeV,
(af)(z) = a f(x), for all x €'V,

and we introduce a norm on V' by

A" = > 1f()

llzll<1

Prove that (V',|| - |I') is a Banach space. It is called the dual space V.

We shall first show that || - || is a norm on V'. It is obvious that || f||’ > 0. If || f||’ = 0, then

sup |f(z)| = 0.

llzll<1

Then we have

”z—H H =1 for arbitrary = # 0, hence
x

=l (et g )| = |1 (55| =

It follows from f(0) = 0 that f(x) = 0 for every x € V, thus f = 0. Furthermore,

lafll" = sup |af(z)|=lal- sup |f(z)] = lal-[f]',

=<1 =<1
and finally,
If+gll” = sup [f(z)+g(x)| < sup (|f(x)]+]g(x)])
l=ll<1 =<1
< Hslﬂlgllf( )| + Sue, lg@@)| = [I£1I" + llgll’,
and we have proved that || - ||” is a norm.
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Assume that (f,) is a Cauchy sequence on V', i.e.
Ve>03INeNVm, n>N:|fo— ful <e.
This means that

| fo = fnll = sup |fu(z) — fin(2)| <€ for all m, n > N,

llzll<1

i.e. we have for every z, for which ||z|] < 1 that (f,(z)) is a Cauchy sequence in C, hence convergent.

For any x # 0 it follows that ”gc_” is a unit vector, thus
x
€
Ve > OENx € NVm, n > Nx : ||fn — fm”/ < m,

which only means that

[fn(2) = fm(2)] = [l -

o X 1)
fu (”—) fm (m)\ <ol 155 ==,

so (fn(z)) is convergent for every x € V' \ {0}. If 2 = 0, we just get f,(0) =0 — 0 for n — 4o0. If
we put

flz)= lim f.(z),

n—-+o0o

[ ]
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then we have defined a functional on V' for which in particular f(0) = 0. It remains only to prove
that 1) f is linear, and at 2) f is bounded. However,

flet+dy)= lm fule+Xy)= lm {fu(z) +Afuly)} = fz) +Af(y),

proving the linearity. Then
AL)f" = sup [f(2)] = sup [f(z) — fu(z) + ful)]

lz||<1 llz|l<1

< sup |f(z) = fu(2)|+ sup |fn(z)]
lz]| <1 flell<1

= sup |f(z)— fal2)|+ || full’.
Izl <1

Choose n, such that for all m > n,

[ fn = fll = sup |fu(2) — fu(2)] < 1.

lzll<1

Then f,,(x) € B(fn(x),1) for every z, for which ||z|| < 1. Since f,,(xz) — f(x) for m — +oo, we have
f(z) € B(fn(x),1), so |fn(z) — f(x)] <1 for all x, for which ||z|] < 1. From this we infer that

sup |f(z) — fu(z)| < 1.

llzll<1

Therefore, if n is chosen as above, then it follows from (11) that ||f||” < 1+ f.||’, hence f is bounded,
and we have proved that every Cauchy sequence on V' is convergent, i.e. V' is a Banach space.
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2.4 The Lebesgue integral

‘n

Example 2.22 Let f € L'(R).
1) Can we conclude that f(x) — 0 for |x| — c0?

2) Can we find a, b € R such that |f(x)] <b for |x| > a?

In both cases the answer is ‘no’. For example, g(x) = = - 1z(x) fulfils none of the conditions, and

[1st)iaz=o.

25

05

Figure 4: The graph of a continuous function f(x), which does not fulfil the two requirements.

We shall now construct a function f, which is continuous and Lebesgue integrable, and which does
not fulfil any of the two requirements above. Let

n for x =n, n €N,
fle)y=¢ 0 forz=n+2"" neN,
piecewise linear, otherwise.

Clearly, f is continuous and satisfies neither (1) nor (2). We shall only prove that f is integrable.
Now, f >0, so

+o0 +oo 1 too
/ f(x)dx:ZEnQ-Q_”:Zn2_7L<+oo,
n=1 n=1

—00

and the claim is proved.

Remark 2.1 For completeness we here add the full proof. We have

+oo +o0 400 +o0 400
domezm = 2 ne27M =23 (n-1)27"=2) n-27"-2) 27"
n=1 n=2 n=2 n=2

n=1

too +o0 +00
2y n-27"—2.1.271 =32 =2) ne2 " —1-1,
n=1 n=1 n=1
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hence by a rearrangement,

+oo
> n-2m=2.
n=1

ALTERNATIVELY one may exploit that

d (1 1 d (X .
£<1_z)(1_z)2%<22>z+oonz ’

n=0

1
for |z| < 1. When we insert z = 5 We easily get the result.(

Example 2.23 Prove that if f : R — R is monotonous, then f has at most countably many points of
discontinuity.

We may assume that f is increasing, thus f(x) > f(y) for z > y. We may even restrict ourselves to
the interval [0, 1], because the number of intervals of the form [n,n + 1], n € Z, is countable. This
means that we may assume that f(x) =0 for x <0, and f(z) =1 for z > 1.

Let {x; | j € J} be the set of all points of discontinuity in [0,1]. Then to any x,; we can find an
interval I; with interior points on the Y-axis, such that f(x) ¢ I, for all « € [0, 1], i.e. one jumps over
the values in I; over.

Every I; can be “numbered” by a rational number g; € I;, because Q is dense in R. This means that
{z; | j € J} contains just as many elements, as there are different elements in

{glieJtEQ
Now, Q is countable, so {g; | j € J} is countable, and thus {z; | j € J} is at most countable.

Define

1 1

:27n+1 f - =
f(z) 0ra:€]n+1,n

}, n € N.

1
Then f is monotonous of the countably many points of discontinuity { — ’ ne N\ {1}}7 showing
n

that there exist monotonous functions with a countable number of points of discontinuity.

An ALTERNATIVE proof is the following: We may as before assume that f is increasing on the interval
[0,1] with f(x) =0 for x <0 and f(z) =1 for x > 1.

If 20 is a point of discontinuity, then f(z) < f(xq) for every x < xy. Hence, if 2, /" a0, then (f(z,))
is an increasing bounded sequence of numbers, so (f(x,,)) is convergent with the limit value c.

Let y, /" xo be another such sequence of numbers. Then (f(y,)) — ¢’. We shall prove that ¢ = ¢.
This is done INDIRECTLY.

Assume (e.g.) that ¢ < ¢/, and let 0 < € < ¢/ —¢. Corresponding to this e there exists an N, such that

| = flyn) = — flyn) <e for all n > N.
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To any ¥, we can find an x,,, such that y, < z,, < x¢, hence

flyn) < flzm) [ e
Then it follows that

e<|d —cl=¢ —c=c~ fyn) + fyn) —c<e+ flya) — ¢,
50 f(yn) — ¢ >0, and we have come to the contradiction

c< flyn) < f(zm) <c  forn > N.
We therefore conclude that ¢’ = c.

Since the limit value is the same, no matter how z,, / x¢ is chosen, we conclude that

c= lim f(x).

r—xTo—

We prove in a similar way that lim,_,, + f(x) exists, and that these two values are different at any
point of discontinuity.

Define the jump at a point of discontinuity zo as

oo= lim f(z)— lim f(z)>0.

r—To+ T—To—

If 29 < x1 are both points of discontinuity, then it follows from that the function is monotonous that

lim f(x) < lim f(2).

r—xo+ r—x1—

Let {x; | j € J} denote the set of point of discontinuity in [0,1]. The image is contained in [0, 1],
hence

Zaj < 17
z;

and the sum is finite. Every o; > 0, so the sum is at most countable, thus J & N, and the claim is
proved.

Example 2.24 Prove that f(z) = Isinz|

HiNT: Consider

is not Lebesgue integrable on [rr, +oo[, thus f ¢ L*([r, +o0]).

| sin z
—, w<z<nm,
fn($) = v
0, otherwise,

and exploit that f,(z) / f(z) and [*° fu(z)dz > %EZZQ %

Let f,, be given as above. Then clearly,

0< fulz) /7 f(x).
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Furthermore,

o " | sin 2| "R |sing
fo(x)de = / ——dx = / ——dx
/7r T €T Z (k—1)m T

k=2

Vv
]
—

=
3
Fl=
@
=
8
&
Il
]
I

k=2 (k= k=2
n n n
1 T 2 2 1
= ,;:2 o /0 sinzdr| = kEZQ o 322 7 “+o0 for n — +o0,

and we infer that f is not Lebesgue integrable, i.e. f does not belong to L ([, o).

Example 2.25 Give a simple proof of Hélder’s inequality in the case of p = q = 2 for the spaces of
sequences.

We shall more precisely prove (Bohnenblust-Bunjakovski)-Cauchy-Schwarz-(Sobcyk)’s inequality

—+o00 [e%e)
Yo lwgil =Y Jwil - Lyl < Mzl - ylle,
=1 =1

if z, y € 2.

Vowo Toucxs | Rewanr Tovcks | Mack Toueks | Vowo Buses | Vowo Coxsteucrion Ecuresent | Wowo Pesm | Vowo Aemo | Vowo IT

Vowo Fieskcer Sepaces | Vowo 3P | Vowo Powemreaim | Vowo Paers | Vowo Techwowosy | Vowo Loasncs | Busieess Anes Asie
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Using that = + \y € ¢2 for every A € R, we get

+o00
0 < le+lls = (wi+ M) - (T + A7)
i1
+oo
= Z{|xi|2+/\2|yi|2+>\Tiy¢+/\fﬂi§i}

=1
—+oo +oo —+oo —+oo
= N Z lyi> + A {Zfzyz + szyz} + Z A
i=1 i=1 i=1 i=1

which we write in the form

+oo —+oo
A2 yll2 + A {Zm + in@} + ||z > 0.

i=1 i=1

This must hold for every real A € R, so we must have

o +00 2
0 > BQ—4AC={Z@%+Z$%} — 4ll=[I3 /1113
i=1 =1

—+00
4 (Re {Zm} - {||z2||y|2}2> ,
i=1
hence

Re {i TiY; }
=1

< [lzll2llyll2-

When z; and y; are all real, the inequality follows immediately.

In general,
+oo +oo
Yolzwil = Y lwil 1wl < elll2- [yl Iz
i=1 i=1

—+o00 % o0 %
= {ZW} {ZW} = [l lyll2,
=1

i=1

and the claim is proved.
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Example 2.26 Let w(t) > 0 be a non-negative function on R. We define a linear functional I, by

L(f) = / F(0) w(t) dt,

for fw € LY(R).
Assume that |f|Pw and |g|%w are in L*(R), where f and g are (measurable) functions and 1 < p,

q < oo with — + — =1.
p g
1. Show the generalized Hélder’s inequality
1 1
(L (F9)l < {Lw (IF1P)}7 {1 (I9]7)} 7,

where the inequality for w =1 can be taken to be valid.

Now recall the Gamma function,
I(z) = / t" et at, x>0,
0
with the property I'(x + 1) = 2 T'(x) for z > 0.
2. Use the generalized Holder’s inequality with
w(t)=t""te !, 0<t< oo, and p=q=1,
to show that

1 n!
r - )| < — .
(n+2)_\/ﬁ, neN

3. Give a similar estimation of T'(n + 1) by taking
w(t):tnfé eft’ 0<t<oo, and p=q=2,

and deduce that

n—+

N[=

1) We get from w(t) > 0 that both w'/? and w'/? are defined and that w!/? - w!'/? = w, and
f-w'/? € LP(R) and g - w'/? € LI(R). Applying the usual Hélder’s inequality we get

— 00

ol = | s < [ [0 wbo] oo o] o

IN

{/ ; P dt}é {/ g it} = (L, (P {2 ()

— 00

and we have proved the generalized Holder’s inequality.
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2) Then apply this generalized inequality on f(t) = v/t -1, (t) and g(t) = 1, and w(t) = ¢""te ! -
g, (1), we get

F(n+l) = +Oo\/1_f-1~tn71 e tdt < {Iw(t)}%{lw(l)}%

2 0

+oo 3 +o0 3
{/ t-t”_le_tdt} {/ 1-t”_1e_tdt}
0 0
—+o0 % “+o0
= {/ t"etdt} {/ t"letdt}
0 0

= {T'(n+ 1)}%{F(n)}% = {nl(n — 1)!}% _ {(n!)Q }5 _ :;_l_l

=

3) Finitely, let f(t) = VI -1g, (t) and g(t) = 1, and w(t) = t"" 2 e~* - 1g, (t). Then we get with
pP=q=2,

—+oo —+oo
nl = I‘(n—i—l)z/ t"e tdt = Vi1t 2 e tdt
0

0
+oo N
{/ tttz e_tdt}
0

=

IN

IS
D) DG )

and we have

n! ( 1) n!
—<TI(n+-=-) < —.
1 2 n

| =

Remark 2.2 Furthermore, if we use that I" <

TR IR PYAE, B A

 (2n-1)2n-3)---3-1
B 2.9...92.92 v
VT o2n 2n—1 2n-—2 4 3 2 1

7 2m 1 2n-1 221 2-1 1

N G ( on )n!,

on " 2n.pl  An \ n

) = /7, it follows from the functional equation that

°(z)

hence by insertion

n! <ﬁ 2n n!
1~ 4\ n )
n+§
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thus

— < <
N ( n ) - Jrn’

w(n+3)

which is in agreement with Stirling’s formula

SR
nl~ V2 -n"tz e,

because
( on > _(2n)! V2m-(2n)® e 1 (2p)tr 222 y4n o
n Vorn VEn

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Example 2.27 Let
F={feC*([0,1]) | f(0) = f(1) = 0} S L*([0, 1))
1) Show that ||f'|* < | fI| - |f"|| for f € F.
2) Let f € F. Show that |f(z)| < ||f'|| V& for 0 <z <1, and deduce that

Il < —= \/— 11

8) Show that for f € C*([0,1]) with f(0) = f(1) we have

171 < Vil

//H

4) Show by a counterexample that the result from question (3) is not valid for general f € C?(]0,1]).

1) We deduce from f € C?([0,1]) and f(0) = f(1) = 0 and a partial integration, followed by an
application of the Cauchy-Schwarz inequality that

1 1
1712 = / Orgor | - / £t D) dt

04 / @] 1O dt < (1]l - 1]l -

IN

2) From

0 +/O f’(t)dt:/o Lo,z () f'(t) dt

follows by Cauchy-Schwarz’s inequality that

1
[f(2)] = ‘/0 Lio,.a () f(t) dt‘ < | Loally - 112 = Va - 112,

where we have used that

1 xT
10,01/l = \//0 L0 (t) dt = \//0 1dt = \/z

3) Let f € F. It follows from (1) and (2) that

1 3 1 3
T ||f|2~||f“||2{/0 |f<x>|2d:c} ~||f”||2§{/0 o | dx} 11,

1 3
_ {/ m} uf'||2-||f"||2=7||f 1o 1”1 -

A
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If || f'||, = 0, the inequality is obvious.
If | f']|, > 0, we obtain the inequality when we divide by |f’|,.

We derived the above by assuming that f € F, thus f(0) = f(1) = 1.

Now, let f(0) = f(1) = ¢. Then f(x) —c € F, hence

1 o1
7= =

4) Finally, let f(z) = ax. Then f/'(z) = a and f”(z) = 0, hence

£l =1lal  og [l =0,

1y = 110 = 2)'l, < 171l

S

2

and the inequality is not fulfilled for any a # 0.

Example 2.28 1) Let 1 <p < q < oo. Show that ¢P C (9.

2) Let 1 <r <p < 2r and assume that the sequence (x,) satisfies

oo
Zn |2, " < 0.
n=1

Show that (z,,) € (7.

1) If (x,) € €7, then 3 |2,|P < +oc. In particular, x,, — 0 for n — 400, hence there exists an
N € N, such that |z,| <1 for all n > N + 1.

For p = ¢ there is nothing to prove. If 1 < p < g < +00, then

+o0 N +oo N +oo
Z |lznl| = Z |zn|? + Z |20 P - fn [P < Z |20+ Z |07 < 400,
n=1 n=1 n=N+1 n=1 n=N+1

showing that (x,) € £7.
If 1 <p< g= 400, then clearly

sup |z,| < max {1,sup{|z,||n=1,...,N}} < +o0,
neN

and we conclude that (z,,) € £°°.
2) Then let 1 <r < p < 2r and assume that

—+o00
Zn |z [P < +o00.

n=1
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1 1
Let 0 < s < 1. We shall somehow way apply Hélder’s inequality withp = — > 1l and ¢ = T > 1.
S —s

The assumption shall also be applied later os, so we get by a reasonable rewriting and an application
of Hélder’s inequality,

+o0 +00 1 +00 s +o0 e I=s
_ s r—sp

E |z, |" = E {n |z, P}’ {—S |z |" Sp} < { E n xn|p} { E no T |xy,| T } :

n=1 n=1 n n=1 n=1

By the assumption, the former factor is finite for every s €]0,1[. The task is to choose s in this
interval, such that the latter factor also becomes finite.

r—s r 1 s
Using that 2r > p, we get b _ 0 for s = — > ok We get with this s that a = 1S > 1 and
_ D — S
+0o0 » 400 1 400 1
s r—s 0
E noT |z, T = § no |Tn|” = E o < 400,
n=1 n=1 n=1

1
and the latter factor in the estimate above is finite for this particular s = — € } 2’ 1 { Now, s

T3

does not occur in the sum, we are estimating, so we conclude that
—+oo
T
E |zn]" < 400,
n=1

and we have proved that (z,) € £".

Example 2.29 Define in R? the function

Jall = lwr.a)l = (V] + VEeal)

Is it a norm?
Sketch the set {(x1,22) | ||(z1,22)|| < 1}.

1
First note that ||z|| = ||z|/,, where p = 5 < 1.

The first two conditions of a norm are trivially fulfilled, so we shall only consider the triangle inequality.
We shall prove that it is not satisfied. It suffices to find two vectors x and y, for which the triangle
inequality does not hold.

Choose 2 = (1,0) and y = (0,1). Then |lz|| = |ly|| = 1, and
lz +yll = 1L, DI = (VI+V1)? =4,

hence
lz+yll =4 >2=[lz] + [yl

and the triangle inequality is not fulfilled, and || - || is not a norm.
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Figure 5: The unit “ball” corresponding to || - ||

Remark 2.3 It is not hard to prove that if ||-|| is a norm, then the corresponding unit ball is convex.
(However, not every convex set will induce a norm).

Since the set, which should be the unit ball clearly is not convex (cf. the figure), || - || is not a norm.
O
Remark 2.4 Even if || - |[; is not a norm in the usual sense, there exist some applications of it,

e.g. in the theory of H? spaces in Complex Function Theory, and the “norm” of such functions can
nevertheless be given a reasonable interpretation.
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3 Bounded operators

Example 3.1 Let T be a linear operator from a normed space V into a normed space W .
Show that the image T(V') is a subspace of W.

Show that the kernel (or null-space) [ker(T') is a subspace of V.

If T is bounded, is it true that T(V) and/or ker(T) are closed?

1) Let wy, we € T(V) € W, and let A be a scalar. We shall prove that

w1 + Awy € T(V)

Remark 3.1 It is here of paramount importance that the field of the scalars is the same both
places. If e.g. T': V — W is given by

Ter=x4+1-0,
where V = (R, +, -, || - [, R) and W = (C,+, -, || - ||, C), then T is linear, and T'(V') is a subspace of
the 2-dimensional space (C, +, -, |||, R) over R. It is, however, not a subspace of the 1-dimensional
space W = (C,+,-, ]| - ||, C) over C, so the claim is not true in this case. ¢

It follows from the assumption wy, we € T(V') that there exist v; and vo € V, such that wy = Tvy
and wy = Tvs.
If we put v = vy + Avg € V, then
T(V)>Tv=T(v1 + Ava) = Tv1 + AT = w1 + Awa.
2) Now ker(T) = {v € V | Tv = 0}, and T is linear. Hence, if v1, ve € ker(T), and A is a scalar, then
T(Ul-i-)\’l)g) =Ty +AXTvo=04+X-0=0,
thus v; + Avg € ker(T), and ker(T) is a subspace.
3) If T is bounded, then T is continuous. Now {0} C W is closed, so ker(T) = T°~1({0}) is closed.

On the other hand, T'(V') need not be closed, which is demonstrated by the example below.

Choose V =W = C°([0,1]) with the norm || - ||o0, and let T : V — W be given by

(1) = / f(s)dz,  teo,1].

Then T is bounded,

|Tf(t)|=‘/0 f(s)ds S/O |f(8)|d'5S/0 [f(s)lds <1\ fllingey, ¢ €[0,1],

hence

ITflloo <1-[[fllos TN <1
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Furthermore,

T(V) = {we C'([0,1]) | w(0) = 0}
is dense in

{we C°([0,1]) | w(0) = 0} C W,
without being equal to it.

That T'(V) is dense, is seen in the following way: Every polynomial of constant term 0 lies in
T(V). The claim then follows by a suitable variant of Weierstraf’s Approximation Theorem.

There exist of course C°-functions which are not of class C!, hence T'(V) is not equal to the
smallest closed subspace

{w e C°([0,1]) | w(0) = 0}

which contains T'(V') (because T'(V') is dense in this space).

Example 3.2 In the Banach space P, 1 < p < 0o, we have a sequence (x,) converging to an element
x, where

T = (Tp1, Tna,...) and x = (x1,22,...).

Show that if ©,, — x in (P, then T, — x) for all k € N.
If vy — xk for all k € N, is it true that x,, — x in P ?

Let z, —» z in ¢, 1 < p < o0, thus ||z — z,]|, — 0 for n — oo, i.c.

oo
Z|mk—xnk|p:\\x—xn||g—>0 for n — oo.
k=1

If p = o0, then z,, — x in £°° means that

|z — 2n|looc = sup |xx — Tpk| — 0 for n — oo.
k

In both cases we get for every fixed k that
e — Tpk| < |l —2p]lp — 0 for n — oo,
thus x,r — xx for n — oo, and the first claim is proved.

On the other hand, if z,, — x; for every fixed k, then we cannot conclude that x,, — x in ¢P. Just
choose

n = (6u) = (0,...,0,1,0,...)

with 1 on place number n, and 0 otherwise.
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We have for this sequence that x,,;, — 0 for every fixed k, thus x = 0.

On the other hand,

=

[#nllp = llzn — Ol = {Z§nk|p} =1 for 1 <p < +o0,
k=1

and
[Znlle = llZn — Ollcc = 1,

so none of these sequences converges towards, i.e. the sequence does not converge in any 7, 1 < p <
+00.

Example 3.3 Let T be a linear mapping from R™ to R™, both equipped with the 2-norm. Let (a;;)
denote a real m X m matriz corresponding to T. Show that T is a bounded linear operator with

ITI? < 32325 a3y

We get (cf. EXAMPLE 1.23)

Ms

2 2
n m n m m
IT2|3 = H =D 4D wme p =D > Y aiiainTy

ieNlls =1 Jj=1 1=1 j=1 k=1
n m m
= 3> () - (am;)
1=1 j=1 k=1
Then note that
1 1
2 2 2
gz - lairz;] < 2 mk + ) ATy -

By insertion of this inequality,

m m

1 n m m 1 n
T 95 D) NI NIITS P 5 ) SITF B o0 ) Y ¥

i=1 j=1 k=1 i=1 j=1 k=1 i=1 j=1 k=1
n m
2 2 2 2
E :E jj - § :xk_ § a’z]'”'z”l'
=1 j=1 1=15=1

Since ||T'||? is the smallest constant, for which we have such an estimate, we have

IT)I* < izn: aj;.

i=1 j=1
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Example 3.4 Let T be a linear operator from a normed space V into a normed space W, and assume
that V is finite dimensional. Show that T must be bounded.

The space V is finite dimensional, thus we can choose a basis ey, ..., e, for V, where ||ex|ly = 1.
Then for every v € V,

T Aej =D NTes|| <IN T llw

j=1 wo =t W J=l

n
j=1

[T lw

IN

max { || Te;

If we can prove that there exists a constant ¢ > 0, such that

n

(12) Z\/\j| <c Z)\jej for every A1, ..., A\,
j=1 j=1 v

then

ITvllw < ¢ max|[Tejfw - [[v]v,

which shows that 7" is bounded

<ec- .
Il < e~ max [ Tejllw.

We shall therefore only prove (12).
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INDIRECT PROOF. Assume that (12) does not hold, i.e. assume that

n n

(13) YN € NIAn1, - Avm D gl > N | Awe;

Jj=1 Jj=1 %

Due to the homogeneity we may assume that Ay ; is chosen, such that
n
> Pwgl=1.
j=1

1
Then it follows from (13) that ||oy|lyv < N’ hence

n
UN = E /\N,jej — 0 for N — oo.
j=1

Now, eq, ..., e, is a basis for V, hence Ay ; — 0 for N — oo for every j =1, ..., n. In particular,

1
there is an Ny € N, such that for every N > Ny we have [Ay ;| < o This gives us the following
n

contradiction
n n 1 1
1= ANl < — = —.
jz:; ‘ N7.7| ; m 2

We have now proved that (13) does not hold, hence (12) holds instead, and as proved previously (12)
implies that 7" is bounded, and the claim is proved.

Example 3.5 Let T be a linear operator from a finite dimensional vector space into itself. Show that
T is injective if and only if T is surjective.

Let T : V — V be linear, where dimV = n. Let ey, ..., e, form a basis. Now, T is linear, so T is
injective, if and only if Tu = T, i.e. T(u—wv) = 0 implies that u = v, or put in another way, u—v = 0.
Thus T is injective, if and only if
(14) Tv=0 = wv=0.
Now assume that T is injective. We shall prove that Tey, ..., Te,, € V are linearly independent.
Assume that \;Te; + --- + A\, Te, = 0. Then by the linearity,

0=MTer+ -+ Te, =T (Mer + -+ Anen),
and we conclude using (14) that

Arer + -+ ey, =0,

Since eq, ..., e, is a basis for V, we must have \; = --- = X\, = 0, and it follows that Teq, ..., Te,
are n linearly independent vectors in the image T'(V'). Then

n > dimT(V) > n, thus dimT(V) = n,
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hence T'(V)) = V, and we have proved that T is surjective.

Assume conversely that T is surjective. To the basis formed by eq, ..., e, € V corresponds the vectors
fi, -y fn €V, where

Tf1:€1, RN Tfn:en
If A\ fi+ -+ A fn =0, then we conclude that
OZT(Alfl'F""")\nfn) =MTfi 4+ XTfo =X er+ -+ A\pep.

Using again that ey, ..., e, form a basis for V', we infer that Ay = --- = A, = 0, which again implies
that f1, ..., f, form a basis for V.

Ifv=MAf1+ 4+ A\ fn satisfies Tv = 0, then
0=Tv=TN\fi+ -+ fn) =T i+ + AT fr = Ae1 + -+ Aeq,

and we infer again that \y = --- = \,, = 0, hence v = 0, and (14) is fulfilled, so T is injective.

Example 3.6 Let T be the linear mapping from C°°(R) into itself given by Tf = f’.
Show that T is surjective?
Is T injective?

Let f € C*°(R). Define g € C*(R) by

g(t) = /Ot f(s)ds, teR.
Clearly, Tg = g, so T(V) = C*(R), and T is surjective.
Define instead

gnt)=1+ /otf(s) ds =14 g(t) € C(R).
Then

Tgr=f=Tyg,

and since g1 # g, it follows that T is not injective.
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Example 3.7 Let I = [a,b] be a bounded interval and consider the linear mapping T from C([a,b])
into itself, given by

Tf(t) = / f(s) ds.

We assume that C([a,b]) is equipped with the sup-norm.

Show that T is bounded and find ||T|.

Show that T is injective and find T= : T(C([a,b])) — C([a, b]).
Is T~ bounded?

When

Tf(t):/ f(s)ds for t € [a,b],

t
/ f(s)ds
thus

ITflloo < (b—=a)- (| £lloo;

proving that 7' is bounded and ||T|| < b — a.

then

1740)| = < [15)ds <1l [ ds= (= D)l < (b= )]

Choose f(t) =1 for every t € [a,b]. Then || f|lcc = 1, and

Tf(t):/tds:t—a for ¢ € [a, b],

hence

[Tflloc = sup (t —a)=b—a,
t€la,b]

and we conclude that ||T'|| > b — a, whence by the previously proved result, ||T|| = b — a.

Assume that
Tf(t)z/ F(s)ds = 0.

Since f € C([a,b]), we have T'f € C*([a, b]) with

d
STHE = (1) =0,

which shows that f =0, so T is injective.

It follows from the above that T(C([a,b])) € C*([a,b]). We get from T'f(a) = 0 that even

T(C(la,b]) € {g € C*([a,b]) | g(a) = 0}.
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Conversely, if g € C*([a,b]) and g(a) = 0, then f = ¢’ € C([a,b]), and T'f = g, and the image becomes
T(C([a, b)) = {g € C'([a,¥]) | g(a) = O}.

Finally, it is immediately seen that
771 7(C([a,b])) — C(la,b])

is given by T71g = ¢'.

The operator T~ is not bounded. We have e.g. that (t — a)™ € T(C([a,b])), and

[t =a)"[loc = sup [(t—a)"|=(b—a)"
t€la,b]

It follows from T 1(t —a)™ = n(t — a)" ! that
1Tt = @)oo = n(b = @)™ = 3= I(t — @)"[|oc,
proving that there is no constant ¢ > 0, such that

1T fllss < cllflloc,  for all f € T(C([a, b)),

and T is not bounded.
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Example 3.8 Let T be a bounded linear operator from a normed vector space V into a normed vector
space W, and assume that T is surjective. Assume that there is a ¢ > 0, such that

ITz|| > c||=|| forallz e V.

show that T~ exists and that T~' € B(W, V).

We require that T~! exists, so we shall first prove that T is injective, i.e. if Tz = Ty, then x = y.

The mapping 7 is linear, so this is equivalent with that T'(z — y) = 0 implies that z —y = 0, or by a
slight change of notation:

Assume that T2 = 0. Prove that z = 0.

When Tz = 0, then it follows from the assumption that
1
0<|z|| <= ||Tz|| =0, thus ||z| = 0, hence x = 0,
c

and the claim is proved.

We have proved that T is injective, thus T~! exists. Now T(V) = W, so T-1: W — V, and T~ ! is
defined on all of W. It remains only to be proved that 7! is bounded.

Let y € W. Then x = T~y is defined. It follows from the assumption that

1 1 1
Ty = < 2| Tzl| = = ||T(T Yy)|| = =
1Tyl = llzll < Z T2l = _ 7@ y)ll = — llvll,
1
which shows that T~ is bounded, || T7!|| < o and it follows that T—1 € B(W, V).

Example 3.9 Let V and W be two normed spaces. Prove that B(V, W) is a normed vector space and
that B(V,W) is a Banach space, if W is a Banach space.

It is well-known that B(V, W) is a vector space.
Define ||T|| by
1T} = sup{[|Tz|[w | [l«]lv < 1}.

Then clearly, [|T']] > 0. If T' # 0, then there exists an « € V, such that Tz # 0, and we conclude that
IT|| = 0, if and only if T' = 0.

Furthermore,

[aT|| = sup{[la Tz|lw | |zllv <1} = |af - sup{[Tz|w [ [z[lv <1} = o] - [ T]].

Finally,
1T+ Tl = sup{l(Ty+ To)allw | llzlv < 1} < sup{|Tellw + [ Toallw | llzlv < 1}
< sup{||Thzllw | |zllv <1} +sup{|[Toxflw | zllv <1} = [Ta]] + [z,
and we have proved that || - || is a norm on B(V, W), and B(V,W) is a normed vector space.
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We now assume that W is a Banach space, thus every Cauchy sequence on W is convergent. We shall
prove that B(V, W) becomes a Banach space with the norm introduced above. Let (T3,) be a Cauchy
sequence on B(V, W), i.e.

Ve>03INeNVm,n>N:||T, —T.| <e.
Then it follows from the definition that

1T — Toll = sup{l[(Ton — To)allw | zllv < 1} = sup{|[ T — Toallw | ol < 1} <.
In particular, we have for every « € V, for which [|z||y <1 that

Ve>03dN eNVm,n>N:|Tnr—Thx|w <e,

which is the condition for (T,,z) being a Cauchy sequence on WW. We assumed that W was a Banach
space, so it is complete. This implies that (T,,z) is convergent, and it follows that (T, (A\z)) = (A T,x)
is also convergent in W for every A, and the condition ||z|lyy < 1 has become superfluous.

Define an operator 7' : V.— W by

Tx= lim T,x, zeV.

n—-+oo

Then

T(x+ \y) = liIJIrl To(x 4+ Ay) = lirf {Thx+ Ny} = lirf Tox+ A lirf T,y=Tz+ ATy,

which shows that T is linear.

It remains to be proved that T' € B(V, W), i.e. that T is bounded. If € V with ||z||y < 1, then

”Tz‘H lim Toa|| < sup [ Toz] < sup [Tl
n—-+00 neN neN

Since (T},) is a Cauchy sequence, we have sup,, ¢y ||7] < 400, and we conclude that T' € B(V,W).
Thus we have proved that the Cauchy sequence (T3,) € B(V, W) converges towards T € B(V, W), and
we have proved that B(V, W) is a Banach space.

Example 3.10 Let S, T € B(V,V). Prove that the composite mapping ST (defined by (ST)x =
S(Tz) for x € V) belongs to B(V, V), and that

ST < ISIH- 1T
When S, T € B(V,V), the composition ST is defined (and linear) on all of V. We shall only prove
that ST is bounded. Now, for every = € V|

1(ST)zllv = [IS(Tz)llv < [ISI - [[Tllv < [IS1 - 1T - 1z,
S0

IST| = sup{[[(ST)z(lv | llzllv <1} <sup{[[S[|- [T - [lzllv | [l«llv <1} = [1S]}- [T
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Example 3.11 Let V be a Banach space and let T € B(V) be such that T~ exists and belongs to

B(V).
Show that if | T and ||[T~| <1, then

1Tl =77 =1,

and | Tf]| = |f|| for all f € V.

It follows from the assumptions that T is bijective,
(15) Tf=g, T 'g=f
We first prove that

ITFI = If| for every f € V.

This follows from

ITFI < ITI- I == T < T~ - gl = llgll = 1T £]l-

Hence we must have equality everywhere, and in particular,
ITfII=IIfIl forall feV,

and
HT_lgH = |lgll forall g € V.

Finally, we get

10 = _{ITAI AN =13 = sap{ I £l | I1£l = 1} = 1,

and

(T = sup{| T gll | lgll = 1} = sup{llgll | llg] = 1} = 1.

Example 3.12 Let H denote a Hilbert space and let T € B(H) and assume that there is a positive ¢

such that
|(Tz,z)| > c|z|? forallx € H.

Show that T~1 exists and belongs to B(H).

Assume that T2 = 0. Then

0=|(Tz,2)| > cllz[* > 0,

from which we conclude that x = 0, and we have proved that 7 is injective, so 7 ~! exists.
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If z = T~y for some y € H, then it follows from the estimate
cllal? = 772" < [, 77"y <yl |77,

that ||T_1H < %, so T~! is bounded on the image T'(H).

It remains to prove that the image T(H) is all of H. Let L T(H). Then we get again that
0=|(Tz, )| > c|l=||?,

which proves that £ = 0 is the only vector, which is perpendicular to the image, so T( )= Since
T~ is bounded, it has a continuous extension to T'(H) = H, and it follows that T~! € B(H )
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Example 3.13 Let p > 1 and let f(z,t) > 0 be a (measurable) function on R? such that

o) ={ [ s dx}pl

exists.

1) Put g =

p
e

2) Let f(x,t) be a (measurable) function on R? such that the function

z e || f(zs )l
belongs to L*(R). Use question 1 to show the inequality

‘ [ fayas

first for p > 1, and then for p = 1.

P 1 and show that

P
My de.
<ol / 1@l do

E / £l e,

3) Let g € LP(R) and h € L*(R). We define the convolution g h by

g*h(t) = /Rg(t —x) h(x) dz.

Show that convolution with an L'(R)-function is a linear and bounded mapping from LP(R) into
LP(R) for any p > 1.

1) We get

\ [ fayas

/R{/Rf(x’t)dz}p dt:/Rg(t){/Rf(x,t)dx} dt
/R{/g(t) < f(z,t) dt} dxg/RHqu ||f(z7')Hp dx

R
1914 A 1/ (2, )l de.

p
p

2) We may of course assume that f(x,t) > 0, because we can in general replace f by |f|, which gives
a more “narrow” estimate. Then we can use the result from 1.

Let p > 1. Then

p—1 1

o = o) (e )

p—1
R P
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which inserted into the result of 1) gives

Af(x,~)dx /Rf(x,-)da:

Since p > 1, this is reduced to

JRCRLE

When p = 1, then we get instead by interchanging the order of integration

p—1
- / 1£ @)y d.
o R

p
S ‘
p

E / 1@, )lp d.

For a general f we get

JRCDLE < H JUCRIE

because || |f(z, )|l I, = [[f (2, )llp-
Given h € L'(R)- Define an operator T by

= / 1@l e,

Tg(x) = g h(x),

/Rf(x,.)dx 1:/R{/Rf(x,t)d:v}dt:/R{/Rf(:at)dt}d:c:/R|f(x,~)||1dt.

for the g € LP(R), p > 1, for which this expression makes sense. Then clearly, T is linear.

Let g € LP(R). Using 2) above we get the following estimate, where we allow ourselves to write

llg * k|| before we have proved that it makes sense,

1Tyl

oty = | [ ats =) o) a

p

< / lgGx — @)y - (@) de = llgllp - |l < oo.

This estimate shows that g x h € LP(R) is defined and that the mapping T is bounded of norm

171 < [IAlls-
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uniform convergence, 4
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vector space, 43

vector space of bounded sequences, 57
Volterra integral equation, 36

Hoélder’s inequality, 71, 78

integral equation, 36

iteration, 25 weak contraction, 24

Weierstraf’s Approximation Theorem, 47, 81

j 70 . . .
Jump, Weierstrafl’s approximation theorem, 4, 6
kernel, 80

Lebesgue integral, 68
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Lipschitz condition, 28

Mean Value Theorem, 28
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metric space, 4, 7, 11

Neumann series, 41, 42
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