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CHAPTER 5

Operators in Hilbert space

1. Some results in Banach algebras

In this section (A, |-|) stands for a complex Banach algebra. A complex Banach
algebra is a Banach space over the complex number field C with a multiplication
(z,y) — xy which is jointly continuous. Moreover we will assume that there is
an identity e. This multiplication has the following properties: z(yz) = (zy)z,
(x+y)z=az+yz, x(y+2) =ay+az, a(ry) = (ax)y = x(ay) for all z, y, z € A,
and for all @« € C. The identity element e satisfies ex = xze = x for all x € A.
Moreover, the norm satisfies the multiplicative property |zy| < ||z |y|| for all z, y €
A. In addition, [le| = 1. An element z € A is called invertible if there exists an
element y € A such that yr = zy = e. The group of invertible elements of A is
denoted by G(A). It is known that G(A) is an open subset of A, and that the
application z — z~! is a homeomorphism from G(A) onto G(A). If z € A is such

that e — | < 1, then x belongs to G(A). Its inverse is given by y = lim (e —z).

j=0
Observe that [A| > |x| implies that e —z = A (e — A~ 'z) belongs to G(A). A linear
functional ¢ : A — C which is multiplicative in the sense that ¢ (zy) = ¢(z)¢(y)
for all z, y € A, is called a complex homomorphism. Most of the time it is assumed
that ¢(e) # 0, and so p(e) = 1. Let ¢ be a non-zero complex homomorphism.
Notice that 1 = p(e) = p(z)p (z7!), z € G(A), and so (x) # 0, Consequently, for
x € A arbitrary and |A| > ||z|, we see that ¢(z) # \. In other words |¢(z)| < |z|.
Whence a complex homomorphism is automatically continuous. We also need the
following lemma.

5.1. LEMMA. Let (z,), be a sequence in G(A) which converges to x € A. Suppose
that M := sup,, |z,)!| < 0. Then x € G(A).

PrOOF. We estimate
le =zt x| < |2t (20 — 2)| < |2, |zn — 2] < M |z, — 2] < 1,

for n large enough. It follows that z, 'z belongs to G(A) for n large enough. But
then (z;'2) " x, = 2. This completes the proof of Lemma 5.1. O

5.2. DEFINITION. Let (A, ||) be a complex Banach algebra. The symbol G(A)
stands for the group of invertible elements. Then G(A) is an open subset of A and
the application z — z~! is a homeomorphism from G(A) to G(A). Let x € A. A
complex number A belongs to the spectrum of x, denoted by o(x), if Ae — x does
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not belong to G(A). It follows that o(x) is a closed subset of C, and that o(x) is
contained in the disc of radius ||z||. It can be proved that o(x) # . It follows that
o(z) is a compact subset of C contained in the disc {\ € C : |A| < ||}, which is non-
empty. The spectral radius p(x) of x € A is defined by p(z) = sup {|A| : A € o(z)}.

Without a complete proof we mention the following theorem, which is Theorem
10.12 in Rudin [113].

5.3. THEOREM. Let z be an element of a Banach algebra. Then o(x) is a non-empty
compact subset of C, and the spectral radius p(z) satisfies

" = in o (5.1)

pla) = Jmy |

OUTLINE OF A PROOF. Let 0 # z € A. The fact that o(x) # ¢ follows from
the observation that the function f : A — (Xe — x)_l is a holomorphic A-valued map
on C\o(z). If o(z) were empty, then this function would be a bounded holomorphic

function. By Liouville’s theorem it would be constant, and so f(A) = 0. So that
x =ze =xf(\) (Ae —x) =0, which is a contradiction. The equalities

"YU = i o (5.2)

p(x) = limsup |z
n—0o0
follow from the following considerations. If A belongs to o(x), then it is easy to see
that A" belongs to o (z"), and so |A| < ||z"|"". Hence

p(x) < inf |2"'". (5.3)

As above, put f(A\) = (Ae —2)~", and let I, be the contour I, (9) = re, —r < ¢ <
7. Then, for r > p(z),

o= — [ aroydn e (5.4)

"o )y
From (5.4) it follows that
™| < 7" Esup {IF (V)] = (A =7}

e

and hence limsup |z < r. Since r > p(z) is arbitrary we infer that
n—0o0

limsup [z < p(x).
n—0o0

This in combination with (5.3) yields the inequalities in (5.2) and completes an
outline of the proof of Theorem 5.3. O

5.4. REMARK. The second equality in (5.3) can be shown without an appeal to the

spectral radius p(z). Define the number p as p = inf, [2"|"", fix £ > 0 and choose
m € N in such a way that [z™| < (p+¢)™. Then, for £ > 1, (e N, and 0 < j < m,
we have
m+j m ¢ j 0 .
[ ) < ™ |27 < (o + €)™ Nl (5:5)
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From (5.5) we obtain

lim sup 2" V" <11msup max | £m+jH1/(£m+j)
n—o0 s ]<m 1

< limsup max (p + g)fm/ttm+) ijHl/(emH) =p+e. (5.6)

-0 OSysm

Since £ > 0 is arbitrary, the inequality in (5.6) shows the inequality lim sup [2"|"" <
n—0oo
inf [2"|*", and therefore
limsup | ="V = inf 2"
n—aoo n

The following theorem says that a complex Banach algebra which is also a division
algebra is isometrically isomorphic with the complex number field.

5.5. THEOREM (Theorem of Gelfand-Mazur). Let A be a Banach algebra in which

every non-zero element is invertible. Then there exists an algebra isomorphism X :
A — C which identifies A and C as algebras.

PROOF OF THEOREM 5.5. Let x € A, and choose A € o(z). If X # A, then
Ne — x is non-zero, and so N'e — z is invertible. In other words o(z) is a singleton,
{\(z)} say. Then x — A(x)e = 0, and the mapping z — A(x) identifies A with C as
algebras. This completes the proof of Theorem 5.5. ]

5.6. COROLLARY. Let M be a proper mazimal ideal in a commutative Banach algebra
A. Then there exists a complex homomorphism h : A — C such that M = N(h) =
{reA: h(zx)=0}.

.
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PROOF OF COROLLARY 5.6. Consider the space Ay := A/M with the stan-
dard multiplication and standard norm |z + M| = inf {|z + y| : y € M}. Observe
that |e + M| = 1. Then A, is a division algebra. For assume that x ¢ M, then
since M is a maximal proper ideal there exists y € A such that xy + M = e + M.
It follows that, in the Banach algebra Ay, (x+ M) (y+ M) =2y + M = e+ M.
Consequently, A/M is a division algebra. By Theorem 5.5 there exists an algebra
isomorphism A : A/M — C. Let 7 : A — A/M be the mapping z — z+ M. Finally
put h(z) = A(n(x)), x € A. Since A (e + M) = 1, it follows that h is a complex
homomorphism with A(e) = 1 and with N(h) = M. This completes the proof of
Corollary 5.6. O

Proposition 5.7 is a slight improvement of Lemma 10.16 in [113]. It is applied there
with V' and W being groups of invertible elements in a complex Banach algebra, or
with V' and W being the resolvent sets of elements of a Banach algebra.

5.7. PROPOSITION. Let V and W be open subsets of a locally connected topological
Hausdorff space. Assume that V< W. The following assertions are equivalent (by
a component of W a connected component of W is meant):

(i) The boundary of V' is a subset of the boundary of W, i.e. boundary(V') <
boundary(W);
(ii) V = {component of W : component (W) V = }.

PROOF. (i) = (ii). Let = be an element of V' and let W, be the connected
component of W that contains z. Let y € W,\V. Then it follows that y € W,\V,
because assume that y belongs to V. Then y belongs to V\V = boundary (V).
Assertion (i) then implies that y belongs to the boundary of W. Since W is open it
then follows that y does not belong to W. This is a contradiction. As a consequence
the inclusion y € W,\V certainly holds. But then it is obvious that W, = (W, n V)u
(WI\V) However, W, is open and connected, and so since x belongs to W, n' V'
and since W, n V' is open we get W, = W, n'V, and hence W, € V. This proves

(ii).

(i) = (i). Let z € V\V. Assume that = belongs to W. Let W, be the connected
component of W that contains x. Then there are two possibilities:

WonV=g o W,nV=¢.

If W, n'V = ¢, then it follows that W, n'V = & and thus z ¢ V. But, by
hypothesis, x € V\V = boundary (V). Consequently, W, n V = ¢f. But from (ii)
it then follows that V' 2 W, and so x € V\V = ¢&. This is a contradiction. From
z € V\V it apparently follows that x € V\IW < W\W. Whence

boundary(V) = V\V € W\W = boundary (W),

and so the proof of Proposition 5.7 is complete. O
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5.8. PROPOSITION. Let A and B be complex Banach algebras. Let eg be the identity
of B, and suppose that eg € A and that A < B. Then the inclusions G(A) <
A N G(B) and boundary,(G(A)) € boundary, (A n G(B)) hold.

PROOF. Let x be an element of G(A). Then there exists z € A with the property
that xz = zz = e. So there exists z € B with xz = zx = e. Whence it follows that

G(A) < G(B) n A.

Let = be an element in the A-boundary of G(A). Then x ¢ G(A) and there exists a
sequence (x,) € G(A) with the property that lim, ., x, = . By Lemma 5.1 (see
also Lemma 10.17 in [113]) we see sup,, |z, '], = 0. Assume now that z does not
belong to the A-boundary of the set (A n G(B)). Then we get either x € An G(B)
or z ¢ An G(B). But z in the A-boundary of G(A) implies z € G(A) < A n G(B).
Hence, if x does not belong to the A-boundary of A n G(B), then we have z €
A n G(B). But then, since z,, — x, we obtain that x,;' — z~! in G(B). But then
it follows that sup,, |z, '| < co. This is a contradiction.

This completes the proof of Proposition 5.8. O

5.9. PROPOSITION. Again A and B are Banach algebras with A < B and with
e =eg € A Let x € A. Then the following inclusions hold: o4(x) 2 og(z) and
boundary (o a(x)) < boundary (op(x)).

PROOF. Since we have
C\oa(x) ={ e C:le—x e G(A)}
c{AeC:le—2eG(B)} =C\op(z),

it follows that o4(x) 2 op(z). Next let A be in boundary (c4(x)). Then it follows

that A € boundary (C\oa(x)). Consequently, there exists a sequence () in C\o4(z)
such that A\, — A, and such that e —z ¢ G(A). But then we get \,e —x € G(A) <

AnG(B), with A, — X and with Ae — z ¢ G(A). Since sup,, |(A.e — x)le = o0 it is
impossible that Ae — = belongs to G(B), and hence A belongs to boundary (op(x)).

This completes the proof of Proposition 5.9. 0l
The following theorem says that if elements x and y in a Banach algebra are close,
the their spectra are also close.
5.10. THEOREM. Let Q be an open subset of C, and let x € A be such that o(x) < .
Then there exists a § > 0 such that |y| < § implies o (z + y) < €.

PROOF. The function A — [(Ae — a:)flﬂ is continuous on the set C\Q. In addi-

tion, it tends to 0 when |A| — co. It follows that

M =sup{|(de—2)7": Ae C\Q} < 0.
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If y € A is such that |ly| < 1/M, then we have |[(Ae — z) yH < 1, and consequently,
for A € C\Q2 we have that the element

de—(z+y)=Ne—2)[e—(Ne—2)""y]
is invertible. This proves 5.10 with § = 1/M. O

1.1. Symbolic calculus. Let K be compact subset of an open subset €2 in
C. Then there exists a concatenation of oriented curves I' = ~q * -+ % ,, where
v; ¢ ey, Bi] = Q, 1 < j < n, are continuous differentiable curves, which surrounds
K in the sense that

1 [ dA 1, ifcek:
Ind : =< ’ 5.7
ndr(Q)i= 55 | Y=¢ {o, if (e C\Q. (5.7)
It follows that, for f in Hol (Q?), i.e. for f holomorphic on €2, the Cauchy formula
K .
O =3 | S5 Ze (e K 653

holds. We say that the contour I' surrounds K in Q. If 2 is an open subset of C, the
we write Ag = {z € A: o(x) = Q}. Theorem 5.10 says that Aq is an open subset

of A. The mapping f — f, f € Hol () where
@) = 55 | SN e =) d), we Ao, (5.9)

2m

is what people call a symbolic calculus. Here I' surrounds o(x) in €2. Let Hol (Aq)
be the collection of all functions = — f(x), z € Ag, as given by (5.9). It is noticed

that, by Cauchy’s theorem, the value of f(z) does not depend on the choice of T
as long as I' surrounds o(z) in 2. Some properties are collected in the following
theorem.

5.11. THEOREM. Let Hol(2) and rH}OJl(AQ) be as above. The mapping f — [ is
a linear multiplicative isomorphism from Hol()) onto Hol (Aq), which is jointly
continuous in the following sense. If (x,), < Aq is a sequence which converges to
x € Aq, and if (f,), < Hol(QY) which converges uniformly on compact subsets of
Q to f € Hol(Q), then f(z) = lim f, (). Moreover, if p,(A\) = A", A € C, then
pn(z) = 2", neN.

For the convenience of the reader we insert a proof.

PRrROOF. We begin with the multiplication property, i.e. E(m) = N(x)g(a:),
x € Aq, whenever f and g belong to Hol (2). To this end we pick x € Ag, and
choose concatenations I'; and I'y which surround o(z) in €2, but I'y is also chosen
in such a way that it surrounds the set Q; := {Ae Q: Indp, (\) = 1}. Since I'y
surrounds o(z) we know that o(z) < ;. Then we have, for f, g € Hol (Q),

S Y f g(n) (e — )™ (e — )™ dpdA

A2
A7 r
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(resolvent identity (Ae — :v) — ( )_1 (n—A) (Ne — :c)_l (ne — x)_l)
[ PR e - )t (e )} day
B 47r2 rJry K - pe =)} du

_ 42 f()\)f ())\d,u()\e—z)ldA

4Wff T 45 g (e — 2 d

(apply Cauchy’s integral formula)

= i | T 0=y x| 0 g0 (e )
= fg(x)- (5.10)
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This proves the multiplication property. Next let (x,), < Aq which converges in
A to xz € Ag, and let (f,,), be a sequence of holomorphic functions on © which
converges, uniformly on compact subsets of €2 to a function f. Then, from complex
analysis it follows that f belongs to Hol (€2). Since the sequence (z,), converges to
x € Ag, it follows that the set K defined by K = | J;"_, o (z,) uo(z) is compact. This
can be seen as follows. Let (), be a sequence in K. We have to show that some
subsequence (s, ), converges in K. If there exists £ € N such that o (2)) contains
infinitely many members of the sequence (ay,),,, then we are done, because o (zy) is
compact, and so some subsequence of the sequence (o, ),, converges (in o (z3) < K).
If, on the other hand, for every k the spectrum o (x)) contains at most finitely
members of the sequence (), , then without loss of generality we may assume that
an € 0 (x,). Then we choose a decreasing sequence of open subset (Uy), with the
following properties o(z) < Uy, < U, < Q, Uy is compact, and o (z) = (), U.
Then by Theorem 5.10 the subsets Ay, = {ye€ A:0(y) < Uy}, k € N, are open.
It follows that for ny large enough «,, belongs to Uy. Since, e.g., U is compact,
the subsequence (o, ), < U; has a further subsequence which converges to a in
U,. Since ay,, belongs to Uy, and o(z) = ﬂk Uy, it follows that « is a member of
o(z) < K. This proves that the subset K is sequentially compact. But for subsets
of C this is the same as compact. Next let I' be a concatenation of curves which
surrounds K in 2. Then we have

J? (75) — 27TZ J {fu(A (N} (Ae — !En)fl d\
27” ) FO) {(Ae - ) — (e — :L‘)_l} d\
27”] {fuN) = FOO)} (Ne —2,) " dX

T omi J FO) e =)™ (2 — 2) (Ae —2) " dA. (5.11)

Let I'* be the image of I' in C. Then I'* is a compact subset of Q\K. Since taking
inverses is a continuous operation on the group of invertible elements G(A), it then
follows that

sup sup H e—xp,) 1” = M < . (5.12)
AeD* neN

The equality in (5.11), the property in (5.47) together with the convergence property,
i.e. lim |z, — x| = 0 results in lim ‘fn (xn) — ]?(x)H = (. Altogether this completes
the proof of Theorem 5.11. O

For an alternative proof, using Runge’s theorem, we refer the reader to the literature;
for example Theorem 10.27 in Rudin [113] is a good source. This is also true for
the following theorem.
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5.12. THEOREM (Spectral mapping theorem). Suppose that x € Ag and f € Hol(€).

~

Then f(x) is invertible in A if and only if f(A) # 0 for all A € o(x). Moreover,
o (J@) = f (o @)).

PrOOF. If f € Hol () is such that f(\) # 0 for all A € o(z), the there exists
an open subset 2 of Q which contains o(x) such that f(A)g(\) = 1 for some
holomorphic iunction g defined onwﬂl. By Theozem 5.11 with £, in place of €2,

we see that f(z)g(z) = e = g(x)f(x). Hence, f(z) is invertible. Next suppose
that f(a) = 0 for some o € o(x). Then there exists a holomorphic ~ function on

Q such that f(A) = (A—a)h(\), A € Q. It follows that f(z) = (z — ae) h(z) =
h(z) (x — ae). Hence, since a belongs to o(z), f(x) is not invertible. This proves
the first part of the theorem.

~ ~

Next fix 5 € C. Then, by definition, § belongs to o (f(x)) if and only if f(x) — Se
is not invertible in A. By the first part, applied to f — 3, this is the case if and only
if f — [ has a zero in o(z), that is, if and only 8 € f (o(x)).

This completes the proof of Theorem 5.12. O

1.2. On square roots in Banach algebras. In this subsection we will discuss
the existence of square roots of an element in a Banach algebra. In the proof of
assertion (c) of Theorem 5.14 we need the following lemma.

5.13. LEMMA. The following equality holds:

J’r 1 1+ cos?

dy = °. 1
o costv BT cosd i (5.13)

The method of proof of Lemma 5.13 which is presented is also employed in the proof
of assertion (c) in Theorem 5.14.

PROOF. Properties of the function ¢ — arctant yield the first one of the following

identities:
7T2=4J J iz Hedh
o0 o0 1
=4 dts dt
L L 2eye2+2+1 2!

(employ polar coordinates: t; = rcosd, to = rsind, r > 0, 0 < 9 <

oo] 7'(/2 1
=4 di d
L TL rdcos? I sin® Y + 12 + 1 "

(make the substitutions p = r=2, and ¢ = 29)

o0 T 1
= dod
fo L isin2<p—|-p+p2 pap

27)
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0 s 1
= dedp
fo Jo (p+%)2—}lcos2gp

o0} U 1 %COSL,O 1
S L
0 o COSY —%Cosw (p + 5 — S)

(apply Fubini’s theorem and make the substitution p = (% — s) T)

1
s 1 5 Cosp 1 Q0 1
0 2 —%cosgo 2 S 0 (T + 1)

f” 1 1+cosgpd

lo
o COSp 1 —cosep

which shows equality (5.13) in Lemma 5.13. O

b

In assertion (e) of Theorem 5.14 below the space A is a complex Banach algebra
with identity e, and with an involution * which is not necessarily continuous. It has
the standard properties of an involution: (az + By)* = az* + By*, (vy)* = y*a*.
™ =z, a, f€C, z,ye A We discuss existence and uniqueness of square roots of
elements of a Banach algebra (with an involution in assertion (e)).
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5.14. THEOREM. Let A be a Banach algebra with a not necessarily continuous invo-
lution. The following assertions hold true.

(a)

(b)

Existence of square roots. Let x be an element of a Banach algebra (A, |-|)
with the property that o(z) n (—o0,0] = &. Then there exists y € A
with the following properties: vy, y*> = x, and o(y) = {\/X A €E a(x)} c
{AeC: R\ > 0}.

Uniqueness of square roots. Suppose that x € A is such that o(z) N
(—0,0) = &. There exists only one element y € A such that y* = z,

which has the property that its spectrum o(y) is contained in the closed
right half plane {\ € C: R\ = 0}, and which satisfies

sup {|A| | (Ae + y)le : RA >0} < 0. (5.14)
The element y is given by the (improper) Riemann integral
2 (., —1
y==| z(Pe+z)  dt (5.15)
T Jo

Let x € A be such that o(x) n (—00,0) = &, and such that
sup {\ |[(Ae +2) 7 1 A >0} < . (5.16)

Define y as in (5.15). Then y* = x.
Let y € A be such that the integral

0 R
2 2\ —1 T . 2 2\ —1
Ly(teer) dt—lsllrgll%l_r&ey(teer) dt

exists. Then the limit
9 2\ —1
p—llgﬂ€(€€+y )

exists, and

4 ” 2 2\ 1 :
— y(te+y) dt] =e—p. (5.17)
T 0
Moreover, p*> = p and px = xp = 0.
Let x be as in assertion (a), i.e. x is an element of a Banach algebra
(A, |-]) with the property that o(x) n (—0,0] = &. Then there exists a
unique element y € A with the following properties: y* = x, (y*)2 =¥, and
o(y*) =o(y) ={VA: Aea(z*)} = {AeC: RA>0}. In facty is given
by

2 (* ., 1

y=— x(te+x) dt,
™ Jo

and y* s given by
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If v = a*, then y = y*, and X € o(y) if and only if X € o(y). The element
x 1s positive in the sense that v = x* and o(x) < (0,0) if and only if y is
s0.

PRrOOF. (a) Choose a contour I' which surrounds o(z) in C, and put

y—xmf \/7 (e —z) " dA

(deform the curve I': X = te/*7¢) and let ¢ tend to 0 from above)

1 (1 1
(—te —x) " dt — x— —7(—156—:1:)_1 dt

Imf N 2m’ o Vie s
(te + x dt+x J (te +x)” dt

J\f " i ter o)

L S -1

—xwL \/%(teer) dt

(substitute t = s?)

2 [ - &2 1l
= (s’e + ) Yds = lim Y 22 (k*27%"e + x) Y Yn,
T Jo n—00 = T on n—00
& 2 11
where y,, := Z — (k’22_2”e + x)_ on Notice that y? = z, and that ¥, belongs to
k=0

the commutative sub-Banach algebra A, generated by x and e. In fact for a > 0
the element (ae + ) € Ay, because, by Runge’s theorem (in fact by Lemma
4.66), (ae + )" = lim, 0 pn(ae + x), where (Pn) ey IS an appropriate sequence
of polynomials in one variable. More precisely, for any polynomial p and for an
appropriate contour I' in C\ ((—o0,0] u o(z)) we have:

(ae+2) "' —plae+ ) — —— F( —p(a—i—)\)) (he — ) d),

271 o+ A
and hence

H(ae + x)_l —p(ae + :L')H

—p(a+ N)|sup |(Ae —z)” 1”

1
< %length (T") sup sup

Ael*

o+ A

Since by the spectral mapping theorem o(z) = o () = (o(y))*, and since o(z)
does not contain negative real numbers it follows that the set o(y) n iR is empty.
In addition the function f : C\(—o0,0] — C defined by

f(A)zzfo A ds =V, AeC\(—»,0],

Ty 2+ A

is analytic in an open neighborhood of o(x), and therefore

o(y) = {fN) : Aea(x)}z{ﬁ; )\eo(:v)}c{)\e(C: RN > 0} .
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This proves assertion (a) of Theorem 5.14.

(b) Next, we proceed with proving the uniqueness of “taking square roots” with
spectrum in the closed right half plane. Let y € A be such that 2> = z and suppose
that y satisfies the assumptions made in assertion (b). We will prove that y is
represented as in (5.15). First we observe that

o(y) c{AeC: R\ >0} u{0}. (5.18)

This is because y?> = x and o(x) N (—0,0) = &, so that by the spectral map-
ping theorem o(y) n iR < {0}. Since, by assumption o(y) is contained in the
closed right half plane, the claim in (5.18) follows. Let, for » > 0, the semi-
circle {Ae C: R\ > 0, |A| = r} be parameterized by I',(9) = re”, —i7 < ir. By
Cauchy’s theorem from complex analysis we infer, for 0 < ¢ < R < o0, the equality:

1 4 dz 1 dz

-1
s (zety)” — - — . (ze+y)™ -
1 —ie d 1 iR d
=—— (ze+y)1—z——_ (zeer)l—Z
T ) iR z T, z
2 (" 2 2\ 1
== | (Pe+y®) at. (5.19)
™ 3

In (5.19) we let R — o to obtain:

2 © —1 1 1 dZ
2 ey a2 i 5.20
S| ey ae | ey S (5.20)
From (5.20) we get:
2 (* _ 1 1 d
f y(BPet+y?) dt=— | yleety)
T J. T T, z
1 d 1 1
- | Ze_ = (ze+y)  dz=e— J (ze +y)7 " dz. (5.21)
m Jp, 2 T Jr, T Jr.

From (5.21) we infer:

2 (* 2 (42 2\ 1 1 -1
= (Pe+y’) di=y—— | y(ze+y) dz
T i Jr.

£

1 1 .
—y—— | ldze+ = | z(zet+y) ' dz

7 Jr, T Jp,
2 1 _

=y — Zer | =2 (ze +1)~" dz. (5.22)
™ ™ I,

In (5.22) we let € | 0. By employing (5.14) and the equality y? = x the equality in
(5.15) follows. This proves assertion (b).
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(c) Let « be as in (c) and let y be as in (5.15). Then like in the proof of Lemma
5.13 we have

y' = f f (e +2) " (e +2) " dtydty
- f J (2 + (2 +12) x + 22) " diydty
(employ polar coordinates: t; = rcosd, to = rsind, r > 0, 0 < 9 < %77)

4 (* _
== J rf x? (T4e cos? ¥sin? 9 + r’z + 352) ! dd dr
0

(make the substitutions p = r=2, and ¢ = 20)

—1
f J (esm gp+px+px) dpdp
2 -1
J J <<p:z: + e) — Ze cos? 90) dpdp
7cosg0 1 —2
f J J 2(px+<—s> e) dsdy dp
o COSQ 5 Cos ¢ 2
(apply Fubini’s theorem and make the substitution p = (% — s) T)

1 T 1 5 Cosp 1 o0} _
— f T dsf 2 (rz +e) 7 drdy
™ o COSY —7coscp 2 - S 0

1 (™ 1 1+cos<,0d foo
T

(x + pe)~* dp

log

w2 Jo cosp ~1—cosyp 0

(employ Lemma 5.13)

= 2? LOO (z + pe) 2 dp. (5.23)

From (5.23) we get
y?> = lim lim (2% (ee +2) " —2? (Re +2)"') = lim (v —ex + &% (ce + 7)) = x.

R—w )0 €l0
(5.24)
In the final steps of (5.24) we used the assumption (5.16) on z. This proves assertion

().

(d) As in the proof of assertion (c) we have

;12 (Jw y (e +y?)”" dt)2 = Jm y? (pe +y?) " dp. (5.25)

0 0
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From (5.25) we infer

4 * —1 2 -1 —1
(f y (Pe+y?) dt> = lim lim 7 ((66 +v°) — (Re+y°) )
0

2 el0 R—w

— 121%1 (e —¢e(ee+ y2)71> =e—p. (5.26)

Next we write, for A > 0 and € > 0,

Ae (Ae + y2)_1 (ce+y%) ' = i . (5 (ee + y2)_1 —e(Xe+ y2)_1) ;

A

3 -1 -1
- (et A (e 2D)
In (5.27) we let ¢ tend to 0, and we get:
A (e + y2)_1p =p, A>0. (5.28)

From (5.28) we infer Ap = (Ae + y?) p, and so y*p = 0. In (5.28) we also let A tend
to 0 to obtain p? = p. If in (5.27) we let A tend to 0, we obtain

ep (ee + yz)_l =p, >0,

and hence py? = 0. This proves assertion (d).
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(e) This assertion is a consequence of the assertions (a) and (b). Since A € C belongs
to o(y) if and only if X belongs to o (y*), we see that o(y) = o(y) provided that
y=y".

Altogether this completes the proof of Theorem 5.14. 0

1.3. On C*-algebras. We need the following property of positive elements in
a C*-algebra A. A C*-algebra is a Banach algebra with an involution which has
the following property ||| = [2z*z|, z € A. An element u € A is called positive if
u=wu* and if o(u) c [0,0). If u € A is positive, then the same is true for ||ull e — u.

5.15. PROPOSITION. Ifu and v are positive elements in a C*-algebra A, then u+v
18 also positive.

PROOF. Put a = |[ul|, 8 = |jv|, and v = a+ 5. We know that o(ae —u) < [0, «]
and o(fe —v) < [0,3]. Then it follows that |ye — w| < . Since o (ye —u —v) is
real it follows that o (ye —u — v) < [—7, 7], and consequently, o(u + v) < [0, 7].

This completes the proof of Proposition 5.15. 0

5.16. PROPOSITION. Let y be an element of a C*-algebra A. Let Aqy be the algebra
generated by yy* and the identity e. Then the spectrum of yy*, viewed as an element
of Ao, is contained in the interval [0, HyHQ] In fact the following identity is true:

w =2 [ e ) ar (5.29)

PRrROOF. First suppose that S\ = 0. Write A = o + ¢, with a and 8 belonging
to R. Choose ¢ € R in such a way that a® + 26t + 52 > |yy*|*. Then

lyy* +itel” _ [[(yy* +ite) (yy* —ite)| _ Jyy*|* + 2

< ’
A+ it] a? + 3% + 253t + 2 a? + 3%+ 20t + 12

Yyt +ite

d h e —yy* = (N +it)e —yy* —ite = (A + it
and hence Ae — yy* = (A +it) e — yy* — ite (+1)(6 ST

> is invertible

o0

_ * gt k
with inverse (A 4 it) " Z (yy™* + ite)”

. It follows that Ae — yy* is invertible in Ag

= (A+it)
whenever S\ = 0. Next we consider the case where A belongs to R. If [A\| >
lyy*| = |y|?, then Ae —yy* is invertible in Ay via a Neumann series: (\e — yy*)~" =
e 0]

1 1
X Z G (yy*)*. Tt follows that o (yy*) is a subset of [— lyl?, HyHZ]
k=0

Put w = (lyy*| — yv*)y = v (|ly*y| — y*y), where |yy*| is defined as the positive
square of (yy*)2, which can be defined using Gelfand transforms in the algebra
generated by yy*. It can also be defined by employing the integral representation

* 2 * * * -1
lyy*| = Wf (yy*)? (s%e + (yy*)?)  ds
0
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2 (* _
= WJ 'ty (s%e + (v*y)?) " y* ds. (5.30)
0
Since, for s > 0, the element
* £ -1 F * . — * * . _
wy™)” ((wy*)” + s%e) = yy* (yy* +ise) " yy* (yy* —ise) ",

is the product of two elements in Ay, it itself belongs to Ay. In addition we have
: * * -1 : * *
HJ (yy*)* (s’ + (yy*)") ~ ds <J H(yy ) (s + (yy*)?)
0 0

<p (J (yy*)? (5% + (yy*)?) ds) <

0

-1

ds

€ 2
sup J ———ds <e.
ceolyy) Jo 5% + &2
Here p(z) represents the spectral radius of the element z. Consequently |yy*| is a
member of Ay. Then

ww* = (|yy*| — yy*) yy* (vy*| = vy*) = (yv*lyy* — (wu*)?) (lvy*| — yy*)
2
=~ ("l = ") Iyl = = { (| = ") VI ) = =i (5:31)

is negative in the sense that ww™* is self-adjoint and has its spectrum in the closed
negative half-axis (—o0,0]. Since, by the same token,

wrw = — {(|y*y| —y*y) vly"‘yl}2 = —wj, (5.32)

we infer that w*w is negative as well, because w; as well as wy is self-adjoint.
Choose self-adjoint elements u and v such that w = u + tv. In fact u = § (w + w*),

v = o (w—w*). Then w*w + ww* = 2u® + 2v?, and hence, by (5.31) and (5.32)

2 (u* +v%) = w'w + ww* = —wi — wj. (5.33)
From Proposition 5.15 it follows that w*w + ww* = 2u? + 2v? is positive in the
sense that w*w + ww* is self-adjoint and has its spectrum in the closed positive
half-axis. On the other hand, by (5.33) we see that w*w + ww™* is negative in
the sense that its spectrum is contained in (—oo,0] and that w*w + ww* is self-
adjoint. But elements whisk are positive as well as negative are 0. Consequently,
w*w + ww* = 0. Proposition 5.17 below shows that the spectrum of w*w coincides,
except for possibly the complex number 0, with the spectrum of ww*. Hence, w*w
is positive as well as negative; its spectrum is just {0}. Thus,

2
H

2
[w]™ = fw*]" = Jw*w] = p (w*w) = 0.

Here p (w*w) denotes the spectral radius of w*w. However, if w = 0, then we get
(lyy™ = yy*) yy* =0,
and hence,
(lyy*] = yy*)* = 2 (yy* — lyy=) yy* = 0.

Consequently, yy* = |yy*| is positive. The representation in (5.29) then follows from
(5.30).

This completes the proof of Proposition 5.16. O
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In the proof of Proposition 5.16 we used the following result.

5.17. PROPOSITION. Let x and y be two elements in a Banach algebra. Then {0} U
o(zy) = {0} v o(yx).

1 1 1
PROOF. Suppose A = 0. If 2z inverts e — —yx, then e + —xzy inverts e — —zy:

A A A
1 1 1 1 1 1 1
(e—i—xxzy) (e—xxy) ze—Xxy—i-sz (e—xyx)y:e—xxy—kxxy:e.
This completes the proof of Proposition 5.17. O

5.18. REMARK. In fact in the proof of Proposition 5.16 we could have avoided the use
of Proposition 5.17 by the following argument. Let w, u, v, wy, ws be as in the proof
of Proposition 5.16. Then we proved that w*w + ww* = —w? — w3 = 0. Since w;
and wq are self-adjoint, we see that w; = wy = 0. Since wy = (lyy*| — yy*) A/ |yy*|

we get
(lyy*| = yy™)* =2 (lyy*| — yy*) VvV ]yy*| = 0,

and thus yy* = |yy*| is positive.
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Next we apply Theorem 5.14 and Proposition 5.16 to obtain the polar decomposi-
tions of elements in a C*-algebra.

5.19. THEOREM. Let y be an element of a C*-algebra A with identity e. Define the
following elements:

2 [ w -1
U = — y(te+yy) dt, >0,
™ €

2 * * 2 * -1
== | vy (Ee+y*y)  dt,
™ Jo
* 2 * * 2 %) —1
v == yyt (FPe+yy)  dt,
™ Jo
(5.34)

Then the following assertions hold true:

(1) The elements |y| and |y*| are positive and satisfy the following equalities:
wI* = v*y, |y*|* = yy*. They are the only positive elements in A which
satisfy these equalities.

(2) The element u* is given by

* 2 * * 2 %\ —1
uf == y*(Pe+yy*)  dt (5.35)

S

(3) The following equalities hold:
limue |yl =y and limuly*| =y~ (5.36)
(4) The following equalities hold:

limulue |yl = |y| and limucul [y*| = |y*|. (5.37)
€l0 elo

5.20. REMARK. Since by Proposition 5.16 elements of the form yy*, and so also
of the form y*y, are positive, we see that |y| is positive. It is called the (positive)
square root of the element y*y, and often written as |y| = y/y*y. Heuristically, the
equalities in (3) are written as y = u |y| (polar decomposition of the element y) and
y* = u* |y*| (polar decomposition of the element y*). The equalities in (4) suggest
to write u*u|y| = |y| and wu* |y*| = |y*| respectively. These equalities say that u
and u* are partial isometries on the range of (the multiplication operators) |y| and
|y*|. In the context of bounded or closed linear operators with, domain and range
in a Hilbert space, these notions will be justified in the sense that |T'| is the unique
o0

2 _
positive operator S with S? = T*T, that Uz = f T (tZI + T*T) ! xdt, x e H,
™

is a so-called partial isometry, i.e. |Uzx| = |z| for :% in the closure of the range of
|T|, and that U*U is an orthogonal projection on the closure of the range of |T.
Also notice that the closure of the range of |T'| coincides with the closure of the
range of T*T. A similar observation goes for the operator 7.
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PROOF OF THEOREM 5.19. (1) From Proposition 5.16 it follows that the ele-
ment y*y is positive. From assertion (b) in Theorem 5.14 it follows that |y|* = y*y.
A similar argument applies to yy*. The assertion about the uniqueness follows from
assertion (b) in Theorem 5.14.

(2) This assertion follows from the fact that taking an adjoint is a continuous oper-
ation, and from the observe that for ¢ > 0 the equality

(e + y*y)_1 vt =y (FPe+ yy*)_1
holds.
(3) First we show that

: 2 (= 2 %, \ L _ : 2 (= 2 %, \ 1 _
el ] et = i Ty (eri) =0
(5.38)
If 0 < &1 < &9, then

2

£2
J ylyl (e +y*y) " dt

€1

€0 €2 . =
f f (e +y*y)  |ylyylyl (Ge +y*y) dtadty
g1 Jer

£ [E2
f J (e +y*y) " (y*y)” (t2e + y*y) " diydty
€1 €1

reo  E2 )\2
< sup J f 5 5 dts dtq
>0 o B+ ([t3+N)

€1

re2 5 )\2
<s dto dt
b f GESNICES

rea/VA pea/VA )\2
L (7 +1) (83 +1)

2
<s Varctan [ —= < 5. 5.39
Ji%( ' n<ﬁ)) : (5:39)

So from (5.39) the equality (5.38) follows. As a consequence we see that

= sSup J dtg dtl

A>0 Jo

0

) 2 e y—1
lim u, y| = f ylyl (FPe+y*y)  dt (5.40)
el0 T 0

exists. The element u. |y| can be rewritten in the form
4 o 2 w, V7L % 2 .
ue lyl = — y(tie+y™y) vy (e +y'y)  dhd
€ 0

4 [® (® . B
= f f yy*y (Be +y*y)  (t2e +y*y) " dt dts. (5.41)
€ 0
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From the definition of |y| together with (5.40) it follows that, as ¢ | 0, the expression
in (5.41) converges to

: 4 ([ * %, \ T w7
limu, |y| = QJ J yy*y (te + y*y) ! (tze + y*y) b dty dt
el0 ™ Jo Jo

(like in (5.23))

o0
= J yy*y (pe + y*y) 2 dp
0

_ 1 . % ®, \—1 % \—1
lim lim yy*y {(ce +y"y)" — (Re+y"y) "}

— lsilnél {y—cylee+y'y) '} =y (5.42)

The final equality in (5.42) follows from the estimate:

2

x \—112 _ 2 A #,\—1 e\ _ <
Hey(se%—y Y) H =g H(eeer Y)Yty (ee + y*y) H<i213<8+)\)2—4. (5.43)

The proof of the equality lim. o u* |[y*| = y* is exactly the same with the roles of y
and y* interchanged. This proves assertion (3).

(4) We have the equalities

4 0 o0 1 .
ulue |yl = poll f y* (e +yy*) "y (e +y*y) |yl dtdts
€ €
4 ([ ® 2 x \~1 /.2 % \—1
— ) J vy (e +y*y) (e +y™y)  ly| dtydts
4 0 o0 . N . 1 ) . ,
ey ) f |y y (te + y*y) (the +y*y) dti dt. (5.44)

In (5.44) we let € | 0 to obtain:
: * 4 e * 2 * -1 2 * -1
lim ulu. |y| = — lyl y*y (tle +y y) (t2e +y y) dty dts
el0 ™ Jo Jo

o0
=f lyl ™y (pe + y*y) > dp
0

=lim lim [y 5"y {(ee +y7y) " — (Re+y™y) "} =y, (545)
where in the final we employed the equality:
lifgla ly| (ce + y*y) ' = 0. (5.46)

The equality in (5.46) follows because

eA 1

lelyl (ce+y*y) | < sup— 5 = 5VE (5.47)
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In order to show that the first equality in (5.45) is valid it suffices to prove that

hmJ f yly*y (e +y*y) " (t2e +y*y) " dtydts = 0. (5.48)

el0 ’/T2

The first equality in (5.45) follows from the following estimates:

J J vy (Be + y*y) " (e +y*y) " dtidty

su f J N dty dt
< sup (&8 +22) (B + a2) 12

A
= sup Aarctan | — | arctan (E) < e (5.49)
A>0 € A 2

By interchanging the roles of y and y* the equality lim. o u.u’ |y*| = |y*| is obtained.
This completes the proof of assertion (4), and also of Theorem 5.19. 4
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1.4. On Gelfand transforms. Let A be a commutative Banach algebra with
identity e. In the following theorem A, stands for the collection of all non-zero
complex homomorphisms. Let h € Ay. Then we know that |h(z)| < |z], z € A: see
the beginning of Section 1. In other words A 4 is a weak*-closed subset of the closed
dual unit ball. Equipped with the relative weak*-topology the set A4 is a compact
Hausdorff space. To every x € A we can assign a continuous function 7 : Ay — C
such that

Z(h) = h(z), heAy. (5.50)
Again, let h € A 4. Tt also follows that
b ()" = |h (") < "],
and so |h(z)| < p(z), x € A. In other words

sup |Z(h)| = sup [h(x)] < p(z).
€Ay heA 4

Next let z € A, and let A\ € o(z). Then the ideal (Ae — x) A is contained in a
proper maximal ideal M. From Corollary 5.6 it follows that there exists a complex
homomorphism h : A — C such that h(y) = 0 for all y € M. Then A\ = h(z).
Conversely, if © € A, and if h € A4, then h(x)e — x belongs to null-space of h, and
hence h(zx| € o(zx).

5.21. DEFINITION. The space A, equipped with the (relative) weak*-topology is
called the maximal ideal space of the commutative Banach algebra A. The transform
x +— 7 is called the Gelfand transform of x € A.

Some of the results of in the following theorem follow from the previous discussions.

5.22. THEOREM. Let A4 be the maximal ideal space of a Banach algebra A. Then
the following assertions hold true.

(a) A4 is a compact Hausdorff space.

(b) The Gelfand transform is an algebra homomorphism of A onto a subalgebra
A of C(Ay). Its kernel is Rad(A), the radical of A, i.e. the intersection of
all its mazximal ideals.

(c) For each x € A, the range of T is the spectrum o(z). Hence ||Z|, = p(x) <
|zl

ProOOF. The Banach-Alaoglu theorem implies that the closed unit ball of A*
viewed as a complex Banach space is weak*-compact. Since it is not so difficult to
prove that A 4 is weak*-closed, it follows that A 4 is compact for the weak*-topology.
The remarks preceding Definition 5.21 then essentially prove Theorem 5.22. 0

The following theorem shows that a commutative C*-algebra A is *-isometric with
C (A4) as C*-algebra (with complex conjugation as involution).
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5.23. THEOREM (Theorem of Gelfand-Naimark). Let A e a commutative C*-algebra
with mazimal ideal space Ay. The Gelfand transform is then an isometric isomor-
phism of A onto C (A4), with the additional property that

7*(h) = Z(h) = h(z), x€A, heAy. (5.51)

In addition, if u € A is positive, then u = 0.

PROOF. Let h e Ay and u = u* € A. Let h(u) = a + if with «, 5 € R. Then,
since h(e) = |h| = 1, we have,
a® + (B+1)" = |h(u+ite)|* < u+ite]” = |u® + %] < |Ju?| + 2. (5.52)

From (5.52) it follows that a? + 8% + 28t < |u?|, t € R, and hence 8 = 0. Hence we
have h(u) = aw € R. If z € A is arbitrary, then we write x = u + v with u = u* and
v =v*. Then h (z*) = h (u — ) = h(u)—ih(v) = h(u) + ih(v) = h (u + ) = h(z).
This proves the equalities in (5.51). Next we will show that the Gelfand transform
is isometric. To this end we pick x € A and consider

122 = sup {Mm) he AA} — sup {E@(h) he AA}

—n

= p(e*z) = lim |(z*2)" | = [a*z] = |z (5.53)
The equalities in (5.53) show |Z|, = |||, # € A. The Stone-Weierstrass theorem

entails that the space A := {z: xe A} is dense in C (A4). Let fe C(Ay). Then
there exists a sequence (z,), © A such that lim |f —Zy[ , = 0. Since |z, — || =

|Zp, — Zl|,, it follows that (z,,), is a Cauchy sequence in A. The algebra A being
complete implies that there exists x € A such that x = nlgrolo Zn. It is the easy to see
that [ = 7.

From assertion (c) of Theorem 5.22 it follows that the range of 4 coincides with o (u).

Since, by hypothesis, o(u) is contained in [0, c0), the final conclusion in Theorem
5.23 follows. 0

5.24. PROPOSITION. Let A be a C*-algebra generated by x and x* and the iden-

tity. Suppose that x and x* commute; i.e. zx* = z*x. Define the mapping

—

U :C(o(x)) > A via the identity V(f)(h) = f (h(x)), h € Aa. If f is holomorphic
on a neighborhood Q of o(z), then U(f) = f(x).

PROOF. Let I' be a closed curve which surrounds o(x) in Q. If h belongs to A4,
then by Cauchy’s theorem we have

h(U(f) = T()(R) = F(h(x)) = —

T omi

| £ = hay i
r
(h is a continuous complex-valued homomorphis of algebras)

_h (;mfrm) (he — x)—ldA) 1 (J()).
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and hence the Gelfand transform of the element W(f) — f(x) is identically 0. The
mapping y — ¢ is a C*-algebra isomorphism from A onto C'(A), and consequently

U(f) — f(z) = 0. The proof of Proposition 5.24 is now complete. O

5.25. PROPOSITION. Let Gy be the connected component of G = G (A) containing
the identity e. Then Gh = |, oy {exp (21) ---exp (z,) 1 xj € A, 1< j < n}.

PrOOF. Put I' = |, .y {exp (z1) - - -exp (z,) - ;€ A, 1 <j <n}. Then
I 2{exp(z): xe A} 2{ye A: o(y)  C\ (—w,0]}.

In other words the subset I' contains an open neighborhood of the identity e. Next
let y be an arbitrary element in I'. Then the subset

{zeG:0(y'2) = C\(-x,0]}

is an open subset of I'. If o (y~12) = C\ (-0, 0], then, by symbolic calculus, y~ 'z =
exp(z) for some x € A, and hence z € I'. In fact x can be defined by
1 1
Nl -
$=J~«1—me+m15) @1z—ddp=J(O—pMHwn)Wz—wdﬂ
0 0
(5.54)
The equality exp(z) = y 'z follows because, with

Jl Aml fkﬂi log A, AeC\(—w0,0]
PN = —az =10 9 - 9 9
01—p~|—p>\p 12 &

we have A = exp (log \), so that y 'z = exp(x). Moreover the set
{zeG:0(y'2) cC\(-x,0]} =y{weG: g(w) < C\(-x,0]}

is an open subset of I'. It follows that I' is an open subgroup of G. Consequently,
G1 = Ueq, 21, where each coset zI', x € Gy, is open. Since G is open and
connected it follows that G; = I'. This completes the proof of Proposition 5.24. [

5.26. COROLLARY. Let z belong to G(A), and let xy, ..., x, be elements in A. Since
the curve t — xexp (txy)---exp (tz,)x™t, 0 < t < 1, connects the element e with
zexp (z1) - -exp (z,) z7Y, it follows that xexp (x1) -+ exp (z,) x~! belongs to Gy =
[ and thus can be written as a product of finitely many exponentials.

1.5. Resolution of the identity. The following definition will be employed
with  a compact or locally compact Hausdorff space with Borel field. It introduces
the reader to the concept of resolution of the identity. In case the resolution of the
identity pertains to a single self-adjoint or normal operator T' = SU(T) AdEr (M), then

we also say that Ep(-) is the spectral decomposition of T

5.27. DEFINITION. Let B = Bg be the Borel field of a topological Hausdorff space
S, and let H be a complex Hilbert space with space of bounded linear operators
L(H). A resolution of the identity on B is a mapping F : B — L (H) with the
following properties:
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E(@) =0, E(S) = I

Each E(B), B € B, is a self-adjoint projection;

E(Byn By) = E(B1) E(By), B1, B—2¢ B;

(d) If B; and By in B are such that By n By = ¢, then E (By u By) = E (By) +
E (Bs);

(e) For every z € H and y € H the set function B — E, ,(B) = (E(B)z,y),

B € B, is a complex Borel measure on B.

Let B — FE(B), B € B, be a resolution of the identity. It then follows that for every
x € H the set function B — E(B)x is an H-valued measure, which implies that

lim » E (Bj)z = E (0, B;) z,
j=1
whenever the sequence (B;); < B is mutually disjoint, that is B;, n B;, = & if
J1# Jo
5.28. THEOREM. Let A be commutative C*-algebra of continuous linear operators
on a Hilbert space H. Then there exists a (unique) resolution of the identity E on
the Borel field of the mazimal ideal space A4 with the property that

(Tz,y) = J TdE,,, (5.55)
Ay

where E\’W(B) = <E(B)x,y>, x,ye H.

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

| 2

>

» payin 10installments/ 2 years
» Interactive Online education
>

visit to
find out morel

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

180 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/LIGS

The equality in (5.55) is often written as 7' = Sfd@

PROOF. A proof is based on the Riesz representation theorem. For x, y € H we
consider the linear functional A, , : T'— (Tz,y), T € C (A4). Then

Aoy (T)| <[] Jel loll, Tec(an. (5.56)

Since, by Theorem 5.23, {f T e A} - A= C (Ay) the functional A, , is every-
where defined, and by (5.56) it is continuous, so that by the Riesz representation
theorem there exists a complex measure £, , on the Borel field of Ay such that

A~

(Tx,y) = J TE,, TeA. (5.57)
Ag

The representation in (5.57) holds for all x, y € H, and for all T € A. Then it
can be proved that there exists a resolution of the identity E such that E’x,y(B) =
<E(B)ZL‘7 y>, x, y € H, B Borel subset of A 4. This completes an outline of the proof
of Theorem 5.28. U

5.29. COROLLARY. Let A and E be as in Theorem 5.28, and let T € A. Then define
the resolution of the identity B — Er(B), B a Borel subset of C, by Ep(B) =
E [f € B], B Borel subset of C. Let f : o(T) — C be a bounded Borel function.
Then

foTdE = FN) dEr(N) (5.58)
Ay o(T)
in the sense that
foTdE,, = J FON) dEp ., (N (5.59)
Ap o(T)

where Er,,(B) = (Er(B)x,y), x,y € H. In particular, when f(X\) = X, A € o(T),
the equality

T=£(T))\dET()\) :L)\dET(/\)

holds.

Let L (U(T), Bory, ET) be the space of all complex bounded Borel functions on C
where two Borel functions fi, f; are identified whenever Er [ f1 # fo] = 0. Corollary

5.29 yields the existence of a symbolic calculus for bounded normal operators. In
other words the mapping &7 : L* (U(T), Bo(r)s ET) — L (H), defined by

Or(f) = (T)f(A) dEr(A), feL*(o(T), Boer), Er),

defines a symbolic calculus in the sense that ®r(fg) = Pr(f)Pr(g), Pr(f) =
S (f)*, f, g€ L* (o(T), Boery, Er). Moreover, f(A) = A yields ®7(f) = T. Often
&1 (f) is written as f (7).
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If U =T € A happens to unitary, that is if U*U = UU*, then from Theorem 5.28 it
follows that U can be written in the form U = SU(U) A dE((]1 )(/\. However, we write

U= f " it dEy(9). (5.60)

—T

Here Ey(B), B Borel subset of [—m, 7], is defined by
Ey(B) = EP {AeC: arg()\) € B}.

The argument of a complex number is counted between —7 (excluded) and 7 (in-
cluded).

Let f : C — C be a Borel measurable function. If (Dj)j be a sequence of open
subsets of C with the property that Er[f~'(D;)] = Er|[fe D;] = 0, for j € N.
Then we have, for x € H arbitrary,

Frea [ (D)) < ) Bres [ (D))] = 01

It follows that there exists a largest open subset V' of C such that Er[fe V] =
Er[f~' (V)] = 0. The complement of V is called the Er-essential range of the
function f. The following theorem shows that the spectrum of f (7") is contained
in the Er-essential range of f. A Borel function g : C — C is called Ep-essentially
bounded if there exists a finite constant M such that the essential range is contained

in a disc with radius M. This is equivalent to saying that, for some finite constant
M, Er[|f| > M] = 0.

5.30. THEOREM. LetT = Sg(T) AdE7(X) be a (bounded) normal operator on a Hilbert

space H, and let f : C — C be a Borel measurable function. Then the spectrum
of f(T) = SU(T)f()\) dE7()N) is contained in the Er-essential range of f. If f is
continuous, then o (f(T)) = f (o(T)).

PROOF. Let a belong to the complement of the Fr-essential range of the function

f. Then the function g : A — , A € C, is Ep-essentially bounded. It follows

PETeY
that 1 = (o — f(\)) g(A), and so by symbolic calculus

- L I (ar - [ R 15

_ (az [ o dETm) [ sovaso, (5.61)
o(T) a(T)

From (5.61) it follows that the operator af — f(T') has a bounded inverse g(T').
Consequently, a does not belong to the spectrum of f(77). This shows that the com-
plement of the Er-essential range is contained in the complement of the spectrum of
f(T). In other words, the spectrum of f(7') is contained in the Ep-essential range of
f. This proves the first part of the theorem. Next let f : o(7) — C be continuous,
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and let a € C. Then, sice f (o(7T)) is compact, the function is bounded (on

o(T) if and only if a ¢ f (o(T')). Like above it follows that a € o (f(7")) if and only
if e f(o(T)). This completes the proof of Theorem 5.30. O

5.31. THEOREM. LetT = T™* be a not necessarily bounded linear self-adjoint operator
with domain and range in the Hilbert space H. Then there exists a resolution of the
identity Er(-) on the Borel field of R such that Tx = §; X\dEp(N)z, x € D(T). In
fact x € H belongs to D(T') if and only if §z N2d (Er(N)z, z) < 0.

As in the remarks following Corollary 5.29 the equality Tx = §, AdEr(N\)z, = €
D(T), yields a symbolic calculus, by writing f(T)x = { f(A\)dEr(N)z, z € H,
whenever f : R — C, is a bounded Borel function. Again we have (fg) (T) =
f(T)g(T), and f(T) = f(T)*, for all complex bounded Borel functions f and g
defined on R.

OUTLINE OF A PROOF. Let U be the unitary operator defined by the Cayley
transform:
U=(I+1T)(I —T)"".
Then
T=i(I-U)I+U)".

www.alcatel-lucent.com/careers

¥, N

—

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

183 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/AlcatelLucent

Let Ey(-) be the resolution of the identity, or the spectral decomposition, corre-
sponding to U, i.e. U = §"_e™”dEy (). Define the resolution of the identity Ep(-),
which hopefully corresponds to T', by the equality
1
Er(B) = Ey lﬁ € (—m, ] : tan 519 € B] : (5.62)

where B is a Borel subset of R. Let f: R — C be a Borel measurable function, and

let £ € H be such that
4 1
tan =
[RaCTY

[ s dzae - |

—T

2

d{Ey(0)x,z) < .

Then we have

s

f (tan ;ﬁ) dEy (9)z. (5.63)

In (5.63) we insert f(A) = A and choose x € H such that

4 1
f tan <19)
o 2
Then we deduce

Bz = [ tan (L0) dEs@ye = [ - L a0y
J. [ e (30) [

- . 1(e”+1)

d{Ey(¥)x,z) < 0.

—f M=) g Nz =il -U)(I+U) " z=Te. (5.64)
ol vz =i x="Tu. .
The equality in (5.64) shows the equality Tz = {, A\dEr(N)z, v € D(T). This
completes an outline of the proof of Theorem 5.31. U

In the context of self-adjoint operators T" we have the following version of the spectral
mapping theorem.

5.32. THEOREM. Let T = SJ(T) AdE7()N) be a self-adjoint operator with domain and

range in a Hilbert space H, and let f : R — C be a Borel measurable function. Then
the spectrum of f(T) = Sg(T) f(N)dEr(N) is contained in the Ep-essential range of

fo If f: o(T) — C is continuous, then o (f(T)) is contained in the closure of
f(a(T)).

PROOF. The first part of the proof follows in exactly the same manner as in the
proof of Theorem 5.30. If f: o(T) — C is continuous, and if a € C does not belong

to the closure of f (o(T')), then the function g := is bounded on (7). By

symbolic calculus it follows that the function g(7') is a bounded inverse of af — f (7).
Consequently, such a € C does not belong to spectrum of f(7'). This proves the
second part of the theorem, and completes the proof of Theorem 5.32. U
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A densely defined closed linear operator 7' is called normal if D (T') = D (T™*) and
if T*T = TT*. The following theorem establishes a spectral decomposition for a
normal operator 7" with domain and range in the Hilbert space H.

5.33. THEOREM. Let T" be a normal operator with domain and range in the Hilbert

space H. Then there exists a resolution of the identity Er(-) pertaining to T' such
that T = §. AdEp(X). In fact a vector x € H belongs to D(T) = D (T*) if and only

if §IN? d(Er(N)z, ) < 0.

OUTLINE OF A PROOF. The operator 1" admits a polar decomposition of the
form T" = U |T|. Here we may assume that U is unitary, that |T| > 0, and that U
and |T'| commute: U |T| = |T|U. The polar decomposition is explained in Theorem
5.41. In fact the operator U in Theorem 5.41 is only a partial isometry. However,
in case T is normal we have N (T%*) = N (T), and we may assume that Uy = y
if Ty = T*y = 0. In addition, the closure of the range of 7™ is the same as the
closure of the range of T'. It follows that the partial isometry U which possesses the
property that U*U is the orthogonal projection on the closure of the range of T*
can be considered as a unitary operator. For details see Corollary 5.42. From the
construction of U it follows that it commutes with |T'|. The operator U admits a
resolution of the identity Ey(-): see (5.60). So we have U = " e dEy(0). The
operator | 7| is self-adjoint and positive. So by Theorem 5.31 there exists a resolution
of the identity Ejr(-) such that |T| = §” t dEi7((t). The resolutions of the identities
Ey(-) and Ejp|(-) commute in the sense that Ey (By) Eyr (B2) = Eyr) (Bs) By (By),
whenever Bj is a Borel subset of the interval [—m, 7], and By is a Borel subset of
[0,00). For the latter see Lemma 5.34. Define the resolution of the identity Er(-)
on the Borel field of C by

Er(B) = Ey @ B [(9,t) € (—m, 7] x [0,00) : A =te” € B].

Then T' = { AdEp()\)(t), and = € D(T) if and only if {, A d{(Er(\z, z) < .
This completes an outline of the proof of Theorem 5.33. U

5.34. LEMMA. Let T be a densely defined normal operator on a Hilbert space H.
Let T = U|T| be its polar decomposition where the operator U is supposed to be
unitary. Let Ey(-) be the resolution of the identity corresponding to U, and let
Er((-) be the resolution of the identity corresponding to |T|. Let By be a Borel
subset of the interval |[—m, |, and let By be a Borel subset of [0,00). Then the
equality By (By) Eyr) (Bz) = Ejr| (Bz) Ey (By). In other words the resolutions of the
identity Ey(-) and Eir((-) commute.

PROOF. From the constructions of U and |7T'| it follows that U |T'| = |T|U: see
the proof of Theorem 5.41. Then it also follows that U* |T'| = |T'| U*: see Corollary
5.42. The operator |T| is closed, and has dense domain. Let g € C be such that
Ru =0, and let A > 0. Then R (N + p|T|) = H, and the following inequality holds
for all x € D (|T)):

IAe + 7] ()] = A e
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From the Lumer-Phillips theorem it follows that —u|T| generates a contraction
semigroup {e‘t“m = O}: see Theorem 6.13. Moreover, from the way Theorem
6.13 is proved we infer that the operators U and e *IT! ¢ > 0, commute, and that
the same is true for U* and e=*/T! ¢ > 0. Since p is arbitrary in the closed right-half
plane, we deduce that

p(U*U) e = =Ty (U*,U), Ru =0, (5.65)

where p (X, )\) is a polynomial in two variables. By a standard approximation pro-
cedure and using the Stone-Weierstrass theorem the equality in (5.65) implies an
equality of the form:

0

fﬂ F () dEy(9) JO " ) dBm (1) = L

—T

o) dEm(®) | f () dE). (5.0
where f is any continuous function on the unit circle in C, and where g is any
function in Cy[0,00). In fact the equality in (5.66) is first proved for g(t) of the
form g(t) = {5 e “'p(£) d§ where ¢ is an arbitrary function in L' (R). By another
limiting procedure the equality in (5.66) also holds if f and g are indicator functions
of open and compact subsets of the unit circle and the positive half-axis respectively.
But then it is also true for indicator functions of Borel subsets. However, the latter
is the same as saying that the resolutions of the identity Ey () and Ejp(-) commute.
This completes the proof of Lemma 5.34. O
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In the context of (unbounded) normal operators T we have the following version of
the spectral mapping theorem.

5.35. THEOREM. Let T = SU(T))\dET()\) be a normal operator with domain and

range in a Hilbert space H and let f : C — C be a Borel measurable function.
Then the spectrum of f(T) = S T)f YdEr(\) is contained in the Ep-essential

range of f. If f: o(T) — C is continuous, then o (f(T)) is contained in the closure
of f (a(T)).

The proof of Theorem 5.35 follows exactly the same pattern as that of Theorem
5.32. Therefore it is omitted.

5.36. THEOREM. Let T' = {NdE(\) be a self-adjoint (bounded or unbounded) oper-
ator in a Hilbert space H. Then, for —o0 < a < b < o0,
1 ®
lim — {((T—ié)]—T)_l (r+ie) I =T)" }de
1 1 1 1
S B(ab)f+ LB} f+ LB = BB f 4 LB} - SE@LS. fen

As a corollary to the previous theorem we see that spectral decompositions cor-
responding to a self-adjoint operator are unique. Observe that F{a} # 0 implies
that E{a} is the orthogonal projection onto the subspace consisting of those vectors
which are eigenvectors of the operator T' corresponding to the eigenvalue a.

PRroOOF. Fixe > 0 and f € H. Then the following equalities are self-explanatory:

QMJ{ (r—ie) I—T)" = ((r+ie) I - T)~ }de

I -
=57 ) 2 @1 (T=T)) ' fdr
™

i
ZJ JQ@& 4 (r—=N?) dE()) fdr
(apply Fubini’s theorem)

=5 JJ 2ie (% + (1 — A)Q)_ldeE (\) f
o)

21

(substitute 7 — A =

1 b=A)/e 1
= — f dodE(N) f
(

™ J a—\)/e 1+ 02
1 b— )\ — A
= — <arctan — arctan a ) ay ()\> f
T € €
1( b—\ - A
= — <arctan — arctan a4 ) dE ()\) f
T J(=0,a) € <
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1 b—\ - A
+ — ( <arctan — arctan = ) dE (\) f
™ J{a} € 9

b— A a— A
— arctan
€ €

Jar o s

+ — [‘ <arctan
T J(a,b)

1 _ —
+ — f (arctan b=A_ arctan A) dE(N) f
b}

7'("){ 9 £

1 b— A - A
+ — ( (arctan — arctan - ) dE () f
™ J(b,00) g 9

1 b— A\ - A
= — f <arctan — arctan = ) dE (\) f
(—Q’),a)

™ € 9

L (arctan b = a) E({a}) f

™

1 _ _
+ J <arctan b=A + arctan A a) dE () f
(a,b) €

™ £

1 b—a
+ = (arctan . ) E ({b}) f
+ ! J (arctan Ama arctan A~ b) dE (\) f. (5.67)
™ (b,00) 9 £
In (5.67) we let € tend to 0 from to obtain the result in Theorem 5.36.
Notice that lgg)l arctan (g) = g whenever ¢ > 0. U

5.37. THEOREM. Let T € L(H) be a normal operator, and let the C*-algebra A
be generated by the operator T and I. Then A contains T* and A is a commu-
tative C*-subalgebra of L(H). Moreover, there exists a resolution of the identity
E defined on the o-field Byry consisting of all Borel subsets of o(T) such that

f(T) = SU(T) FNAE(X) for all functions f which are holomorphic in a neighbor-
hood of o(T). In particular it follows that T = SU(T) ME(X). Moreover an operator

So € L(H) commutes with T if and only it commutes with E(B) for all Borel subsets
B of o(T).

Proor. Following Theorem 12.22 in Rudin’s book there exists a resolution of
the identity E defined on the Borel field of the maximal ideal space A4 of A such
that S = {, SdE for all S € A. Let ¢ : Ay — o(T) be the identification of A4
and o(T') given by ¢(h) = h(T') = f(h), h € A 4. Then ¢ is a homeomorphism from
the compact set A4 onto the compact set o(T"). For every x, y € H we define the
image measure I, , under ¢ on B, (7, i.e.

A~

Ew’y(B> = E%y [g& S B] = le o QOdEx’y, Fe 30('1“),

Download free eBooks at bookboon.com



Partial differential equations and operators Operators in Hilbert space

and define E(B) by the equality (E(B)z,y) = E,,(B), z, y € H. Then E(.)
is resolution of the identity defined on B,). Moreover, for f a bounded Borel
function defined on o(7T') we have

<< ! (”E(‘”)) $,y> - | oy E@ne,y)

o(T)

- LAfosodEx,y - <<LAfosodE) x,y>,

or what is the same SU(T) FVE@N) =, fopdE = Sa,f (f) dE. In addition, let
f be a function which is holomorphic in a neighborhood of o(T'). Let T" de a contour
that surrounds ¢(7") in an open neighborhood of ¢(7") on which f is holomorphic.
Then by Cauchy’s formula we have

TR
_ LA £ (7) db, - L%lr | s (A7) anat,

1J RN
— | royor -1 tardE,
|, o] rv0r-) y

~
~

-] F(T)dE,, = (f(T)z,y)

and so §, ., f(A)E(dN) = f(T).

> Apply now
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Finally, let Sq € L(H) be such that SyT" = T'Sy. Then by the Theorem of Fuglede-
Putnam-Rosenblum we see that SyT* = T*Sy, and hence Sop (T, T*) = p(T,T*) Sy
for all complex polynomials p ()\,X). Since the polynomials p (T, T*) are dense in A
it follows that SpS = Sy for all S € A. Then Theorem 12.22 in Rudin’s book [113]
implies that SoE(B) = E(B)S, for all B € B, (). Conversely, if SoE(B) = E(B)Sy
for all B € B, (r), then

Sop (T, T%) — sof p (A X) B(d) = J p (A X) E(N) So = p (T, T*) So.

o(T) o(T)
This completes the proof of Theorem 5.37. O

The theorem of Fuglede-Putnam-Rosenblum can be formulated as follows. Recall
that an operator M is called normal whenever M*M = MM™®*. If an operator M
is normal, then the operator U := eM*e=M — ¢M*~M ig ynitary in the sense that

U*U = UU* = I, and so |U|* = |[U*U| = 1.

5.38. THEOREM. Let M and N be bounded normal operators on a Hilbert space H .

Let T : H — H be a bounded linear operator with the intertwining property, i.e.
MT =TN. Then M*T =TN*.

Proor. Consider the operator valued analytic function

* _ * * ) BY _ * *_ ) AN — *
f: )\'—>€/\M Te AN — e)\M e )\MTe)\Ne AN*® eAM )\MTe)\N AN (568)

where in the first equality we used the intertwining property of the operator 7', and
in the second one the normality of the operators M and N. As observed above the
operators e?* =AM and eAN*-AN ) ¢ C, are unitary. By (5.68) it follows that the
operator norm of the function f can be estimated as follows:

IF )] < =30 XV =3N] = 7 (5.69)

From (5.69) we see that the everywhere defined analytic function A — f(A) is
bounded. Liouville’s theorem then implies that f(A) = f(0) = T, and hence
MM T — Te*V | X e C. Consequently, by taking derivatives we obtain M*T = TN*.
This completes the proof of Theorem 5.38. O

2. Closed linear operators

Throughout this section H stands for a complex Hilbert space with inner-product
(-,-), and norm |z|* = (x,x). Let T : H — H be a closed linear operator withe dense
domain D(T') ¢ H and range R(T) < H. Its graph G(T) is a closed linear subspace
of the product Hilbert space H x H, i.e. G(T) = {(z,Tx) : x € D(T)}. Its adjoint
T* is a linear operator with domain D (7%*) and range R (7%) in H. Its domain
D (T*) consists of those vectors y € H for which the linear functional x — (Tx,y),
x € D(T), is a continuous linear function on H. By the Riesz-Fischer representation
theorem there exists, for a given vector y € D (T*) a vector z = T*y € H such that

(Tx,y) = (r,z) = (x,T*y), for all x e D(T).
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Since D(T') is dense the vector z is unique, and therefore we are entitled to write
z = T*y. Moreover, the mapping y — T*y, y € D (T%), is linear. Its graph G (T*) =
{(y, T*y) : ye D(T*)} is a closed linear subspace of H x H. Let the operator
V : H x H— H x H by the (unitary) anti-flip operator: V(z,y) = (—y,x), (z,y) €
H x H. In addition write Q = I +T*T, so that D(Q) = {z € D(T) : Tx € D (T*)}.
A densely defined operator T is called symmetric if 7' < T*. The latter means
that for all z, y € D(T) the equality (T'z,y) = (x,Ty) holds. It also means that
G(T)c G(T*). If T =T*, then T is called self-adjoint. A linear operator T with
domain and range in H is called positive, denoted by T' = 0, if (T'z,x) > 0 for all
x e D(T). If T is positive, then (x,Tz) = (T'z,z), x € D(T). By the polarization
formula we see (T'z,y) = (x,Ty), =,y € D(T). Consequently, such operators are
symmetric. If, in addition, D(T) is dense in H and closed, then T* exists, and
T =T** < T*. The equality T' = T** follows from assertion (2) and (4) in Theorem
5.39 below.

In the following theorem we collect some properties of closed densely defined oper-
ators.

5.39. THEOREM. Let T be a closed densely defined linear operator with domain and
range in the Hilbert space H. The following assertions hold true.

(1) The space H admits the orthogonal decomposition: H = N (T*) @ R (T).

(2) The space H x H with its natural Hilbert space structure admits the orthogo-
nal decomposition: Hx H = VG(T)®G (T*), and hence G (T*) = VG(T)*.

(3) Let the vectors a and b belong to H. Then the system of equations —Tx+y =
a, x + T*y = b has a unique solution with x € D(T') and y € D (T*).

(4) The domain of T* is dense, T** exists and coincides with T';

(5) The operator @ is a one-to-one mapping from D(Q) onto H, it satisfies
Q = I, and there are bounded linear operators B and C' that satisfy |B|| < 1,
IC|l <1, C=TB, and

B(I+T*T)c (I +T*T)B =1.
Moreover, B = 0, and T*T is densely defined and self-adjoint.

(6) IfT' is the restriction of T to D (T*T), then the closure of G (T") in H x H
coincides with G(T'). In other words D (T*T') is a core for T.

5.40. PROPOSITION. IfT =T* and T = 0, then o(T) < [0, ).

ProOOF. Let A € C be such that S\ # 0. Then, from the equalities
At + Ta|® = A + 2R\ (T, ) + | T = (SN |z + |[RA\z + Tz,
it follows that

Az + Tx| = |SA||z], Ae C, and |Az + Tz| = R\ |z, RA >0, 2 € D(T).
(5.70)
From (5.70) it follows that the range of the operator AI + T is closed whenever
SN # 0 or RA > 0. For the same range of values of A it also follows from (5.70)
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that the null-space of A\ + T is the singleton {0}. By assertion (1) and the fact
the T' = T* we infer that R(Al —T) = H and N (A —T) = {0} for S\ # 0.
Consequently, S\ # 0 implies A < C\o(7T). It also follows that R(A\[ +T) = H
and N (A +T) = {0} for ®A > 0. So that R\ > 0 implies —\ ec C\o(T"). This
leads to the conclusion that o(T') < [0,0), and completes the proof of Proposition
5.40. U

An operator 7' is called essentially self-adjoint if the closure of its graph is again the
graph of an operator 7', and if this closure is self-adjoint. Since a densely operator T’
is closed if and only if 7" = T**, T is essentially self-adjoint if and only if 7%* = T™.

PROOF THEOREM 5.39. (1) It is clear that N (%) = R (T)". Then it follows
that the subspace N (T%) + R (7)) is closed in H. We shall prove that it is dense. So
let a € H be such that (z,a) = 0 for all x € N (T*), and also such that (T'y,a) =0
for all y € D(T"). Then a belongs to D (T*) and T*a = 0. So a belongs to N (7).
But then we choose x = a to obtain that (a,a) = 0, and so a = 0. This proves

assertion (1) of Theorem 5.39.

(2) Let (x1,y1) and (z3,y2) be members of H x H. Then their inner-product, or
scalar product, ((x1,y1), (z2,y2)) is defined by

(@1, 01) 5 (22, 2)) = (w1, 22) + (Y1, 42) -

Iy
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So it is easy to see that VG(T') and G (T*) are orthogonal subspaces in H x H. It is
also easy to see that G (1) is closed in H x H, and the same is obvious for VG(T).
It follows that the space VG(T') + G (T*) is closed in H x H. We shall prove that
it is dense. Let the pair (a,b) € H x H be orthogonal to both subspaces V(G(T))
and G (T%). It follows that

— (Tz,a) + (x,b) = ((—Tx,x),(a,b)) =0 for all z € D(T), and

(y,a) +(T"y,b) = {(y. T"y) . (a,b)) = 0 for all y € D(T). (5.71)
From the first equality in (5.71) it follows that a belongs to D (T™*) and that b =
T*a. Plugging this into the second equality in (5.71) and putting y = a shows

(a,a) + (T*a,T*a) = 0, and hence a = 0. Since b = T*a we see that b = 0 as well.
This proves assertion (2) of Theorem 5.39.

(3) This assertion easily follows from the decomposition in assertion (2).

(4) If the vector a € H is orthogonal to D (T*), then the vector (a,0) is orthogonal
to the graph G (7*), and so (a, 0) belongs to VG(T). That is a = =70 = 0. Whence
the first part of assertion (4) has been proved. Since D (T%) is dense its adjoint 7**
exists. It readily follows that 7" < T**. By the decomposition in assertion (2) it
follows that 7" = T™**. This proves assertion (4) of Theorem 5.39.

(5) Fix h € H and choose operators vectors f € D(T') and g € D (T*) such that

(0,h) = (=Tf, f) + (9, T"9g) (5.72)

in the space H x H. The mappings h — f and h — g are linear; call them B
respectively C. Then TTBh = Ch and h = Bh + T*Ch = Bh + T*T'Bh. In

other words h = (I + T*T') Bh. This means that the operator B is a right inverse of
I+T*T. Since, for any h € H, Bh belongs to D (T*T'), we also have, for g € D (T*T),
[+T*T)(g—BUI+T'T)g)=UI+T"T)g— (I +T*T)B(I+T*T)g
=({I+T*T)g—(I+T*T)g =0,
we infer that the vector g — B (I + T*T') g belongs to the null-space of the operator
Q = I +T*T. Since (Qf,f) = (f.f), f € D(Q) = D(T*T), it follows that
g=B(I+T*T)g. In other words the operator B is also a left-inverse of I + T*T.
Since the operator B is everywhere defined and symmetric, it is self-adjoint, and
since N(B) = {0} it has dense range R (I + T*T)"" = D (T*T). It follows that its
inverse is I + T*T is self-adjoint, and that the same is true for 7*7T. From (5.72)
and the definitions of the operators B and C' it follows that B = (I + T*T)~" and
C=T(I+T*T)"", and

and therefore
|B|* = |TBh|* + | Bh|* + |Ch|* + | T*Ch|*
> || B + |Ch”.
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Whence |Bh|]” + |Ch|?* < |h|]*. This proves assertion (5).

(6) From the definition of 7" it follows that
G(T)={(I+T*T) " 2, T(I+T*T) 'z): ve H} = G(T). (5.74)

Assuming that G (7”) is not dense in the closed subspace G(T"). Then there exists
a pair (a,Ta) € G(T) such that

(r,a) = (I +T*T) 2, TI +T*T) '2),(a,Ta)) =0, zeH. (5.75)

Insert x = a into (5.75) results in @ = 0. Consequently, G (7”) is dense in G(T)
which is assertion (6).

This completes the proof of Theorem 5.39. 0

The following theorem has its analogue in the context of C*-algebras. The main
result is that a closed linear operator in a Hilbert space can be written in the form
T = U|T|, where U*U is an orthogonal projection on the closure of the range of
T*T. The theorem is patterned after Theorem 5.19.

5.41. THEOREM. Let T be a closed densely defined linear operator in a Hilbert space.
Define the following operators:
o0
Ur = QJ T (PI+T*T)  zdt, zeH,
T Jo
2 [~ -1
IT|(x) = = T*T (*I + T*T) " xdt, xe D(T),
0

2 [* .
T () = = | 1T (T +TT*) " wdt, xeD(T*),
T Jo

(5.76)

Then the following assertions hold true:

(1) The operators |T| and |T*| are well-defined, positive, have the same domain
as T and T* respectively, and satisfy the following equalities: |T|2 =T*T,
\T*]2 = TT*. These operators are the only self-adjoint positive operators
with these properties.

(2) The operator U is well-defined, it has norm 1, and its adjoint U* is given
by )

Ue = J T* (e + TT*) ' wdt, xe H. (5.77)
T Jo
(3) The following equalities hold:

UT|(z) = Ta, € D(T), and U*|T*|(z)=T*(zx), xeD(T*). (5.78)

(4) The operators U*U and UU* are orthogonal projection on the closures of the
ranges R(T*T) and R(TT*) respectively. In fact the following equalities
hold:

U*U|T| (z) = |T| (z), @ € D(T), and UU*|T*|(z) = |T*| (z), = € D (T*). (5.79)
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PROOF. (1) The assertions about the domains of |T'| and |T%| is a consequence
of the equalities in assertions (3) and (4). The proof of the equality |T|* (x) = T*T'z,
x € D (T*T) can be patterned after the proof of assertion (1) of Theorem 5.19. The
uniqueness of these square roots follows like in the proof of assertion (b) of Theorem
5.14. Let us give more details. Let 0 < ¢ < R < o0, and put

2 (B _
Ug,Rx=_f T (I +T*T) Ywdt, vel.
T

£

Then "
2 _
Uk g = _J T* (1 +TT*) ' wdt, xe H. (5.80)
’ ™

€
Since

4 ("R _ _
Uz RUe px = —QJ f T*T (21 + T*T) " (31 + T*T) " wdtydty, =z € H, (5.81)
’ ™ 15 €

we see that
) 4 [ A2
U gl? = |U Uer]| < sup — dtydt, =1, (5.82
Wel? = 102Ul < 59055 | | gy 2 (552

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E:/Helpmyassignment

195 Click on the ad to read more

Download free eBooks at bookboon.com


http://www.helpmyassignment.co.uk

By the same argument we have HU:,RH2 = HU57RU;RH2 < 1. Since, for z € D(T) we
get

9 (R 3 2 (B _
f T*T (21 + T*T) " v dt = f T* (21 +TT*) " Tedt = UFgTe  (5.83)
™ Je T Je ’

we infer

< |Tz|, zeD(T). (5.84)
s

Introduce the subspace G’ of G(T') defined by

2 (" 1
f T*T (I + T*T)  xdt

2 (" -
G = {(%Tx) eG(T): lim f T*T (1 + T*T) " zdt exists in H} .
el0,R—0 77
(5.85)
Then by the inequality in (5.84) G’ is a closed subspace of G(T'). By assertion (6) of

Theorem 5.39 this space is dense in G(T') (relative to the graph norm). Consequently,
G' = G(T). Tt follows that D(T) = D (|T]), and that

£

2 (" _

IT|(z) = lim J T*T (I + T*T) Yzdt, exists for z e D(T),
el0,R—00 T c

and, consequently, |T| is well-defined. Next let x € D (T*T). Then exactly in the

same manner as we proved assertion (1) of Theorem 5.19 we infer (see the proof of

(c) in Theorem 5.14 as well):

4 o0 o0 B B
T (z) = = (T*T)Qf (21 + T*T) " (821 + T*T) ™" w dty dt

7T2 € 0
e}

— f (T*T)* (pI + T*T) >z dp
0

= lim lim {7*T (el + T*T)"' — (RI + T*T)"'} T*Tx

el0 R—o0

=lim lim {T*Tx —ex + (el + T*T) " & — (RI + T*T) "' T*Tx}
|0 R—w

— T*Tx. (5.86)

Let the operator S > 0 be such that S? = T*T. Then, as in equality (5.22) in the
proof of assertion (b) of Theorem 5.14 we have

Q0
QJ S* (1 + 52)_1 xdt = Sa:—2—€x+i, 2(zI 4+ 8) " xdz, ze D(S). (5.87)
T ). T miJp,

By assumption S? = T*T, and so in (5.87) we let € tend to 0 to obtain Sz =
|T| (z), x € D(S). This shows that the only positive square root of T*T is given
by |T|. Similar arguments and conclusions apply to the operator TT* and T*.
This completes the proof of assertion (1) except that we still have to prove that
D(T) < D(|T|), and D (T*) = D (|T*|). For the converse inclusions we first prove
that ||T| (x)| = |Tz|, = € D(|T|). This equality is easily established for x €
D(T*T) =D (]T\Q) Let = belong to the domain of |T|. Since, by construction, the
operator |T is self-adjoint, by assertion (6) applied with |T'| there exists a sequence
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(x,), < D (|T|2) = D (T*T) with the following properties lim, .z, = x, and
lim, o0 |T| (2,) = |T| (). Then

[Ty = Tam| =T (2n — xm)| = [IT] (20 = 2m)],

and hence (T'z,,), is a Cauchy sequence in H. It follows that y = lim,,_,,, T'z,, exists.
The operator T being closed, and lim,,_,,, x, = z, we infer z € D(T) and y = Tx.
These observations lead to

|Tz| = lim [Tz, = lim [|T|z,| = ||T] ()], xeD(|T]). (5.88)
Finally, let « € D(T). Then there exists a sequence (x,), < D (T*T) such that
lim, ,nx, = x and lim, ., x, = x. By the equalities in (5 88) it follows that

(7| (zy)),, < H is a Cauchy sequence, and therefore its limit y := lim,_, |7 (x,)

exists. Since |T'| is a closed operator it follows that x belongs to D (|T|), and that
= |T'| (x). All this implies that D (T") = D (|T|) and that |||T| (z)| = ||Tz| for

x € D(T). The same argumentation shows that |[|7*| (z)| = |T*x| for z € D (T*).

(2) From (5.82) we see that the subspace L ¢ H defined by

L= {x € H: lim lim U, gxdt exists in H} (5.89)

el0 R—oo

is a closed subspace of H. If x € N(T'), then

2 (" - 2 (7 -
Ue rt = J T (1 +T*T)  wdt = J (1 +TT*) ™ Taedt =0,  (5.90)
s T ).

and so z belongs to L. If x is of the form x = T*y, y € D (T*), then we have

R -1 2 (" -1

T (I +T*T)  T*ydt = = J TT* (I +TT*) " yadt.
™ &€

(5.91)

2
U.rr = U. g Ty = J
s

€

From (5.91) and assertion (1) we infer that

2 (" _
lim U,pr= lim U,gT*y= lim f TT* (1 + TT™) 1ydt=|T*|(y).

el0,R—00 el0,R—00 el0,R—0 T c
(5.92)

From (5.90) and (5.92) it follows that L > N(T) + R(T*). By assertion (1) of
Theorem 5.39 we see that the subspace N(T') + R (T™*) is dense in H. Since L is a
closed subspace, we deduce that L = H. Therefore the operator U is well defined.
By the expression for U in (5.81), it follows, in the same manner as we proved
that U is well-defined, that U* is well-defined as well, and that U* is given by (5.77).
This shows assertion (2).

(3) Let x € D(T) = Then

D(|T1).
U|T|(z) —TT* f f (21 +T*T) ™" (21 + T*T) ™" wdty dty

= TT*TJ (pI +T*T) ™ zdp
0
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= lim TT*T{(I+T*T)"' — (RI+T*T)""}

e|l0,R—00
= lim {Te—-TT*(RI+TT*) ' Tx —eT (el + T*T) ' 2} = T
e|l0,R—00
(5.93)
In the final step we employed the following equalities:
lim TT* (RI + TT*) 'y =0, and lim &7 (1 + T*T) 'y =0, ye H. (594)
—00 €

The first limit is 0, because this is clear for y € D (T'T™). Since D (T*T) is dense in
H and |R(RI + TT*)_IH < 1, R > 0, the first limit is 0 for all y € H. The second
limit is 0 because
_ _ _ A 1
|eT (eI +T*T) 1H2 =& |(el + T*T) ' T*T (eI + T*T) | < sup 872 = —¢.
0 (e+A)° 4
The proof of the equality U* |T*| = T* is very similar. This proves assertion (3).

(4) Let x € H. From the properties and definitions of the operators U and U* we
deduce the equalities:

4 o0 o0 B _
U*Uz = ,J J T*T (21 + T*T) ™ (1 + T*T) " w dt, dty
™ Jo Jo
o0}

— T*TJ (pI + T*T)zdp
0

. « e —1 * ey —1

_15%1]%%@ T(el+TT) o —T*T (RI+T*T) x}. (5.95)
Like in the proof of assertion (3) the second limit in (5.95) vanishes. The fist limit
also vanishes if T*T'z = 0. If x = T*Ty, then the first limit in (5.95) is equal to x.
In addition, we have

|T*T (eI + T*T)7Y| < 1,

and so U*U is the orthogonal projection on the closure of R (T*T'). In particular it
follows that U*U |T'| = |T|. The same argument shows that UU* is an orthogonal
projection on the closure of R (T'T*). In particular it follows that UU* |T*| = |T*|.
This completes the proof of assertion (4).

Altogether this wraps up the proof of Theorem 5.41. 0

5.42. COROLLARY. Let T be a densely defined normal operator. This means that T
is closed and densely defined, that D (T*) = D (T), and that T*T = TT*. Then
there exists a unitary operator U and a positive operator |T| such that T = U |T).
Moreover, U|T| = |T|U.

PROOF. On the range of |T'| define U as in Theorem 5.41. On the null space
N (|T|) define U as the identity operator. Notice that, since 7" is normal, |T| = |T*|,
and that N (|T']) = N (T) = N (T*). Then from Theorem 5.41 it also follows that
|T|U = U|T|. This completes the proof of Corollary 5.42. O

Download free eBooks at bookboon.com



CHAPTER 6

Operator semigroups and Markov processes

We will discuss a number of aspects related to one-parameter operator semigroups.
We will present some general theory, give some examples, include a result on initial
value problems, and make a link with Markov processes, and give some details
on Feynman-Kac semigroups. Unfortunately, not all aspects of this theory can be
discussed. In particular, this is true for applications of (generators of) semigroup
theory, for semigroups related to population dynamics, and for delay equations. In
Chapter 7 we will discuss analytic semigroups and certain aspects of the Crank-
Nicolson iteration scheme.

1. Generalities on semigroups

Let (X, |-|]) be a Banach space and let {S(t) : t = 0} be a family of bounded linear
operators from X to X. This family is called strongly continuous if it possesses the
following properties:

(i) S(0) =1, S(s+1t) = S(s)oS(t), for all s, t = 0;
(i) limygo [S(¢t)f — f| =0 for all f e X.

6.1. REMARK. Suppose that the family {S(¢) : ¢t = 0} possesses property (i). Then
it possesses property (ii) if and only if

(ii') limeyo (S(£)f, f*) = (f, f*) for all f € X and for all f* € X*.

Property (i) is called the semigroup property, property (ii) is the strong continuity
at t = 0, and (ii*) is the weak continuity at ¢ = 0.

6.2. REMARK. Often a strongly continuous semigroup {S(t) : ¢ = 0} is written in the
form S(t) = exp (tA) or S(t) = exp (—tH). For symbolic manipulation this notation
is very convenient. For example, for A > 0 large enough,

o0 0
f e MS(t) dt = J et gt — (AT — A7,
0 0
Indeed it can be proved that the collection {R(\) : A > w} is a resolvent family,
where each operator R(\), A > w, is of the form R(\) = (A\] — A)™", for some
closed, densely defined linear operator A with domain and range in X. the number
w is chosen in such a way that |S(¢)| < Mexp(wt), t = 0. Such a number w
exists. If (X,|-||) is a Hilbert space, and if each operator S(t) is self-adjoint (i.e.
S(t) = S(t)*), then M may be taken the constant 1.
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6.3. THEOREM. Let {S(t) :t = 0} be a strongly continuous semigroup and put

A olim 2O -1
tl0 t
This means that

oS- f
Af =lim———

for f belonging to its domain

D(A) = {feX lim (t){_f e:m'stsinX}.

tl0

Then A is a closed densely defined linear operator with the following properties

()\I AYRN)f = f, for all f e X;
)\)()\I A)f f, for allfeD( );

(
D(A) zmplies S( )f € D( ) and AS( )f S(t)Af;
X implies So s)fdse D(A) and ASO s)fds=S(t)f — f.
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6.4. PROPOSITION. Let {S(t) :t = 0} be a weakly continuous semigroup in L(X).
Then the following assertions are true:

(i) There exist real constants M and w such that
[S(#)| < Mexp (wt), t=0.

Moreover, for A > w and for f € X the integral Sgo e MS(t)fdt can be
interpreted as an element of X. Upon writing R(\)f = SSO e MS(t)f dt for
A > w the resolvent identity follows:

R(M)f=RX) [ = A= A)R(N)RM) [, M, Ao >w, feX.
Integrals of the form SSO ©(t)S(t) f dt, where the functions ¢ are Borel mea-
surable and satisfy §, |¢(t)| et dt < o, are elements of X as well.
(il) Hmys =0 |S()f — S(s)f| =0, fe X;
(iii) Let M and w be as in (i) and put
| £, = sup{exp (—wt) [S(£) f] : £ = 0} .
Then

(@) Ifl < [fly, < M| fl, for fe X;
(b) llexp(=ws)S(s)f,, < [5(s) [, for feX.

6.5. REMARK. The topology induced by |-|| coincides with that of ||| , the geometric
properties are lost. The semigroup {exp (—ws)S(s) : s = 0} consists of contractive
operators in the space (X, |-|). The assertion in (ii) says that a weakly continuous
semigroup is in fact strongly continuous.

6.6. REMARK. Fix f € X. From the proof of the assertions in (i) it follows that the
following conditions on the Borel measurable ¢ : [0,00) — C suffice to guarantee
that the integral SSO ©(t)S(t) f dt belongs to X:

(a) For every f* e X* the integral { " |op(t) (S(t)f, f*)| dt is finite;
(b) The collection functions
{t = @y ppx(t) = () (SO, f7) - [Te X7 | <1}
is uniformly integrable in the sense that for every ¢ > 0 there exists 0 <

g. € L* ([0, 00)) such that, for all f* € X* |f*| < 1, the following inequality
holds:

J\|¢ ’> ‘(I)%ﬁf*(t” dt <eE.
o, f,f¥|FTe

The assumption in (a) implies that the integral Sgc ©(t)S(t) f dt belongs to X**. A
consequence of (b) together with Theorem 8.30 is that the latter integral belongs to
X.

PROOF OF PROPOSITION 6.4. The first part of assertion (i) follows from the

Banach-Steinhaus theorem. First it is shown that, for some § > 0, the supre-
mum sup {||S(¢)| : 0 < &} is finite. If this were not the case, then there would
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exist a sequence (t,:n € N} of strictly positive real numbers such that ¢, | 0
and ||S (t,)|| T oo, if n tends to co. However, by assumption (ii’) we know that
for every f € X and every f* € X* lim, o (S (t,) f, [*) — (f, f*) = 0. Hence
SUP,en (S (80) f, f*)| < oo for all f € X and for all f* € X*. Consider, for
f € X fixed, the sequence of continuous linear functions A, : X* — C, defined
by A, (f*) = (S (t,) [, f*). Then sup,, |A, (f*)] < oo. But the Banach-Steinhaus
theorem then says that sup,.y [|S (t,) f|| < o0. Since f € X is arbitrary, another ap-
plication of the uniform boundedness principle (or the Banach-Steinhaus theorem)
then implies sup,, |S (t,)| < oo. This is a contradiction. As a consequence we infer
that, for some 0 > 0, supy<,<s [S(t)| < 0. Next we have S(t) = S(6)"S(t — nd),
where nd <t < (n+ 1)d. Thus

[S@)] < sup |S(s)|" < sup [|S(s)]" < Mexp (i),

<s<6 0<s<6
1
where M = sup {||S(s)|| : 0 < s < d}, and where w = glogM.

Next we want to show that for A > w and f € X the integral §; e *S(t)f dt can be
interpreted as a member of X. We first observe that, for f € X fixed the subspace
Xy which, by definition, is the smallest closed subspace of X which contains all
vectors of the form S(¢)f, t = 0, is separable. From the right-continuity of the
functions ¢ — (S(t)f, f*), f* € X*, it follows that the space X is separable for the
weak topology. But then it is also separable for the norm-topology. By considering
the functional

Ap: f* »—»L eSO f, f*) dt, f*e X*

we see by the Lebesgue’s dominated convergence theorem that lim,, ., Af (f¥) =0
whenever {f*}_ is a sequence in X* which converges to 0 for the weak*-topology.
By the Banach-Steinhaus theorem such a sequence is automatically bounded. Also
recall that, by the Hahn-Banach extension theorem, continuous linear functionals
on Xy have an extension to all of X while preserving their norm. From Theorem
8.30 it follows that there exists a vector g € Xy such that

0

Ay (F) :J eMUS(EF, ) db = (g, f*) for all f* e X*.

0
The vector ¢ is written as

g=R\)f = LOO e MS(t)f dt.

Let the Borel measurable ¢ : [0,00) — C and f € X be such that

foo o) [(S(t)f, f*)| dt < oo for all f*e X™.

0
Then the set By defined by

B = {rexs [T swr ) a1

0
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is a closed absolutely convex subset of X* which is absorbing in the sense that for
every f* € X* there exists ¢ > 0 such that f* € tBy. In other words By is a
barrel in the Banach space X*. Consequently, By is a neighborhood of the origin,
and so there exists ¢ > 0 such that the ball of radius 0, i.e., {f* e X*: |f| <0} is
contained in By. Then it follows that

[ et isons < [“lewsonea< i rext ©

0 0
Define, for f € X, the linear functional A, s : X* — C by

Mo (1) = [ ot (501, %) . g% € X 6.2)

0
Then, by (6.1) it follows that A, is a member of X** and hence the integral
SSO ©(t)S(t)fdt can be interpreted as an element of X**. Since, by hypothesis,
the integral SSO lo(t)] e*" dt is finite, it follows that limg o Ay (fF) = 0, whenever
{pi},, is a sequence in X* which converges in weak*-sense to 0. By Theorem 8.30
it follows that the integral SSO ©(t)S(t) f dt not only belongs to X**  but that it is
member of X.
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Assertion (ii) follows from the assertions in (i) together with strong continuity at
t = 0. The strong continuity at ¢ = 0 of the semigroup {S(¢) : ¢t = 0} can be proved
as follows. Consider the subspace L ¢ X defined by

Lz{feX: ltif%ls(t)f:f}'

Then, by (i), L is a closed subspace of X. In addition, since, for A > w and f € X,

13}51 SHARN)f = ltilr(rJl e MS(HARN)f = l}f{l}l e_’\tS(t))\J0 e S(p)f dp

~limA [ e VS dp = A [ e MS()s dp. (6.3
t 0

it follows that L > AR(A)X, A > w. By the resolvent property, which reads as
follows

R(M)—R(X) =M= A1) RAN)R(N2), A, A>w,

we deduce that the subspaces AR(A)X do not depend on A > w. Let f € X. Then
by assumption (ii") we see that

T (ROVS. ) = Jim (A [ stof . g

0

i [ e <S (;) f. f*> dt = (f, f*). (6.4)

A—00 0

From (6.4) it follows that the subspace AR(\)X is weakly dense in X. But a weakly
dense subspace is strongly dense. So we conclude that L = X. Altogether this
proves assertion (ii).

Assertion (iii) follows from the first. This completes the proof of Proposition 6.4. [

6.7. THEOREM. Suppose that Ay generates the semigroup {So(t) : t = 0} and that A;
generates the semigroup {Si(t) : t = 0}. If Ay extends Ay, ie., if G(Ay) 2 G (4y),
then So(t) = Sl(t) and AO = Al.

PRroor. For f e D (A;) we notice the following Duhamel’s formula (variation of
constants formula)

(So(t) — Su(t)) f = f So(u) (Ao — Ar) St — u) fdu.

This equality follows from

J;] So(u) (AO - A1> Sl(t - u)fdu = f ;J[SQ(U)Sl(t — u)fdu

= So(t)f — Si(t)f.

Here we used the closed graph theorem to be sure that, for f belonging to D (A;),
the function u — Sp(u) (Ag — A1) S1(t — w)f is continuous. So that the rule of
fundamental calculus is available. This finishes the proof of Theorem 6.7 0l
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6.8. REMARK. Theorem 6.7 says that a semigroup is uniquely determined by its
generator. More information on linear operator semigroup theory can be found in,
e.g. [33, 47, 48, 97, 139]; for non-linear semigroup theory the reader is referred
to e.g. [12].

6.9. REMARK. An alternative proof of Theorem 6.7 reads as follows. Fix zg € D (Ay).
Choose A\g > wp, and \; > w;. (We suppose that |S;(t)| < M, exp (w;t), j =0, 1.)
Then (Ao — Ag) zg = (Mol — Ay) z, for some x € D (A;). Since Ay extends A, we
get ()\0] — Ao) Ty = ()\0[ — A1)$ = ()\0] — Ao) x. Hence ()\0[ — Al) (270 — 27) = 0.
So that xy = x. Consequently, ©qg = x € D (A). Whence D (Ag) < D(A) and thus
G (Ap) € G(A). So we see A = A,.

A detailed account of the following theorem can be found in Engel and Nagel [48].

6.10. THEOREM (Hille-Yosida). Let A be a closed linear operator with a domain that
1s dense in the Banach space X. The following assertions are equivalent:

(i) The operator A generates a strongly continuous semigroup {S(t) : t = 0};
(ii) There exist finite constants M and w such that

(M =A)T"|<MA-w)™, n=12...,A>w.

PROOF. Outline of a proof (i) = (ii). Use

L(n)(M —A)™" = f:o t" L exp (—At) S(t) dt.

(ii) = (i). Prove that the strong operator limit
S(t) = s- }im exp (At (AR(X) — 1))
—00

exists and that the family {S(t) : ¢t = 0} is a strongly continuous semigroup with
generator A. Here we wrote R(\) = (M — A)~!. In case we deal with contraction
semigroups, more details can be found in the proof of the implication (ii) = (i) of
Theorem 6.12 below.

This concludes the outline of the proof of Theorem 6.10. U

6.11. REMARK. If A satisfies (ii) of the previous theorem, then ||S(t)|| < M exp (wt),
t=0.

6.12. THEOREM (Lumer-Phillips, Hille-Yosida for contraction semigroups). Let A
be a linear operator with domain D(A) and range R(A) in a Banach space X. The
following assertions are equivalent:

(1) The operator A generates a strongly continuous semigroup {S(t) : t = 0} for
which |S(t)| <1, ¢t = 0;

(ii) The operator A has dense domain, there exists A > 0 such that R(A\] —A) =
X, and A is dissipative: |\f — Af| = M||f|, fe D(A).
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The property in assertion (ii) of Theorem 6.12 is called the dissipativity property.
For applications the following somewhat stronger version of Theorem 6.12 is often
useful.

PROOF. (i) = (ii) This implication is not so difficult. Define, for A > 0,
the operator R(\) is defined by R(\)f = Sgo e MS(t)fdt, f e X. Then R()\) =
(AI — A)~" in the sense of assertion (i) and (ii) in Theorem 6.7. It follows that the
range of (A — A) coincides with X for all A > 0, and that R(\)f belongs to D(A)
for all A > 0. Moreover, by the strong continuity of the semigroup {S(t) : ¢t > 0} we
see

o0
- T -t -1 _
}%AR(A)f_}%L 'S (N fdt = f, feX, (6.5)
and so D(A) is dense in X. In addition, we have, for g € X and A\ > 0,
o0 o0
AR(g] < A f e 1S()g] dt < A f Migldi=lgl,  (6:6)

Put ¢ = (M — A) f. Then (6.6) implies |[Af — Af| = A|f|, f € D(A). Hence,
assertion (ii) is a consequence of (i).
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(i) = (i) Let A\g > 0 be such that (A\g/ — A) D(A) = X. Then we define the
operator R (Ag) by

R() (Mol — A)f = f, feD(A). (6.7
For 0 < A < 2)¢ we define the operator R(\) by
R =) (ho—A)"R(N)". (6.8)
n=0

From the dissipativity property in (ii) it follows that Ao |R (A\o)| < 1. Therefore,
the series in (6.8) converges for |A — A\g| < Ao, or what amounts to the same for
0 < A < 2)\. The equalities

(M —A) R\ f=f feX, and RAAN —A)f=Ff feD(A), (6.9)

easily follow for 0 < A < 2. In other words, R(A\) = (A\I — L)™', 0 < X < 2),. This
procedure can be repeated for any 0 < A < 2 instead of Ag. The result will be that
the inverse operator R(\) := (A — A)™" exists for every 0 < A < 4 and that for
such A the inequality A |R(A)|| < 1 holds. Again repeating these arguments yields
the existence of R(\) := (A\I — A)™" for 0 < A < 8Xg. Again we have A |[R(\)| < 1
0 < A < 8\g. By repeating these arguments often enough we obtain a resolvent
family R(\) = (A\] — A)™", A > 0, such that A |R(\)| < 1 for A > 0. We still need
to construct a semigroup {S(t) : ¢ = 0} with generator A. To this end we introduce
the operators A (\), A > 0, by

AN = A2R () — AL = MAR(N). (6.10)
For f e D(A), and A, u > 0, we have the following equalities:

(40— A § J L -9A (A (1) — AN} 40 £ ds
0

(the operators A(\) and A(p) commute)

f (A ) = A} £ ds
(employ the identities in (

f (AW 4 (W () ~ AR (V) ] ds
(the vector f belongs to D(A))

= Jt =AW s AW (R (1) — AR (M)} Af ds. (6.11)

Observe that HepA(’\/)H <1,p=0, N >0. So from (6.11) we infer

t
(40 — 40 £ < f =40 A6 (R (1) — AR(A)} Af| ds
0
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t
< | I ) = AR (0} Af] s

< L {uk (n) = AR (M)} ASf[ ds = t[{nR (1) = AR (A)} Af]. (6.12)
We consider the subspace L, defined by
- {feX: Tim )\R()\)f:f}.

Since A |R(A)|| < 1 the space L; is closed in X. Let Ag > 0 be as in (ii), and pick
g € X. Then by the resolvent equation we have, for A # A,

(RO =D R (a)g = 11 (RO — RO g - RO, (6.1)
From (6.13) we get
Jim (AR(\) = 1) R (Ao) g = 0. (6.14)

Since D(A) = R (\o) X, from (6.14) it follows that the space L, contains the sub-
space D(A). Since the subspace L; is closed, it contains the closure of D(A). By
assumption D(A) is dense, and thus L; = X.

Next consider the subspace Lo defined by

Lo = {feX lim sup H( )—etA(“)) fH =0 for allO<T<oo}.

A0 1[0,
Since HetA(’\) H <1,t =0, A >0, it follows that the space L, is closed. Since the space
Ly coincides with X, the inequality in (6.12) implies that Ly contains the subspace
D(A). The subspace D(A) being dense implies that the subspace Ls coincides with

X. Put S(t)f = limy_, N f, f e X. Since the subspace Ly coincides with X, it
follows that

lim sup [e"Mf—S@t)f| =0 for fe X and forall 0 < T < 0. (6.15)

A=®0 0<t<T
From (6.15) we infer that the family of operators {S(¢) : ¢ = 0} inherits the semi-
group property from the families {e“‘(’\) = O}, A > 0. For the same reason it is

a strongly continuous semigroup. Since HetA()‘)H < 1 we get |S(t)|| < 1. By letting
A — o0 in the equality

W= JepA N fdp = A()\R()\)fe’”‘ ) fdp, feX, (6.16)

0
we obtain that, for f € X, the integral So p) f dp belongs to D(A) and that

S(t)f—szLS(p)fdp, t>0, feX. (6.17)

Let Ay be the generator of the semigroup {S(¢): ¢t = 0}. If f belongs to D (Ay),
then (6.17) implies that f belongs to D(A), and that Af = Apf. In other words
A is an extension of Ay. Let f belong to D(A) and fix A > 0. Then the operator
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M — Ay is surjective. It follows that there exists fy € D (Ag) such that the following
equalities hold:

(ML = A) f = (\L = Ag) fo = (AL — A) fy. (6.18)
From (6.18) we see that the vector f — fy belongs to the zero space of A\l — A. Since
the operator A is dissipative we infer f = fp, and hence a vector in D(A) belongs
to D (Ap). However, all this implies that the operators A and Ag are the same. So
that A is the generator of a strongly continuous semigroup.

The proof of Theorem 6.12 is complete now. U

6.13. THEOREM (Lumer-Phillips). Let A be linear a operator with domain D(A) and
range R(A) in a Banach space X. The following assertions are equivalent:

(i) The operator A is closable and its closure generates a strongly continuous
semigroup {S(t) : t = 0} for which |S(t)| <1, t>0;

(ii) The domain D(A) of A is dense, |\f — Af| = X|f|, for all A > 0, and for
all f € D(A), and there exists Ao > 0 for which R (Aol — A) is dense in X.

6.14. REMARK. Usually the range property is the difficult part to verify. Assertion
(i) in Theorem 6.13 says that the subspace D(A) is a core for A, the closure of the
operator A. If the operator A satisfies the equivalent conditions in Theorem 6.13,
then its closure A satisfies the equivalent conditions in Theorem 6.12.
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PROOF OF THEOREM 6.13. (i) = (ii) From assertion (a) in Proposition 6.17
it follows that the operator A is closable. Let A be the closure of A. Then by (i) A
generates a strongly continuous semigroup {S(t) : ¢t = 0} consisting of contraction
operators, and so D(A) is dense. Since ||S(t)| < 1, ¢t > 0, it follows that A [|R(\)| <
1, A > 0, where

RN f =W —A)"f= foo e MS(H)fdt, feX.
0

But then it easily follows that A is dissipative: see Definition 6.15 below. Since
()\] — A) D (A) = X, it also follows that, for all A > 0, the ranges of A\I — A are
dense in X.

(i) = (i) From assertion (a) in Proposition 6.17 below we see that, under the
assumptions in (ii) the operator A is closable. Let A be its closure. Then, as is readily
verified, the operator A possesses the properties described in (ii) of Theorem 6.12.
An application of Theorem 6.12 then shows that A generates a strongly continuous
semigroup consisting of contraction operators.

The proof of Theorem 6.13 is now complete. U

6.15. DEFINITION. Some definitions follow.

(a) As mentioned earlier an operator A with domain D(A) and range R(A) in
the Banach space (X, |-|) is called dissipative if

IAf=Afl = Alfl, A>0, feD(A).

(b) Let E be second countable locally compact Hausdorff space. If in (a) the
symbol X denotes the space Cy(FE), supplied with the supremum norm,
then A is said to satisfy the maximum principle if, for every f € D(A),

for which sup Rf(z) > 0, there exists x¢ € F for which sup Rf(z) = Rf(x0)
el zeE

and for which RAf(xy) < 0.
(c) If in (b) the space E is compact, then the maximum principle is phrased as
follows. For every f € D(A), there exists xg € E with supRf(z) = Rf(xo)
el

for which RAf(zo) < 0.

6.16. REMARK. An operator A that satisfies the maximum principle can be consid-
ered as kind of a generalized second order differential operator. Often this kind of
operator is a pseudo-differential operator of order between 0 and 2.

Next we specialize to X = Cy(E), equipped with the supremum norm: |f|, =
sup,ep |f(z)], f € Co(E). The space E is supposed to be a second countable (i.e.
it is a topological space with a countable base for its topology) locally compact
Hausdorff space (in particular it is a Polish space). A second-countable locally-
compact Hausdorff space is Polish. Let (U;), be a countable basis of open subsets
with compact closures, choose for each 7 € N, y; € U;, together with a continuous
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function f; : E — [0, 1] such that f; (y;) = 1 and such that f;(y) = 0 for y ¢ U,.
Since a locally compact Hausdorff space is completely regular this choice is possible.
Put

A(w,9) = D2 )~ )]+ | sy — ooy v yek.

Z?; 27 fi(x) Z?il 27 fi(y) |

This metric gives the same topology, and it is not too difficult to verify its complete-
ness. For this notice that the sequence (f;), separates the points of £, and therefore
the algebraic span (i.e. the linear span of the finite products of the functions f;) is
dense in Cy(F) for the topology of uniform convergence. A proof of the fact that
a locally compact space is completely regular can be found in Willard [154] Theo-
rem 19.3. The connection with Urysohn’s metrization theorem is also explained. A
related construction can be found in Garrett [53]: see Dixmier [39] Appendix V as
well.

6.17. PROPOSITION. The following assertions are true.

(a) Suppose that the operator A is dissipative and that its range is contained in
the closure of its domain. Then the operator A is closable.
(b) If the operator A satisfies the maximum principle, then A is dissipative.

PROOF. (a) Let (f,) < D(A) be any sequence with the following properties:
lim f, =0, and g¢g= lim Af,

n—o0 n—o0

exists in Cy(F). Then we consider

|(Afu+ gm) = XA Mo + g, = 1A fn + Gl »

where (g,,) < D(A) converges to g. First we let n tend to infinity, then A, and
finally m. The result will be lim, o |gm — 9ll,, = limp—w |gm], = |9],- Hence
g=20.

(b) Let f # 0 belong to D(A), choose @ € R and xg € F in such a way that 0 <
|fll, = Rexp(ia) f(zo) = sup,ep Rexp(ia) f(z), and that RA (exp(ia)f) (zo) < 0.
Then
INf = Afll, = R (exp(ia) (\f — Af) (70))
= AR (exp(ia) f(20)) — R (exp(ia) Af) (w0) = A ], -

This completes the proof of Proposition 6.17. U

6.18. DEFINITION. A strongly continuous semigroup {S(¢) : ¢t = 0} in Cy(F) is called
a Feller semigroup or Feller-Dynkin semigroup if it possesses the following positivity
property: for all f e Cy(F), for which 0 < f < 1, and for all ¢ > 0, the inequality
0 < S(t)f < 1is true. Often a Feller semigroup is called a Feller-Dynkin semigroup,
because it leaves the space Cy(F) invariant.

6.19. REMARK. From the complex linearity and the assumption that 0 < f < 1,
f e Cy(E), implies 0 < S(t)f < 1, it follows that |S(¢)f], < |fl., f € Co(E).
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6.20. REMARK. It often happens that a semigroup {S(¢): ¢t > 0} is defined on a
larger space than Cy(FE), e.g. on the space of bounded Borel measurable functions.
We say that {S(¢) : t = 0} is a Feller semigroup, or Feller-Dynkin semigroup if it
leaves the space Cy(E) invariant (i.e. if S(t)f belongs to Cy(E) whenever f does so
and whenever t > 0), and if 0 < f < 1, f € Cy(E), implies 0 < S(t)f < 1,t > 0.

6.21. REMARK. There exists a close relationship between Feller semigroups, strong
Markov processes, and well-posed martingale problems: see Theorem 6.36 in Section

3.

6.22. REMARK. Let {S(t) : t = 0} be a semigroup of linear operators on Cy(E) with
the following property: 0 < f < 1, f € Cy(E), implies S(t)f € Co(E) and 0 <
S(t)f <1, for all t = 0. Then the semigroup {S(t) : t = 0} is strongly continuous
if and only if, for all f in a subset of Cy(FE) with a dense linear span, and for all
x € F, the equality

lim 5(t) f(z) = f(z) (6.19)

holds. It suffices to prove, starting from (6.19), that limy o |S(¢)f — f],, = 0 for
feCy(E),0< f<1. From (6.19) together with Lebesgue’s dominated convergence
theorem it follows that

i | S0 (0) du(o) = [ o) dula), (6.20)

t10

for all Borel measures p on E of bounded variation and for all functions f € Cy(E),
0 < f < 1. Since, by the Riesz representation theorem, every member of the
dual space of Cy(E) can be represented by a complex Borel measure of bounded
variation, from (6.20) we may deduce that w-lim, o S(t)f = f. So from (6.19) it
follows that S(t)f converges in the weak sense to f, if ¢ decreases to 0. But a weakly
continuous semigroup is strongly continuous. Hence (6.19) implies strong continuity.
The converse statement is trivial.

6.23. PROPOSITION. Suppose that the operator A with domain and range in Co(E)
is such that its range is contained in the closure of its domain. Then the following
assertions are true:

(1) The operator A satisfies the mazimum principle.
(2) If f € D(A), and A > 0, then the following inequalities hold:

aleélé%()\f(l‘) — Af(z)) < )\irelgﬁ%f(x) < )\sug%f(:c)
< sup (ARf(x) — RAf(x)). (6.21)

(3) The operator A is closable and its closure satisfies the mazimum principle.
(4) The operator A is closable, and if f € D (Z), and X\ > 0, then the following
inequalities hold:
9101612% (M (z) —Af(z)) < )\;glgﬁf(x) < )\ilelg%f<x)

< sup (ARf(z) — RAf(2)) . (6.22)

el
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6.24. REMARK. If E is compact, then in Proposition 6.23 it is assumed that the
constant function 1 belongs to the domain of A and that A1 = 0.

PROOF OF PROPOSITION 6.23. Assume that E is locally compact but not com-
pact. When E' is compact the proof follows the same lines, and is left to the reader.

(1) = (2) Let f € D(A) be such that inf,cp Rf(z) < 0. Then, by assertion (1)
there exists xy € F such that Rf (z9) = inf.cpRf(z) < 0, and RAf (z9) = 0. It
follows that

inf R (A(@) — Af()) < R\ (z0) — Af (a0) < AR (w0)
= )\irelg Rf(z). (6.23)

The inequality obtained in (6.23) proves the first inequality in (6.21) in case f €
D(A) is such that inf,cg Rf(x) < 0. If inf,ep Rf(z) = 0, then the first inequality
in (6.21) is automatically satisfied because the function \f — Af belongs to Cy(E),
and hence it vanishes at “o0”. The second inequality in (6.21) is trivial, and the
third one follows by applying the previous arguments to the function —f instead of

f-
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(2) = (4) From the proof of assertion (b) in Proposition 6.17 it follows that the
operator A is dissipative. By assertion (a) in Proposition 6.17 it is closable. Let f

belong to D (A). Then there exists a sequence of functions (f,),.y = D(A) such
that
lim |f, — £, = lim [Af, — Af], =0, (6.24)

Since each function f,, satisfies inequalities as in (6.21), the inequalities in (6.22)
follow by applying (6.24). Consequently, assertion (4) is proved now.

(4) = (3) Let f € D (A) be such that sup,. Rf(z) > 0. Then we have to show
that there exists zy € F such that sup,.; Rf(x) = Rf (zo) and RAf (z5) < 0. From
the third inequality in (6.22) it follows that there exist points x, € E such that

ARS (x)) — RAS (x)) = Asup Rf (z). (6.25)
el
Since F is locally compact there exists a point z,, in £ u o which is an adherence

point of all families {x): A =n}, n € N. Upon dividing the left-hand side and
right-hand side of (6.25) by A > 0, and letting A tend to o, it follows that

Rf (ry) = supRf(z) >0, (6.26)
zel
and, consequently, z., belongs to £. From (6.25) it also follows that
—RAS (z)) = A (sup Rf(x) —Rf (SB,\)) > 0. (6.27)
reE

From (6.26) and by letting A tend to oo in (6.27) it follows that the point ., € E
is such that not only (6.26) is satisfied, but that we also have RAf (x,) < 0. This
proves the implication (4) = (3).

The implication (3) = (1) being trivial this completes the proof of Proposition
6.23. ]

6.25. THEOREM (Lumer-Phillips for Feller semigroups). The following assertions
are equivalent:

(i) The operator A is closable and its closure generates a Feller semigroup;
(ii) The operator A has dense domain, it verifies the maximum principle, and
there exists A > 0 such that the range of \I — A is dense in Cy(E).

If A is closable and if A verifies the maximum principle, then so does its closure:
see Proposition 6.23.

PROOF OF THEOREM 6.25. We prove the theorem if F is locally compact, and
not compact. The compact case is left as an exercise for the reader.

(i) = (ii) Let {S(t) : t = 0} be the Feller semigroup generated by A the closure of
A. Then the domain of A is dense, and so is the domain of A. Let f € D(A) be such
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that sup,.p Rf(x) > 0, and choose xy in such a way that Rf (zg) = sup,.z Rf(z).
Then

R(S@)f (xo) — f(20)) = SHORS (w0) — RS (20)
< sup Rf(x)—Rf (zo) <O. (6.28)

In (6.28) we divide by ¢t > 0 and let ¢ tend to 0 to obtain RAf (zo) < 0. In other
words the operator A satisfies the maximum principle. In addition, R (/\] — Z) =X,
A > 0, and consequently, the operators AI — A have dense range. So that assertion
(ii) follows from (i).

(ii) = (i) The operator A satisfies the maximum principle. But then, by assertion
(b) in Proposition 6.17, it follows that the operator A is dissipative. By assertion (a)
in Proposition 6.17 it follows that the operator A is closable. By Theorem 6.13 we
deduce that the operator A generates a strongly continuous semigroup {S(t) : ¢t = 0}
consisting of operators S(t) which are contractions: [S(¢)f|., < [fl.: f € Co(E).
We still need to show that this semigroup has the Feller property, 7.e., that 0 < f <1
implies 0 < S(t)f < 1. Since the operator A satisfies the maximum principle, its
closure does so as well: see Proposition 6.23. Fix A > 0, and let f e D (Z) be such
that (/\] — Z) f = 0. Then, by assertion (4) in Proposition 6.17 it follows that

0 < 315255)%(/\]—2) (if) (z) < M nf R (if) (2).

So that —f(x) = 0 for all z € E. So we have Sf(z) < 0 for all z € E. The same
argument applied to —i f instead of i f yields S f(z) = 0 for all x € E. Consequently,
Sf(z) = 0 for all x € E. In other words the function f is real valued. Another
appeal to assertion (4) in Proposition 6.17 then yields

0 < inf (A = A) f(z) < Ainf f(2),
and so f(z) > 0 for all z € E. As a result we have that (A — A) f
g

f=0. Put R(\) = (AI —Z)_l. In other words g > 0 implies R(\)
the resolvent operators R()\), A > 0, are positivity preserving. Since

0 implies
0.

=
> Hence

0

. _ 2 . _ 1 n
S(t)f _ }Eroloe )\tet)\ R(/\)f _ /\lgloloe At Z ﬁ (t)?R(A)) f
n=0 """

it follows that the operators S(t) are positivity preserving. Hence, 0 < f < 1,

f € Co(E), implies S(t)f = 0, and since S(¢) is a contraction, it also follows that
St)f <1

This completes the proof of Theorem 6.25. 0J
We close Section 1 with a presentation of a result on initial value problems, which
is also relevant in system theory. Initial value problems are also called Cauchy

problems. The result is due to J. Ball [9]. The function f belongs to the space
C ([0, 0), X).
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6.26. THEOREM. Let A be a linear operator with domain and range in a Banach
space X . The following assertions are equivalent:

(i) The operator A generates a strongly continuous semigroup {S(t) : t = 0};
(ii) The operator A has dense domain, it is closed, and for every x € D(A)
there exists a unique function u, € C* ([0,00), X) such that, for all t = 0,
uz(t) belongs to D(A), the function (x,t) — u,(t) is continuous and
ul(t) = Aug(t) + f(t), u.(0) = . (6.29)

(iii) The operator A is closed and for every x € X there exists a unique function
v, € CH([0,0), X) such that, for allt =0, v,(t) belongs to D(A), and

v (t) = x + Avg(t) + f f(s)ds, wv,(0)=0. (6.30)

(iv) The operator A has dense domain and is closed and for every x € X there
exists a unique weakly continuous function w,, such that, for all x* € D (A*)
the equality

%(wx(t),xﬂ = (z, %) + (w,(t), A*z") —|—L (f(s),z*)ds, w,(0)=0. (6.31)
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OUTLINE OF A PROOF OF THEOREM 6.26. (i) = (ii). Put u,(t) = S(t)z +
So (t — s)f(s)ds.

(i) = (iii). Put v, (t) = §; u.(s) ds.
(ili) = (iv). Put wy(t) = v.(t).

(iv) = (i). Put

O(t,z,x*) = pr (wy(t),z*) — 7 (wo(t), z*). (6.32)
Then prove that there exists a family {S(¢) : ¢ = 0} of continuous linear operators
such that

(S(t)x,z*) = O(t,z,2%) = c;lt (w(t), ) — ;lt

Finally prove that the family {S(¢) : ¢ = 0} is a strongly continuous semigroup with
generator A. All this can be achieved as follows. From our assumptions and defini-
tions, it follows that

(S(t)z, a*) — (x,2*) = <rS(s)xds,A*x*> . (6.34)

0

(wolt),a®).  (6:33)

From (6.34) we see that the element So s)xds belongs to D(A), and that

A ft S(s)xds = S(t)r — x.

0

The semigroup property is a consequence of the identity
wh(ty + ta) — wy(ty + to) = w, (tl)—wo(tl)( 2) — wy(ta). (6.35)
Equality (6.35) can be seen by considering two solutions to the equation in (iv):
Wy () = we(s + 1) —we(s) —wo(s +t) + wo(s);
W32, g (t) = Wl (s)—wh(s) (t) - wo(t)

Put w(t) = wy,(t) — w1 (). Then w'(t) = Aw(t), and w(0) = 0. Next consider the
following two equations:

w,(t) = x4+ Aw,(t) Jf )ds, w(0)=0;

(w+w,) (t) =2+ A(w + w,) ff s, (w4 w,) (0) =0.

From the uniqueness in (iv) we get w + w, = w, and hence w = 0. From the latter
we infer vy, (t) = v1.(t). As a consequence we obtain the semigroup property:
S(s +t) = S(s)S(t). Since S(t)x — x = wl(t) — wj(t) — x converges weakly to

T

wr (0) — w((0) — 2 = A(w,(0) —we(0)) = A0 = 0. It follows that the semigroup

{S(t);t = 0} is a weakly continuous semigroup. Such a semigroup is automatically
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strongly continuous. Let A be its generator, and suppose that z belongs to its
domain D (/T) Then

t
Az = lim St)e — = lim Aigo S(s)wds

_— = Ax.
tl0 t tl0 t

As a consequence A is an extension of A. Let z be a member of D(A). Pick \g
strictly larger than the growth bound of the semigroup {S(¢) : ¢ = 0}. Then there

exists 1 € D (/T) such that (notice that A extends A)

(Mol — A)z = (AOI _ 2{) 71 = (Mol — A) a1,

Aot

Ao
w1(0) = 0 and wi(t) = x¢ + Aw;(t). Since, in addition, wy(t) = Awy(t) + So s)ds,
wp(0) = 0, we infer

(&

and hence (Aol — A)xg = 0, where zy = x — z1. Put wy(t) = 2o. Then

i(wg(t)+w1(t))—mo+A(wo )+ wi(t ff s, wp(0) +wq(0) = 0.

Since the function w,,(t) possesses the same property as the function wq(t) + wy(t),
we infer from (vi) the equality wy(t) + w1 (t) = wy,(t) and hence
ot _ 1
Ao

From (6.36) we obtain, via differentiating with respect to t, S(t)zg = exp (Aot) o,
t > 0. But then

Ty = Wy (t) — wo(t) (6.36)

o] exp (Aot) < M exp (wt) |0l ,
t =2 0, w < Ap. This can only be possible if z; = 0, and hence x = z; belongs
to D (/U So that, finally, A = A. Hence, the proof of Theorem 6.26 is complete

now. O

2. Examples
In this section we present several (interesting) examples of operator semigroups.

2.1. Uniformly continuous semigroups. Let A be a bounded linear oper-
© ik gk
— k!
semigroup. In fact limy o |S(¢) —I|| = 0. From the closed graph theorem it fol-
lows that a strongly continuous semigroup {S(¢) : ¢ > 0} is uniformly continuous
(i.e. limyyo |S(t) — I| = 0) if and only if S(t) = exp (tA), t = 0, for some bounded
linear operator A. The sufficiency is easy to establish. The necessity follows from
the closed graph theorem. If limy o [|S(¢) — I| = 0, then limy_o [/ — AR(N)|| = 0.
Hence, for A > 0 sufficiently large we get |[I — AR(\)| < 1. But then the operator

ator, and put S(t) =

. The family {S(¢) : t = 0} is a strongly continuous

Download free eBooks at bookboon.com



AR()) possesses an everywhere defined inverse. As a consequence the generator A
of {S(t):t >0}, which has a closed graph, is everywhere defined. Therefore it is
bounded and hence S(t) = exp (tA).

2.2. Self-adjoint semigroups. Let H = H* = So_ow EE(dE) be a self-adjoint
linear operator in a Hilbert space J, with lower bound —w. Such an operator H gen-
erates the semigroup {exp (—tH) : t > 0}, where exp (—tH) = (" exp (—t£) E(d¢).
If the operator H possesses a discrete spectrum {)\; : j € N}, then exp (—tH) =
S i exp (—tA;) E{\;}. The operators E {);} are the orthogonal projections on the
eigenspaces N (\;I — H). The semigroup ¢t — exp (—tH), t = 0, can be extended to
z — exp (—zH), Rz = 0. Hence the semigroup {exp (—tH) : t = 0} extends to an
analytic semigroup on {z € C: Rz > 0}. Of course the mappings s — exp (—isH),
s € R, are unitary groups on K.

d
2.3. Translation group. Let A be the operator A = . in Cy(R) or in LP(R),
T

1 < p < . The corresponding semigroup is given by exp (tA) f(z) = f(x + t),
x € R, t = 0. This semigroup extends to a group in any of the above spaces.
It is not strongly continuous in the space L*(R). In fact, a result due to Lotz
(see [1]) says that a semigroup {S(t):t > 0} is strongly continuous in L*(R) if
and only if its generator is an everywhere defined bounded linear operator (such
semigroups are necessarily uniformly continuous: see Example 2.1). The space R
may be replaced with any locally compact second countable Hausdorff space. Upon
replacing the above mentioned spaces with other spaces on which there exists a
(semi)group action, the translation (semi)groups serve as a source of examples and
counter-examples (compare with the one-sided and two-sided shift in the discrete
setting).

2.4. Gaussian semigroup. Let Hy = —3A in Cy (RY), or in L? (R”), 1 < p <
c0. Put

1 jz —y*
po,u(ta%y)—mexl) - o .

(This function is the so-called heat or Gaussian kernel.) Then —H, generates the
semigroup {exp (—tHy) : t = 0} given by

exp (~tHo) £(2) = | pos(t9)0) dy
The semigroup property is clear from the equality

st sy+tx )
2.

[ AGEER) Vt77 = v t?a v\ T
P, Dmalt 00) = ol + ) (5 S
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2.5. Wave operator. In L*(0, 1) we consider the following Cauchy problem or
initial value problem:

0? 0?
ﬁu@’x) = @u(t x), u(t,0) =u(t,1) = 0;
%u(o z)=g(x), u(0,z)= f(x).
Put vy (t, z) = u(t, z), vo(t, x) = aa_qz(t’x)- Then

FD-CHE) (-() e

We consider this equation in the space H = H}(0,1) x L?*(0,1), supplied with the
inner-product

(), [ e [ i
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For the notion of H}(0,1) see Definition 4.38. Put A = <g é), and put ¢, (z) =

V2sinnmz. A solution to (6.37) is given by the semigroup exp (tA):

i V2 l(f, ©n) cOsnTt + S (g, n) sin mrt] ©On
exp (tA) <f> = |t nr
g Z V2[—nm (f, @) sinnxt + (g, o) cosnat] o,

n=1
Moreover we have

v ()]-|0)

Hence {exp (tA) : t = 0} extends to a unitary group on the Hilbert space H.

, (exp (tA))" = exp (—tA).

2.6. Adjoint semigroups. If A is the generator of the strongly continuous
semigroup {S(t) : ¢ = 0} in the reflexive Banach space X, then its adjoint A* gener-
ates the strongly continuous semigroup {S(¢)* : ¢t > 0} in the Banach space X*. If
X is not reflexive, then then {S(¢)* : ¢ = 0} need not be strongly continuous, even if
{S(t) : t = 0} is. Many semigroups, that are strongly continuous in L' (R”), possess
adjoints in L* (R”), which are not strongly continuous. (By Lotz’ result, generators
of strongly continuous semigroups in L*(R") have to be bounded: see [5].)

2.7. Dyson-Phillips expansion. If the operator A generates the semigroup
{S(t) : t =0},

then A + B, where B is bounded linear operator, generates the semigroup:

0

t—S(t) —I—ZL stl ..dspS(s1)BS(sg —51) ... S(8p — $p_1)BS(t — sn)-
<§51<--<sp<t

n=1
This is the Dyson-Phillips expansion of exp (t(A + B)). This formula is an iteration
of the Duhamel’s or variation of constants formula:

exp (t(A+ B)) = exp (tA) + L exp (sA) Bexp ((t — s)(A+ B)) ds.

Extensions to non-necessary bounded operators B are possible.

2.8. Stone’s theorem. A family of unitary operators {U(t):t € R} on a Hilbert
space is a strongly continuous group if and only if there exists a self-adjoint linear
operator H = H* = (£E(d€) such that U(t) = exp (itH) = {exp (it§) E(dE).
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2.9. Convolution semigroups of measures. Let {u;: s> 0} be a vaguely
continuous semigroup of Borel probability measures on R”. This means the follow-
ing:

(i) o = 0o (Dirac measure at 0, the origin of R”) and
ps+i(B) = $§ 1p(x +y) dps(z) dpn(y);
(ii) limyyo § f(2) dpo(z) = § f(z) ddo(z) = f(0), for all f e Cy (RY);
(i) o (R) = 1.

Then there exists a continuous negative definite function ¢» on R” (R” and its dual
group are identified) such that

Pl6) 1= [exp (=i (2.9)) duula) = exp (~16(e)), R, t>0

Put S(t)f(z) = § f(x—y) dus(y). The semigroup {S(t) : ¢ = 0} is a Feller semigroup
on Cy (R[v). Every operator S(t), t = 0, commutes with translations on R”: 7, o
S(t) = S(t) o7,. Here 7.f(y) = f(y — z), z, y € R”. The corresponding Markov
processes are the Lévy processes. Particular examples are

| 1 lyl*
i B)=——+=5 | exp| —=- | dy, B < R”, Borel;
. I'((v+1)/2) t Y
(ii) pe(B) = oSy JB s |y|2)("+1)/2 dy, B < R”, Borel

The first semigroup is called the heat or Gaussian semigroup, the second one is
the Cauchy or Poisson semigroup. The corresponding negative-definite functions
are respectively ¥ (§) = %\5]2 (Gaussian semigroup), and ¥(§) = 3 |¢| (Poisson
semigroup).

2.10. Semigroups acting on operators. This is a non-commutative version
of the example in Subsection 2.9. Again let {y; : t = 0} be a vaguely continuous
convolution semigroup of Borel probability measures on R. Let Hy and H; be self-
adjoint Hamiltonians in the Hilbert spaces Hy respectively H;. Define for T €
L (Hy,Hy), the operator exp (—tA) T via the equality:

exp (—tA)T = Jexp (—iTHy) T exp (iTHy) dp(T).

On appropriate spaces of linear operators (Hilbert-Schmidt operators, trace class op-
erators, compact operators) the family {exp (—tA) : t = 0} is a strongly semigroup.
If the spaces Hy and H; are infinite dimensional, it is not strongly continuous on the
space of bounded linear operators £ (H;, Hp). This example is related to quantum
stochastic processes. In general the operators exp (—tA) is not completely positive.
Only semigroups consisting of completely positive operators correspond to quantum
stochastic processes.
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2.11. Quantum dynamical semigroups. A C*-algebra M is called a W*-
algebra (or von Neumann algebra) if it is a dual space as a Banach space, i.e. if
there exists a Banach space M, such that (M,)* = M. A Banach space M, whose
dual is M is called a predual. Let H be a Hilbert space. Then £ (H), the space
of al bounded linear operators on H is a W*-algebra. Its predual £ (H), consists
of those linear functionals f : £ (H) — C for which there exist two sequences (),

and (y,), in H such that 3% [2,]* < o0, 33, |ya|* < o0, and such that

J(T) = > (Txn,y,), Tel(H).

Let A; and A, be C*-algebras, and let & : A; — A, be an (algebra) homomorphism,
i.e., suppose that ® (Az) = A®(x), @ (x + y) = ¢(z) + P(y), ¢ (zvy) = ¢(z)P(y), for
Ae C, x, y € A;. The homomorphism @ is called a *-homomorphism, if, in addition,
it satisfies @ (z*) = &(x)*, z € A;.

6.27. DEFINITION. Let M; and My be W*-algebras with preduals M, and Mo,
respectively, and let ® : M; — M, be *~homomorphism. Then ® is called a W*-

homomorphism provided that it is continuous if M; is endowed with the topology
o (My, My,), and if My is endowed with the topology o (Ma, Ma,).

6.28. PROPOSITION. Let My and My be W*-algebras with preduals My, and My,
respectively, and let ® : My — My be W*-homomorphism. Then the image ® (M)
is 0 (Mg, Moy )-closed, and so ® (My) is a W*-subalgebra of Ms.

6.29. DEFINITION. Let A be a C*-algebra. A C*-representation of A is a *-homo-

morphism 7 of A in £ (H) for some Hilbert space H. This C*-representation is
denoted by (7, H).

An important representation theorem for C'*-algebras reads as follows.

6.30. THEOREM. A C*-algebra A is C*-isomorphic and to a uniformly closed self-

adjoint subalgebra of L (H) for some Hilbert space H. Denote this C*-representation
by (m, H). Then |r(a)| = |al, a € A.

6.31. DEFINITION. Let M be a W*-algebra. A W*-representation of M is a W*-
homomorphism 7 of A in £ (H) for some Hilbert space H. This W*-representation
is denoted by (m, H).

A representation theorem for W*-algebras reads as follows.

6.32. THEOREM. Let M be a W*-algebra. Then M has a faithful W*-representation
{m, H}; i.e. the representation 7 is such that w(a) = 0 if and only if a = 0. Therefore
M is W*-isomorphic to a weakly closed self-adjoint subalgebra of L (H) for some
Hilbert space H. The image m (M) is then a W*-algebra embedded in £ (H), and
(M) is W*-isomorphic to M.
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Here a subset V of £ (H) is called weakly closed, if it is closed for the topology
induced by the semi-norms 7" — |[(Tz,y)|, T € L(H), z, y € H. The subset V is
called self-adjoint, provided T" € V implies T* € V. For much more details about
C*- and W*-algebras the reader is referred to Sakai [116].

A quantum dynamical semigroup {S(¢) : t = 0} is usually defined on a von Neumann
algebra M, or a W*-algebra. It possesses the following properties:

(i) Semigroup property:
S(0)(a) =a, S(t+s)(a)=S5)(S(s)(a)), forall aecM;

(ii) The semigroup {S(t) : t = 0} is completely positive in the sense that for ev-
ery t = 0 and for every finite choice of elements belonging to M, x1, ..., x,;
Y1, - - -, Yn, the sum

Z y;S(t) (x5 k) uk
k=1
is a positive element of M;
(iii) For every t = 0 the operator S(t) is o-weakly continuous;
(iv) For every a € M fixed, the map t — S(t)(a) is continuous with respect to
the o-weak topology on M.
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The o-weak continuity is defined via the predual of the W*-algebra M. Realize
the von Neumann algebra M via the Gelfand-Naimark-Segal construction as a C*-
algebra of operators acting on a Hilbert space H. Let A be its pre-dual under the
duality map:

(a,x) — trace (z*a), ae€A, xel.

The trace of a trace class operator T : H — H is defined by
trace(T Z (T€;, ), (6.38)

where the sequence (§; : j € N) is any complete orthonormal sequence of vectors in
H. For trace class operators the sum in (6.38) does not depend on the particular
choice of the complete orthonormal sequence (§;:j€) in . The operator T is
called a trace class operator if its trace norm |7, , .., defined by

”THtrace = trace (|T|>

is finite. Here |T| = +/T*T is the square root of the operator T*T": see Theorem
5.41. More details on quantum diffusions can be found in: [16, 67, 92, 96]. Another
book of interest is Alicki and Lendi [4].

6.33. REMARK. Property (ii) is not shared by Cauchy semigroups. Indeed it should
be thought of Cauchy semigroups as an image under a Cauchy (or Poisson) trans-
form. The interesting fact is that this transform associates a generator with the
resulting semigroup. As far as we know, the ideas of Poisson and Weierstrass trans-
forms have been studied for the first time by Hille in 1935, but they still enjoy
interesting unexplored properties!

6.34. REMARK. There are situations, where instead of the logistical law Cauchy
processes might be more appropriate:

t (e 1 . ,
exp (—tA) T := . JOC m%(ZT)T‘/l(—ZT) dr

= EOW [V (iX (1) TV: (i X (1))]. (6.39)

The relevant formula is the next one. In [141] the central identity was

t t
exp <—2A) D()T) = f duexp (—uA) Vo(t/2)TVi(t/2).
0
The basic role of this equality in [141] is taken over by the (important) equality
in (6.72) in the present book. It is quite well possible, that with the semigroup in
Formula (6.39) there can be associated a quantum diffusion. Instead of considering

the evolution 7 — Vy(iT)T'Vi(—iT) one should look at one in the space Hy x H;
given by 7 — V(iT) V(—i7), where V(iT), 7 € R, is the operator matrix

Vo (i)

1
0
Viir) = ( 0" i

T
I
) Here Vo(it) = e 0 = (™™ Ey(d€) and Vi(t) =
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e" ™1 = (e~ E, (dn), where Hy = Sotmy AAE0(A), and Hy = § s AdEL()) are
the spectral decompositions of the (self-adjoint) Hamiltonians Hy and Hj.

6.35. REMARK (Connections with double Stieltjes operator integrals). In [17, 18,
19, 20] Birman and Solomyak make a detailed study of operators of the form

T j j (€, 1) Bo(d€)T B (dn)

where ¢ is an appropriate function. For example we have
exp(~tA)T = [ [lexp (~t]¢ = 1)) Eoldg)TEL (dn);

o - [ [ RSP g ey ),

Here Ey and F; are, not necessarily commuting resolutions of the identity: see 5.27
in Chapter 5. In [155], pp 225-228 Yafaev gives some information as well on these
so-called double Stieltjes operator integrals and so do the authors of [55] on page
66.

2.12. Semigroups for system theory. Let A, be the generator of the semi-
group {Sp(t) :t = 0} in the Banach space X, and let A; be the generator of the
semigroup {S1(t) : t = 0} in the Banach space X;. For an operator B € £ (X1, Xy)
define the operator D(t)B by the formula:

D(t)B = Jt So(u)BS:(t — u) du.

The family { (So(t) ®(t)B> it = 0} constitutes a strongly continuous semigroup

0 Si1(t)
of continuous linear operators on the space Hy x H;. Its generator is given by the
B . . :
formula: ()0 A ) This sort of construction is often used in system theory. See
1

Remark 6.86 as well. For more details see e.g. [30, 31, 32].

2.13. Semigroups and pseudo-differential operators. A great number of
(elliptic) pseudo-differential operators generate strongly continuous semigroups.

Some lower order (< 2) pseudo-differential operators generate Feller semigroups. In
fact, let ¢ be a non-negative definite function, like ¥(§) = [¢|*, £ e RY, 0 < o < 2
fixed. Then the corresponding pseudo-differential operator may be defined by

1 JJGXP (Z <$—y’§>>w<§)f(y> dy de.

Af@) = G

Then, some closure of A generates a Lévy process. If the symbol 1 also depends on
the position z, then the situations becomes much more complicated: see Jacob [29].
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2.14. Quadratic forms and semigroups. There exist a one-to-one corre-
spondence between the family of lower bounded, closed quadratic forms and strongly
continuous semigroups that consist of form positive operators. Certain quadratic
forms (closed Dirichlet forms) yield strongly continuous semigroups, consisting of
contraction operators, which are form positive and preserve the positivity in a space
like L?(E,m), where m is a Radon measure on the topological space E. With such
quadratic one may associate strong Markov processes. In our approach we will start
with (generators of) Feller semigroups instead of Dirichlet forms. See Subsection
5.2 for some information on symmetric quadratic forms.

2.15. Ornstein-Uhlenbeck semigroup. Let W be a separable Banach space,
supplied with its Borel field B(W'). A probability measure p on (W, B(W)) is called
a Gaussian measure if it possesses the following property:

For every n € N, and for every finite choice ¢4, ..., ¢, € W* (the topological
dual of W, there exists m € R"™, and there exists an n x n matrix v =
('Ujk)?kzl, v symmetric and v > 0, such that

fl 0 (= 2 et ) autu) = o (i m.c) = ) ).

for all choices (cy,...,c,) € R™

.

UROPEAN
# BUS INESS
SCHOOL

FINANCIAL TIMES

#2obevond

MASTER IN MANAGEMENT

~ - Beeause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

Download free eBooks at bookboon.com


http://s.bookboon.com/IE

In other words the vector (¢4, ..., £,) € (W*)" is a Gaussian vector on the probability
space (W, B(W)). We also suppose that the support of i coincides with W. Suppose
m = 0 (for all choices ¢1,...,¢, in W*). Then there exists a unique Hilbert space
(3, (-, )qc), with H < W, such that

(i) The embedding j : H < W is continuous and j (H) is dense in W;
(ii) For every ¢ € W* the following equality is valid:

[Jexo (-ittw) dutw) = exo (-5 12 (640

The equality in (6.40) is equivalent with saying that u is a Gaussian measure for
which (¢, 0", = §0(w)l'(w)dp(w) for all £ and ¢ € W*. The triple (W, %, p) is
called an abstract Wiener space. Notice that W* < H* =~ H < W. A concrete
example is given by the r-dimensional Wiener space W = W, given by

Wi ={weC([0,1],R"), w(0) =0}, supplied with the supremum norm;
H ={h eW: h= (hl, e ,h’") , for every 1 < j < r the function A’ is

absolutely continuous with respect to the Lebesgue measure,

dhJ . Lo
with — = A’ and f B (s)%ds < oo}.
dt .

The space H is then a separable Hilbert space with inner-product
r 1 .. .
(hog)oc = 3 [ W) s)ds, e g e3¢
j=1+0

Notice that H is isomorphic to L?([0,1],R"). On the spaces L? (W,B(W),u) =
LP(W, i) the Ornstein-Uhlenbeck semigroup {S(¢) : ¢t = 0} is defined as follows

[S(H)F] (w) = j

WF (exp (—t)w + /1 — exp(—2t)u> du(u), F e LP(W,pu).

Let J,, n € N, be the orthogonal projection in L?(W, 1) on the subspace of polyno-
mials of degree exactly equal to n (if P, denotes the subspace of L*(W, i) consisting
of polynomials of degree less than or equal to n, then J, projects on the subspace
P, n P ). The operator S(t) is also given by

o0
S(t)F = Z exp (—nt) J, F.
n=0
(The decomposition F' = >, J,F in the space L*(W, u) is called the It6-Wiener

decomposition.) The generator A of the present Ornstein-Uhlenbeck semigroup in
L*(W, i) takes the following form

0 0
AF = — Z nJ,F, for F e D(A) = {F e L*(W, ) Z n’ HJnFHiQ(Wm < oo} :

n=0 n=0
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Let (W, H, 1) be a Wiener space and let (S, B(S)) be a measurable space. A mea-
surable mapping F': W — S is called an S-valued Wiener functional. The Wiener
functional F' is called p-integrable, 1 < p < oo, if S is a Banach space and if the
mapping w — ||F(w)|g belongs to LP(W, ). A Winer functional F' : W — R is
called a polynomial if the following holds true:

for every n € N, there exists a polynomial p = p(z1,...,x,) in n variables
and there exist ¢1,...,¢, € W*,
such that F(w) = p (1(w), ..., 0y (w)), for all we W.

The degree of p is that of F. We may always suppose that the functionals /;,
1 < j < n, are orthogonal in H: (¢}, ¢y), = 0% The collection of polynomials of
degree < n is a closed subspace of L*(W, ). The collection of all polynomials is
dense in L*(W, ). The Ornstein-Uhlenbeck semigroup plays a fundamental role in
Malliavin calculus (or stochastic calculus of variations): [11, 21, 22, 84, 82, 83,
89, 90, 135, 152, 157]. For a relatively simple introduction see e.g. Friz [52].

2.16. Evolutions and semigroups. Let {V(r,s) : r < s} be an evolutionary
system on a Banach space X. Basically this means that V' (r,r) = I, V(r,s)V(s,t) =
V(r,t), r < s <t (algebraic properties). We also assume the following continuity
properties:

s ltllm V(t,s)=V(s,s)=1= li%n V(s,r).

This system, which is not necessarily time homogeneous, can be made homogeneous
in time on spaces like Cp (R, X). Define the semigroup {S(¢) : ¢ = 0} as follows:

[SE)f](r) =V (r,r+t)f(r+1t), feCo(R,X).

3. Markov processes

We begin with a theorem. Some more explanation will follow later.

6.36. THEOREM. The following assertion hold true:

(a) (Blumenthal and Getoor [37]) Let {S(t):t =0} be a Feller semigroup in
Co(E). Then there ezists a strong Markov process (in fact a Hunt process)

{(,F,P,),(X(t),t =0),(V,t=0),(F, &)}, such that
[SO)f](z) = B [f(X ()], feCo(E), t=0.

Moreover this Markov process is normal (i.e. P, [X(0) = x| = 1), is right
continuous (i.e. limy s X(t) = X(s), P.-almost surely), possesses left limits
in E on its life time (i.e. limy, X(t) exists in E, whenever ¢ > s), and is
quasi left continuous (i.e. if (T, : n € N) is an increasing sequence of (F;)-
stopping times, X(T,) converges P,-almost surely to X(T') on the event
{T < oo}, where T' = sup,,cy Tn)-
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(b) Conversely, let
{(TF,P,),(X(t),t=0), (0, t=0),(E,E)}

be a strong Markov process which is normal, right continuous, and possesses

left limits in E on its life time. Put [S(t)f] (z) = E. [f(X(%))], for f a

bounded Borel function, t = 0, x € E. Suppose that S(t)f belongs to Co(E)

for f belonging toe Co(E), t = 0. Then {S(t) : t = 0} is a Feller semigroup.
(c) Let A be the generator of a Feller semigroup in Co(E) and let

{(Q,TF,P,),(X(t),t=0),(0,t=0),(E,E)}

be the corresponding Markov process. For every f € D(A) and for every
x € FE, the process
t

Fes FX(1)) — F(X(0)) — f AF(X(s)) ds

0
is a Py-martingale for the filtration (3;),5,, where each o-field Fy, t = 0, is
(some closure of ) o (X (u) : uw < t). In fact the o-field F; may taken to be
Fi = (Nooy 0 (X(u) :u < s). It is also possible to complete F, with respect
to P, given by P,(A) = (P,(A) du(x). For F; the following o-field may be
chosen:

F = ﬂ ﬂ {P,-completion of o (X(u):u<s)}.

/,LEP(E) s>t

STUDY AT A TOP RANKED
INTERNATIONAL BUSINESS SCHOOL

no.l

n_ine years
In a row
Reach your full potential at the Stockholm School of Economics,

in one of the most innovative cities in the world. The School

$ is ranked by the Financial Times as the number one business
S school in the Nordic and Baltic countries.
Stockholm

{ ]
Visit us at www.hhs.se

Click on the ad to read more
Download free eBooks at bookboon.com


http://s.bookboon.com/hhs2016

(d)

(e)

Conversely, let A be a densely defined linear operator with domain D(A)
and range R(A) in Co(FE). Let (P, : x € E) be a unique family of probability
measures, on an appropriate measurable space (path space) (2, F) with an
appropriate filtration (Fy),s,, such that, for all v € B, P, [X(0) = z] = 1,
and such that for all f € D(A) the process

t
s JOX(0) = FXO) - | AR ds

is a P,-martingale with respect to the filtration (3),.,. Then the opera-
tor A possesses a unique extension Ag, which generates a Feller semigroup
in Co(E), provided that P, [X(t) € E, X(s) € E] = P, [X(t) € E] for all
r e FE, and all 0 < s < t. Next, suppose that the path space ) is the Sko-
rohod space D ([0, oo),EA) which consists of right-continuous paths, with
left limits w with values in E® with the property that X (t)(w) € E, and
0 < s <t implies X(s)(w) € E. In addition, suppose that the state variables
and translation operators are given by: X (t)(w) = w(t), w € D ([0, %), E®),
and 9¢(w)(s) = w(s +t). The process

{(Q,FP,), (X(2), 6= 0), (0,8 2 0),(E, €)}yep

1s then a strong Markov process.

Suppose that the densely defined linear operator A (with domain and range
in Cy(E) ) possesses the Korovkin property, and suppose that A extends to a
generator of a Feller semigroup. Then the martingale problem is well posed
for the operator A, and A possesses a unique extension Ay, which generates
a Feller semigroup. Moreover the Markov process associated with Ag solves
the martingale problem uniquely for A.

6.37. DEFINITION. (a) The martingale problem is said to be well posed for the

(b)

operator A (or the martingale problem is said to uniquely solvable for the
operator A), if for every x € E there exists a unique probability measure
[P, on the Skorohod space 2 = D ([0, 0], EA) (cadlag sample paths), such
that for every f € D(A) the process

t

tHfau»—ﬂXw»—fAﬂX@»@

0
is P,-martingale for the filtration ()5, := (¢ (X(u) : u < t),5,), and such
that P, [X(0) = z] = 1.
The operator A (with domain and range in Cy(E)) is said to possess the
Korovkin property, if there exists Ay > 0 such that fore every zy € E, the
space S (Ao, xg), defined by
S (Mo, z0) ={g € Co(E) : for every € > 0 the inequality

sup {hi(zg) : (Aol —A)hy <R g+e, hie DA}

> inf {hQ(xo) . ()\0] — A) hg = R g—g, hg € D(A)}},
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coincides with Cy(FE). Let D be a subspace of Cy(E) with the property
that, for every xg € E, the space S(zy), defined by

S (o) ={g € Co(E) : for every € > 0 the inequality
sup {hi(zo) :h1 <R g+e, hi e D}
> inf {ho(z) : ha = R g — ¢, ho € D(A)}},

coincides with Cy(E), then such a subspace D could be called a Korovkin
subspace of Cy(E).

6.38. REMARK. For Q) we may take the Skorohod space Q = D ([0,%0], E2). So a
sample w belongs to € if it possesses the following properties:

(i) w is a mapping from [0, 0] to B2 = E u {A}; w(0) € E.
(ii) w is right continuous and possesses left limits in £ on the stochastic interval
[0,((w)), in the sense that limys w(s) exists in E for

s <((w):=inf{t>0:w(t)=A}.

Moreover, if w(s) = A and if t > s, then w(t) = A.
(iii) The set E* is the one-point compactification of E, or, if E is compact, /A
is an isolated point of B2 = E U {A}.

6.39. REMARK. The collection {F; : t = 0} is a filtration: if s < ¢, then F, < F,. Ev-
ery o-field J; is an appropriate completion (extension) of the o-field o (X (u) : u < t).
The family {F; : ¢t > 0} is continuous from the right: F;, = (), F,. Since we con-
sider more or less the internal history {F; : t = 0}, t > 0, we suppress the notation
Fi, t = 0, in our symbolism of our Markov process:

(Q,F,B,), (X ().t = 0), (0.t =0),(E,&)}.

Authors often write things like {(P,)
from the context.

ver» (X(1));50}, when the other items are clear

6.40. REMARK. The mappings X(¢) : Q — E“ are called state variables; E is
referred to as the state space (sometimes stochastic state space). Put

¢(=inf{s >0:X(s) = A}.

Then ( is called the life time of the process {X(¢) : t = 0}.
The motion {X(¢):¢ > 0} is P,-almost surely right continuous and possesses left
limits in £ on its life time:

(1) lim,j; X(s) = X(t), (right continuity);
(i) s = t, X(t) = A, implies X(s) = A, (A is cemetery);
(i) limgy X(s) = X(t—) € E, t < (, (left limits in E on its life time).

These assertions hold P -almost surely for all x € E. The probability Po may be
defined by Pa(A) = 6, (A), where wa(s) = A, s > 0.
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6.41. REMARK. The shift or translation operators 15 : 0 — €, s > 0, possess the
property that X(t) o ¥y = X(t + s), P,-almost surely, for all z € E and for all s
and ¢t > 0. This is an extremely important property. For example f(X(¢)) o 95 =
f(X(t+s)), feCy(E),s, t=0.1If Qis the Skorohod space Q = D ([0, 0], E4),
then X ()(w) = w(t) = X(t,w) = w(t), d(w)(s) =w(s+ 1), we Q.

6.42. REMARK. For every z € E, the measure P, is a probability measure on F with
the property that P, [X(0) = 2] = 1. So the process starts at X (0) = x, P,-almost
surely, at ¢ = 0. This is the normality property.

6.43. REMARK. The Markov property can be expressed as follows:
E. [f(X(s+1) | F] = E: [f(X(s +1) | o(X(s))] = Exs) [Y], (6.41)

P,-almost surely for all f € Cy(E) and for all s and ¢ = 0. Of course, the expres-
sion [E [Y ‘ S"] denotes conditional expectation. The meaning of F; is explained in
Remark 6.39. Let Y : 2 — C be a bounded random variable. This means that Y
is measurable with respect to the field generated by {X(u) : u = 0}. The Markov
property is then equivalent to

E, [Y 0¥, | F| = Ex(y) [Y], (6.42)

P,-almost surely for all random variables Y and for all s > 0. Notice that, in-
tuitively speaking, & is the information from the past, o (X(s)) is the informa-
tion at the present, and Y o9, is measurable with respect to some completion of
o {X(u) : u = s}, the information from the future.
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Put P(t,2. B) = P, [X(t) € B]. Then E, [f(X(t))] = § f(y)P(t..dy). f € Co(E).
Moreover (6.41) is equivalent to (6.42) and to

E, [H fj(X<tj))] (6.43)

=JJ...JHfj(l’j)P(tl,l',dl'l)P(tQ—t1,$1,d1172)...P(tn—tn_l,l‘n_l,d$n),
j=1

forall 0 <t; <ty <---<t, <ooand forall fi,..., f, in Co(F).

6.44. REMARK. Next we explain the strong Markov property. Since the paths
{X(t) : t = 0} are right continuous P,-almost surely our Markov process is a strong
Markov process. Let S : €2 — o be a stopping time meaning that for every ¢ > 0 the
event {S <t} belongs to J;. This is the same as saying that the process t — ljs<y
is adapted. Let Fg be the natural o-field associated with the stopping time 5, i.e.

Fs=(){Ae T An{S<tieF}.
=0
Define ¥g(w) by ¥g(w) = Vg (w). Consider Fg as the information from the past,
o(X(S)) as information from the present, and

o{X({t)oVsg:t=0} =c{X(t+95):t=0}

as the information from the future. The strong Markov property can be expressed
as follows:
E, [Y 0dg|Fs] = Ex(s) [Y], Pr-almost surely (6.44)

on the event {S < w0}, for all bounded random variables Y, for all stopping times
S, and for all z € E. One can prove that under the ”cadlag” property events like
{X(S) e B, S < w}, BBorel, are Fg-measurable. The passage from (6.44) to (6.42)
is easy: put Y = f(X(¢)) and S(w) = s, w € Q. The other way around is much
more intricate and uses the cadlag property of the process {X(¢) : ¢ > 0}. In this
procedure the stopping time S is approximated by a decreasing sequence of discrete
stopping times (S, = 27"[2"S5] : n € N). The equality

E, [Y 0¥s,|Ts,] = Ex(s,) [Y], Ps-almost surely, (6.45)

is a consequence of (6.42) for a fixed time. Let n tend to infinity in (6.45) to
obtain (6.44). The "strong Markov property” can be extended to the ”"strong time
dependent Markov property”:

E. [Y (S +Tods,9s) | Fs] (w) =E ) [W Y (S(w)+TW),w)],

X (S(w)

P,-almost surely on the event {S < o}. Here Y : [0,0) x 2 — C is a bounded
random variable. The cartesian product [0, ) x Q is supplied with the product field
B ®F; B is the Borel field of [0,00) and F is (some extension of) o (X (u) : u = 0).
Important stopping times are ”hitting times”, or times related to hitting times:

T =inf{s>0:X(s) e E2\U}, andS:inf{s>0:J 1E\U(X(u))du>0},
0
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where U is some open (or Borel) subset of E2. This kind of stopping times have the
extra advantage of being terminal stopping times, i.e. t+So019; = S P -almost surely
on the event {S > t}. A similar statement holds for the hitting time T. The time
S is called the penetration time of E\U. Let p: E — [0,0) be a Borel measurable
function. Stopping times of the form

Se = inf{s >0: Jsp(X(u)) du > g}

0
serve as a stochastic time change, because they enjoy the equality:

Se + 8, 0vs, = Seyy, Pr-almost surely on the event {S¢ < co}.

As a consequence operators of the form 8(§)f(z) := E, [f (X (S¢))], f a bounded
Borel function, possess the semigroup property. Also notice that Sy = 0, provided
that the function p is strictly positive.

6.45. REMARK. A very important example of a strong Markov process is Brownian
motion. Let E be the space R” and let Q := C([0,%0),R"), equipped with the
product field &, or even better, with the Borel field coming from the topology of
uniform convergence on compact subsets of [0,0). Put

1 jz -y’
Po,u(t,x;y)—WeXP —T .

Define, for xy € R”, the probability measure P,, on J via the identity

E., [H fj(X(tj))] = J .. Jdasl ...dx, Hfj(azj) Hpoy(tj —ti 1, %j1,%j),

j=

(6.46)
where to = 0 and f1,..., f, are bounded Borel measurable functions on R”. The
times tg, t1,...,t, satisfy 0 =ty < t; < -+ < t,, < o0. Moreover X (t)(w) = w(t),

[Us(w)] (1) =w(s+1), s, t=0,we Q. Itisanot so trivial theorem that there exists
a genuine probability measure P, on €2 such that its finite dimensional distributions
are given by (6.46). The corresponding semigroup {S(t):t > 0} is the classical
Gaussian or heat semigroup:

S(0)f(x) = exp (—tHy) f(z) = j Pout, ,9) () dy.

Its generator is —Hy = +A in Cy (R”) or in LP (R¥), 1 < p < o, as the case may
be. The family {S(t) : ¢ = 0} is a semigroup in L* (R”). However it is not strongly
continuous there; it is only weak* continuous. The corresponding Markov process is
called v-dimensional Brownian motion. A nice classical application of v-dimensional
Brownian motion is its use in potential theory. A specific example is a description
of the solution for the following Dirichlet problem:

%Au =0, in U;
limu(z) = f(b), bedU.

zelU
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Here 0U is the boundary of the open set U and f : U — R is a bounded continuous
function. Put 7' = inf {t > 0: X (¢) e R"\U} and write

u(z) =E, [f(X(T)): T < x].
Here {P,, X(t)} g is v-dimensional Brownian motion. Then the function wu is

harmonic on U. If P, [T" = 0] = 1, then
m B, [f(X(T)), T < o] = By [f(X(T)), T < 0]

zeU

= B, [£(X(0)),T < o] = B, [f(b). T = 0] = f(b)B, [T = 0] = /(0.

From Blumenthal’s zero-one law, it follows that P, [T = 0] = 0 or 1. It equals 1 if b
is a regular point of R"\U. The set of points that are irregular constitute a small (a
polar) subset of R“\U. In particular if the boundary of U is C, then every point of
R" is regular. We say that %A generates Brownian motion.

6.46. REMARK. The notion of a C™-valued martingale reads as follows. Let (2, F,P)
be a probability space and let {F;:¢ >0} be a filtration in F on €2. So that
Fi, € F, < F, for 0 < t3 < ty. Let {M(t):t >0} be an adapted process in
L' ((Q,F,P),C™). This means that, for every ¢t > 0, M(t) is F-measurable and, of
course, E (|M(1)]) = E (/37 [M;(D) < oo Here, M(t) = (My(t), .., M (1)),

IfE[M(t) | Fs] = M(s), P-almost surely for all ¢t > s, then the family {M(t) : t > 0}
is called a martingale with respect to P and the filtration {F; : ¢t > 0}.
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6.47. REMARK. Let A be the generator of the Feller semigroup {S(¢) : ¢ = 0} and let
{(,F,P,),(X(t),t =0),(0,t=0),(E E)} be the corresponding strong Markov
process. Fix f e D(A) and put My(t) = f(x(t)) — f(X(0)) — §; Af(X(s)) ds. Then,
for all x € E, the process {M(t) : t = 0} is a P,-martingale. A proof reads as follows
(t>s):

Ey [Mf(t) | SFS] - Mf(s) =E, [Mf(t) - Mf(s) ‘ 975]

- £ fx0) - s - | AF(X () du| 7|

s

— .| (5o - o) - sxon - [ asceyan) <, 7]

0

(Markov property)

t—s
= Exio [ 70X ) = 1)~ [ 4RO )
0
= Ex(s) [My(t = 5)].
So fix z € E. By the fundamental relation between the semigroup {S(¢) : ¢t > 0} and
the Markov process {(Q2,F,P,), (X (¢),t = 0),(d,t =0),(E,E)} we get

t—s

E. [My(t = s)] = E: [f(X(t — 5))] - E. [f(X(0))] - L E. [Af(X(u))] du

~[S(t=5)1(2) = F(2) - | [SwAf) () du

0
t—s a

S 8¢ =91~ f6) = [ 5 1S ) du

0

=[St =9)f1(2) = f(2) = ([S(t = s)f] (=) = [5(0)f] () = 0.

6.48. REMARK. In order to define the Markov property we may start with just one
probability space

{(,F,P),(X(),t=0),(0,t=0),(EE)}.

The family {X(¢) : ¢t > 0} is said to be P-Markovian, if, for all s > 0, and for all
bounded random variables Y : 2 — C, the equality

E[Yod, |F| =E[Y ot | o(X(s))]
holds P-almost surely. Then we consider the measures on the Borel field € given by
B—E[Yod,, X(t)eB], Be&, and Bw— P[X(s)e B], Beé&.

The first of these two measures is trivially absolutely continuous with respect to the
second one. So there exists a function = — E, [Y] such that
E[Y od, X(s) € dx]
P[X(s) € dx]

—E,[Y].
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Notice that E,[1] = 1. By the time homogeneity and since the o-field

o {X(u), u > 0} is countably determined, the expression E, [Y] is well-defined (i.e.
independent of s > 0, and as a function of  Borel measurable). If the state space £
is countable, so that the probability measure B — P [ X (s) € B] is a discrete measure
(a combination of multiples of Dirac measures), then this Radon-Nykodim derivative
is an ordinary quotient and we enter the theory of discrete Markov processes. We
assume, in the Feller semigroup context, that x — E, [f(X(¢))] belongs to Cy(E),
whenever f does so and whenever ¢ > 0.

6.49. REMARK. Starting from Feller semigroups one may construct the correspond-
ing strong Markov processes. In this construction one first replaces the semigroup
{S(t) : t = 0} with a family of (sub-)Markov transition functions { P(t,z, B):t > 0}.
Here B — P(t,x,B) is a (sub-)probability measure on &, with the property that
St)f(z) =S fly)P(t,z,dy), f € Co(E), t = 0. From the Riesz representation theo-
rem it follows that such a family of (sub-)probability measures exists. It possesses
the following properties:

P0,z,B) =6,(B), P(s+t,z,B)= JP(s,y, B)P(t,z,dy),

s,t=>0,xe E, Be . Next put
N(t,x,B) = P(t,x, Bn E)+ (1 = P(t,z, FE)) 15(A),

[
where now B is a Borel subset of E®. Put () = (EA) O’OO], and define the measure

P, on the product field of (¥ = (EA)[O’OO] via the equality (X (¢)(w) = w(t)):
E, ln fj(X(tj))] (6.47)
=1

ff .. JH fj([L‘j)N(thl‘, dIl)N(tQ — tl,flfl, deQ) Ce N(tn — tn—la Tn—1, dIn),

7j=1

where the functions f;, 1 < j < n are bounded Borel functions on £*. The hard
part is proving that the Skorohod space has full P,-measure (in fact its outer P,-
measure equals 1). The extension of P, to the product field of ' is a consequence
of the Kolmogorov extension theorem.

6.50. REMARK. The fact that the o-fields F;, t > 0, may be replaced with larger
fields, while still retaining the Markov property (or, more accurately, the strong
Markov property) is a consequence of the cadlag, continue a droite, limitée a gauche
property together with Choquet’s theorem on capacitable sets. These larger o-fields
are certain completions of the o-field generated by the collection {X (u) : 0 < u < t}:
see assertion (c) of Theorem 6.36.

6.51. REMARK. Since a Feller semigroup possesses a generator, A say, one also says
that A generates the associated strong Markov process. For example %A generates
Brownian motion. This concept yields a direct relation between certain (lower order)
pseudo-differential operators and probability theory. The order has to be less than
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or equal to 2. This follows from the theory of Lévy processes and the Lévy-Khinchin
formula, which decomposes a continuous negative-definite function into a linear term
(probabilistically this corresponds to a deterministic drift), a quadratic term (this
corresponds to a diffusion: a continuous Brownian motion-like process), and a term
that corresponds to the jumps of the process (compound Poisson process, Lévy
measure). Quite a number of problems in classical analysis can be reformulated
in probabilistic terms. For instance for certain Dirichlet boundary value problems
hitting times are appropriate, for certain initial value problems Markov process
theory is relevant. For other problems the martingale approach is more to the
point. For example there exists a one-to-one correspondence between the following
concepts:

(i) Unique (weak) solutions of stochastic differential equations in R":

(ii) Unique solutions to the corresponding martingale problem;

(iii) Markovian diffusion semigroups in R;

(iv) Feller semigroups generated by certain second order differential operators
of elliptic type.

(Regular) first order perturbations of second order elliptic differential operators can
be studied using the Cameron-Martin-Girsanov transformation. Perturbations of
order zero are treated via the Feynman-Kac formula.
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6.52. REMARK. In our discussion we started with (generators of) Feller semigroups
or, even better, Feller-Dynkin semigroups. Another approach would be to begin
with symmetric Dirichlet forms (quadratic form theory) in L?(E,m), where m is a
Radon measure on the Borel field € of E. (By definition a Radon measure assigns
finite values to compact subsets and it is inner and outer regular.) The reader may
consult the books by Bouleau and Hirsch [6], by Fukushima, Oshima and Takeda
11], or by Z. Ma and M. Rockner [15]. In the latter reference Ma and Rockner
somewhat more general Dirichlet forms are treated. These Dirichlet need not be
symmetric, but they obey a certain cone type inequality:

E(f. 9)* < KE(f.f)E(g,9), f. geD(€).

Again one says that the Markov process is generated by (or associated to the Dirich-
let form &€ or to the corresponding closed linear operator: E&(f,g) = —(Af,g),
f € D(A), g € D(€). (Notice that only regular Dirichlet forms correspond to
Markov processes.) We have taken the approach via Co(E) instead of L?(E,m).

6.53. REMARK. Examples of (Feller) semigroups can be manufactured by taking a
continuous function ¢ : [0,0) x E — E with the property that

p(s+t,x)=p(te(s ),

for all s, t = 0 and = € E. Then the mappings f — P(t)f, with P(t)f(z) =
f(¢(t,z)) defines a semigroup. It is a Feller semigroup, or Feller-Dynkin semi-

group, if lim, A ¢ (t,z) = A. An explicit example of such a function, which does
not provide a Feller-Dynkin semigroup on Cy (R) is given by o(t,z) = i

A1+ %th
(example due to V. Kolokoltsov [36]). Here the process X (t) is in fact determin-
ou
istic: X(t) = ¢(t, X(0)). Put u(t,x) = P(t)f(z) = f(o(t,x)). Then g(t,x) =
3
x° ou

———(t,z). In fact this (counter-)example shows that solutions to the martin-
gale problem do not necessarily give rise to Feller-Dynkin semigroups . These are
semigroups which preserve not only the continuity, but also the fact that functions
which tend to zero at A are mapped to functions with the same property. How-
ever, for Feller semigroups we only require that continuous functions with values
in [0, 1] are mapped to continuous functions with the same properties. For every
(s,t,7) € [0,T)?> x E, 0 < s < t, the equality

P,[X(t)e E] = P, [X(t) € E, X(s) € E]

holds. On the other hand this hypothesis is implicitly assumed, if as sample path
space we take the Skorohod space D ([0, 0) ,EA). If X(t) e E, then 0 < s <t
implies X (s) € E.

The main result, Theorem 2.5, as stated in Van Casteren [140] is not correct. That
is solutions to the martingale problem can, after having visited A, still be alive.
Compare this with Remark 2.12 in Van Casteren [145].

Download free eBooks at bookboon.com



To conclude this section we include a simple result on the relation between the
generator of a Feller semigroup, or Feller-Dynkin semigroup, and the corresponding
Markov process.

6.54. PROPOSITION. Let the operator A in with domain and range in Co(E) be the
generator of a Feller semigroup {S(t) = it> 0} and let

{(,F,P,),(X(t),t =0),(0,t=0),(EE)} (6.48)
be the corresponding Markov process. Suppose that the function f belongs to D(A).
Then the following equalities hold fort = 0 and x € E:

QS(t)f(w) = [AS(t)f](x) = [S(AS] (x) = Eo [Af (X(1))] = AE(,) [f (X ()] ().

ot
(6.49)

4. Feynman-Kac semigroups

Suppose that A = —K| generates a Feller semigroup in Cy(E), and suppose that
the corresponding semigroup {exp (—tKy) : t = 0} consists of integral operators:

[exp (—tKo) f] (z) = fp()(t, £.9)f(y) dm(y), f € Co(E),

where m is a Radon measure on the Borel field of E, and where the function py (¢, z, y)
is symmetric (i.e. po(t,z,y) = po(t,y,z), x, y € E) and continuous on (0, 00) x E'x E.

6.55. REMARK. If F = R” with Lebesgue measure and if Ky = Hy = —%A, then
po(t, x,y) is the classical Gaussian kernel

1 z -y
po(t,z,y) = pou(t,x,y) = Wexp <_|2t|> '

We write [exp (—tKy) f](z) = {po(t, z,y) f(y) dm(y) for those functions f for which
this integral makes sense for m-almost all x € E. Let V : E — [—o0,®] be a
Kato-Feller potential with respect to Ky. By definition, this means that for every
compact subset K of E the following identity is true:

l}f(l)l ilelng;) [exp (—sKo) (V- + V)] (z)ds = 0. (6.50)

Here V, = max(V,0), V_ = max(—V,0). In case Ko = —3A in R”, many classical
potentials from mathematical physics belong to the Kato-Feller class: see Simon
[126].

For the result in Theorem 6.56 it is only required that (6.50) holds with V_ + V, 1,
for all compact subsets K instead of V_ + V, = |V].

6.56. THEOREM. Let V' be Kato-Feller potential, or, even better, suppose that (6.50)
holds with V_ + V, 1k for all compact subsets K instead of V_ + V, = |V|.
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(a) There exists a closed densely defined linear operator Ko+V extending the
operator Ko+V , which generates a positivity preserving (self-adjoint) semi-
group in L*(E,m), denoted by {exp (—t (KOJLV)) = 0}. This semigroup
1s given by the Feynman-Kac formula:

[exp (—t (KoiV)) f] (x) = E, lexp (— Lt V(X () du) f(X(t))]  felIXE,m).

(b) Every operator exp (—t (KO—FV)) 15 an integral operator with a continuous,
symmetric integral kernel exp (—t (Ko + V) (z,y) given by

exp (—t (Ko + V) (2,9) = lim B, lexp (- L V(X (w)) du) polt — 5, X(s), y)]

_ J exp (— fo tV(X(u))du) s

The measure pg? is defined on the o-field o (X (u) :u <t), and as usual
can be extended on some completion of this o-field. It is determined by

165 (A) = By [Lapo(t — 5, X (), 9)], (6.51)
where the event A belongs to Fs = o (X (u) :u < s), for s < t. Since the
process s — po(t — s, X(s),y) is a P.-martingale on the interval 0 < s < t,
it follows that the quantity ug’fi.(A) is well-defined: its value does not depend

on s, as long as A belongs to Fs and s < t. The measure ,ué’i’t could be called
the un-normalized Markov bridge kernel.
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(¢) The quadratic form (generalized Schrodinger form) Ey associated with the
above Feynman-Kac semigroup is given by

Ev(f g) = <\/?of> K09> + (WVifA/Vig) = (WV-fA/Vog),

for f, g members of
D (m) A {f e L2(E,m), JV+(m) f(z)]2 dm(z) < oo} .

6.57. REMARK. Suppose that Markov process in (6.48) is Brownian motion in F =
R?. In other words, suppose that K, = —%A. Then the measure ué’fjc, t > 0,
z, y € R defined in (6.51) is called the conditional Brownian bridge measure. It
can be normalized through dividing it by the density p(t, x,y).

INDICATION OF A PROOF. Part of assertion (b) follows from assertion (2) in
Theorem 6.64 below with M(t) = exp (— Sé V(X(s)) ds). The proof of the symme-
try and continuity of the integral kernel of the Feynman-Kac semigroup

{exp (—t (K(H-V)) = O}
is long and tedious, and requires stopping time arguments, and the fact that sets of
the form B\B", where B is a Borel subset of FE, and B" is the collection of regular
points of B, are polar sets. For details and for the proof of assertion (c) the reader
is referred to [36], Chapter 2, 3, and Appendix D. A hint that assertion (a) is true

can be seen as follows. Let the function f € Cy(FE) belong to the intersection of the
domains of Ky and V. Suppose that the function u : (0,00) x E — C satisfies

ou .
E(t,x) = — (Ko +V)u(t,x), ltllr(I)l u(t,z) = f(x). (6.52)

Then the function u(t, z) is given by the Feynman-Kac formula:

ult,z) = E, [exp (— f t V(X (s)) ds) f (X(t))] >0, ek (6.53)

0

A proof of the equality in (6.53) runs as follows. For t > 0 and x € E define the
function v, : [0,t) — C by

Via(5) = Eq lu (t —s,X(s))exp (— f V(X(p)) dp)] ,0<s<t. (6.54)

0
Then by Leibniz’ rule and Proposition 6.54, with — K| instead of A, we infer

aszm(s,x) = E, [aiu(t — . X(s)) (s)exp (— f V(X(p)) dp)]

0

0

B Kou e s (Yoo ([ VX by )|
_E, [wX(s))u (t— 5, X(s)) exp (— [ v dp)]
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- B | (G4 Ea V) ule- s (e (- [ vecea)|

= 0. : (6.55)

In the final step in (6.55) we employed the first part of (6.52). Consequently, the
function s — v, (s) does not depend on s. Hence we may conclude:

ult ) = 0a0) = i 2(5) =ty s (e = 5. X(9) e (= [ VXG5

_E, lli%?““ — 5. X(s)) limexp (_ JOS V(X(P))ds)] 0

(apply the second part of (6.52))

~ [ (x-pes (- [ Vixe)as)|

0

(employ the equality f (X (t—)) = f (X(t)), P,-almost surely)

~. [ e e (- [ veconas)| (6.56)

0
The equality in (6.56) shows the claim we made above. Put

5(0)7(0) = .| F (X()ex (- | V() ) x|

0

Then the Markov property implies that the family {S(¢) :,¢ > 0} has the semi-
group property. By the right-continuity of paths it also follows that this semi-
group is weakly contiuous, when viewed as a semigroup in Cy(F). But then it
turns out to be weakly continuous in L? (E,m). For this part to be true one
employs Khas'minskii’s lemma (see Theorem 6.65) and the density of the space
Co(E) n L*(E,m) in L*(E,m). Let — (Ko+V) be the generator of this semigroup.
Then Ko+V extends Ky + V. Let f belong to D (K)) n D(V). Then by Leibniz’
rule and the properties of the operator Ky we have

S| roxoes (- [ voxenas) x|

0

_ g, [f (X (1)) exp (f f V(X(p)) ds) (Ko + V) f(X(t))} | (6.57)

0

From (6.57) and the definition of generator we see that S(t) f belongs to D (Ky+V)
and that

(Ko+V) S(t)f = S(t) (Ko + V) f. (6.58)
By taking ¢ = 0 in (6.58) we infer (Ko+V) f = S(t) (Ko + V). As a consequence
we see that (KO—FV) extends Ky + V.

This completes a too brief outline of a proof of Theorem 6.56. O
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6.58. REMARK. From our basic assumption it follows that the function V' belongs
to LL.(E,m). Tt also follows that the quadratic form €y is bounded from below.

A problem we consider is the following. Let V' and W be Kato-Feller potentials.
Give reasonable conditions on V' and W in order that the differences D(t) :=
exp (—t (KO—FV)) — exp (—t (KO—FW)), t > 0, are compact operators. A nice result
we obtained reads as follows. For the existence and properties of the resolution of
the identity, see Theorem 5.31 and Definition 5.27.

6.59. THEOREM. Let {Ey(§) : € € R} be the spectral decomposition, or resolution of
the identity corresponding to Ko+V and let {E,(€) : & € R} be the spectral decompo-
sition (resolution of the identity) corresponding to Ko+W . Let

{(TF,P,),(X(),t=0),(0,t=0),(EE)}

be the strong Markov process generated by —Ky. Suppose that, for some tqg > 0, the
function exp (—toKo) |W — V| is bounded, or suppose that

(

limsup E,

t0 zeE 0

f (W(X(u) — V(X (u) du> ] —0. (6.59)
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The following assertions are equivalent:

(i) For every bounded interval A the operator Eo(A)(W —V)E1(A) is compact;
(ii) For somet >0 (for allt > 0) the operator
exp (=t (Ko+V)) (W = V) exp (—t (Ko+W))
1§ compact;

(iii) For somet >0 (for allt > 0), the operator D(t) is compact.

6.60. REMARK. If lim; o sup,.p Sg [exp (—sKp) |W — V] (x)ds = 0, then
t 2
limsupE, [(J (W(X (u)) — V(x(u))) du) ] =0. (6.60)
t0 zeE 0
This is a consequence of the Markov property.

6.61. REMARK. An equality like (6.50) can probably be used for first order perturba-
tions, where the Cameron-Martin formula is applicable. In such a case we probably
have to deal with stochastic integrals instead of the process

- j (W (X (1) — V(X () du.

6.62. REMARK. Theorem 6.59 is probably not known, even in case we consider
Koy =Hy= —%A. So the corresponding process is Brownian motion.

6.63. REMARK. We introduced Brownian motion as a Markov process with a certain
transition function. It can also be introduced as a Gaussian process {X(t) : ¢ = 0}
(assume v = 1) such that E[X(¢)X(s)] = min(s,t), or as a Lévy process with
negative definite function ¢ — %|£ |2, or as a martingale with variation process
t — t. It can also be seen as a weak limit of symmetric random walks: see, e.g.,
Bhattacharya and Waymire [15].

PROOF OF THEOREM 6.59. (i) = (ii) Fix t > 0. Operators of the form
exp (=t (Ko+V)) (W = V) exp (—t (Ko+W))

can be approximated (in the uniform operator topology) by operators in the linear
span of {Ey(Ag)(W —V)E (A1) : Ay, A; bounded interval }.

(ii) — (iil) First we assume (6.59) to be satisfied. Fix ¢ > 2¢ > 0 and consider the
difference:

L exp (—u (Ko+V)) (W = V) exp (—(t — u) (Ko+W)) du

[ e (b)) (0= ) (15 610))

= f: exp (—u (KO—FV)) (W —V)exp (_(5 —u) (KO_H/)) du

exp (—(t — ) (Ko+W))
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+ exp (—(t —e€) (KOJ}V))
L exp (—u (Ko+V)) (W = V)exp (—(e — u) (Ko+W)) du

= (exp (=& (Ko+V)) —exp (—¢ (Ko+V))) exp (—(t — €) (Ko +W))
+ exp (—(t —e) (KO—FV)) (exp (—5 (KO—FV)) — exp (—6 (KO—'FW))) .
Next we fix f € L?(E, m) and we consider

[(exp (—¢ (Ko+V)) — exp (—¢ (Ko+W))) exp (—(t — €) (Ko+W)) f] (2)

_E, Hexp (— EV(X(U)) du) —exp (— L WX (1)) du)}
By {o (= [ W) soxe-op} ]

_E, Uol exp <_ r(a ~ V(X () + sW(X (1)) du) ds

0

<[ W) - verw) du
<Exq {exp (- Lt_EW(X(u))du> FX(t —g))}] |

J I[(e e (Ko+V)) —exp (—e (Ko+W))) exp (—(t — ) (Ko+W)) f] (ZB)‘Q dx

E, [ exp( S)V(X (w)) + sW (X (u))) du) ds

e

(e)
<E, [( f (W(X () — V(X(u))) du)] s

fﬂ exp (—& (Ko + 2 (1= $)V + sW))) (x, 2)
x exp (—(t — &) (Ko + 2W)) (z,9) | f(y)]”

< SUpE, [(J (W = V) (X(u ))du)2]

<Llsup]E lexp( 2f(( GV + W) (X (u ))du)]ds

[exp( JW )] sup e, [(E(W—V)(X(u))duﬂ.
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From (ii) it follows that the operators

Jt_e exp (—u (KO—FV)) exp (—(t —u) (KO—FW)) du,

3
e > 0, are compact. This proves the implication (ii) = (iii) in the presence of
(6.59). In the other situation, where we assume that, for some ¢y, > 0, the function
exp (—tgKo) [W — V| is bounded, we proceed as follows. We shall estimate the L
L?-norm of the operator

exp (*to (KOJrV)) W — V] exp (—to (KQJ}V)) )

Therefore, fix f = 0 in L?(E, m). Then, by the Feynman-Kac formula and Cauchy-
Schwartz’ inequality, we have

(o0 (-t (1) )" = ([ (- [ Vi as) f(x<to>>b2

0

<E, [exp (—2 fto V(X (s)) d8>] E. [ f(X(t0))?]

< MQV exXp (tobgv) [exp (—toKo) f2] ($) (661)
From (6.61) we get
(exp (=t (Ko+V)) |W — V]exp (—to (Ko+V)) £, f)
= (|W = Vl]exp (—to (Ko+V)) f,exp (—to (Ko+V)) f)

< Moy exp (tobav f]W(x) — V(@) [exp (—toKo) f*] () dx

)
= May exp (toban) (W — V], exp (~taKo) /)
= Moy exp (tobw) <eXP (_tOKO) ’W - V| =f2>
(

< May exp (tobav) lexp (—toKo) [W = V|, | f[5.- (6.62)
From (6.62) we see that the operator
exp (—to (Ko+V)) [W = V]exp (—to (Ko+V)) (6.63)

is bounded as an operator from L*(E,m) to L*(F,m). By the same token the
operator

exp (—to (KO—FW)) W — V|exp (—to (KO%LW))
is bounded as well. Fix 7 € R in such a way that, in form sense, 7/ + Ko+V =0
and vI + Ko+W = 0. From (6.63) it follows that operators of the form

exp (—to (Ko+V)) (4] + Ko+ W) and (71 + Ko+ V) exp (—to (Ko+W))
are bounded. As a consequence, operators of the form
Eo(Ag) (4] + Ko +W)"? and (71 + Ko+V)"? By (Ay),
where Ay and A; are bounded intervals, are bounded. It follows that
| Eo(Ao) Er(m, o0) |y,

1/2
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= | EolAo) (4] + Ko+ W) (41 + Kot W) ™ By(m, o)

2,2
< | BolAo) (v + Kok W) | (0] + Ko W)™ Ey(m, o)
converges to zero, if m tends to oo and if Ay is a bounded interval. The same is true
for | Ey(m, 00) E1 (A1), if m tends to o0, and if A; is a bounded interval. We may
conclude that, for ¢t > 0 fixed,

lai%l HeXp (—t (K0+V)) (—7 — exp (—5 (K0+W))) H2,2

= lim (7 — exp (—¢ (Ko +V))) exp (¢ (Kot W), = 0.
The previous identities yield the following result
lai?ol HD(t) —exp (—¢ (Ko+V)) D(t) exp (—¢ (K0+W))“2,2 =0,

where D(t) = exp (—t (KO-i-V)) — exp (—t (KO—FW)). Since, by (ii), the operators
exp (—5 (KO—FV)) D(t) exp (—5 (KO—FW)) e > () are compact, assertion (iii) follows.
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www.alcatel-lucent.com/careers

¥, N

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

249 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/AlcatelLucent

(iii) = (ii). This implication follows from the equality
texp <_; (K0+v)> (W = V) exp (_; (K0+w)>
o 1 ) )
=5 J_OO —(cosh /) exp (ZT (K0+V))
L exp (—u (Ko T V)) (W = V)exp (—(t — u) (Kod W) du
exp (—iT (KO—i—W)) dr.

(ii) = (i) This implication is a consequence of the identity
Eo(Ao)(W = V)E1 (A1) =Ey(Ag) exp (t (Ko+V))
exp (—t (Ko V) (W — V) exp (—t (Kot W)
exp (t (K0+W)) El(Al),
for Ag and A; bounded intervals. Moreover, for bounded Borel sets Ay and A;, the
operators Fy(Ap) exp (t (Ko—i—V)) and E7(A;)exp (t (KO—FW)) are bounded. O
The following result is applicable for

M(t) = exp (- J t V(X (w)) du> or M(t) = exp (— J V(X () du) L.

0 0

where V' is a Kato-Feller potential, and where S is a terminal stopping times, i.e.
t+Sov, =8 P,-almost surely on the event {S > t}. Theorem 6.64 shows part (b)
of Theorem 6.56.

6.64. THEOREM. Let {M(t) :t = 0} be a multiplicative process taking its values in
[0,00). This means that for every t = 0, M(t) : Q — [0,00) is F;-measurable and
that M (s +1t) = M(s)M(t) o Js for all s and t = 0. We assume

lim | M(t—¢) du JM d,u

el0

As above, the defining property of ,LLO’@, is the equality

deuagz — E, [Fpolt — 5, X(s), )]

where F': Q — R is bounded and Fs-measurable (s < t). The following assertions
are valid:

(1) The process
o M(s) [ Mt ) dii

is a P,-martingale on the interval [0,1).
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(2) The following equality is valid:

E, [M() JM a5 £ (y) dy,

where f is greater than or equal to zero and Borel measurable.
(3) The following Chapman-Kolmogorov identity is valid:

JJM t1) dﬂtlzJM to) dpgdz = JM t +to) dug Y.

Y

As mentioned earlier, the quantity s could be called the un-normalized Markov

bridge kernel.

PROOF. (1) Let t > s5 > s; >0 and fix 0 < e <t — sy. Then
t—s2,y
[ (89 JM (t—s9—¢)dp, X(52) ‘ 3"51]

- E, [M(Sl) {M(Sz —Sl)fM(t—Sz &) dig X o) }01931 |981]

(Markov property)

= M(81>Ex(51) {M(SQ — 81) fM(t — SS9 — 5) dﬂé,_;Q(i—Sl)}

(definition of g ")

= M(51)Ex(s)) {M (52 = $1)Ex(sp—s1) [M(t = 52 — €)po(e, X(t — 52 — €), y)]}
(Markov property)

= M(s1)Ex(s;) {M (52— s1)M(t — 53 —€) 0Vsy—s,00(e, X(t — 51 —€),y)}
(the process M (t), t = 0, is multiplicative)

= M(s1)Ex(s)) {M(t — 51— €)po(e, X(t — 51 =€), )}

(definition of g ")

= M(s1) JM(t — 5 —¢€) dug}l(’i).
Finally we let € tend to zero to obtain (1).

(2) Fix 0 < ¢ < t and consider
f M(t — ) dpugh f (y) dy

(definition %) = f]Ez [M(t —e)po(e, X(t —€),y)] fy) dy
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(basic formula: E, [f(X(s))] = [exp(—tKo) f] (z) = §po(s, z,y) f(y) dy)
E, [M(t - o {f(X(E))}]
(Markov property) =E,[M(t— ) (X(t))]
Finally, let € tend to zero to obtain (2).

(Fubini) = E, [M(t ) j pole, X (¢ — 2),9)F(y) dy

(3) By assertion (2) we have

JUM ty dut”JM to) du: y) dz=E, lM(tl)JM(tz) dpg:

v | Ex {M(tl) JM(tl + it — )d:uf)l)—?z;)tl Y ‘ ?0}]

=K

(martingale property: t; — 0)

We notice

JM ty + ta)dpg' x & y]

JM tl + t2)d/itl+t2 Y

JM(t) dug’, = lim J M(t —e)dug’,
= i B, [ M(t — e)po(e, X(t — ), y)]

=lmE, [M(0)M(t — &) o Fgpo(e, X (t —€),y) o V]

el0

(
= IimE, [M(0)Ex() {M(t —€)pole, X (t —).9)}]
= I E, [M(0)]E, [M(t —¢e)po(e, X(t —¢€),9)]

8

Hence, the Chapman-Kolmogorov equality

JJM t1 dﬂthM tQ d,umydz _ JM(tl +t2) dlutl—i-tzy

holds indeed.

where ¥ = {z

Finally we also notice that

E. [M(0)] = E. [M(0)M(0) o ¥o]

= E, [M(0)Ex(o) {M(0)}] = (B, [M(0)])" = 1x(2),
eE:E, [M(0)] =1}
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The proof of Theorem 6.59 is complete now. O

6.65. THEOREM (Khas'minskii’s Lemma: see Simon [126]). Let W : E — [0, 0]

be a Borel measurable function. Put v = llm supE, lj W(X ], and suppose
0 zeE

v < 1. The following assertions are true:

(1) v = limg_p (al + Ko) ™" W (z).
(2) Choose ty > 0 in such a way that « := sup,.p E, [ (t)o W(X(s))ds] < 1.

Then ,
0 1
supE, lexp (J W(X(s)) ds)] < :
el 0 1 -«

1 1\
and e® = ( ) . Then
—

E, [exp <LtW(X(s)) ds)] < Mexp(bt), zeE, t>0.

(3) Let ty and o be as in (2). Put M = ]
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ProoF. (1) Fix n > 0 and choose ¢, > 0 so small that
to
v+ n>supk, [J W(X(s)) ds] :
zel 0

Then we have

(al + Ko) "W (z) = fo e K, [W(X(s))] ds

:aJ ““E, [JW ]ds

<aL eE, [0 W(X(0)) do | ds

+a§2rt0 (k- 1)toZE _fto W(X(a))da] ds

k l)t() jfl)to

cof o[ Wixion o] s

Faty 3 oo Z E, [EX((J_I)tO) { J " W(x(o) da}]

k=2 j=1 0

2 — exp(—atp)
(1 — exp(—atyp))

Since i > 0 is arbitrary, it follows that limsup, ., (el + Ko) " W (z) < 7.

2> (y +n).

< <1 + ato exp(—aty)

In order to prove the reverse inequality we fix € > 0 and notice the inequality

E, [ L E/aW(X(a))da] <act L "o, [ L sW(X(a))da] ds

— ¢ L . e R, [W(X(s))]ds = € (al + Ko)~' W(x).

(2) Upon using the expansion of the exponential and employing the Markov property
we see that

£ feo ([ WX as)]

—1+ gEm U0<51< B 1<stl s W(X (51)) ... W(X (s5-1))

E;(S“) { L R ) dsH

0

<1+Y'E, “ stl s W (X (1) W (X(s50) |
k=1 O<si<-<sp_1<t
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This proves assertion 2.

(3) Fix t > 0 and choose k € N in such a way that kty <t < (k + 1)ty. From the
Markov property we infer:

e [e ([ WX () )|

—E. [exp ( " W(X(s)) dS) Ex (ko) {eXp (Jt_km Wx(s) ds) }]

0
1

l—«

<E, lexp ( " Wx(s) ds)]

0

E+1 t/to
< 1 < 1 1 = Meé.
11—« l—-a\l—«

This completes the proof of Theorem 6.65. O

For the convenience of the reader we insert a proof of the Stein and the Riesz-Thorin
interpolation theorems. The first theorem is the same as Theorem 4.12.

6.66. THEOREM (Theorem of Riesz-Thorin). Let (Ey, Ao, mo) and (E1, Ay, my) be
o-finite measure spaces, and let

T : LP (Ey, Ag,mg) + LP* (Ey, Ag, mo) — L (E1, A1, mq) + L™ (B, Ay, my)
be a linear operator such that
T € L (L” (Ey, Ag,mg), L (Ey, A1, mq)) n L (LP* (Ey, Ag, mg) , LI (Ey, A1,my)).
Define, for 0 <t <1, p; and q; by

1 1—1 t 1 1—t t
— = + —, and — = + —. (6.64)
Pt Po P1 at q0 q1

Then T € L (LP* (Ey, Ao, mo) , L% (Ey, A1, m1)), and setting M; = ||T|\qi7pi, i=0,1,

then |T1,, ., < Mg~ "M, 0 <t < 1. In the case that some of the p;’s or the ¢}s is oo

1
the statement still holds if we set, as usual, — = 0.
o0

Recall that the set of the simple functions (= finite linear combinations of indi-
cator functions of measurable sets with finite measure) a : Ey — C is dense in
LP (Ey, Ag,mp) or 1 < p < oo, and, for the same reason, the set of the simple func-
tions b : Ey — C is dense in L7 (F;, Ay, my), for every ¢ € [0,20). Moreover, for
each measurable function f: E; — C we have

1
0] o

f(@)b(x) dma ()],

by

|1l = sup
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where the supremum is taken over all simple function b. Here ¢ is the conjugate
exponent of ¢: —+ — = 1. For a concise formulation of the Stein interpolation

theorem we introduce the notion of a holomorphic, or analytic, family of operators.

6.67. DEFINITION. Let S = {0 < Rz < 1} be the closed unit strip in the complex
plane, and let z — T'(z) be family of linear operators defined on the space of simple
functions on (Ey, Ag, mg). This operator family is called analytic (or holomorphic) if
for every pair of simple functions a : Ey — Cand b: E; — C, the product [T'(z)a]-b
is my-integrable and the function 2z — §. [T'(z)a] (x)b(x) dmi(z) is continuous and
bounded in S, and holomorphic in the interior of S.

Now we formulate the Stein interpolation theorem.

6.68. THEOREM (Stein interpolation theorem). Assume that for every z € S, T(z) is
a linear operator defined in the set of the simple functions on Ey, with values in the
measurable functions on Ey, such that the function z — T(z) is holomorphic in the
sense of Definition 6.67. Moreover, assume that for some p;, q; € [1,0], j =0, 1,
the inequalities

IT(t)al e < Mol ny , and [T+ it)al e < Myla],, teR  (6.65)

hold for every simple function a, and for some finite constants My and M. Then
for each t € (0,1), T'(t) may be extended to a bounded linear operator, still called
T(t)), from LP* (Ey, Ao, mg) to LY (Ey, A1, mq), with p; and g, defined as in (6.64),
and |T(t) < My~'Mt.

” qt,Pt

> Apply now
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Of course, if T'(z) = T, then, essentially speaking, Theorem 6.68 reduces to Theorem
6.66. A proof of the Stein interpolation theorem may be based on the three line
lemma in complex analysis. This lemma reeds as follows. As above, S denotes the
closed strip {0 < Rz < 1}.

6.69. PROPOSITION (Three line lemma). Let F': S — C be a bounded and continu-
ous on S, and let F' be analytic on the interior of S. For 0 <t <1, put

M, = sup {|F (t +iy)| : y € R}.
Then the inequality M, < My~ M} holds for all 0 <t < 1.

PROOF. The three line lemma follows by applying the maximum modulus the-
orem to the holomorphic function F.(z), € > 0, defined by

F(z) 1
FE = ) Sa
(2) 1+ ez al=2p5% 2 €
where a > My, f > M;. Then |F.(z)| < 1, and hence |F(2)| < a'~% 3% By letting
a tend to My and 3 to M; we obtain the desired result. 0

PROOF OF THEOREM 6.68. For every pair of simple functions a : Ey — C,

and b : E; — C, we apply the three lines theorem to the function the function
F(z) = {5 T(2)f(2)(x)g(2)(z) dmi(x), z € S, where f and g are defined by

la(z)

|a(x)|7’t<1&f+ﬁ> ale) - if g e By, a(z) # 0;
=0

f(2)(z) = {

0, if x € Ey, a(x) =0,
and
9(2)(x) = |b(x)|qt<q6+qll> sy if o€ By b(n) # 0; (6.66)
0, if x e By, b(z) = 0.
Then
[F(iy)| < JE T (iy) f (iy)(x)g(iy) (@)| dma(z) < |T(iy) f(iy)] 1o 9G] q

< IT @Yo 1 @) 20 190y < NT ()] Il Hb\liﬁq‘% (6.67)

and, similarly,

[F(1+y)| < f (1 +iy) f(1 +iy)(x)g(1 + iy)(x)| dma(z)

Eq

<|TA +iy) f(L+ i)l 9L+ iy)] o
< [T+ )]y, p0 [FQ+ i) 91 +iy)] o
<IT(+ i)y, 20 5 (6.68)
We get
[F(t)] = L [T(t)(a)] (2)b(x) dma ()| < My~ My~ |all o, 8] - (6.69)
1
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so that

HT(t)aHL% < M()l_th HaHLPt
for every simple a defined in Ej. Since the set of such functions a is dense in L” the
statement in Theorem 6.68 follows. U

As mnoticed earlier, if T(z) = T in Theorem 6.68, then we get the Riesz-Thorin
interpolation theorem 6.66. For a proof of this result the reader is referred to Reed
and Simon [106], Theorem IX.21 page 40. Other sources of information are Lunardi
[87, 88]. The paper by Stein [131] is the origin of “Stein” interpolation.

6.70. PROPOSITION. Let T : LY(E,m) — L*(E,m) be a continuous linear map, with
norm |T'|, . Let it also be a continuous linear map from L*(E,m) to L*(E,m),
with norm T, .. Then T is a continuous linear map from LP(E,m) to LP(E,m)

for which [T, , < 1/p HT||1 l/p.

ProOOF. Apply the Riesz-Thorin interpolation theorem with

1 1—t t
— = + —, where py=1, p = w0
Dt Do D1
11—t t
— = + —, where ¢ =1, ¢ =
4t do q1
Then
HTHqt7pt == HTHqO ,P0 HTqu ,p1°
With ¢t = 1 — 1/p we obtain the desired result in Proposition 6.70. O

6.71. PROPOSITION. Let T : LY(E,m) — L*(E,m) be a continuous linear map, with
norm |T'|,,. Let it also be a continuous linear map from L*(E,m) to L*(E,m),
with norm |T'|, .- In addition, suppose that it maps L'(E,m) to L*(E, m), with
norm |1, ,- Then T is a continuous linear mapping from LP(E,m) to LY(E,m),
where 1 < p < q < 0. Its norm [T, obeys:

1 l/p

1 —1 1
Proor. We suppose that ¢ > p. Putt=1——, r = M, and s =1— —.
q q—7p r
Then
1—-t ¢ 1 1—-1 t
prm + = — E—

Y

1

P 1 rq 1 0
1 1—s S 1 1—s t
I + —, — =

T 1 0’8 0'¢ 0 o0

Hence, by Riesz-Thorin interpolation (twice),

o

This completes the proof of Proposition 6.71. U

1Tl < ITI 1T,

1/p 1/q HT”l 1/p‘
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6.72. COROLLARY. Let T : L*(E,m) — LY(E,m) be a continuous linear map, with
norm [T, . Let it also be a continuous linear map from L*(E,m) to L*(E,m),

with norm [T, . In addition, suppose that it maps L'(E,m) to L*(E,m), with
norm T, ,. Then T is a continuous linear mapping from LP(E,m) to LI(E,m),

where 1 < p < ¢ < 0. Moreover suppose that T = S%, where S = S*. Its norm
T, obeys:
(1/p—1 (1/p—1
1T, < ITIS SV IS

PRrROOF. Since T' = S§S*, it follows that
[Tlen = 115500 < S]]
From this inequality, together with
IT1 = 1T 00 = 1T o 0
the result in Corollary 6.72 follows. U

2
15721 = 19152

0,2 ‘

The previous results can be applied to Feynman-Kac semigroups. Put T'(t) =
exp (—t (Ko+V)). Then T(t) = T(t)* = T(t/2)T(t/2). We also write S(z) =
V% (al + Ko) ' VZ, 0 <Rz < 1. Let M and b in R be such that

(T0)0 = ITOL, = supE [exp ([ V(X)) is) | < are

0
From Khas'minskii’s lemma (Theorem 6.65) it follows that such constants exist.

6.73. THEOREM. Let V be a Kato-Feller potential. The following assertions are
valid.

(1) The operator exp (—t (Ko+V)) is a mapping from LP(E,m) to LP(E,m),
1 < p < oo. Moreover the following inequality is valid:

Jexp (=t (Ko+V))],, < lexp (=t (Ko+V)) 1],

(2) The operator Ve (al + Kq)™' VY is a linear mapping from LP(E,m) to
LP(E,m), 1 < p < oo. Its norm can be estimated as follows:

HV_l/p(a] b K) Ve
b,p

<o + Ko V-,

1 1
Here — + — = 1.
p q

(3) In particular, for a large enough, the operator V2 (al + KO)_1 VY% s an
operator from L*(E,m) to L*(E.m). Its norm can be estimated as follows:

Vol K R < ol K <1

Moreover, again for a large enough, the operator

(a + Ko) 2 V_ (al + Ko)"? (6.70)
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possesses the same L*-L*-norm as v2 (al + KO)_1 V_l/z, which 1s strictly

less than 1.

(4) If exp (—3tKy) is as mapping from L'(E,m) to L*(E,m), then the same
s true for the operator exp (—t (KO{LV)). Moreover, for 1 < p < q < o0,

the following norm-inequality is valid:
Hexp (—t (KOJ}V)) Hq’p
< Jexp (=t (Kov)) 1P

t . 1/p—1/q
exp (—5 (K0+2V)> 1

X

o]

13
exp (_QKO)

1/p—1/q

0,1

Operators of the form (6.70) are called Birman-Schwinger kernels. They are em-
ployed to estimate the number of eigenvalues below a certain threshold for Schrédin-

ger type operators: see e.g. [127].
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PROOF. Assertion (1) is a consequence of Proposition 6.70.

(2) In order to prove this assertion we apply Theorem 6.68 (Stein interpolation) to
the holomorphic function S(z). For § € R the norm [S(i§)|, ; coincides with

Vo (al + Koo)', = [(al + Ko) " Vo, = [[(al + Ko) " V|
For € € R the norm [[S(1 + i), ,, coincides with
(@l + Ko)" V|, = ol + Ko) Vo,

i

Theorem 6.68 with pg = go = 1, p1 = ¢1 = 0, and t = 1 — 1/p, yields the desired
result.

(3) In order to prove this assertion we specialize assertion (2) to p = 2. Since

H(a[ v Ko) 2V (al + Ko)?

2,2

= |(al + Ko) 2 V1/2<(a]+K) V1/2)

L.

— ((aI+K) V1/2> (al + Ko)~? WH

_ v (a1+K0)‘1V}/2H ,
2,2
the conclusion in assertion (3) follows.

(4) In order to prove this assertion, we need to estimate the operator T'(t/2) as
an operator from L*(E,m) to L*(E,m). Therefore we pick f € L?*(E,m), and we

estimate
2

exp (—; (KOWLV)) f(z)
£/2

E, [exp( f V(a:(s))ds) (X(t/Q))]

<E [eXp< J V(x )] X (/2)7

2

(Feynman-Kac) =

< |exp (—2 (K0+2v)) 1 ) lexp (—K0> |f| ]( )
< lexp (—; (K0+2v)) 1) e (—QKO) N fIE.

Combined with Corollary 6.72 this yields the desired result, and completes the proof
of 6.73. O

6.74. LEMMA. Let T and S be closed linear operators in a Hilbert space H. Suppose
T=>8=>el>0. Then T~* < S~!. These inequalities are to be understood in form
sense.
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PROOF. Put A = §2T7S 2. Then T > S if and only if A > I. It follows that
(f )= (AAT2f, A2 f) > (AT f, A2 f) = (A, ),

for f in the domain of Az. This proves A7 < I. Hence T7! < S7!, and so the
proof of Lemma 6.74 is complete now. O

6.75. REMARK. Another proof is based on the equality

1
Str7t = L 51 (1—a)T + aS) " da

— fl (1—a)T+ ozS)_1 (T-9)(1-—a)T + ozS)_1 da.

0
These integrals and derivatives have to be taken in strong sense.

6.76. LEMMA. Let W and V be Kato-Feller potentials on E. Suppose W =V

(pointwise). Then
1

(al + Ko+V) ™' = (al + Ko+ W) .

This inequality is true in form sense as well as in the sense that f = 0 implies

(al + Ko—i—V)_lf > (al + KO—FW)_l f, pointwise.

PROOF. Suppose W and V to be bounded. Otherwise replace W and V with
respectively W, ,, = max (min (W, m), —n) and V,,,, = max (min (V,;m), —n), and
let m and n tend to co. Since W and are V bounded, we see that in form sense
al + Ko+ W = al+ Ko+W > al+Ky+V = al+ Ky+V. Hence, by virtue of Lemma
6.74, we get (a[ + KO—FV)_I = (a[ + KO—'FW)_I. For the pointwise inequality, one
may use the Feynman-Kac representation.

This completes the proof of Lemma 6.76. 0

6.77. DEFINITION. (General facts) As above the generator Ky is perturbed in two
ways. The first is a “regular” perturbation, being a multiplication operator V. That
kind of operator was studied in Theorem 6.56. The other kind of perturbation is
the “singular” one, i.e. a perturbation by a potential barrier on a closed subset
[ of E. These singular perturbations will be treated presently. Put ¥ := FE\I'
and introduce the restriction operator J = Jy as follows: Jf = flx. Then its
adjoint J* : L*(X,m) — L*(E,m) is given by the canonical extension: J*f(z) =
f(z) for x € ¥ and J*f(x) = 0 for x € T. Moreover, we have J*J = 1y and
JJ* is the identity in L*(X,m). By (K(ri—V)E we denote the generator of the
semigroup {exp (—t (KojLV)E) it = O}. The operator exp (—t (KOJLV)E) is given
by the formula

[exp (—t (Ko iV),,) 7] (z) = E, {exp (— L V(X () du) FX@): S > t] ,

where S is the penetration time of I" given by

S:inf{s>0:Jslp(X(a))da>0}.

0
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Suppose the set of S-regular points coincides with I'. Then, for f € Cy(F), the func-
tion g : ¥ — C, defined by g(z) = [exp (—t (Kg—i—V)E) f] (x) possesses a continuous
extension to all of F. In fact the canonical extension J*f is continuous on all of
E. This is a consequence of the fact that the “killed” Feynman-Kac or Dirichlet
semigroup {exp (—t (Ko—i—V)E) it = 0} leaves the space C(X) invariant: see e.g.
Doob [41], Chapter 1.VIII. For V' = 0, this is shown in Demuth and Van Casteren
[36] Appendix D, Theorem D.21. A function in LP(E,m) can be approximated by
functions in Cy(E) in the LP-norm. So that in the presence of L'-L*-smoothing,
the LP-spaces LP(X,m), 1 < p < oo, are mapped into Cy(X) by the Feynman-Kac
semigroups “killed” on I'. Their canonical extensions then belong to Cy(E): for
these results one has to mimic the corresponding proofs of Theorem 2.5 for the
singular case. The proof of this theorem was discussed in Chapter 3 of [32]. From
formula (2.51) in Corollary 2.32 item (b) of Demuth and Van Casteren [36] we see
that the operator (Ko—i—V)E extends the operator J (Ko—i—V) J*. Like in [36] we are
interested in the harmonic extension operator given by the formula (see Definition
2.30 in Chapter 2 of [36]):

(15 110 = B oo (= [ (0 v au) sxisn s < @)

for whatever functions f this operator makes sense.
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From the discussions in Proposition 2.31 and its Corollary 2.32 in [36], it follows
that (6.71) has a meaning for functions f € D (Ky+V) or even for functions f in
the domain of the generalized Schrédinger form. In Chapter 2 of [36] the relation
between H&T and the resolvents (a[ + Ko—i—V)fl and J& (aI + Ko—i-V); Js were

discussed. In fact the following version of Dynkin’s formula holds (see Proposition
2.31 in [36]):

HEY (ol Kok V)™ = (0l 5 KobV) = (o] 5 V)

If a + V =0, then we write Hy instead of HY, and Tx(t) instead of TS (¢).

6.78. DEFINITION. Another family of operators which will play a decisive role con-
sists of the family of projections {T%(t) : t = 0}, where Tx(t) = T% (t) is defined by
(see Definition 2.33)

[To()f] (2) = B, [exp (— | V(X (W) du) FX(S): 5 < t] .

0

6.79. THEOREM. Let V' be a Kato-Feller potentials on E. The following assertions
are valid:

(1) Suppose a > b, where

E, lexp (f V(X (s)) ds)] < Mexp(bt), t30.

0
Then the supremum sup [H“+V1] (x) is finite.

(2) (Dynkin’s formula) The following equality is valid:
HEY (al + Ko+V) ™' = (al + Ko+V) ™ = J* (al + Ko+ V) .

(3) The following inequality holds in form sense as well as in pointwise sense:
0< HEY (o + Ko+ V) 7' < (al + Ko+ V)™
(4) The following inequality in form sense is valid:
0 < (al + Ko+ V)? HEY (al + Ko+ V) 2 < 1.
PRrROOF. (1) For this result we refer to [36], Proposition 4.20.
(2) For this result we refer also to [36], Proposition 2.31.
(3) This assertion follows from the identities:
HEY (al + Ko+V) ™' = (al + Ko+V) ™ = J* (al + Ko+ V)" J
= s lim ((al + Ko+V) ™ = (al + KoV + 81r) ),

B—00

together with Lemma 6.76.
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(4) This assertion follows from assertion (3). In fact, the form sense part of assertion
(3) is equivalent to assertion (4).

The proof of Theorem 6.79 is now complete. O
6.80. THEOREM. Let V' be a Kato-Feller potentials on E. The operator
(af + Ko+V)2 HE'Y (ol + Ko+V) 2
is densely defined and extends in a unique fashion to a self-adjoint projection.
PRrROOF. Put ) )
T = (af + Ko+V)* J (al + Kg+V)?2 .
In addition we write

Tg = (CLI + K0+V + /Blr)_% (CLI + Kg—l-V)

N

Then

1

N ) _1
Ty = (al + Ko+V)? (al + Ko+V + 81p) 2, and
L1 o1
T* = (al + Ko+V)? J* (al + Ko+V).*
As a consequence we obtain
T =s- lim Tjs.

p—c0
From Dynkin’s formula it follows that

-

(al + KoV)? HE™Y (al + KoV)
=I—T*T=s-ﬁli_1}30(I—T§T5).

It follows that 7™ is bounded and everywhere defined. Hence the operator T is
closable, with closure T%*. It follows that

(al + Ko+V)? HEY (al + KotV) % € [ — T*T.

Hence the claim in Theorem 6.79 follows, if we can prove that, for any bounded

Borel measurable function f, the equality (Hg+V)2 f = HE&YV f holds. For this fact
we need the equality S o ¥g = 0, P,-almost surely on the event {S < oo}. A proof
of this equality is indicated in Appendix D of [36]: see Theorem D.16 together with
Remark 2 on page 403. Next we consider

[ (1Y) 1| @)

- (
I
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(strong Markov property)

_E, | exp (k fs (a+ V) (X(u)) du)

0

Sodg
exp (—L (a+V) (X(u+S))du) f(X(S+Sodg)),Sodg <0, S<w

(the equality S o g = 0 holds P,-almost surely on the event {S < o0})

~E, [exp (— fs (a+ V) (X(w) du> F(X(S)), S < oo]

0
= [HEY f] (@).
This completes the proof of Theorem 6.80. O

6.81. REMARK. From Theorem 6.80 it follows that the harmonic extension operator

leaves the form domain of the operator Hy+V invariant. Its proof uses the fact that

the harmonic extension operator Hgt" is an projection operator from Cj, (E) to the

a + Hy+V-harmonic function on ¥; it preserves the values of a function f € Cy(E)
onT, ie HEVflp=flr, T =E\X.

(]
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In the implication (iii) = (ii) of the proof of Theorem 4.2 equality (6.72) of the
following result was used with, Hy = H; = L (E,m), Hy = Ko+V, H, = Ko+W,
and T'=W - V.

6.82. THEOREM. Let, for j = 0,1, H; = S fE (d&;) be a self-adjoint operator in

a Hilbert space H; with lower bounds —w; € R Let T : Hy — Hgy be an appropriate
linear operator. Then the following identity is true:

t t
t exp (_QHO) T exp (—2H1)

ee}
— WJ (hl())Qexp (iTtHo) D(t)T exp (—iTtHy) dr, where (6.72)
cosh (77

DT = Jo exp (—uHy) T exp (—(t —u)Hy) du.

In the proof double Stieltjes operator integrals are employed. The interested reader
is referred to the literature on this subject: Birman and Solomyak [17, 18, 19].
Some information on this topic can be found in Yafaev [155] as well. It is not very

clear under what circumstances these double Stieltjes operator integrals are well
defined.

Proor. We will employ double Stieltjes operator integrals. The main formula
in (6.72) is almost trivial from the point of view of double Stieltjes operator integrals
(and if one takes the validity of Fubini’s theorem for such integrals for granted). Put

Vo(t) = e tHo = J e ®Ey(dé) and Vi(t) = e M = J e "E (dn).
o (Ho) o(Hu)

A quick proof of the equality in (6.72) runs as follows:

a (® 1 to
f ZV(ZTtU)f Vo(u)TVi(tg — u) duVy(—itto) dr

—o (cosh )

exp (—iTto(€ —n)) , exp(—ton) — exp(—tof)
JJ J (cosh ’/TT) dr E—n Eo(d§)TEr(dn)

e ) (s

~to | [[exp (—;to(f + n>) Ey(d€)TE, (dn) = toVolto/ 2TV (t/2).

A proof without double operator integrals will be based on Cauchy’s theorem from
complex analysis, and on operator valued functions on a horizontal strip in the
complex plane. In fact it follows from assertion (iv) of Theorem 6.87 in Section 5

with
u(r, ) = toVo (itto) Vi ((; ; s) t0> v <(; - s) t0> Vi (—irty).

This completes the proof of Theorem 6.82. U
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6.83. THEOREM (Inverse of the equality in (6.72)). Let f be a rapidly decreasing
function. Then

f " F(0)Vh (iot0) Do) TV (—ioty) do (6.73)
- Z (Z‘I 11) ‘ fo ERSSe (£ (6 — (Up + Uy + - + U)]

% ’lO'to tg%(to/Q)T‘/l(to/Q)‘/l( ?:O't()) dO’

J J ( smlf/z/g))nﬂf(f)ewgdfvo(iUtO)D(tO)TVl (—ioty) do.

The random variables U;, j = 2, 3, ..., are independent copies of the logistically
distributed variable Uy, Uy = 0: see Evans, Hastings, and Peacock [50]. For a proof
of Theorem 6.83 the reader is referred to Proposition 6.88. It is taken from [142].

6.84. REMARK. Put, for T': H; — Hj a (bounded) linear operator,
Q(to)T = B8 [V (iUyto) TV4 (—iUstg)] -
Then the formula in (6.72) is the same as saying that
toVo (to/2) TV1 (to/2) = Q(to)D(to)T),

and the formula in (6.73) is equivalent to the identity:

D(te)T = f Vo(u)TVy (tg — u) du

i ("“) 190t (tVh (t0/2) TV: (t0/2)) + (I — (o))" Di(to)T.

j+1

The question which poses itself is the following. Let S : H; — H, be a bounded
linear operator for which the Schatten class norm S|, 1 < p < o is finite. Does
it follow that lim,, . | (1 — Q(te))"+! SHp = 07 If p = 2 (Hilbert-Schmidt situation),
then this result is correct. An argument for this statement runs as follows. First
approximate the operator S in Hilbert-Schmidt by an operator-valued integral of the
form S, := §p(0)Vo(ioty)SVi(—ioty) do, where ¢ is a rapidly decreasing function
on R. Smce limy, o0 | (1 — Qte))" S@Hz = 0, and since (I — Q(to))" SH2 < [|5],,
we obtain the desired result. In [143] this question is answered in more or less full
generality. In the proof of Theorem 12 of [143] it is shown that

| Va7Vt = ) s - 2 (0 71) ) v (/) TV <to/2>]H

j+1

t(]Co T 1
f J (1-90)" gty (PO~ Fl=nldr. (679

I\J\H
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where Cy < 86, ¥(§) = sinh (15)
2

F(7) = exp (itgTHy) (Vo (to) T — TV; (to)) exp (—itoT Hy) .

, and

The norm in (6.74) can be the usual operator norm, or a Schatten class norm.

4.1. KMS formula. Suppose (7, s) belongs to R x (—%, %), and let T : H; —
Ho be a linear operator with the property that the operators Vo(to)T and Vi(to)T™*

are densely defined. Then, in form sense, the following identity is true:

toVi (ity) Vi ((; + s> to) ™ ((; _ s> t0> Vi (—itho)

t 0
‘o oS TS Vo (to) Ve (iote) TVA (—ioty) do (6.75)

2 J_, coshm(t — o) —sinms

to * COS TS ) .
2 to) TVi (—icty) Vi (o) do.
"2 waOShW(T—U)+Sinws%(ZU 0) TVi (—iato) Vi (o) do

This formula follows by virtue of the following observation. The function at the right
hand side of Formula (6.75) is harmonic on the strip R x (—l 1) and it possesses

22
boundary values

toVo (to) Vo (itto) TVL (—iTto) for s = 1, and
to‘/o (ZTto) T‘/l (—Z’Tt(]) ‘/1 (to) s for s = —%

The left hand side is harmonic on the same strip (in fact it is holomorphic there),
and has the same boundary values. The uniqueness part on the existence of solutions
to the classical Dirichlet problem on a strip, yields the formula in (6.75). For some
more details about the KMS-formula see Remark 6.85 below. Upon integrating the
identity in (6.75) with respect to s we obtain the next one:

to [*®
D(ty)T = log

o o coshmr —1

to [ 1
= OJ log |coth <7r7'>
T J o 2

6.85. REMARK. Again we consider the space Hy x H; together with

V(i) = (%gT) ‘/187))'

Define the flow A, on B (Hy x Hy, Ho x Hy) by A (T) =V (—itty) TV (itty). De-
fine for (f,g) € Ho x Hy, and T' € B (Hy x Hy, Ho x H;) the function Fy (7 + is),
TeR, -1 <s<iby

s -ol (0 (1)) (4 -)4)) €)- ()

coshmr +1

) Vo (itto) {Vo (to) T + TVi (to)} Vi (—iTty) dr

Download free eBooks at bookboon.com



Partial differential equations and operators Operator semigroup and Markov processes

The function F} , is K(ubo)-M(artin)-S(chwinger)-admissible for the operators V()
and T in the sense that it is continuous on the closed strip

1 1
s:TeR, ——<s<=¢,
{T—l—zs T r Ty S 2}

and holomorphic on its interior. Moreover,

Fy, (r + %z) — 4 <V(t0)AT(T) (g ) , (g )> ;
Fry (T - %z) ~ to (A(T)V () (g ) , (ch )> . (6.76)

If T =T* then Fy, (1 — i) = Fyy (7 + 3i).

Vo(t) DT

6.86. REMARK. Observe that for T" a bounded linear operator the family of operators
t ( 0 Vi(t) ) is a strongly continuous semigroup on the space Hy x H;.
1

vant to do”?
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5. Harmonic functions on a strip

The results in Theorem 6.87 of this section are applicable for real-valued harmonic
functions u(r, s) with the property that

0 1e
lim supf J u(r, s)ds
alO —00 —

1
or for the operator valued function v(7, s) given by

o(r,5) = toVi (irte) Vi ((; + s) t0> v ((; - s) to) Vi (—irty).

1 1
’U(T, 0) = to% (ZTto) ‘/E) <2t0) T‘/l (Zto) ‘/1 (—iTto) s and

dr < o0,

Then

1
J () ds = Vo (irte) D()TV (~itto).

2
If we read the above function v(7, s) instead of u(r, s), the identities in assertion (iv)
of the next theorem yield the basic formula in (6.72) in Theorem 6.82 of Section 4.
The author wonders whether there is some relationship between the Stein interpo-
lation theorem, i.e. Theorem 6.68, and the results on harmonic functions, including
the KMS-function, on the a strip. In fact in both cases (bounded) holomorphic
functions are involved.

6.87. THEOREM. Let (X, ||) be a Banach space, and let fi, and fo : R — X be
continuous functions with the property that, for every T € R, the following quantity

is finite:
OO cosh(m(t — o)) + 1
foo log cosh(m(t — o)) — 1 {[fr(o)l + | f2(0)[} do-

Define the function u(t,s), T € R, —% <s< %, by

u(T, s)

_ l J~oo COSTS : fl (O_) do N 1 J‘OO COS TS ' fQ(O') do.

2 J)_, coshn(r —0)—sinms 2 J_, coshrm(r — o) +sinms

The following assertions are true:

(1) The function u(t,s) is harmonic and

limu(7,s) = fi(r), and ljm u(r,s) = fa7);

s§ 5—5

(i) 1§ | f1(0)| do and §*_ | fa(0)| do are finite, then

F u(r, s)dr — (1+ 25) LD Fi(o)do + (1 - 2s) f; folo) do

—0o0
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— f;u(r, 0)dr + 2s fooo (fi(0) = fo(o) do.

(iii) Let the hypotheses be as in (ii). The following equality is valid:

© ri 0
J f u(r,s)dsdr = f u(r,0)dr.
Y w

(iv) The following identity is true:

u(7,0) = WJ 5 J u(o, s)dsdo

2 J)_o (coshm (Tt —0))" J_1

1

= [plosistic [J2 u(t = U, s) ds] ,

1
2

where U is a logistically distributed random variable.

PrROOF OF THEOREM 6.87. (i) This is a standard result in harmonic analysis
about the existence of harmonic functions on a strip with given boundary conditions.

(ii) This result follows from the (elementary) identity

* COS TS 1 1
- dr =1+2s, ——<s<-—.
» cosh7 (T — o) —sinws 2 2

(iii) Assertion (iii) follows from (ii) and Fubini’s theorem.

(iv) This equality is somewhat more involved. The second equality is a direct con-
sequence of the fact that the random variable U is supposed to be logistically dis-
tributed. In order to prove the first equality we notice the following identities:

1

: L (" ( COS TS
J; w(o,s)ds = 2 J,oo J; cosh (o — p) — sinqus (fi(p) + falp)) dp
1 (® 1 1
- 5 wa J‘; R <COSh7T(O' + s — p)) ds (fl(ﬂ) + fQ(p)) dp
L (b e X
- ij J ER(Coshw(a—kz’s—p)) (f1(p) + fa(p)) dpds.

1
5 J—mw

Here we used the elementary identity

COS TS COS TS 1

+ - )
coshm(o — p) —sinws  coshm(o — p) + sinws coshm(o + is — p)

1

—3 < s < 3. So, in order establish (iv), it suffices to prove the equality

—o (coshm (T — 0

(NI
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where g(7 + is) is an appropriate analytic function on the strip

{T-i-iSZTER, —;<8<;}.
For g(7 + is) we take
4 * 1

9T +is) :waOShW(T+i8—p)

(f1(p) + fa(p)) dp.

An application of Fubini’s theorem, in conjunction with Cauchy’s theorem, yields
the following string of identities:

”JOO ! f (o +is)dsd
— o +is)dsdo
2 J)_ o (coshm (1 —0))* ) g

1
2

T [z ([ 1
= lim — o+1is)dods
cl0 2 Jé+€ JOO (cosh?T(T*U)fg( )

(Cauchy’s theorem)

- 1-e rw 1
= lirnf J : 59(0) dods
0 2 J 1., J o (coshm (7 +is — o))

(Fubini’s theorem once more)

1

B f ! _dsg(0) do

J-wJ-iie (coshm (7 +is — o))
©  plee 1
202 ) o Joiye (coshm (7 +is —0))
1

. ]' r‘oc 1 . S=§—E
= 1&%1 3] R | - tanhr (7 — 0 + is) ’S:_%ﬂ g(o)do

ds g(o)do

]

) 1 1 L
=1 Ua ’y d
allo -0 <Z eXp (277 (7' + 15 — O’)) + 1) ‘3:*§+€ g<0> g

®© 4 cos e sin we

= lim T—o0)do
el0 ) o (exp (10) — exp (—70))” + 4sin? ng( )

=i 1f cosme <T—1log(fsinﬂ5+\/1+§2sin27re)> de
™

im — —9
o ) 1482 1+ &sin’ e
=g(7).
The latter proves the first identity in assertion (iv), and completes the proof of
Theorem 6.87. O

Upon reading, in Proposition 6.88 below, the above function v(7, s) for the harmonic
function u(r, s), the formula in (6.73) of Theorem 6.83 in Section 4 is obtained.
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6.88. PROPOSITION. Let f be an n-times differentiable function, belonging to L*(R).
Let the harmonic function u(t,s) be as in Theorem 6.87. The following identities
are true

f:} f(o) f% u(o,s)dsdo

1
2

oo n+l

Y (n ;— 1) (=17 TR [ f (0 — (Up + -+ - + Uj_1))] u(o,0) do

1 S 0 lé n+1 R . %
= Uoo (1 - W) Fe)es ds] [ wtors)asao

) (6.77)
= JOO f(o)u(o,0)do
0 n 1 1
+J ) IElogistiC["=1 U]J;) d51 R L dSnf(”) (o’ — (SlUl 4+ -+ SnUn)) U(O’, O) do
1 0 0 lf n+1 N . %
—i—% [J (1 - m> f(f)ezéadfl J 1 u(o, s)dsdo. (6.78)
_o o ! o

EXPERIENCE THE POW
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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The sequence (Uj)jeN ;=1 In Proposition 6.88 consists of independent logistically
distributed random variables, each distributed according to the same law:

1 * sinh i
IP’[UJ»EB]ZWJ 2d7’=7r2j sm7r7‘3f 1p(0)dodr.
2 Jp (coshrr) o (coshmr)” J_;

The variable Uj is identically zero.

PROOF OF PROPOSITION 6.88. The equality of (6.77) and (6.78) is due to the
following equality (n > 1, f as in Proposition 6.88):

nZ (n—i— ].) (_1>j71Elogistic [f (O’ _ (UO 4+ .-+ Ujfl))]

=N
n 1 1

= f(o) + Elosistic []_[ Ujj dsl...J ds,f™ (o — (5101 + -+ s,U)) | . (6.79)
j=1 0 0

Let 0 be the Dirac measure at the origin and let ¢y be the density corresponding

f72_ The identities (the symbol
2 (cosh (7))

((6— 900)*)n+1 denotes the (n + 1)-fold convolution of § — ¢y with itself)

217T Jj; [ ﬁo (1 _ smhéf;g))m f(g)eiﬁodgl f_ u(o, s) ds do
_ foo (6= 00" 1] (0) flu(a, s) ds do
-3 S (" e [ ] o [ stesasan
(assertion (iv) of Theorem 6.87)
[ o]
:J o f (o, s) ds do

foo 3 ( )(—1)j]E1°giSti° [f (0= (Uo+ -+ Uj-1))] u(o,0)do

to the logistical distribution: ¢q(7) =

wlo)dsir+ 3 S (") [ ot do

l\)\»—l

N|=

complete the proof of Proposition 6.88. 0

6.89. THEOREM. Suppose that the real-valued harmonic u(T, s) possesses the property
mentioned in the beginning of the present section:

s 1-e
lim supj f u(, s)ds
el0 —0

1
—§+E

dr < o0,
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suppose that the function has the property that

[ [ ro4g0.q

and suppose that vector valued (or opemtor valued) function v(t,s) is bounded in
the following sense
1
3
f v(T,s)ds

dr < o0,

sup < .
TeR -3
Then the following identities are true:
0 1 ©
f (TO)J v(T, s dsdef f u(T, s) dsv(r,0) dr; (6.80)
—3 2
h(Le ” 1
f U o™ T (z¢) ”fdg} = f U f(€ Wﬁdg]f v(r, s) ds dr.
5 © 0 -1

(6.81)

Notice the equalities:

o0 o0 h
f f(&§) exp (iT€) d€ = ;T f (COSM o) f f(& Sm é ) exp (i0€) dé do
Y L

smh
_ [logistic lj f(& ég)exp (i(r=U)¢E) dE|.

PROOF. The equality in (6.81) follows by inserting the function (7, s) defined
through

uris) = [ @ity + i) de

into (6.80). Equality (6.80) follows from (iv) in Theorem 6.87 and Fubini’s theorem.
In fact we have

JOO u(r,0) J_é v(1,s)dsdr

—00

NI

(the equality in assertion (iv) of Theorem 6.87)
. : :
- J [ logistic [f u(t — U, s1) d31] f v(T, S9) dsg dT
s = =

(Fubini twice, translation invariance of Lebesgue measure, and symmetry of the
logistic distribution)

1
f J u(T, 1) dsy [Elosistic [J v(t — U, s9) d32] dr

1
2
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(another time we use the equality in assertion (iv) of Theorem 6.87)

© 3
=J f u(r, s)dsv(r,0)dr.

This concludes the proof of Theorem 6.89. O

6.90. REMARK. In particular we have (y = 0):
1 ([ + 5 :
—J 175 5 J2 v(o,s)dsdo
T (r—0)2+ (y+3) J-2

1
f Jz 7+ rs sds v(0,0) do
L(r—0)2 7+ +s)

2

I (LR s A W
_Wf_w1g( Ty )(,O)d.

Here we employed the harmonic function

1 +1+s

u(o,s) = — 7T -
T(r—0)2+ (y+1+5)

5, 7 =0
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We also introduce the following convex sets of harmonic functions on the strip

Rx (=3:3):
11 .
harm; = {u R x <—2, 2) — R : % harmonic and
0 1
lim supf J u(r,s)ds|dr <17%; (6.82)
el0 —oo |J-1+e
“ 1
harm; = {u € harm, : f u(r,s)ds =0 forall 0 < a < 2} : (6.83)

6.91. THEOREM. Let (X,||) be a Banach space, and let v(t,s) be an X-valued

harmonic function on the strip R x (—1,1). Suppose that sup {|v(7,0)| : 7 € R} is
finite. Then the following equalities are true:

sup {|v(7,0)| : T € R} (6.84)

= sup{ J u(T,0) JQ v(7,s)dsdr| :ue harml} (6.85)
—w _

[
N

~ sup { f; u(7,0) J_ o(rs)dsdr| - ue harm+} | (6.86)

N

ProOOF. The quantity in (6.86) is trivially dominated by the one in (6.85). Equal-
ity (6.80) yields the inequality
1

JO; u(r,0) JQ v(T,8)dsdr

1
2

< sup {Ju(r,0)] : T < R},

for u belonging to harm;. Hence quantity (6.84) dominates (6.85). The equality

© 1 1
v(r,0) = 72rf 5 JQ v(o, s)ds do,

—oo (coshm (7 —0))” J-1

together with the identity

1 )
Wf? € 1 COS e sin e

2

s = Y
1ie (coshm(r +is — o))’ (cosh (T — 0))? + sin® 7e

0 <e< %, implies that quantity (6.84) is dominated by (6.86). So the proof of

Theorem 6.91 is now complete. O

Another corollary is the following one.

6.92. COROLLARY. Let v : R x (—%7

1
2

sup {

%) be an X-valued harmonic function, with

) and v (7’, —%) respectively. Suppose

1 1
U(T,Q) —|—U<T,—2>H:TER}<OO.

boundary values v (7’
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Then the suprema

f o(r,s)ds| : 7 € R}

1
2

wup {[o(.0)] : 7 € R} and sup H

are finite. Moreover they obey the following inequalities:

sup {|v(7,0)| : 7 € R} < sup{ Jj v(T,s)ds| :T€ R}

%
<1 L + 1 eR} <
< —su v, = vt —=]|:
g P Ty o)l T

PRrROOF. This result is an easy consequence of the following identities:

(7, 0) = ”Jw Coshﬁ(lT 7 F (o, s) ds do;

1
2

1
3 COS TS 1 1
Y B PO 0

1
2

The reader should compare this with the proof of assertion (iv) of Theorem 6.87.
This completes the proof of Corollary 6.92. U
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CHAPTER 7

Holomorphic semigroups

In this chapter we will discuss certain aspects of holomorphic semigroups. In The-
orem 7.3 (generators of) exponentially bounded holomorphic semigroups are de-
scribed. This is done via so-called sectorial operators. In Section 3 the same
is done for (generators of) bounded holomorphic semigroups. These semigroups
{P(t) : t = 0} are not only bounded, but, for some 0 < @ < 37, they also have an
analytic extension in some sector V,, = {z € C : |arg z| < a} which is bounded in
the sense that sup {|P(t)| : t € V,} < oo. In section 4 we discuss the relationship
between the Crank-Nicolson iteration scheme and generators of bounded analytic
semigroups. A certain functional calculus is developed which encompasses the rel-
evant operators; see Theorem 7.13 and its Corollary 7.14, Corollary 7.17. Finally
Section 5 is devoted to a discussion on the stability of the Crank-Nicolson iteration
scheme.

The author is indebted to Sergey Piskarev, University of Moscow, for interesting
discussions on the subject and for some relevant references.

1. Introduction

In this section holomorphic semigroups and their generators are characterized. For
a concise formulation for the results we introduce the following notation. Let 0 <
a < mand put V,, = {z € C: |argz| < a}. Let {P(t): t = 0} be a semigroup
of continuous linear operators in a Banach space X. This semigroup is said to
be holomorphic or analytic if there exists 0 < a < %7‘( and a holomorphic map

P :V, — L(X) such that P(t) = P(t) for t > 0. Instead of P(t) we usually write
P(t) for this extension. Again we have P(z; + z3) = P(21) o P(22) for z; and 2z, in
V,. We begin with a couple of definitions.

7.1. DEFINITION. The semigroup {P(z) : z € V,,} is said to be exponentially bounded
if for each 0 < ¢ < «, there exists constants M = M, and w = w, such that

|P(2)|| < M exp (w|z]) for all z € V.

7.2. DEFINITION. Let {P(t) : t > 0} be a strongly continuous semigroup of operators
on a Banach space X. This semigroup is called (uniformly) bounded if

sup {|P(t)]| : t = 0} < 0.

It is called a (uniformly) bounded analytic semigroup provided that it is (uniformly)
bounded and extends to a (uniformly) bounded analytic semigroup on a sector V,
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where 0 < a < 7/2. This means that, for some 0 < o < 7/2,

sup {|P(t)| : t e V,} < 0.
Usually the adverb “uniformly” is omitted. In Theorem 7.9 below we give a char-
acterization of generators of bounded analytic semigroups in terms of sectorial op-

erators: see Definition 7.5. We also notice that part of this material comes from
Chapter 5 in [139].

2. Exponentially bounded analytic semigroups

In what follows we collect some of the characterizations of exponentially bounded
analytic semigroups.

7.3. THEOREM. Let {P(t) : t = 0} be a strongly continuous semigroup in L(X) with
generator A and with resolvent family {R(X) : A € p(A)}. The following assertions
are equivalent:

(i) The semigroup {P(t): t = 0} is analytic and has an exponentially bounded
extension.
(ii) There exists a complex number (, || = 1, such that

limsupinf {|(x — P(t)z| : x € X, |z| =1} > 0.
t0

(iii) There exists m > o > 37 such that p(A) > a+ V4 for some a > 0 and such
that

IARN)| <C, Aea+1V,

for an appropriate constant C.
(iv) There exists a constant C' and a positive real number b such that p(A) o

{AeC:RAN=0, |\ > b} and such that
ARV < C, RA=0, [A]>0D.
(v) limsup,gsup {t |[AP(t)z|| : 2 € D(A), |z| <1} <.

(vi) The operator
A0
A A

generates a strongly continuous semigroup in X x X.
(vii) There exist a constant C' and a positive real number b such that

n|(ARO))" = (RN)" | <€ A b, neN.
(viii) There exists a polynomial q such that

m?f)uP lg(P(t))|l <sup{lg(z)|:2eC, |z[=1}.
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(ix) There exists a polynomial q such that
lim sup

510.£10.1100 {q <P <%t>> }n - 1/n

<supilg(z)]: 2€C, |2] =1},
(x) For every polynomial q, for which |q(1)| < sup{|q(2)|: |z| = 1}, the strict
510,t}0,n—00

inequality
b))
holds.

7.4. REMARK. Let A be the generator of a bounded semigroup {P(t): ¢t > 0}. If
in assertion (i) “bounded analytic” replaces “exponentially bounded analytic”, in
assertion (v) we assume

sup {t |[AP(t)x| : t >0,z € D(A), || <1} < oo,

1/n

lim sup <sup{lq(z)|: zeC, |z] =1}

. . . A .
in assertion (vi) the operator ( A 2) generates a strongly continuous bounded

semigroup in X x X, and in assertion (vi) we take b = 0, then a substantial part of
Theorem 7.9 follows.

360°
thinking
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7.5. DEFINITION. Operators A which satisfy (iii) in Theorem 7.3 are called sectorial
operators.

For more details on sectorial operators see, e.g., Lunardi [85] and also Haase [60].
The equivalency of (i), (i) and (iv) is due to Kato: see Kato [75, 76, 77]. A proof
of the equivalency of (i), (iii), (iv) and (v) can be found in Pazy [97], pp. 61-64. In
Yosida [156], pp. 254-255 the equivalency of (i), (iii) and (v) is proved too. The
equivalency of (v), (vi) and (vii) can be found in Crandall, Pazy and Tartar [28]. In
[14] Beurling proves the equivalency of (i), (ix) and (x). The implication (viii) =
(ix) is easy. Let g be a polynomial for which the strict inequality in (ix) holds. For
appropriately chosen m and n in N the polynomial go(z) := q(z)"2™" satisfies (viii).

In many textbooks on differential equations applications of analytic semigroup the-
ory can be found. In [132, 133] Stewart gives a number of interesting application of
the use of analytic semigroups. In [128] Sinclair applies holomorphic semigroups to
Banach algebra theory. In [99] and [100] Pisier uses Beurling’s characterization of
holomorphic semigroups to prove some geometric properties of Banach spaces. Here
the following fact is used. If @q,...,Q, are commuting projections in a Banach
space, then the mapping ¢t — [[;_, {( — Qx) + e 'Qx}, t = 0, is a holomorphic
semigroup. In [34] de Graaf has yet another application of holomorphic semigroups.
In [35] Delaubenfels introduces the notion of exponentially bounded holomorphic
integrated semigroup. He also gives some examples. For regularity properties of
solutions of initial value problems, in which sectorial operators play a fundamental
role see, e.g., Priiss [103], Priiss and Simonett [104], Lunardi [85] and others.

Before we prove Theorem 7.3 we insert the following proposition. It refines some of
its statements. Moreover it yields the equivalence of the assertions (i), (ii), (iii), (iv)
and (v) of Theorem 7.3.

7.6. PROPOSITION. Let A be the generator of a strongly continuous semigroup { P(t) :
t = 0} in L(X). The following assertions are equivalent:

(i) The semigroup {P(t): t =0} has an exponentially bounded holomorphic
extension in some angle Vo, with 0 < a < %7?.

(ii) For every ¢ € C, || = 1, ¢ # 1, the inverses (CI — P(t))™! exist, as ev-
erywhere defined bounded linear operators, for all sufficiently small positive
real numbers t.

(i) There exists (€ C, |¢| =1, ( # 1, such that the expression
lirg(i)nfinf{HC:c —Pt)z|: xe X, |z| =1}

18 strictly positive.
(iv) There are constants M >0, a € R and b = 0 such that

M |[(a+ir)x — Az| = |7| [z
for all x € D(A) and for all T € R with |7| = b.
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(v) There exist constants a € R and %W < @ < m such that the resolvent set of
A contains a + V,, and such that

sup {|A[[RA)] - Aea+ Ve

1s finite.
(vi) The expression

limsupsup {t |[AP(t)z| : z € D(A), |z| <1}
£0
18 finite.

Here, as always, R()\) denotes the operator R(\) = (A — A)~!, whenever it exists
as a bounded linear operator which is everywhere defined. Sometimes we will use
symbolic calculus utilizing operator valued integrals in the complex plane. The
contour I'(a, ¢), a € R, 0 < ¢ <, denotes then the boundary of a + V,, oriented in
such a way that a + V,, is lying at the right-hand side.

7.7. REMARK. Let A be the generator of a bounded semigroup {P(t) : ¢t = 0}. If in
Proposition 7.6 assertion (i) we replace “exponentially bounded” with “bounded”,
in (iv) we take a = 0, b =0, in (v) we take a = 0, and in (vi) we assume

sup {t |[AP(t)z|: t >0, |z| <1, ze D(A)} < x,

then part of Theorem 7.9 follows from the argumentation in the proof just below.

PROOF OF PROPOSITION 7.6. (i) = (v) Suppose |P(t)| < M exp(wt), for t €
Vi, where 0 < a < %77 is fixed. Choose a; € R in such a way that a; cosa > w and
for Ae a; + V, SN = 0, the L(X)-valued integrals R, (A) by

1
+5m

Q0
R, Nz = e_mf exp (—Ate™**) P(te”"*)zdt, z € X.
0
Since ‘ ‘

lexp (—Ate™™) P (te™*)| < M exp (— (a1 cos o — w)t)
for ¢ > 0 and for \ € <a1 + VaJr%W) (N {\e C: 3\ = 0}, these integrals make sense
indeed. Next fix ¢ € R in such a way that

1 1
oz+§7r><p>§7r, » > 2a,

and fix a > a; in such a way that

1 1
a (cosa — cos(p — ) = 2asin 5 sin (zgo - a> > w.

For A = a + |\ — a| " the following inequlities are valid:
0
[Ra( M| < MJ exp (—at cosa — |\ —a|tcos(p — ) + wt) dt
0
< M (acosa + |\ —alcos(p — a) —w) ™

< M (a(cosa — cos(p — ) — w + |\ cos(p — a)) ™

Download free eBooks at bookboon.com



Partial differential equations and operators Holomorphic semigroups

< M (|\| cos(p — ).

Hence
A IR < M (cos(p —a)) ™, Ael(ap), SA=0. (7.1)
Similarly the integrals
Q0
R_o(N)z := eiaJ exp (—Ate’™) P(te')zdt, z€X,
0
make sense for Ae a; + V. ot SA < 0. Again we have
A R-aN)] < M (cos(p —a)) ™", Ael(ap), SA<O. (7.2)
By Cauchy’s theorem we have
R(A\) = Ry(\), RA>ay, SA=0, (7.3)
and
R(A) =R_o(N\), RA>a;, SN0 (7.4)
SIMPLY CLEVER SKODA
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In (7.4), as usually,
o0
RNz = f exp(=A)P(t)xdt = (M — A) 'z, zeX,
0
for ®A > w. So the holomorphic map A — R()\), A > a;, extends to an operator
valued holomorphic map on the interior of a; + V. i This extension is again

denoted by R(A) and in fact
RN = —A)7 Xear+ Vi, (7.5)

From (7.1), (7.2), (7.3), (7.4), (7.5) and the maximum modulus theorem the inequal-
ity
AR < M (cos(p —a)) ™, Aea+V, (7.6)

follows.

(v) = (vi) Let a and ¢ be as in (v). Then with I' = I'(a, ¢) we have
1
P(t)x = 9 exp(A)R(N)xd\, ze X, t=0. (7.7)

™ Jr
The latter follows from the equalities:

« 1
f exp(—,ut)% J exp(At) R(\)xdAdt
0 r

1 0
= — —(u— AN)t)dtR(N)x ) dA
o [ (e (0= 2y derone

1 1
s Jpop— A
Q0
= R(ua = | expl-pt)P()adt,
0
for R > 0 and = € X together with the uniqueness of Laplace transforms. Since A
is a closed linear operator and since AR(A) = AR(A) — I equality (7.7) implies that
for x € X and t > 0 the vector P(t)x belongs to D(A) and that

R(N\)dA

APtz = —— | exp(M) AR zdA

21 Jp

_ 21 exp(At) AR(\)a — z) dA

™ Jr

_ 21 exp(M)AR(N)zdA. (7.8)

T Jr

Consequently, with My := sup {|A| |[R(N)| : A € I'(a, ¢)}, which by (v) is finite, equal-
ity (7.8) yields

x 1
it |[AP(t)zx| < tf exp (at — ptsin (gp — 277)) dp.My |z|
0

_ expl(at) (sin (cp _ ;w))l My ]
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This proves (vi).
(vi) = (i) By (vi) there are constants § and M; > 0 such that
t|AP(t)z| < M|z

for all x € D(A) and for all 0 < ¢t < §. For ¢ > 0 arbitrary select & € N in such a
way that k0 <t < (k+ 1)d. With w > 0 and M > 0 satisfying

t
M = sup {Ml (5 + 1> exp(—wt) [P(s)]|: 0<s<t, t> 0} < o,

we infer, for z € D(A),
LIAP(8)2] < (t — k6) [ AP(t — k8)P(kS)x| + k6 | AP(5)P(t — o)z
< M ([|P(kd)z| + K |[P(t — 6)z|)
<M (g + 1) sup {| P(s)z] : 0 < s < }
< Mexp(wt) Ja]. (79)

Consequently, since D(A) is dense in X, the operators AP(t), t > 0, can be extended
to all of X. These extensions will be denoted by C(t), t > 0. Moreover (7.9) implies

t|Ct)] < Mexp(wt), t>0. (7.10)

Put Cy(t) = P(t) and Ci(t) = (C(tk™1))", t > 0, k € N, k > 1. By induction on n
the equality

Pty = S )0 ) 7”: (t = 5)"Chuss (5)2ds, (7.11)

is readily verified for ¢, t5 > 0, n € N, and for x € X. For the time being fix 5 > 0
and consider ¢ > 0 with

(Me + 1) |t — to| < to. (7.12)
By (7.10) and the definitions of the operators C,(t),
t"|Cu(t)] <t HC(tn_l)Hn <n"M"exp(wt), t>0, neN,
and consequently

1
n!

L (= 9 Con(5)ds

0

]

< f (t = 5" |Cosa(s) ds

~x g o
_ (1 f (t= )" explws)
to 8n+

Mn+1

]

~

n!
(1 1™ exp (wmax( )
(n+1)! (min(t, o))"+

n+1
[t — o[ ]
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(by Stirling’s formula)

(Me)™™!  exp (wmax(t, tg))

n+1
: =t 2]
2r(n+ 1) (min(¢,t))

(by (7.12))
exp(w(1+ (Me+1)"Y) )
< > |z
2m(n + 1)
Hence in (7.11) the remainder term tends to 0. So
0 k
(t —to) to
P(t) = / t—to] < —2—, t>0. 1
(t) ];0 o Ci(to), [t —tol er1l 7V (7.13)

Next let ¢ € C be such that (Me + 1) |t — to| < to. Then (7.13) defines P(t) for such
t. Moreover, by (7.12) we have for such complex t,

[P@)] < [P(t)l + Z |t HCk(to)H

M It — to|* KR MK
< | — t
(Mﬁ,; i) et

(by Stirling’s formula)

M 1 It — to|" (Me)* Mew
<< \/gZ tk )eXp(M +1H>

.y 1 N e o Me H
< — 4+ — | ex
M1 \/271' P M +1

< My exp(wo |t]).

Here My = M (M;l n e(QW)’%) and wy = wMe/(Me + 1). Thus, for t € V, with
1

o = arcsin
Me +1

, P(t) satisfies
1P(t)]| < Mo exp(wo [t])-
This proves (i).

(v) = (ii) Let @ and ¢ be as in (v), fix { = exp(i¥), 0 < ¥ < 27 and choose t > 0
so small that

larg(—at + 10 + 2kmi)| < ¢, 3JkeZ.
For such t define the operator B(t) by

1 exp(At)

B(t) = 2mi Jp exp(At) — ¢

R(\)dA,
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where I' = I'(a, ¢). Then by symbolic calculus (see also (7.7)):
P(t)B(t) = B(t)P(t)

1 exp(At)

g oot —expw) e
Xp(A
1 ¢ exp(At)
m@e"p d“%f oxp(M) — ¢ TN D
= P(t) + (B(1).

Hence

(I = P()(I = B(t) = (I = B))(CI = P(t)) = CI.
This shows (ii).

(i) = (iii) Trivial.
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(iii) = (iv) Let ¢ = exp(i)), 0 < ¥ < 2, be as in (iii) and choose a € R in such a
way that

|P(t)| < Cexp(at), t=0, (7.14)
for some constant C. Then there exists n > 0 and ¢y > 0 such that, for all z € D(A),
nllz| < [[¢x — exp(—at)P(t)z|, 0<t<to. (7.15)

Since, for x € D(A) and ¢t > 0,
¢

: s W
(x —exp(—at)P(t)x = fo exp <M9 <1 - ¥>) P(s) ((t + a> T — Ax) ds.
So from 7.14 and 7.15 it follows that
n |z <C’t”<zf+a)m—/lx :

So, with M; = Cn~ and by =ty 0,
T|z| < My |(iT + a)x — Ax|, (7.16)

0<t<ty, xeD(A).

for x in D(A) and 7 > b;. Similarly, upon replacing 9 with 9 — 27 we infer with
My = Cn~t(2m — ) and by = t5* (2w — 09,

17| |z < My | (it + a)x — Az, (7.17)
for x € D(A) and 7 < —by. Combining (7.16) and (7.17) yields (iv).
(iv) = (v) Let M, a and b be as in (iv). Let w be the type of the semigroup

{P(t): t > 0}. Fix @ > w, put by = max(2M (o — w),b) and choose m > ¢ > 17 in
such a way that

1 _ _
|cot | < min (QM’& bw> = Oéblw' (7.18)
For |7| = by and x € D(A) the following inequalities hold true:
2M ||(a +iT)x — Ax| = 2M ||(a + iT)x — Az + (o — a)z|
= 2M |(a +iT)x — Az| — 2M |a — al |||
= |7] ] + (7] = 2M | — al) |2
= [l ||=] -
Hence
17| |R(o + i7)| < 2M, |7| = by (7.19)
From (7.18) and (7.19) we see that the series
©¢]
> (=pcos ) (R(a + ipsin )™
k=0
converges for psiny > b;. Moreover
0
R(a + pe'?) = ((o + pe’? 2 —pcos ) (R(a + ipsin @)
k=0
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and
2M 1

psing 1 — 2M |cot p|

HR o + pe' )H

for psinp > b;. Consequently

R N < 2M +cotp + 1
la + pe ]H (a + pe')|| Py cot ¢ + 1 =20 eot 7|
o 1
< 2M +1 ) 7.20
<61 2M 1 —2M |cot | (7.20)
b
for psin > by. Using the fact that |cot | < —— we see that
a —

sup {}a + pe?| |R(a+ pe?)| : 0< p < .bl }
sin

is finite. This together with (7.20) shows that the expression

sup {|o + pe’| |R(a + pe'?)| : p = 0} (7.21)
is finite. A similar argument shows the finiteness of the expression
sup {|o — pe’| | R(av — pe'?)| : p = 0} . (7.22)

Using (7.21) and (7.22) together with the maximum modulus theorem results in the
finiteness of
sup {[A[|[R(A)]| : A e a+Ve}.

This proves (v). O
PROOF OF THEOREM 7.3. The assertions (i), (ii), (iii), (iv) and (v) are equiv-

alent by Proposition 7.6.

(iii) = (x) Let C, a and « be as in (iii) and let ¢ be any polynomial with

lg(D)] < sup{lg(z)] : z € C, [] = 1}. (7.23)

Fix sg > 0 and fix tp > 0. Let 0 < s < sg, let 0 <t < tg and let T' = I'(aty, «). By
symbolic calculus

(7 ()} 7o
_ 217” ) {q <exp (exp (f))) }nexp()\t)()\l A A, (7.24)

By (iii), (7.24) and some elementary estimates we obtain

o(r (ff>)}”P<t>\ <ame (o (3))

where
J exp(aty + pcos )
laty + pexp(ia)|

n

t A€ F(atg,oz)} ,
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Hence

Sup{H{q (P (‘jf))}np(t)H L 0<s<sy O<t< to}

t n
<Oy sup{ q (exp ((ng) exp(A)) :0<s<sg, A€ F(O,a)} .
n

Consequently, since ¢ is uniformly continuous on compact subsets of C,

e [s (o ()]

< sup{|g (exp(A)]| : A e I'(0,a)} . (7.25)

The set {exp(A) : Ae I'(0,a)} [ J{0} is a compact subset of {z € C: |z| < 1} which
touches the circumference of the unit disc in the singleton 1. So the maximum
modulus theorem together with (7.23) and (7.25) yields

e[ (2))]

<sup{lq(z)|: z€eC, |z| =1}.

n

: 0 < s < s, 0<t<t0}

n

10 < s < s, 0<t<t0}

Assertion (x) is an easy consequence of this fact.

(x) = (ix) Yhis implication is trivial.
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(ix) = (viii) Let ¢ be apolynomial that satisfies (ix). Then there are n, m € N and
sup

0 > 0 such that
ol ()]
0<t<d mn
So with qo(2) = q(2)"2™" and &y = (mn)~'d we obtain

sup [ (P(0)] < sup{Jan()| 2 < €, |2 = 1}.

<t<do

<sup{lg(2)]": 2€C, |z[ =1},

This proves (viii) with ¢ = go.

(viii) = (ii) Let the polynomial ¢ be as in (viii) and choose ¢ € C, |¢| = 1, in such
a way that

[4(O)] = sup{lg(z)[ : 2 € C, |2 = 1}.
Then by (viii), there are § > 0 and 1 > 0 such that

n ] < (a(Q)] = la(PE)]) |
for 0 <t < ¢ and for all x € X. So for 0 < ¢t < § and for x € X we obtain the
inequality:
nlz] < a(Q)z —q(P(t) z| . (7.26)
Define the polynomial r by the equality ¢(¢) — q(2) = (( — 2)r(2), z € C, and put

C =sup{|r(P(t))]:0<t<d}.
Then, because of (7.26),
nlz] < [r (P(#) (Cx — P(t)z)| < C[Cx — P(t)z]
for all z € X and for all 0 < ¢ < 4. So (ii) follows.
(v) = (vi) Let § > 0 and C' > 0 be such that ¢t |[AP(t)z| < C'|z| for all x € D(A)

and for all 0 <t < 4. As in the proof implication (vi) = (i) of Proposition 7.6 (see
(7.9) and (7.10)) there are constants M and w such that

t|C(t)| < Mexp(wt), t>0, (7.27)
where C'(t) is the canonical extension of AP(t) to all of X. Then the map
(x,y) — (P()z, tC(t)x + P(t)y), =z, yeX,
defines a strongly continuous semigroup on X x X with generator
(x,y) — (Az, Ax + Ay), =z, ye D(A).

(vi) = (v) Suppose that the map (z,y) — (Az, Az + Ay), =, y € D(A), generates a
strongly continuous semigroup {S(¢) : ¢ = 0}. Then

S(t)(z,y) = (P(t)x,tAP(t)x + P(t)y), =, ye D(A). (7.28)

The latter can be seen as follows. Put B(z,y) = (Az, Az + Ay) for z, y € D(A)
and put D(z,y) = (Ax, Ay) for x, y € D(A). Then D generates the semigroup
{Q(t) : t = 0}, defined by

Q)(x,y) = (P()x, P()y), =, yeX.
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Moreover for y € D(A) we have B(0,y) = (0, Ay). Hence S(t)(0,y) = (0, P(t)y),
y € X. So, for x and y in D(A) we get

S)(x,y) — (P@)z, P(t)y) = S(t)(2,y) — Qt)(x,y)

jo S(t — 5)(B — D)Q(s)(x. ) ds

t

S(t—s)(B— D) (P(s)x, P(s)y) ds

I
S —

t

S(t—s)(0,AP(s)x) ds

|
S —

(0, P(t — s)AP(s)x) ds

I I
S5

(0, AP(t — s)P(s)x) ds

_ J (0, AP()2) ds — (0, tAP()z)

This shows (7.28). From the strong continuity of the semigroup {S(¢) : ¢t = 0} and
(7.28) we see that

sup {t|AP(t)z| :z € D(A), || <1, 0<t<1}
is finite. This proves (v).
(v) = (vii) Since AR(A) — I = AR()), since for A sufficiently large

0

(n— IR\ "z = J s" Lexp(—As)P(s)rds, we X, mneN,

0

and since A is a closed linear operator, it follows for z € D(A) and n > 2,
(n — D ARN)" 2z — (AR\)" 2] = (n — )IN"HAR(N) 2|

— /\n—l

Q0
AJ s" L exp(—As)P(s)xds
0

Q0
=\t J s"exp(—As)AP(s)xds
s
<A 5" lexp(—As) |AP(s)x| ds. (7.29)
Jo

Since, by (v), for suitable constants § > 0 and C' > 0,
t|APt)z| < Clz|, 0<t<é, zeD(A),

we obtain as in the proof of Proposition 7.6 (see (7.9)), again for appropriate con-
stants M and w,

s|AP(s)z| < Mexp(ws) |z]|, s=0, e D(A). (7.30)
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Inserting (7.30) into (7.29) yields
(n = DU (AR« = AR ]

0

< M J s" "2 exp(—As) exp(ws)ds. ||z||
0

e (525) -2kl

for z € D(A) and n > 2. Hence, for A\ > 2wn we have
nJORO)) = AR 2l < My ol @€ X,

where

My = M sup

n=2 (1_1>nn—1
2n

This proves (vii).
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(vii) = (v) From (vii) we get, with 2 € D(A) and M, b > 0 as in (vii),
n|R(\) AR Az|| < M |z, A= bn.
So, with 0 <t < b ! and A\ = nt !,
HEn )y ar
t t
Hence the next standard result in semigroup theory

P(t)y = lim {ER<Q>}ny, t=>0, yelX,

n—w (¢ t

(see e.g. Pazy [97] Corollary 5.4) shows

}<MHIH, neN, xeD(A).

t|AP(t)z| < M |z|, 0<t< -, xeD(A).

S|

Hence, proof of Theorem 7.3 is now complete. O

We conclude this chapter with the following corollary. It follows from an examination
of the proof of the implication (x) = (i) of Theorem 7.3.

7.8. COROLLARY. Suppose that the operator A is the generator of a strongly contin-
uous semigroup {P(t): t = 0}. Then {P(t): t = 0} has an exponentially bounded
holomorphic extension if and only if

la(P(3)} P <swtarszec, 111

for all compact subsets K of [0,00) and for all polynomials q with
lg(D)] < supflg(z)[: z€ C, [z] =1}.

lim sup sup
n—o0 steK

3. Bounded analytic semigroups

The following theorem characterizes generators of bounded analytic semigroups as
sectorial operators whose resolvent sets contain the right half-plane {A € C : R\ > 0}.

7.9. THEOREM. Let A be the generator of strongly continuous semigroup. The fol-
lowing assertions are equivalent:

. h . .
Th e (;t(; h h 0 h h

sup {|\[[(M = A) 7Y - Ae V) <o (7.31)
(iii) The resolvent set p(A) contains the open half-plane {\ € C : R\ > 0} and
sup {[A[ (A —4) 7Y RA > 0} < 0. (7.32)

(iv) sup {t [AP(#)z] : t > 0, z € D(A), |z <1} < .
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(v) The operator

(4 )

generates a strongly continuous bounded semigroup in X x X.
(vi) There exist a finite constant Cy such that

n|(ARN)" = ARW)" [ <Ci, A>0, neN.

Let A be the generator of a semigroup {P(t): t = 0}. Informally formulated the
operator (ﬁ El) generates the semigroup {(t/ig() ) P?t)) = O}. This is a
special case of the following situation. Let A; be the generator of a strongly contin-
uous semigroup {P;(¢) : t = 0} in a Banach space X;, and let Ay be the generator of
a strongly continuous semigroup {P,(t) : ¢t = 0} in a Banach space X5. In addition,
let B: X; — X, be an appropriate, not necessarily bounded, operator. Then, in

A .
X1 x Xy, the operator ( Bl j ) generates the semigroup
2

{<Sé P2(S)§}§1t()t — s)ds pQO(t)) Lt > O}.

PROOF OF THEOREM 7.9. The reason that the assertions in (iv), (v) and (vi)
are equivalent to the assertions in (i), (ii) and (iii) can be found in repeating the
proofs of the implications (v) <= (vi), (v) <= (vii) of Theorem 7.3, and also by
repeating the arguments in the implications (i) = (v) = (vi) = (i) of Proposition
7.6. Proofs of the other implications run as follows.

(i) = (ii) Let 0 < a < 7/2 be such that A generates the bounded analytic
semigroup {P(t) : t € V,}. From (i) it follows that the sector V, is such that the
constant C,, := sup {|P(t)|| : t € V,} is finite. Choose 0 < 0 < min (o, 7/2 — ),
and put ap = 7/2 +a — 6. Let X € V,,. Then A = |\ e with |p| < ag. If
a+d—7/2<p<a—0+ /2, the we have
w . .
M —A) 'z = eiaf e MNP (teT ) wdt, v e X. (7.33)
0
From (7.33) we infer:

o]

e~ MeT p (te_m) xH dt
’ s

Oaj 67\)\|cos(<pfa)t dt HxH
0

|(AT—A) 2| <
<

o0
< Caj e—\)\|cos(7r/2—6)t dt H$H

= lz], zeX. (7.34)
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If —a+0—7/2<¢<—a—7J+m/2, the we have
o) _ _
M —A) "z = eio‘f e NP (te') zdt, v e X. (7.35)
0
Observe that « +d — 7/2 < /2 —a — §, and so that if A = [A\| e with —T < p <7
belongs to V,,, then ¢ satisfiess a +d — /2 < p<a—0+n/20or —a+J —7/2 <
o< —a—0+7/2. Asin (7.34) from (7.35) we again have

Ca

-1

||, e X. (7.36)
(ii) = (iii) This implication is trivial.

(iii) = (i) Let {P(t) : t = 0} be the semigroup generated by A. Define the family
of operators {Q(t) : t = 0} such that

1 w4100
tQ(t)r = — NN —A)Pxdt, reX. (7.37)
2m w—100
In (7.37) w is strictly, but we may choose it as we please. Let u € C be such that
Ry > w. Then we have, for z € X,

0 1 w+100
f e MtQ(t)w dt =

0 2m

0
f e~ W NE (N — A) %z d\
w—100 JO
1 w100 1
—— ——— (M — A) 7z d)
2mi w—ion M A
(Cauchy’s theorem, w' > Rpu)

1 W’ +400
= (ul —A) x4+ — L(M—A)*%dx

27T7/ w!'—ic0 ILL — A

(let w' tend to o)

o0
—(ul —A) Pz = f e MtP(t)x dt. (7.38)
0
In the final step of (7.38) we employed the fact that the operator A is the generator
of the semigroup {P(t) : ¢ = 0}. From (7.38) it follows that Q(¢t)z = P(t)z for t > 0.
We still have to prove that ¢t — P(t)x, t > 0, extends to an analytic semigroup which
is bounded on sector V,, with 0 < a < 7/2. To achieve this we apply integration by
parts to obtain, for x € X,
1 w—+100
tP(t)r = *Q(t)r = —

T J

M —A) Pz d (7.39)
100

Fix x € X and t > 0. From (7.39) we readily infer that P(¢)z belongs to D(A), and
that

PAP(H)z = LAQ(t)x — 732 f W‘m ML~ A)E(AA — A~ T)zdh. (7.40)
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Again employing Cauchy’s theorem and using (7.40) entails
t2AP(t)x = t2AQ(t)x

1 w100 . 3 B
“ 5l (eM+e™M—2) (M - A) 2 (AN — A" = I)zdA (7.41)
Put
C =sup {|A|(AT = A)7Y| : ®A > 0}. (7.42)
Then by (iii) C' < co. Employing (7.37) we get by Cauchy’s theorem
1 w100
tP(t)r = tQ(t)x = 5 (M +e™M—2) (M - A)zdt, veX. (7.43)
™ w—100

From (7.43) we deduce, by letting w | 0, that
1 [* 2(1—costf)
ot ) . e
Similarly, from (7.41) we deduce, by letting w | 0, that
O

T ) £2
=2tC*(C' +1) ||| (7.45)

|P(t)z] < dEC? o] = C?z||, ze X, t>0.  (7.44)

dgC* (C +1) | ]
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From (7.45) we see
t|AP(t)z|| < 2C*(C + 1) |z, t=0, v € X. (7.46)

Fix ty > 0, and choose ¢ € C such that 2|t —ty| eC? (C' + 1) < ty. Then we define
the operator P (t) by the power series:

P(t)z =Ptz + i (t_kf‘))kA’“P(to)x
P (to) x+2 o (—1>k (t]gAP (ig))kx zeX. (7.47)

Hence, from (7.44), (7.45), and (7.47) we deduce

Hﬁ@)xH < C? ] + i ’]‘j

< O? ||z + ‘ 1

t

——1| (C2(C+1)" ||

(eC?(C+1)" |z, ze X.  (7.48)

In the final inequality in (7.48) we applied Stirling’s formula which implies

Kk k* 1
From (7.48) it follows that ¢ — ng(t)xu, |z < 1, is bounded as long as there exists

1 > & > 0 such that [t —to|eC? (C'+1) < to(1 —0). Next we observe that the

operator ]S(t) does not really depend on t; > 0 in the sense that if ¢;, o > 0, and if
t € C is such that [t — ¢;|eC? (C' + 1) < t; for j =1, 2, then

0 t— ¢t k 0 t— ¢t k
I;)(Ml)Akp(tl)x _ ];J(k!z)AkP(tg)w, reX. (7.50)

This can be achieved by differentiating the functions

S'—>Z<t k')AkP():c,xeX. (7.51)

Differentiating the function in (7.51) (for fixed z € X) yields:

S (t— )" k+1
_];l((k_)l) +Z i A P(s)z =0,

and so the definition of ]B(t) does not really depend on ¢y3. In particular, by taking
to = t, it follows that P(t)x = P(t)x whenever ¢t > 0. Also notice that for ¢y we may

choose |t|. Consequently, the operators P(t) are defined in the sector determined by
the inequality

It —|t]|eC?(C + 1) < |¢], teC.
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In addition sup {Hﬁ(t)” :arg(t) < oz} is finite whenever the angle 0 < o < /2 is
such that
e —1|eC*(C +1) <1—0. (7.52)

It is not so difficult to prove the semigroup property of the family ¢ — P (1), t € V,,
where 0 < a < /2 satisfies (7.52). In fact we have

P (1) P () i >y (D2 e V)™ g, 4 o
1 2 - ]{f ' 2
o0 n
= 2 Z ( ) ty— [t])" (t2 — |t2])" P A"P (Jta] + [ta]) 2
n=0 k=0

0 ko

1

n!

o 1
= 277(151+t2 ta] = [t2])" A" P ([t1] + [t2]) @

1

nl

(t1 + ta — |t1 + ta])" A"P (|t1 + t2|) x

—P(ti+t)x, zeX. (7.53)

In other words the family {15 (t): te Va} represents a uniformly bounded analytic

semigroup. The strong continuity at ¢ = 0 of the the semigroup ﬁ(t) can easily be
proved via the representation

0
P(t)z =Pt Z P (to) x
with ¢y = |t| and t — 0, t € V,,. This proves assertion (i).

Altogether this completes the proof of Theorem 7.9. O

Theorem 7.9 can be strengthened somewhat. The idea is that a densely defined
closed linear operator A which satisfies (iii) in Theorem 7.9 is in fact the generator
of bounded analytic semigroup.

7.10. THEOREM. Let A be a closed linear operator with a domain which is dense in
a Banach space X. The following assertions are equivalent:

(i) The operator A generates a bounded analytic semigroup.
(i) There exists 3m < ag < m such that p(A) > V,, and such that

sup {[A[ (A —A) 7Y Ne Vo } < oo (7.54)
(iii) The resolvent set p(A) contains the open half-plane {\ € C: R\ > 0} and
sup {|A| [(AT — A)~ H RA > 0} < 0. (7.55)

Our proof requires the following lemma.
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7.11. LEMMA. Let the family {Q(t) : t = 0} be a uniformly bounded family of lin-
ear operator with the property that for every x € X the mapping t — Q(t)x is
Borel measurable. Put R(\)z = S;O e MQ(t)x dt. Then the following assertions are
equivalent:

(1) The family {Q(t) : t = 0} has the semigroup property, i.e. for all v € X the
equality Q (s + t) x = Q(s)Q(t)x holds for almost all (s,t) € (0,00) x (0, 00).
(ii) The family {R(X) : A > 0} has the resolvent property, i.e.,
(1= A) R R(p) = R(A) — R(p)
for all (A, ) € (0,0) x (0, 0).

ProoF. Fix x € X, and A, u > 0, A # p. First we calculate

J f el s+txdtds—f J ~(A-p)s J e MHQ(s + t)z dt ds

:Jo ~(A-p)s L “HQ(t)x dt ds

(Fubini-Tonelli’s theorem)

f e “tfe A= dsQ(t)z dt

—pt _
:J —e Q) di = RNz R(u)x.
o H—A p—=A
(7.56)
It is clear that
f J AO(8)Q(H)z dt ds = R(N)R(p)x. (7.57)
The implication (i (ii) follows from (7.56) and (7.57). The other implication, (ii)

— (i) also follows from these identities in conjunction with uniqueness of Laplace
transforms.

The proof of Lemma 7.11 is complete now. U

PROOF OF THEOREM 7.10. The proofs of the implications (i) = (ii) and (ii)
= (iii) are exactly the same as in the proof of Theorem 7.9. In the proof of
the implication (iii) = (i) we have to show that (iii) implies that the operator A
generates a strongly continuous semigroup. The proof of this implication in Theorem
7.9 supplies us with a candidate semigroup {Q(¢) : ¢t > 0} determined by the equality
n (7.37)

1 w~+100 t w100
Q) = — NN —A) P xdt = o f AN —tA) P xdt, (7.58)

—100
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for x € X. The second equality follows from the substitution tA = )\, and then
replacing A with A\. As in the proof of the implication (iii) = (i) of Theorem 7.9
(see (7.38)) we see

0
J e MQt)xdt = (M — A) %z, ze X. (7.59)
0
From (7.59) we obtain, for x € X,
a4 e MQ(t)x dt = J e MQM)xdt = (M — A) P a = _d (M —A) 'z,
), . X

and hence, for z € X, the vector-valued function

(0
Ao | e MQ)zdt — (M —A) "z, A >0,
Jo
is constant. However, since the function

(0
A=A eMQW)adt — AN —A) "z, A >0,
Jo
is bounded, it follows that this constant vanishes. Consequently, we get

0
f e NMQW)xdt = (N —A)'a, ze X, A>0. (7.60)
0

Since the family {(A] — A7 > 0} has the resolvent property Lemma 7.11 to-
gether with the equality in (7.60) yields the semigroup property of the family

(Q@t): t > 0.
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It remains to show that the semigroup {Q(¢) : t = 0}, with Q(0) = I, is strongly
continuous. Because, once we have established this strong continuity, the proof of
the implication (iii) == (i) can then be finished in the same way as we proved this
implication in Theorem 7.9. In order to prove the strong continuity we invoke the
equality of the ultimate expressions in (7.58). This equality applies to the effect
that

1 w4100
Qt)r —x = — e (M — tA) P — A7Pz) di
2m w—100
1 w100 €/\

— (VA +tA) T+ D) (AN —tA) e — ) dt

- % w—100 /\2

1 w1300 e,\ . B
T (VAT +tA) 7+ 1) (tA) (M — tA) " wdt,  (7.61)
for x € X. It is not so difficult to show that, for A € C with RA > 0 fixed, and

r € X, we have

ltii%l (A - tA) e — ) = ltii%l tAN —tA) 'z = 0. (7.62)

" omi

First this equality is proved for x € D(A), and then the equality in (7.62) extends
to all z € X because D(A) is dense in X and the function t — (A —tA) "z, t > 0,
is bounded. The fact that lim;jo Q(t)x = « then follows from (7.61) together with
Lebesgue’s dominated convergence theorem.

Altogether this completes the proof of Theorem 7.10. U

4. Bounded analytic semigroups and the Crank-Nicolson iteration
scheme

In the present section we discuss the (implicit) Crank-Nicolson iteration scheme in
which a generator A of a bounded analytic semigroup plays a central role. The
present material is partly taken from [146] and [144]. Let (7;),.y be a sequence
of strictly positive real numbers, and let A be the generator of a bounded analytic
semigroup in a Banach space X. Fix zy € D(A), and define the sequence (z,,),
D(A) by the (implicit) Crank-Nicolson scheme:

1 1
([ — 27—n+lA> Tpt1 = (I + 2TnA) Ty

Put A, = ], (I +37mA) (I —17;,A) . Then the sequence (), © X de-
termined by the Crank-Nicolson scheme is given by z,, = A,xo. In this paper it
is investigated under what conditions on xy and the sequence of step-sizes (Tj)jeN
the Crank-Nicolson scheme is stable in the sense that sup,.y |An®ol < 0. Put

0 &
fr(€) = 222;1 arctan (37;€), £ € R, and I; = J 1 J sin fx(n) dn| d€.
0

o &
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7.12. THEOREM. The Crank-Nicolson scheme is stable provided one of the following
conditions is satisfied: (a) sup, Iy, < 0 and x € X is arbitrary; (b) Zjozl T; < 0
and z belongs to D(A), the domain of A; (c) Zjozl Tj’l < o and x belongs to R(A),
the range of A; (d) the sequence of positive step-sizes (Tj)jeN 1s arbitrary, and x
belongs to the intersection D(A) n R(A).

Suppose that the operator A is the generator of a bounded analytic semigroup in a
complex Banach space X. As is well-known this is the case if and only if D(A) is
dense and there exists a constant C' such that

ARV < C, RA>0. (7.63)

Here R(\) = (M — A)~". For more details see theorems 7.9 and 7.10. Let Q =
{z € C: Rz < 0} be the open left half-plane in C, and let f : Q@ — C be a bounded
holomorphic function which has a continuous extension up to the boundary which
we call again f. Then we have the following result.

7.13. THEOREM. Let A be the generator of a bounded analytic semigroup on the
Banach space (X, |-|), and let f: Q — C be a bounded continuous function on
which is holomorphic on Q. In addition, let the finite constant C' be as in (7.63).
Then the operator f(A) has the following representations (v € X ):

f(A)l“ - f(O x

= LA —¢)) dC{(A — A)> = A2} d) (7.64)
zm J: 0= 2(0) dC{(M — A~ API}wdN  (7.65)
_ 1 - f: —¢) — 2£(0)) dCLlA()\I—sA)?’a:dsd)\ (7.66)
- ;_ LOO j (f(in) — f(—in)) dn { (A2 —€21) (21 + A%) 7 + 5—21} xdé (7.67)
_ 1 LOO 05 Flin) — f(~in)) dn;é_ {e7ra (@1 + 40 wde (7.68)
_ _; OOO 1(i€) gf( ) g2 (1 + A7) e (7.69)
= L [ i - Cione e+ ) e
+71r fﬂ; f(—Re?)zdi — f(O)x} (7.70)
=g [ G - SN e a7 x7)
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. foo (2£(0) = F(i€) — F(—i€)) A (€21 + A) " s de. (7.72)

™

In addition, the following equalities hold for x € X :

iR
f(A x_%li%o{mfmf )) dC (M — A) 2z d)
f J Re“?,o a:dpdﬁ}
—7/2
_ }%ii%o{m f J (in) )) dip (€21 — A%) (€21 + A®) " de
J f (=Re'p) xdpcw} (7.73)
—7/2 JO

Moreover, let the bounded function f be such that the integral

f 55 (FGim) + S (=in) = 2/(0) dn’
(7.74)

53

s finite. The following inequalities hold as well:

C?(1+2C?) JOO ‘Sg (f(in) = f(=in)) dn‘

(Al < & d + sup [F(-N).
™ RA>0
(7.75)
and for x € D(A),

e = soge] < EEEE [T TS gy

+ 2 sl (i) 401, (7.76)
s (|55 (i) + f(—in) = 2(0)) dn

|7 = f0)al < 2 [ ‘ = delds]. (7.7

The integrals in (7.64) through (7.72) have to be interpreted as improper strong
Riemann integrals.

PrROOF OF THEOREM 7.13. Let z € C be such that Rz < 0. First we prove the
equality:

m Lol —r0. ()
i ][ v -son a5ty w)
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Let g be the curve 9 +— —Re™", —%’N < U< %7‘(‘, and let

A 1 1
A z) = - f(0)dCy —— — —
000 = [ (0= 10 ac{ 5 -
be the integrand in the left-hand side of (7.78). From residue calculus it follows that
the left-hand side of (7.78) is equal to

£(2) = £(0) + lim QL J g\ 2) dX = () — F(0). (7.79)

R—o0 271

The reason that the limit in (7.79) vanishes is due to the fact that by assumption
the function f is bounded A similar argument shows that

1 1
o J ) d¢ { T ﬁ} dr = 0. (7.80)
Addlng the equahtles in (7.78) and (7.80) yields the equality:
1

| [ uo-rcoaf A s -gla-se-ro. s

Subtractmg the equalities in (7.78) and (7.80) yields the equality:

1 1

s | [ w0+ reo - 2oy ac{ o - 5 - - g0 ws2)
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An integration by parts and parametrization in (7.82) yields:

1o - 10 == [ [ @+ se0 20 de{ Ly
21 )i Jo (A—2)
o [ U sen =2 5 6
- o | (i) + 1) - 2100 P
boms | 069 + s - 2r0)
[ ero - st - sie) e

1

A2

b

(7.83)

The equality in (7.72) is a direct consequence of the identity in (7.83). The equalities
in (7.81) and (7.82) apply to the effect that the the two equalities in (7.64) and (7.65)
hold true. The third equality, i.e. (7.66), follows easily from the second one, i.e.
(7.65). The equalities in (7.67) through (7.69) are consequences of the equality in
(7.64). The equality in (7.70) is an easy consequence of (7.69) and (7.71) follows
from (7.70). The inequality in (7.75) is obtained from the equality in (7.73), the one
in (7.76) follows from the equality in (7.69), and the one in (7.77) follows from the

equality in (7.66). The constant C' is as in (7.63).
This completes the proof of Theorem 7.13.

By choosing in (7.72) the function

k 1
1+ L
)\—_ll 2°J .
f() j:ll_%Tj/\

we obtain the following corollary.

7.14. COROLLARY. The following identities hold for v € X :

k 1 1 -1
j=1
2
1 + %iij
iil- iT;€

-z JOO (1= cos fu(€)) A (€21 + A%) ™' wdg

2o h () A G+ AY)

™ Jo

A(E0 + A wde

where fi (&) = 22?21 arctan (37;€).
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7.15. THEOREM. Let (Tj)jeN be a sequence of strictly positive real numbers. Let A
be the generator of a bounded analytic semigroup in the Banach space X, and define
for any compact subset K of the open set (0,0) the operator x — v(K)x, x € X, by

2 _
mmx:f(ﬂ®0+54ﬁlmm (7.87)
T JK
Then, for every k € N, the vector
k 1 1 -1
(x—;1<l+2qA>([—2qA) x (7.88)
belongs to the closed convex hull of

{2v(K)z : K compact subset of the open semi-azis (0,00)} . (7.89)
Moreover, the collection mentioned in (7.89) is contained in D(A) n R(A).

PRrROOF. The vector mentioned in (7.88) can be written in the form

k 1 1 1
T — 1_[ (I + 27~A) ([ — 27’0A> T

7=1

- JOO (1—cos fi(€7")) dv(&)z = lim J (1—cos fir (€71)) dv(&)x

0 310,Rtw [
1

=208, . v{§eld,R],1 —cos fi(§) = 2p} xdp

R - 4
= lgfél }%1_{1;0 lim S Z v {{1 — cos fi = 2n_1} N 9, R]} x. (7.90)

(=1

The equalities in (7.90) follow from (7.86) in Corollary 7.14. Since sets of the
form {1 —cos fr = 27"} A [0,R], £ > 1,0 < § < R < o, are compact the first
assertion in Proposition 7.15 follows. Let the constant C' be as in (7.63), let K be
a compact subset of the open interval (0, 00), and pick z € X. The second assertion
in Proposition 7.15 is a consequence of the following observations:

(1) The inequality

§

implies that v(K)z is a vector in X indeed;
(2) The inequality

w@@%+Aﬂ*ﬂ<(Lﬁy)wu

A+ ) ) <

]

£2
yields the claim that v(K)z belongs to D(A).
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(3) Finally, the inequality
_ C?
H (&1 + A?%) 1xH < — |z
entails that v(K)x is a member of R(A).

The assertions in (1), (2) and (3) imply the second statement in Theorem 7.15, and
complete its proof. O

Let gr(p) be the inverse function of f(§) = 237_, arctan (3756), 0 < € < oo,
1
fr(oo) = km. That is fi (gx(p)) = p, 0 < p < km. Let hi(p) = ——. An alternative

9x(p)

way of looking at the vector in (7.88) is to rewrite the expression in (7.86) as follows:
0
f (1 —cos fr(§)) (—A) (& + Az)f1 x d§
0

(integration by parts)

o]

_ L " sin &) £E) L (—A) (P + A) ™ wdyde

(make the substitution p = f(§), & = gx(p), 0 < p < km)
km 0 1
= J sinpf (—A) (P’ + A%) xdndp
0 gk (p)
(distinguish cases: k =20, k =20 + 1, goy1 (p+ (20 + 1m)) = 00, p = 0)

r D (et »
J sianJ (—A4) (1 + A%)  zdndp, k=2¢,

0 §=0 Y g2¢(p+25)

71' ¢ r92e+1(pt(25+1)m) 1
o[ gty e

0 §=0 Y g20+1(p+2jm)

(hae1 (p+ (204 1)) =0, p=0)

w (=1 rhog(p+24m) .
J sianJ (—A) (I + 772A2) xdndp, k=2,

0 —0 Yhae(p+(2j+1))
_ j=0N2elpT{2J ' (7.91)
i ¢ haey1(p+24m) —1
f sianJ (=A) (I +n*A*) " xdy, k=20+1.
0 =0 Yhaet1(p+(25+1)m)

Put, for 0 < p <,

¢

Ox(p) = | (hae (p+ (2) + 1)7) , hae (p + 2j7)), and

|
—
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Ogg_,_l U hgg p + 2] + 1) ) hgg (p + 2]71')) ) (0, h2g+1 (p + 2571’)) . (792)

Then, from (7.86), (7.91) and (7.92) it follows that

- ﬁ (I + ;T]A> <1 - ;TjA)_l - J "sin pv (Ou(p)) 2 dp. (7.93)

=1 0
where v is determined by (7.87). Observe that, for z € X,

via, B)x = 72r (arctan (—fSA) — arctan (—aA))z, 0 < a < § < .

From Corollary 7.14 in conjunction with the theory of vector measures we infer the
result in Theorem 7.16. The Orlicz-Pettis theorem says that a weakly-continuous
X-valued measure, defined on a o-field 7, is in fact an X-valued bounded vector
measure v: see e.g. Diestel and Uhl [37]. A result by Bartle, Dunford and Schwartz
says that a bounded countably additive vector measure on a o-field possesses a
relatively weakly compact range: see [37] and also Section 1.2 in [147]. For some
proofs see, e.g., [71] and also [38]. As a consequence it follows that the collection

{deyzLu{f>p}dp:0<f<1,feL°o()\)}
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is contained in the closed convex hull of {v(B): B € F}. The measure \ has to be
such that, for every z* € X*, the complex measure B — (v(B)xz,x*) is absolutely
continuous relative to the measure A. Rybakov’s theorem says that A can be taken of
the form B — (v(B)z,z§) for some z§ € X*: see [114]. For closely related material
see, e.g., [73]. Because of the nature of v(B)z, in our case for A we may choose the
Lebesgue mesure on R, . Let X** be the topological bi-dual of the Banach space X.

7.16. THEOREM. Let (Tj)jeN be a sequence of strictly positive real numbers. Let A
be the generator of a bounded analytic semigroup in the Banach space X, and let
x € X be such that the mapping
2 _
B (u(B)z,2*) := J (~A) (I+&A%) 'w,a*) de, BeBr,,  (7.94)
B

™

represents a o-additive C-valued measure for every x* € X*. Then, for every k € N,

the vector
k 1 1 —1
T — H ([ + 27314) (I — QTjA) T (7.95)

j=1
belongs to the closed convex hull of the set {2v(K )z : K < (0,00), K compact}, which
is bounded in X, and hence the Crank-Nicolson scheme is stable for such x € X.

Notice that the assumption (7.87) in Theorem 7.16 is equivalent to the fact that
x € X is such that for every z* € X* the integral ’<A (21 + A2 x,az*> d€ is
finite.

7.17. COROLLARY. Let the notation and hypotheses be as in Theorem 7.16. In
particular, let (Tj)jeN be any sequence of strictly positive real numbers. Then the
Crank-Nicolson iteration scheme with step sizes 7;, j € N, is stable provided the
initial vector x belongs to D(A) n R(A).

PROOF. Let x = Ay € R(A) be a member of D(A). Then the mapping B
v(B)z, B € R, represents a bounded vector measure indeed. The result in Corollary
7.17 then follows from Theorem 7.16. U

For a concise formulation of the main result of this paper we introduce the following
definition.

7.18. DEFINITION. Let A be the generator of a bounded analytic semigroup, let
(Tj)jeN be a sequence of strictly positive real numbers, and let x € X. The Crank-
Nicolson iteration scheme is said to be stable for z and the step-sizes <Tj)jEN if the

sequence
k 1 1 -1
{H (I+ 2TjA> <] — QTjA) Tz: ke N}
j=1

is bounded in X.
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7.19. THEOREM. Let A be the generator of a bounded analytic semigroup, and let
(Tj)jeN be a sequence of strictly positive real numbers. The following assertion hold

true:
© 1 3
@ tfsup [ || sinfita)an
kel Jo €2 1Jo

stable for all x € X. Here fi(§) = 22;?:1 arctan (%ij).
(b) If Z;Ozl 7; < o0, then the Crank-Nicolson scheme is stable for all x € D(A).
(c) ]fZ;OII 7" < o0, then the Crank-Nicolson scheme is stable for all v € R(A).
(d) The Crank-Nicolson scheme is stable for all x € D(A) n R(A) and all se-

quences of strictly positive step sizes (Tj)jeN.

d¢ < oo, then the Crank-Nicolson scheme is

7.20. DEFINITION. Let z € X and let (7;),.y. The Crank-Nicolson scheme is called
consistent for x and (7;) jen provided that the limit

R 1 1 -1
Jgﬁlojzl (I + QTJ'A> <1 - QTjA) x (7.96)
exists in X. The Crank-Nicolson scheme is called two step consistent for x and
(7j)jen» Provided that the limit

2n 1 1 -1
lim (I + 273/1) <] — ZT]A) T (7.97)

n—0o0
Jj=1

exists.

In Theorem 7.24 we shall prove that in assertion (b) and (c) of Theorem 7.19 the con-
clusion may be strengthened to “consistent” and “two step consistent” respectively
instead of just “stable”.

PROOF OF THEOREM 7.19. (a) Let de function f(\) be as in (7.84). Then

f (m) n) _ gn 1 - ZJZ — sin fu(n), (7.98)

j=1
where fi(n) is as in Corollary 7.14. The inequality in (7.75) then entails the claim
in assertion (a).

(b) Let the function fi(§) be as in Corollary 7.14: see (a). Then the equality in
(7.86) implies, for x € D(A),

k 1 1 -1
H (I + 2TjA> <I - QTjA) r—x

- 72r JOOO (1~ cos fu(€)) A (21 + A%) " wdg
_ 4 JOC sin ( fk(§)> (€21 + A) 7" Aw de. (7.99)
T Jo
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Let C be the constant from (7.63). Then the equality in (7.99) implies

k 1 1 -1
H (I + 57']'14) <I — 57']'14) r—

7j=1
0 2 (1
< 4(;2 L s (g’f@) d | Az . (7.100)
Since
sin < fk(§)>' ;f Z arctan (—T] ) 52 T, (7.101)
j=1
we infer
2
4 [® (sin (lfk(f)))Z 1 (® (min (2,522;173)) 4 k
%L 4 i < %fo o € = = ij. (7.102)

The assertion in (b) then follows from (7.100) and (7.102).

(c) The proof of assertion (c) is similar to the one of (b). Without loss of generality
assume that k is an even positive integer. Otherwise replace x with the vector

(I + %TlA) (I — %7’114) o Let x = Ay belong to the range of the operator A.
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Then as in (7.99) we have:

k 1 1 -1
H (I + 2TjA> <I - 2TjA) r—x

2 e A+ )
4 (* 1 .

= — in? (= _ 2 (2 A2 . .
7TJ;) i (sz(g)) p-e@r+2) "y de (7.103)

And hence, Let C' be the constant from (7.63). Then the equality in (7.99) implies

k 1 1 -1
H([+2T]A) ([_QTjA) r—XT

7j=1

<D [T (5(©) delnl (7.10)

™ 0

1 1
Since k is even we have, by the equality arctan ¢ + arctan — = 3™

sin (;fk(f))‘ = |sin iaman (éTj€>)|
i (3 (3 - (;)))}

k
2
= |sin arctan () <

From (7.104) and (7.105) it then follows that, with x = Ay,

k 1 1 —1
H(I+2T]A) ([—QT]A) r—x| <

<
7j=1

Assertion (c) follows from (7.106).

PO Ly (o

j=1"

Assertion (d) being contained in Corollary 7.17 this completes the proof of Theorem
7.19. ]

7.21. REMARK. Let x € X, and let K be a compact subset of the open interval
(0,00). A typical element in D(A) n R(A) is given by
2 _
V(K)a =2 () f (I+4%) 7 e (7.107)
K
Moreover, the family {v(d, R)z : 0 < 6 < R < o0} is bounded in X, and, for all k € N,

k 1 1 -1
H(I—I—QTJA) ([—27']14) r—2

j=1
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k -1
. 1 1
— Ml)}%oo {]1_[ (] - 27314) <I — 2TjA) — ]} v(0, R)x. (7.108)

=1

7.22. LEMMA. Let A be the generator of a bounded analytic semigroup, let (Tj)jeN
be a sequence of strictly positive real numbers, and let x € X. The following identity

holds:
k /—1 1 1 —1 1 -1
ZT[ ‘ I + 57']14 I — 57']14 I— iTgA X

=1 j=1

_2 JOO (1 — cos f(€)) (€21 + A%) ™' wde. (7.109)

™ Jo

In general the vector in (7.109) belongs to D(A), and

k -1 1 1 -1 1 -1
ZTgA ([ + TjA) ([ — TjA) (I — TgA) x
- ol 2 2 2

J
k -1
1 1

= H (I + 2TjA) <I — 2TjA) T—

j=1

2 [~ .
= Wf (1 —cos fr(§)) A (€1 + A?) Yo de. (7.110)
0
If k is even, then the vector in (7.110) belongs to D(A)n R(A). In fact, the following
equalities hold:
2k -1 1 1 -1 1 ~1
;TgAﬂ (I + 27’jA> (I — 2TjA) <] — 27’4/1) T

2k 1 1 —1
:H <[+27]A> ([—27']A) xr—XxX
j=1
k 2(¢-1) 1 1 -1
= ) (7‘2@_1 + TQg) A H ([ + 27’jA> <I — QT]-A)

(=1
1 ! 1 -
<] — 27'%_114) (I — 2724A> T

— i [ (1 — cos for(€)) A (&1 + Az)_lxdf (7.111)
JO
= 2| s @) 800 [ AGPT %) g (1112
Jo 13
o0 rT/2
L (. for(€) f3:(6) e (€T — A) ™ wdi de (7.113)
T Jo J—x/2
0 r/2
@ [ Aot — ) advde. (7.114)
T Jo J—x/2
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ProoF. The second equality in (7.110) is a consequence of equality (7.85) in
Corollary 7.14. The first equality in (7.110) and the first two equalities in (7.111)
follow from an appropriate choice of commuting operators (4;),_;, and (B;)
in the equality

1<j<k

k k k (-1 k
[T4-118=>.1]4 A -B) ] B
j=1 j=1 =1j=1 j=0+1

Products over a void index set are to be interpreted as I: e.g., H(;:l Aj =1. The
final equality in (7.111) then follows from (7.85) in Corollary 7.14. The equality of
the expression in (7.111) and the one in (7.112) follows from integration by parts.
The equality of (7.112) and (7.114) is a consequence of the following identity

2k -1 1 (™% . —1
—f A(nQI—IrAQ) xdn = —J ce (56“9]—14) x dv

T Je T Jn/2

/2
1 f R’ (Re™T — A) ™"z dd, (7.115)
™ —7/2

for 0 < £ < R < o and x € X. The equality in (7.115) follows from Cauchy’s
theorem applied to the analytic function A — (A — A) ™'z, X € V,, for some a > 7/2
with a contour bordered by two semi-circles, one of radius £ and the other of radius
R, and two intervals on the imaginary axis, one with endpoints —iR and —i£, and
the other one with endpoints £ and ¢ R.
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If we let R tend to oo in (7.115) we obtain:

2 0 1 1 7T/2 ) ) _1
J A (772] + Ag) xdn = f ge? (56“9] — A) x dy

I3 ™ /2

1
— lim —
R—0 T

/2
J Re” (ReT — A) ™z di
—7/2

— 1 Jﬂ/z {5e“9 (56“9[ — A)fl x — aj} dv

™ J_z/2
1 (™2 - -1

! J A1 — A) " wdi (7.116)
m /2

for £ > 0 and z € X. The equality in (7.116) yields the equality of (7.112) and
(7.114). The equality of (7.113) and (7.114) follows from the equality

f sin o (€) o (€) dE = 0.

0

In order to finish the proof of Lemma 7.22 we still need to show the identity in
(7.109). This equality is a consequence of the equalities in (7.110). If the operator
A is invertible, then this implication is immediate, otherwise we replace A with
A—wl, w>0,and let w | 0.

This concludes the proof of Lemma 7.22. 0

From the equalities in Lemma 7.22 we obtain the following abstract results in nu-
merical analysis.

7.23. LEMMA. For k € N the following equalities hold:

0

Em 1P 1 = cos fi(€) SERE
;2_J = IS de, and ;U_f (1 — cos for(£)) dE.  (7.117)

™ Jo &2 ™ Jo

PROOF. The equalities in Lemma 7.22 also hold for complex numbers A with
negative real part. By putting A = 0 in (7.109) we get the first equality in (7.117).
Taking A a negative real number, and multiplying the equalities in (7.111) by A,
and letting A tend to —oo shows the second equality in (7.117). OJ

7.24. THEOREM. Let A be the generator of a bounded analytic semigroup in a Banach
space x. Let (Tj)jeN be a sequence of strictly positive step sizes in the Crank-Nicolson
iteration scheme:

n 1 1 -1

=1

The following assertion hold:

Download free eBooks at bookboon.com



e @]
(i) if « belongs to D(A) and ZTj < o, then the Crank-Nicolson iteration
j=1
scheme is consistent;

0
1
(i) if = belongs to R(A) and Z — < 0, then the Crank-Nicolson iteration
j=1"7
scheme is two step consistent.

PROOF. (i) Assume z € D(A) and > 7; < 0. Put

& k
fo(§) = 2; arctanT]; = I}Erolc)Zzarctan 7—725

Then the equality in (7.109) implies

Eoo0-1 1 1 -1 1 -1
li I+ -1A) |- ;7A I—-7A
ki{&;ng( + 27'J ) ( 27'] ) ( 27’( > T

= klim 2 (1 —cos fir(§)) (€3 + Az)f1 xd€
—0 T 0

_ 2JOO(1 — cos f0(€)) (€21 + A%) ™z de. (7.119)
™ Jo

If x € D(A), then (7.119) together with (7.110) implies:
I, 1 1N\ 1N\
lim ;TM]E (1 + QTjA> <1 — 27]-,4) (1 - QTeA) x
k 1 1 -1
= klgroloﬂ (I+ 273/1) <I - 2TjA) r—x
©

2| o) AT+ 4 e (7.120)

™

This proves assertion (i).

j=1"J j=1 7j

elementary calculation shows the equality:

cos gi(€) = (—1)" cos fi.(€).

0 1 k 9
(ii) Assume x = Ay € R(A) and E — < 0. Put gi(§) =2 E arctan v Then an
T j

In addition we write

j=1
Then as a consequence of (7.111) we infer:

2% 1 1 1
kh_r)r;)H ([ + 27’jA> <[ — 27’jA) r—x
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k 2(¢-1) 1 1 -1
= kh—r»?o (7-25—1 + 7'25) A 1_[ ([ + 57’jA> <[ — §TjA)

=1 j=1

1 ! 1 !
<I — §T2g_1A) (I — 5’7'2@14) xZ

o0

. (1 — cos gar(€)) A (€1 + A?)~

k—o0 T 0

Yrde

2 cosguten a(er + A e (7.121)

™ Jo

In order to interchange the integral and the limit in the final step in (7.121) we used
the finiteness of the integral

LOO SUp {1 — cos gar (&)} HA (&1 + A2)_1 xH dg. (7.122)
If x = Ay, y € D(A), then
HA (€21 + A%) 7" xH <1+ |yl (7.123)

where the constant C' is as in (7.63).

This completes the proof of Theorem 7.24. U
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Let # € X and let K be a compact subset of (0,00). As in (7.87) the symbol v(K )z

stands for: )
v(K)x = J (—A4) (I + 7}2A2)_1xdn.
K

i
7.25. THEOREM. Define the subspace X4 of X by
Xa={xe X :sup{||pv(K)x|: K compact subset of (0,00)} < o0} . (7.124)
The space X 5o coincides with the space
Xy weak = {x € X : the mapping K — (v(K)z,2*), K < (0,0), K compact,

extends to a complex measure on By, for all z* € X*} (7.125)

_ {x e JOOO (A (1 +924%) 7 2, a%)

In addition, the following inequalities hold:

2 LOC ‘<(—A) (I + 7}2A2)_1 :c,a:*>

dn < oo for allx*eX*}.

sup [(V(K)x, 2*)| <
K T

dn < 4sup [(v(K)z, z%)|
K
(7.126)

and hence

2 (* _
sup ()| < sup f () (122%™ )] dn < s (K]

z*|<1 T Jo

(7.127)

In (7.126) and (7.127) the suprema are taken over all compact subsets K of (0, 0).
PROOF. The fact that the two spaces mentioned in (7.125) coincide is a standard
result in complex measure theory. The theorem of Hahn-Banach shows that the
inequalities in (7.127) follow from those in (7.126). The first inequality in (7.126) is

trivial. The second one can be proved as follows. Fix x € X and z* € X*. Define,
for j =1, 2, 3, 4 the open subsets B, .+ ; of (0,0) as follows:

Y

Then we have
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+ ( §R<(—A) (I+ 7]2A2)_1 x,x*> dn

Bw,m*,Q

[

+ [‘ %<(—A) (I+ 7]2A2)_1 x,x*> dn

S
8y
&
&
*
w

+ ( %<(—A) (I+ 772A2)_1 m,x*> dn

v Bac,a:*,4

JK <(*A) (I+ 772AQ)71 x,a:*> dn‘ (7.128)

The second inequality in (7.126) readily follows from (7.128). In order to complete
the proof of Theorem 7.25 it suffices to prove that, if a vector x € X belongs to

Xy weaks then supy [v(K)z| < oo. To this end we consider the following subset of
X*:
By, = {z" e X*: |(v(K)z,2*)| <1 for all compact subsets K of (0,0).}
(7.129)
Then the subset B, , is a closed, absolutely convex and absorbing subset of the
Banach space X*. In other words it is a barrel in X*. Since barrels in Banach
spaces contain neighborhoods of the origin, it follows that there exists d(x) > 0 such
that the ball of radius §(x) is contained in B, ,. That is to say, if |z*| < d(x), then
|[(v(K)z,z*)| < 1. Or in other words: for all compact subsets K < (0,0) we have

< 4sup
K

1
|2* <1 = [{w(K)z,2%)| < )
And hence another application of the theorem of Hahn-Banach shows |v(K)z| <
§(x)~!. This concludes the proof of Theorem 7.25. O

Theorem 7.26 shows that on the subspace X 4 of X we have stability of the Crank-
Nicolson iteration scheme. As mentioned in (7.125) the subspace X4 = X, weax

consists of those z € X for which {’ ‘<A (I +n2A%) "z, x*> dn < oo for all z* € X*.
It is observed that N(A) + R(A) n D(A) is contained in X 4.

7.26. THEOREM. Let x € X, and let (Tj)jeN be any sequence of strictly positive step
sizes in the Crank-Nicolson iteration scheme. Then

0]
sup J )<A ([ + 772A2)—1 (I;,x*> dn < o0,
[z*]<1 Jo
and
k 1 1 -1
ilég ]1:[1 (I + 2TjA> <I - QTjA) r—x
< 4 sup JOO ‘<A (I+ 772142)_1 :r;,x*> dn
T Ja*|<1 Jo
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16

< —sup f A(I+n2A2)_1:vd77
T K K

where in the last step the supremum is taken over all compact subsets K of the open
half-azis (0, 0).

(7.130)

)

In the following theorem we collect some properties of the operator

_9 [® B
x — Prayw ::?J A(I+n2A2) 1xdn
0

R

. . _2 2 12\ —1
_si(l),lngoo? ) A(I—i—?’]A) xdn
. 1 /2 i —1 i -1
= dim | {(I-ee?A) T — (1= Re”A) fway
el0, Rtoo T /2

1 /2 ' 1

=z — lim — (I — ReA) ™ zdv, (7.131)

RYoo 7 —7/2

for those x € X for which this limit exists. The limit in (7.131) exists if and only
if « belongs to closure of N(A) + R(A) n D(A). Let X, be this closure. Then

Xo = N(A) + R(A) n D(A) = N(A) + R(A).

> Apply now
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We also like to mention the following identities (0 < a < f < 0, z € X):

2 (7 2 42\ ! 12 i A A
= | (I+0*4%) zdyp== (B—a)e” (I —ae”A) (I —pe”A)  add
T s

o /2

1 /2 ) B ] 9
= f e’ﬂf (I— 776“914) x dn dv, (7.132)
T J_z/2 o
and
2 (7 2 42\ 1
J (—A) (I+77 A ) xdn

fﬂ/Q (B—a)e” (—A) (I - aewA)_l (I - /BemA)_l x dv

/2

/2
J {—ﬁeiﬁA (1 - BewA)f1 +ae A (I - ae"ﬁA)fl} x dv

—7/2

! r/Q {(T—ac”2)™ = (1 - ge”4) "} o av

T J—r/)2
1, (P L
= WJ (¢ A)f (I —neA) " adndy. (7.133)
—7/2 o

The equalities in (7.133) can be understood by applying Fubini’s theorem to the
final double integral together with some simple manipulations. The equalities in
(7.132) follow by first applying (7.133) to an operator of the form A —wI instead of
A, and then letting w tend to 0.

7.27. THEOREM. The following assertions hold true:

(i) The operator Pr(ay is a projection operator from Xy onto R(A), the closure
of R(A).
(ii) Xo = N(A) + PR(A)XO = N(A) + (A)
(i) |Preayz| < 1+ O) |z|, for z € Xo.
(iv) If the space X is reflexive, then Xog = X.

7.28. REMARK. Theorem 7.25 shows that it is useful to investigate the following
subspace X4 of X:

X4 ={re X :sup{|lv(K)z|: K compact subset of (0,00)} < c0}. (7.134)

As observed earlier the space X4 contains the subspace N(A) + R(A) n D(A). If
X4 is a closed subspace, then X4 contains the closure of N(A) + R(A) n D(A).
If, in addition, X is reflexive, then X = N(A) + R(A), and X is the closure of
N(A) + R(A) n D(A). The space X4 coincides with the space

Xu,woak = {.T €eX: Bw <I/<B)LE,SL’*>, Be B(O,oo)>

is a complex measure for all z* € X*} (7.135)
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The coincidence of the spaces mentioned in (7.135) is closely related to the theory of
vector-valued Pettis integrals and Gelfand integrals: see, e.g., Diestel and Uhl [37],
and also [94]. Pettis’ theorem says that a set function p on a o-field F with values
in a Banach space X and has the property that B — (u(B),x*) for all z* € X is in
fact an X-valued measure in the sense that if B = Uj2,B;, B; € ¥, B; n B, = J,
j # k, then lim,, o, 37, p1 (B;) = p(B). Define the operators arctan (—£A), § > 0,
by the improper vector valued Riemann integrals:

3 3
2 42\ 1 1 N 2 12\ —1
(—A) (I +n*A?%) xdn—lg%l (—=A) (I +n°A%) " xdp,

' (7.136)

d¢ < oo for allx*eX*}.

arctan (—&A) z = f

0
for x € X. Then the space X4 = X, weax also coincides with the space

J

{xeX: sup

\ (arctan (—f;A) — arctan (—ao;A))
—1

< oo} , (7.137)

where the supremum is taken over all finite number of pairs («;, Bj)?:l such that
O<a; <fr<ay <fy<-<a, <P, Infact (7.137) says that the compact
subsets in the definition of the space X, (see (7.134)) may be taken of the form
K = uUj_, [aj, 8] where 0 < a; < B, 1 < j <n.

7.29. REMARK. Consider for f € L* (R, ) the function T'f € Hol (—V}) defined by

17 =2 [ ) (7.138)
/’L_ﬂ_O n1+n2,u2 77 .
Here the space L* (R.) consists of all bounded complex-valued Borel-measurable
functions f defined on R, = (0, 90), and Hol (£2) consists of all holomorphic complex-
valued function on the open subset €2 of C. The subset V,, ¢ C, 0 < o < 7, is defined
1
as the sector V,, = {u e C: |arg(2)| < a}. If |f(n)] < 1,7 >0, then |Tf(u)| < —

0S (v
provided that p € —V,,. The latter inequality is a consequence of the fact that

‘1 +772€2m‘ > cos « (1 —1—772), neR.

In fact for f we may choose indicator functions f = 15 of Borel subsets B of (0, o).
Then the mapping B — T'15(pu) yields a Hol (—Vj)-valued measure. These functions

have upper-bound if ;1 belongs to sector —V,,. In other words the operators

COS &

2 _
B Tlg(A)x := f (—A) (I + 4% 2dn, z€ X, (7.139)
T JB
lead to possible vector measures, like we suggested above. But it also gives rise to
an approach by using an H®-calculus for sectorial operators. For more details, see,

e.g., Haase [60]. If in (7.138) we choose f(n) = fn(n) = m (0,n] where m is a Borel
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measure on R, of bounded variation, then, for z € Xy = N(A) + R(A), we have

Tf (A =2fw (0.0 (—A) (1 +724%) 2y

= lim — J J I+772A2)_1xdndm(p)

R—o0 7

(see (7.133))
1 /2 R ' 1 ‘ 4
= lim f {(I —pe” A) " — (I — Re’ A) }xdm(p) dv (7.140)
1 7/2 R ' 1
= lim f J (=(R—p)eA) (I - pe“gA) (I — Re"A) " zdm(p) dv
(apply Theorem 7.27)
1 @ i -1
== (I — pe” A) " Preayz dm(p) dv
—7/2
/2 A 1
= J J {(I —pe'’ A) T — I} Prayxr dm(p) d + m(0, 0) Preayx
/2
(another application of (7.133) with & = 0 and f = p)
- _= J f (I+ ?72A2)_1 zdndm(p) + m(0,0) Preayx

= _Jo arctan (—pA) dm(p) + m(0, o) Pr(a)z. (7.141)

m
Then from (7.140) we infer
2C
1T fu(A)z] < — |m| (R4) 2], 2 € X. (7.142)

In (7.142) B [m| (B) = supp, _p, Sy Im (B))|. B = Ul_,B, € By, By, 1 By, =

,,,,,

I, 1 < j1, jo <, is the variation measure associated to m. The inequality in (7.142)
follows from (7.133) together with (7.42). From (7.141) we also deduce:

2 o0
f m (n, ) (—A) (I + 772A2) rdn = J arctan (—pA) zdm(p), =€ X.
T Jo
(7.143)
We still have another way of checking that under the given conditions of the operator
A integrals of the form as in the definition of X, yeax (see (7.135)) are finite.

7.30. LEMMA. Let (z,2*) € X x X*, and let the function v(n) = v, .+(n) be such
that

v(n) <—A (I+ 772A2)71 :E,x*> = ’<—A (I+ 772142)71 $,x*> :

(7.144)
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Suppose that

p(v) = sup inf f

O<a<l |pl<m

" lo(n) — €|

Then the integral

JOOO )<(—A) (I +7°4%) " 2,2%)

s finite. In fact the following inequality holds:

LOO ‘<(—A) (I +n*A%) " 2 2%)

Here the constant C' is chosen as in (7.63).

dn+ sup inf

o n 1<R<w lpl<m

Holomorphic semigroups

R _ Lip
J ol = €% 4 < oo (7.145)
1

n

dn

dn < {CL+Cp @)+ 5 (1+30) | a] - "]

(7.146)

Notice that the condition in (7.145) only is a requirement on the behavior of v(n)

for n small or large.

PRrROOF. Fix 0 < a < 1 < R < o0, and choose the function v; € L* (0,00) in

such a way that |v(«)| =1 = |v1(R)|, and such that

pr [ 10, [ el

lel<m

o n a Ui

1 n 1 n

dn, 1 < R < 0.

inf JRM@:JRM

dn, 0 <a <1, and

(7.147)
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Then the following equalities are self-explanatory:

JR <—A (I+ 772/42)71 x, x*> dn

[e%

_ L v(n) —17?11(04) <—77A (I I 772142)71 a:,x*> dn

+ vl(oz)J <—A (I+ 772,42)—1 x,x*> dn

R — U -1

—|—J —v(n) ; (7) <—77A (I + 772A2) x,x*> dn
1 . }

+ vl(R)J <—A (I +12A?) xq;*> dn

1

(employ (7.132)

= [0 i) 04 i) )

o i

o (-

+ JRW (I = —inpA)™") (I +inA)" z,2%) dip

+ ”1(23) f:; <{ (1—e?A)™" = (I - ReiﬁA)‘l} z, x> 9. (7.148)

The inequality in (7.146) follows from (7.147) and (7.148) together with the choice
of C'in (7.63). This completes the proof of Lemma 7.30. O

7.31. REMARK. Let v : (0,0) — C be cadlag function of bounded variation and,
for the time being fix 0 < o < < o0. The variation measure |dv| satisfies:

8 n
f |dv|(p)=SUP{Z|v(pj)—v(pj—1)|: a=po<p1<-~<pn=5}~ (7.149)

7j=1
Then, by (7.132) and (7.133) the following equalities hold:
2 (7 2 42\ 1
= v(n)(—A) (I +n°A*) zdny

T Ja

B B rp
= U(B)TFJ (—A) ([ + 772A2)—1xd7] — if f (—A) ([ + UQAZ)_IQZdT]dU(p)
= v(ﬁ)i (arctan (—SA) — arctan (—«aA)) x

B
2 f (arctan (—pA) — arctan (—aA)) z dv(p) (7.150)

T Jo
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Here, for p > «, we wrote

(arctan (—pA) — arctan (—aA)) x = fp(—A) (I+ 772142)71 xdn

«

/2
- 1[ {([ — aewA)_l — (I - pemA)_l} x di
w/2

2)
1 7"/2 . . -1 . -1
_ Qf —(p—a)e” A (I - pe” A) 7 (I - ae” A) " 3 dv. (7.151)
—7/2

With C' as in (7.63) the equalities in (7.151) imply:
[{arctan (—pA) — arctan (—aA)} z| < nC |z . (7.152)
A combination of (7.150) and (7.152) yields:
2

™

fﬂwneAM1+ﬁA%*xmﬁ<2c{wwﬂ+£?mum}x. (7.153)

(il + [ 1aol ) ol

(7.154)

From (7.153) we infer:

2
—  sup
T 0<a<fB<w

B
J v(n) (=A) (I + 772A2)_1:cd77 <20

5. Stability of the Crank-Nicolson iteration scheme

In this section we return to the problem of the stability of the Crank-Nicolson
iteration scheme. The equality in (7.73) of Theorem 7.13 yields:

k 1 1 -1
H (I + 2TjA) <I — 273A> r— (=1)kx
=1

2 (¢ , - - -
:WL LSlﬂfk(n)dn (&1 + A?) (25 (&1 + A?) —I>:cd£. (7.155)

1

k
In (7.73) we chose f(A n . Then, as observed in (7.98),
<11

k 1; k
14 1
S 77) —in) _ gH Zj — sin f(n) = sin (2 > arctan (QTjn)> :

j= j=1
(7.156)
and so (7.155) follows. By putting A = 0 in (7.155) we get:
2 (P 1 (¢, N
—| = | sinfu(n)dndé=1~—(-1)" (7.157)
mJo & Jo
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7.32. THEOREM. Let A be the generator of a bounded analytic semigroup, and let
(75) jen be a sequence of strictly positive numbers. Let the constant C' be as in (7.63).

Then (7.155) implies:

ﬁ (I + %TjA) (1 — %TJA) B r— (—1)k

7=1

202 (2C% +1) (* 1
S A

™

3
[ s s dn‘ ¢ ] (7.158)

0

PROOF. The inequality in (7.158) is a consequence of (7.156) which in turn
follows from (7.73) in Theorem 7.13. O

For the convenience of the reader we insert the following lemma.

7.33. LEMMA. As before, put fr(n) = 22?21 arctan (%Tj?’/). Define the quantity

1 3 S t 1 .
S o jzgl arctan B Tin

| 2

LS
2

2k = 1+ 47; n?

bak(n) = (7.159)
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Then (7.159) implies
J, 2

o &
Proor or LEMMA 7.33. Integration by parts shows:

1 — cos for(€) < €1 —cos fgk 1) < 5 p
J<RA\S) = 0.
f3(8) Jo sin fox () f for(n ]2_11 (1 + i7]2772)2 "=

3 ©q_
J sin for(n) dn‘ d¢ < QJ 1= cos Ja(n) dn < 2msupbor(n)®.  (7.160)
0 0

n2fék(77) n>0

(7.161)
From (7.161) we deduce

[ "sin () dn‘ _ }1 —cos farld) _ (1 —or luld) "sin fuc(1) dn)‘

0 3 (8) 5 (8) 0
_ £
<2 x W +L sin for () diy. (7.162)
Hence, from (7.157) and (7.162) we infer
“’i ¢ 1 — cos far(n)
L & L sin for () dn' d¢ < QL TR dn. (7.163)

The inequality in (7.163) proves the first inequality in (7.160). In order to show
the second inequality in (7.160) we proceed as follows. The equality box(n) =

. Jar(n)
ok sin L2 For(n)

%'—% also follows, and upon writing (1) =
2inysing;(n) 2k

“1—cos(fu(n) 1 (" 1 —cos(far(n))
J, T ) i | (15e(1))?

_ 71— cos (far(n)) Sar(n) dn

0 (X3 sin )

(1 — cos (2kwar(n)) [ 2k sintor(n) i /

= d
0 2]{5 Sin2 1/J2k; (,’7) <Z§k . Sln (,OJ (T])) ka (77) n
(1 — cos (2kwar(n))

- Jo 2k sin? 1y (1) (b%(”)) V(1) dn

< (sup bgk<7]>> 2 JOOO L= CO.S (21{:@/1%(77)) %k(ﬁ) dn

we obtain

far(n) dn

(-

[

>0 2k sin? 1o (1)
2 (™1 — cos (2kv) 2
= (?}0) b2k<77>) L de =7 (3210) bzk(n)> : (7.164)
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In the final step in (7.164) we used integration by parts and the trigonometric
identity

k
cot 1 sin (2k1)) = 1 — cos (2k) + 22 cos (2jv), k=1,
=1
to obtain

fr 1 — cos (2k1))
0

s dip = L cot ¢ sin (2kv)) dip

= fﬁ (1 — cos (2kv) + 2 Z cos (2j¢)> dp = 7.

0 j=1
The inequality in (7.164) yields the second inequality in (7.160) and completes the
proof of Lemma 7.33. O
The following result is an immediate consequence of Theorem 7.32 and Lemma 7.33.

7.34. THEOREM. Let the notation and hypotheses be as in Theorem 7.32 and Lemma
(7.33). Then the following inequality holds:

2k 1 1 —1
1_[ <I+2T]A) ([—QTJA) r—

j=1

2
<4C* (207 + 1) (Sup b2k(77)) -
n>0

From Theorem 7.34 we see that that for all x € X the Crank-Nicolson iteration
scheme is stable provided that the sequence of functions 1 — bo(n), k € N, is
uniformly bounded. Also notice that, by the inequality

1 1 N\ 1 N\
— — —TA =12—(I—-—=7A
H([+2TA) (I 27 > ( 27 )

with C' as in (7.63), the one-step Crank-Nicolson scheme is stable if and only if the
two-step Nicolson iteration scheme is stable.

<2+0C,

7.35. THEOREM. Then the following assertions are equivalent:

(1) There exists a constant Cy such that

#{1<j<2k:¢j>g}A#{1<j<2k g} 012%
(7.166)

(2) There exists a constant Cy such that

(Z goj) A <Z (m — gpj)) < Oy Z w; A (T — ;). (7.167)

Jj=1 J=1
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In fact, if Cy is such that (7.166) holds, then Cy = wCy + 2 satisfies (7.166).
Conversely, if Cy is a constant for which (7.167) holds, then (7.166) is true with

¢ =22

™

PROOF. The proof of Theorem 7.35 is essentially speaking contained in the proof
of Proposition 7.38. 0

Tj’l’]

= ————, the followi
1+i71'2772’ e following

By choosing ¢;(n) = 2arctan (§7;1), and thus sin ¢;(n)
result follows from Theorem 7.35.
7.36. THEOREM. The following assertions are equivalent:

(1) There exists a constant Cy such that for alln >0 and k € N

2k
- . Tin
#l<j<ok: >R a#{(1<j<%: <R <G Y 15 (7168)
j=1 47-377
(2) There exists a constant Cy such that for all > 0 and for all k € N

2k 2k 2k T

2o | A D m—eim) | <Ca )yt o (7.169)

j=1 j=1 j=1 g

(]
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In order to further investigate conditions imposed on the step size (Tj)jeN we insert
the following proposition, which has also some relevance on its own.

7.37. COROLLARY. Let the sequence of positive real numbers {1;: j € N} satisfy
(7.168) in Theorem 7.36, and let A be the generator of a bounded analytic semigroup
in a Banach space (X, |-|) with domain D(A). Then the Crank-Nicolson iteration
scheme

1 1
(I — 27'n+1A) T+l = (I + 27_n+1A> Tn, To€ D(A), (7.170)

is stable in the sense that sup,cy ||zn| < 0.

PrOOF. Corollary 7.37 is a consequence of Theorem 7.36 in conjunction with
Theorem 7.34. U

7.38. PROPOSITION. Put ¢;(n) = 2arctan (37;1) and fo(n) = 22?21 arctan (37;7),
n > 0. Then a calculation gives ny’i(n) = sing;(n). In addition, the following
inequalities hold:

g(#{1<j<2k,:%>Z}A#{1<j<2k:90j<g})
( ) <Zk:7f—%0])
(e fresta o T s 2T

+ 2 Z w; A (T — ;). (7.171)

In addition the following inequality is true:

() (&)

T
<{2+— - Z% (7 — @)
2im1 i lip <n2) N 2o (M=) Ygpompy | 530
2k 2k
e Ligy<n/y e Ligyom/2y
(7.172)

PROOF. The proofs of the inequalities in (7.171) can be seen from the following
more or less self-explanatory arguments:

™ . ™ . ™
§<#{1<g<2k.¢j>§}A#{1<3<2k.¢j<§})

< (Z%‘) A (Z(W—%’)> <2<Z%‘/\g> A (Z(W—%)/\;>

Download free eBooks at bookboon.com



//\

w#{l J<2k: ;> }+2Z% 7T—%>
/\<7r#{1<j<2k:<pj<ﬂ}+22<pj/\7r
2 —

:7r<#{1<j<2k::gpj>g}/\#{1éj<2k:¢j<

AS)
T
N~

)

+2250j AT —j). (7.173)

Next we have the following inequality:
2%
{Z] 1 9031{% <7/2} n Z (7T - SDJ') 1{@j>7r/2} }
2k
S Ly <ni2) 2iim1 Lgy=my2)
x#{1<j<2k: ¢j>5}A#{1<J’<2k: gojgg}

Z Pjlip <ns2y + 2 = ©5) Lip;>n/2)

_ Z oi A (T —05). (7.174)

From (7.174) we see that the right-hand side of (7.172) satisfies:

2k
s
2+ % N xZgoj/\ﬂ

S 0Lz N Yo (M= 05) Yoy | 21
2k
Z] 1 1{903 <m/2} Zj:l 1{<pj>7r/2}
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- 2+7r#{1<j<2k:g0j>g}/\#{1<j<2k:¢j<%}

- 2%
ZQOJ‘/\T('
j=1

2%
XZQOj/\ﬂ'
_2290 — ;) +#{ ]<2k3S0'>E}/\#{1<j<2k:gp‘<z}
J 7 j 2 ; 2

) 6n)

In the final step of (7.175) we applied the second inequality of (7.171). This shows
the inequality in (7 7 ) and completes the proof of Proposition 7.38. U
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The following corollary follows from (7.172) by using standard goniometric inequal-
ities like

sinp < pA(m—¢) < —sing, 0<p<m, and

N o

%77 <arctann <7, 0<n<l1. (7.176)

7.39. COROLLARY. Let the function bog(n) be defined as in (7.159). Then

. \
ba(n) < T 1+ —5 ! T > (7.177)
D=1 s, (375m) pIpa onL.m) (37m)
\ S 1 (37m) S Lo (375m) )
where
122%1: i 727 = 12}1}2(1@ i

2 . . . .
If — is outside the interval [min;cj<o 7j, Maxi<j<or 7;], then, as is easily seen,

bak(n) < 3.

7.40. COROLLARY. Suppose that

>0, (7.178)

where the minimum is taken over all n with the property that

min 7; <7 < max T;.
1<j<2k 1<j<2k

Then the Crank-Nicolson iteration scheme is stable.

Proo¥F. This result follows from Corollary 7.39 by applying it to the functions
¢;(n) = 2arctan ($7;7) in which 7 is replaced with 2/n. In addition, the elementary
equality arctann + arctan (1/n) = 7, 7 > 0, and the inequality

4
arctann = —n, 0<n<1,
T

are used to see that Corollary 7.40 is a consequence of Corollary 7.39. g

The following corollary is a consequence of Theorem 7.34) of Corollary 7.39 and of
Corollary 7.40. It shows that the Crank-Nicolson iteration scheme is stable provided

that the quantity M <(7—j)j> as defined in (7.178) is strictly positive.
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7.41. COROLLARY. Let the sequence of positive real numbers {r; : j € N} satisfy
(7.178) in Corollary 7.40, and let A be the generator of a bounded analytic semigroup
in a Banach space (X, |-|) with domain D(A). Then the Crank-Nicolson iteration
scheme in (7.170) is stable in the sense of Corollary 7.57.

7.42. COROLLARY. Let the sequence 7;, j € N, be such that 0 < inf; 7; < sup; 7; < 0.
Then Crank-Nicolson iteration scheme, as described in Corollary 7.37 is stable.

PRrROOF. It is not so difficult to see that

v < TJ me m1n1<]<2k T inf; inf; 75
maxj<j<2k Tj Supj 7_]
and hence, the conclusion in Corollary 7.42 follows from Corollary 7.41. U

7.43. COROLLARY. Let 7; = R(j) > 0, where the function n — R(n) is a rational
function taking its values in (0,00). Then the Crank-Nicolson iteration scheme, as
described in Corollary 7.37, is stable.

PROOF. A rational function possesses either one of the following properties:

(1) it ultimately decreases to 0;
(2) it ultimately increases to oo
(3) it possesses a strictly positive finite limit.

If lim;_,o, R(j) exists and is finite and strictly positive, then the result in Corollary
7.43 follows from Corollary 7.42. Since M ((Tj)j) =M ((Tj’l)j), it suffices to

consider the situation that, ultimately, R(§) increases to co. Since stability is only
affected for j large, without loss of generality we may assume that the function
¢ — R(&) is increasing for £ = 7. In fact we let the Crank-Nicolson scheme start
after m steps, and replace 7, with 7. Then we write n = R(§), 7; = R(j), to obtain:

2k : ; 2k R(i .
e (5) Lagen(d)

2k - 2k j
Yra(3) B ()
)

j=1

_ 1 GRG) JIR(HéJst&

R (7.179)

Let R(&) be of the form R(§) = ——=, where P(€) is a polynomial of degree n, and

Q(&) is a polynomial of degree m. From our assumption on the rational function
R(&) (its limit is co as & — ), it follows that n —m > 1. Moreover,

lim fl LAUSED) ds = Jl s"TMds = # (7.180)

£ R(&) n—m+1
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Consequently, from (7.179) and (7.180) it follows that M ((Tj)j> > 0. The conclu-

sion in Corollary 7.43 then follows form Corollary 7.40. Altogether this completes
the proof of Corollary 7.43. O

Notice the M ((Tj)j) = 0 when 7; = ¢/. So exponential step sizes may result in non
stable Crank-Nicolson schemes.
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CHAPTER 8

Elements of functional analysis

In this chapter we discuss and prove some results which are useful to understand the
main part of the book. Among other things the reader will find formulations of the
Banach-Steinhaus theorem for Fréchet spaces, the closed graph theorem and results
related the Hahn-Banach theorem like Mazur’s theorem. The results and proofs are
taken from Rudin [113], Gohberg and Goldberg [56], and from Waelbroeck [150].
For elementary proofs of the uniform boundedness principle in Banach spaces, not
using a Baire category argument, but kind of a gliding hump technique, see e.g.
Hennefeld [61] or Sokal [129].

1. Theorem of Hahn-Banach

Let X be a real or complex vector space. A functional p : X — R is called sub-
additive if p(x +y) < p(z) + p(y) for all z, y € X. It is called positive homogeneous
provided p (Az) = Ap(x) for all A = 0 and for all x € X. The functional p is called a
semi-norm, if it attains its values in [0, ), is sub-additive, and if p (Az) = |A| p(z)
forall A\e R, or A\e C, and z € X.

8.1. THEOREM (Hahn-Banach, analytic version in a real vector space). Let X be a
vector over R, let p: X — R be a sub-additive, positive homogeneous functional on
X, let M be a real linear subspace of X, and let f : M — R be a real-valued linear
functional on M with the property that f(x) < p(x) for all x € M. Then there exists
a linear functional fy : X — R which extends f, i.e. fo(x) = f(x), x € M, and
which is such that —p(—z) < f(x) < p(x) for all x € X.

PROOF. Suppose M # X, and choose x1 ¢ M. Put M; = M + Rx;. Then M;
is a vector subspace of X which contains M, and

f@)=p@—z)<ply+mz)—fly), =z yelM. (8.1)

Choose a € R in such a way that

sup {f(z) = p (v —z)} < a < mf Ay +21) = W)}

By (8.1) such a choice is possible. Define the functional f; : M; — R by
filx+txy) = f(x) +ta, z€ M, teR.

Then fi(x) = f(x), x € M. Moreover, —p(—y) < f1(y) < p(y), y € M;. Let P be the
collection of all ordered pairs (M’, f') with the following properties: M’ is a linear
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subspace of X containing M, and f’ is a linear functional on M’ which extends
f, and which is such that f'(y) < p(y), y € M’. Partially order this collection by
declaring (M, f') < (M”, f") to mean that M' < M" and f'(y) = f"(y), y € M.
By Hausdorft’s maxmlahty theorem there exists a maximal totally ordered sub-
collection 2 of P. Put M = u{M' (M f)e Q} and define f : M — R by
f(y) = f'(y) if y € M’'. Then f is well-defined, and f( ) <ply),ye M. By the first

part of he proof it follows that M = X. Tt also follows that f can be taken as f in
the theorem. This completes the proof of Theorem 8.1. 0

8.2. THEOREM (Hahn-Banach, analytic version in a complex vector space). Let X
be a vector over C, let p : X — [0,00) be a semi-norm on X, let M be a linear
subspace of X, and let f : M — C be a complex-valued linear functional on M with
the property that Rf(z) < p(x) for all x € M. Then there exists a linear functional
fo : X — C which extends f, i.e. fo(x) = f(x), x € M, and which is such that

|f(z)] < p(x) for all z e X.

PROOF. The proof of the complex version can be recovered from the real version
of the Hahn-Banach theorem, by putting u(z) = Rf(z), x € M. Then the real-
valued functional u satisfies the conditions of the (real) Hahn-Banach theorem. Here
f: M — Cis as in the theorem. Let uy: X — R be the real extension of u to all
of X which is such that ug(x) < p(x), z € M. The mapping fo(z) = ug(x) —iup(ix),
x € X, then has the required properties. The proof of Theorem 8.2 is complete
NOW. U

8.3. THEOREM (Hahn-Banach, geometric version). Let A and B be disjoint convex
subsets of a locally convex vector space X.

(a) If B open is (and A n B = &), then there exists a real number v and a
contiunuous linear functional A : X — C with the property that, for all
vectors b € B and for all vectors a € A, the following inequality is true:

RA(D) < v < RA(a).

(b) If B is closed and if A is compact (and as above A n B = F), then there
exist real numbers v and o and a continuous linear functional A : X — C
with the property that, for all vectors b € B and for all vectors a € A, the
following inequality is true:

RA(D) < 711 < 72 < RA(a).

PRrROOF. (a) Fix a vector ag € A and fix a vector by € B and consider the
neighborhood of the zero-vector V defined by V.= B — A + ag — by. Let py be
its Minkowski functional. Since the vector ag — by does not belong to V', it follows
that py(ag — bg) = 1. Define the real linear functional f : R(ay — by) — R by
f (Mbo — ag)) = Apy(ag—bg), A € R. Then we have f(y) < p(y) for all y € R(ag—by).
By virtue of the analytic version of the Hahn-Banach theorem there exists a real
linear functional v : X — R with the properties that u(z) < py(x) for all x € X
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that u(ag — by) = pyv(ap — bo) = 1. Put A(z) = u(x) —iu(iz), x € X, and notice
that A(Az) = AA(z) for A € C and = € X. Note that the functional A is continuous.
Because, let V) be an absolutely convex closed neighborhood of the origin contained
in V, and let py, be its Minkowski functional. Then |A(x)| < py,(z) for all z € X. If
b belongs to B and if a belongs to A, then RA ((b—a + ag — by) < 1 < RA(ag —by).
Define the constant v by v = inf {)tA(a) : a € A}. This constant v then verifies the
required conditions.

(b) Select an open absolutely convex neighborhood of the origin U in such a way
that An (B+U) = J. Since A is a compact set and X is locally convex such a
neighborhood of the origin exists. Define the zero-neighborhood V by V. =B — A+
U + ag — by, where ag is chosen in A and where by is chosen in B. The vector ag — by
does not belong to V' and hence py(ag — by) = 1. Again there exists a functional
A : X — C with the property that RA(ag — by) = py(ag — by) = 1 and for which
RA(z) < py(x) for all z € X. Define v, by v = sup,.z RA(b) and define ~, via the
formula vo = inf,c4 RA(a). The inequality RA(y) < RA(a) — RA(D) follows for all
ye U, for all a € A for all b e B. Consequently

72 =7 = supRA(y) = sup [A(y)| > 0
yeU yeU
and also
RA(D) < 71 < 72 < RA(a).
This completes the proof of Theorem 8.3. 0J
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The analytic version of the Hahn-Banach theorem can also be deduced from the
geometric version. Putting it differently, let p : X — R be positive homogeneous
and sub-additive continuous linear functional, defined on a locally convex space
X and let f : M — C be a linear functional, defined on the linear subspace M
and that verifies Rf(z) < p(z) for all x € M and that possesses the property
that R f(xo) = p(xg) = 1 for some xg € M. Prove that there exists a functional
fo : X — C with the following properties:

(a) fo(x) = f(z) for x € M en
(b) Rfo(x) < p(zx) for z € X.

For a proof we consider the following two convex subsets of X that are disjoint:
U:={xeX px)<l}and C:={xre M: Rf(x) > 1}. We notice that the vector
xo belongs to C' and hence C' is non-empty. From the geometric version of the
Hahn-Banach theorem it follows that there exists a complex linear functional A and
a constant v such that the following inequalities are satisfied:

RA(u) < v < RA(v)
for all vectors u € U and for all vectors v for which Rf(v) > 1. Since the zero-vector
A
belongs to U, it follows that v > 0. So we may consider fy := —. Then Rfo(z) < 1
Y

if p(r) < 1 and if z € M is such that Rf(xz) > 1, then Rfy(z) > 1. It follows that
Rfo(x) < p(x) for all z € X and the following assertion follows as well. If x € M is
such that Rf(z) = n, then Rfy(x) = n and this is true for any n > 0. Consequently
we see that Rfo(z) = Rf(x) for all x € M. Since M is a linear subspace, it follows
Rf(x) =Rfo(x) for all x € M. This proves the statement.

8.4. COROLLARY. Let X be a locally convex vector space and let V' be a convex neigh-
borhood of the origin. Let py(x) := inf{t >0:xetV}, x € X, be its Minkowski
functional, and let
Vo= ﬂ {z¥ e X* : R (x,2%) < 1}
zeV

be its polar set. Then py(x) = sup {R (x,2*) : 2* € V°} for all x € X. In fact, the
proof will show that, for x € X given, there exists a continuous linear functional
x* € VO such that py(z) = R (z, z*).

PRrOOF. Fix xy € X and define f : Rxg — R by f(Azg) = Apy(x). Then f(y) <
pv(y) for all y in the real subspace spanned by zy. By the Hahn-Banach extension
theorem there exists a real linear functional fy : X — R such that fy(z) < py(z),
x € X, and such that f(y) = fo(y) for all y € Rxy. Define the complex linear
functional xf by (z,z3) = fo(x) — ifo(iz), for x € X. It follows that R (x,zf) =
fo(z) < pv(z) for all x € X. If z belongs to V, then py(z) < 1 and so, for such
z, R (z,z¥) < 1. Consequently xf belongs to V° and since R (xg, z%) = py(z¢), we
infer that py(zg) = R (xg,z¥), with 2% € V°. This proves the claim in Corollary
8.4. U
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The following result implies that a convex subset of a locally convex topological
vector space (X, T) is T-closed if and only if it is weakly closed. This is Mazur’s
theorem.

8.5. PROPOSITION. Let C' be a closed convex subset of a locally convex topological
vector space (X, 7). Then

C=[){RA<a: Cc{RA<a}}.

PRrROOF. Pick
roe[ J{RA < a:C c{RA<a}} (8.2)
and assume that xy does not belong to the T-closed convex subset C'. From the geo-
metric version of the Hahn-Banach theorem, it follows that there exists a continuous

linear functional A : X — C and a constant 7, such that RA(zy) > v = RA(x) for
all z € C. This contradicts (8.2). Whence

(iRA<a:Cc{RA<a}}cC
The other inclusion being trivial, this proves Proposition 8.5. U

8.6. COROLLARY. Let C' be a convex subset of a locally convex topological vector
space (X,T). Then C is T-closed if and only if

C=(){RA<a:Cc{RA<al}.

8.7. THEOREM (Alaoglu-Bourbaki). Let E* be the topological dual space of a locally
convezx topological vector space E, and let B be an equi-continuous family of linear
functionals in E*. Then B is relatively compact for the weak™ topology. In particular
it follows that the polar set U° of a zero-neighborhood U is o(E*, E)-compact.

PRroOOF. Let py be the Minkowski-functional of the convex zero-neighborhood
W. Since B is equi-continuous there exists an absolutely convex, closed zero-
neighborhood V' with the property that

Bgvozzﬂ{x*eE*:Rex*(:ﬁ)él}

eV
= ({z* e B : ") < 1}
eV
= ﬂ {2 E— C:|2"(x)| < pv(z),2* linear}
zeV

= ﬂ {z¥  E— C:|z*(2z)| < pv(x),

zeV,a,feCuveF
r*(au + pv) = az®(u) + fx*(v)}

- ﬂ {()\y)yeE eC¥: |)‘I’ < pV<x)7 )\aquﬁv =a\, + ﬁ)\v} .

zeV,a,feCu,veE
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It follows that V° can be identified with the closed subset (x) of the compact set
(Tychonov) [[,ep{A € C: |\ <pv(x)}. By Tychonov’s theorem for infinite carte-

sian products, it follows that V° is compact. This completes the proof of Theorem
8.7. O

1.1. Baire category. In Theorem 8.10 we need the notion of Baire category.
The precise definition reads as follows.

8.8. DEFINITION. Let (S,7) be a topological space. A subset £ — S is said to be
nowhere dense in S if its closure has empty interior. The sets of first category in S
are those that are countable unions of nowhere dense subsets. Any subset of S that
is not of the first category is said to be of the second category in S.

Sometimes subsets of the first category are called meager, and subsets of the second
category non-meager. Let (S7,T7) and (S, T2) be topological Hausdorff spaces, and
let h: S — S5 be a surjective homeomorphism. Let £ be a subset of S;. Then E
and h (E) are of the same category in (51, T1) respectively (S2,7T2). Subsets of sets
of the first category are of the first category. Countable unions of sets of the first
category are of the first category. Closed subsets with empty interior are of the first
category. The following theorem implies that complete metric spaces, and locally
compact Hausdorff spaces are of the second category in themselves.
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8.9. THEOREM. If S is either

(a) a complete metric space, or
(b) a locally compact Hausdorff space,

then every countable intersection of dense open subsets of S is dense in S.
Although this result is well-known, we include a proof for completeness.

PROOF. Suppose that (Vj)jeN is a sequence of dense open subsets of S, and
let By be an arbitrary nonempty open subset of S. If n > 1 and an open subset
B,_1 # O has been chosen, then, because V,, is dense in S, there exists an open
subset B, # & with B, = V,, n B,_;. In case (a), B, may be taken to be ball
of radius < 1/n; in case (b) this choice is made in such a way that B, is compact.
Put K = [,y Bn- In case (a) the centers of the nested balls B, form a Cauchy
sequence which converge to some point of K, and so K # ¢J. In case (b), K # & by
compactness. The construction shows that K < By and K < V,, for each n. Hence
By intersects () V. This completes the proof of Theorem 8.9. U

neN "1

8.10. THEOREM. Let B be a weakly bounded subset of a locally convex topological
vector space (E,T). Then B is T-bounded.

PRrROOF. Let V' be an arbitrary closed J-zero neighborhood, which is absolutely
convex. It suffices to prove that the set B is contained in a certain scalar multiple
of V. Put

K=V =(]{z"e B*:|2*(2)| < 1}.
zeV
Then it follows that
V=) f{zeE:|a*) <1}.
rz*eK

Assume that zy does not belong to V. By the Hahn-Banach theorem there exists a
linear functional z§§ € E* in such a way that Re z§(z¢) > 1 > |z§(z)| for all z € V.
Hence, z¢ is not a member of () .., {z € E : |2*(z)| < 1}. So we obtain

(feeE:j*@)|<l}cVe (| {zeE: 2" @) <1}

The ultimate inclusion is a trivial consequence of the definition of K. Because B is
weakly bounded it follows that

K=|J[{z*eK:|a*(x)| <n}.

neN zeB
The theorem of Alaoglu-Bourbaki yields that the set K is o(E*, E)-compact. But a
compact space is a Baire space. So there exist ne€ N, § > 0, xf € K, and x1,..., %,

in F such that

K, = ﬂ {z*e K :|z*(x)| <n} 2 ﬂ{x* € K : |o*(x;) — xf ()] < 6}

zeB i=1
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=x5+Wn(K—uxj),
where

W= ({z* € B* : [a*(x;)| < 0}
i=1
Since K, is absolutely convex it follows that
1
ani((x§+W)mK—($§+W)mK) 28 (WnK),

where
5= )
0 + maxigjcm 25 ()]
For z* belonging to W n K it holds that

1 1
fa* =5 (g + B2 — a5)) — 5 (25 — Bz" + 27)) -

Because |3 (z*(x;) + x§(x;))| < J, 1 < j < m, en because K is absolutely convex it
follows that the vectors xf + f(a* — xf) = (1 — )y + fx* and zf — B(z* + xf) =
(1 = B)xf + B(—a*) belong to the set (zf + W) n K. From this we see
BWnK)c<K,.
Next let y* € K and consider the vector
J )
y*+ (1 - ) 0.
§ 4+ maxi<jem [y ()] § 4+ maxi<jem |y ()]

By the convexity of K and since 0 belongs to K, this vector belongs to K. This

*

o+ max|y*($j)]y

vector is a member of W as well. Thus, if y* € K, the vector 8

belongs to K,,. Consequently,

1 oy (s
ly*(z)] < 5 (1 + n1ax1<]<5 ly (“"J)‘) n

- <1 | MaXigjem |I’o“(l‘j)|> <1 L MaXigjem |y*(%’)|> .

o )

2
< <1 " maXlsjs;PV(%)) n

maxigj<m Pv (%‘ )
)
y*(x)| <M, zeB, y'ek.

Hence, we see that, for # € B, the vector z/M belongs to the bipolar set (V°)° =
K° = V. From this we see that B is a subset of MV, and completes the proof of
Theorem 8.10. ([l

2
for y* € K and for x € B. Put M = <1 + ) n. Then, apparently,

Although the following theorem is not used in the main text we include it, because
it is one of the central results in Functional analysis.
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8.11. THEOREM (Krein-Milman). Let C' be a compact conver subset of a locally
convex topological space X. Then C coincides with the closed convexr hull of the
extreme points of C.

2. Banach-Steinhaus theorems: barreled spaces
A Banach space version of the Banach-Steinhaus theorem, or the uniform bounded-
ness principle reads as follows.

8.12. THEOREM (Banach-Steinhaus). Let X and Y be Banach spaces and let F
be a family of continuous linear operators of X to Y. Suppose that the family F is
pointwise bounded in the sense that for every x € X the expressionsup {|Tz| : T € F}
is finite. Then sup{||T| : T € F} is finite.

The closed graph theorem reads as follows.

8.13. THEOREM (Closed graph theorem). Again let X and Y be Banach spaces and
let T : X =Y be an everywhere defined linear operator with the property that its
graph G(T), defined by G(T) = {(x,Tz) : x € X}, is a closed linear subspace of the
cartesian product X x Y. Then the operator T is continuous.
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The open mapping theorem for Banach spaces reads as follows: see Theorem 8.24
as well.

8.14. THEOREM (Open mapping theorem). Let X be a Banach space and let Y be
a normed linear space. Suppose that T : X — Y is a continuous linear operator
that is surjective. So T(X) = Y. Let Bx be the open unit ball of X: Bx =
{re X :|z|<1}. Then T Bx is an open subset of Y and Y is also a Banach space.

The following result says that the foregoing theorems (for Banach spaces X and Y)
are equivalent. Theorem 8.19 below characterizes those locally convex topological
vector spaces X for which an adapted version of the Banach-Steinhaus result holds.
For the same spaces the closed graph theorem is valid. The uniform boundedness
in Theorem 8.12 is replaced with the equi-continuity of a family of continuous op-
erators. It turns out that the class of spaces X for which the closed graph theorem
or the Banach-Steinhaus theorem hold for all Banach spaces Y coincides with the
class of the so-called barreled spaces: see Definitions 8.16 and 8.20. Corollary 8.22
shows that Fréchet spaces are barreled.

8.15. THEOREM. The following assertions are equivalent for arbitrary Banach spaces
X and Y.

(a) Let F be a pointwise bounded family of continuous linear operators from X
toY. Then sup||T| < co. In other words, every pointwise bounded family
TeF

of continuous linear operators from X to 'Y is uniformly bounded.
(b) Every everywhere defined closed linear operator T: X — 'Y is continuous.
(c) Every surjective continuous linear operator T: X — Y is an open mapping.

PROOF. (¢) = (b). Define the projection Il : X x Y — X by Il(z,Tz) = x.
The restriction of IT to G(T') is surjective (and injective). Let Il be this restriction.
From the open mapping theorem it follows that there exists a 0 > 0 with the property
that the subset:

e (G {w,y) e X x Vi fa] <1, lyl < 1})

contains the ball {xr € X : |z| < d}. Consequently: |z < 6 = |Tz| < 1. For z
arbitrary, x = 0, we obtain
(o)l =
]

1
Hence ||Tx| < 5 |«[. This means that T is continuous.

(b) = (a). Suppose that Y is complete (this can always be achieved by taking the
completion of Y instead of Y itself. Let B (F,Y") be the vector space of all functions
f ' F — Y with the property that ||f| := sup{||f(T)|: T € F} < . Define the
linear operator A : X — B(F)Y) by [Az](T) = Tz, x € X. The operator A is
linear, its graph is closed in X x B (F,Y). The operator A is everywhere defined.
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Hence, by the closed graph theorem, A is continuous. This is the same as saying
that there exists a finite constant ¢ with the property that

sup [[[Az] (T)] < ¢l
TeF
for all z € X. Hence |[Tz| < c|z|, x € X. Whence |[T| <¢, T € 7.

(b) = (c). Consider the mapping S : Y — X/N(T), defined by S : Tx — x+ N(T),
x € X. The operator S is everywhere defined on the Banach space Y. Moreover
S has a closed graph. This is so because we have the following. Let (x, : n € N)
be a sequence in X with the property that, in the cartesian product Y x X/N(T),
(T'zy, STx,) converges to (y,z + N(T)). Then lim, o x, + N(T) =z + N(T) and
lim,, o Tz, = y. This means that there exists a sequence (z,) in the zero-space of
T such that lim,, .4 |2, — x + 2,| = 0 and such that lim, . |T(x, + 2,) — y| = 0.
Since T is continuous it follows that y = T'x and so T is closed. Consequently the
operator S'is closed. So, by the closed graph theorem, it is continuous. Hence there
exists a constant ¢ with the property that

inf {|z+ 2| : T2 =0} < c|Tx|,
for x € X. But the we have

1
T{lz] <1}2-tyeY |yl <1}.

An easy exercise then shows that 7' is an open mapping in the sense that open
subsets of X are mapped onto open subsets of Y.

Altogether this completes the proof of Theorem 8.15, except that the implication
(a) = (b) has not been established yet. This is part of Theorem 8.19. O

The fact that the Banach-Steinhaus theorem implies the closed graph theorem is part
of the following result. However for a concise formulation we need two definitions.

8.16. DEFINITION. Let X be locally convex topological vector space. A subset W
of X is said to be a barrel if it is closed, balanced, convex and absorbing.

8.17. DEFINITION. Let X and Y be topological vector spaces. A linear operator
T : X — Y is said to be almost continuous if for every zero-neighborhood V in Y
the closure of T~V contains a zero-neighborhood in X.

8.18. LEMMA. Let {(Xy,|-||) : U e U} be a family of normed spaces. The space
(*(Xy : U el), defined by

(P(Xy:Uel) = {(ZL‘U)UGU € HXU ssup |zy |, < oo} :
Uell Uel

is a normed vector space. If every space (Xy,|-|;), U € U is a Banach space, then

so is * (Xy,U € U).

PROOF. The proof of this lemma is elementary. It is left to the reader as an
exercise. U
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8.19. THEOREM. Let X be a locally convexr vector space. The following assertions
are equivalent:

(a) Ewvery barrel in X is a zero-neighborhood.

(b) A pointwise bounded family of continuous linear operators from X to any
locally convex topological vector space is equicontinuous.

(¢) An everywhere defined operator T defined on all of X with values in a locally
convex topological vector space is almost continuous.

(d) A closed linear operator, that is everywhere defined on X and with values
in a Fréchet space, is continuous.

(e) A pointwise bounded family of continuous linear operators defined on X
with values in a Banach-space is equicontinuous.

PROOF. (a) = (b). Let Y be any locally convex space and let F be a pointwise
bounded family of continuous linear operators defined on X and with values in Y.
Let V' be a closed absolutely convex (= balanced and convex) neighborhood of the
origin in Y. Put W = (.5 T~'V. The subset I is closed and absolutely convex.
Since the family J is pointwise bounded, W is also absorbing. So, by definition, W
is a barrel in X. So by (a) W is a neighborhood of the origin in X. This means
that the family & is equicontinuous.
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(b) = (c). Let Y be any locally convex vector space and let 7" : X — Y be
an everywhere defined linear operator. Let V be a absolutely convex closed zero-
neighborhood in Y and let W be the closure of T-'V. Then W is a barrel in
X. Denote by Ux(0) the collection of all absolutely convex closed neighborhoods
of the origin in X. Fix U € Ux(0) and let G(U + W) be the largest subspace
contained in the set U + W. So that G(U + W) = (,_,27% (U + W). Define
the vector space Xy w as follows: Xpyw ={A\e: A >0, xe U+ W}/GU + W).
The space Xyyw is equipped with the Minkowski functional of the union of cosets
Ut W+ G+ W) = Uy (z + GU + W)):

|z +GU +W)|yow =inf{A>0:2e XU+ W)}.

This functional renders X,y into a normed linear space. (Verify this precisely.)
Then let Xy, be the vector space defined by

a0
Xyw = Jm [ W+W+GU+W)).
m=1  Uellx(0)

So a vector zyw = (zy + G(U + W))UEUX(O) belongs to Xy, if and only if there
exists a natural number m with the property that zy belongs to m (U + W) for for
all U € Ux(0). It is a matter of routine to verify that Xy w is a vector space and
that the norm |2y w |y, defined by

|lzwsw [y = nf{A > 02y e X(U+ W), UelUx(0)}
turns (Xusw, [y, y) into a normed vector space. Here, as above,
nw = (e + G(U + W)))Ueux(o)

is supposed to be a member of Xy . In fact the normed space (Xu+W, H-HUJFW)
coincides with the /*-sum of the spaces

(XU+W> HHU+W) ) Ue uX(O)

To be precise:

(Xawew, [lgw) = € (Xvsw, Flosw) = U € Ux(0)) -
Define for U € Ux(0) the operator Ty : X — Xy as follows:
Ty(x)=(...,0,...,0,z + G(U + W),0,...,0,...), xzeX.
So only “site U is occupied” by the vector x + G(U + W). Since the unit ball of

Xusw is given by Bx, .y = [[peuy o) (U +W + G(U + W)), it follows that the set

T, ' Bx,,, contains the set U. So every operator Ty is continuous. Next fix z € X.
Since the operator T is everywhere defined, there exists a strictly positive number
A = A(x) > 0 with the property that the vector T'z belongs to AV. Hence the vector
x belongs to A\T™'V < AW. Consequently the vectors Ty (z), U € Ux(0), belong
to ABx, - This means that the family {7y, : U € Ux(0)} is pointwise bounded.
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From (b) it follows that the family {7y, : U € Ux(0)} is equicontinuous. This means
that the intersection

ﬂ {reX :TyxeBx,,}= ﬂ {reX: zeU+W} =W
Uellx (0) Uelx (0)

belongs to Ux(0). This proves (c).

(c) = (d). Let Y be a Fréchet space and let 7' : X — Y be an almost continuous
linear operator with a closed graph. Let (Vi : k= 0,1,2,...) be a sequence of open
absolutely convex neighborhoods of 0 in Y with the property that Vi 1 + Vi, is
contained in Vi, k =0, 1, 2, .... Also suppose that the sequence (V} : k € N) consti-
tutes a local basis. We shall prove that the closure of 7!V} is contained in T~1Vj.
Since, by (c), the operator T is almost continuous, this shows that the set TV}
contains the zero-neighborhood T—1V;. Hence it will follow that 7 is continuous.
Pick x in the closure of T!V;. Since the operator 7' is almost continuous, it follows
that the closure of 77!V is contained in T7'V; + --- + TV, + T-1V,,,. So, for
every ¢ € N there exist vectors z;, 1 < j < ¢+ 1, such that T'z; belongs to V},

1 < 7 </, and such that z — ng x; belongs to the closure of TV Tt also

follows that the sequence of partial sums <Z§:1 Tz;:le N) is a Cauchy sequence.
Let y be its limit: y = Z;il Txj. Next let U be any neighborhood in Ux (0). Then

the vector z — Zﬁ: x; belongs to T~'V,11 + U. Choose u € U with the property

that  + u — Zjﬂ z; belongs to T'V,,1. It readily follows that the vector

(z+u,T(z+u) — (z,y) = <u,T(x+u)—Tij> + (0, i ij>

j=t+2
belongs to U x V41 + {0} x V1. Consequently, we have
(z+u,T(x+u) — (2,y) €U x (Vesr + Viwr) €U x Vi

This proves that the vector (z,y) belongs to the closure of the graph of 7. By
assumption the operator T' is closed and hence the vector (z,y) belongs to the
graph of T'. So that y = T'z. Since y belongs to V{, this proves that = belongs to
T7'V,. Whence T-1V; < T—1Vj. Another application of the fact that the operator
T is almost continuous proves that the set 7'V} contains a neighborhood of the
origin in X. Since V{, was an arbitrary absolutely convex neighborhood in Y, this
proves that the operator 7" is continuous.

(d) = (e). Let Y be a Banach space and let F be pointwise bounded family of
continuous linear operators 7" defined in X with taking values in Y. Let B(F,Y)
be the vector space of all functions f : F — Y with the property that its norm | f|,
defined by | f|g = suppeq | f(T')], is finite. Supplied with this norm the vector space
B(F,Y) becomes a Banach space. Define the operator A : X — B(F,Y) by Az(T) =
Tx, z € X, T e€JF. The operator A is a closed linear operator from X to B(F,Y).
Its domain is all of X, because J is pointwise bounded. Assertion (d) implies that
the operator A is continuous. This means that there exists a neighborhood of the
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origin U such that z € U implies |Az|; < 1. So x € U together with T" € F implies
|Tz| < 1. This proves the implication (d) = (e).

(e) = (a). Let W be a barrel in X and construct the normed linear space Xy, as
in the proof of the implication (b) = (c). Also construct the family of continuous
linear operators {1y : U € Ux(0)} as in the proof above. This family is pointwise
bounded and so by (e) it follows that it is equicontinuous. As in the proof of the
implication (b) = (c) it follows that W is a neighborhood of the origin in X. This
proves assertion (a).

This completes the proof of Theorem 8.19. 0

8.20. DEFINITION. A locally convex vector space with the property that every barrel
in it is a neighborhood of the origin is called a barreled space.

From the previous theorem it follows that in a barreled space the closed graph
theorem holds and also that the Banach-Steinhaus theorem is valid. Next we are
going to prove that Fréchet spaces are barreled. The result will be based on the
following proposition.
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8.21. PROPOSITION. Let X be a Fréchet space and let F be a pointwise bounded
family of continuous linear operators from X to a topological vector space Y. Let
(z,, : n e N) be sequence in X that converges to 0. Then the collection

{Tx,:TedF, neN}
15 a bounded subset of Y.

PROOF. Assume, to arrive at a contradiction, that the set
{Tx, :TeF, neN}

is not bounded in Y. Then there exists a balanced neighborhood V' of zero in Y
such that for every k € N there exists T € J together with n; € N with the property
that

Tz, ¢kV. (8.3)
Put J = {ny : k € N}. Since, for every n € N, the set {T'z,, : T € F} is bounded, the
set J is an infinite subset of N. Since X is a Fréchet space, there exists an infinite
subset J' of J with the property that the sum >, v 2; = limuo D o %5
converges for every subset J” of J’. This can be achieved in the following fashion.
The sequence {ny : k € N} is infinite and so the sequence (x,, : k € N) contains a
subsequence that converges to 0. This is so because the original sequence (z,, : n € N)
converges to 0. Since X is a Fréchet space there exists a countable local basis
(U : k € N) with the property that Uy 1 +Ug,1 S Ux. Choose a further subsequence
(:Ij'nkj tJ € N) with the property that Ty, belongs to U;. The set J' = {nkj 1 J € N}

possesses the required property. Since the set V' is balanced, it follows from (8.3)
that for each ¢ € (0, 00) there exists T'€ F and n € J’ with the property that

Tz, ¢ tV. (8.4)

From these observations we shall derive a contradiction. First choose a balanced
open zero-neighborhood V}) in Y with the property that

Vo+Vo+Voc V. (8.5)

Let Ty be the zero-vector in X, put mg = 0, put ¢g = 1 and let T, : X — Y be the
zero-map. We shall construct a sequence of positive real numbers (e, : n € N), with

1 ~ . . . .
0 <€, < —, n €N, asequence of vectors (T, : n € N) in X, a strictly increasing

sequence of indexes (m,, : n € N) € J' together with a sequence (7}, : n €) in Fu {0},
such that for n > 1 the following conditions are verified:

ey (Tno1) € Vo, (i)

exTe (T —2)€Vo, 0<k<n-—1, (i)
T — Bt = Ty, (ii)

ey (T, —Tpo1) ¢ V. (iv)

First we consider the case n = 1. Since Ty = 0 and Ty = 0, (i) and (ii) are always
satisfied. By (8.4) there exists an operator 77 € F and there exists m; € J' such
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that T (z,,,) ¢ V. With 71 = x,,, and with ¢; = 1 we have
e1Th (51 - fo) =T (ﬂUml) ¢ V.

So the construction of €1, Z1, m; and T has been carried out. Next suppose that

(€1,...y€n), (1, ..., 2p), (My,...,my) and (T1,...,T,) have been chosen in such a
1
way that (i), (ii), (iii) and (iv) are satisfied. Then we choose 0 < €, < 1 in
n
such a way that
en1T () eV, TEeF. (8.6)

Since the family F is pointwise bounded such a choice of €, is possible. From (ii)
it follows that the set

n
() (Vo — eTh (3 — 7))
k=1
is a zero-neighborhood in Y. Since lim;_, je ; = 0 and since each operator T,
1 < k < n, is continuous, it follows that there m/, > m,,, m/, € N, with the property
that

€]€,T]C (xm) € VE) — Eka («%n — fk) , mz= m! m e Jl, 1<k<n. (87)

n’

By (8.4) there exists a number m,, 11 = m!, m,.1 € J', and T,,; € F such that

6nJrljjnJrl (xmn+1) ¢ V. (88)

For assume that €,,17,11 (2,,) belongs to V for all m = m/, m € J', and let
tm € (0,0), 1 <m <m/, — 1, me J', be such that Tz, belongs to ¢,V for every
T eJ. With

1
t = max ,max {ty,:1<m<m),_,, melJ}),
€n+1

it follows that the set {Tx,, : T € F, me J'} is a subset of tV. This contradicts
(8.4). Finally put

i?’H’l = xmn+1 + i;n (89)

Since my,+1 = m/, it follows from (8.7) that

€x Tk (Tpy1 — Tp) belongs to Vo — €Ty (T, — Tx), for 1 < k < n.
So

exTy (Tny1 — Tx) belongs to Vp, for 1 <k < n. (8.10)
From (8.6), (8.9), (8.8) and (8.10) it follows that the (n + 1)-tuples (e1,...,€ns1),
(1, .oy Tpy1)y (May ..o ymypy) and (T4, ..., T,4q) satisty (i), (ii), (iii) and (iv) with
n replaced with n + 1. From (iii) we see that T, = Y_| T, . Since (my, : k € N) is
a subset of J’ we conclude that the vector Z := nh_r};lo T, exists, because the space X

is complete. From (ii) together with the continuity of each operator T}, k € N, it
follows that
exTy (T — 71) belongs to Vp, keN. (8.11)

Since Vy = —V; and since

el (Tp — Tno1) = €,1, (%) — .1, (T —7,) — €, T, (Tp_1), neN,
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we conclude from (i) and (8.11) that
enTy (T, — T_1) belongs to €,T,, (%) + Vo + Vo, neN. (8.12)

Since the sequence (7, (Z) : n € N) is bounded and since lim,, €, = 0, it follows
from (8.12) that the vector €,T,, (Z,, — Z,,_1) belongs to Vi + Vi + Vj for n sufficiently
large. Hence, by (8.5),

énTn (T, — Tp—1) belongs to V (8.13)

for n sufficiently large. However (8.13) contradicts (iv). Consequently the assump-
tion that the set {Tx, : T € F, n € N} be not bounded is false. This proves Propo-
sition 8.21. U

The following corollary shows that a Fréchet space is barreled. Consequently, the
Banach-Steinhaus theorem holds in Fréchet spaces.

8.22. COROLLARY. A Fréchet space is barreled.

PROOF. Let X be Fréchet space and let (U, : n € N) be a local basis of zero-
neighborhoods. Let F be a pointwise bounded family of continuous linear operators
defined on X and attaining values in a locally convex space Y. We have to prove
that the family F is equicontinuous. Suppose not. Then there exists a balanced
convex neighborhood V' of the origin in Y with the property that for no n € N the
inclusion TU,, € V is valid for all T' € F. So for every n € N there exists an operator
T, € F and a vector x,, € U, such that the vector T, x, does not belong to nV. Then
lim,, ., 2, = 0 and so by the previous proposition the set {T'z, : T € F, n e N} is
bounded in Y. Hence there exists ¢t > 0 such that the following inclusion is valid:

{Tx,:TeF, neN} ctV.

Since the set V' is balanced we have, for n > t, T,,x,, € tV < nV. But on the other
hand T},z,, does not belong to nV'. This is a contradiction. So our assumption that
the family F is not equicontinuous is false. Consequently a pointwise bounded family
of continuous linear operators defined on a Fréchet space and attaining values in a
locally convex space is equi-continuous. From the main theorem, Theorem 8.19, it
then follows that a Fréchet space is barreled. ]

8.23. EXAMPLE. Next we will give an example of a locally convex topological vector
space which is barreled, but which is not a Fréchet space. Let €2 be an open subset
of R™, and let D () be the space of all C*-functions whose support is a compact
subset of 2. Let K < € be a compact. As in the Chapters 1 and 4 we let Dy
be space of all C*-functions in 2 whose support is contained in K. Define the
semi-norms p,, g : D — [0,0), m € N, by

Pmi(p) = max sup|D%(z)|, ¢e Dg.

aeN", al<m gek

The metric
o0
1 pm,K (()0 - w>

d(e,9) = )]

A2 L+ P (0 =)

2 ¢E®K7
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turns Dy into a complete metric space. Let Tx be the corresponding compatible
locally convex topology. That is to say the topological space (D, Tk ) is a complete
metrizable locally convex Hausdorff space. In other words it is a Fréchet space. A
subset W of D () is called Tg-open if W n Dy is Tx-open for all compact subsets
K of Q. This topology T renders D (€2) into a locally convex topological space in
which a sequence (@), © D () converges to ¢ € D () if and only this sequence
is contained in Dy for some compact subset K of €2, and converges in Dy to ¢.
Then the space (D (Q2),Tq) is barreled. However, it is not complete metrizable.
In fact the topology Tgq is the strongest locally convex topology T on D () with
the property that all inclusions (D, Tx) — (D (2),7), K < Q, K compact, are
continuous. Instead of taking all compact subsets K of €2, it suffices to take a
sequence of compact subsets K,,, m € N, such that K,, is contained in the interior
of K,,;1, and such that Q = u,,K,,. The corresponding topology is called the
(strict) inductive limit of the family (Dg, T). It is often denoted by

(D(Q),Tq) = lim (D, Tk) = mli_r)nOO (Dk,,, Tk,,) -

KcQ, Kcompact

2.1. The open mapping theorem. The following version of the open map-
ping theorem is partly taken from Rudin [113].

.
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8.24. THEOREM. Suppose
(a) X is a complete metrizable topological vector space;
(b) Y is a topological vector space;
(¢) u: X =Y is a continuous linear mapping;
(d) w(X) is of the second category in'Y .

Then the following assertions hold:

(i) u(X) =Y,
(i) u(U) is open for every open subset U of X ;
(iii) Y is complete metrizable.

The same conclusion holds provided that:

(a") X is a complete metrizable locally convez topological vector space (i.e. a
Fréchet space);

(b) Y is a barreled locally convex topological vector space;

() u: X - Y is a continuous linear mapping;

(d) u(X) =Y.

PROOF. (ii) = (i). The open linear subspace u(X) coincides with the whole
space.

(ii) = (iii). Put X = X/Ker(u); i.e. X is the quotient space of X modulo the
zero space of u: Ker(u) = {x € X : u(x) = 0}. The quotient space is also a complete
metrizable space and the mapping @ : X — Y, defined by @ (z + Ker(u)) = u(z) is
surjective and open. Consequently, it is a homeomorphism. If y,, = u(z,),n € N, isa

~

Cauchy sequence in Y, then x,,+Ker(u), n € N, is a Cauchy sequence in X. However,
the quotient space X inherits its completeness from X. Thus lim,_, x, + Ker(u)
converges to x + Ker(u) for some z € X. It follows that u(y,) = @ (z, + Ker(u))
converges to y = u(z). Consequently Y is complete. Let d be a translation invariant
distance on X, then dy (y1,y2) 1= infiekerw) d (21 + 2,22), With y1 = w(x1), y2 =
u(xs), defines a distance on Y. This distance is compatible with the topology.

(ii) Let V be a neighborhood of the origin in X. (If X is a Fréchet space we may
and do assume that V' is absolutely convex and closed.) We still have to prove
that u(V') contains a neighborhood of the origin in Y. Let d be an invariant metric
on X, and choose r > 0 so small that V{ defined by Vj = {x € X : d(x,0) < r} is
contained in V. Put V,, = {z € X : d(x,0) < 27"r}. Since u(X) = (J,_, ku (Vy),
n € N, and since u(X) is of the second category in Y it follows that the closure of
u (V;,) is a neighborhood of the origin. In case u(X) = Y and Y is barreled the
closure of u (V},) contains a barrel, because V,, contains the closure of an absolutely

convex neighborhood of the origin in X. Consequently, u (V},) is a neighborhood of
the origin. We will show that there exists a neighborhood W of the origin in Y such
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that
WecuVy) cu(Vp) cu(V). (8.14)

First we have

u(Vi) 2u (V) —u (Vo) 2u(Va) —u (Vo) 2 W,

where W is a neighborhood of the origin, because u (V3) has non-empty interior. This
proves the first inclusion in (8.14). In order to prove the second inclusion we pick
y1 € u(Vh). Then y;—u (V3) is a neighborhood of y;. Consequently, it has non-empty
intersection with u (V7), because y; belongs to the closure of w (V;). Hence, there
exists x1 € Vi such that u(xq) € y; — u (Va). Put yo = y1 — u(x1). Then yp € u (V).
By induction we find y,, € u (V,,) and z,, € V}, such that y,, .1 1= y,—u (x,) € u (V11).
The latter is true because y,, —u (V,,41) is a neighborhood of y,, and y,, belongs to the
closure of u (V},). Thus y,, — u (V,,4+1) has non-empty intersection with u (V;,). Then
the sequence of partial sums Z?=1 xj, n € N, is a Cauchy sequence in X. It converges
to @ say. Then, since d (x1 + -+ 2,,0) < X7, d(2;,0) < D/, 277r < r, we see

that d(x,0) = lim, . d (Z?:1 x;, 0) < Z;’;l 277y = r. Tt follows that = belongs to
Vo € V. Moreover,

n

Z u(@;) = Z — Yj+1) = Y1 — Ynt1- (8.15)
j=1

Since y,, belongs to the closure of u (V},), and since u is continuous and the sequence
V., n € N, is a basis of neighborhoods of the origin in X, we see that y,, .1 converges
to 0 in Y. (Let U be a closed neighborhood of the origin in Y. Choose n so large
that u (V;,) € U. Since U is closed, the closure of u (V},) is also contained in U.) It
follows that
y1 = lim (y1 — yn+1) = ,}E{}OZ u(z;) = u(z),
j=1

n—ao0

where x belongs to V4.

So the proof of Theorem 8.24 is complete now. U

2.2. Krein-Smulian and the Eberlein-Smulian theorem. In this subsec-
tion we will discuss two interesting results in Banach space theory. Similar results
also exist for Frecehet spaces and even for locally convex spaces, e.g., see Schae-
fer. We next go over the proofs of two fundamental results in Banach space theory,
elucidating the weak*-topology and the weak topology, respectively. We follow Sec-
tion 1.2, Some facts from functional analysis, in [1]. The text of Aaserub in turn
is based on parts from Conway’s book [27], and on Robert Whitley’s paper [153].
We will also quote some results from [118]. We begin with the result of Krein-
Smulian, the proof of which requires the use of the following two lemmas. We
will use the notation B° = {z* € X*: |(b,2*)| < 1 for all be B}, for B < X, and
Xy ={zeX: |z| <s} =sXy, for s >0, with (X*), defined similarly. Here B° is
called the polar of B.
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8.25. LEMMA. Let X be a Banach space, v > 0 a real number. Let F, be the collection
of all finite subsets of Xp—1. Then (\pey F° = (X¥),.

PROOF. Let E denote the intersection on the left-hand side. Clearly, (X*), <
E. If 2* € E\(X*),, then [(xz,2*)] > r for some x € X with |z|| = 1 so that
[{(z/r),x*)] > 1 with {x/r} € F,, contradicting the fact that f € {z/r}°. This
completes the proof of Lemma 8.25. 0

8.26. LEMMA. Let X be a Banach space and A < X* a convex set such that An(X™),
is weak*-closed for every r > 0. If An (X*), = &, then there exists some x € X
such that R (x,x*) = 1 for all x* € A.

Proor. We will construct, recursively, a sequence of finite sets Fy, F,... < X
such that, for each n € N, we have (i) F,, © Xy, and (ii) (X*),, ;0 Vieo FENA = &.
Put Fy = {0}. Assuming that Fp, ..., F,,_; have been selected such that (i) and (ii)
are satisfied, we must find a finite set F;,, < X/, such that

(X*)p1 0O ﬂF,ij:@.

k=0
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Put Q@ = (X*),., 0 rZo Fg n A. As Q is clearly weak*-closed and is contained
in the weak*-compact set (n + 1) (X*),, @ is weak*-compact. Suppose now for
contradiction that Q) N F° # ¢J for all finite sets ' < X,,,. Note that the collection
{Q N F°: Fe3J,} consists of non-empty weak*-closed sets. We claim that it has
the finite intersection property, i.e., that any finite subcollection has non-empty
intersection. Indeed, if we take Q) N G5, ..., Q n G% in the collection, we get easily
that

QNG =Qn (mGr) =Qn (uszle)o # O,

by assumption. As @ is weak*-compact, it follows that ¢§ # ﬂFe% QnF° =
QN (X*), by the previous lemma. This contradicts the assumption on Fi, ..., F,_1.
Thus we can take a finite set F,, < X/, such that Q@ n F, = ¢J. Note that Ule F,
is a countable set, which we enumerate as {z,}_,. It is immediate from (i) that
Tn, — 0 in norm when n — oo. Thus we may define a linear map T : X* — ¢
by x* — ({z,,2*))"_,, where ¢y is the Banach space of complex sequences that

n=1’
converge to 0, equipped with the supremum-norm.

Note next that A n()_, Fr = &, as otherwise we could pick X* in this set and
N e N such that N > [2*| in which case z* belongs to A N (X*)y N ey FF,
contradicting (ii). Thus |7 (z*)| = sup,, [{(x,, x*)| > 1 for all 2* € A. Tt follows that
the convex sets T'(A) and D, the open unit ball of ¢y, are disjoint. Thus the Hahn-
Banach separation theorem implies that there is some f € ! = (¢p)* and o € R
such that Rf(¢) < a < Rf (T (z*)) for all z* € A and all ¢ € D. Without loss of
generality, we may assume that ||f||, = 1. If ¢ € D, then |f(p)| = Rf (wp) < «a
for some w € C of modulus 1. Thus 1 = | f|, < a. Hence, 1 < a < Rf (T (z*)) =
RYT [ (en) (zn, x*) for all 2* € A. It follows that = >° | f (en) x,, does the
trick. Here e, is the nth unit vector in ¢! And so the proof of Lemma 8.26 is complete
NOW. O

We have now essentially proved the Krein-Smulian theorem in Banach spaces.

8.27. THEOREM. (Krein-Smulian) Let X be a Banach space and A < X* a conver

set such that A n (X™), is weak*-closed for every r > 0. Then A is weak*-closed.

PROOF. An analogue of the theorem for norm-closure is trivially true (as every
norm-convergent sequence is bounded). In particular, A is norm-closed. We will
show that X*\A < X*\B, where B is the weak*-closure of A. Let z§ € X*\A be
given. As A is norm-closed, we can find » > 0 such that B, (z§) n A = &J. Thus
(1/r) (A —xf) n(X™*), = &, because translations and dilations are bijections of X*.
By the previous lemma, there exists x € X such that (1/r) R (z* — z¥) () = 1 for
all z* € A. Thus xf is not in the weak*-closure of A, which completes the proof of
Theorem 8.27. U

We next prove the theorem of Eberlein-Smulian, concerning weak compactness. We
will say that a set C' < (X*), is total if nrecker(f) = {0}.
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8.28. LEMMA. Let X be a Banach space such that (X*), contains a countable total
set C = {f.}_,. Then the assignment

n=1"

dz,y) = > 27" [fulz — )],

for x,y € X defines a metric on X such that the weak topology on any weakly
compact subset of X s generated by d.

PRrROOF. It is clear that d is a metric on X. Let K be weakly compact. Then,
as each f € X* is weakly continuous, sup,.x |f(x)| < oo for each f € X* by the
compactness of K. Thus the Uniform Boundedness Principle implies that C' =
Sup,cg |l]| < oo, i.e., that K is norm-bounded. We claim that the identity map on
K is continuous when the domain is equipped with the weak topology and the range
is equipped with the topology generated by d. If this is true, the identity map is
automatically a homeomorphism, which proves what we want. Let x, — x weakly
in K and let £ > 0 be given. Choose N € N such that Y, . 27" < ¢/(4C). Now
for « so large that |f, (vo — )| <&/(2N) forn =1, ..., N, we get that

2

n=N-+1 n=N+1

N o0 e}
d(2az) = Y 2" fulza—o)|+ Y 2 fulwa—2)| <o+ D 2720 <e,
n=1

proving what we want. So the proof of lemma 8.28 is complete now. U

8.29. LEMMA. Let X be a separable Banach space. Then there exists a countable
total set C' < (X*),.

PROOF. Let D = {z,}_, be a countable dense subset of X. For each n € N,
choose via Hahn-Banach extension f,, € X* of unit norm such that f, (z,) = |z,|.
Put C = {f,}"_,. Let z € X be such that f,,(x) = 0 for all n. Choose a subsequence
{x,,} of {z,} such that z,, — x in norm. Then

Jo = Jimn i, | = Jim [ f, ()| = lim [, ()] =0
The proof of Lemma 8.29 is complete now. U

The following theorem is a consequence of Theorem 8.27. The theorem of Krein-
Smulian (see Theorem 6.4 Corollary in [119]), or Grothendieck (see Corollary 2
to Theorem 6.2 in [119]) plays a dominant role in the proof of Theorem 8.30.
Let (X,|-|) be Banach space. By definition a sequence (z}), . < X* belongs to
co (N, X*) if lim,, o0 (z, %) = 0 for every x € X.

8.30. THEOREM. Let X be a separable Banach space, and let f : X* — C be a linear
functional. Then the following assertions are equivalent:

(a) There exists x € X such that f (z*) = (x,z*) for all z* € X*;

(b) For every sequence (z7), . € co (N, X*) the following inequalities hold:

0 <supRf (z)) < .

neN
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€ co (N, X*) the following inequalities hold:

0 < limsupRf (x}) < .

n—0o0

(c) For every sequence (),

PrROOF OF THEOREM 8.30. (a) = (b) A sequence in ¢y (N, X*) is bounded
with respect to the norm in X*; this is a consequence of e.g. the Banach-Steinhaus
theorem. It is also a consequence of a Baire-category argument applied to the dual
unit ball. Hence assertion (b) follows from (a).

(b) = (c) Let (2},),,cy be any sequence in co (N, X*). Then () 1=, 1S @ sequence
in ¢y (N, X*), and so, by (b), 0 < supRf (z}) < oo, from which assertion (c) readily

=n

follows.

(¢c) = (a) In this implication we will employ the Krein-Smulian theorem, or
Grothendieck’s completeness result. So suppose that (c) holds, and let (), .y
be any sequence in X* which converges in weak*-sense to y* € X*. By (c) we see
0 < limsup,,_,, Rf (y* — y*) < o0, and hence

Rf (y*) < limsupRf (y);) < . (8.16)

From (8.16) it follows that for every M € N and every a € R the subset

{x¥ e X*: |z < M, Rf (z*) < o} (8.17)
is sequentially weak*-closed. Since X is separable, and the set in (8.17) is equi-
continuous, it follows that sets of the form (8.17) are weak*-closed, not just se-
quentially weak*-closed. From Krein-Smulian’s theorem it follows that for every
a € R the half-space {z* € X*: Rf (2*) < a} is weak*-closed. It then follows that
the real hyper-plane {z* € X* : Rf (z*) = 0} is weak*-closed. Consequently, since
f: X* — Cis complex linear, there exists a vector z € X such that f (z*) = (z, %),
x* e X*.
We can also use Grothendieck’s theorem. Then we proceed as follows. Instead of
considering a set of the form (8.17) we look at the subset Hjs, defined by

Hyto = {a* € X* ¢ o] < M, f (%) = o} (8.18)

Then the set in (8.18) is sequentially weak*-closed. Let (),
H)r ., which converges to z* € X* in weak*-sense. Then, by (c),

Rf (z*) <limsup Rf (z)) = limsup Ra = Ra. (8.19)
n—00 n—00

be a sequence in

Applying the same argument to the sequence (—z7) _ which converges in weak*-

sense to —z* shows f (—2*) < —a. This in combination with (8.19) yields Rf (z*) =
«. The same argument can applied to the sequences (iz}), . and to (—iz}) -
Consequently the subset H);, is sequentially weak*-closed. Since the space is sep-
arable and the set Hys, is equi-continuous it follows that Hys, is weak*-closed.
Grothendieck’s theorem then implies that the hyper-plane {z* € X* : f (2*) = o} is
weak*-closed. Again it follows that there exists x € X such that f(z*) = (x,z*),
x* e X*.
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This completes the proof of Theorem 8.30. O

8.31. THEOREM. (Eberlein-Smulian) Let A be a subset of a Banach space X. Then
the following assertions are equivalent:

(1) A is relatively weakly compact;
(2) Any sequence in A has a weakly convergent subsequence;
(3) Any sequence in A has a weak cluster point.

PROOF. (1) = (2): Let {a,},_, be a sequence in A. Denote by X, the norm-
closure of the span of the a,. It is easy to see that X is separable and that A n X is
a relatively weakly closed subset of X,. Indeed, the weak topology on X coincides
with the restriction to X, of the weak topology on X. (Alternatively, one can note
that X, is actually a weakly closed subspace of X. In either case, we apply the
Hahn-Banach theorem.) By the preceding lemmas, the weak topology on A n X is
metrizable. Thus any sequence in A N X, has a weakly convergent subsequence. In
particular, so does {a,}._;.

(2) = (3) This implication is trivial.
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(3) = (1) Assume that A satisfies (3). We claim that A must be norm-bounded.
Indeed, for each z* € X* the set {(z,2*): z € A} is bounded in C. This is a
consequence of (3). As above, it follows from the uniform boundedness principle
that A is norm-bounded. Denote by J the canonical embedding X — X**. It
suffices to show that the weak*-closure B of J(A), which is weak*-compact by the
Banach-Alaoglu theorem and the previous paragraph, is contained in J(X). Let
now z** € B be given. We will use compactness to construct a sequence {a,},_, in
A such that, if z € X is any weak cluster point of this sequence, ** = J(x). This
will then complete the proof.

We need the following remark. Suppose Y is a Banach space and F is a finite-
dimensional subspace of Y*. Then the unit sphere of F' is compact in F' equipped
with the norm inherited from Y*. Thus we can find a 1/4-net y,...,y* in the
unit sphere of F, i.e., a set such that for every y* € F with |y*| = 1 there is
a1l < j < n such that Hy* —y;” < 1/4. We can choose yi,...,y, € X of unit
norm such that ‘<yj,y;">‘ > 3/4 for 1 < j < n. Then, for any y* € F, we obtain
max {|(y;, y*)| : 1 <j <n}=(1/2)|y*| by the triangle inequality.
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We will now construct the promised sequence {ak},io:l in A as well as a sequence
{z*}”_, in X*. They will be constructed recursively such that, for some strictly
increasing sequence {n(k)},_, of integers,

(i) |[z** — Jag] (z%,)| < 1/k for m < n(k), and
(ii) max {|y**(27,)] : n(k —1) <m <n(k)} = (1/2) |y*|
for all y** € span {x**, 2** — Jay,...,x™ — Jag_1}.

Fix 27 € X* of norm 1 such that |2** (z7)] = (1/2) |z**| and put n(1) = 1. As
r** € B we can find a; € A such that |[z** — J (a1)] (27)| < 1. Thus (i) and (ii)

hold when k£ = 1. Assume now that we have chosen ay, ..., a5_1, 27, ... ,x;(k_l), and
n(0), n(1), ..., n(k—1) in such a way that (i) and (ii) hold (where k > 2). By the pre-
ceding remark, i.e., the previous paragraph, we can find n(k) and 31y, 15 - Tpp
such that, for any y** € span {«**, ** — J (a1),...,2** — J (ar-1)},

max {[y™* (z,)| - n(k —1) <m <n(k)} = (1/2) Jy™].

Choose next, using the fact that z** € B, a; € A such that |[z** — Ja;| (2%)| <
1/k whenever m < n(k). Let now x be a weak cluster point of {a,}~_,. By the
Hahn-Banach theorem, x is contained in the norm-closed convex linear span of the
sequence {a,}, .. As J is an isometry (by the Hahn-Banach theorem), it follows
that z** — J(x) belongs to the norm-closed linear span of the vectors z** — Ja,,

n=1,2, ... It follows from (ii) above that sup {|y** (z*)|: m € N} = (1/2) |y**|
for all y** € span {z**, ™ — Ja;, 2™ — Jas, ..., }. Hence the triangle inequality

implies that

sup {|y™* (z7,)| - m e N} = (1/2) [y
for all y** € span {z**, ** — Jay, ©** — Jay,...}. In particular, we may take y** =
z* — Jx. Fix m. Given N > m there exists n > n(N) = N > m such that
|z¥ (a, — )| < 1/N. It follows by (i) that

[ = Ja] (23,)] < |[2% = Jan] (@3,)] + |27, (an — 2)[ < 2/N.
Letting N tend to oo, we get that |[z** — Jx] (2%,)| = 0 for all m, whence

|a** — Jz| < 2sup |[2** — Jz] («},)| = 0.
meN
Altogether, this completes the proof of Theorem 8.31. 0

The following theorem is known as Grothendieck’s completeness theorem.

8.32. THEOREM. Let X be a locally conver vector space. The following assertions
are equiavalent:

(a) The space X is complete;

(b) Every linear form on X*, the topological dual of X, which is o (X*, X)-
continuous on every equi-continuous subset of X* is o (X*, X)-continuous
on X*.

(c) BEwvery hyperplane H in X* for which H n A is (o (X*, X))-closed in A for
every equi-continuous subset A of X* is itself (o (X*, X))-closed.
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Here the topology o (X*, X) is the weakest locally convex topology on X* which
makes all functionals of the form z* — (x,z*), * € X*, where x varies over X,
continuous. Of course, this topology is called the weak*-topology. The following
theorem is a version of the Krein-Smulian theorem for metrizable locally convex
spaces.

8.33. THEOREM. A metrizable locally convex space X is complete if and only a
convex set M < X* is o (X*, X)-closed whenever M n U° is o (X*, X)-closed for
every 0-neighborhood U in X.

For the proofs of Theorems 8.32 and 8.33 the reader is referred to the literature,
e.g., Schaefer [119] or Schaefer and Wolff [118].
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Subjects for further research and presentations

The following topics may be of interest for a presentation and/or further research:

(1)

(2)

Detailed treatment of the wave equation. A text can be found in Chapter
2

3. The wave equation is based on the operator e A. For a connection
with unitary semigroups see Subsection 2.5.
Pseudo-differential operators of general order. For details see, e.g., Treves

[137]. An operator of the form

1 fnfnez’(m—y)fp(x’g)u(y) dy dg,

P(z,D)u(x) = 2n)

where the function P(z,€) is an appropriate function, is called a pseudo-
differential operator. The integrand belongs to a certain symbol class. For
instance, if P(z,€) is an infinitely differentiable function on R™ x R™ with
the property that

|DEDP(2,€)] < Cup (1+ €))7

for all z, £ € R", all multi-indices «, 8. some constants C,, 3 and some real
number m, then P belongs to the symbol class 87y of Hormander. The
corresponding operator P(z, D) is called a pseudo-differential operator of
order m and belongs to the class Wi,

Certain pseudo-differential operators of order less than or equal to 2 can
be put into correspondence with space-homogeneous or non-space-homo-
geneous Markov processes. A detailed exposition can be found in Jacob
(68, 69, 70].

Non-linear partial differential operators: the Hamilton-Jacobi-Bellmann
equation, the Hamilton-Jacobi equation, the Euler-Lagrange equation, the
Korteweg-Devries equation. A good reference for some of these topics is
Evans [49]. Some of these equations are (closely) related to optimization
problems: see e.g. [13].

Viscosity solutions to partial differential equations. The standard reference
for this subject is Crandall, Ishii, and Lions [29]. This topic can also
be treated in the context of Backward Stochastic Differential Equations
(BSDEs): see, e.g., Pardoux [95].

Stationary phase methods for Fourier integral operators. For this topic the
reader is referred to Simon [105]. The books [109], [108], and [107] by
the same authors are also quite interesting. An important related topic
is the notion of wavefront set in connection with the singular support of a
distribution. The text in [130] authored by Hansen, Hilgert, and Paravicini
contains relevant material.

General differential operators of elliptic type. An important role is played
by Sobolev theory. Some of these operators generate analytic semigroups.
The reader may consult Chazarain and Piriou [25], Folland [51], Hormander
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[63, 64, 65, 66|, Strichartz [134]. For connection with regularity properties
and analytic semigroups the reader is referred to, e.g., Priiss [103], Priiss
and Simonett [104], or Lunardi [86].

(8) Elliptic differential operators of second order (and Markov processes); see,
e.g., Oksendael [138].

(9) Parabolic differential operators (of second order and Markov processes). An
interesting article in this context is [23]. The abstract of this paper reads:
“We present the main concepts of the theory of Markov processes: tran-
sition semigroups, Feller processes, infinitesimal generator, Kolmogorov’s
backward and forward equations, and Feller diffusion. We also give sev-
eral classical examples including stochastic differential equations (SDEs)
and backward stochastic differential equations (BSDEs) and describe the
links between Markov processes and parabolic partial differential equations
(PDEs). In particular, we state the Feynman-Kac formula for linear PDEs
and BSDEs, and we give some examples of the correspondence between
stochastic control problems and Hamilton-Jacobi-Bellman (HJB) equations
and between optimal stopping problems and variational inequalities. Sev-
eral examples of financial applications are given to illustrate each of these
results, including European options, Asian options, and American put op-
tions.”
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(10)

(11)

(12)

(13)

(14)

Differential operators and boundary value problems. A recent book on this
topic is Pinsky [98]. Several books on partial differential equations contain
a chapter on boundary value problems, e.g., see [110]. For a more applied
version of this topic see, e.g., [6]. A modern book with excellent critics is
[123] written by Shaurer and Levy.

Operator semigroups and differential operators in Banach space; see Chap-
ter 6 in this book. Other texts can be found in [33], [48], [139].

Solutions to stochastic differential equations and the corresponding sec-
ond order differential equation (of parabolic type) satisfied by the one-
dimensional distributions.

Backward stochastic differential equations and their viscosity solutions; see,
e.g. Pardoux [95].

The equation of Rudin-Osher. A relevant book on this topic is [93] written
by Jean-Michel Morel and Sergio Solimini. A related equation, the equation
of Perona-Malik, is discussed in Otmar Scherzer [120]. From the description
of this book we quote “The Handbook of Mathematical Methods in Imaging
provides a comprehensive treatment of the mathematical techniques used in
imaging science. The material is grouped into two central themes, namely,
Inverse Problems (Algorithmic Reconstruction) and Signal and Image Pro-
cessing. FEach section within the themes covers applications (modeling),
mathematics, numerical methods (using a case example) and open ques-
tions. Written by experts in the area, the presentation is mathematically
rigorous. The entries are cross-referenced for easy navigation through con-
nected topics. Available in both print and electronic forms, the handbook
is enhanced by more than 150 illustrations and an extended bibliography.
It will benefit students, scientists and researchers in applied mathematics.
Engineers and computer scientists working in imaging will also find this
handbook useful.” Other related work is Grasmair and Lenzen [58]

Heat equation on a Riemannian manifold. A relevant book in this context
is [59]. For connections with stochastic differential equations on manifolds
see, e.g., Elworthy [45, 46].

Interpolation theorems: Riesz-Thorin, Stein, Marcinkiewicz, and others.
An interesting book is [78]. In the abstract, the author Mark Kim writes
“This expository thesis contains a study of four interpolation theorems, the
requisite background material, and a few applications. The materials in-
troduced in the first three sections of Chapter 1 are used to motivate and
prove the Riesz-Thorin interpolation theorem and its extension by Stein,
both of which are presented in the fourth section. Chapter 2 revolves around
Calderén’s complex method of interpolation and the interpolation theorem
of Fefferman and Stein, with the material in between providing the nec-
essary examples and tools. The two theorems are then applied to a brief
study of linear partial differential equations, Sobolev spaces, and Fourier
integral operators, presented in the last section of the second chapter.” A
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rather recent book on interpolation is [88]. For abstract interpolation re-
sults see e.g., Voigt [148, 149]. Another text containing material about
interpolation is Lunardi [87].

(17) Oscillatory integrals and related path integrals. There is a lot of literature
on this subject. Nice papers on this topic are [2, 3|. Interesting books are,
e.g., Mazzucchi [91], Johnson and Lapidus [72], and Kleinert [79].

(18) Eigenvalue problems and spectral theory. A possible reference for this topic
is Gilbarg and Trudinger [54]. There are several other references for this
kind of subject.

In the past four years we have drilled

89,000 km

That's more than twice around the world.

Who are we?

We are the world’s largest oilfield services company’.

Working globally—often in remote and challenging locations—
we invent, design, engineer, and apply technology to help our
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin
dynamic careers in the following domains:

‘ ‘ m Geoscience and Petrotechnical

m Commercial and Business

What will you be?

a1 careers.slb.com Schiumberger

373 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/Schlumberger1

Download free eBooks at bookboon.com



10.

11.

12.

13.

14.

15.

Bibliography

Andreas Naes Aaserud, Groups and operator algebras,

http://www.math.ucla.edu/ naesaaserud/facts_temp.pdf, August 2013, Lecture Notes,
University of California, Los Angeles.

Sergio Albeverio and Sonia Mazzucchi, Theory and applications of infinite dimensional os-
cillatory integrals, Stochastic analysis and applications, Abel Symp., vol. 2, Springer, Berlin,
2007, pp. 73-91. MR 2397784 (2008m:58019)

, A survey on mathematical Feynman path integrals: construction, asymptotics, appli-
cations, Quantum field theory, Birkhauser, Basel, 2009, pp. 49-66. MR, 2742748 (2011k:58009)
Robert Alicki and Karl Lendi, Quantum dynamical semigroups and applications, second ed.,
Lecture Notes in Physics, vol. 717, Springer, Berlin, 2007. MR 2435280 (2009£:81001)

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel,
F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lec-
ture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450 (88i:47022)
G. Articolo, Partial Differential Equations € Boundary Value Problems with Maple, Academic
Press, April 2009, 2nd Edition, 744 pages.

R. B. Ash and W.P. Novinger, Complex Variables, second edition ed., Dover Books on Math-
ematics, 2007, Publisher’s note. Geared toward advanced undergraduates and graduate stu-
dents, this substantially revised and updated edition of a popular text offers a concise treat-
ment that provides careful and complete explanations as well as numerous problems and
solutions. Topics include elementary theory, general Cauchy theorem and applications, ana-
lytic functions, and prime number theorem. 2004 edition.

Konstantin G. Aslanidi, Notes on quantitative analysis in finance,
http://www.opentradingsystem.com/quantNotes/main.html, April 2011, The Notes no-
ticeably consist of two major pieces. The first piece is a quick introduction into calculational
aspects of financial mathematics. The second piece, starting from the part “Basic Math I1”,
is aimed at solving multi-dimensional problems of financial mathematics in real time.

J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants
formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 370-373. MR 0442748 (56 #1128)
William Beckner, Inequalities in Fourier analysis, Annals of Mathematics 102 (1975), no. 1,
159-182.

Denis R. Bell, The Malliavin calculus, Dover Publications Inc., Mineola, NY, 2006, Reprint
of the 1987 edition. MR 2250060 (2007k:60003)

A. Belleni-Morante and A. C. McBride, Applied nonlinear semigroups, Wiley Series in Math-
ematical Methods in Practice, vol. 3, John Wiley & Sons Ltd., Chichester, 1998, An intro-
duction. MR 1654473 (99m:47083)

Dimitri P. Bertsekas, Dynamic programming and optimal control. Vol. I, third ed., Athena
Scientific, Belmont, MA, 2005. MR, 2183196 (2006g:49001)

Arne Beurling, On analytic extension of semigroups of operators, J. Functional Analysis 6
(1970), 387-400. MR 0282248 (43 #7960)

Rabi N. Bhattacharya and Edward C. Waymire, Stochastic processes with applications, Wiley
Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John

Download free eBooks at bookboon.com



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Wiley & Sons Inc., New York, 1990, A Wiley-Interscience Publication: Classics in Applied
Mathematics, STAM 2009. MR 1054645 (91m:60001)

P. Biane and R. Durrett, Lectures on probability theory, Lecture Notes in Mathematics, vol.
1608, Springer-Verlag, Berlin, 1995, Lectures from the Twenty-third Saint-Flour Summer
School held August 18-September 4, 1993, Edited by P. Bernard. MR 1383120 (96k:60004)
M. S. Birman and M. Z. Solomjak, Double Stieltjes operator integrals, Probl. Math. Phys.,
No. I, Spectral Theory and Wave Processes (Russian), Izdat. Leningrad. Univ., Leningrad,
1966, pp. 33-67. MR, 0209872 (35 #767b)

, Double Stieltjes operator integrals. II, Problems of Mathematical Physics, No. 2,
Spectral Theory, Diffraction Problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1967,
pp. 26-60. MR 0234304 (38 #2621)

, Double Stieltjes operator integrals. III, Problems of mathematical physics, No. 6
(Russian), Izdat. Leningrad. Univ., Leningrad, 1973, pp. 27-53. MR 0348494 (50 #992)

M. Sh. Birman and M. Z. Solomyak, Operator integration, perturbations and commutators,
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), no. Issled.
Linein. Oper. Teorii Funktsii. 17, 34-66, 321. MR 1039572 (91b:47086)

Jean-Michel Bismut, Calcul des variations stochastiques et grandes déviations, C. R. Acad.
Sci. Paris Sér. I Math. 296 (1983), no. 23, 1009-1012. MR 777597 (86h:60109)

, Large deviations and the Malliavin calculus, Progress in Mathematics, vol. 45,
Birkhéuser Boston Inc., Boston, MA, 1984. MR 755001 (86f:58150)

M. Bossy and N. Champagnat, Encyclopedia of quantitative finance, ch. Markov processes,
Wiley, 2010, DOT: 10.1002/9780470061602.eqf02016.

Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universi-
text, Springer, New York, 2011. MR 2759829 (2012a:35002)

Jacques Chazarain and Alain Piriou, Introduction to the theory of linear partial differential
equations, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing
Co., Amsterdam, 1982, Translated from the French. MR 678605 (83j:35001)

Yvonne Choquet-Bruhat, Distributions - théorie et problémes, Masson et Cie, Paris, 1973.
John B. Conway, A course in functional analysis, second ed., Graduate Texts in Mathematics,
vol. 96, Springer-Verlag, New York, 1990. MR 1070713 (91e:46001)

M. G. Crandall, A. Pazy, and L. Tartar, Remarks on generators of analytic semigroups, Israel
J. Math. 32 (1979), no. 4, 363-374. MR 571090 (81g:47043)

Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1,
1-67. MR 1118699 (92j:35050)

R. F. Curtain, A. Bensoussan, and J.-L. Lions (eds.), Analysis and optimization of sys-
tems: state and frequency domain approaches for infinite-dimensional systems, Lecture Notes
in Control and Information Sciences, vol. 185, Berlin, Springer-Verlag, 1993. MR 1208262
(931:93005)

Ruth F. Curtain and Anthony J. Pritchard, Infinite dimensional linear systems theory,
Lecture Notes in Control and Information Sciences, vol. 8, Springer-Verlag, Berlin, 1978.
MR 516812 (80h:93002)

Ruth F. Curtain and Hans Zwart, An introduction to infinite-dimensional linear systems
theory, Texts in Applied Mathematics, vol. 21, Springer-Verlag, New York, 1995. MR 1351248
(961:93001)

Edward Brian Davies, One-parameter semigroups, London Mathematical Society Mono-
graphs, vol. 15, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1980.
MR 591851 (82i:47060)

J. de Graaf, A theory of generalized functions based on holomorphic semigroups. III. Linear
mappings, tensor products and kernel theorems, Nederl. Akad. Wetensch. Indag. Math. 46
(1984), no. 2, 173-187. MR 749530 (86b:46060b)

Download free eBooks at bookboon.com



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Ralph deLaubenfels, Polynomials of generators of integrated semigroups, Proc. Amer. Math.
Soc. 107 (1989), no. 1, 197-204. MR 975637 (90a:47100)

Michael Demuth and Jan A. Van Casteren, Stochastic spectral theory for selfadjoint Feller
operators, Probability and its Applications, Birkh&user Verlag, Basel, 2000, A functional
integration approach. MR 1772266 (2002d:47066)

J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society, Providence,
R.I., 1977, With a foreword by B. J. Pettis, Mathematical Surveys, No. 15. MR 0453964 (56
#12216)

Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge
Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
MR, 1342297 (96i:46001)

Jacques Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27,
North-Holland Publishing Co., Amsterdam, 1981, With a preface by E. C. Lance, Trans-
lated from the second French edition by F. Jellett. MR 641217 (83a:46004)

William F. Donoghue, Distributions and fourier transforms, Pure and applied mathematics:
a series of monographs and textbooks, Academic Press, New York, 1969.

Joseph L. Doob, Classical potential theory and its probabilistic counterpart, Classics in
Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1984 edition. MR MR1814344
(2001j:31002)

Bruce Driver, Math 280 (Probability Theory) Lecture Notes, Lecture notes, University of
California, San Diego, Department of Mathematics, 0112 University of California, San Diego
9500 Gilman Drive, La Jolla, California 92093-0112 USA, June 10 2010, File:prob.tex.
Costas Efthimiou, Introduction to functional equations, MSRI Mathematical Circles Library,
vol. 6, Mathematical Sciences Research Institute, Berkeley, CA, 2011, Theory and problem-
solving strategies for mathematical competitions and beyond. MR 2847779 (2012g:39001)
Nate Eldredge, Friedrichs extension theorem, Some notes on the Friedrichs extension theorem,
May 2010.

K. D. Elworthy, Stochastic differential equations on manifolds, London Mathematical Society
Lecture Note Series, vol. 70, Cambridge University Press, Cambridge, 1982. MR 675100
(84d:58080)

, Stochastic differential equations on manifolds, Probability towards 2000 (New York,
1995), Lecture Notes in Statist., vol. 128, Springer, New York, 1998, pp. 165-178. MR 1632635
(99¢:58131)

Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equa-
tions, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000, With
contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C.
Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989 (2000i:47075)

, A short course on operator semigroups, Universitext, Springer, New York, 2006.
MR, 2229872 (2007¢:47001)

Lawrence C. Evans, Partial differential equations, second ed., Graduate Studies in Mathemat-
ics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943 (2011¢:35002)
Merran Evans, Nicholas Hastings, and Brian Peacock, Statistical distributions, third ed.,
Wiley Series in Probability and Statistics: Texts and References Section, Wiley-Interscience,
New York, 2000. MR 1784302

Gerald B. Folland, Introduction to partial differential equations, second ed., Princeton Uni-
versity Press, Princeton, NJ, 1995. MR 1357411 (96h:35001)

Peter Friz, An introduction to Malliavin calculus, New York University Lecture Notes (2003),
1-44, Courant Institute of Mathematical Sciences, New York University, These notes available
on www.math.nyu.edu/phd_students/frizpete.

Paul Garrett, Measurable choice functions, Lecture notes, University of Minnesota, December
2004.

Download free eBooks at bookboon.com



54.

95.

56.

o7.

58.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second or-
der, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.
MR 1814364 (2001k:35004)

I. C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert space,
Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol.
24, American Mathematical Society, Providence, R.I., 1970. MR 0264447 (41 #9041)

Israel Gohberg and Seymour Goldberg, Basic operator theory, Birkhduser Boston Inc., Boston,
MA, 2001, Reprint of the 1981 original. MR 1843182 (2002d:47001)

Sandy Grabiner, A short proof of Runge’s theorem, Amer. Math. Monthly 83 (1976), no. 10,
807-808. MR 0427639 (55 #670)

Markus Grasmair and Frank Lenzen, Anisotropic total variation filtering, Appl. Math. Optim.
62 (2010), no. 3, 323-339. MR 2727338 (2011h:49064)

Alexander Grigor’'yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced
Mathematics, vol. 47, American Mathematical Society, Providence, RI, 2009. MR, 2569498
(2011e:58041)

Markus Haase, The functional calculus for sectorial operators, Operator Theory: Advances
and Applications, vol. 169, Birkhduser Verlag, Basel, 2006. MR 2244037 (2007j:47030)
Julien Hennefeld, Classroom Notes: A Nontopological Proof of the Uniform Boundedness
Theorem, Amer. Math. Monthly 87 (1980), no. 3, 217. MR 1539318

Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathemat-
ical Society, Providence, R. 1., 1974, Third printing of the revised edition of 1957, American
Mathematical Society Colloquium Publications, Vol. XXXI. MR 0423094 (54 #11077)

Lars Hormander, The analysis of linear partial differential operators. I, Classics in Mathe-
matics, Springer-Verlag, Berlin, 2003, Distribution theory and Fourier analysis, Reprint of
the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773

, The analysis of linear partial differential operators. II, Classics in Mathematics,
Springer-Verlag, Berlin, 2005, Differential operators with constant coefficients, Reprint of the
1983 original. MR 2108588 (2005g:35002)

, The analysis of linear partial differential operators. III, Classics in Mathematics,
Springer, Berlin, 2007, Pseudo-differential operators, Reprint of the 1994 edition. MR 2304165
(2007k:35006)

, The analysis of linear partial differential operators. IV, Classics in Mathemat-
ics, Springer-Verlag, Berlin, 2009, Fourier integral operators, Reprint of the 1994 edition.
MR 2512677 (2010e:35003)

R. L. Hudson, An introduction to quantum stochastic calculus and some of its applications,
Quantum probability communications, Vol. XI (Grenoble, 1998), QP-PQ, XI, World Sci.
Publ., River Edge, NJ, 2003, pp. 221-271. MR 2032369 (2005i:81079)

N. Jacob, Pseudo differential operators and Markov processes. Vol. I, Imperial College Press,
London, 2001, Fourier analysis and semigroups. MR 1873235 (2003a:47104)

, Pseudo differential operators € Markov processes. Vol. II, Imperial College Press,
London, 2002, Generators and their potential theory. MR 1917230 (2003k:47077)

, Pseudo differential operators and Markov processes. Vol. III, Imperial College Press,
London, 2005, Markov processes and applications. MR 2158336 (20061:60001)

G. J. O. Jameson, Some short proofs on subseries convergence, Amer. Math. Monthly 79
(1972), 53-55. MR 0303241 (46 #2379)

Gerald W. Johnson and Michel L. Lapidus, The Feynman integral and Feynman’s operational
calculus, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press,
New York, 2000, Oxford Science Publications. MR 1771173 (2001i:58015)

Mikhail I. Kadets and Vladimir M. Kadets, Series in Banach spaces, Operator Theory: Ad-
vances and Applications, vol. 94, Birkhduser Verlag, Basel, 1997, Conditional and uncondi-
tional convergence, Translated from the Russian by Andrei Iacob. MR 1442255 (98a:46016)

Download free eBooks at bookboon.com



74.

75.

76.

e

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Shmuel Kantorovitz, Topics in operator semigroups, Progress in Mathematics, vol. 281,
Birkh&user Boston Inc., Boston, MA, 2010, This monograph is concerned with the inter-
play between the theory of operator semigroups and spectral theory. The basics on operator
semigroups are concisely covered in this self-contained text. Part I deals with the Hille-Yosida
and Lumer-Phillips characterizations of semigroup generators, the Trotter-Kato approxima-
tion theorem, Kato’s unified treatment of the exponential formula and the Trotter product
formula, the Hille-Phillips perturbation theorem, and Stone’s representation of unitary semi-
groups. Part IT explores generalizations of spectral theory’s connection to operator semigroups.
MR 2574324 (2010k:47001)

Tosio Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970),
495-498. MR, 0264456 (41 #9050)

, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17
(1970), 241-258. MR 0279626 (43 #5347)

, Linear evolution equations of “hyperbolic” type. II, J. Math. Soc. Japan 25 (1973),
648-666. MR 0326483 (48 #4827)

Mark H. Kim, Interpolation theorems in harmonic analysis, Ph.D. thesis, Department of
Mathematics Rutgers, the State University of New Jersey, June 2012, 175 pages.

Hagen Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and fi-
nancial markets, fifth ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
MR 2518082 (2010i:81250)

Heinz Konig, Measure and Integration: An advanced course in basic procedures and applica-
tions, Lecture Notes in Mathematics, Springer, Berlin-Heidelberg, November 14 2011, This
book aims at restructuring some fundamentals in measure and integration theory. It centers
around the ubiquitous task to produce appropriate contents and measures from more prim-
itive data like elementary contents and elementary integrals. It develops the new approach
started around 1970 by Topsoe and others into a systematic theory. The theory is much more
powerful than the traditional means and has striking implications all over measure theory
and beyond.

Heinz Konig, Measure and integration, Birkhduser/Springer Basel AG, Basel, 2012, Publica-
tions 1997-2011. MR 2961340

S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. IT, J. Fac. Sci. Univ. Tokyo
Sect. TA Math. 32 (1985), no. 1, 1-76. MR 783181 (86k:60100Db)

, Applications of the Malliavin calculus. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
34 (1987), no. 2, 391-442. MR 914028 (89¢:60093)

Shigeo Kusuoka and Daniel Stroock, Applications of the Malliavin calculus. I, Stochastic
analysis (Katata/Kyoto, 1982), North-Holland Math. Library, vol. 32, North-Holland, Ams-
terdam, 1984, pp. 271-306. MR 780762 (86k:60100a)

Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Mod-
ern Birkhauser Classics, Birkhduser/Springer Basel AG, Basel, 1995, [2013 reprint of the 1995
original] [MR1329547]. MR 3012216

, Analytic semigroups and optimal regularity in parabolic problems, Progress in Non-
linear Differential Equations and their Applications, 16, Birkhduser Verlag, Basel, 1995.
MR 1329547 (96e:47039)

, An introduction to interpolation theory, Tech. report, Dottorato di Ricerca in Matem-
atica, consorzio Milano-Insubria-Parma-Trieste, February 2007, Course text.

, Interpolation theory, second ed., Appunti. Scuola Normale Superiore di Pisa (Nuova
Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Nor-
male, Pisa, 2009. MR 2523200 (2010d:46103)

Paul Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proceedings of the
International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto
Univ., Kyoto, 1976) (New York), Wiley, 1978, pp. 195-263. MR 536013 (81{:60083)

Download free eBooks at bookboon.com



90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

Paul Malliavin and Anton Thalmaier, Stochastic calculus of variations in mathematical fi-
nance, Springer Finance, Springer-Verlag, Berlin, 2006. MR 2189710 (2007b:91002)
Sonia Mazzucchi, Mathematical Feynman path integrals and their applications, World Scien-
tific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. MR 2537928 (2010g:46123)
P. A. Meyer, Quantum probability seen by a classical probabilist, Probability towards 2000
(New York, 1995), Lecture Notes in Statist., vol. 128, Springer, New York, 1998, pp. 235
248. MR 1632584 (2000i:81069)
Jean-Michel Morel and Sergio Solimini, Variational methods in image segmentation, Progress
in Nonlinear Differential Equations and their Applications, 14, Birkh&duser Boston Inc.,
Boston, MA, 1995, With seven image processing experiments. MR 1321598 (96b:68184)
Kazimierz Musial, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste
23 (1991), no. 1, 177-262 (1993), School on Measure Theory and Real Analysis (Grado, 1991).
MR 1248654 (94k:46084)
Etienne Pardoux, Backward stochastic differential equations and viscosity solutions of systems
of semilinear parabolic and elliptic PDEs of second order, Stochastic analysis and related
topics, VI (Geilo, 1996), Progr. Probab., vol. 42, Birkhduser Boston, Boston, MA, 1998,
pp. 79-127. MR 1652339 (99m:35279)
K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Mathe-
matics, vol. 85, Birkhaduser Verlag, Basel, 1992. MR 1164866 (93g:81062)
A. Pazy, Semigroups of linear operators and applications to partial differential equations,
Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
(85g:47061)
Mark A. Pinsky, Partial differential equations and boundary-value problems with applications,
Pure and Applied Undergraduate Texts, vol. 15, American Mathematical Society, Providence,
RI, 2011, Reprint of the third (1998) edition. MR, 2849590 (2012g:35001)
G. Pisier, Sur les espaces de Banach K -convexes, Seminar on Functional Analysis, 1979-1980
(French), Ecole Polytech., Palaiseau, 1980, pp. Exp. No. 11, 15. MR 604393 (821:46028)
Gilles Pisier, Holomorphic semigroups and the geometry of Banach spaces, Ann. of Math. (2)
115 (1982), no. 2, 375-392. MR 647811 (83h:46027)
Norbert Poschadel, Uber die abstandsvertrdglichen Abbildungen auf dem Kreis und auf der
reellen Geraden, Math. Semesterber. 49 (2002), no. 1, 45-54. MR 1995263 (2004h:39061)
, On a characterization of variance and covariance, Statist. Probab. Lett. 80 (2010),
no. 23-24, 1739-1743. MR 2734237 (2011m:60043)
Jan Priiss, Mazimal regularity for evolution equations in L,-spaces, Conf. Semin. Mat. Univ.
Bari (2002), no. 285, 1-39 (2003). MR 1988408 (2004k:35232)
Jan Priiss and Gieri Simonett, Mazimal regularity for evolution equations in weighted Ly-
spaces, Arch. Math. (Basel) 82 (2004), no. 5, 415-431. MR 2061448 (2006j:34143)
Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier anal-
ysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York,
1975. MR 0493420 (58 #12429b)
, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Aca-
demic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. MR 0493420 (58
#12429Db)
, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press
[Harcourt Brace Jovanovich Publishers|, New York, 1978. MR 0493421 (58 #12429c)
, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jo-
vanovich Publishers], New York, 1979, Scattering theory. MR 529429 (80m:81085)

, Methods of modern mathematical physics. I, second ed., Academic Press Inc. [Har-
court Brace Jovanovich Publishers], New York, 1980, Functional analysis. MR 751959
(85€:46002)

Download free eBooks at bookboon.com



110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Michael Renardy and Robert C. Rogers, An introduction to partial differential equations,
second ed., Texts in Applied Mathematics, vol. 13, Springer-Verlag, New York, 2004.
MR 2028503 (2004j:35001)

Jean-Pierre Rosay, A wvery elementary proof of the Malgrange-Ehrenpreis theorem, Amer.
Math. Monthly 98 (1991), no. 6, 518-523. MR 1109574 (92e:35047)

Walter Rudin, Functional analysis, International Series in Pure and Applied Mathematics,
McGraw-Hill, New York, 1973.

, Functional analysis, second ed., International Series in Pure and Applied Mathemat-
ics, McGraw-Hill, New York, 1991.

V. I. Rybakov, On the theorem of Bartle, Dunford and Schwartz on vector-valued measures,
Mat. Zametki 7 (1970), 247-254. MR 0260971 (41 #5591)

Prasanna K. Sahoo and Palaniappan Kannappan, Introduction to functional equations, CRC
Press, Boca Raton, FL, 2011. MR 2757437 (2012b:39001)

Shoichiré Sakai, C*-algebras and W*-algebras, reprint of the 1971 edition ed., Springer-Verlag,
New York, 1997, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. MR, 0442701
(56 #1082)

Ken-iti Sato, A note on infinitesimal generators and potential operators of contraction semi-
groups, Proc. Japan Acad. 48 (1972), 450-453. MR 0336446 (49 #1220)

H. H. Schaefer and M. P. Wolff, Topological vector spaces, second ed., Graduate Texts in
Mathematics, vol. 3, Springer-Verlag, New York, 1999. MR 1741419 (2000j:46001)

Helmut H. Schaefer, Topological vector spaces, Springer-Verlag, New York-Berlin, 1971, Third
printing corrected, Graduate Texts in Mathematics, Vol. 3. MR 0342978 (49 #7722)

Otmar Scherzer (ed.), Handbook of mathematical methods in imaging, Springer Reference,
Springer Verlag, November 2010, 1607 pages.

Laurent Schwartz, Théorie des distributions, Publications de 'Institut de mathématique de
I’Université de Strasbourg, Hermann, Paris, 1966.

Michael Sharpe, General theory of Markov processes, Pure and Applied Mathematics, vol.
133, Academic Press Inc., Boston, MA, 1988. MR 958914 (89m:60169)

Michael Shearer and Rachel Levy, Partial differential equations, Princeton University Press,
Princeton, NJ, 2015, An introduction to theory and applications. MR 3330429

W. Sierpinski, Sur l’équation fonctionnelle f(xz +y) = f(z) + f(y), Fundam. Math. 1 (1920),
116-122.

, Sur l’équation fonctionnelle f(x +y) = f(z) + f(y), Fundam. Math. 1 (1920), 123~

124.

Barry Simon, Schrédinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447-526.
MR 670130 (86b:81001a)

, Functional integration and quantum physics, second ed., AMS Chelsea Publishing,
Providence, RI, 2005. MR 2105995 (2005:81003)

Allan M. Sinclair, Continuous semigroups in Banach algebras, London Mathematical Society
Lecture Note Series, vol. 63, Cambridge University Press, Cambridge, 1982. MR 664431
(84b:46053)

Alan D. Sokal, A really simple elementary proof of the uniform boundedness theorem, Amer.
Math. Monthly 118 (2011), no. 5, 450-452. MR 2805031

Walther Paravicini Sonke Hansen, Joachim Hilgert, Microlocal analysis, internet course text,
Institut fiir Mathematik der Universitdt Paderborn, Paderborn, September 2010.

Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
MR 0082586 (18,575d)

H. Bruce Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans.
Amer. Math. Soc. 199 (1974), 141-162. MR 0358067 (50 #10532)

, Generation of analytic semigroups by strongly elliptic operators under general bound-

ary conditions, Trans. Amer. Math. Soc. 259 (1980), no. 1, 299-310. MR 561838 (82h:35048)

Download free eBooks at bookboon.com



134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

Robert S. Strichartz, A guide to distribution theory and Fourier transforms, World Scientific
Publishing Co. Inc., River Edge, NJ, 2003, Reprint of the 1994 original [CRC, Boca Raton;
MR1276724 (95£:42001)]. MR 2000535

Daniel W. Stroock, The Malliavin calculus, a functional analytic approach, J. Funct. Anal.
44 (1981), no. 2, 212-257. MR 642917 (83h:60076)

Frangois Treves, Basic linear partial differential equations, Academic Press [A subsidiary of
Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathe-
matics, Vol. 62. MR 0447753 (56 #6063)

, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, Plenum
Press, New York, 1980, Fourier integral operators, The University Series in Mathematics.
MR 597145 (82i:58068)

2010) (Universitext) B. K. @ksendal (Sep 22, Stochastic differential equations: An introduc-
tion with applications, Universitext, Springer, September 2010.

Jan A. van Casteren, Generators of strongly continuous semigroups, Research Notes in Math-
ematics, vol. 115, Pitman, 1985, Pitman Advanced Publishing Program.

Jan A. Van Casteren, On martingales and Feller semigroups, Results Math. 21 (1992), no. 3-
4, 274-288. MR 1157331 (93h:60115)

, Cauchy semigroups and wave operators, Warwick Preprints 64/1995, University of
Warwick, 1995.

, On differences of self-adjoint semigroups, Ann. Math. Blaise Pascal 3 (1996), no. 1,
165-188. MR 1397331 (98a:47042)

, Some properties of the KMS-function, Evolution equations and their applications in
physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol.
215, Dekker, New York, 2001, pp. 453-472. MR 1818024 (2002a:47012)

Jan A. van Casteren, Erratum to: On the Crank-Nicolson scheme once again [2802174], J.
Evol. Equ. 11 (2011), no. 2, 477-483. MR 2802175 (2012£:47117)

Jan A. Van Casteren, Markov processes, Feller semigroups and evolution equations, Series
on Concrete and Applicable Mathematics, vol. 12, World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2011. MR 2779929

Jan A. van Casteren, On the Crank-Nicolson scheme once again, J. Evol. Equ. 11 (2011),
no. 2, 457-476. MR 2802174 (2012f:47116)

O.I. Vladimirskaya, Classes of Banach spaces connected with the Lyapunov convexity theo-
rem, Master’s thesis, Fachbereichs Mathematik und Informatik der Freien Universitéit Berlin,
Berlin, 1999.

Jirgen Voigt, Abstract Stein interpolation, Math. Nachr. 157 (1992), 197-199. MR 1233057
(94¢:41063)

, On compactness in complex interpolation, Ann. Funct. Anal. 3 (2012), no. 1, 121-127.
MR 2903273

Lucien Waelbroeck, Topological vector spaces and algebras, Lecture Notes in Mathematics,
Vol. 230, Springer-Verlag, Berlin, 1971. MR 0467234 (57 #7098)

Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in
Mathematics, vol. 94, Springer-Verlag, New York, 1983, Corrected reprint of the 1971 edition.
MR 722297 (84k:58001)

Shinzo Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to
heat kernels, Ann. Probab. 15 (1987), no. 1, 1-39. MR 877589 (88h:60111)

Robert Whitley, An elementary proof of the Eberlein-Smulian theorem, Math. Ann. 172
(1967), 116-118. MR 0212548 (35 #3419)

Stephen Willard, General topology, Dover Publications Inc., Mineola, NY, 2004, Reprint of
the 1970 original [Addison-Wesley, Reading, MA; MR0264581]. MR 2048350

D. R. Yafaev, Mathematical scattering theory, Mathematical Surveys and Monographs, vol.
158, American Mathematical Society, Providence, RI, 2010, Analytic theory. MR 2598115
(2012d:47033)

Download free eBooks at bookboon.com



Partial differential equations and operators Bibliography

156. Kosaku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995,
Reprint of the sixth (1980) edition. MR 1336382 (96a:46001)

157. Moshe Zakai, The Malliavin calculus, Acta Appl. Math. 3 (1985), no. 2, 175-207. MR 781585
(86:60106)

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

vvyvVvyyVvyy

visit to
find out morel

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

383 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/LIGS

Download free eBooks at bookboon.com



C*-algebra, 163
C*-homomorphism, 209
C*-isomorphism, 209
C*-representation, 209

Co(X), 140
Co (R™), 4
Coo(X), 140
D*, 35

D, 8

Dy, 8

FErp-essential range, 174, 176, 178
Er(-): spectral decomposition, 172, 173
Ey(-): spectral decomposition, 174
G(A): connected component of, 172
G(A): group of invertible elements, 151
H: Heaviside function, 49

H?, 110

locally in 2, 114
Hy o, 114
N(T), 181
R(T), 181
T=U|T|, 184

V()(t) = e_tHO, 245

Vi(t) = e tHr 245
W#*-algebra, 208, 209
W*-homomorphism, 209
W*-isomorphism, 209

W *-representation, 209
S8(R™), 33

|T| =VT*T, 184

D'(Q), 12

D =D (R"), 28

D(Q), 8

D' =D (R"), 28

DK, 6

e, 7

L: group of Lorentz transformations, 69

L(X): space of bounded linear operators on

X, 190

Index

L (H): space of bounded linear operators on

H, 172

L : subgroup of Lorentz transformations

leaving the positive light cone invariant,
69

Ta, 10

pay, 224, 231

p(x), 152

o-weak topology, 208
o(T), 182

o(x), 152
*-homomorphism, 209

abstract Wiener space, 212
adjoint semigroup, 207

almost continuous operator, 316
analytic semigroup, 257

bounded, 270, 275
exponentially bounded, 257

anti-flip operator, 181
approximate identity, 30
Arzela-Ascooli

theorem of, 126

associativity law, 30

Baire category, 307, 311
Baire category argument, 327
Baire category theorem, 311
Banach algebra, 151
Banach-Alaoglu theorem, 170
Banach-Steinhaus

theorem of, 191

Banach-Steinhaus theorem, 16, 193, 307, 314
barrel, 8, 292, 316

barreled space, 8, 314, 319, 321-323
Birman-Schwinger kernel, 240

Blumenthal’s zero-one law, 219

bounded analytic semigroup, 270, 275
bounded set, 312

bounded subset, 319

bounded vector measure, 284

Download free eBooks at bookboon.com



Brownian motion, 4, 218, 225, 227

Cauchy problem, 46, 203, 206
Cauchy semigroup, 208, 210
Cauchy’s equation, 133
Cauchy-Riemann operator, 1, 51, 53
Cayley transform, 175
Chapman-Kolmogorov equation, 231, 233
character
Borel measurable, 133
continuous, 33, 133
characterization of distribution, 15
closable operator, 197, 198
closed graph theorem, 124, 307
closed linear operators, 181
closed operator, 181
closed quadratic form, 123
compact difference of semigroups, 227
compact embedding, 120, 125
compact operator, 227
compact range
relatively weak;y, 283
completeness theorem of Grothendieck, 329
complex homomorphism, 151
connected component, 171
connected component of G(A), 172
connected open set, 141
consistent Crank-Nicolson iteration scheme,
285, 289
convergence factor, 43
convergence in D (), 8
convolution of distributions, 29
convolution product, 2, 9, 29, 77, 83, 85,
130, 131
convolution semigroup
vaguely continuous, 208
convolution semigroup of measures, 207
core for operator, 182
core of operator, 197
cover, 5
refinement of, 5
Crank-Nicolson iteration scheme, 189, 277
consistent, 285, 289
non stable, 306
stable, 284, 298, 302, 304
two-step consistent, 285, 289
curve surrounding a subset, 155

d’Alembertian, 72
diffeomorphism, 30
Dirac distribution, 2, 13
Dirac measure, 134

Dirichlet form, 212, 222
regular, 222
Dirichlet problem, 219
Dirichlet semigroup, 242
dissipative operator, 194, 195, 198
distribution, 2, 12
characterization of, 15
Dirac, 2, 13
invariant under transformations, 31
multiplicative, 132
of compact support, 112
singular support of, 20
support of, 19
tempered, 33, 35, 133, 137
distribution as a derivative, 25
distribution of finite order, 13
division algebra, 153
double Stieltjes operator integrals, 211, 245
dual group, 33
Duhamel’s formula, 193
Dynkin’s formula, 242-244
Dyson-Phillips expansion, 207

elliptic operator, 46, 115

entire function, 127

equation

hyperbolic, 48

essentially self-adjoint operator, 182

evolution and semigroup, 214

explicit formula for fundamental solutions of
the wave equation, 72

exponentially bounded analytic semigroup,
258

Feller semigroup, 199, 214, 215, 221-223
Feller semigroups, 211
Feller-Dynkin semigroup, 199, 222, 223
Feynman-Kac formula, 222, 224, 225, 229
Feynman-Kac semigroup, 189, 225, 239
killed, 242
final topology, 10
Fourier tranform
modified, 37
Fourier transform, 1, 2, 33, 83, 89, 95, 110
inverse, 34
inverse of, 2
partial, 43
Fourier transform of tempered distributions,
35
Fréchet space, 8, 314, 323
Fresnel integral, 58
Friedrichs extension, 120, 121

Download free eBooks at bookboon.com



Friedrichs extension theorem, 124
Fubini’s theorem, 26
Fubini’s theorem for distributions, 130
Fuglede-Putnam-Rosenblum
theorem of, 180
function
rapidly decreasing, 33
fundamental solution, 2, 45, 46, 49, 53, 54,
61
fundamental solution of Cauchy-Riemann
operator, 118
fundamental solution of Laplace operator,
117, 119

Gaussian kernel, 206
Gaussian measure, 212
Gaussian process, 227
Gaussian semigroup, 206, 208, 219
Gelfand transform, 169, 171
Gelfand-Mazur

theorem of, 153
Gelfand-Naimark

theorem of, 170
generalized function, 2
generalized Schrodinger form, 242
generator of Brownian motion, 219
generator of Feller semigroup, 212, 220
generator of Markov process, 227
generator of semigroup, 190
graph of operator, 182
Grothendieck

completeness theorem of, 329

Hahn-Bamach
theorem of, 140
Hahn-Banach
theorem of, 103, 310
Hahn-Banach theorem, 21, 134, 307, 310
complex analytic version, 308
geometric version, 308-310
Hamiltonian, 211
harmonic extension operator, 242, 245
harmonic function, 53, 247, 249, 254
Hausdorff’s maximality theorem, 308
heat equation, 1, 38, 47, 54
heat kernel, 206
heat semigroup, 219
Heaviside function, 18, 43, 49, 99
Hille-Yosida theorem, 194
hitting time, 218
holomorphic semigroup, 257
homomorphism

compex, 151
Huygens principle, 75
hyperbolic equation, 48
hyperbolic operator, 48
hypo-elliptic operator, 47, 48

ideal, 132
identity, 151
identity for convolution products, 2
inductive limit

(strict), 10
initial value problem, 189, 203, 206
integral kernel, 224
interpolation

Riesz-Thorin, 94

Stein, 94
interpolation theorem of Riesz-Thorin, 238
interpolation theorem of Stein, 238
inverse, 151
inverse Fourier transform, 2, 34
involution, 159
iteration scheme

Crank-Nicolson, 277

Jacobian, 30

Kato-Feller potential, 224, 227, 231, 239,
241, 243

Khas’'minskii’s lemma, 226, 234
KMS formula, 247, 248
Kolmogorov extension theorem, 221
Korovkin property, 215
Krein-Milman theorem, 313
Krein-Smulian

theorem of, 330
Krein-Smulian theorem, 325
Kubo-Martin-Schwinger (KMS) formula, 248

Lévy process, 227
Lévy process, 208, 212
Laplace equation, 1, 46
Laplace operator, 4, 53, 121
Laplace transform, 262
Lebesgue’s dominated convergence theorem,
277
Leibniz’ rule, 15, 19, 21, 116, 131
lemma
of Khas'minskii, 226
lemma of Khas’'minskii’s, 234
life time, 216
Liouville’s theorem, 181
locally H® in Q, 114, 115
locally convex space, 10

Download free eBooks at bookboon.com



locally finite collection, 5

locally finite cover, 5

locally finite partition, 5

logistic density, 252

logistic distribution, 254

logistical law, 210

Logistically distributed variable, 252

logistically distributed variable, 246, 249

Lorentz transformation, 48, 61, 67-69

Lumer-Phillips for Feller semigroups
theorem of, 201

Lumer-Phillips theorem, 177, 194

Malgrange and Eherenpreis
theoem of, 45

Malgrange and Ehrenpeis
theorem of, 101

Malgrange and Ehrenpreis
theorem of, 103

Markov bridge kernel, 224, 232

Markov process, 5, 189, 199, 208, 214, 216,

217, 220223, 225, 227

generator of, 5

strong, 212, 214, 215, 217
Markov property, 217, 220, 226, 235
martingale, 215, 219, 220, 224, 227
martingale problem, 215, 223

uniquely solvable, 215

well-posed, 215
maximal ideal

proper, 132, 153
maximal ideal space, 169
maximum principle of operator, 198
Mazur s theorem, 307
Mazur’s theorem, 310
Minkowski functional, 310
modified Fourier transform, 37
Morera’s theorem, 128, 130
multiplication property, 156
multiplicative distribution, 132

negative definite function, 207
normal operator, 176, 180, 188
polar decomposition, 188

normality property, 217

one-step Crank-Nicolson scheme
stable, 301

open mapping theorem, 322

operator

closable, 197, 198

closed, 181

core for, 182

core of, 197

dissipative, 194, 195, 198

elliptic, 46

essentially self-adjoint, 182

graph of, 182

hpo-elliptic, 47

hyperbolic, 48

hypo-elliptic, 48

Laplace, 53

normal, 180, 188

order of, 111

polar decomposition of, 184

positive, 181

satisfying the maximum principle, 198,

199, 201

sectorial, 258, 259

self-adjoint, 182

spectrum of, 182

square root of, 210

symmetric, 181

unitary, 180
operator of order 0, 117
operator semigroup, 1, 111, 177, 189, 205
order of a distribution, 13
order of operator, 111, 117
Orlicz-Pettis theorem, 283
Ornstein-Uhlenbeck process, 4

generator of, 4
Ornstein-Uhlenbeck semigroup, 213

generator of, 213

Paley-Wiener

theorem of, 36, 127
partial Fourier transforms, 43
partition of unity, 5, 6, 19

locally finite, 6

subordinate to, 5, 19
path with left limits, 216
penetration time, 218, 242
Pettis’ theorem, 294
Plancherel

theorem of, 37
Plancherel’s formula, 36, 89
Plancherel’s theorem, 111
Poisson proces, 222
Poisson semigroup, 208

almost continuous, 316 polar decomposition, 166, 167, 176, 177, 184
anti-flip, 181 polar decomposition of normal operator, 188
Cauchy-Riemann, 51 polar set, 310

Download free eBooks at bookboon.com



polar subset, 219
positive element, 163
positive operator, 181
predual, 208
problem
martingale, 223
projection operator, 243
pseudo-differential operator, 3, 211

quadratic form

closable, 122

closed, 121, 123

closure of, 122

densely defined, 121

symetric, 122

symmetric, 121
quadratic forms and semigroups, 212
quantum dynamical semigroup, 210

random walk, 228
rapidly decreasing function, 33
refinement of a cover, 5
reflection, 28
regular point, 219
regularity theorem, 107
relatively weakly compact range, 283
resolution of the identity, 3, 172, 173, 175,
176, 227

resolvent family, 189
resolvent property, 275
Riesz representation theorem, 26, 172, 221
Riesz-Fischer representation theorem, 181
Riesz-Thorin

interpolation theorem of, 94
Riesz-Thorin interpolation, 94
Riesz-Thorin interpolation theorem, 235, 238
right continuity of path, 217
right continuous path, 216
Runge

theorem of, 140
Runge’s theorem, 142, 157, 160

Schrédinger equation, 1, 38, 47, 57
free, 57
Schrédinger operator, 240
Schwarz space, 136
second category
Baire, 322
sectorial operator, 258, 259
self-adjoint semigroup, 205
self-adjoint subalgebra, 209
semi-norm, 10
semigroup

adjoint, 207
analytic, 257
Cauchy, 208
contraction, 190
Feller, 199, 215, 223
Feller-Dynkin, 199, 223
Gaussia, 208
Gaussian, 206
generator of, 190
holomorphic, 257
operator, 1, 4, 189
Poissin, 208
quantum dynamical, 210
self-adjoint, 205
strongly continuous, 190, 248
translation, 205
uniformly continuous, 205
weakly continuous, 190, 204
semigroups
strongly continuous, 204
semigroups and system theory, 211
singular support of distribution, 20
Skorohod space, 215-217, 221, 223
Sobolev space, 110, 117
Sobolev theory, 46
Sobolev’s lemma, 105
solution
fundamental, 45
space
barreled, 8
Fréchet, 8
locally convex, 10
spectral decomposition, 3, 172, 175, 176,
178, 211, 227
spectral mapping theorem, 157, 174, 176,
177
spectral radius, 152, 165
spectrum, 155
spectrum of element, 152
spectrum of operator, 182
square root, 159
square root and involution, 160
square root of operator, 210
positive, 123
stable Crank-Nicolson iteration scheme, 284,
292, 298, 302, 304
stable one-step Crank-Nicolson scheme, 301
stable two-step Crank-Nicolson scheme, 301
state space, 216
state variable, 216
Stein
interpolation theorem of, 94, 238

Download free eBooks at bookboon.com



Stein interpolation theorem, 236
Stirling’s formula, 264
stochastic state space, 216
stochastic time change, 218
Stone’s theorem, 207
Stone-Weierstrass theorem, 134, 177
stopping time, 217, 218

terminal, 218
strong Markov process, 215, 217
strong Markov property, 221, 245
strongly continuous semigroup, 190, 204
subcover, 5
subordinate partition of unity, 5
subset of first category, 311
subset of second category, 311
support of distribution, 19
surrounding a subset

curve, 155
symbolic calculus, 156, 171, 173, 175
symmetric operator, 181
symmetric quadratic form, 121

tempered distribution, 33, 35, 52, 110, 133,
137
tensor product, 51
terminal stopping time, 218
Theorem
of Grothendieck, 328
theorem
of Titchmarsh, 36
Baire category, 311
completeness theorem of Grothendieck,
329
Fubini’s, 26
Malgrange and Ehrenpreis, 1, 2
of Alaoglu-Bourbaki, 311
of Arzela-Ascoli, 126
of Banach-Alaoglu, 170, 312
of Banach-Steinhaus, 86, 191, 193, 307,
314, 321
of Fuglede-Putnam-Rosenblum, 180
of Gelfand-Mazur, 153
of Gelfand-Naimark, 170
of Hahn-Banach, 103, 140, 307, 310
of Hahn-Banach geometric version, 308
of Hille-Yosida, 194
of Hille-Yosida for contraction semigroups,
194
of Krein-Milman, 313
of Krein-Smulian, 324, 325, 330
of Liouville, 181
of Lumer-Phillips, 177, 194

of Lumer-Phillips for Feller semigroups,
201
of Malgrange and Ehrenpreis, 1, 45, 101
of Mazur, 307, 310
of Morera, 128, 130
of Orlicz Pettis, 283
of Paley-Wiener, 36, 127
of Pettis, 294
of Plancherel, 37, 103
of Rellich-Kondrachov, 125
of Riesz-Fischer, 181
of Runge, 140, 142, 157, 160
of Stone, 207
of Stone-Weierstrass, 134, 177
of Titchmarsh, 94
of Tychonov, 311
open mapping, 322
Riesz representation, 26
Riesz-Thorin interpolation, 235
Riesz-Thorin interpolation theorem, 94
Stein interpolation, 236
Theorem of
Banach-Steinhaus, 327
Grothenddieck, 326
Krein-Smulian, 326
theorem of
Grothendieck, 327
Krein-Smulian, 327
Titchmarsh
theorem of, 36
topology
final, 10
trace norm, 210
translation, 28
translation operator, 217
translation semigroup, 205
two-step consistent Crank-Nicolson iteration
scheme, 285, 289
two-step Crank-Nicolson scheme
stable, 301
Tychonov’s theorem, 311

uniform boundedness principle, 307, 314
uniformly continuous semigroup, 205
unitary operator, 180

variation of constants formula, 193
vector measure, 283
vector valued Riemann integra, 295

wave equation, 61
wave equation in one dimension, 46
weakly bounded subset, 312

Download free eBooks at bookboon.com



Partial differential equations and operators Index

weakly continuous semigroup, 190, 200, 204
Weyl’s lemma, 54
Wiener process, 4
generator of, 4
Wiener space, 213
abstract, 212

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"'

S
o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

391 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/AlcatelLucent

