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CHAPTER 5

Operators in Hilbert space

1. Some results in Banach algebras

In this section pA, }¨}q stands for a complex Banach algebra. A complex Banach
algebra is a Banach space over the complex number field C with a multiplication
px, yq ÞÑ xy which is jointly continuous. Moreover we will assume that there is
an identity e. This multiplication has the following properties: xpyzq “ pxyqz,
px ` yq z “ xz ` yz, x py ` zq “ xy ` xz, αpxyq “ pαxqy “ xpαyq for all x, y, z P A,
and for all α P C. The identity element e satisfies ex “ xe “ x for all x P A.
Moreover, the norm satisfies the multiplicative property }xy} ď }x} }y} for all x, y P
A. In addition, }e} “ 1. An element x P A is called invertible if there exists an
element y P A such that yx “ xy “ e. The group of invertible elements of A is
denoted by GpAq. It is known that GpAq is an open subset of A, and that the
application x ÞÑ x´1 is a homeomorphism from GpAq onto GpAq. If x P A is such

that }e ´ x} ă 1, then x belongs toGpAq. Its inverse is given by y “ lim
nÑ8

n
ÿ

j“0

pe ´ xqj.

Observe that |λ| ą }x} implies that λe´x “ λ pe ´ λ´1xq belongs to GpAq. A linear
functional φ : A Ñ C which is multiplicative in the sense that φ pxyq “ φpxqφpyq
for all x, y P A, is called a complex homomorphism. Most of the time it is assumed
that φpeq ‰ 0, and so φpeq “ 1. Let φ be a non-zero complex homomorphism.
Notice that 1 “ φpeq “ φpxqφ px´1q, x P GpAq, and so φpxq ‰ 0, Consequently, for
x P A arbitrary and |λ| ą }x}, we see that φpxq ‰ λ. In other words |φpxq| ď }x}.
Whence a complex homomorphism is automatically continuous. We also need the
following lemma.

5.1. Lemma. Let pxnqn be a sequence in GpAq which converges to x P A. Suppose
that M :“ supn }x´1

n } ă 8. Then x P GpAq.

Proof. We estimate
›

›e ´ x´1
n x

›

› ď
›

›x´1
n pxn ´ xq

›

› ď
›

›x´1
n

›

› }xn ´ x} ď M }xn ´ x} ă 1,

for n large enough. It follows that x´1
n x belongs to GpAq for n large enough. But

then px´1
n xq´1

xn “ x´1. This completes the proof of Lemma 5.1. �
5.2. Definition. Let pA, }¨}q be a complex Banach algebra. The symbol GpAq
stands for the group of invertible elements. Then GpAq is an open subset of A and
the application x ÞÑ x´1 is a homeomorphism from GpAq to GpAq. Let x P A. A
complex number λ belongs to the spectrum of x, denoted by σpxq, if λe ´ x does

155
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not belong to GpAq. It follows that σpxq is a closed subset of C, and that σpxq is
contained in the disc of radius }x}. It can be proved that σpxq ‰ H. It follows that
σpxq is a compact subset of C contained in the disc tλ P C : |λ| ď }x}u, which is non-
empty. The spectral radius ρpxq of x P A is defined by ρpxq “ sup t|λ| : λ P σpxqu.

Without a complete proof we mention the following theorem, which is Theorem
10.12 in Rudin [113].

5.3. Theorem. Let x be an element of a Banach algebra. Then σpxq is a non-empty
compact subset of C, and the spectral radius ρpxq satisfies

ρpxq “ lim
nÑ8

}xn}1{n “ inf
nPN

}xn}1{n . (5.1)

Outline of a proof. Let 0 ‰ x P A. The fact that σpxq ‰ H follows from
the observation that the function f : λ ÞÑ pλe ´ xq´1 is a holomorphic A-valued map
on Czσpxq. If σpxq were empty, then this function would be a bounded holomorphic
function. By Liouville’s theorem it would be constant, and so fpλq ” 0. So that
x “ xe “ xfpλq pλe ´ xq “ 0, which is a contradiction. The equalities

ρpxq “ lim sup
nÑ8

}xn}1{n “ inf
n

}xn}1{n (5.2)

follow from the following considerations. If λ belongs to σpxq, then it is easy to see

that λn belongs to σ pxnq, and so |λ| ď }xn}1{n. Hence

ρpxq ď inf
n

}xn}1{n . (5.3)

As above, put fpλq “ pλe ´ xq´1, and let Γr be the contour Γrpϑq “ reiϑ, ´π ď φ ď
π. Then, for r ą ρpxq,

xn “
1

2πi

ż

Γr

λnfpλq dλ, n P N. (5.4)

From (5.4) it follows that

}xn} ď rn`1 sup t}fpλq} : |λ| “ ru ,

and hence lim sup
nÑ8

}xn}1{n ď r. Since r ą ρpxq is arbitrary we infer that

lim sup
nÑ8

}xn}1{n ď ρpxq.

This in combination with (5.3) yields the inequalities in (5.2) and completes an
outline of the proof of Theorem 5.3. �
5.4. Remark. The second equality in (5.3) can be shown without an appeal to the

spectral radius ρpxq. Define the number ρ as ρ “ infn }xn}1{n, fix ε ą 0 and choose
m P N in such a way that }xm} ď pρ ` εqm. Then, for ℓ ě 1, ℓ P N, and 0 ď j ď m,
we have

›

›xℓm`j
›

› ď }xm}ℓ
›

›xj
›

› ď pρ ` εqℓm }xj} . (5.5)
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From (5.5) we obtain

lim sup
nÑ8

}xn}1{n ď lim sup
ℓÑ8

max
0ďjďm´1

›

›xℓm`j
›

›

1{pℓm`jq

ď lim sup
ℓÑ8

max
0ďjďm´1

pρ ` εqℓm{pℓm`jq ›

›xj
›

›

1{pℓm`jq “ ρ ` ε. (5.6)

Since ε ą 0 is arbitrary, the inequality in (5.6) shows the inequality lim sup
nÑ8

}xn}1{n ď

inf
n

}xn}1{n, and therefore

lim sup
nÑ8

}xn}1{n “ inf
n

}xn}1{n .

The following theorem says that a complex Banach algebra which is also a division
algebra is isometrically isomorphic with the complex number field.

5.5. Theorem (Theorem of Gelfand-Mazur). Let A be a Banach algebra in which
every non-zero element is invertible. Then there exists an algebra isomorphism λ :
A Ñ C which identifies A and C as algebras.

Proof of Theorem 5.5. Let x P A, and choose λ P σpxq. If λ1 ‰ λ, then
λ1e ´ x is non-zero, and so λ1e ´ x is invertible. In other words σpxq is a singleton,
tλpxqu say. Then x ´ λpxqe “ 0, and the mapping x ÞÑ λpxq identifies A with C as
algebras. This completes the proof of Theorem 5.5. �
5.6.Corollary. Let M be a proper maximal ideal in a commutative Banach algebra
A. Then there exists a complex homomorphism h : A Ñ C such that M “ Nphq “
tx P A : hpxq “ 0u.
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Proof of Corollary 5.6. Consider the space AM :“ A{M with the stan-
dard multiplication and standard norm }x ` M} “ inf t}x ` y} : y P Mu. Observe
that }e ` M} “ 1. Then AM is a division algebra. For assume that x R M , then
since M is a maximal proper ideal there exists y P A such that xy ` M “ e ` M .
It follows that, in the Banach algebra AM , px ` Mq py ` Mq “ xy ` M “ e ` M .
Consequently, A{M is a division algebra. By Theorem 5.5 there exists an algebra
isomorphism λ : A{M Ñ C. Let π : A Ñ A{M be the mapping x ÞÑ x`M . Finally
put hpxq “ λ pπpxqq, x P A. Since λ pe ` Mq “ 1, it follows that h is a complex
homomorphism with hpeq “ 1 and with Nphq “ M . This completes the proof of
Corollary 5.6. �

Proposition 5.7 is a slight improvement of Lemma 10.16 in [113]. It is applied there
with V and W being groups of invertible elements in a complex Banach algebra, or
with V and W being the resolvent sets of elements of a Banach algebra.

5.7. Proposition. Let V and W be open subsets of a locally connected topological
Hausdorff space. Assume that V Ď W . The following assertions are equivalent (by
a component of W a connected component of W is meant):

(i) The boundary of V is a subset of the boundary of W , i.e. boundarypV q Ď
boundarypW q;

(ii) V “
Ť

tcomponent of W : component pW q X V ­“ Hu.

Proof. (i) ñ (ii). Let x be an element of V and let Wx be the connected
component of W that contains x. Let y P WxzV . Then it follows that y P WxzV ,
because assume that y belongs to V . Then y belongs to V zV “ boundary pV q.
Assertion (i) then implies that y belongs to the boundary of W . Since W is open it
then follows that y does not belong to W . This is a contradiction. As a consequence
the inclusion y P WxzV certainly holds. But then it is obvious thatWx “ pWx X V qY
`

WxzV
˘

. However, Wx is open and connected, and so since x belongs to Wx X V
and since Wx X V is open we get Wx “ Wx X V , and hence Wx Ď V . This proves
(ii).

(ii) ñ (i). Let x P V zV . Assume that x belongs to W . Let Wx be the connected
component of W that contains x. Then there are two possibilities:

Wx X V “ H or Wx X V ­“ H.

If Wx X V “ H, then it follows that Wx X V “ H and thus x R V . But, by
hypothesis, x P V zV “ boundary pV q. Consequently, Wx X V ­“ H. But from (ii)
it then follows that V Ě Wx and so x P V zV “ H. This is a contradiction. From
x P V zV it apparently follows that x P V zW Ď W zW . Whence

boundarypV q “ V zV Ď W zW “ boundarypW q,

and so the proof of Proposition 5.7 is complete. �
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5.8. Proposition. Let A and B be complex Banach algebras. Let eB be the identity
of B, and suppose that eB P A and that A Ď B. Then the inclusions GpAq Ď
A X GpBq and boundaryApGpAqq Ď boundaryA pA X GpBqq hold.

Proof. Let x be an element of GpAq. Then there exists z P A with the property
that xz “ zx “ e. So there exists z P B with xz “ zx “ e. Whence it follows that
GpAq Ď GpBq X A.

Let x be an element in the A-boundary of GpAq. Then x R GpAq and there exists a
sequence pxnq Ď GpAq with the property that limnÑ8 xn “ x. By Lemma 5.1 (see
also Lemma 10.17 in [113]) we see supn }x´1

n }A “ 8. Assume now that x does not
belong to the A-boundary of the set pA X GpBqq. Then we get either x P AXGpBq
or x R A X GpBq. But x in the A-boundary of GpAq implies x P GpAq Ď A X GpBq.
Hence, if x does not belong to the A-boundary of A X GpBq, then we have x P
A X GpBq. But then, since xn Ñ x, we obtain that x´1

n Ñ x´1 in GpBq. But then
it follows that supn }x´1

n } ă 8. This is a contradiction.

This completes the proof of Proposition 5.8. �

5.9. Proposition. Again A and B are Banach algebras with A Ď B and with
e “ eB P A. Let x P A. Then the following inclusions hold: σApxq Ě σBpxq and
boundary pσApxqq Ă boundary pσBpxqq.

Proof. Since we have

CzσApxq “ tλ P C : λe ´ x P GpAqu
Ď tλ P C : λe ´ x P GpBqu “ CzσBpxq,

it follows that σApxq Ě σBpxq. Next let λ be in boundary pσApxqq. Then it follows
that λ P boundary pCzσApxqq. Consequently, there exists a sequence pλnq in CzσApxq
such that λn Ñ λ, and such that λe´ x R GpAq. But then we get λne´ x P GpAq Ď
AXGpBq, with λn Ñ λ and with λe´x R GpAq. Since supn

›

›pλne ´ xq´1
›

› “ 8 it is
impossible that λe ´ x belongs to GpBq, and hence λ belongs to boundary pσBpxqq.

This completes the proof of Proposition 5.9. �

The following theorem says that if elements x and y in a Banach algebra are close,
the their spectra are also close.

5.10. Theorem. Let Ω be an open subset of C, and let x P A be such that σpxq Ă Ω.
Then there exists a δ ą 0 such that }y} ă δ implies σ px ` yq Ă Ω.

Proof. The function λ ÞÑ
›

›pλe ´ xq´1
›

› is continuous on the set CzΩ. In addi-
tion, it tends to 0 when |λ| Ñ 8. It follows that

M “ sup
␣›

›pλe ´ xq´1
›

› : λ P CzΩ
(

ă 8.
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If y P A is such that }y} ă 1{M , then we have
›

›pλe ´ xq´1 y
›

› ă 1, and consequently,
for λ P CzΩ we have that the element

λe ´ px ` yq “ pλe ´ xq
“

e ´ pλe ´ xq´1 y
‰

is invertible. This proves 5.10 with δ “ 1{M . �

1.1. Symbolic calculus. Let K be compact subset of an open subset Ω in
C. Then there exists a concatenation of oriented curves Γ “ γ1 ˚ ¨ ¨ ¨ ˚ γn, where
γj : rαj, βjs Ñ Ω, 1 ď j ď n, are continuous differentiable curves, which surrounds
K in the sense that

IndΓpζq :“
1

2πi

ż

Γ

dλ

λ ´ ζ
“

#

1, if ζ P K;

0, if ζ P CzΩ.
(5.7)

It follows that, for f in Hol pΩq, i.e. for f holomorphic on Ω, the Cauchy formula

fpζq “
1

2πi

ż

Γ

fpλq
dλ

λ ´ ζ
, ζ P K, (5.8)

holds. We say that the contour Γ surrounds K in Ω. If Ω is an open subset of C, the
we write AΩ “ tx P A : σpxq Ă Ωu. Theorem 5.10 says that AΩ is an open subset

of A. The mapping f ÞÑ rf , f P Hol pΩq where

rfpxq “
1

2πi

ż

Γ

fpλq pλe ´ xq´1 dλ, x P AΩ, (5.9)

is what people call a symbolic calculus. Here Γ surrounds σpxq in Ω. Let ĄHol pAΩq
be the collection of all functions x ÞÑ rfpxq, x P AΩ, as given by (5.9). It is noticed

that, by Cauchy’s theorem, the value of rfpxq does not depend on the choice of Γ
as long as Γ surrounds σpxq in Ω. Some properties are collected in the following
theorem.

5.11. Theorem. Let Hol pΩq and ĄHol pAΩq be as above. The mapping f ÞÑ rf is

a linear multiplicative isomorphism from Hol pΩq onto ĄHol pAΩq, which is jointly
continuous in the following sense. If pxnqn Ă AΩ is a sequence which converges to
x P AΩ, and if pfnqn Ă Hol pΩq which converges uniformly on compact subsets of

Ω to f P Hol pΩq, then rfpxq “ lim
nÑ8

fn pxnq. Moreover, if pnpλq “ λn, λ P C, then
rpnpxq “ xn, n P N.

For the convenience of the reader we insert a proof.

Proof. We begin with the multiplication property, i.e. Ăfgpxq “ rfpxqrgpxq,
x P AΩ, whenever f and g belong to Hol pΩq. To this end we pick x P AΩ, and
choose concatenations Γ1 and Γ2 which surround σpxq in Ω, but Γ2 is also chosen
in such a way that it surrounds the set Ω1 :“ tλ P Ω : IndΓ1pλq “ 1u. Since Γ1

surrounds σpxq we know that σpxq Ă Ω1. Then we have, for f, g P Hol pΩq,

rfpxqrgpxq “ ´
1

4π2

ż

Γ1

fpλq
ż

Γ2

gpµq pλe ´ xq´1 pµe ´ xq´1 dµ dλ
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(resolvent identity pλe ´ xq´1 ´ pµe ´ xq´1 “ pµ ´ λq pλe ´ xq´1 pµe ´ xq´1)

“ ´
1

4π2

ż

Γ1

ż

Γ2

fpλqgpµq
µ ´ λ

␣

pλe ´ xq´1 ´ pµe ´ xq´1
(

dµ dλ

“ ´
1

4π2

ż

Γ1

fpλq
ż

Γ2

gpµq
µ ´ λ

dµ pλe ´ xq´1 dλ

`
1

4π2

ż

Γ2

ż

Γ1

fpλq
µ ´ λ

dλ gpµq pµe ´ xq´1 dµ

(apply Cauchy’s integral formula)

“
1

2πi

ż

Γ1

fpλqgpλq pλe ´ xq´1 dλ `
1

4π2

ż

Γ2

0 ˆ gpµq pµe ´ xq´1 dµ

“ Ăfgpxq. (5.10)
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This proves the multiplication property. Next let pxnqn Ă AΩ which converges in
A to x P AΩ, and let pfnqn be a sequence of holomorphic functions on Ω which
converges, uniformly on compact subsets of Ω to a function f . Then, from complex
analysis it follows that f belongs to Hol pΩq. Since the sequence pxnqn converges to
x P AΩ, it follows that the setK defined byK “

Ť8
n“1 σ pxnqYσpxq is compact. This

can be seen as follows. Let pαnqn be a sequence in K. We have to show that some
subsequence pαnk

qk converges in K. If there exists k P N such that σ pxkq contains
infinitely many members of the sequence pαnqn, then we are done, because σ pxkq is
compact, and so some subsequence of the sequence pαnqn converges (in σ pxkq Ă K).
If, on the other hand, for every k the spectrum σ pxkq contains at most finitely
members of the sequence pxnqn, then without loss of generality we may assume that
αn P σ pxnq. Then we choose a decreasing sequence of open subset pUkqk with the
following properties σpxq Ă Uk Ă Uk Ă Ω, Uk is compact, and σ pxq “

Ş

k Uk.
Then by Theorem 5.10 the subsets AUk

“ ty P A : σpyq Ă Uku, k P N, are open.
It follows that for nk large enough αnk

belongs to Uk. Since, e.g., U1 is compact,
the subsequence pαnk

qk Ă U1 has a further subsequence which converges to α in
U1. Since αnk

belongs to Uk, and σpxq “
Ş

k Uk, it follows that α is a member of
σpxq Ă K. This proves that the subset K is sequentially compact. But for subsets
of C this is the same as compact. Next let Γ be a concatenation of curves which
surrounds K in Ω. Then we have

rfn pxnq ´ rfpxq “
1

2πi

ż

Γ

tfnpλq ´ fpλqu pλe ´ xnq´1 dλ

`
1

2πi

ż

Γ

fpλq
␣

pλe ´ xnq´1 ´ pλe ´ xq´1
(

dλ

“
1

2πi

ż

Γ

tfnpλq ´ fpλqu pλe ´ xnq´1 dλ

`
1

2πi

ż

Γ

fpλq pλe ´ xnq´1 pxn ´ xq pλe ´ xq´1 dλ. (5.11)

Let Γ˚ be the image of Γ in C. Then Γ˚ is a compact subset of ΩzK. Since taking
inverses is a continuous operation on the group of invertible elements GpAq, it then
follows that

sup
λPΓ˚

sup
nPN

›

›pλe ´ xnq´1
›

› “ M ă 8. (5.12)

The equality in (5.11), the property in (5.47) together with the convergence property,

i.e. lim
nÑ8

}xn ´ x} “ 0 results in lim
nÑ8

›

›

›

rfn pxnq ´ rfpxq
›

›

›
“ 0. Altogether this completes

the proof of Theorem 5.11. �

For an alternative proof, using Runge’s theorem, we refer the reader to the literature;
for example Theorem 10.27 in Rudin [113] is a good source. This is also true for
the following theorem.
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5.12. Theorem (Spectral mapping theorem). Suppose that x P AΩ and f P Hol pΩq.
Then rfpxq is invertible in A if and only if fpλq ‰ 0 for all λ P σpxq. Moreover,

σ
´

rfpxq
¯

“ f pσ pxqq.

Proof. If f P Hol pΩq is such that fpλq ‰ 0 for all λ P σpxq, the there exists
an open subset Ω1 of Ω which contains σpxq such that fpλqgpλq “ 1 for some
holomorphic function g defined on Ω1. By Theorem 5.11 with Ω1 in place of Ω,

we see that rfpxqrgpxq “ e “ rgpxq rfpxq. Hence, rfpxq is invertible. Next suppose
that fpαq “ 0 for some α P σpxq. Then there exists a holomorphic h function on

Ω such that fpλq “ pλ ´ αqhpλq, λ P Ω. It follows that rfpxq “ px ´ αeq rhpxq “
rhpxq px ´ αeq. Hence, since α belongs to σpxq, rfpxq is not invertible. This proves
the first part of the theorem.

Next fix β P C. Then, by definition, β belongs to σ
´

rfpxq
¯

if and only if rfpxq ´ βe

is not invertible in A. By the first part, applied to f ´β, this is the case if and only
if f ´ β has a zero in σpxq, that is, if and only β P f pσpxqq.

This completes the proof of Theorem 5.12. �

1.2. On square roots in Banach algebras. In this subsection we will discuss
the existence of square roots of an element in a Banach algebra. In the proof of
assertion (c) of Theorem 5.14 we need the following lemma.

5.13. Lemma. The following equality holds:
ż π

0

1

cosϑ
log

1 ` cosϑ

1 ´ cosϑ
dϑ “ π2. (5.13)

The method of proof of Lemma 5.13 which is presented is also employed in the proof
of assertion (c) in Theorem 5.14.

Proof. Properties of the function t ÞÑ arctan t yield the first one of the following
identities:

π2 “ 4

ż 8

0

ż 8

0

1

t21 ` 1

1

t22 ` 1
dt2 dt1

“ 4

ż 8

0

ż 8

0

1

t21t
2
2 ` t21 ` t22 ` 1

dt2 dt1

(employ polar coordinates: t1 “ r cosϑ, t2 “ r sinϑ, r ą 0, 0 ď ϑ ď 1
2
π)

“ 4

ż 8

0

r

ż π{2

0

1

r4 cos2 ϑ sin2 ϑ ` r2 ` 1
dϑ dr

(make the substitutions ρ “ r´2, and φ “ 2ϑ)

“
ż 8

0

ż π

0

1
1
4
sin2 φ ` ρ ` ρ2

dφ dρ
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“
ż 8

0

ż π

0

1
`

ρ ` 1
2

˘2 ´ 1
4
cos2 φ

dφdρ

“
ż 8

0

ż π

0

1

cosφ

ż 1
2
cosφ

´ 1
2
cosφ

1
`

ρ ` 1
2

´ s
˘2 ds dφ dρ

(apply Fubini’s theorem and make the substitution ρ “
`

1
2

´ s
˘

r)

“
ż π

0

1

cosφ

ż 1
2
cosφ

´ 1
2
cosφ

1
1
2

´ s
ds

ż 8

0

1

pr ` 1q2
dr dφ

“
ż π

0

1

cosφ
log

1 ` cosφ

1 ´ cosφ
dφ,

which shows equality (5.13) in Lemma 5.13. �

In assertion (e) of Theorem 5.14 below the space A is a complex Banach algebra
with identity e, and with an involution ˚ which is not necessarily continuous. It has
the standard properties of an involution: pαx ` βyq˚ “ αx˚ ` βy˚, pxyq˚ “ y˚x˚.
x˚˚ “ x, α, β P C, x, y P A. We discuss existence and uniqueness of square roots of
elements of a Banach algebra (with an involution in assertion (e)).
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5.14. Theorem. Let A be a Banach algebra with a not necessarily continuous invo-
lution. The following assertions hold true.

(a) Existence of square roots. Let x be an element of a Banach algebra pA, }¨}q
with the property that σpxq X p´8, 0s “ H. Then there exists y P A
with the following properties: y, y2 “ x, and σpyq “

␣
?
λ : λ P σpxq

(

Ă
tλ P C : ℜλ ą 0u.

(b) Uniqueness of square roots. Suppose that x P A is such that σpxq X
p´8, 0q “ H. There exists only one element y P A such that y2 “ x,
which has the property that its spectrum σpyq is contained in the closed
right half plane tλ P C : ℜλ ě 0u, and which satisfies

sup
␣

|λ|
›

›pλe ` yq´1
›

› : ℜλ ą 0
(

ă 8. (5.14)

The element y is given by the (improper) Riemann integral

y “
2

π

ż 8

0

x
`

t2e ` x
˘´1

dt. (5.15)

(c) Let x P A be such that σpxq X p´8, 0q “ H, and such that

sup
␣

λ
›

›pλe ` xq´1
›

› : λ ą 0
(

ă 8. (5.16)

Define y as in (5.15). Then y2 “ x.
(d) Let y P A be such that the integral

ż 8

0

y
`

t2e ` y2
˘´1

dt “ lim
εÓ0

lim
RÑ8

ż R

ε

y
`

t2e ` y2
˘´1

dt

exists. Then the limit

p “ lim
ε

ε
`

εe ` y2
˘´1

exists, and

4

π2

ˆ
ż 8

0

y
`

t2e ` y2
˘´1

dt

˙2

“ e ´ p. (5.17)

Moreover, p2 “ p and px “ xp “ 0.
(e) Let x be as in assertion (a), i.e. x is an element of a Banach algebra

pA, }¨}q with the property that σpxq X p´8, 0s “ H. Then there exists a
unique element y P A with the following properties: y2 “ x, py˚q2 “ x˚, and
σ py˚q “ σpyq “

␣
?
λ : λ P σ px˚q

(

Ă tλ P C : ℜλ ą 0u. In fact y is given
by

y “
2

π

ż 8

0

x
`

t2e ` x
˘´1

dt,

and y˚ is given by

y˚ “
2

π

ż 8

0

x˚ `

t2e ` x˚˘´1
dt.
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If x “ x˚, then y “ y˚, and λ P σpyq if and only if λ P σpyq. The element
x is positive in the sense that x “ x˚ and σpxq Ă p0,8q if and only if y is
so.

Proof. (a) Choose a contour Γ which surrounds σpxq in C, and put

y “ x
1

2πi

ż

Γ

1?
λ

pλe ´ xq´1 dλ

(deform the curve Γ: λ “ teip˘π¯εq, and let ε tend to 0 from above)

“ ´x
1

2πi

ż 0

8

1?
t

1

e
1
2
iπ

p´te ´ xq´1 dt ´ x
1

2πi

ż 8

0

1?
t

1

e´ 1
2
iπ

p´te ´ xq´1 dt

“ x
1

2π

ż 8

0

1?
t

pte ` xq´1 dt ` x
1

2π

ż 8

0

1?
t

pte ` xq´1 dt

“ x
1

π

ż 8

0

1?
t

pte ` xq´1 dt

(substitute t “ s2)

“
2x

π

ż 8

0

`

s2e ` x
˘´1

ds “ lim
nÑ8

n2n
ÿ

k“0

2x

π

`

k22´2ne ` x
˘´1 1

2n
“ lim

nÑ8
yn,

where yn :“
n2n
ÿ

k“0

2x

π

`

k22´2ne ` x
˘´1 1

2n
. Notice that y2 “ x, and that yn belongs to

the commutative sub-Banach algebra A0 generated by x and e. In fact for α ą 0
the element pαe ` xq´1 P A0, because, by Runge’s theorem (in fact by Lemma
4.66), pαe ` xq´1 “ limnÑ8 pnpαe ` xq, where ppnqnPN is an appropriate sequence
of polynomials in one variable. More precisely, for any polynomial p and for an
appropriate contour Γ in Cz pp´8, 0s Y σpxqq we have:

pαe ` xq´1 ´ p pαe ` xq “
1

2πi

ż

Γ

ˆ

1

α ` λ
´ p pα ` λq

˙

pλe ´ xq´1 dλ,

and hence
›

›pαe ` xq´1 ´ p pαe ` xq
›

›

ď
1

2π
length pΓq sup

λPΓ˚

ˇ

ˇ

ˇ

ˇ

1

α ` λ
´ p pα ` λq

ˇ

ˇ

ˇ

ˇ

sup
λPΓ˚

›

›pλe ´ xq´1
›

› .

Since by the spectral mapping theorem σpxq “ σ py2q “ pσpyqq2, and since σpxq
does not contain negative real numbers it follows that the set σpyq X iR is empty.
In addition the function f : Czp´8, 0s Ñ C defined by

fpλq “
2

π

ż 8

0

λ

s2 ` λ
ds “

?
λ, λ P Czp´8, 0s,

is analytic in an open neighborhood of σpxq, and therefore

σpyq “ tfpλq : λ P σpxqu “
!?

λ : λ P σpxq
)

Ă tλ P C : ℜλ ą 0u .
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This proves assertion (a) of Theorem 5.14.

(b) Next, we proceed with proving the uniqueness of “taking square roots” with
spectrum in the closed right half plane. Let y P A be such that y2 “ x and suppose
that y satisfies the assumptions made in assertion (b). We will prove that y is
represented as in (5.15). First we observe that

σpyq Ă tλ P C : ℜλ ą 0u Y t0u . (5.18)

This is because y2 “ x and σpxq X p´8, 0q “ H, so that by the spectral map-
ping theorem σpyq X iR Ă t0u. Since, by assumption σpyq is contained in the
closed right half plane, the claim in (5.18) follows. Let, for r ą 0, the semi-
circle tλ P C : ℜλ ě 0, |λ| “ ru be parameterized by Γrpϑq “ reiϑ, ´1

2
π ď 1

2
π. By

Cauchy’s theorem from complex analysis we infer, for 0 ă ε ă R ă 8, the equality:

1

πi

ż

Γε

pze ` yq´1 dz

z
´

1

πi

ż

ΓR

pze ` yq´1 dz

z

“ ´
1

πi

ż ´iε

´iR

pze ` yq´1 dz

z
´

1

πi

ż iR

iε

pze ` yq´1 dz

z

“
2

π

ż R

ε

`

t2e ` y2
˘´1

dt. (5.19)

In (5.19) we let R Ñ 8 to obtain:

2

π

ż 8

ε

`

t2e ` y2
˘´1

dt “
1

πi

ż

Γε

pze ` yq´1 dz

z
. (5.20)

From (5.20) we get:

2

π

ż 8

ε

y
`

t2e ` y2
˘´1

dt “
1

πi

ż

Γε

y pze ` yq´1 dz

z

“
1

πi

ż

Γε

dz

z
e ´

1

πi

ż

Γε

pze ` yq´1 dz “ e ´
1

πi

ż

Γε

pze ` yq´1 dz. (5.21)

From (5.21) we infer:

2

π

ż 8

ε

y2
`

t2e ` y2
˘´1

dt “ y ´
1

πi

ż

Γε

y pze ` yq´1 dz

“ y ´
1

πi

ż

Γε

1 dz e `
1

πi

ż

Γε

z pze ` yq´1 dz

“ y ´
2ε

π
e `

1

πi

ż

Γε

z pze ` yq´1 dz. (5.22)

In (5.22) we let ε Ó 0. By employing (5.14) and the equality y2 “ x the equality in
(5.15) follows. This proves assertion (b).
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(c) Let x be as in (c) and let y be as in (5.15). Then like in the proof of Lemma
5.13 we have

y2 “
4

π2

ż 8

0

ż 8

0

x2
`

t21e ` x
˘´1 `

t22e ` x
˘´1

dt2 dt1

“
4

π2

ż 8

0

ż 8

0

x2
`

t21t
2
2e `

`

t21 ` t22
˘

x ` x2
˘´1

dt2 dt1

(employ polar coordinates: t1 “ r cosϑ, t2 “ r sinϑ, r ą 0, 0 ď ϑ ď 1
2
π)

“
4

π2

ż 8

0

r

ż π{2

0

x2
`

r4e cos2 ϑ sin2 ϑ ` r2x ` x2
˘´1

dϑ dr

(make the substitutions ρ “ r´2, and φ “ 2ϑ)

“
1

π2

ż 8

0

ż π

0

x2

ˆ

1

4
e sin2 φ ` ρx ` ρ2x2

˙´1

dφ dρ

“
1

π2

ż 8

0

ż π

0

x2

˜

ˆ

ρx `
1

2
e

˙2

´
1

4
e cos2 φ

¸´1

dφ dρ

“
1

π2

ż 8

0

ż π

0

1

cosφ

ż 1
2
cosφ

´ 1
2
cosφ

x2

ˆ

ρx `
ˆ

1

2
´ s

˙

e

˙´2

ds dφ dρ

(apply Fubini’s theorem and make the substitution ρ “
`

1
2

´ s
˘

r)

“
1

π2

ż π

0

1

cosφ

ż 1
2
cosφ

´ 1
2
cosφ

1
1
2

´ s
ds

ż 8

0

x2 prx ` eq´2 dr dφ

“
1

π2

ż π

0

1

cosφ
log

1 ` cosφ

1 ´ cosφ
dφx2

ż 8

0

px ` ρeq´2 dρ

(employ Lemma 5.13)

“ x2

ż 8

0

px ` ρeq´2 dρ. (5.23)

From (5.23) we get

y2 “ lim
RÑ8

lim
εÓ0

`

x2 pεe ` xq´1 ´ x2 pRe ` xq´1
˘

“ lim
εÓ0

`

x ´ εx ` ε2 pεe ` xq´1
˘

“ x.

(5.24)
In the final steps of (5.24) we used the assumption (5.16) on x. This proves assertion
(c).

(d) As in the proof of assertion (c) we have

4

π2

ˆ
ż 8

0

y
`

t2e ` y2
˘´1

dt

˙2

“
ż 8

0

y2
`

ρe ` y2
˘´2

dρ. (5.25)
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From (5.25) we infer

4

π2

ˆ
ż 8

0

y
`

t2e ` y2
˘´1

dt

˙2

“ lim
εÓ0

lim
RÑ8

y2
´

`

εe ` y2
˘´1 ´

`

Re ` y2
˘´1

¯

“ lim
εÓ0

´

e ´ ε
`

εe ` y2
˘´1

¯

“ e ´ p. (5.26)

Next we write, for λ ą 0 and ε ą 0,

λε
`

λe ` y2
˘´1 `

εe ` y2
˘´1 “

λ

λ ´ ε

´

ε
`

εe ` y2
˘´1 ´ ε

`

λe ` y2
˘´1

¯

,

“
ε

ε ´ λ

´

λ
`

λe ` y2
˘´1 ´ λ

`

εe ` y2
˘´1

¯

. (5.27)

In (5.27) we let ε tend to 0, and we get:

λ
`

λe ` y2
˘´1

p “ p, λ ą 0. (5.28)

From (5.28) we infer λp “ pλe ` y2q p, and so y2p “ 0. In (5.28) we also let λ tend
to 0 to obtain p2 “ p. If in (5.27) we let λ tend to 0, we obtain

εp
`

εe ` y2
˘´1 “ p, ε ą 0,

and hence py2 “ 0. This proves assertion (d).
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(e) This assertion is a consequence of the assertions (a) and (b). Since λ P C belongs
to σpyq if and only if λ belongs to σ py˚q, we see that σpyq “ σpyq provided that
y “ y˚ .

Altogether this completes the proof of Theorem 5.14. �

1.3. On C˚-algebras. We need the following property of positive elements in
a C˚-algebra A. A C˚-algebra is a Banach algebra with an involution which has
the following property }x}2 “ }x˚x}, x P A. An element u P A is called positive if
u “ u˚ and if σpuq Ă r0,8q. If u P A is positive, then the same is true for }u} e´ u.

5.15. Proposition. If u and v are positive elements in a C˚-algebra A, then u ` v
is also positive.

Proof. Put α “ }u}, β “ }v}, and γ “ α`β. We know that σpαe´uq Ă r0, αs
and σpβe ´ vq Ă r0, βs. Then it follows that }γe ´ w} ď γ. Since σ pγe ´ u ´ vq is
real it follows that σ pγe ´ u ´ vq Ă r´γ, γs, and consequently, σpu ` vq Ă r0, γs.

This completes the proof of Proposition 5.15. �
5.16. Proposition. Let y be an element of a C˚-algebra A. Let A0 be the algebra
generated by yy˚ and the identity e. Then the spectrum of yy˚, viewed as an element
of A0, is contained in the interval

“

0, }y}2
‰

. In fact the following identity is true:

yy˚ “
2

π

ż 8

0

pyy˚q2
`

t2e ` pyy˚q2
˘´1

dt. (5.29)

Proof. First suppose that ℑλ ­“ 0. Write λ “ α ` iβ, with α and β belonging
to R. Choose t P R in such a way that α2 ` 2βt ` β2 ą }yy˚}2. Then

}yy˚ ` ite}2

|λ ` it|2
“

}pyy˚ ` iteq pyy˚ ´ iteq}
α2 ` β2 ` 2βt ` t2

“
}yy˚}2 ` t2

α2 ` β2 ` 2βt ` t2
ă 1,

and hence λe ´ yy˚ “ pλ ` itq e ´ yy˚ ´ ite “ pλ ` itq
ˆ

e ´
yy˚ ` ite

λ ` it

˙

is invertible

with inverse pλ ` itq´1
8
ÿ

k“0

pyy˚ ` iteqk

pλ ` itqk
. It follows that λe ´ yy˚ is invertible in A0

whenever ℑλ ­“ 0. Next we consider the case where λ belongs to R. If |λ| ą
}yy˚} “ }y|2, then λe´yy˚ is invertible in A0 via a Neumann series: pλe ´ yy˚q´1 “
1

λ

8
ÿ

k“0

1

λk
pyy˚qk. It follows that σ pyy˚q is a subset of

“

´ }y}2 , }y}2
‰

.

Put w “ p|yy˚| ´ yy˚q y “ y p|y˚y| ´ y˚yq, where |yy˚| is defined as the positive
square of pyy˚q2, which can be defined using Gelfand transforms in the algebra
generated by yy˚. It can also be defined by employing the integral representation

|yy˚| “
2

π

ż 8

0

pyy˚q2
`

s2e ` pyy˚q2
˘´1

ds
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“
2

π

ż 8

0

yy˚y
`

s2e ` py˚yq2
˘´1

y˚ ds. (5.30)

Since, for s ą 0, the element

pyy˚q2
`

pyy˚q2 ` s2e
˘´1 “ yy˚ pyy˚ ` iseq´1 yy˚ pyy˚ ´ iseq´1 ,

is the product of two elements in A0, it itself belongs to A0. In addition we have
›

›

›

›

ż ε

0

pyy˚q2
`

s2e ` pyy˚q2
˘´1

ds

›

›

›

›

ď
ż ε

0

›

›

›
pyy˚q2

`

s2e ` pyy˚q2
˘´1

›

›

›
ds

ď ρ

ˆ
ż ε

0

pyy˚q2
`

s2e ` pyy˚q2
˘´1

ds

˙

ď sup
ξPσpyy˚q

ż ε

0

ξ2

s2 ` ξ2
ds ď ε.

Here ρpxq represents the spectral radius of the element x. Consequently |yy˚| is a
member of A0. Then

ww˚ “ p|yy˚| ´ yy˚q yy˚ p|yy˚| ´ yy˚q “
`

|yy˚| yy˚ ´ pyy˚q2
˘

p|yy˚| ´ yy˚q

“ ´ p|yy˚| ´ yy˚q2 |yy˚| “ ´
!

p|yy˚| ´ yy˚q
a

|yy˚|
)2

“: ´w2
1 (5.31)

is negative in the sense that ww˚ is self-adjoint and has its spectrum in the closed
negative half-axis p´8, 0s. Since, by the same token,

w˚w “ ´
!

p|y˚y| ´ y˚yq
a

|y˚y|
)2

“: ´w2
2, (5.32)

we infer that w˚w is negative as well, because w1 as well as w2 is self-adjoint.
Choose self-adjoint elements u and v such that w “ u ` iv. In fact u “ 1

2
pw ` w˚q,

v “ 1
2i

pw ´ w˚q. Then w˚w ` ww˚ “ 2u2 ` 2v2, and hence, by (5.31) and (5.32)

2
`

u2 ` v2
˘

“ w˚w ` ww˚ “ ´w2
1 ´ w2

2. (5.33)

From Proposition 5.15 it follows that w˚w ` ww˚ “ 2u2 ` 2v2 is positive in the
sense that w˚w ` ww˚ is self-adjoint and has its spectrum in the closed positive
half-axis. On the other hand, by (5.33) we see that w˚w ` ww˚ is negative in
the sense that its spectrum is contained in p´8, 0s and that w˚w ` ww˚ is self-
adjoint. But elements whisk are positive as well as negative are 0. Consequently,
w˚w `ww˚ “ 0. Proposition 5.17 below shows that the spectrum of w˚w coincides,
except for possibly the complex number 0, with the spectrum of ww˚. Hence, w˚w
is positive as well as negative; its spectrum is just t0u. Thus,

}w}2 “ }w˚}2 “ }w˚w} “ ρ pw˚wq “ 0.

Here ρ pw˚wq denotes the spectral radius of w˚w. However, if w “ 0, then we get

p|yy˚| ´ yy˚q yy˚ “ 0,

and hence,
p|yy˚| ´ yy˚q2 “ 2 pyy˚ ´ |yy˚|q yy˚ “ 0.

Consequently, yy˚ “ |yy˚| is positive. The representation in (5.29) then follows from
(5.30).

This completes the proof of Proposition 5.16. �
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In the proof of Proposition 5.16 we used the following result.

5.17. Proposition. Let x and y be two elements in a Banach algebra. Then t0u Y
σpxyq “ t0u Y σpyxq.

Proof. Suppose λ ­“ 0. If z inverts e ´
1

λ
yx, then e `

1

λ
xzy inverts e ´

1

λ
xy:

ˆ

e `
1

λ
xzy

˙ ˆ

e ´
1

λ
xy

˙

“ e ´
1

λ
xy `

1

λ
xz

ˆ

e ´
1

λ
yx

˙

y “ e ´
1

λ
xy `

1

λ
xy “ e.

This completes the proof of Proposition 5.17. �
5.18.Remark. In fact in the proof of Proposition 5.16 we could have avoided the use
of Proposition 5.17 by the following argument. Let w, u, v, w1, w2 be as in the proof
of Proposition 5.16. Then we proved that w˚w ` ww˚ “ ´w2

1 ´ w2
2 “ 0. Since w1

and w2 are self-adjoint, we see that w1 “ w2 “ 0. Since w1 “ p|yy˚| ´ yy˚q
a

|yy˚|
we get

p|yy˚| ´ yy˚q2 “ 2 p|yy˚| ´ yy˚q
a

|yy˚|
a

|yy˚| “ 0,

and thus yy˚ “ |yy˚| is positive.
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Next we apply Theorem 5.14 and Proposition 5.16 to obtain the polar decomposi-
tions of elements in a C˚-algebra.

5.19. Theorem. Let y be an element of a C˚-algebra A with identity e. Define the
following elements:

uε “
2

π

ż 8

ε

y
`

t2e ` y˚y
˘´1

dt, ε ą 0,

|y| “
2

π

ż 8

0

y˚y
`

t2e ` y˚y
˘´1

dt,

|y˚| “
2

π

ż 8

0

yy˚ `

t2e ` yy˚˘´1
dt,

(5.34)

Then the following assertions hold true:

(1) The elements |y| and |y˚| are positive and satisfy the following equalities:
|y|2 “ y˚y, |y˚|2 “ yy˚. They are the only positive elements in A which
satisfy these equalities.

(2) The element u˚
ε is given by

u˚
ε “

2

π

ż 8

ε

y˚ `

t2e ` yy˚˘´1
dt. (5.35)

(3) The following equalities hold:

lim
εÓ0

uε |y| “ y and lim
εÓ0

u˚
ε |y˚| “ y˚. (5.36)

(4) The following equalities hold:

lim
εÓ0

u˚
εuε |y| “ |y| and lim

εÓ0
uεu

˚
ε |y˚| “ |y˚| . (5.37)

5.20. Remark. Since by Proposition 5.16 elements of the form yy˚, and so also
of the form y˚y, are positive, we see that |y| is positive. It is called the (positive)
square root of the element y˚y, and often written as |y| “

?
y˚y. Heuristically, the

equalities in (3) are written as y “ u |y| (polar decomposition of the element y) and
y˚ “ u˚ |y˚| (polar decomposition of the element y˚). The equalities in (4) suggest
to write u˚u |y| “ |y| and uu˚ |y˚| “ |y˚| respectively. These equalities say that u
and u˚ are partial isometries on the range of (the multiplication operators) |y| and
|y˚|. In the context of bounded or closed linear operators with, domain and range
in a Hilbert space, these notions will be justified in the sense that |T | is the unique

positive operator S with S2 “ T ˚T , that Ux “
2

π

ż 8

0

T
`

t2I ` T ˚T
˘´1

x dt, x P H,

is a so-called partial isometry, i.e. }Ux} “ }x} for x in the closure of the range of
|T |, and that U˚U is an orthogonal projection on the closure of the range of |T |.
Also notice that the closure of the range of |T | coincides with the closure of the
range of T ˚T . A similar observation goes for the operator T ˚.
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Proof of Theorem 5.19. (1) From Proposition 5.16 it follows that the ele-
ment y˚y is positive. From assertion (b) in Theorem 5.14 it follows that |y|2 “ y˚y.
A similar argument applies to yy˚. The assertion about the uniqueness follows from
assertion (b) in Theorem 5.14.

(2) This assertion follows from the fact that taking an adjoint is a continuous oper-
ation, and from the observe that for t ą 0 the equality

`

t2e ` y˚y
˘´1

y˚ “ y˚ `

t2e ` yy˚˘´1

holds.

(3) First we show that

lim
ε2,ε1Ó0, ε2ąε1

2

π

ż ε2

ε1

y
`

t2e ` y˚y
˘´1

dt |y| “ lim
ε2,ε1Ó0, ε2ąε1

2

π

ż ε2

ε1

y |y|
`

t2e ` y˚y
˘´1

dt “ 0.

(5.38)
If 0 ă ε1 ă ε2, then

›

›

›

›

ż ε2

ε1

y |y|
`

t2e ` y˚y
˘´1

dt

›

›

›

›

2

“
›

›

›

›

ż ε2

ε1

ż ε2

ε1

`

t21e ` y˚y
˘´1 |y| y˚y |y|

`

t22e ` y˚y
˘´1

dt2 dt1

›

›

›

›

“
›

›

›

›

ż ε2

ε1

ż ε2

ε1

`

t21e ` y˚y
˘´1 py˚yq2

`

t22e ` y˚y
˘´1

dt2 dt1

›

›

›

›

ď sup
λą0

ż ε2

ε1

ż ε2

ε1

λ2

pt21 ` λq pt22 ` λq
dt2 dt1

ď sup
λą0

ż ε2

0

ż ε2

0

λ2

pt21 ` λq pt22 ` λq
dt2 dt1

“ sup
λą0

ż ε2{
?
λ

0

ż ε2{
?
λ

0

λ2

pt21 ` 1q pt22 ` 1q
dt2 dt1

ď sup
λą0

ˆ?
λ arctan

ˆ

ε2?
λ

˙˙2

ď ε22. (5.39)

So from (5.39) the equality (5.38) follows. As a consequence we see that

lim
εÓ0

uε |y| “
2

π

ż 8

0

y |y|
`

t2e ` y˚y
˘´1

dt (5.40)

exists. The element uε |y| can be rewritten in the form

uε |y| “
4

π2

ż 8

ε

ż 8

0

y
`

t21e ` y˚y
˘´1

y˚y
`

t22e ` y˚y
˘´1

dt1 dt2

“
4

π2

ż 8

ε

ż 8

0

yy˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1

dt1 dt2. (5.41)
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From the definition of |y| together with (5.40) it follows that, as ε Ó 0, the expression
in (5.41) converges to

lim
εÓ0

uε |y| “
4

π2

ż 8

0

ż 8

0

yy˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1

dt1 dt2

(like in (5.23))

“
ż 8

0

yy˚y pρe ` y˚yq´2 dρ

“ lim
εÓ0

lim
RÑ8

yy˚y
␣

pεe ` y˚yq´1 ´ pRe ` y˚yq´1
(

“ lim
εÓ0

␣

y ´ εy pεe ` y˚yq´1
(

“ y. (5.42)

The final equality in (5.42) follows from the estimate:

›

›εy pεe ` y˚yq´1
›

›

2 “ ε2
›

›pεe ` y˚yq´1 y˚y pεe ` y˚yq´1
›

› ď sup
λą0

ε2λ

pε ` λq2
“

ε

4
. (5.43)

The proof of the equality limεÓ0 u
˚
ε |y˚| “ y˚ is exactly the same with the roles of y

and y˚ interchanged. This proves assertion (3).

(4) We have the equalities

u˚
εuε |y| “

4

π2

ż 8

ε

ż 8

ε

y˚ `

t21e ` yy˚˘´1
y

`

t22e ` y˚y
˘´1 |y| dt1 dt2

“
4

π2

ż 8

ε

ż 8

ε

y˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1 |y| dt1 dt2

“
4

π2

ż 8

ε

ż 8

ε

|y| y˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1

dt1 dt2. (5.44)

In (5.44) we let ε Ó 0 to obtain:

lim
εÓ0

u˚
εuε |y| “

4

π2

ż 8

0

ż 8

0

|y| y˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1

dt1 dt2

“
ż 8

0

|y| y˚y pρe ` y˚yq´2 dρ

“ lim
εÓ0

lim
RÑ8

|y| y˚y
␣

pεe ` y˚yq´1 ´ pRe ` y˚yq´1
(

“ |y| , (5.45)

where in the final we employed the equality:

lim
εÓ0

ε |y| pεe ` y˚yq´1 “ 0. (5.46)

The equality in (5.46) follows because

›

›ε |y| pεe ` y˚yq´1
›

› ď sup
λą0

ελ

ε ` λ2
“

1

2

?
ε. (5.47)
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In order to show that the first equality in (5.45) is valid it suffices to prove that

lim
εÓ0

4

π2

ż 8

ε

ż ε

0

|y| y˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1

dt1 dt2 “ 0. (5.48)

The first equality in (5.45) follows from the following estimates:
›

›

›

›

ż 8

ε

ż ε

0

|y| y˚y
`

t21e ` y˚y
˘´1 `

t22e ` y˚y
˘´1

dt1 dt2

›

›

›

›

ď sup
λą0

ż 8

ε

ż ε

0

λ3

pt21 ` λ2q pt22 ` λ2q
dt1 dt2

“ sup
λą0

λ arctan

ˆ

λ

ε

˙

arctan
´ ε

λ

¯

ď
π

2
ε. (5.49)

By interchanging the roles of y and y˚ the equality limεÓ0 uεu
˚
ε |y˚| “ |y˚| is obtained.

This completes the proof of assertion (4), and also of Theorem 5.19. �
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1.4. On Gelfand transforms. Let A be a commutative Banach algebra with
identity e. In the following theorem ∆A stands for the collection of all non-zero
complex homomorphisms. Let h P ∆A. Then we know that |hpxq| ď }x}, x P A: see
the beginning of Section 1. In other words ∆A is a weak˚-closed subset of the closed
dual unit ball. Equipped with the relative weak˚-topology the set ∆A is a compact
Hausdorff space. To every x P A we can assign a continuous function px : ∆A Ñ C
such that

pxphq “ hpxq, h P ∆A. (5.50)

Again, let h P ∆A. It also follows that

|h pxq|n “ |h pxnq| ď }xn} ,

and so |hpxq| ď ρpxq, x P A. In other words

sup
hP∆A

|pxphq| “ sup
hP∆A

|hpxq| ď ρpxq.

Next let x P A, and let λ P σpxq. Then the ideal pλe ´ xqA is contained in a
proper maximal ideal M . From Corollary 5.6 it follows that there exists a complex
homomorphism h : A Ñ C such that hpyq “ 0 for all y P M . Then λ “ hpxq.
Conversely, if x P A, and if h P ∆A, then hpxqe ´ x belongs to null-space of h, and
hence hpx| P σpxq.

5.21. Definition. The space ∆A equipped with the (relative) weak˚-topology is
called the maximal ideal space of the commutative Banach algebra A. The transform
x ÞÑ px is called the Gelfand transform of x P A.

Some of the results of in the following theorem follow from the previous discussions.

5.22. Theorem. Let ∆A be the maximal ideal space of a Banach algebra A. Then
the following assertions hold true.

(a) ∆A is a compact Hausdorff space.
(b) The Gelfand transform is an algebra homomorphism of A onto a subalgebra

pA of C p∆Aq. Its kernel is RadpAq, the radical of A, i.e. the intersection of
all its maximal ideals.

(c) For each x P A, the range of px is the spectrum σpxq. Hence }px}8 “ ρpxq ď
}x}.

Proof. The Banach-Alaoglu theorem implies that the closed unit ball of A˚

viewed as a complex Banach space is weak˚-compact. Since it is not so difficult to
prove that ∆A is weak˚-closed, it follows that ∆A is compact for the weak‹-topology.
The remarks preceding Definition 5.21 then essentially prove Theorem 5.22. �

The following theorem shows that a commutative C˚-algebra A is ˚-isometric with
C p∆Aq as C˚-algebra (with complex conjugation as involution).
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5.23. Theorem (Theorem of Gelfand-Naimark). Let A e a commutative C˚-algebra
with maximal ideal space ∆A. The Gelfand transform is then an isometric isomor-
phism of A onto C p∆Aq, with the additional property that

xx˚phq “ pxphq “ hpxq, x P A, h P ∆A. (5.51)

In addition, if u P A is positive, then pu ě 0.

Proof. Let h P ∆A and u “ u˚ P A. Let hpuq “ α ` iβ with α, β P R. Then,
since hpeq “ }h} “ 1, we have,

α2 ` pβ ` tq2 “ |h pu ` iteq|2 ď }u ` ite}2 “
›

›u2 ` t2e
›

› ď
›

›u2
›

› ` t2. (5.52)

From (5.52) it follows that α2 ` β2 ` 2βt ď }u2}, t P R, and hence β “ 0. Hence we
have hpuq “ α P R. If x P A is arbitrary, then we write x “ u ` iv with u “ u˚ and
v “ v˚. Then h px˚q “ h pu ´ ivq “ hpuq´ihpvq “ hpuq ` ihpvq “ h pu ` ivq “ hpxq.
This proves the equalities in (5.51). Next we will show that the Gelfand transform
is isometric. To this end we pick x P A and consider

}px}28 “ sup
!

pxphqpxphq : h P ∆A

)

“ sup
!

yx˚xphq : h P ∆A

)

“ ρ px˚xq “ lim
nÑ8

›

›

›
px˚xq2

n
›

›

›

2´n

“ }x˚x} “ }x}2 . (5.53)

The equalities in (5.53) show }px}8 “ }x}, x P A. The Stone-Weierstrass theorem

entails that the space pA :“ tpx : x P Au is dense in C p∆Aq. Let f P C p∆Aq. Then
there exists a sequence pxnqn Ă A such that lim

nÑ8
}f ´ pxn}8 “ 0. Since }xn ´ xm} “

}pxn ´ pxm}8, it follows that pxnqn is a Cauchy sequence in A. The algebra A being
complete implies that there exists x P A such that x “ lim

nÑ8
xn. It is the easy to see

that f “ px.

From assertion (c) of Theorem 5.22 it follows that the range of pu coincides with σpuq.
Since, by hypothesis, σpuq is contained in r0,8q, the final conclusion in Theorem
5.23 follows. �
5.24. Proposition. Let A be a C˚-algebra generated by x and x˚ and the iden-
tity. Suppose that x and x˚ commute; i.e. xx˚ “ x˚x. Define the mapping

Ψ : C pσpxqq Ñ A via the identity zΨpfqphq “ f phpxqq, h P △A. If f is holomorphic

on a neighborhood Ω of σpxq, then Ψpfq “ rfpxq.

Proof. Let Γ be a closed curve which surrounds σpxq in Ω. If h belongs to △A,
then by Cauchy’s theorem we have

h pΨpfqq “ zΨpfqphq “ fphpxqq “
1

2πi

ż

Γ

fpλq pλ ´ hpxqq´1 dλ

(h is a continuous complex-valued homomorphis of algebras)

“ h

ˆ

1

2πi

ż

Γ

fpλq pλe ´ xq´1 dλ

˙

“ h
´

rfpxq
¯

,
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and hence the Gelfand transform of the element Ψpfq ´ rfpxq is identically 0. The
mapping y ÞÑ py is a C˚-algebra isomorphism from A onto C p△q, and consequently

Ψpfq ´ rfpxq “ 0. The proof of Proposition 5.24 is now complete. �

5.25. Proposition. Let G1 be the connected component of G “ G pAq containing
the identity e. Then G1 “

Ť

nPN texp px1q ¨ ¨ ¨ exp pxnq : xj P A, 1 ď j ď nu.

Proof. Put Γ “
Ť

nPN texp px1q ¨ ¨ ¨ exp pxnq : xj P A, 1 ď j ď nu. Then

Γ Ě texppxq : x P Au Ě ty P A : σpyq Ă Cz p´8, 0su .

In other words the subset Γ contains an open neighborhood of the identity e. Next
let y be an arbitrary element in Γ. Then the subset

␣

z P G : σ
`

y´1z
˘

Ă Cz p´8, 0s
(

is an open subset of Γ. If σ py´1zq Ă Cz p´8, 0s, then, by symbolic calculus, y´1z “
exppxq for some x P A, and hence z P Γ. In fact x can be defined by

x “
ż 1

0

`

p1 ´ ρq e ` ρy´1z
˘´1 `

y´1z ´ e
˘

dρ “
ż 1

0

pp1 ´ ρq y ` ρzq´1 pz ´ yq dρ.

(5.54)
The equality exppxq “ y´1z follows because, with

ż 1

0

λ ´ 1

1 ´ ρ ` ρλ
dρ “

ż λ

1

1

z
dz “ log λ, λ P Czp´8, 0s,

we have λ “ exp plog λq, so that y´1z “ exppxq. Moreover the set
␣

z P G : σ
`

y´1z
˘

Ă Cz p´8, 0s
(

“ y tw P G : σ pwq Ă Cz p´8, 0su

is an open subset of Γ. It follows that Γ is an open subgroup of G. Consequently,
G1 “

Ť

xPG1
xΓ, where each coset xΓ, x P G1, is open. Since G1 is open and

connected it follows that G1 “ Γ. This completes the proof of Proposition 5.24. �
5.26. Corollary. Let x belong to GpAq, and let x1, . . . , xn be elements in A. Since
the curve t ÞÑ x exp ptx1q ¨ ¨ ¨ exp ptxnqx´1, 0 ď t ď 1, connects the element e with
x exp px1q ¨ ¨ ¨ exp pxnqx´1, it follows that x exp px1q ¨ ¨ ¨ exp pxnqx´1 belongs to G1 “
Γ and thus can be written as a product of finitely many exponentials.

1.5. Resolution of the identity. The following definition will be employed
with Ω a compact or locally compact Hausdorff space with Borel field. It introduces
the reader to the concept of resolution of the identity. In case the resolution of the
identity pertains to a single self-adjoint or normal operator T “

ş

σpT q λ dET pλq, then
we also say that ET p¨q is the spectral decomposition of T .

5.27. Definition. Let B “ BS be the Borel field of a topological Hausdorff space
S, and let H be a complex Hilbert space with space of bounded linear operators
LpHq. A resolution of the identity on B is a mapping E : B Ñ L pHq with the
following properties:
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(a) E pHq “ 0, EpSq “ I;
(b) Each EpBq, B P B, is a self-adjoint projection;
(c) E pB1 X B2q “ E pB1qE pB2q, B1, B ´ 2 P B;
(d) If B1 and B2 in B are such that B1XB2 “ H, then E pB1 Y B2q “ E pB1q`

E pB2q;
(e) For every x P H and y P H the set function B ÞÑ Ex,ypBq “ ⟨EpBqx, y⟩,

B P B, is a complex Borel measure on B.

Let B ÞÑ EpBq, B P B, be a resolution of the identity. It then follows that for every
x P H the set function B ÞÑ EpBqx is an H-valued measure, which implies that

lim
nÑ8

n
ÿ

j“1

E pBjq x “ E
`

Y8
j“1Bj

˘

x,

whenever the sequence pBjqj Ă B is mutually disjoint, that is Bj1 X Bj2 “ H if
j1 ‰ j2.

5.28. Theorem. Let A be commutative C˚-algebra of continuous linear operators

on a Hilbert space H. Then there exists a (unique) resolution of the identity pE on
the Borel field of the maximal ideal space ∆A with the property that

⟨Tx, y⟩ “
ż

∆A

pT d pEx,y, (5.55)

where pEx,ypBq “
⟨

pEpBqx, y
⟩
, x, y P H.
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The equality in (5.55) is often written as T “
ş

pT d pE.

Proof. A proof is based on the Riesz representation theorem. For x, y P H we

consider the linear functional Λx,y : pT ÞÑ ⟨Tx, y⟩, pT P C p∆Aq. Then
ˇ

ˇ

ˇ
Λx,y

´

pT
¯ˇ

ˇ

ˇ
ď

›

›

›

pT
›

›

›

8
}x} }y} , pT P C p∆Aq . (5.56)

Since, by Theorem 5.23,
!

pT : T P A
)

“ pA “ C p∆Aq the functional Λx,y is every-

where defined, and by (5.56) it is continuous, so that by the Riesz representation

theorem there exists a complex measure pEx,y on the Borel field of ∆A such that

⟨Tx, y⟩ “
ż

∆A

pT pEx,y, T P A. (5.57)

The representation in (5.57) holds for all x, y P H, and for all T P A. Then it

can be proved that there exists a resolution of the identity pE such that pEx,ypBq “⟨
pEpBqx, y

⟩
, x, y P H, B Borel subset of ∆A. This completes an outline of the proof

of Theorem 5.28. �
5.29. Corollary. Let A and pE be as in Theorem 5.28, and let T P A. Then define
the resolution of the identity B ÞÑ ET pBq, B a Borel subset of C, by ET pBq “
pE

”

pT P B
ı

, B Borel subset of C. Let f : σpT q Ñ C be a bounded Borel function.

Then
ż

∆A

f ˝ pT d pE “
ż

σpT q
fpλq dET pλq (5.58)

in the sense that
ż

∆A

f ˝ pT d pEx,y “
ż

σpT q
fpλq dET,x,ypλq (5.59)

where ET,x,ypBq “ ⟨ET pBqx, y⟩, x, y P H. In particular, when fpλq “ λ, λ P σpT q,
the equality

T “
ż

σpT q
λ dET pλq “

ż

C
λ dET pλq

holds.

Let L8 `

σpT q,BσpT q, ET

˘

be the space of all complex bounded Borel functions on C
where two Borel functions f1, f2 are identified whenever ET rf1 ‰ f2s “ 0. Corollary
5.29 yields the existence of a symbolic calculus for bounded normal operators. In
other words the mapping ΦT : L8 `

σpT q,BσpT q, ET

˘

Ñ L pHq, defined by

ΦT pfq “
ż

σpT q
fpλq dET pλq, f P L8 `

σpT q,BσpT q, ET

˘

,

defines a symbolic calculus in the sense that ΦT pfgq “ ΦT pfqΦT pgq, ΦT pfq “
ΦT pfq˚, f, g P L8 `

σpT q,BσpT q, ET

˘

. Moreover, fpλq “ λ yields ΦT pfq “ T . Often
ΦT pfq is written as f pT q.
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If U “ T P A happens to unitary, that is if U˚U “ UU˚, then from Theorem 5.28 it

follows that U can be written in the form U “
ş

σpUq λ dE
p1q
U pλ. However, we write

U “
ż π

´π

eiϑ dEUpϑq. (5.60)

Here EUpBq, B Borel subset of r´π, πs, is defined by

EUpBq “ E
p1q
U tλ P C : arg pλq P Bu .

The argument of a complex number is counted between ´π (excluded) and π (in-
cluded).

Let f : C Ñ C be a Borel measurable function. If pDjqj be a sequence of open

subsets of C with the property that ET rf´1 pDjqs “ ET rf P Djs “ 0, for j P N.
Then we have, for x P H arbitrary,

ET,x,x

“

f´1
`

Y8
j“1Dj

˘‰

ď
8
ÿ

j“1

ET,x,x

“

f´1 pDjq
‰

“ 0.

It follows that there exists a largest open subset V of C such that ET rf P V s “
ET rf´1 pV qs “ 0. The complement of V is called the ET -essential range of the
function f . The following theorem shows that the spectrum of f pT q is contained
in the ET -essential range of f . A Borel function g : C Ñ C is called ET -essentially
bounded if there exists a finite constant M such that the essential range is contained
in a disc with radius M . This is equivalent to saying that, for some finite constant
M , ET r|f | ą M s “ 0.

5.30.Theorem. Let T “
ş

σpT q λ dET pλq be a (bounded) normal operator on a Hilbert

space H, and let f : C Ñ C be a Borel measurable function. Then the spectrum
of fpT q “

ş

σpT q fpλq dET pλq is contained in the ET -essential range of f . If f is

continuous, then σ pfpT qq “ f pσpT qq.

Proof. Let α belong to the complement of the ET -essential range of the function

f . Then the function g : λ ÞÑ
1

α ´ fpλq
, λ P C, is ET -essentially bounded. It follows

that 1 “ pα ´ fpλqq gpλq, and so by symbolic calculus

I “
ż

σpT q
gpλq dET pλq

ˆ

αI ´
ż

σpT q
fpλq dET pλq

˙

“
ˆ

αI ´
ż

σpT q
fpλq dET pλq

˙
ż

σpT q
gpλq dET pλq. (5.61)

From (5.61) it follows that the operator αI ´ fpT q has a bounded inverse gpT q.
Consequently, α does not belong to the spectrum of fpT q. This shows that the com-
plement of the ET -essential range is contained in the complement of the spectrum of
fpT q. In other words, the spectrum of fpT q is contained in the ET -essential range of
f . This proves the first part of the theorem. Next let f : σpT q Ñ C be continuous,
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and let α P C. Then, sice f pσpT qq is compact, the function
1

α ´ f
is bounded (on

σpT q if and only if α R f pσpT qq. Like above it follows that α P σ pfpT qq if and only
if α P f pσpT qq. This completes the proof of Theorem 5.30. �
5.31.Theorem. Let T “ T ˚ be a not necessarily bounded linear self-adjoint operator
with domain and range in the Hilbert space H. Then there exists a resolution of the
identity ET p¨q on the Borel field of R such that Tx “

ş

R λ dET pλqx, x P DpT q. In
fact x P H belongs to DpT q if and only if

ş

R λ
2d ⟨ET pλqx, x⟩ ă 8.

As in the remarks following Corollary 5.29 the equality Tx “
ş

R λ dET pλqx, x P
DpT q, yields a symbolic calculus, by writing fpT qx “

ş

R fpλq dET pλqx, x P H,
whenever f : R Ñ C, is a bounded Borel function. Again we have pfgq pT q “
fpT qgpT q, and fpT q “ fpT q˚, for all complex bounded Borel functions f and g
defined on R.

Outline of a proof. Let U be the unitary operator defined by the Cayley
transform:

U “ pI ` iT q pI ´ iT q´1 .

Then
T “ i pI ´ Uq pI ` Uq´1 .
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Let EUp¨q be the resolution of the identity, or the spectral decomposition, corre-
sponding to U , i.e. U “

şπ

´π
eiϑdEUpϑq. Define the resolution of the identity ET p¨q,

which hopefully corresponds to T , by the equality

ET pBq “ EU

„

ϑ P p´π, πs : tan
1

2
ϑ P B

ȷ

, (5.62)

where B is a Borel subset of R. Let f : R Ñ C be a Borel measurable function, and
let x P H be such that

ż π

´π

ˇ

ˇ

ˇ

ˇ

f

ˆ

tan
1

2
ϑ

˙ˇ

ˇ

ˇ

ˇ

2

d ⟨EUpϑqx, x⟩ ă 8.

Then we have
ż

R
fpλq dET pλqx “

ż π

´π

f

ˆ

tan
1

2
ϑ

˙

dEUpϑqx. (5.63)

In (5.63) we insert fpλq “ λ and choose x P H such that

ż π

´π

ˇ

ˇ

ˇ

ˇ

tan

ˆ

1

2
ϑ

˙ˇ

ˇ

ˇ

ˇ

2

d ⟨EUpϑqx, x⟩ ă 8.

Then we deduce
ż

R
λ dET pλqx “

ż π

´π

tan

ˆ

1

2
ϑ

˙

dEUpϑqx “
ż π

´π

eiϑ ´ 1

i peiϑ ` 1q
dEUpϑqx

“
ż π

´π

i
`

1 ´ eiϑ
˘

1 ` eiϑ
dEUpϑqx “ i pI ´ Uq pI ` Uq´1 x “ Tx. (5.64)

The equality in (5.64) shows the equality Tx “
ş

R λ dET pλqx, x P DpT q. This
completes an outline of the proof of Theorem 5.31. �

In the context of self-adjoint operators T we have the following version of the spectral
mapping theorem.

5.32. Theorem. Let T “
ş

σpT q λ dET pλq be a self-adjoint operator with domain and

range in a Hilbert space H, and let f : R Ñ C be a Borel measurable function. Then
the spectrum of fpT q “

ş

σpT q fpλq dET pλq is contained in the ET -essential range of

f . If f : σpT q Ñ C is continuous, then σ pfpT qq is contained in the closure of
f pσpT qq.

Proof. The first part of the proof follows in exactly the same manner as in the
proof of Theorem 5.30. If f : σpT q Ñ C is continuous, and if α P C does not belong

to the closure of f pσpT qq, then the function g :“
1

α ´ f
is bounded on σpT q. By

symbolic calculus it follows that the function gpT q is a bounded inverse of αI´fpT q.
Consequently, such α P C does not belong to spectrum of fpT q. This proves the
second part of the theorem, and completes the proof of Theorem 5.32. �
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A densely defined closed linear operator T is called normal if D pT q “ D pT ˚q and
if T ˚T “ TT ˚. The following theorem establishes a spectral decomposition for a
normal operator T with domain and range in the Hilbert space H.

5.33. Theorem. Let T be a normal operator with domain and range in the Hilbert
space H. Then there exists a resolution of the identity ET p¨q pertaining to T such
that T “

ş

C λ dET pλq. In fact a vector x P H belongs to DpT q “ D pT ˚q if and only

if
ş

C |λ|2 d ⟨ET pλqx, x⟩ ă 8.

Outline of a proof. The operator T admits a polar decomposition of the
form T “ U |T |. Here we may assume that U is unitary, that |T | ě 0, and that U
and |T | commute: U |T | “ |T |U . The polar decomposition is explained in Theorem
5.41. In fact the operator U in Theorem 5.41 is only a partial isometry. However,
in case T is normal we have N pT ˚q “ N pT q, and we may assume that Uy “ y
if Ty “ T ˚y “ 0. In addition, the closure of the range of T ˚ is the same as the
closure of the range of T . It follows that the partial isometry U which possesses the
property that U˚U is the orthogonal projection on the closure of the range of T ˚

can be considered as a unitary operator. For details see Corollary 5.42. From the
construction of U it follows that it commutes with |T |. The operator U admits a
resolution of the identity EUp¨q: see (5.60). So we have U “

şπ

´π
eiϑ dEUpϑq. The

operator |T | is self-adjoint and positive. So by Theorem 5.31 there exists a resolution
of the identity E|T |p¨q such that |T | “

ş8
0
t dE|T |ptq. The resolutions of the identities

EUp¨q and E|T |p¨q commute in the sense that EU pB1qE|T | pB2q “ E|T | pB2qEU pB1q,
whenever B1 is a Borel subset of the interval r´π, πs, and B2 is a Borel subset of
r0,8q. For the latter see Lemma 5.34. Define the resolution of the identity ET p¨q
on the Borel field of C by

ET pBq “ EU b E|T |
“

pϑ, tq P p´π, πs ˆ r0,8q : λ “ teiϑ P B
‰

.

Then T “
ş

C λ dET pλqptq, and x P DpT q if and only if
ş

C |λ|2 d ⟨ET pλqx, x⟩ ă 8.
This completes an outline of the proof of Theorem 5.33. �

5.34. Lemma. Let T be a densely defined normal operator on a Hilbert space H.
Let T “ U |T | be its polar decomposition where the operator U is supposed to be
unitary. Let EUp¨q be the resolution of the identity corresponding to U , and let
E|T |p¨q be the resolution of the identity corresponding to |T |. Let B1 be a Borel
subset of the interval r´π, πs, and let B2 be a Borel subset of r0,8q. Then the
equality EU pB1qE|T | pB2q “ E|T | pB2qEU pB1q. In other words the resolutions of the
identity EUp¨q and E|T |p¨q commute.

Proof. From the constructions of U and |T | it follows that U |T | “ |T |U : see
the proof of Theorem 5.41. Then it also follows that U˚ |T | “ |T |U˚: see Corollary
5.42. The operator |T | is closed, and has dense domain. Let µ P C be such that
ℜµ ě 0, and let λ ą 0. Then R pλI ` µ |T |q “ H, and the following inequality holds
for all x P D p|T |q:

}λx ` µ |T | pxq} ě λ }x} .
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From the Lumer-Phillips theorem it follows that ´µ |T | generates a contraction
semigroup

␣

e´tµ|T | : t ě 0
(

: see Theorem 6.13. Moreover, from the way Theorem

6.13 is proved we infer that the operators U and e´tµ|T |, t ě 0, commute, and that
the same is true for U˚ and e´tµ|T |, t ě 0. Since µ is arbitrary in the closed right-half
plane, we deduce that

p pU˚, Uq e´µ|T | “ e´µ|T |p pU˚, Uq , ℜµ ě 0, (5.65)

where p
`

λ, λ
˘

is a polynomial in two variables. By a standard approximation pro-
cedure and using the Stone-Weierstrass theorem the equality in (5.65) implies an
equality of the form:

ż π

´π

f
`

eiϑ
˘

dEUpϑq
ż 8

0

gptq dE|T |ptq “
ż 8

0

gptq dE|T |ptq
ż π

´π

f
`

eiϑ
˘

dEUpϑq, (5.66)

where f is any continuous function on the unit circle in C, and where g is any
function in C0r0,8q. In fact the equality in (5.66) is first proved for gptq of the
form gptq “

ş

R e
´iξtφpξq dξ where φ is an arbitrary function in L1 pRq. By another

limiting procedure the equality in (5.66) also holds if f and g are indicator functions
of open and compact subsets of the unit circle and the positive half-axis respectively.
But then it is also true for indicator functions of Borel subsets. However, the latter
is the same as saying that the resolutions of the identity EUp¨q and E|T |p¨q commute.
This completes the proof of Lemma 5.34. �
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In the context of (unbounded) normal operators T we have the following version of
the spectral mapping theorem.

5.35. Theorem. Let T “
ş

σpT q λ dET pλq be a normal operator with domain and

range in a Hilbert space H, and let f : C Ñ C be a Borel measurable function.
Then the spectrum of fpT q “

ş

σpT q fpλq dET pλq is contained in the ET -essential

range of f . If f : σpT q Ñ C is continuous, then σ pfpT qq is contained in the closure
of f pσpT qq.

The proof of Theorem 5.35 follows exactly the same pattern as that of Theorem
5.32. Therefore it is omitted.

5.36. Theorem. Let T “
ş

λ dEpλq be a self-adjoint (bounded or unbounded) oper-
ator in a Hilbert space H. Then, for ´8 ă a ă b ă 8,

lim
εÓ0

1

2πi

ż b

a

␣

ppτ ´ iεq I ´ T q´1 ´ ppτ ` iεq I ´ T q´1
(

fdτ

“ E pa, bq f `
1

2
E tau f `

1

2
E tbu f “ E pa, bs f `

1

2
E tau f ´

1

2
E tbu f, f P H.

As a corollary to the previous theorem we see that spectral decompositions cor-
responding to a self-adjoint operator are unique. Observe that Etau ‰ 0 implies
that Etau is the orthogonal projection onto the subspace consisting of those vectors
which are eigenvectors of the operator T corresponding to the eigenvalue a.

Proof. Fix ε ą 0 and f P H. Then the following equalities are self-explanatory:

1

2πi

ż b

a

␣

ppτ ´ iεq I ´ T q´1 ´ ppτ ` iεq I ´ T q´1
(

fdτ

“
1

2πi

ż b

a

2iε
`

ε2I ` pτI ´ T q2
˘´1

fdτ

“
1

2πi

ż b

a

ż

2iε
`

ε2 ` pτ ´ λq2
˘´1

dE pλq fdτ

(apply Fubini’s theorem)

“
1

2πi

ż ż b

a

2iε
`

ε2 ` pτ ´ λq2
˘´1

dτdE pλq f

(substitute τ ´ λ “ εσ)

“
1

π

ż ż pb´λq{ε

pa´λq{ε

1

1 ` σ2
dσ dEpλqf

“
1

π

ż
ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f

“
1

π

ż

p´8,aq

ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f
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`
1

π

ż

tau

ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f

`
1

π

ż

pa,bq

ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f

`
1

π

ż

tbu

ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f

`
1

π

ż

pb,8q

ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f

“
1

π

ż

p´8,aq

ˆ

arctan
b ´ λ

ε
´ arctan

a ´ λ

ε

˙

dE pλq f

`
1

π

ˆ

arctan
b ´ a

ε

˙

E ptauq f

`
1

π

ż

pa,bq

ˆ

arctan
b ´ λ

ε
` arctan

λ ´ a

ε

˙

dE pλq f

`
1

π

ˆ

arctan
b ´ a

ε

˙

E ptbuq f

`
1

π

ż

pb,8q

ˆ

arctan
λ ´ a

ε
´ arctan

λ ´ b

ε

˙

dE pλq f. (5.67)

In (5.67) we let ε tend to 0 from to obtain the result in Theorem 5.36.

Notice that lim
εÓ0

arctan
´c

ε

¯

“
π

2
whenever c ą 0. �

5.37. Theorem. Let T P LpHq be a normal operator, and let the C˚-algebra A
be generated by the operator T and I. Then A contains T ˚ and A is a commu-
tative C˚-subalgebra of LpHq. Moreover, there exists a resolution of the identity
E defined on the σ-field BσpT q consisting of all Borel subsets of σpT q such that
rfpT q “

ş

σpT q fpλqdEpλq for all functions f which are holomorphic in a neighbor-

hood of σpT q. In particular it follows that T “
ş

σpT q λdEpλq. Moreover an operator

S0 P LpHq commutes with T if and only it commutes with EpBq for all Borel subsets
B of σpT q.

Proof. Following Theorem 12.22 in Rudin’s book there exists a resolution of

the identity pE defined on the Borel field of the maximal ideal space △A of A such

that S “
ş

△A

pSd pE for all S P A. Let φ : △A Ñ σpT q be the identification of △A

and σpT q given by φphq “ hpT q “ pT phq, h P △A. Then φ is a homeomorphism from
the compact set △A onto the compact set σpT q. For every x, y P H we define the
image measure Ex,y under φ on BσpT q, i.e.

Ex,ypBq “ pEx,y rφ P Bs “
ż

1B ˝ φd pEx,y, E P BσpT q,
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and define EpBq by the equality ⟨EpBqx, y⟩ “ Ex,ypBq, x, y P H. Then Ep¨q
is resolution of the identity defined on BσpT q. Moreover, for f a bounded Borel
function defined on σpT q we have

⟨
ˆ

ż

σpT q
fpλqEpdλq

˙

x, y

⟩
“

ż

σpT q
fpλq ⟨Epdλqx, y⟩

“
ż

△A

f ˝ φd pEx,y “
⟨

ˆ
ż

△A

f ˝ φd pE

˙

x, y

⟩
,

or what is the same
ş

σpT q fpλqEpdλq “
ş

△A
f ˝φd pE “

ş

△A
f

´

pT
¯

d pE. In addition, let

f be a function which is holomorphic in a neighborhood of σpT q. Let Γ de a contour
that surrounds σpT q in an open neighborhood of σpT q on which f is holomorphic.
Then by Cauchy’s formula we have⟨

ż

σpT q
fpλqEpdλqx, y

⟩
“

⟨
ż

△A

f
´

pT
¯

d pEx, y

⟩

“
ż

△A

f
´

pT
¯

d pEx,y “
ż

△A

1

2πi

ż

Γ

f pλq
´

λ ´ pT
¯´1

dλ d pEx,y

“
ż

△A

{1

2πi

ż

Γ

f pλq pλI ´ T q´1 dλ d pEx,y

“
ż

△A

p

rfpT q d pEx,y “
⟨

rfpT qx, y
⟩
,

and so
ş

σpT q fpλqEpdλq “ rfpT q.
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Finally, let S0 P LpHq be such that S0T “ TS0. Then by the Theorem of Fuglede-
Putnam-Rosenblum we see that S0T

˚ “ T ˚S0, and hence S0p pT, T ˚q “ p pT, T ˚qS0

for all complex polynomials p
`

λ, λ
˘

. Since the polynomials p pT, T ˚q are dense in A
it follows that S0S “ SS0 for all S P A. Then Theorem 12.22 in Rudin’s book [113]
implies that S0EpBq “ EpBqS0 for all B P BσpT q. Conversely, if S0EpBq “ EpBqS0

for all B P BσpT q, then

S0p pT, T ˚q “ S0

ż

σpT q
p

`

λ, λ
˘

Epdλq “
ż

σpT q
p

`

λ, λ
˘

EpdλqS0 “ p pT, T ˚qS0.

This completes the proof of Theorem 5.37. �

The theorem of Fuglede-Putnam-Rosenblum can be formulated as follows. Recall
that an operator M is called normal whenever M˚M “ MM˚. If an operator M
is normal, then the operator U :“ eM

˚
e´M “ eM

˚´M is unitary in the sense that
U˚U “ UU˚ “ I, and so }U}2 “ }U˚U} “ 1.

5.38. Theorem. Let M and N be bounded normal operators on a Hilbert space H.
Let T : H Ñ H be a bounded linear operator with the intertwining property, i.e.
MT “ TN . Then M˚T “ TN˚.

Proof. Consider the operator valued analytic function

f : λ ÞÑ eλM
˚
Te´λN˚ “ eλM

˚
e´λMTeλNe´λN˚ “ eλM

˚´λMTeλN´λN˚
(5.68)

where in the first equality we used the intertwining property of the operator T , and
in the second one the normality of the operators M and N . As observed above the

operators eλM
˚´λM and eλN

˚´λN , λ P C, are unitary. By (5.68) it follows that the
operator norm of the function f can be estimated as follows:

}fpλq} ď
›

›

›
eλM

˚´λM
›

›

›
}T }

›

›

›
eλN

˚´λN
›

›

›
“ }T } . (5.69)

From (5.69) we see that the everywhere defined analytic function λ ÞÑ fpλq is
bounded. Liouville’s theorem then implies that fpλq “ fp0q “ T , and hence
eλM

˚
T “ TeλN , λ P C. Consequently, by taking derivatives we obtain M˚T “ TN˚.

This completes the proof of Theorem 5.38. �

2. Closed linear operators

Throughout this section H stands for a complex Hilbert space with inner-product
⟨¨, ¨⟩, and norm }x}2 “ ⟨x, x⟩. Let T : H Ñ H be a closed linear operator withe dense
domain DpT q Ă H and range RpT q Ă H. Its graph GpT q is a closed linear subspace
of the product Hilbert space H ˆ H, i.e. GpT q “ tpx, Txq : x P DpT qu. Its adjoint
T ˚ is a linear operator with domain D pT ˚q and range R pT ˚q in H. Its domain
D pT ˚q consists of those vectors y P H for which the linear functional x ÞÑ ⟨Tx, y⟩,
x P DpT q, is a continuous linear function on H. By the Riesz-Fischer representation
theorem there exists, for a given vector y P D pT ˚q a vector z “ T ˚y P H such that

⟨Tx, y⟩ “ ⟨x, z⟩ “ ⟨x, T ˚y⟩ , for all x P DpT q.
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Since DpT q is dense the vector z is unique, and therefore we are entitled to write
z “ T ˚y. Moreover, the mapping y ÞÑ T ˚y, y P D pT ˚q, is linear. Its graph G pT ˚q “
tpy, T ˚yq : y P D pT ˚qu is a closed linear subspace of H ˆ H. Let the operator
V : H ˆH Ñ H ˆH by the (unitary) anti-flip operator: V px, yq “ p´y, xq, px, yq P
H ˆH. In addition write Q “ I ` T ˚T , so that DpQq “ tx P DpT q : Tx P D pT ˚qu.
A densely defined operator T is called symmetric if T Ă T ˚. The latter means
that for all x, y P DpT q the equality ⟨Tx, y⟩ “ ⟨x, Ty⟩ holds. It also means that
GpT q Ă G pT ˚q. If T “ T ˚, then T is called self-adjoint. A linear operator T with
domain and range in H is called positive, denoted by T ě 0, if ⟨Tx, x⟩ ě 0 for all
x P DpT q. If T is positive, then ⟨x, Tx⟩ “ ⟨Tx, x⟩, x P DpT q. By the polarization
formula we see ⟨Tx, y⟩ “ ⟨x, Ty⟩, x, y P DpT q. Consequently, such operators are
symmetric. If, in addition, DpT q is dense in H and closed, then T ˚ exists, and
T “ T ˚˚ Ă T ˚. The equality T “ T ˚˚ follows from assertion (2) and (4) in Theorem
5.39 below.

In the following theorem we collect some properties of closed densely defined oper-
ators.

5.39. Theorem. Let T be a closed densely defined linear operator with domain and
range in the Hilbert space H. The following assertions hold true.

(1) The space H admits the orthogonal decomposition: H “ N pT ˚q ‘ R pT q.
(2) The space HˆH with its natural Hilbert space structure admits the orthogo-

nal decomposition: HˆH “ V GpT q‘G pT ˚q, and hence G pT ˚q “ V GpT qK.
(3) Let the vectors a and b belong to H. Then the system of equations ´Tx`y “

a, x ` T ˚y “ b has a unique solution with x P DpT q and y P D pT ˚q.
(4) The domain of T ˚ is dense, T ˚˚ exists and coincides with T ;
(5) The operator Q is a one-to-one mapping from DpQq onto H, it satisfies

Q ě I, and there are bounded linear operators B and C that satisfy }B} ď 1,
}C} ď 1, C “ TB, and

B pI ` T ˚T q Ă pI ` T ˚T qB “ I.

Moreover, B ě 0, and T ˚T is densely defined and self-adjoint.
(6) If T 1 is the restriction of T to D pT ˚T q, then the closure of G pT 1q in H ˆH

coincides with GpT q. In other words D pT ˚T q is a core for T .

5.40. Proposition. If T “ T ˚ and T ě 0, then σpT q Ă r0,8q.

Proof. Let λ P C be such that ℑλ ‰ 0. Then, from the equalities

}λx ` Tx}2 “ |λ|2 ` 2ℜλ ⟨Tx, x⟩ ` }Tx}2 “ pℑλq2 }x}2 ` }ℜλx ` Tx}2 ,
it follows that

}λx ` Tx} ě |ℑλ| }x} , λ P C, and }λx ` Tx} ě ℜλ }x} , ℜλ ą 0, x P DpT q.
(5.70)

From (5.70) it follows that the range of the operator λI ` T is closed whenever
ℑλ ‰ 0 or ℜλ ą 0. For the same range of values of λ it also follows from (5.70)
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that the null-space of λI ` T is the singleton t0u. By assertion (1) and the fact
the T “ T ˚ we infer that R pλI ´ T q “ H and N pλI ´ T q “ t0u for ℑλ ‰ 0.
Consequently, ℑλ ‰ 0 implies λ Ă CzσpT q. It also follows that R pλI ` T q “ H
and N pλI ` T q “ t0u for ℜλ ą 0. So that ℜλ ą 0 implies ´λ PĂ CzσpT q. This
leads to the conclusion that σpT q Ă r0,8q, and completes the proof of Proposition
5.40. �

An operator T is called essentially self-adjoint if the closure of its graph is again the
graph of an operator T , and if this closure is self-adjoint. Since a densely operator T
is closed if and only if T “ T ˚˚, T is essentially self-adjoint if and only if T ˚˚ “ T ˚.

Proof Theorem 5.39. (1) It is clear that N pT ˚q “ R pT qK. Then it follows
that the subspace N pT ˚q `R pT q is closed in H. We shall prove that it is dense. So
let a P H be such that ⟨x, a⟩ “ 0 for all x P N pT ˚q, and also such that ⟨Ty, a⟩ “ 0
for all y P DpT q. Then a belongs to D pT ˚q and T ˚a “ 0. So a belongs to N pT ˚q.
But then we choose x “ a to obtain that ⟨a, a⟩ “ 0, and so a “ 0. This proves
assertion (1) of Theorem 5.39.

(2) Let px1, y1q and px2, y2q be members of H ˆ H. Then their inner-product, or
scalar product, ⟨px1, y1q , px2, y2q⟩ is defined by

⟨px1, y1q , px2, y2q⟩ “ ⟨x1, x2⟩ ` ⟨y1, y2⟩ .
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So it is easy to see that V GpT q and G pT ˚q are orthogonal subspaces in H ˆH. It is
also easy to see that G pT ˚q is closed in H ˆH, and the same is obvious for V GpT q.
It follows that the space V GpT q ` G pT ˚q is closed in H ˆ H. We shall prove that
it is dense. Let the pair pa, bq P H ˆ H be orthogonal to both subspaces V pGpT qq
and G pT ˚q. It follows that

´ ⟨Tx, a⟩ ` ⟨x, b⟩ “ ⟨p´Tx, xq , pa, bq⟩ “ 0 for all x P DpT q, and
⟨y, a⟩ ` ⟨T ˚y, b⟩ “ ⟨py, T ˚yq , pa, bq⟩ “ 0 for all y P DpT q. (5.71)

From the first equality in (5.71) it follows that a belongs to D pT ˚q and that b “
T ˚a. Plugging this into the second equality in (5.71) and putting y “ a shows
⟨a, a⟩ ` ⟨T ˚a, T ˚a⟩ “ 0, and hence a “ 0. Since b “ T ˚a we see that b “ 0 as well.
This proves assertion (2) of Theorem 5.39.

(3) This assertion easily follows from the decomposition in assertion (2).

(4) If the vector a P H is orthogonal to D pT ˚q, then the vector pa, 0q is orthogonal
to the graph G pT ˚q, and so pa, 0q belongs to V GpT q. That is a “ ´T0 “ 0. Whence
the first part of assertion (4) has been proved. Since D pT ˚q is dense its adjoint T ˚˚

exists. It readily follows that T Ă T ˚˚. By the decomposition in assertion (2) it
follows that T “ T ˚˚. This proves assertion (4) of Theorem 5.39.

(5) Fix h P H and choose operators vectors f P DpT q and g P D pT ˚q such that

p0, hq “ p´Tf, fq ` pg, T ˚gq (5.72)

in the space H ˆ H. The mappings h ÞÑ f and h ÞÑ g are linear; call them B
respectively C. Then TBh “ Ch and h “ Bh ` T ˚Ch “ Bh ` T ˚TBh. In
other words h “ pI ` T ˚T qBh. This means that the operator B is a right inverse of
I`T ˚T . Since, for any h P H, Bh belongs toD pT ˚T q, we also have, for g P D pT ˚T q,

pI ` T ˚T q pg ´ B pI ` T ˚T q gq “ pI ` T ˚T q g ´ pI ` T ˚T qB pI ` T ˚T q g
“ pI ` T ˚T q g ´ pI ` T ˚T q g “ 0,

we infer that the vector g ´ B pI ` T ˚T q g belongs to the null-space of the operator
Q “ I ` T ˚T . Since ⟨Qf, f⟩ ě ⟨f, f⟩, f P DpQq “ D pT ˚T q, it follows that
g “ B pI ` T ˚T q g. In other words the operator B is also a left-inverse of I ` T ˚T .
Since the operator B is everywhere defined and symmetric, it is self-adjoint, and
since NpBq “ t0u it has dense range R pI ` T ˚T q´1 “ D pT ˚T q. It follows that its
inverse is I ` T ˚T is self-adjoint, and that the same is true for T ˚T . From (5.72)
and the definitions of the operators B and C it follows that B “ pI ` T ˚T q´1 and
C “ T pI ` T ˚T q´1, and

p0, hq “ p´Tf, fq ` pg, T ˚q “ p´TBh,Bhq ` pCh, T ˚Chq , (5.73)

and therefore

}h}2 “ }TBh}2 ` }Bh}2 ` }Ch}2 ` }T ˚Ch}2

ě }Bh}2 ` }Ch}2 .
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Whence }Bh}2 ` }Ch}2 ď }h}2. This proves assertion (5).

(6) From the definition of T 1 it follows that

G pT 1q “
␣`

pI ` T ˚T q´1 x, T pI ` T ˚T q´1 x
˘

: x P H
(

Ă GpT q. (5.74)

Assuming that G pT 1q is not dense in the closed subspace GpT q. Then there exists
a pair pa, Taq P GpT q such that

⟨x, a⟩ “
¨
`

pI ` T ˚T q´1 x, T pI ` T ˚T q´1 x
˘

, pa, Taq
∂

“ 0, x P H. (5.75)

Insert x “ a into (5.75) results in a “ 0. Consequently, G pT 1q is dense in GpT q
which is assertion (6).

This completes the proof of Theorem 5.39. �

The following theorem has its analogue in the context of C˚-algebras. The main
result is that a closed linear operator in a Hilbert space can be written in the form
T “ U |T |, where U˚U is an orthogonal projection on the closure of the range of
T ˚T . The theorem is patterned after Theorem 5.19.

5.41. Theorem. Let T be a closed densely defined linear operator in a Hilbert space.
Define the following operators:

Ux “
2

π

ż 8

0

T
`

t2I ` T ˚T
˘´1

x dt, x P H,

|T | pxq “
2

π

ż 8

0

T ˚T
`

t2I ` T ˚T
˘´1

x dt, x P DpT q,

|T ˚| pxq “
2

π

ż 8

0

TT ˚ `

t2I ` TT ˚˘´1
x dt, x P D pT ˚q ,

(5.76)

Then the following assertions hold true:

(1) The operators |T | and |T ˚| are well-defined, positive, have the same domain
as T and T ˚ respectively, and satisfy the following equalities: |T |2 “ T ˚T ,
|T ˚|2 “ TT ˚. These operators are the only self-adjoint positive operators
with these properties.

(2) The operator U is well-defined, it has norm 1, and its adjoint U˚ is given
by

U˚x “
2

π

ż 8

0

T ˚ `

t2e ` TT ˚˘´1
x dt, x P H. (5.77)

(3) The following equalities hold:

U |T | pxq “ Tx, x P DpT q, and U˚ |T ˚| pxq “ T ˚pxq, x P D pT ˚q . (5.78)

(4) The operators U˚U and UU˚ are orthogonal projection on the closures of the
ranges R pT ˚T q and R pTT ˚q respectively. In fact the following equalities
hold:

U˚U |T | pxq “ |T | pxq, x P DpT q, and UU˚ |T ˚| pxq “ |T ˚| pxq, x P D pT ˚q . (5.79)
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Proof. (1) The assertions about the domains of |T | and |T ˚| is a consequence
of the equalities in assertions (3) and (4). The proof of the equality |T |2 pxq “ T ˚Tx,
x P D pT ˚T q can be patterned after the proof of assertion (1) of Theorem 5.19. The
uniqueness of these square roots follows like in the proof of assertion (b) of Theorem
5.14. Let us give more details. Let 0 ă ε ă R ă 8, and put

Uε,Rx “
2

π

ż R

ε

T
`

t2I ` T ˚T
˘´1

x dt, x P H.

Then

U˚
ε,Rx “

2

π

ż R

ε

T ˚ `

t2I ` TT ˚˘´1
x dt, x P H. (5.80)

Since

U˚
ε,RUε,Rx “

4

π2

ż R

ε

ż R

ε

T ˚T
`

t21I ` T ˚T
˘´1 `

t22I ` T ˚T
˘´1

x dt2 dt1, x P H, (5.81)

we see that

}Uε,R}2 “
›

›U˚
ε,RUε,R

›

› ď sup
λą0

4

π2

ż 8

0

ż 8

0

λ2

pt21 ` λ2q pt22 ` λ2q
dt2 dt1 “ 1. (5.82)
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By the same argument we have
›

›U˚
ε,R

›

›

2 “
›

›Uε,RU
˚
ε,R

›

›

2 ď 1. Since, for x P DpT q we
get

2

π

ż R

ε

T ˚T
`

t2I ` T ˚T
˘´1

x dt “
2

π

ż R

ε

T ˚ `

t2I ` TT ˚˘´1
Tx dt “ U˚

ε,RTx (5.83)

we infer
›

›

›

›

2

π

ż R

ε

T ˚T
`

t2I ` T ˚T
˘´1

x dt

›

›

›

›

ď }Tx} , x P DpT q. (5.84)

Introduce the subspace G1 of GpT q defined by

G1 “
"

px, Txq P GpT q : lim
εÓ0,RÑ8

2

π

ż R

ε

T ˚T
`

t2I ` T ˚T
˘´1

x dt exists in H

*

.

(5.85)
Then by the inequality in (5.84) G1 is a closed subspace of GpT q. By assertion (6) of
Theorem 5.39 this space is dense inGpT q (relative to the graph norm). Consequently,
G1 “ GpT q. It follows that DpT q Ă D p|T |q, and that

|T | pxq “ lim
εÓ0,RÑ8

2

π

ż R

ε

T ˚T
`

t2I ` T ˚T
˘´1

x dt, exists for x P DpT q,

and, consequently, |T | is well-defined. Next let x P D pT ˚T q. Then exactly in the
same manner as we proved assertion (1) of Theorem 5.19 we infer (see the proof of
(c) in Theorem 5.14 as well):

|T |2 pxq “
4

π2

ż 8

ε

pT ˚T q2
ż 8

0

`

t21I ` T ˚T
˘´1 `

t22I ` T ˚T
˘´1

x dt2 dt1

“
ż 8

0

pT ˚T q2 pρI ` T ˚T q´2 x dρ

“ lim
εÓ0

lim
RÑ8

␣

T ˚T pεI ` T ˚T q´1 ´ pRI ` T ˚T q´1
(

T ˚Tx

“ lim
εÓ0

lim
RÑ8

␣

T ˚Tx ´ εx ` ε2 pεI ` T ˚T q´1 x ´ pRI ` T ˚T q´1 T ˚Tx
(

“ T ˚Tx. (5.86)

Let the operator S ě 0 be such that S2 “ T ˚T . Then, as in equality (5.22) in the
proof of assertion (b) of Theorem 5.14 we have

2

π

ż 8

ε

S2
`

t2I ` S2
˘´1

x dt “ Sx´
2ε

π
x`

1

πi

ż

Γε

z pzI ` Sq´1 x dz, x P DpSq. (5.87)

By assumption S2 “ T ˚T , and so in (5.87) we let ε tend to 0 to obtain Sx “
|T | pxq, x P DpSq. This shows that the only positive square root of T ˚T is given
by |T |. Similar arguments and conclusions apply to the operator TT ˚ and T ˚.
This completes the proof of assertion (1) except that we still have to prove that
D pT q Ă D p|T |q, and D pT ˚q Ă D p|T ˚|q. For the converse inclusions we first prove
that }|T | pxq} “ }Tx}, x P D p|T |q. This equality is easily established for x P
D pT ˚T q “ D

`

|T |2
˘

. Let x belong to the domain of |T |. Since, by construction, the
operator |T | is self-adjoint, by assertion (6) applied with |T | there exists a sequence
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pxnqn Ă D
`

|T |2
˘

“ D pT ˚T q with the following properties limnÑ8 xn “ x, and
limnÑ8 |T | pxnq “ |T | pxq. Then

}Txn ´ Txm} “ }T pxn ´ xmq} “ }|T | pxn ´ xmq} ,
and hence pTxnqn is a Cauchy sequence in H. It follows that y “ limnÑ8 Txn exists.
The operator T being closed, and limnÑ8 xn “ x, we infer x P DpT q and y “ Tx.
These observations lead to

}Tx} “ lim
nÑ8

}Txn} “ lim
nÑ8

}|T | xn} “ }|T | pxq} , x P D p|T |q . (5.88)

Finally, let x P DpT q. Then there exists a sequence pxnqn Ă D pT ˚T q such that
limnÑ8 xn “ x and limnÑ8 xn “ x. By the equalities in (5.88) it follows that
p|T | pxnqqn Ă H is a Cauchy sequence, and therefore its limit y :“ limnÑ8 |T | pxnq
exists. Since |T | is a closed operator it follows that x belongs to D p|T |q, and that
y “ |T | pxq. All this implies that D pT q “ D p|T |q and that }|T | pxq} “ }Tx} for
x P DpT q. The same argumentation shows that }|T ˚| pxq} “ }T ˚x} for x P D pT ˚q.

(2) From (5.82) we see that the subspace L Ă H defined by

L “
"

x P H : lim
εÓ0

lim
RÑ8

Uε,Rx dt exists in H

*

(5.89)

is a closed subspace of H. If x P NpT q, then

Uε,Rx “
2

π

ż R

ε

T
`

t2I ` T ˚T
˘´1

x dt “
2

π

ż R

ε

`

t2I ` TT ˚˘´1
Tx dt “ 0, (5.90)

and so x belongs to L. If x is of the form x “ T ˚y, y P D pT ˚q, then we have

Uε,Rx “ Uε,RT
˚y “

2

π

ż R

ε

T
`

t2I ` T ˚T
˘´1

T ˚y dt “
2

π

ż R

ε

TT ˚ `

t2I ` TT ˚˘´1
y dt.

(5.91)
From (5.91) and assertion (1) we infer that

lim
εÓ0,RÑ8

Uε,Rx “ lim
εÓ0,RÑ8

Uε,RT
˚y “ lim

εÓ0,RÑ8

2

π

ż R

ε

TT ˚ `

t2I ` TT ˚˘´1
y dt “ |T ˚| pyq.

(5.92)
From (5.90) and (5.92) it follows that L Ą NpT q ` R pT ˚q. By assertion (1) of
Theorem 5.39 we see that the subspace NpT q ` R pT ˚q is dense in H. Since L is a
closed subspace, we deduce that L “ H. Therefore the operator U is well defined.
By the expression for U˚

ε,R in (5.81), it follows, in the same manner as we proved
that U is well-defined, that U˚ is well-defined as well, and that U˚ is given by (5.77).
This shows assertion (2).

(3) Let x P DpT q “ D p|T |q. Then

U |T | pxq “
4

π2
TT ˚T

ż 8

0

ż 8

0

`

t21I ` T ˚T
˘´1 `

t22I ` T ˚T
˘´1

x dt2 dt1

“ TT ˚T

ż 8

0

pρI ` T ˚T q´2 xdρ
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“ lim
εÓ0,RÑ8

TT ˚T
␣

pεI ` T ˚T q´1 ´ pRI ` T ˚T q´1
(

“ lim
εÓ0,RÑ8

␣

Tx ´ TT ˚ pRI ` TT ˚q´1 Tx ´ εT pεI ` T ˚T q´1 x
(

“ Tx.

(5.93)

In the final step we employed the following equalities:

lim
RÑ8

TT ˚ pRI ` TT ˚q´1 y “ 0, and lim
εÓ0

εT pεI ` T ˚T q´1 y “ 0, y P H. (5.94)

The first limit is 0, because this is clear for y P D pTT ˚q. Since D pT ˚T q is dense in
H and

›

›R pRI ` TT ˚q´1
›

› ď 1, R ą 0, the first limit is 0 for all y P H. The second
limit is 0 because

›

›εT pεI ` T ˚T q´1
›

›

2 “ ε2
›

›pεI ` T ˚T q´1 T ˚T pεI ` T ˚T q´1
›

› ď sup
λą0

ελ

pε ` λq2
“

1

4
ε.

The proof of the equality U˚ |T ˚| “ T ˚ is very similar. This proves assertion (3).

(4) Let x P H. From the properties and definitions of the operators U and U˚ we
deduce the equalities:

U˚Ux “
4

π2

ż 8

0

ż 8

0

T ˚T
`

t21I ` T ˚T
˘´1 `

t22I ` T ˚T
˘´1

x dt2 dt1

“ T ˚T

ż 8

0

pρI ` T ˚T q´2 x dρ

“ lim
εÓ0

lim
RÑ8

␣

T ˚T pεI ` T ˚T q´1 x ´ T ˚T pRI ` T ˚T q´1 x
(

. (5.95)

Like in the proof of assertion (3) the second limit in (5.95) vanishes. The fist limit
also vanishes if T ˚Tx “ 0. If x “ T ˚Ty, then the first limit in (5.95) is equal to x.
In addition, we have

›

›T ˚T pεI ` T ˚T q´1
›

› ď 1,

and so U˚U is the orthogonal projection on the closure of R pT ˚T q. In particular it
follows that U˚U |T | “ |T |. The same argument shows that UU˚ is an orthogonal
projection on the closure of R pTT ˚q. In particular it follows that UU˚ |T ˚| “ |T ˚|.
This completes the proof of assertion (4).

Altogether this wraps up the proof of Theorem 5.41. �

5.42. Corollary. Let T be a densely defined normal operator. This means that T
is closed and densely defined, that D pT ˚q “ D pT q, and that T ˚T “ TT ˚. Then
there exists a unitary operator U and a positive operator |T | such that T “ U |T |.
Moreover, U |T | “ |T |U .

Proof. On the range of |T | define U as in Theorem 5.41. On the null space
N p|T |q define U as the identity operator. Notice that, since T is normal, |T | “ |T ˚|,
and that N p|T |q “ N pT q “ N pT ˚q. Then from Theorem 5.41 it also follows that
|T |U “ U |T |. This completes the proof of Corollary 5.42. �
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CHAPTER 6

Operator semigroups and Markov processes

We will discuss a number of aspects related to one-parameter operator semigroups.
We will present some general theory, give some examples, include a result on initial
value problems, and make a link with Markov processes, and give some details
on Feynman-Kac semigroups. Unfortunately, not all aspects of this theory can be
discussed. In particular, this is true for applications of (generators of) semigroup
theory, for semigroups related to population dynamics, and for delay equations. In
Chapter 7 we will discuss analytic semigroups and certain aspects of the Crank-
Nicolson iteration scheme.

1. Generalities on semigroups

Let pX, }¨}q be a Banach space and let tSptq : t ě 0u be a family of bounded linear
operators from X to X. This family is called strongly continuous if it possesses the
following properties:

(i) Sp0q “ I, Sps ` tq “ Spsq ˝ Sptq, for all s, t ě 0;
(ii) limtÓ0 }Sptqf ´ f} “ 0 for all f P X.

6.1. Remark. Suppose that the family tSptq : t ě 0u possesses property (i). Then
it possesses property (ii) if and only if

(ii1) limtÓ0 ⟨Sptqf, f˚⟩ “ ⟨f, f˚⟩ for all f P X and for all f˚ P X˚.

Property (i) is called the semigroup property, property (ii) is the strong continuity
at t “ 0, and (ii˚) is the weak continuity at t “ 0.

6.2. Remark. Often a strongly continuous semigroup tSptq : t ě 0u is written in the
form Sptq “ exp ptAq or Sptq “ exp p´tHq. For symbolic manipulation this notation
is very convenient. For example, for λ ą 0 large enough,

ż 8

0

e´λtSptq dt “
ż 8

0

e´tpλI´Aqdt “ pλI ´ Aq´1 .

Indeed it can be proved that the collection tRpλq : λ ą ωu is a resolvent family,
where each operator Rpλq, λ ą ω, is of the form Rpλq “ pλI ´ Aq´1, for some
closed, densely defined linear operator A with domain and range in X. the number
ω is chosen in such a way that }Sptq} ď M exp pωtq, t ě 0. Such a number ω
exists. If pX, }¨}q is a Hilbert space, and if each operator Sptq is self-adjoint (i.e.
Sptq “ Sptq˚), then M may be taken the constant 1.
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6.3. Theorem. Let tSptq : t ě 0u be a strongly continuous semigroup and put

A “ s- lim
tÓ0

Sptq ´ I

t
.

This means that

Af “ lim
tÓ0

Sptqf ´ f

t
for f belonging to its domain

DpAq “
"

f P X : lim
tÓ0

Sptqf ´ f

t
exists in X

*

.

Then A is a closed densely defined linear operator with the following properties

(i) pλI ´ AqRpλqf “ f , for all f P X;
(ii) RpλqpλI ´ Aqf “ f , for all f P DpAq;
(iii) GpAq “ tpRpλqf, λRpλqf ´ fq : f P Xu;
(iv) f P DpAq implies Sptqf P DpAq and ASptqf “ SptqAf ;
(v) f P X implies

şt

0
Spsqf ds P DpAq and A

şt

0
Spsqfds “ Sptqf ´ f .
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6.4. Proposition. Let tSptq : t ě 0u be a weakly continuous semigroup in LpXq.
Then the following assertions are true:

(i) There exist real constants M and ω such that

}Sptq} ď M exp pωtq , t ě 0.

Moreover, for λ ą ω and for f P X the integral
ş8
0
e´λtSptqf dt can be

interpreted as an element of X. Upon writing Rpλqf “
ş8
0
e´λtSptqf dt for

λ ą ω the resolvent identity follows:

R pλ1q f ´ R pλ2q f “ pλ2 ´ λ1qR pλ2qR pλ1q f, λ1, λ2 ą ω, f P X.

Integrals of the form
ş8
0
φptqSptqf dt, where the functions φ are Borel mea-

surable and satisfy
ş8
0

|φptq| eωt dt ă 8, are elements of X as well.
(ii) limtÑs, tě0 }Sptqf ´ Spsqf} “ 0, f P X;
(iii) Let M and ω be as in (i) and put

}f}ω “ sup texp p´ωtq }Sptqf} : t ě 0u .
Then
(a) }f} ď }f}ω ď M }f}, for f P X;
(b) }expp´ωsqSpsqf}ω ď }Spsqf}ω for f P X.

6.5. Remark. The topology induced by }¨} coincides with that of }¨}ω, the geometric
properties are lost. The semigroup texp p´ωsqSpsq : s ě 0u consists of contractive
operators in the space pX, }¨}q. The assertion in (ii) says that a weakly continuous
semigroup is in fact strongly continuous.

6.6. Remark. Fix f P X. From the proof of the assertions in (i) it follows that the
following conditions on the Borel measurable φ : r0,8q Ñ C suffice to guarantee
that the integral

ş8
0
φptqSptqf dt belongs to X:

(a) For every f˚ P X˚ the integral
ş8
0

|φptq ⟨Sptqf, f˚⟩| dt is finite;
(b) The collection functions

tt ÞÑ Φφ,f,f˚ptq :“ φptq ⟨Sptqf, f˚⟩ : f˚ P X˚, }f˚} ď 1u
is uniformly integrable in the sense that for every ε ą 0 there exists 0 ď
gε P L1 pr0,8qq such that, for all f˚ P X˚, }f˚} ď 1, the following inequality
holds:

ż

|Φφ,f,f˚ |ěgε

|Φφ,f,f˚ptq| dt ď ε.

The assumption in (a) implies that the integral
ş8
0
φptqSptqf dt belongs to X˚˚. A

consequence of (b) together with Theorem 8.30 is that the latter integral belongs to
X.

Proof of Proposition 6.4. The first part of assertion (i) follows from the
Banach-Steinhaus theorem. First it is shown that, for some δ ą 0, the supre-
mum sup t}Sptq} : 0 ď δu is finite. If this were not the case, then there would
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exist a sequence ptn : n P Nu of strictly positive real numbers such that tn Ó 0
and }S ptnq} Ò 8, if n tends to 8. However, by assumption (ii1) we know that
for every f P X and every f˚ P X˚, limnÑ8 ⟨S ptnq f, f˚⟩ ´ ⟨f, f˚⟩ “ 0. Hence
supnPN |⟨S ptnq f, f˚⟩| ă 8 for all f P X and for all f˚ P X˚. Consider, for
f P X fixed, the sequence of continuous linear functions Λn : X˚ Ñ C, defined
by Λn pf˚q “ ⟨S ptnq f, f˚⟩. Then supn |Λn pf˚q| ă 8. But the Banach-Steinhaus
theorem then says that supnPN }S ptnq f} ă 8. Since f P X is arbitrary, another ap-
plication of the uniform boundedness principle (or the Banach-Steinhaus theorem)
then implies supn }S ptnq} ă 8. This is a contradiction. As a consequence we infer
that, for some δ ą 0, sup0ďtďδ }Sptq} ă 8. Next we have Sptq “ SpδqnSpt ´ nδq,
where nδ ď t ă pn ` 1qδ. Thus

}Sptq} ď sup
0ďsďδ

}Spsq}n`1 ď sup
0ďsďδ

}Spsq}1`t{δ ď M exp pωtq ,

where M “ sup t}Spsq} : 0 ď s ď δu, and where ω “
1

δ
logM .

Next we want to show that for λ ą ω and f P X the integral
ş8
0
e´λtSptqf dt can be

interpreted as a member of X. We first observe that, for f P X fixed the subspace
Xf which, by definition, is the smallest closed subspace of X which contains all
vectors of the form Sptqf , t ě 0, is separable. From the right-continuity of the
functions t ÞÑ ⟨Sptqf, f˚⟩, f˚ P X˚, it follows that the space Xf is separable for the
weak topology. But then it is also separable for the norm-topology. By considering
the functional

Λf : f˚ ÞÑ
ż 8

0

e´λt ⟨Sptqf, f˚⟩ dt, f˚ P X˚,

we see by the Lebesgue’s dominated convergence theorem that limnÑ8 Λf pf˚
n q “ 0

whenever tf˚
nu8

n“1 is a sequence in X˚ which converges to 0 for the weak˚-topology.
By the Banach-Steinhaus theorem such a sequence is automatically bounded. Also
recall that, by the Hahn-Banach extension theorem, continuous linear functionals
on Xf have an extension to all of X while preserving their norm. From Theorem
8.30 it follows that there exists a vector g P Xf such that

Λf pf˚q “
ż 8

0

e´λt ⟨Sptqf, f˚⟩ dt “ ⟨g, f˚⟩ for all f˚ P X˚.

The vector g is written as

g “ Rpλqf “
ż 8

0

e´λtSptqf dt.

Let the Borel measurable φ : r0,8q Ñ C and f P X be such that
ż 8

0

|φptq| |⟨Sptqf, f˚⟩| dt ă 8 for all f˚ P X˚.

Then the set Bf defined by

Bf “
"

f˚ P X˚ :

ż 8

0

|φptq ⟨Sptqf, f˚⟩| dt ď 1

*
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is a closed absolutely convex subset of X˚ which is absorbing in the sense that for
every f˚ P X˚ there exists t ą 0 such that f˚ P tBf . In other words Bf is a
barrel in the Banach space X˚. Consequently, Bf is a neighborhood of the origin,
and so there exists δ ą 0 such that the ball of radius δ, i.e., tf˚ P X˚ : }f} ď δu is
contained in Bf . Then it follows that

ˇ

ˇ

ˇ

ˇ

ż 8

0

φptq ⟨Sptqf, f˚⟩ dt
ˇ

ˇ

ˇ

ˇ

ď
ż 8

0

|φptq ⟨Sptqf, f˚⟩| dt ď
1

δ
}f˚} , f˚ P X˚. (6.1)

Define, for f P X, the linear functional Λφ,f : X˚ Ñ C by

Λφ,f pf˚q “
ż 8

0

φptq ⟨Sptqf, f˚⟩ dt, f˚ P X˚. (6.2)

Then, by (6.1) it follows that Λφ,f is a member of X˚˚, and hence the integral
ş8
0
φptqSptqf dt can be interpreted as an element of X˚˚. Since, by hypothesis,

the integral
ş8
0

|φptq| eωt dt is finite, it follows that limkÑ8 Λφ,f pf˚
k q “ 0, whenever

tφ˚
ku8

k“1 is a sequence in X˚ which converges in weak˚-sense to 0. By Theorem 8.30
it follows that the integral

ş8
0
φptqSptqf dt not only belongs to X˚˚, but that it is

member of X.
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Assertion (ii) follows from the assertions in (i) together with strong continuity at
t “ 0. The strong continuity at t “ 0 of the semigroup tSptq : t ě 0u can be proved
as follows. Consider the subspace L Ă X defined by

L “
"

f P X : lim
tÓ0

Sptqf “ f

*

.

Then, by (i), L is a closed subspace of X. In addition, since, for λ ą ω and f P X,

lim
tÓ0

SptqλRpλqf “ lim
tÓ0

e´λtSptqλRpλqf “ lim
tÓ0

e´λtSptqλ
ż 8

0

e´λρSpρqf dρ

“ lim
tÓ0

λ

ż 8

t

e´λρSpρqf dρ “ λ

ż 8

0

e´λρSpρqf dρ, (6.3)

it follows that L Ą λRpλqX, λ ą ω. By the resolvent property, which reads as
follows

R pλ1q ´ R pλ2q “ pλ2 ´ λ1qR pλ1qR pλ2q , λ1, λ ą ω,

we deduce that the subspaces λRpλqX do not depend on λ ą ω. Let f P X. Then
by assumption (ii1) we see that

lim
λÑ8

⟨λRpλqf, f˚⟩ “ lim
λÑ8

Æ
λ

ż 8

0

e´λtSptqf dt, f˚
∏

“ lim
λÑ8

ż 8

0

e´t

Æ
S

ˆ

t

λ

˙

f, f˚
∏
dt “ ⟨f, f˚⟩ . (6.4)

From (6.4) it follows that the subspace λRpλqX is weakly dense in X. But a weakly
dense subspace is strongly dense. So we conclude that L “ X. Altogether this
proves assertion (ii).

Assertion (iii) follows from the first. This completes the proof of Proposition 6.4. �
6.7. Theorem. Suppose that A0 generates the semigroup tS0ptq : t ě 0u and that A1

generates the semigroup tS1ptq : t ě 0u. If A0 extends A1, i.e., if G pA0q Ě G pA1q,
then S0ptq “ S1ptq and A0 “ A1.

Proof. For f P D pA1q we notice the following Duhamel’s formula (variation of
constants formula)

pS0ptq ´ S1ptqq f “
ż t

0

S0puq pA0 ´ A1qS1pt ´ uqfdu.

This equality follows from
ż t

0

S0puq pA0 ´ A1qS1pt ´ uqfdu “
ż t

0

B
Bu

S0puqS1pt ´ uqfdu

“ S0ptqf ´ S1ptqf.

Here we used the closed graph theorem to be sure that, for f belonging to D pA1q,
the function u ÞÑ S0puq pA0 ´ A1qS1pt ´ uqf is continuous. So that the rule of
fundamental calculus is available. This finishes the proof of Theorem 6.7 �
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6.8. Remark. Theorem 6.7 says that a semigroup is uniquely determined by its
generator. More information on linear operator semigroup theory can be found in,
e.g. [33, 47, 48, 97, 139]; for non-linear semigroup theory the reader is referred
to e.g. [12].

6.9.Remark. An alternative proof of Theorem 6.7 reads as follows. Fix x0 P D pA0q.
Choose λ0 ą ω0, and λ1 ą ω1. (We suppose that }Sjptq} ď Mj exp pωjtq, j “ 0, 1.)
Then pλ0I ´ A0qx0 “ pλ0I ´ A1q x, for some x P D pA1q. Since A0 extends A1, we
get pλ0I ´ A0q x0 “ pλ0I ´ A1q x “ pλ0I ´ A0qx. Hence pλ0I ´ A1q px0 ´ xq “ 0.
So that x0 “ x. Consequently, x0 “ x P D pAq. Whence D pA0q Ď DpAq and thus
G pA0q Ď GpAq. So we see A “ A0.

A detailed account of the following theorem can be found in Engel and Nagel [48].

6.10. Theorem (Hille-Yosida). Let A be a closed linear operator with a domain that
is dense in the Banach space X. The following assertions are equivalent:

(i) The operator A generates a strongly continuous semigroup tSptq : t ě 0u;
(ii) There exist finite constants M and ω such that

›

›pλI ´ Aq´n
›

› ď Mpλ ´ ωq´n, n “ 1, 2, . . . , λ ą ω.

Proof. Outline of a proof (i) ñ (ii). Use

Γpnq pλI ´ Aq´n “
ż 8

0

tn´1 exp p´λtqSptq dt.

(ii) ñ (i). Prove that the strong operator limit

Sptq “ s- lim
λÑ8

exp pλt pλRpλq ´ Iqq

exists and that the family tSptq : t ě 0u is a strongly continuous semigroup with
generator A. Here we wrote Rpλq “ pλI ´ Aq´1. In case we deal with contraction
semigroups, more details can be found in the proof of the implication (ii) ùñ (i) of
Theorem 6.12 below.

This concludes the outline of the proof of Theorem 6.10. �

6.11. Remark. If A satisfies (ii) of the previous theorem, then }Sptq} ď M exp pωtq,
t ě 0.

6.12. Theorem (Lumer-Phillips, Hille-Yosida for contraction semigroups). Let A
be a linear operator with domain DpAq and range RpAq in a Banach space X. The
following assertions are equivalent:

(i) The operator A generates a strongly continuous semigroup tSptq : t ě 0u for
which }Sptq} ď 1, t ě 0;

(ii) The operator A has dense domain, there exists λ ą 0 such that RpλI´Aq “
X, and A is dissipative: }λf ´ Af} ě λ }f}, f P DpAq.
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The property in assertion (ii) of Theorem 6.12 is called the dissipativity property.
For applications the following somewhat stronger version of Theorem 6.12 is often
useful.

Proof. (i) ùñ (ii) This implication is not so difficult. Define, for λ ą 0,
the operator Rpλq is defined by Rpλqf “

ş8
0
e´λtSptqf dt, f P X. Then Rpλq “

pΛI ´ Aq´1 in the sense of assertion (i) and (ii) in Theorem 6.7. It follows that the
range of pλI ´ Aq coincides with X for all λ ą 0, and that Rpλqf belongs to DpAq
for all λ ą 0. Moreover, by the strong continuity of the semigroup tSptq : t ě 0u we
see

lim
λÑ8

λRpλqf “ lim
λÑ8

ż 8

0

e´tS
`

tλ´1
˘

f dt “ f, f P X, (6.5)

and so DpAq is dense in X. In addition, we have, for g P X and λ ą 0,

λ }Rpλqg} ď λ

ż 8

0

e´λt }Sptqg} dt ď λ

ż 8

0

e´λt }g} dt “ }g} , (6.6)

Put g “ pλI ´ Aq f . Then (6.6) implies }λf ´ Af} ě λ }f}, f P DpAq. Hence,
assertion (ii) is a consequence of (i).
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(ii) ùñ (i) Let λ0 ą 0 be such that pλ0I ´ AqDpAq “ X. Then we define the
operator R pλ9q by

R pλ0q pλ0I ´ Aq f “ f, f P DpAq. (6.7)

For 0 ă λ ă 2λ0 we define the operator Rpλq by

Rpλq “
8
ÿ

n“0

pλ0 ´ λqn R pλ0qn`1 . (6.8)

From the dissipativity property in (ii) it follows that λ0 }R pλ0q} ď 1. Therefore,
the series in (6.8) converges for |λ ´ λ0| ă λ0, or what amounts to the same for
0 ă λ ă 2λ0. The equalities

pλI ´ AqRpλqf “ f, f P X, and Rpλ pλI ´ Aq f “ f, f P DpAq, (6.9)

easily follow for 0 ă λ ă 2λ0. In other words, Rpλq “ pλI ´ Lq´1, 0 ă λ ă 2λ0. This
procedure can be repeated for any 0 ă λ ă 2λ0 instead of λ0. The result will be that
the inverse operator Rpλq :“ pλI ´ Aq´1 exists for every 0 ă λ ă 4λ0 and that for
such λ the inequality λ }Rpλq} ď 1 holds. Again repeating these arguments yields
the existence of Rpλq :“ pλI ´ Aq´1 for 0 ă λ ă 8λ0. Again we have λ }Rpλq} ď 1,
0 ă λ ă 8λ0. By repeating these arguments often enough we obtain a resolvent
family Rpλq “ pλI ´ Aq´1, λ ą 0, such that λ }Rpλq} ď 1 for λ ą 0. We still need
to construct a semigroup tSptq : t ě 0u with generator A. To this end we introduce
the operators A pλq, λ ą 0, by

A pλq “ λ2R pλq ´ λI “ λARpλq. (6.10)

For f P DpAq, and λ, µ ą 0, we have the following equalities:

`

etApλq ´ etApµq˘ f “
ż t

0

ept´sqApλq tA pµq ´ A pλqu esApµqf ds

(the operators Apλq and Apµq commute)

“
ż t

0

ept´sqApλqesApµq tA pµq ´ A pλqu f ds

(employ the identities in (6.10))

“
ż t

0

ept´sqApλqesApµqA pµR pµq ´ λR pλqq f ds

(the vector f belongs to DpAq)

“
ż t

0

ept´sqApλqesApµq tµR pµq ´ λR pλquAf ds. (6.11)

Observe that
›

›eρApλ1q
›

› ď 1, ρ ě 0, λ1 ą 0. So from (6.11) we infer

›

›

`

etApλq ´ etApµq˘ f
›

› ď
ż t

0

›

›ept´sqApλqesApµq tµR pµq ´ λR pλquAf
›

› ds
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ď
ż t

0

›

›ept´sqApλqesApµq›
› ¨ }tµR pµq ´ λR pλquAf} ds

ď
ż t

0

}tµR pµq ´ λR pλquAf} ds “ t }tµR pµq ´ λR pλquAf} . (6.12)

We consider the subspace L1 defined by

L1 “
!

f P X : lim
λÑ8

λRpλqf “ f
)

.

Since λ }Rpλq} ď 1 the space L1 is closed in X. Let λ0 ą 0 be as in (ii), and pick
g P X. Then by the resolvent equation we have, for λ ‰ λ0,

pλRpλq ´ IqR pλ0q g “
λ

λ ´ λ0

pR pλ0q ´ Rpλqq g ´ R pλ0q g. (6.13)

From (6.13) we get
lim
λÑ8

pλRpλq ´ IqR pλ0q g “ 0. (6.14)

Since DpAq “ R pλ0qX, from (6.14) it follows that the space L1 contains the sub-
space DpAq. Since the subspace L1 is closed, it contains the closure of DpAq. By
assumption DpAq is dense, and thus L1 “ X.

Next consider the subspace L2 defined by

L2 “

#

f P X : lim
λ,µÑ8

sup
tPr0,T s

›

›

`

etApλq ´ etApµq˘ f
›

› “ 0 for all 0 ă T ă 8

+

.

Since
›

›etApλq
›

› ď 1, t ě 0, λ ą 0, it follows that the space L2 is closed. Since the space
L1 coincides with X, the inequality in (6.12) implies that L2 contains the subspace
DpAq. The subspace DpAq being dense implies that the subspace L2 coincides with
X. Put Sptqf “ limλÑ8 etApλqf , f P X. Since the subspace L2 coincides with X, it
follows that

lim
λÑ8

sup
0ďtďT

›

›etApλqf ´ Sptqf
›

› “ 0 for f P X and for all 0 ă T ă 8. (6.15)

From (6.15) we infer that the family of operators tSptq : t ě 0u inherits the semi-
group property from the families

␣

etApλq : t ě 0
(

, λ ą 0. For the same reason it is

a strongly continuous semigroup. Since
›

›etApλq
›

› ď 1 we get }Sptq} ď 1. By letting
λ Ñ 8 in the equality

etApλqf ´ f “
ż t

0

eρApλqApλqf dρ “ A pλRpλq
ż t

0

eρApλqf dρ, f P X, (6.16)

we obtain that, for f P X, the integral
şt

0
Spρqf dρ belongs to DpAq and that

Sptqf ´ f “ A

ż t

0

Spρqf dρ, t ą 0, f P X. (6.17)

Let A0 be the generator of the semigroup tSptq : t ě 0u. If f belongs to D pA0q,
then (6.17) implies that f belongs to DpAq, and that Af “ A0f . In other words
A is an extension of A0. Let f belong to DpAq and fix λ ą 0. Then the operator
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λI ´A0 is surjective. It follows that there exists f0 P D pA0q such that the following
equalities hold:

pλI ´ Aq f “ pλI ´ A0q f0 “ pλI ´ Aq f0. (6.18)

From (6.18) we see that the vector f ´ f0 belongs to the zero space of λI ´A. Since
the operator A is dissipative we infer f “ f0, and hence a vector in DpAq belongs
to D pA0q. However, all this implies that the operators A and A0 are the same. So
that A is the generator of a strongly continuous semigroup.

The proof of Theorem 6.12 is complete now. �
6.13. Theorem (Lumer-Phillips). Let A be linear a operator with domain DpAq and
range RpAq in a Banach space X. The following assertions are equivalent:

(i) The operator A is closable and its closure generates a strongly continuous
semigroup tSptq : t ě 0u for which }Sptq} ď 1, t ě 0;

(ii) The domain DpAq of A is dense, }λf ´ Af} ě λ }f}, for all λ ą 0, and for
all f P DpAq, and there exists λ0 ą 0 for which R pλ0I ´ Aq is dense in X.

6.14. Remark. Usually the range property is the difficult part to verify. Assertion
(i) in Theorem 6.13 says that the subspace DpAq is a core for A, the closure of the
operator A. If the operator A satisfies the equivalent conditions in Theorem 6.13,
then its closure A satisfies the equivalent conditions in Theorem 6.12.
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Proof of Theorem 6.13. (i) ùñ (ii) From assertion (a) in Proposition 6.17
it follows that the operator A is closable. Let A be the closure of A. Then by (i) A
generates a strongly continuous semigroup tSptq : t ě 0u consisting of contraction
operators, and so DpAq is dense. Since }Sptq} ď 1, t ě 0, it follows that λ }Rpλq} ď
1, λ ą 0, where

Rpλqf “
`

λI ´ A
˘´1

f “
ż 8

0

e´λtSptqf dt, f P X.

But then it easily follows that A is dissipative: see Definition 6.15 below. Since
`

λI ´ A
˘

D
`

A
˘

“ X, it also follows that, for all λ ą 0, the ranges of λI ´ A are
dense in X.

(ii) ùñ (i) From assertion (a) in Proposition 6.17 below we see that, under the
assumptions in (ii) the operatorA is closable. LetA be its closure. Then, as is readily
verified, the operator A possesses the properties described in (ii) of Theorem 6.12.
An application of Theorem 6.12 then shows that A generates a strongly continuous
semigroup consisting of contraction operators.

The proof of Theorem 6.13 is now complete. �
6.15. Definition. Some definitions follow.

(a) As mentioned earlier an operator A with domain DpAq and range RpAq in
the Banach space pX, }¨}q is called dissipative if

}λf ´ Af} ě λ }f} , λ ą 0, f P DpAq.

(b) Let E be second countable locally compact Hausdorff space. If in (a) the
symbol X denotes the space C0pEq, supplied with the supremum norm,
then A is said to satisfy the maximum principle if, for every f P DpAq,
for which sup

xPE
ℜfpxq ą 0, there exists x0 P E for which sup

xPE
ℜfpxq “ ℜfpx0q

and for which ℜAfpx0q ď 0.
(c) If in (b) the space E is compact, then the maximum principle is phrased as

follows. For every f P DpAq, there exists x0 P E with sup
xPE

ℜfpxq “ ℜfpx0q

for which ℜAfpx0q ď 0.

6.16. Remark. An operator A that satisfies the maximum principle can be consid-
ered as kind of a generalized second order differential operator. Often this kind of
operator is a pseudo-differential operator of order between 0 and 2.

Next we specialize to X “ C0pEq, equipped with the supremum norm: }f}8 “
supxPE |fpxq|, f P C0pEq. The space E is supposed to be a second countable (i.e.
it is a topological space with a countable base for its topology) locally compact
Hausdorff space (in particular it is a Polish space). A second-countable locally-
compact Hausdorff space is Polish. Let pUiqi be a countable basis of open subsets
with compact closures, choose for each i P N, yi P Ui, together with a continuous
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function fi : E Ñ r0, 1s such that fi pyiq “ 1 and such that fi pyq “ 0 for y R Ui.
Since a locally compact Hausdorff space is completely regular this choice is possible.
Put

dpx, yq “
8
ÿ

i“1

2´i |fipxq ´ fipyq| `
ˇ

ˇ

ˇ

ˇ

1
ř8

i“1 2
´ifipxq

´
1

ř8
i“1 2

´ifipyq

ˇ

ˇ

ˇ

ˇ

, x, y P E.

This metric gives the same topology, and it is not too difficult to verify its complete-
ness. For this notice that the sequence pfiqi separates the points of E, and therefore
the algebraic span (i.e. the linear span of the finite products of the functions fi) is
dense in C0pEq for the topology of uniform convergence. A proof of the fact that
a locally compact space is completely regular can be found in Willard [154] Theo-
rem 19.3. The connection with Urysohn’s metrization theorem is also explained. A
related construction can be found in Garrett [53]: see Dixmier [39] Appendix V as
well.

6.17. Proposition. The following assertions are true.

(a) Suppose that the operator A is dissipative and that its range is contained in
the closure of its domain. Then the operator A is closable.

(b) If the operator A satisfies the maximum principle, then A is dissipative.

Proof. (a) Let pfnq Ă DpAq be any sequence with the following properties:

lim
nÑ8

fn “ 0, and g “ lim
nÑ8

Afn

exists in C0pEq. Then we consider
›

›pλfn ` gmq ´ λ´1A pλfn ` gmq
›

›

8 ě }λfn ` gm}8 ,

where pgmq Ă DpAq converges to g. First we let n tend to infinity, then λ, and
finally m. The result will be limmÑ8 }gm ´ g}8 ě limmÑ8 }gm}8 “ }g}8. Hence
g “ 0.

(b) Let f ‰ 0 belong to DpAq, choose α P R and x0 P E in such a way that 0 ă
}f}8 “ ℜ exppiαqfpx0q “ supxPE ℜ exppiαqfpxq, and that ℜA pexppiαqfq px0q ď 0.
Then

}λf ´ Af}8 ě ℜ pexppiαq pλf ´ Afq px0qq
“ λℜ pexppiαqfpx0qq ´ ℜ pexppiαqAfq px0q ě λ }f}8 .

This completes the proof of Proposition 6.17. �
6.18. Definition. A strongly continuous semigroup tSptq : t ě 0u in C0pEq is called
a Feller semigroup or Feller-Dynkin semigroup if it possesses the following positivity
property: for all f P C0pEq, for which 0 ď f ď 1, and for all t ě 0, the inequality
0 ď Sptqf ď 1 is true. Often a Feller semigroup is called a Feller-Dynkin semigroup,
because it leaves the space C0pEq invariant.

6.19. Remark. From the complex linearity and the assumption that 0 ď f ď 1,
f P C0pEq, implies 0 ď Sptqf ď 1, it follows that }Sptqf}8 ď }f}8, f P C0pEq.
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6.20. Remark. It often happens that a semigroup tSptq : t ě 0u is defined on a
larger space than C0pEq, e.g. on the space of bounded Borel measurable functions.
We say that tSptq : t ě 0u is a Feller semigroup, or Feller-Dynkin semigroup if it
leaves the space C0pEq invariant (i.e. if Sptqf belongs to C0pEq whenever f does so
and whenever t ě 0), and if 0 ď f ď 1, f P C0pEq, implies 0 ď Sptqf ď 1, t ě 0.

6.21. Remark. There exists a close relationship between Feller semigroups, strong
Markov processes, and well-posed martingale problems: see Theorem 6.36 in Section
3.

6.22. Remark. Let tSptq : t ě 0u be a semigroup of linear operators on C0pEq with
the following property: 0 ď f ď 1, f P C0pEq, implies Sptqf P C0pEq and 0 ď
Sptqf ď 1, for all t ě 0. Then the semigroup tSptq : t ě 0u is strongly continuous
if and only if, for all f in a subset of C0pEq with a dense linear span, and for all
x P E, the equality

lim
tÓ0

Sptqfpxq “ fpxq (6.19)

holds. It suffices to prove, starting from (6.19), that limtÓ0 }Sptqf ´ f}8 “ 0 for
f P C0pEq, 0 ď f ď 1. From (6.19) together with Lebesgue’s dominated convergence
theorem it follows that

lim
tÓ0

ż

Sptqfpxq dµpxq “
ż

fpxq dµpxq, (6.20)

for all Borel measures µ on E of bounded variation and for all functions f P C0pEq,
0 ď f ď 1. Since, by the Riesz representation theorem, every member of the
dual space of C0pEq can be represented by a complex Borel measure of bounded
variation, from (6.20) we may deduce that w- limtÓ0 Sptqf “ f . So from (6.19) it
follows that Sptqf converges in the weak sense to f , if t decreases to 0. But a weakly
continuous semigroup is strongly continuous. Hence (6.19) implies strong continuity.
The converse statement is trivial.

6.23. Proposition. Suppose that the operator A with domain and range in C0pEq
is such that its range is contained in the closure of its domain. Then the following
assertions are true:

(1) The operator A satisfies the maximum principle.
(2) If f P DpAq, and λ ą 0, then the following inequalities hold:

inf
xPE

ℜ pλfpxq ´ Afpxqq ď λ inf
xPE

ℜfpxq ď λ sup
xPE

ℜfpxq

ď sup
xPE

pλℜfpxq ´ ℜAfpxqq . (6.21)

(3) The operator A is closable and its closure satisfies the maximum principle.
(4) The operator A is closable, and if f P D

`

A
˘

, and λ ą 0, then the following
inequalities hold:

inf
xPE

ℜ
`

λfpxq ´ Afpxq
˘

ď λ inf
xPE

ℜfpxq ď λ sup
xPE

ℜfpxq

ď sup
xPE

`

λℜfpxq ´ ℜAfpxq
˘

. (6.22)
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6.24. Remark. If E is compact, then in Proposition 6.23 it is assumed that the
constant function 1 belongs to the domain of A and that A1 “ 0.

Proof of Proposition 6.23. Assume that E is locally compact but not com-
pact. When E is compact the proof follows the same lines, and is left to the reader.

(1) ùñ (2) Let f P DpAq be such that infxPE ℜfpxq ă 0. Then, by assertion (1)
there exists x0 P E such that ℜf px0q “ infxPE ℜfpxq ă 0, and ℜAf px0q ě 0. It
follows that

inf
xPE

ℜ pλfpxq ´ Afpxqq ď ℜ pλf px0q ´ Af px0qq ď λℜf px0q

“ λ inf
xPE

ℜfpxq. (6.23)

The inequality obtained in (6.23) proves the first inequality in (6.21) in case f P
DpAq is such that infxPE ℜfpxq ă 0. If infxPE ℜfpxq ě 0, then the first inequality
in (6.21) is automatically satisfied because the function λf ´ Af belongs to C0pEq,
and hence it vanishes at “8”. The second inequality in (6.21) is trivial, and the
third one follows by applying the previous arguments to the function ´f instead of
f .
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(2) ùñ (4) From the proof of assertion (b) in Proposition 6.17 it follows that the
operator A is dissipative. By assertion (a) in Proposition 6.17 it is closable. Let f
belong to D

`

A
˘

. Then there exists a sequence of functions pfnqnPN Ă DpAq such
that

lim
nÑ8

}fn ´ f}8 “ lim
nÑ8

›

›Afn ´ Af
›

›

8 “ 0. (6.24)

Since each function fn satisfies inequalities as in (6.21), the inequalities in (6.22)
follow by applying (6.24). Consequently, assertion (4) is proved now.

(4) ùñ (3) Let f P D
`

A
˘

be such that supxPE ℜfpxq ą 0. Then we have to show

that there exists x0 P E such that supxPE ℜfpxq “ ℜf px0q and ℜAf px0q ď 0. From
the third inequality in (6.22) it follows that there exist points xλ P E such that

λℜf pxλq ´ ℜAf pxλq ě λ sup
xPE

ℜfpxq. (6.25)

Since E is locally compact there exists a point x8 in E Y 8 which is an adherence
point of all families txλ : λ ě nu, n P N. Upon dividing the left-hand side and
right-hand side of (6.25) by λ ą 0, and letting λ tend to 8, it follows that

ℜf px8q “ sup
xPE

ℜfpxq ą 0, (6.26)

and, consequently, x8 belongs to E. From (6.25) it also follows that

´ℜAf pxλq ě λ

ˆ

sup
xPE

ℜfpxq ´ ℜf pxλq
˙

ě 0. (6.27)

From (6.26) and by letting λ tend to 8 in (6.27) it follows that the point x8 P E
is such that not only (6.26) is satisfied, but that we also have ℜAf px8q ď 0. This
proves the implication (4) ùñ (3).

The implication (3) ùñ (1) being trivial this completes the proof of Proposition
6.23. �

6.25. Theorem (Lumer-Phillips for Feller semigroups). The following assertions
are equivalent:

(i) The operator A is closable and its closure generates a Feller semigroup;
(ii) The operator A has dense domain, it verifies the maximum principle, and

there exists λ ą 0 such that the range of λI ´ A is dense in C0pEq.

If A is closable and if A verifies the maximum principle, then so does its closure:
see Proposition 6.23.

Proof of Theorem 6.25. We prove the theorem if E is locally compact, and
not compact. The compact case is left as an exercise for the reader.

(i) ùñ (ii) Let tSptq : t ě 0u be the Feller semigroup generated by A the closure of
A. Then the domain of A is dense, and so is the domain of A. Let f P DpAq be such
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that supxPE ℜfpxq ą 0, and choose x0 in such a way that ℜf px0q “ supxPE ℜfpxq.
Then

ℜ pSptqf px0q ´ f px0qq “ Sptqℜf px0q ´ ℜf px0q
ď sup

xPE
ℜfpxq ´ ℜf px0q ď 0. (6.28)

In (6.28) we divide by t ą 0 and let t tend to 0 to obtain ℜAf px0q ď 0. In other
words the operator A satisfies the maximum principle. In addition, R

`

λI ´ A
˘

“ X,
λ ą 0, and consequently, the operators λI ´ A have dense range. So that assertion
(ii) follows from (i).

(ii) ùñ (i) The operator A satisfies the maximum principle. But then, by assertion
(b) in Proposition 6.17, it follows that the operator A is dissipative. By assertion (a)
in Proposition 6.17 it follows that the operator A is closable. By Theorem 6.13 we
deduce that the operator A generates a strongly continuous semigroup tSptq : t ě 0u
consisting of operators Sptq which are contractions: }Sptqf}8 ď }f}8, f P C0pEq.
We still need to show that this semigroup has the Feller property, i.e., that 0 ď f ď 1
implies 0 ď Sptqf ď 1. Since the operator A satisfies the maximum principle, its
closure does so as well: see Proposition 6.23. Fix λ ą 0, and let f P D

`

A
˘

be such

that
`

λI ´ A
˘

f ě 0. Then, by assertion (4) in Proposition 6.17 it follows that

0 ď inf
xPE

ℜ
`

λI ´ A
˘

pifq pxq ď λ inf
xPE

ℜ pifq pxq.

So that ´ℑfpxq ě 0 for all x P E. So we have ℑfpxq ď 0 for all x P E. The same
argument applied to ´if instead of if yields ℑfpxq ě 0 for all x P E. Consequently,
ℑfpxq “ 0 for all x P E. In other words the function f is real valued. Another
appeal to assertion (4) in Proposition 6.17 then yields

0 ď inf
xPE

pλI ´ Aq fpxq ď λ inf
xPE

fpxq,

and so fpxq ě 0 for all x P E. As a result we have that
`

λI ´ A
˘

f ě 0 implies

f ě 0. Put Rpλq “
`

λI ´ A
˘´1

. In other words g ě 0 implies Rpλqg ě 0. Hence
the resolvent operators Rpλq, λ ą 0, are positivity preserving. Since

Sptqf “ lim
λÑ8

e´λtetλ
2Rpλqf “ lim

λÑ8
e´λt

8
ÿ

n“0

1

n!

`

tλ2Rpλq
˘n

f

it follows that the operators Sptq are positivity preserving. Hence, 0 ď f ď 1,
f P C0pEq, implies Sptqf ě 0, and since Sptq is a contraction, it also follows that
Sptqf ď 1.

This completes the proof of Theorem 6.25. �

We close Section 1 with a presentation of a result on initial value problems, which
is also relevant in system theory. Initial value problems are also called Cauchy
problems. The result is due to J. Ball [9]. The function f belongs to the space
C pr0,8q, Xq.
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6.26. Theorem. Let A be a linear operator with domain and range in a Banach
space X. The following assertions are equivalent:

(i) The operator A generates a strongly continuous semigroup tSptq : t ě 0u;
(ii) The operator A has dense domain, it is closed, and for every x P DpAq

there exists a unique function ux P C1 pr0,8q, Xq such that, for all t ě 0,
uxptq belongs to DpAq, the function px, tq ÞÑ uxptq is continuous and

u1
xptq “ Auxptq ` fptq, uxp0q “ x. (6.29)

(iii) The operator A is closed and for every x P X there exists a unique function
vx P C1 pr0,8q, Xq such that, for all t ě 0, vxptq belongs to DpAq, and

v1
xptq “ x ` Avxptq `

ż t

0

fpsq ds, vxp0q “ 0. (6.30)

(iv) The operator A has dense domain and is closed and for every x P X there
exists a unique weakly continuous function wx, such that, for all x˚ P D pA˚q
the equality

d

dt
⟨wxptq, x˚⟩ “ ⟨x, x˚⟩ ` ⟨wxptq, A˚x˚⟩ `

ż t

0

⟨fpsq, x˚⟩ ds, wxp0q “ 0. (6.31)
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Outline of a proof of Theorem 6.26. (i) ñ (ii). Put uxptq “ Sptqx `
şt

0
Spt ´ sqfpsq ds.

(ii) ñ (iii). Put vxptq “
şt

0
uxpsq ds.

(iii) ñ (iv). Put wxptq “ vxptq.

(iv) ñ (i). Put

Φpt, x, x˚q “
d

dt
⟨wxptq, x˚⟩ ´

d

dt
⟨w0ptq, x˚⟩ . (6.32)

Then prove that there exists a family tSptq : t ě 0u of continuous linear operators
such that

⟨Sptqx, x˚⟩ “ Φpt, x, x˚q “
d

dt
⟨wxptq, x˚⟩ ´

d

dt
⟨w0ptq, x˚⟩ . (6.33)

Finally prove that the family tSptq : t ě 0u is a strongly continuous semigroup with
generator A. All this can be achieved as follows. From our assumptions and defini-
tions, it follows that

⟨Sptqx, x˚⟩ ´ ⟨x, x˚⟩ “
⟨

ż t

0

Spsqxds,A˚x˚
⟩
. (6.34)

From (6.34) we see that the element
şt

0
Spsqxds belongs to DpAq, and that

A

ż t

0

Spsqxds “ Sptqx ´ x.

The semigroup property is a consequence of the identity

w1
xpt1 ` t2q ´ w1

0pt1 ` t2q “ w1
w1

xpt1q´w1
0pt1qpt2q ´ w1

0pt2q. (6.35)

Equality (6.35) can be seen by considering two solutions to the equation in (iv):

w1,xptq “ wxps ` tq ´ wxpsq ´ w0ps ` tq ` w0psq;
w2,xptq “ ww1

xpsq´w1
0psqptq ´ w0ptq.

Put wptq “ w2,xptq ´ w1,xptq. Then w1ptq “ Awptq, and wp0q “ 0. Next consider the
following two equations:

w1
xptq “ x ` Awxptq `

ż t

0

fpsq ds, wp0q “ 0;

pw ` wxq1 ptq “ x ` A pw ` wxq ptq `
ż t

0

fpsq ds, pw ` wxq p0q “ 0.

From the uniqueness in (iv) we get w ` wx “ wx and hence w “ 0. From the latter
we infer v2,xptq “ v1,xptq. As a consequence we obtain the semigroup property:
Sps ` tq “ SpsqSptq. Since Sptqx ´ x “ w1

xptq ´ w1
0ptq ´ x converges weakly to

w1
xp0q ´ w1

0p0q ´ x “ A pwxp0q ´ w0p0qq “ A0 “ 0. It follows that the semigroup
tSptq; t ě 0u is a weakly continuous semigroup. Such a semigroup is automatically

Download free eBooks at bookboon.com



Partial differential equations and operators

218 

Operator semigroup and Markov processes

218 6. OPERATOR SEMIGROUPS AND MARKOV PROCESSES

strongly continuous. Let rA be its generator, and suppose that x belongs to its

domain D
´

rA
¯

. Then

rAx “ lim
tÓ0

Sptqx ´ x

t
“ lim

tÓ0
A

şt

0
Spsqxds

t
“ Ax.

As a consequence A is an extension of rA. Let x be a member of DpAq. Pick λ0

strictly larger than the growth bound of the semigroup tSptq : t ě 0u. Then there

exists x1 P D
´

rA
¯

such that (notice that A extends rA)

pλ0I ´ Aqx “
´

λ0I ´ rA
¯

x1 “ pλ0I ´ Aqx1,

and hence pλ0I ´ Aqx0 “ 0, where x0 “ x ´ x1. Put w1ptq “
eλ0t ´ 1

λ0

x0. Then

w1p0q “ 0 and w1
1ptq “ x0 ` Aw1ptq. Since, in addition, w1

0ptq “ Aw0ptq `
şt

0
fpsq ds,

w0p0q “ 0, we infer

d

dt
pw0ptq ` w1ptqq “ x0 ` A pw0ptq ` w1ptqq `

ż t

0

fpsq ds, w0p0q ` w1p0q “ 0.

Since the function wx0ptq possesses the same property as the function w0ptq `w1ptq,
we infer from (vi) the equality w0ptq ` w1ptq “ wx0ptq and hence

eλ0t ´ 1

λ0

x0 “ wx0ptq ´ w0ptq (6.36)

From (6.36) we obtain, via differentiating with respect to t, Sptqx0 “ exp pλ0tqx0,
t ě 0. But then

}x0} exp pλ0tq ď M exp pωtq }x0} ,
t ě 0, ω ă λ0. This can only be possible if x0 “ 0, and hence x “ x1 belongs

to D
´

rA
¯

. So that, finally, A “ rA. Hence, the proof of Theorem 6.26 is complete

now. �

2. Examples

In this section we present several (interesting) examples of operator semigroups.

2.1. Uniformly continuous semigroups. Let A be a bounded linear oper-

ator, and put Sptq “
8
ÿ

k“0

tkAk

k!
. The family tSptq : t ě 0u is a strongly continuous

semigroup. In fact limtÓ0 }Sptq ´ I} “ 0. From the closed graph theorem it fol-
lows that a strongly continuous semigroup tSptq : t ě 0u is uniformly continuous
(i.e. limtÓ0 }Sptq ´ I} “ 0) if and only if Sptq “ exp ptAq, t ě 0, for some bounded
linear operator A. The sufficiency is easy to establish. The necessity follows from
the closed graph theorem. If limtÓ0 }Sptq ´ I} “ 0, then limλÑ8 }I ´ λRpλq} “ 0.
Hence, for λ ą 0 sufficiently large we get }I ´ λRpλq} ă 1. But then the operator
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λRpλq possesses an everywhere defined inverse. As a consequence the generator A
of tSptq : t ě 0u, which has a closed graph, is everywhere defined. Therefore it is
bounded and hence Sptq “ exp ptAq.

2.2. Self-adjoint semigroups. Let H “ H˚ “
ş8

´ω
ξEpdξq be a self-adjoint

linear operator in a Hilbert spaceH, with lower bound ´ω. Such an operator H gen-
erates the semigroup texp p´tHq : t ě 0u, where exp p´tHq “

ş8
´ω

exp p´tξqEpdξq.
If the operator H possesses a discrete spectrum tλj : j P Nu, then exp p´tHq “
ř8

k“1 exp p´tλjqE tλju. The operators E tλju are the orthogonal projections on the
eigenspaces N pλjI ´ Hq. The semigroup t ÞÑ exp p´tHq, t ě 0, can be extended to
z Ñ exp p´zHq, ℜz ě 0. Hence the semigroup texp p´tHq : t ě 0u extends to an
analytic semigroup on tz P C : ℜz ą 0u. Of course the mappings s ÞÑ exp p´isHq,
s P R, are unitary groups on H.

2.3. Translation group. Let A be the operator A “
d

dx
in C0pRq or in LppRq,

1 ď p ă 8. The corresponding semigroup is given by exp ptAq fpxq “ fpx ` tq,
x P R, t ě 0. This semigroup extends to a group in any of the above spaces.
It is not strongly continuous in the space L8pRq. In fact, a result due to Lotz
(see [1]) says that a semigroup tSptq : t ě 0u is strongly continuous in L8pRq if
and only if its generator is an everywhere defined bounded linear operator (such
semigroups are necessarily uniformly continuous: see Example 2.1). The space R
may be replaced with any locally compact second countable Hausdorff space. Upon
replacing the above mentioned spaces with other spaces on which there exists a
(semi)group action, the translation (semi)groups serve as a source of examples and
counter-examples (compare with the one-sided and two-sided shift in the discrete
setting).

2.4. Gaussian semigroup. Let H0 “ ´1
2
∆ in C0 pRνq, or in Lp pRνq, 1 ď p ă

8. Put

p0,νpt, x, yq “
1

`?
2πt

˘ν exp

˜

´
|x ´ y|2

2t

¸

.

(This function is the so-called heat or Gaussian kernel.) Then ´H0 generates the
semigroup texp p´tH0q : t ě 0u given by

exp p´tH0q fpxq “
ż

p0,νpt, x, yqfpyq dy.

The semigroup property is clear from the equality

p0,νps, x, zqp0,νpt, z, yq “ p0,νps ` t, x, yqp0,ν
ˆ

st

s ` t
,
sy ` tx

s ` t
, z

˙

.
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2.5. Wave operator. In L2p0, 1q we consider the following Cauchy problem or
initial value problem:

B2

Bt2
upt, xq “

B2

Bx2
upt, xq, upt, 0q “ upt, 1q “ 0;

B
Bt
up0, xq “ gpxq, up0, xq “ fpxq.

Put v1pt, xq “ upt, xq, v2pt, xq “
Bu
Bt

pt, xq. Then

B
Bt

ˆ

v1
v2

˙

“
ˆ

0 I
∆ 0

˙ ˆ

v1
v2

˙

,

ˆ

v1p0q
v2p0q

˙

“
ˆ

f
g

˙

. (6.37)

We consider this equation in the space H “ H1
0 p0, 1q ˆ L2p0, 1q, supplied with the

inner-product
Æˆ

v1
v2

˙

,

ˆ

w1

w2

˙∏

H

“
ż 1

0

Bv1pxq
Bx

Bw1pxq
Bx

dx `
ż 1

0

v2pxqw2pxqdx.
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For the notion of H1
0 p0, 1q see Definition 4.38. Put A “

ˆ

0 I
∆ 0

˙

, and put φnpxq “
?
2 sinnπx. A solution to (6.37) is given by the semigroup exp ptAq:

exp ptAq
ˆ

f
g

˙

“

¨

˚

˚

˚

˝

8
ÿ

n“1

?
2

„

⟨f, φn⟩ cosnπt `
1

nπ
⟨g, φn⟩ sinnπt

ȷ

φn

8
ÿ

n“1

?
2 r´nπ ⟨f, φn⟩ sinnπt ` ⟨g, φn⟩ cosnπtsφn

˛

‹

‹

‹

‚

.

Moreover we have
›

›

›

›

exp ptAq
ˆ

f
g

˙›

›

›

›

H

“
›

›

›

›

ˆ

f
g

˙›

›

›

›

H

, pexp ptAqq˚ “ exp p´tAq .

Hence texp ptAq : t ě 0u extends to a unitary group on the Hilbert space H.

2.6. Adjoint semigroups. If A is the generator of the strongly continuous
semigroup tSptq : t ě 0u in the reflexive Banach space X, then its adjoint A˚ gener-
ates the strongly continuous semigroup tSptq˚ : t ě 0u in the Banach space X˚. If
X is not reflexive, then then tSptq˚ : t ě 0u need not be strongly continuous, even if
tSptq : t ě 0u is. Many semigroups, that are strongly continuous in L1 pRνq, possess
adjoints in L8 pRνq, which are not strongly continuous. (By Lotz’ result, generators
of strongly continuous semigroups in L8pRνq have to be bounded: see [5].)

2.7. Dyson-Phillips expansion. If the operator A generates the semigroup

tSptq : t ě 0u ,

then A ` B, where B is bounded linear operator, generates the semigroup:

t ÞÑSptq`
8
ÿ

n“1

ż

0ăs1ă¨¨¨ăsnăt

ż

ds1 . . . dsnSps1qBSps2 ´ s1q . . . Spsn ´ sn´1qBSpt ´ snq.

This is the Dyson-Phillips expansion of exp ptpA ` Bqq. This formula is an iteration
of the Duhamel’s or variation of constants formula:

exp ptpA ` Bqq “ exp ptAq `
ż t

0

exp psAqB exp ppt ´ sqpA ` Bqq ds.

Extensions to non-necessary bounded operators B are possible.

2.8. Stone’s theorem. A family of unitary operators tUptq : t P Ru on a Hilbert
space is a strongly continuous group if and only if there exists a self-adjoint linear
operator H “ H˚ “

ş

ξEpdξq such that Uptq “ exp pitHq “
ş

exp pitξqEpdξq.
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2.9. Convolution semigroups of measures. Let tµs : s ě 0u be a vaguely
continuous semigroup of Borel probability measures on Rν . This means the follow-
ing:

(i) µ0 “ δ0 (Dirac measure at 0, the origin of Rν) and
µs`tpBq “

ť

1Bpx ` yq dµspxq dµtpyq;
(ii) limtÓ0

ş

fpxq dµ0pxq “
ş

fpxq dδ0pxq “ fp0q, for all f P C0 pRνq;
(iii) µt pRνq “ 1.

Then there exists a continuous negative definite function ψ on Rν (Rν and its dual
group are identified) such that

pµtpξq :“
ż

exp p´i ⟨x, ξ⟩q dµtpxq “ exp p´tψpξqq , ξ P Rν , t ě 0.

Put Sptqfpxq “
ş

fpx´yq dµtpyq. The semigroup tSptq : t ě 0u is a Feller semigroup
on C0 pRrνq. Every operator Sptq, t ě 0, commutes with translations on Rν : τx ˝
Sptq “ Sptq ˝ τx. Here τxfpyq “ fpy ´ xq, x, y P Rν . The corresponding Markov
processes are the Lévy processes. Particular examples are

(i) µtpBq “
1

`?
2πt

˘ν

ż

B

exp

˜

´
|y|2

2t

¸

dy, B Ď Rν , Borel;

(ii) µtpBq “
Γ ppν ` 1q{2q

πpν`1q{2

ż

B

t
`

t2 ` |y|2
˘pν`1q{2 dy, B Ď Rν , Borel.

The first semigroup is called the heat or Gaussian semigroup, the second one is
the Cauchy or Poisson semigroup. The corresponding negative-definite functions
are respectively ψpξq “ 1

2
|ξ|2 (Gaussian semigroup), and ψpξq “ 1

2
|ξ| (Poisson

semigroup).

2.10. Semigroups acting on operators. This is a non-commutative version
of the example in Subsection 2.9. Again let tµt : t ě 0u be a vaguely continuous
convolution semigroup of Borel probability measures on R. Let H0 and H1 be self-
adjoint Hamiltonians in the Hilbert spaces H0 respectively H1. Define for T P
L pH1,H0q, the operator exp p´tAqT via the equality:

exp p´tAqT “
ż

exp p´iτH0qT exp piτH1q dµtpτq.

On appropriate spaces of linear operators (Hilbert-Schmidt operators, trace class op-
erators, compact operators) the family texp p´tAq : t ě 0u is a strongly semigroup.
If the spaces H0 and H1 are infinite dimensional, it is not strongly continuous on the
space of bounded linear operators L pH1,H0q. This example is related to quantum
stochastic processes. In general the operators exp p´tAq is not completely positive.
Only semigroups consisting of completely positive operators correspond to quantum
stochastic processes.
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2.11. Quantum dynamical semigroups. A C˚-algebra M is called a W ˚-
algebra (or von Neumann algebra) if it is a dual space as a Banach space, i.e. if
there exists a Banach space M˚ such that pM˚q˚ “ M. A Banach space M˚ whose
dual is M is called a predual. Let H be a Hilbert space. Then L pHq, the space
of al bounded linear operators on H is a W ˚-algebra. Its predual L pHq˚ consists
of those linear functionals f : L pHq Ñ C for which there exist two sequences pxnqn
and pynqn in H such that

ř8
n“1 }xn}2 ă 8,

ř8
n“1 }yn}2 ă 8, and such that

fpT q “
8
ÿ

n“1

⟨Txn, yn⟩ , T P L pHq .

LetA1 andA2 be C
˚-algebras, and let Φ : A1 Ñ A2 be an (algebra) homomorphism,

i.e., suppose that Φ pλxq “ λΦpxq, Φ px ` yq “ Φpxq `Φpyq, Φ pxyq “ ΦpxqΦpyq, for
λ P C, x, y P A1. The homomorphism Φ is called a ˚-homomorphism, if, in addition,
it satisfies Φ px˚q “ Φpxq˚, x P A1.

6.27. Definition. Let M1 and M2 be W ˚-algebras with preduals M1˚ and M2˚
respectively, and let Φ : M1 Ñ M2 be ˚-homomorphism. Then Φ is called a W ˚-
homomorphism provided that it is continuous if M1 is endowed with the topology
σ pM1,M1˚q, and if M2 is endowed with the topology σ pM2,M2˚q.

6.28. Proposition. Let M1 and M2 be W ˚-algebras with preduals M1˚ and M2˚
respectively, and let Φ : M1 Ñ M2 be W ˚-homomorphism. Then the image Φ pM1q
is σ pM2,M2˚q-closed, and so Φ pM1q is a W ˚-subalgebra of M2.

6.29. Definition. Let A be a C˚-algebra. A C˚-representation of A is a ˚-homo-
morphism π of A in L pHq for some Hilbert space H. This C˚-representation is
denoted by pπ,Hq.

An important representation theorem for C˚-algebras reads as follows.

6.30. Theorem. A C˚-algebra A is C˚-isomorphic and to a uniformly closed self-
adjoint subalgebra of L pHq for some Hilbert space H. Denote this C˚-representation
by pπ,Hq. Then }πpaq} “ }a}, a P A.

6.31. Definition. Let M be a W ˚-algebra. A W ˚-representation of M is a W ˚-
homomorphism π of A in L pHq for some Hilbert space H. This W ˚-representation
is denoted by pπ,Hq.

A representation theorem for W ˚-algebras reads as follows.

6.32. Theorem. Let M be a W ˚-algebra. Then M has a faithful W ˚-representation
tπ,Hu; i.e. the representation π is such that πpaq “ 0 if and only if a “ 0. Therefore
M is W ˚-isomorphic to a weakly closed self-adjoint subalgebra of L pHq for some
Hilbert space H. The image π pMq is then a W ˚-algebra embedded in L pHq, and
π pMq is W ˚-isomorphic to M.
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Here a subset V of L pHq is called weakly closed, if it is closed for the topology
induced by the semi-norms T ÞÑ |⟨Tx, y⟩|, T P L pHq, x, y P H. The subset V is
called self-adjoint, provided T P V implies T ˚ P V . For much more details about
C˚- and W ˚-algebras the reader is referred to Sakai [116].

A quantum dynamical semigroup tSptq : t ě 0u is usually defined on a von Neumann
algebra M, or a W ˚-algebra. It possesses the following properties:

(i) Semigroup property:

Sp0qpaq “ a, Spt ` sqpaq “ Sptq
`

Spsqpaq
˘

, for all a P M;

(ii) The semigroup tSptq : t ě 0u is completely positive in the sense that for ev-
ery t ě 0 and for every finite choice of elements belonging to M, x1, . . . , xn;
y1, . . . , yn, the sum

n
ÿ

j,k“1

y˚
j Sptq

`

x˚
jxk

˘

yk

is a positive element of M;
(iii) For every t ě 0 the operator Sptq is σ-weakly continuous;
(iv) For every a P M fixed, the map t ÞÑ Sptqpaq is continuous with respect to

the σ-weak topology on M.
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The σ-weak continuity is defined via the predual of the W ˚-algebra M. Realize
the von Neumann algebra M via the Gelfand-Naimark-Segal construction as a C˚-
algebra of operators acting on a Hilbert space H. Let A be its pre-dual under the
duality map:

pa, xq ÞÑ trace px˚aq , a P A, x P M.

The trace of a trace class operator T : H Ñ H is defined by

tracepT q “
8
ÿ

j“1

⟨Tξj, ξj⟩ , (6.38)

where the sequence pξj : j P Nq is any complete orthonormal sequence of vectors in
H. For trace class operators the sum in (6.38) does not depend on the particular
choice of the complete orthonormal sequence pξj : j Pq in H. The operator T is
called a trace class operator if its trace norm }T }trace, defined by

}T }trace “ trace p|T |q

is finite. Here |T | “
?
T ˚T is the square root of the operator T ˚T : see Theorem

5.41. More details on quantum diffusions can be found in: [16, 67, 92, 96]. Another
book of interest is Alicki and Lendi [4].

6.33. Remark. Property (ii) is not shared by Cauchy semigroups. Indeed it should
be thought of Cauchy semigroups as an image under a Cauchy (or Poisson) trans-
form. The interesting fact is that this transform associates a generator with the
resulting semigroup. As far as we know, the ideas of Poisson and Weierstrass trans-
forms have been studied for the first time by Hille in 1935, but they still enjoy
interesting unexplored properties!

6.34. Remark. There are situations, where instead of the logistical law Cauchy
processes might be more appropriate:

exp p´tAqT :“
t

π

ż 8

´8

1

τ 2 ` t2
V0piτqTV1p´iτq dτ

“ ECauchy rV0 piXptqqTV1 p´iXptqqs . (6.39)

The relevant formula is the next one. In [141] the central identity was

exp

ˆ

´
t

2
A

˙

DptqpT q “
ż t

0

du exp p´uAqV0pt{2qTV1pt{2q.

The basic role of this equality in [141] is taken over by the (important) equality
in (6.72) in the present book. It is quite well possible, that with the semigroup in
Formula (6.39) there can be associated a quantum diffusion. Instead of considering
the evolution τ Ñ V0piτqTV1p´iτq one should look at one in the space H0 ˆ H1

given by τ ÞÑ V piτq
ˆ

I T
0 I

˙

V p´iτq, where V piτq, τ P R, is the operator matrix

V piτq “
ˆ

V0piτq 0
0 V1piτq

˙

. Here V0piτq “ e´iτH0 “
ş

e´iτξE0pdξq and V1ptq “
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e´iτH1 “
ş

e´iτηE1pdηq, where H0 “
ş

σpH0q λ dE0pλq, and H1 “
ş

σpH0q λ dE1pλq are

the spectral decompositions of the (self-adjoint) Hamiltonians H0 and H1.

6.35. Remark (Connections with double Stieltjes operator integrals). In [17, 18,
19, 20] Birman and Solomyak make a detailed study of operators of the form

T ÞÑ
ż ż

φpξ, ηqE0pdξqTE1pdηq

where φ is an appropriate function. For example we have

expp´tAqT “
ż ż

exp p´t |ξ ´ η|qE0pdξqTE1 pdηq ;

DptqT “
ż ż

expp´tηq ´ expp´tξq
ξ ´ η

E0pdξqTE1pdηq.

Here E0 and E1 are, not necessarily commuting resolutions of the identity: see 5.27
in Chapter 5. In [155], pp 225–228 Yafaev gives some information as well on these
so-called double Stieltjes operator integrals and so do the authors of [55] on page
66.

2.12. Semigroups for system theory. Let A0 be the generator of the semi-
group tS0ptq : t ě 0u in the Banach space X0 and let A1 be the generator of the
semigroup tS1ptq : t ě 0u in the Banach space X1. For an operator B P L pX1, X0q
define the operator DptqB by the formula:

DptqB “
ż t

0

S0puqBS1pt ´ uq du.

The family

"ˆ

S0ptq DptqB
0 S1ptq

˙

: t ě 0

*

constitutes a strongly continuous semigroup

of continuous linear operators on the space H0 ˆ H1. Its generator is given by the

formula:

ˆ

A0 B
0 A1

˙

. This sort of construction is often used in system theory. See

Remark 6.86 as well. For more details see e.g. [30, 31, 32].

2.13. Semigroups and pseudo-differential operators. A great number of
(elliptic) pseudo-differential operators generate strongly continuous semigroups.

Some lower order (ď 2) pseudo-differential operators generate Feller semigroups. In
fact, let ψ be a non-negative definite function, like ψpξq “ |ξ|α, ξ P Rν , 0 ă α ď 2
fixed. Then the corresponding pseudo-differential operator may be defined by

Afpxq “
1

p2πqν

ĳ

exp pi ⟨x ´ y, ξ⟩qψpξqfpyq dy dξ.

Then, some closure of A generates a Lévy process. If the symbol ψ also depends on
the position x, then the situations becomes much more complicated: see Jacob [29].
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2.14. Quadratic forms and semigroups. There exist a one-to-one corre-
spondence between the family of lower bounded, closed quadratic forms and strongly
continuous semigroups that consist of form positive operators. Certain quadratic
forms (closed Dirichlet forms) yield strongly continuous semigroups, consisting of
contraction operators, which are form positive and preserve the positivity in a space
like L2pE,mq, where m is a Radon measure on the topological space E. With such
quadratic one may associate strong Markov processes. In our approach we will start
with (generators of) Feller semigroups instead of Dirichlet forms. See Subsection
5.2 for some information on symmetric quadratic forms.

2.15. Ornstein-Uhlenbeck semigroup. Let W be a separable Banach space,
supplied with its Borel field BpW q. A probability measure µ on pW,BpW qq is called
a Gaussian measure if it possesses the following property:

For every n P N, and for every finite choice ℓ1, . . . , ℓn P W ˚ (the topological
dual of W , there exists m P Rn, and there exists an n ˆ n matrix v “
pvjkqnj,k“1, v symmetric and v ě 0, such that

ż

W

exp

˜

´i
n

ÿ

j“1

cjℓjpwq

¸

dµpwq “ exp

ˆ

i ⟨m, c⟩ ´
1

2
⟨vc, c⟩

˙

,

for all choices pc1, . . . , cnq P Rn.
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In other words the vector pℓ1, . . . , ℓnq P pW ˚qn is a Gaussian vector on the probability
space pW,BpW qq. We also suppose that the support of µ coincides with W . Suppose
m “ 0 (for all choices ℓ1, . . . , ℓn in W ˚). Then there exists a unique Hilbert space
pH, ⟨¨, ¨⟩Hq, with H Ă W , such that

(i) The embedding j : H ãÑ W is continuous and j pHq is dense in W ;
(ii) For every ℓ P W ˚ the following equality is valid:

ż

exp p´iℓpwqq dµpwq “ exp

ˆ

´
1

2
}ℓ}2H

˙

. (6.40)

The equality in (6.40) is equivalent with saying that µ is a Gaussian measure for
which ⟨ℓ, ℓ1⟩H “

ş

ℓpwqℓ1pwq dµpwq for all ℓ and ℓ1 P W ˚. The triple pW,H, µq is
called an abstract Wiener space. Notice that W ˚ Ă H˚ – H Ă W . A concrete
example is given by the r-dimensional Wiener space W “ W r

0 , given by

W r
0 “ tw P C pr0, 1s,Rrq , wp0q “ 0u , supplied with the supremum norm;

H “
"

h P W : h “
`

h1, . . . , hr
˘

, for every 1 ď j ď r the function hj is

absolutely continuous with respect to the Lebesgue measure,

with
dhj

dt
“ 9hj and

ż 1

0

9hjpsq2ds ă 8
*

.

The space H is then a separable Hilbert space with inner-product

⟨h, g⟩H “
r

ÿ

j“1

ż 1

0

9hjpsq 9gjpsq ds, h, g P H.

Notice that H is isomorphic to L2 pr0, 1s,Rrq. On the spaces Lp pW,BpW q, µq “
LppW,µq the Ornstein-Uhlenbeck semigroup tSptq : t ě 0u is defined as follows

rSptqF s pwq “
ż

W

F
´

exp p´tqw `
a

1 ´ expp´2tqu
¯

dµpuq, F P LppW,µq.

Let Jn, n P N, be the orthogonal projection in L2pW,µq on the subspace of polyno-
mials of degree exactly equal to n (if Pn denotes the subspace of L2pW,µq consisting
of polynomials of degree less than or equal to n, then Jn projects on the subspace
Pn X PK

n´1). The operator Sptq is also given by

SptqF “
8
ÿ

n“0

exp p´ntq JnF.

(The decomposition F “
ř8

n“0 JnF in the space L2pW,µq is called the Itô-Wiener
decomposition.) The generator A of the present Ornstein-Uhlenbeck semigroup in
L2pW,µq takes the following form

AF “ ´
8
ÿ

n“0

nJnF, for F P DpAq “

#

F P L2pW,µq :
8
ÿ

n“0

n2 }JnF }2L2pW,µq ă 8

+

.
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Let pW,H, µq be a Wiener space and let pS,BpSqq be a measurable space. A mea-
surable mapping F : W Ñ S is called an S-valued Wiener functional. The Wiener
functional F is called p-integrable, 1 ď p ă 8, if S is a Banach space and if the
mapping w ÞÑ }F pwq}S belongs to LppW,µq. A Winer functional F : W Ñ R is
called a polynomial if the following holds true:

for every n P N, there exists a polynomial p “ ppx1, . . . , xnq in n variables

and there exist ℓ1, . . . , ℓn P W ˚,

such that F pwq “ p pℓ1pwq, . . . , ℓnpwqq , for all w P W.

The degree of p is that of F . We may always suppose that the functionals ℓj,
1 ď j ď n, are orthogonal in H: ⟨ℓj, ℓk⟩H “ δj,k. The collection of polynomials of
degree ď n is a closed subspace of L2pW,µq. The collection of all polynomials is
dense in L2pW,µq. The Ornstein-Uhlenbeck semigroup plays a fundamental role in
Malliavin calculus (or stochastic calculus of variations): [11, 21, 22, 84, 82, 83,
89, 90, 135, 152, 157]. For a relatively simple introduction see e.g. Friz [52].

2.16. Evolutions and semigroups. Let tV pr, sq : r ď su be an evolutionary
system on a Banach space X. Basically this means that V pr, rq “ I, V pr, sqV ps, tq “
V pr, tq, r ď s ď t (algebraic properties). We also assume the following continuity
properties:

s- lim
tÓs

V pt, sq “ V ps, sq “ I “ lim
rÒs

V ps, rq.

This system, which is not necessarily time homogeneous, can be made homogeneous
in time on spaces like C0 pR, Xq. Define the semigroup tSptq : t ě 0u as follows:

rSptqf s prq “ V pr, r ` tqfpr ` tq, f P C0pR, Xq.

3. Markov processes

We begin with a theorem. Some more explanation will follow later.

6.36. Theorem. The following assertion hold true:

(a) (Blumenthal and Getoor [37]) Let tSptq : t ě 0u be a Feller semigroup in
C0pEq. Then there exists a strong Markov process (in fact a Hunt process)

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ , such that

rSptqf s pxq “ Ex rfpXptqqs , f P C0pEq, t ě 0.

Moreover this Markov process is normal ( i.e. Px rXp0q “ xs “ 1), is right
continuous ( i.e. limtÓsXptq “ Xpsq, Px-almost surely), possesses left limits
in E on its life time ( i.e. limtÒs Xptq exists in E, whenever ζ ą s), and is
quasi left continuous ( i.e. if pTn : n P Nq is an increasing sequence of pFtq-
stopping times, XpTnq converges Px-almost surely to XpT q on the event
tT ă 8u, where T “ supnPN Tn).

Download free eBooks at bookboon.com



Partial differential equations and operators

230 

Operator semigroup and Markov processes

230 6. OPERATOR SEMIGROUPS AND MARKOV PROCESSES

(b) Conversely, let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ
be a strong Markov process which is normal, right continuous, and possesses
left limits in E on its life time. Put rSptqf s pxq “ Ex rfpXptqqs, for f a
bounded Borel function, t ě 0, x P E. Suppose that Sptqf belongs to C0pEq
for f belonging to P C0pEq, t ě 0. Then tSptq : t ě 0u is a Feller semigroup.

(c) Let A be the generator of a Feller semigroup in C0pEq and let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ
be the corresponding Markov process. For every f P DpAq and for every
x P E, the process

t ÞÑ fpXptqq ´ fpXp0qq ´
ż t

0

AfpXpsqq ds

is a Px-martingale for the filtration pFtqtě0, where each σ-field Ft, t ě 0, is
(some closure of) σ pXpuq : u ď tq. In fact the σ-field Ft may taken to be
Ft “

Ş

sąt σ pXpuq : u ď sq. It is also possible to complete Ft with respect
to Pµ, given by PµpAq “

ş

PxpAq dµpxq. For Ft the following σ-field may be
chosen:

Ft “
č

µPP pEq

č

sąt

tPµ-completion of σ pXpuq : u ď squ .
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(d) Conversely, let A be a densely defined linear operator with domain DpAq
and range RpAq in C0pEq. Let pPx : x P Eq be a unique family of probability
measures, on an appropriate measurable space (path space) pΩ,Fq with an
appropriate filtration pFtqtě0, such that, for all x P E, Px rXp0q “ xs “ 1,
and such that for all f P DpAq the process

t ÞÑ fpXptqq ´ fpXp0qq ´
ż t

0

AfpXpsqq ds

is a Px-martingale with respect to the filtration pFtqtě0. Then the opera-
tor A possesses a unique extension A0, which generates a Feller semigroup
in C0pEq, provided that Px rXptq P E, Xpsq P Es “ Px rXptq P Es for all
x P E, and all 0 ď s ă t. Next, suppose that the path space Ω is the Sko-
rohod space D

`

r0,8q, E△
˘

which consists of right-continuous paths, with

left limits ω with values in E△ with the property that Xptqpωq P E, and
0 ď s ă t implies Xpsqpωq P E. In addition, suppose that the state variables
and translation operators are given by: Xptqpωq “ ωptq, ω P D

`

r0,8q, E△
˘

,
and ϑtpωqpsq “ ωps ` tq. The process

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,EquxPE

is then a strong Markov process.
(e) Suppose that the densely defined linear operator A (with domain and range

in C0pEq) possesses the Korovkin property, and suppose that A extends to a
generator of a Feller semigroup. Then the martingale problem is well posed
for the operator A, and A possesses a unique extension A0, which generates
a Feller semigroup. Moreover the Markov process associated with A0 solves
the martingale problem uniquely for A.

6.37. Definition. (a) The martingale problem is said to be well posed for the
operator A (or the martingale problem is said to uniquely solvable for the
operator A), if for every x P E there exists a unique probability measure
Px on the Skorohod space Ω “ D

`

r0,8s, E△
˘

(cadlag sample paths), such
that for every f P DpAq the process

t ÞÑ fpXptqq ´ fpXp0qq ´
ż t

0

AfpXpsqq ds

is Px-martingale for the filtration pFtqtě0 :“
`

σ pXpuq : u ď tqtě0

˘

, and such
that Px rXp0q “ xs “ 1.

(b) The operator A (with domain and range in C0pEq) is said to possess the
Korovkin property, if there exists λ0 ą 0 such that fore every x0 P E, the
space S pλ0, x0q, defined by

S pλ0, x0q “
␣

g P C0pEq : for every ε ą 0 the inequality

sup th1px0q : pλ0I ´ Aqh1 ď ℜ g ` ε, h1 P DpAqu
ě inf th2px0q : pλ0I ´ Aqh2 ě ℜ g ´ ε, h2 P DpAqu

(

,
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coincides with C0pEq. Let D be a subspace of C0pEq with the property
that, for every x0 P E, the space Spx0q, defined by

S px0q “
␣

g P C0pEq : for every ε ą 0 the inequality

sup th1px0q : h1 ď ℜ g ` ε, h1 P Du
ě inf th2px0q : h2 ě ℜ g ´ ε, h2 P DpAqu

(

,

coincides with C0pEq, then such a subspace D could be called a Korovkin
subspace of C0pEq.

6.38. Remark. For Ω we may take the Skorohod space Ω “ D
`

r0,8s, E△
˘

. So a
sample ω belongs to Ω if it possesses the following properties:

(i) ω is a mapping from r0,8s to E△ “ E Y t△u; ωp0q P E.
(ii) ω is right continuous and possesses left limits in E on the stochastic interval

r0, ζpωqq, in the sense that limtÒs ωpsq exists in E for

s ă ζpωq :“ inf tt ą 0 : ωptq “ △u .

Moreover, if ωpsq “ △ and if t ě s, then ωptq “ △.
(iii) The set E△ is the one-point compactification of E, or, if E is compact, △

is an isolated point of E△ “ E Y t△u.

6.39. Remark. The collection tFt : t ě 0u is a filtration: if s ă t, then Fs Ă Ft. Ev-
ery σ-field Ft is an appropriate completion (extension) of the σ-field σ pXpuq : u ď tq.
The family tFt : t ě 0u is continuous from the right: Ft “

Ş

sąt Fs. Since we con-
sider more or less the internal history tFt : t ě 0u, t ě 0, we suppress the notation
Ft, t ě 0, in our symbolism of our Markov process:

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ .

Authors often write things like
␣

pPxqxPE , pXptqqtě0

(

, when the other items are clear
from the context.

6.40. Remark. The mappings Xptq : Ω Ñ E△ are called state variables; E is
referred to as the state space (sometimes stochastic state space). Put

ζ “ inf ts ą 0 : Xpsq “ △u .

Then ζ is called the life time of the process tXptq : t ě 0u.
The motion tXptq : t ě 0u is Px-almost surely right continuous and possesses left
limits in E on its life time:

(i) limsÓtXpsq “ Xptq, (right continuity);
(ii) s ě t, Xptq “ △, implies Xpsq “ △, (△ is cemetery);
(iii) limsÒtXpsq “ Xpt´q P E, t ă ζ, (left limits in E on its life time).

These assertions hold Px-almost surely for all x P E. The probability P△ may be
defined by P△pAq “ δω△pAq, where ω△psq “ △, s ą 0.
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6.41. Remark. The shift or translation operators ϑs : Ω Ñ Ω, s ě 0, possess the
property that Xptq ˝ ϑs “ Xpt ` sq, Px-almost surely, for all x P E and for all s
and t ě 0. This is an extremely important property. For example fpXptqq ˝ ϑs “
fpXpt ` sqq, f P C0pEq, s, t ě 0. If Ω is the Skorohod space Ω “ D

`

r0,8s, E△
˘

,
then Xptqpωq “ ωptq “ Xpt, ωq “ ωptq, ϑtpωqpsq “ ωps ` tq, ω P Ω.

6.42. Remark. For every x P E, the measure Px is a probability measure on F with
the property that Px rXp0q “ xs “ 1. So the process starts at Xp0q “ x, Px-almost
surely, at t “ 0. This is the normality property.

6.43. Remark. The Markov property can be expressed as follows:

Ex

“

fpXps ` tqq
ˇ

ˇ Fs

‰

“ Ex

“

fpXps ` tqq
ˇ

ˇ σpXpsqq
‰

“ EXpsq rY s , (6.41)

Px-almost surely for all f P C0pEq and for all s and t ě 0. Of course, the expres-
sion E

“

Y
ˇ

ˇ F
‰

denotes conditional expectation. The meaning of Ft is explained in
Remark 6.39. Let Y : Ω Ñ C be a bounded random variable. This means that Y
is measurable with respect to the field generated by tXpuq : u ě 0u. The Markov
property is then equivalent to

Ex

“

Y ˝ ϑs

ˇ

ˇ Fs

‰

“ EXpsq rY s , (6.42)

Px-almost surely for all random variables Y and for all s ě 0. Notice that, in-
tuitively speaking, Fs is the information from the past, σ pXpsqq is the informa-
tion at the present, and Y ˝ ϑs is measurable with respect to some completion of
σ tXpuq : u ě su, the information from the future.
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Put P pt, x, Bq “ Px rXptq P Bs. Then Ex rfpXptqqs “
ş

fpyqP pt, x, dyq, f P C0pEq.
Moreover (6.41) is equivalent to (6.42) and to

Ex

«

n
ź

j“1

fjpXptjqq

ff

(6.43)

“
ĳ

. . .

ż n
ź

j“1

fjpxjqP pt1, x, dx1qP pt2 ´ t1, x1, dx2q . . . P ptn ´ tn´1, xn´1, dxnq ,

for all 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ă 8 and for all f1, . . . , fn in C0pEq.

6.44. Remark. Next we explain the strong Markov property. Since the paths
tXptq : t ě 0u are right continuous Px-almost surely our Markov process is a strong
Markov process. Let S : Ω Ñ 8 be a stopping time meaning that for every t ě 0 the
event tS ď tu belongs to Ft. This is the same as saying that the process t ÞÑ 1rSďts
is adapted. Let FS be the natural σ-field associated with the stopping time S, i.e.

FS “
č

tě0

tA P F : A X tS ď tu P Ftu .

Define ϑSpωq by ϑSpωq “ ϑSpωqpωq. Consider FS as the information from the past,

σ
`

XpSq
˘

as information from the present, and

σ tXptq ˝ ϑS : t ě 0u “ σ tXpt ` Sq : t ě 0u
as the information from the future. The strong Markov property can be expressed
as follows:

Ex rY ˝ ϑS|FSs “ EXpSq rY s , Px-almost surely (6.44)

on the event tS ă 8u, for all bounded random variables Y , for all stopping times
S, and for all x P E. One can prove that under the ”cadlag” property events like
tXpSq P B, S ă 8u, B Borel, are FS-measurable. The passage from (6.44) to (6.42)
is easy: put Y “ fpXptqq and Spωq “ s, ω P Ω. The other way around is much
more intricate and uses the cadlag property of the process tXptq : t ě 0u. In this
procedure the stopping time S is approximated by a decreasing sequence of discrete
stopping times pSn “ 2´nr2nSs : n P Nq. The equality

Ex rY ˝ ϑSn |FSns “ EXpSnq rY s , Px-almost surely, (6.45)

is a consequence of (6.42) for a fixed time. Let n tend to infinity in (6.45) to
obtain (6.44). The ”strong Markov property” can be extended to the ”strong time
dependent Markov property”:

Ex

“

Y pS ` T ˝ ϑS, ϑSq
ˇ

ˇ FS

‰

pωq “ E
X

`

Spωq
˘ rω1 ÞÑ Y pSpωq ` T pω1q , ω1qs ,

Px-almost surely on the event tS ă 8u. Here Y : r0,8q ˆ Ω Ñ C is a bounded
random variable. The cartesian product r0,8qˆΩ is supplied with the product field
B b F; B is the Borel field of r0,8q and F is (some extension of) σ pXpuq : u ě 0q.
Important stopping times are ”hitting times”, or times related to hitting times:

T “ inf
␣

s ą 0 : Xpsq P E△zU
(

, and S “ inf

"

s ą 0 :

ż s

0

1EzUpXpuqq du ą 0

*

,
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where U is some open (or Borel) subset of E△. This kind of stopping times have the
extra advantage of being terminal stopping times, i.e. t`S˝ϑt “ S Px-almost surely
on the event tS ą tu. A similar statement holds for the hitting time T . The time
S is called the penetration time of EzU . Let p : E Ñ r0,8q be a Borel measurable
function. Stopping times of the form

Sξ “ inf

"

s ą 0 :

ż s

0

p
`

Xpuq
˘

du ą ξ

*

serve as a stochastic time change, because they enjoy the equality:

Sξ ` Sη ˝ ϑSξ
“ Sξ`η, Px-almost surely on the event tSξ ă 8u .

As a consequence operators of the form Spξqfpxq :“ Ex rf pX pSξqqs, f a bounded
Borel function, possess the semigroup property. Also notice that S0 “ 0, provided
that the function p is strictly positive.

6.45. Remark. A very important example of a strong Markov process is Brownian
motion. Let E be the space Rν and let Ω :“ C pr0,8q,Rνq, equipped with the
product field F, or even better, with the Borel field coming from the topology of
uniform convergence on compact subsets of r0,8q. Put

p0,νpt, x, yq “
1

`?
2πt

˘ν exp

˜

´
|x ´ y|2

2t

¸

.

Define, for x0 P Rν , the probability measure Px0 on F via the identity

Ex0

«

n
ź

j“1

fjpXptjqq

ff

“
ż

. . .

ż

dx1 . . . dxn

n
ź

j“1

fjpxjq
n

ź

j“1

p0,νptj ´ tj´1, xj´1, xjq,

(6.46)
where t0 “ 0 and f1, . . . , fn are bounded Borel measurable functions on Rν . The
times t0, t1, . . . , tn satisfy 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn ă 8. Moreover Xptqpωq “ ωptq,
rϑspωqs ptq “ ωps` tq, s, t ě 0, ω P Ω. It is a not so trivial theorem that there exists
a genuine probability measure Px on Ω such that its finite dimensional distributions
are given by (6.46). The corresponding semigroup tSptq : t ě 0u is the classical
Gaussian or heat semigroup:

Sptqfpxq “ exp p´tH0q fpxq “
ż

p0,νpt, x, yqfpyq dy.

Its generator is ´H0 “ 1
2
∆ in C0 pRνq or in Lp pRνq, 1 ď p ă 8, as the case may

be. The family tSptq : t ě 0u is a semigroup in L8 pRνq. However it is not strongly
continuous there; it is only weak˚ continuous. The corresponding Markov process is
called ν-dimensional Brownian motion. A nice classical application of ν-dimensional
Brownian motion is its use in potential theory. A specific example is a description
of the solution for the following Dirichlet problem:

$

&

%

1
2
∆u “ 0, in U ;

lim
xÑb
xPU

upxq “ fpbq, b P BU.
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Here BU is the boundary of the open set U and f : BU Ñ R is a bounded continuous
function. Put T “ inf tt ą 0 : Xptq P RνzUu and write

upxq “ Ex rfpXpT qq : T ă 8s .
Here tPx, XptquxPRν is ν-dimensional Brownian motion. Then the function u is
harmonic on U . If Pb rT “ 0s “ 1, then

lim
xÑb
xPU

Ex rfpXpT qq, T ă 8s “ Eb rfpXpT qq, T ă 8s

“ Eb rfpXp0qq, T ă 8s “ Eb rfpbq, T “ 0s “ fpbqPb rT “ 0s “ fpbq.
From Blumenthal’s zero-one law, it follows that Pb rT “ 0s “ 0 or 1. It equals 1 if b
is a regular point of RνzU . The set of points that are irregular constitute a small (a
polar) subset of RνzU . In particular if the boundary of U is C1, then every point of
Rν is regular. We say that 1

2
∆ generates Brownian motion.

6.46. Remark. The notion of a Cm-valued martingale reads as follows. Let pΩ,F,Pq
be a probability space and let tFt : t ě 0u be a filtration in F on Ω. So that
Ft1 Ď Ft2 Ď F, for 0 ď t1 ď t2. Let tMptq : t ě 0u be an adapted process in
L1 ppΩ,F,Pq ,Cmq. This means that, for every t ě 0, Mptq is Ft-measurable and, of

course, E p|Mptq|q “ E
´

b

řm
j“1 |Mjptq|2

¯

ă 8. Here, Mptq “ pM1ptq, . . . ,Mmptqq.
If E

“

Mptq
ˇ

ˇ Fs

‰

“ Mpsq, P-almost surely for all t ě s, then the family tMptq : t ě 0u
is called a martingale with respect to P and the filtration tFt : t ě 0u.
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6.47. Remark. Let A be the generator of the Feller semigroup tSptq : t ě 0u and let
tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ be the corresponding strong Markov

process. Fix f P DpAq and put Mf ptq “ fpxptqq ´ fpXp0qq ´
şt

0
AfpXpsqq ds. Then,

for all x P E, the process tMf ptq : t ě 0u is a Px-martingale. A proof reads as follows
(t ą s):

Ex

“

Mf ptq
ˇ

ˇ Fs

‰

´ Mf psq “ Ex

“

Mf ptq ´ Mf psq
ˇ

ˇ Fs

‰

“ Ex

„

fpXptqq ´ fpXpsqqq ´
ż t

s

AfpXpuqq du
ˇ

ˇ Fs

ȷ

“ Ex

„ˆ

fpXpt ´ sqq ´ fpXp0qqq ´
ż t´s

0

AfpXpuqq du
˙

˝ ϑs

ˇ

ˇ Fs

ȷ

(Markov property)

“ EXpsq

„

fpXpt ´ sqq ´ fpXp0qqq ´
ż t´s

0

AfpXpuqq du
ȷ

“ EXpsq rMf pt ´ sqs .

So fix z P E. By the fundamental relation between the semigroup tSptq : t ě 0u and
the Markov process tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ we get

Ez rMf pt ´ sqs “ Ez rfpXpt ´ sqqs ´ Ez rfpXp0qqs ´
ż t´s

0

Ez rAfpXpuqqs du

“ rSpt ´ sqf s pzq ´ fpzq ´
ż t´s

0

rSpuqAf s pzq du

“ rSpt ´ sqf s pzq ´ fpzq ´
ż t´s

0

B
Bu

rSpuqf s pzq du

“ rSpt ´ sqf s pzq ´ fpzq ´ prSpt ´ sqf s pzq ´ rSp0qf s pzqq “ 0.

6.48. Remark. In order to define the Markov property we may start with just one
probability space

tpΩ,F,Pq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ .

The family tXptq : t ě 0u is said to be P-Markovian, if, for all s ě 0, and for all
bounded random variables Y : Ω Ñ C, the equality

E
“

Y ˝ ϑs

ˇ

ˇ Fs

‰

“ E
“

Y ˝ ϑs

ˇ

ˇ σpXpsqq
‰

holds P-almost surely. Then we consider the measures on the Borel field E given by

B ÞÑ E rY ˝ ϑs, Xptq P Bs , B P E, and B ÞÑ P rXpsq P Bs , B P E.

The first of these two measures is trivially absolutely continuous with respect to the
second one. So there exists a function x ÞÑ Ex rY s such that

E rY ˝ ϑs, Xpsq P dxs
P rXpsq P dxs

“ Ex rY s .
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Notice that Exr1s “ 1. By the time homogeneity and since the σ-field
σ tXpuq, u ě 0u is countably determined, the expression Ex rY s is well-defined (i.e.
independent of s ą 0, and as a function of x Borel measurable). If the state space E
is countable, so that the probability measure B ÞÑ P rXpsq P Bs is a discrete measure
(a combination of multiples of Dirac measures), then this Radon-Nykodim derivative
is an ordinary quotient and we enter the theory of discrete Markov processes. We
assume, in the Feller semigroup context, that x ÞÑ Ex rfpXptqqs belongs to C0pEq,
whenever f does so and whenever t ě 0.

6.49. Remark. Starting from Feller semigroups one may construct the correspond-
ing strong Markov processes. In this construction one first replaces the semigroup
tSptq : t ě 0u with a family of (sub-)Markov transition functions tP pt, x, Bq : t ě 0u.
Here B ÞÑ P pt, x, Bq is a (sub-)probability measure on E, with the property that
Sptqfpxq “

ş

fpyqP pt, x, dyq, f P C0pEq, t ě 0. From the Riesz representation theo-
rem it follows that such a family of (sub-)probability measures exists. It possesses
the following properties:

P p0, x, Bq “ δxpBq, P ps ` t, x, Bq “
ż

P ps, y, BqP pt, x, dyq,

s, t ě 0, x P E, B P E. Next put

Npt, x, Bq “ P pt, x, B X Eq ` p1 ´ P pt, x, Eqq 1Bp△q,

where now B is a Borel subset of E△. Put Ω1 “
`

E△
˘r0,8s

, and define the measure

Px on the product field of Ω1 “
`

E△
˘r0,8s

via the equality (Xptqpωq “ ωptq):

Ex

«

n
ź

j“1

fjpXptjqq

ff

(6.47)

ĳ

. . .

ż n
ź

j“1

fjpxjqNpt1, x, dx1qNpt2 ´ t1, x1, dx2q . . . Nptn ´ tn´1, xn´1, dxnq,

where the functions fj, 1 ď j ď n are bounded Borel functions on E△. The hard
part is proving that the Skorohod space has full Px-measure (in fact its outer Px-
measure equals 1). The extension of Px to the product field of Ω1 is a consequence
of the Kolmogorov extension theorem.

6.50. Remark. The fact that the σ-fields Ft, t ě 0, may be replaced with larger
fields, while still retaining the Markov property (or, more accurately, the strong
Markov property) is a consequence of the cadlag, continue à droite, limitée à gauche
property together with Choquet’s theorem on capacitable sets. These larger σ-fields
are certain completions of the σ-field generated by the collection tXpuq : 0 ď u ď tu:
see assertion (c) of Theorem 6.36.

6.51. Remark. Since a Feller semigroup possesses a generator, A say, one also says
that A generates the associated strong Markov process. For example 1

2
∆ generates

Brownian motion. This concept yields a direct relation between certain (lower order)
pseudo-differential operators and probability theory. The order has to be less than
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or equal to 2. This follows from the theory of Lévy processes and the Lévy-Khinchin
formula, which decomposes a continuous negative-definite function into a linear term
(probabilistically this corresponds to a deterministic drift), a quadratic term (this
corresponds to a diffusion: a continuous Brownian motion-like process), and a term
that corresponds to the jumps of the process (compound Poisson process, Lévy
measure). Quite a number of problems in classical analysis can be reformulated
in probabilistic terms. For instance for certain Dirichlet boundary value problems
hitting times are appropriate, for certain initial value problems Markov process
theory is relevant. For other problems the martingale approach is more to the
point. For example there exists a one-to-one correspondence between the following
concepts:

(i) Unique (weak) solutions of stochastic differential equations in Rν :
(ii) Unique solutions to the corresponding martingale problem;
(iii) Markovian diffusion semigroups in Rν ;
(iv) Feller semigroups generated by certain second order differential operators

of elliptic type.

(Regular) first order perturbations of second order elliptic differential operators can
be studied using the Cameron-Martin-Girsanov transformation. Perturbations of
order zero are treated via the Feynman-Kac formula.
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6.52. Remark. In our discussion we started with (generators of) Feller semigroups
or, even better, Feller-Dynkin semigroups. Another approach would be to begin
with symmetric Dirichlet forms (quadratic form theory) in L2pE,mq, where m is a
Radon measure on the Borel field E of E. (By definition a Radon measure assigns
finite values to compact subsets and it is inner and outer regular.) The reader may
consult the books by Bouleau and Hirsch [6], by Fukushima, Oshima and Takeda
11], or by Z. Ma and M. Röckner [15]. In the latter reference Ma and Röckner
somewhat more general Dirichlet forms are treated. These Dirichlet need not be
symmetric, but they obey a certain cone type inequality:

|Epf, gq|2 ď KEpf, fqEpg, gq, f, g P D pEq .

Again one says that the Markov process is generated by (or associated to the Dirich-
let form E or to the corresponding closed linear operator: Epf, gq “ ´ ⟨Af, g⟩,
f P DpAq, g P D pEq. (Notice that only regular Dirichlet forms correspond to
Markov processes.) We have taken the approach via C0pEq instead of L2pE,mq.

6.53. Remark. Examples of (Feller) semigroups can be manufactured by taking a
continuous function φ : r0,8q ˆ E Ñ E with the property that

φ ps ` t, xq “ φ pt, φ ps, xqq ,

for all s, t ě 0 and x P E. Then the mappings f ÞÑ P ptqf , with P ptqfpxq “
f pφ pt, xqq defines a semigroup. It is a Feller semigroup, or Feller-Dynkin semi-
group, if limxÑ△ φ pt, xq “ △. An explicit example of such a function, which does

not provide a Feller-Dynkin semigroup on C0 pRq is given by φpt, xq “
x

b

1 ` 1
2
tx2

(example due to V. Kolokoltsov [36]). Here the process Xptq is in fact determin-

istic: Xptq “ φpt,Xp0qq. Put upt, xq “ P ptqfpxq “ f pφpt, xqq. Then
Bu
Bt

pt, xq “

´
x3

4

Bu
Bx

pt, xq. In fact this (counter-)example shows that solutions to the martin-

gale problem do not necessarily give rise to Feller-Dynkin semigroups . These are
semigroups which preserve not only the continuity, but also the fact that functions
which tend to zero at △ are mapped to functions with the same property. How-
ever, for Feller semigroups we only require that continuous functions with values
in r0, 1s are mapped to continuous functions with the same properties. For every
ps, t, xq P r0, T s2 ˆ E, 0 ă s ă t, the equality

Px rXptq P Es “ Px rXptq P E, Xpsq P Es

holds. On the other hand this hypothesis is implicitly assumed, if as sample path
space we take the Skorohod space D

`

r0,8q , E△
˘

. If Xptq P E, then 0 ď s ă t
implies Xpsq P E.

The main result, Theorem 2.5, as stated in Van Casteren [140] is not correct. That
is solutions to the martingale problem can, after having visited △, still be alive.
Compare this with Remark 2.12 in Van Casteren [145].
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To conclude this section we include a simple result on the relation between the
generator of a Feller semigroup, or Feller-Dynkin semigroup, and the corresponding
Markov process.

6.54. Proposition. Let the operator A in with domain and range in C0pEq be the
generator of a Feller semigroup

␣

Sptq “ etA : t ě 0
(

and let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ (6.48)

be the corresponding Markov process. Suppose that the function f belongs to DpAq.
Then the following equalities hold for t ě 0 and x P E:

B
Bt
Sptqfpxq “ rASptqf s pxq “ rSptqAf s pxq “ Ex rAf pXptqqs “ AEp¨q rf pXptqqs pxq.

(6.49)

4. Feynman-Kac semigroups

Suppose that A “ ´K0 generates a Feller semigroup in C0pEq, and suppose that
the corresponding semigroup texp p´tK0q : t ě 0u consists of integral operators:

rexp p´tK0q f s pxq “
ż

p0pt, x, yqfpyq dmpyq, f P C0pEq,

wherem is a Radon measure on the Borel field of E, and where the function p0pt, x, yq
is symmetric (i.e. p0pt, x, yq “ p0pt, y, xq, x, y P E) and continuous on p0,8qˆEˆE.

6.55. Remark. If E “ Rν with Lebesgue measure and if K0 “ H0 “ ´1
2
∆, then

p0pt, x, yq is the classical Gaussian kernel

p0pt, x, yq “ p0,νpt, x, yq “
1

`?
2πt

˘ν exp

˜

´
|x ´ y|2

2t

¸

.

We write rexp p´tK0q f s pxq “
ş

p0pt, x, yqfpyq dmpyq for those functions f for which
this integral makes sense for m-almost all x P E. Let V : E Ñ r´8,8s be a
Kato-Feller potential with respect to K0. By definition, this means that for every
compact subset K of E the following identity is true:

lim
tÓ0

sup
xPE

ż t

0

rexp p´sK0q pV´ ` V`qs pxq ds “ 0. (6.50)

Here V` “ maxpV, 0q, V´ “ maxp´V, 0q. In case K0 “ ´1
2
∆ in Rν , many classical

potentials from mathematical physics belong to the Kato-Feller class: see Simon
[126].

For the result in Theorem 6.56 it is only required that (6.50) holds with V´ ` V`1K

for all compact subsets K instead of V´ ` V` “ |V |.

6.56. Theorem. Let V be Kato-Feller potential, or, even better, suppose that (6.50)
holds with V´ ` V`1K for all compact subsets K instead of V´ ` V` “ |V |.
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(a) There exists a closed densely defined linear operator K0 9̀ V extending the
operator K0`V , which generates a positivity preserving (self-adjoint) semi-
group in L2pE,mq, denoted by

␣

exp
`

´t
`

K0 9̀ V
˘˘

: t ě 0
(

. This semigroup
is given by the Feynman-Kac formula:

“

exp
`

´t
`

K0 9̀ V
˘˘

f
‰

pxq “ Ex

„

exp

ˆ

´
ż t

0

V pXpuqq du
˙

fpXptqq
ȷ

, f P L2pE,mq.

(b) Every operator exp
`

´t
`

K0 9̀ V
˘˘

is an integral operator with a continuous,
symmetric integral kernel exp p´t pK0 ` V qq px, yq given by

exp p´t pK0 ` V qq px, yq “ lim
sÒt

Ex

„

exp

ˆ

´
ż s

0

V pXpuqq du
˙

p0pt ´ s,Xpsq, yq
ȷ

“
ż

exp

ˆ

´
ż t

0

V pXpuqq du
˙

dµt,y
0,x.

The measure µt,y
0,x is defined on the σ-field σ pXpuq : u ă tq, and as usual

can be extended on some completion of this σ-field. It is determined by

µt,y
0,xpAq “ Ex r1Ap0pt ´ s,Xpsq, yqs , (6.51)

where the event A belongs to Fs “ σ pXpuq : u ď sq, for s ă t. Since the
process s ÞÑ p0pt ´ s,Xpsq, yq is a Px-martingale on the interval 0 ď s ă t,
it follows that the quantity µt,y

0,xpAq is well-defined: its value does not depend
on s, as long as A belongs to Fs and s ă t. The measure µt,y

0,x could be called
the un-normalized Markov bridge kernel.
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(c) The quadratic form (generalized Schrödinger form) EV associated with the
above Feynman-Kac semigroup is given by

EV pf, gq “
⟨

a

K0f,
a

K0g
⟩

`
¨a

V`f,
a

V`g
∂

´
¨a

V´f,
a

V´g
∂
,

for f , g members of

D
´

a

K0

¯

X
"

f P L2pE,mq,
ż

V`pxq |fpxq|2 dmpxq ă 8
*

.

6.57. Remark. Suppose that Markov process in (6.48) is Brownian motion in E “
Rd. In other words, suppose that K0 “ ´1

2
∆. Then the measure µt,y

0,x, t ą 0,

x, y P Rd, defined in (6.51) is called the conditional Brownian bridge measure. It
can be normalized through dividing it by the density ppt, x, yq.

Indication of a proof. Part of assertion (b) follows from assertion (2) in

Theorem 6.64 below with Mptq “ exp
´

´
şt

0
V pXpsqq ds

¯

. The proof of the symme-

try and continuity of the integral kernel of the Feynman-Kac semigroup
␣

exp
`

´t
`

K0 9̀ V
˘˘

: t ě 0
(

is long and tedious, and requires stopping time arguments, and the fact that sets of
the form BzBr, where B is a Borel subset of E, and Br is the collection of regular
points of B, are polar sets. For details and for the proof of assertion (c) the reader
is referred to [36], Chapter 2, 3, and Appendix D. A hint that assertion (a) is true
can be seen as follows. Let the function f P C0pEq belong to the intersection of the
domains of K0 and V . Suppose that the function u : p0,8q ˆ E Ñ C satisfies

Bu
Bt

pt, xq “ ´ pK0 ` V qupt, xq, lim
tÓ0

upt, xq “ fpxq. (6.52)

Then the function upt, xq is given by the Feynman-Kac formula:

upt, xq “ Ex

„

exp

ˆ

´
ż t

0

V pXpsqq ds
˙

f pXptqq
ȷ

, t ě 0, x P E. (6.53)

A proof of the equality in (6.53) runs as follows. For t ą 0 and x P E define the
function vt,x : r0, tq Ñ C by

vt,xpsq “ Ex

„

u pt ´ s,Xpsqq exp
ˆ

´
ż s

0

V pXpρqq dρ
˙ȷ

, 0 ď s ă t. (6.54)

Then by Leibniz’ rule and Proposition 6.54, with ´K0 instead of A, we infer

Bvt,x
Bs

ps, xq “ Ex

„

B
Bs

u pt ´ ¨, Xpsqq psq exp
ˆ

´
ż s

0

V pXpρqq dρ
˙ȷ

´ Ex

„

K0u pt ´ s, ¨q pXpsqq exp
ˆ

´
ż s

0

V pXpρqq dρ
˙ȷ

´ Ex

„

V pXpsqqu pt ´ s,Xpsqq exp
ˆ

´
ż s

0

V pXpρqq dρ
˙ȷ
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“ ´Ex

„ˆ

B
Bt

` K0 ` V

˙

u pt ´ s, ¨q pXpsqq exp
ˆ

´
ż s

0

V pXpρqq dρ
˙ȷ

“ 0. (6.55)

In the final step in (6.55) we employed the first part of (6.52). Consequently, the
function s ÞÑ vt,xpsq does not depend on s. Hence we may conclude:

upt, xq “ vt,xp0q “ lim
sÒt

vt,xpsq “ lim
sÒt

Ex

„

u pt ´ s,Xpsqq exp
ˆ

´
ż s

0

V pXpρqq ds
˙ȷ

“ Ex

„

lim
sÒt

u pt ´ s,Xpsqq lim
sÒt

exp

ˆ

´
ż s

0

V pXpρqq ds
˙ȷ

(apply the second part of (6.52))

“ Ex

„

f pXpt´qq exp
ˆ

´
ż t

0

V pXpρqq ds
˙ȷ

(employ the equality f pXpt´qq “ f pXptqq, Px-almost surely)

“ Ex

„

f pXptqq exp
ˆ

´
ż t

0

V pXpρqq ds
˙ȷ

. (6.56)

The equality in (6.56) shows the claim we made above. Put

Sptqfpxq “ Ex

„

f pXptqq exp
ˆ

´
ż t

0

V pXpρqq ds
˙

fpXptqq
ȷ

.

Then the Markov property implies that the family tSptq :, t ě 0u has the semi-
group property. By the right-continuity of paths it also follows that this semi-
group is weakly contiuous, when viewed as a semigroup in C0pEq. But then it
turns out to be weakly continuous in L2 pE,mq. For this part to be true one
employs Khas’minskii’s lemma (see Theorem 6.65) and the density of the space
C0pEq X L2pE,mq in L2pE,mq. Let ´

`

K0 9̀ V
˘

be the generator of this semigroup.

Then K0 9̀ V extends K0 ` V . Let f belong to D
`

Kq
˘

X DpV q. Then by Leibniz’
rule and the properties of the operator K0 we have

B
Bt
Ex

„

f pXptqq exp
ˆ

´
ż t

0

V pXpρqq ds
˙

fpXptqq
ȷ

“ ´Ex

„

f pXptqq exp
ˆ

´
ż t

0

V pXpρqq ds
˙

pK0 ` V q fpXptqq
ȷ

. (6.57)

From (6.57) and the definition of generator we see that Sptqf belongs to D
`

K0 9̀ V
˘

and that
`

K0 9̀ V
˘

Sptqf “ Sptq pK0 ` V q f. (6.58)

By taking t “ 0 in (6.58) we infer
`

K0 9̀ V
˘

f “ Sptq pK0 ` V q. As a consequence

we see that
`

K0 9̀ V
˘

extends K0 ` V .

This completes a too brief outline of a proof of Theorem 6.56. �
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6.58. Remark. From our basic assumption it follows that the function V belongs
to L1

locpE,mq. It also follows that the quadratic form EV is bounded from below.

A problem we consider is the following. Let V and W be Kato-Feller potentials.
Give reasonable conditions on V and W in order that the differences Dptq :“
exp

`

´t
`

K0 9̀ V
˘˘

´ exp
`

´t
`

K0 9̀ W
˘˘

, t ě 0, are compact operators. A nice result
we obtained reads as follows. For the existence and properties of the resolution of
the identity, see Theorem 5.31 and Definition 5.27.

6.59. Theorem. Let tE0pξq : ξ P Ru be the spectral decomposition, or resolution of
the identity corresponding to K0 9̀ V and let tE1pξq : ξ P Ru be the spectral decompo-
sition (resolution of the identity) corresponding to K0 9̀ W . Let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ
be the strong Markov process generated by ´K0. Suppose that, for some t0 ą 0, the
function exp p´t0K0q |W ´ V | is bounded, or suppose that

lim
tÓ0

sup
xPE

Ex

«

ˆ
ż t

0

pW pXpuqq ´ V pXpuqqq du

˙2
ff

“ 0. (6.59)
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The following assertions are equivalent:

(i) For every bounded interval A the operator E0pAqpW ´V qE1pAq is compact;
(ii) For some t ą 0 (for all t ą 0) the operator

exp
`

´t
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´t
`

K0 9̀ W
˘˘

is compact;
(iii) For some t ą 0 (for all t ą 0), the operator Dptq is compact.

6.60. Remark. If limtÓ0 supxPE
şt

0
rexp p´sK0q |W ´ V |s pxq ds “ 0, then

lim
tÓ0

sup
xPE

Ex

«

ˆ
ż t

0

pW pXpuqq ´ V pxpuqqq du

˙2
ff

“ 0. (6.60)

This is a consequence of the Markov property.

6.61. Remark. An equality like (6.50) can probably be used for first order perturba-
tions, where the Cameron-Martin formula is applicable. In such a case we probably
have to deal with stochastic integrals instead of the process

t ÞÑ
ż t

0

pW pXpuqq ´ V pXpuqqq du.

6.62. Remark. Theorem 6.59 is probably not known, even in case we consider
K0 “ H0 “ ´1

2
∆. So the corresponding process is Brownian motion.

6.63. Remark. We introduced Brownian motion as a Markov process with a certain
transition function. It can also be introduced as a Gaussian process tXptq : t ě 0u
(assume ν “ 1) such that E rXptqXpsqs “ minps, tq, or as a Lèvy process with
negative definite function ξ ÞÑ 1

2
|ξ|2, or as a martingale with variation process

t ÞÑ t. It can also be seen as a weak limit of symmetric random walks: see, e.g.,
Bhattacharya and Waymire [15].

Proof of Theorem 6.59. (i) ñ (ii) Fix t ą 0. Operators of the form

exp
`

´t
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´t
`

K0 9̀ W
˘˘

can be approximated (in the uniform operator topology) by operators in the linear
span of tE0pA0qpW ´ V qE1pA1q : A0, A1 bounded interval u.

(ii) Ñ (iii) First we assume (6.59) to be satisfied. Fix t ą 2ε ą 0 and consider the
difference:

ż t

0

exp
`

´u
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´pt ´ uq
`

K0 9̀ W
˘˘

du

´
ż t´ε

ε

exp
`

´u
`

K0 9̀ V
˘˘

exp
`

´pt ´ uq
`

K0 9̀ W
˘˘

du

“
ż ε

0

exp
`

´u
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´pε ´ uq
`

K0 9̀ V
˘˘

du

exp
`

´pt ´ εq
`

K0 9̀ W
˘˘
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` exp
`

´pt ´ εq
`

K0 9̀ V
˘˘

ż ε

0

exp
`

´u
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´pε ´ uq
`

K0 9̀ W
˘˘

du

“
`

exp
`

´ε
`

K0 9̀ V
˘˘

´ exp
`

´ε
`

K0 9̀ V
˘˘˘

exp
`

´pt ´ εq
`

K0 9̀ W
˘˘

` exp
`

´pt ´ εq
`

K0 9̀ V
˘˘ `

exp
`

´ε
`

K0 9̀ V
˘˘

´ exp
`

´ε
`

K0 9̀ W
˘˘˘

.

Next we fix f P L2pE,mq and we consider
“`

exp
`

´ε
`

K0 9̀ V
˘˘

´ exp
`

´ε
`

K0 9̀ W
˘˘˘

exp
`

´pt ´ εq
`

K0 9̀ W
˘˘

f
‰

pxq

“ Ex

„"

exp

ˆ

´
ż ε

0

V pXpuqq du
˙

´ exp

ˆ

´
ż ε

0

W pXpuqq du
˙*

ˆEXpεq

"

exp

ˆ

´
ż t´ε

0

W pXpuqq du
˙

fpXpt ´ εqq
*ȷ

“ Ex

„
ż 1

0

exp

ˆ

´
ż ε

0

pp1 ´ sqV pXpuqq ` sW pXpuqqq du

˙

ds

ˆ
ż ε

0

pW pXpuqq ´ V pXpuqqq du

ˆEXpεq

"

exp

ˆ

´
ż t´ε

0

W pXpuqq du
˙

fpXpt ´ εqq
*ȷ

.

Hence
ż

ˇ

ˇ

“`

exp
`

´ε
`

K0 9̀ V
˘˘

´ exp
`

´ε
`

K0 9̀ W
˘˘˘

exp
`

´pt ´ εq
`

K0 9̀ W
˘˘

f
‰

pxq
ˇ

ˇ

2
dx

ď
ż

Ex

„
ż 1

0

exp

ˆ

´2

ż ε

0

pp1 ´ sqV pXpuqq ` sW pXpuqqq du

˙

ds

ˆ EXpεq

"

exp

ˆ

´2

ż t´ε

0

W pXpuqq du
˙

|fpXpt ´ εqq|2
*ȷ

ˆ Ex

«

ˆ
ż ε

0

pW pXpuqq ´ V pXpuqqq du

˙2
ff

dx

ď
ż 1

0

¡

exp p´ε pK0 ` 2 pp1 ´ sqV ` sW qqq px, zq

ˆ exp p´pt ´ εq pK0 ` 2W qq pz, yq |fpyq|2

ˆ sup
xPE

Ex

«

ˆ
ż ε

0

pW ´ V q pXpuqq du
˙2

ff

ď
ż 1

0

sup
zPE

Ez

„

exp

ˆ

´2

ż ε

0

pp1 ´ sqV ` sW q pXpuqq du
˙ȷ

ds

ˆ sup
yPE

Ey

„

exp

ˆ

´2

ż ε

0

W pXpuqq du
˙ȷ

ˆ sup
xPE

Ex

«

ˆ
ż ε

0

pW ´ V q pXpuqq du
˙2

ff

.
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From (ii) it follows that the operators
ż t´ε

ε

exp
`

´u
`

K0 9̀ V
˘˘

exp
`

´pt ´ uq
`

K0 9̀ W
˘˘

du,

ε ą 0, are compact. This proves the implication (ii) ñ (iii) in the presence of
(6.59). In the other situation, where we assume that, for some t0 ą 0, the function
exp p´t0K0q |W ´ V | is bounded, we proceed as follows. We shall estimate the L2-
L2-norm of the operator

exp
`

´t0
`

K0 9̀ V
˘˘

|W ´ V | exp
`

´t0
`

K0 9̀ V
˘˘

.

Therefore, fix f ě 0 in L2pE,mq. Then, by the Feynman-Kac formula and Cauchy-
Schwartz’ inequality, we have

`

exp
`

´t0
`

K0 9̀ V
˘˘

fpxq
˘2 “

ˆ

Ex

„

exp

ˆ

´
ż t0

0

V pXpsqq ds
˙

fpXpt0qq
ȷ˙2

ď Ex

„

exp

ˆ

´2

ż t0

0

V pXpsqq ds
˙ȷ

Ex

“

fpXpt0qq2
‰

ď M2V exp pt0b2V q
“

exp p´t0K0q f 2
‰

pxq. (6.61)

From (6.61) we get
¨
exp

`

´t0
`

K0 9̀ V
˘˘

|W ´ V | exp
`

´t0
`

K0 9̀ V
˘˘

f, f
∂

“
¨
|W ´ V | exp

`

´t0
`

K0 9̀ V
˘˘

f, exp
`

´t0
`

K0 9̀ V
˘˘

f
∂

ď M2V exp pt0b2V q
ż

|W pxq ´ V pxq|
“

exp p´t0K0q f 2
‰

pxq dx

“ M2V exp pt0b2V q
¨
|W ´ V | , exp p´t0K0q f 2

∂

“ M2V exp pt0b2V q
¨
exp p´t0K0q |W ´ V | , f 2

∂

ď M2V exp pt0b2V q }exp p´t0K0q |W ´ V |}8 }f}22 . (6.62)

From (6.62) we see that the operator

exp
`

´t0
`

K0 9̀ V
˘˘

|W ´ V | exp
`

´t0
`

K0 9̀ V
˘˘

(6.63)

is bounded as an operator from L2pE,mq to L2pE,mq. By the same token the
operator

exp
`

´t0
`

K0 9̀ W
˘˘

|W ´ V | exp
`

´t0
`

K0 9̀ W
˘˘

is bounded as well. Fix γ P R in such a way that, in form sense, γI ` K0 9̀ V ě 0
and γI ` K0 9̀ W ě 0. From (6.63) it follows that operators of the form

exp
`

´t0
`

K0 9̀ V
˘˘ `

γI ` K0 9̀ W
˘1{2

and
`

γI ` K0 9̀ V
˘1{2

exp
`

´t0
`

K0 9̀ W
˘˘

are bounded. As a consequence, operators of the form

E0pA0q
`

γI ` K0 9̀ W
˘1{2

and
`

γI ` K0 9̀ V
˘1{2

E1pA1q,
where A0 and A1 are bounded intervals, are bounded. It follows that

}E0pA0qE1pm,8q}2,2
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“
›

›

›
E0pA0q

`

γI ` K0 9̀ W
˘1{2 `

γI ` K0 9̀ W
˘´1{2

E1pm,8q
›

›

›

2,2

ď
›

›

›
E0pA0q

`

γI ` K0 9̀ W
˘1{2

›

›

›

2,2

›

›

›

`

γI ` K0 9̀ W
˘´1{2

E1pm,8q
›

›

›

2,2

converges to zero, if m tends to 8 and if A0 is a bounded interval. The same is true
for }E0pm,8qE1pA1q}2,2, if m tends to 8, and if A1 is a bounded interval. We may
conclude that, for t ą 0 fixed,

lim
εÓ0

›

›exp
`

´t
`

K0 9̀ V
˘˘ `

I ´ exp
`

´ε
`

K0 9̀ W
˘˘˘›

›

2,2

“ lim
εÓ0

›

›

`

I ´ exp
`

´ε
`

K0 9̀ V
˘˘˘

exp
`

´t
`

K0 9̀ W
˘˘›

›

2,2
“ 0.

The previous identities yield the following result

lim
εÓ0

›

›Dptq ´ exp
`

´ε
`

K0 9̀ V
˘˘

Dptq exp
`

´ε
`

K0 9̀ W
˘˘›

›

2,2
“ 0,

where Dptq “ exp
`

´t
`

K0 9̀ V
˘˘

´ exp
`

´t
`

K0 9̀ W
˘˘

. Since, by (ii), the operators

exp
`

´ε
`

K0 9̀ V
˘˘

Dptq exp
`

´ε
`

K0 9̀ W
˘˘

ε ą 0 are compact, assertion (iii) follows.
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(iii) ñ (ii). This implication follows from the equality

t exp

ˆ

´
t

2

`

K0 9̀ V
˘

˙

pW ´ V q exp
ˆ

´
t

2

`

K0 9̀ W
˘

˙

“
π

2t

ż 8

´8

1

pcosh pπτ{tqq2
exp

`

iτ
`

K0 9̀ V
˘˘

ż t

0

exp
`

´u
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´pt ´ uq
`

K0 9̀ W
˘˘

du

exp
`

´iτ
`

K0 9̀ W
˘˘

dτ.

(ii) ñ (i) This implication is a consequence of the identity

E0pA0qpW ´ V qE1pA1q “E0pA0q exp
`

t
`

K0 9̀ V
˘˘

exp
`

´t
`

K0 9̀ V
˘˘

pW ´ V q exp
`

´t
`

K0 9̀ W
˘˘

exp
`

t
`

K0 9̀ W
˘˘

E1pA1q,

for A0 and A1 bounded intervals. Moreover, for bounded Borel sets A0 and A1, the
operators E0pA0q exp

`

t
`

K0 9̀ V
˘˘

and E1pA1q exp
`

t
`

K0 9̀ W
˘˘

are bounded. �

The following result is applicable for

Mptq “ exp

ˆ

´
ż t

0

V pXpuqq du
˙

or Mptq “ exp

ˆ

´
ż t

0

V pXpuqq du
˙

1tSątu,

where V is a Kato-Feller potential, and where S is a terminal stopping times, i.e.
t ` S ˝ ϑt “ S Px-almost surely on the event tS ą tu. Theorem 6.64 shows part (b)
of Theorem 6.56.

6.64. Theorem. Let tMptq : t ě 0u be a multiplicative process taking its values in
r0,8q. This means that for every t ě 0, Mptq : Ω Ñ r0,8q is Ft-measurable and
that Mps ` tq “ MpsqMptq ˝ ϑs for all s and t ě 0. We assume

lim
ϵÓ0

ż

Mpt ´ ϵq dµt,y
0,x “

ż

Mptq dµt,y
0,x.

As above, the defining property of µt,y
0,x is the equality

ż

Fdµt,y
0,x “ Ex rFp0pt ´ s,Xpsq, yqs ,

where F : Ω Ñ R is bounded and Fs-measurable (s ă t). The following assertions
are valid:

(1) The process

s ÞÑ Mpsq
ż

Mpt ´ sq dµt,y
0,Xpsq

is a Px-martingale on the interval r0, tq.
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(2) The following equality is valid:

Ex rMptqfpXptqqs “
ĳ

Mptq dµt,y
0,xfpyq dy,

where f is greater than or equal to zero and Borel measurable.
(3) The following Chapman-Kolmogorov identity is valid:

ĳ

Mpt1q dµt1,z
0,x

ż

Mpt2q dµt2,y
0,z dz “

ż

M pt1 ` t2q dµt1`t2,y
0,x .

As mentioned earlier, the quantity µx,y
0,t could be called the un-normalized Markov

bridge kernel.

Proof. (1) Let t ą s2 ą s1 ě 0 and fix 0 ă ε ă t ´ s2. Then

Ex

„

Mps2q
ż

Mpt ´ s2 ´ εq dµt´s2,y
0,Xps2q

ˇ

ˇ Fs1

ȷ

“ Ex

„

Mps1q
"

Mps2 ´ s1q
ż

Mpt ´ s2 ´ εq dµt´s2,y
0,Xps2´s1q

*

˝ ϑs1

ˇ

ˇ Fs1

ȷ

(Markov property)

“ Mps1qEXps1q

"

Mps2 ´ s1q
ż

Mpt ´ s2 ´ εq dµt´s2,y
0,Xps2´s1q

*

(definition of µt´s1,y
0,z )

“ Mps1qEXps1q
␣

Mps2 ´ s1qEXps2´s1q rMpt ´ s2 ´ εqp0pε,Xpt ´ s2 ´ εq, yqs
(

(Markov property)

“ Mps1qEXps1q tMps2 ´ s1qMpt ´ s2 ´ εq ˝ ϑs2´s1p0pε,Xpt ´ s1 ´ εq, yqu

(the process Mptq, t ě 0, is multiplicative)

“ Mps1qEXps1q tMpt ´ s1 ´ εqp0pε,Xpt ´ s1 ´ εq, yqu

(definition of µt´s1,y
0,z )

“ Mps1q
ż

Mpt ´ s1 ´ εq dµt´s1,y
0,Xps1q.

Finally we let ε tend to zero to obtain (1).

(2) Fix 0 ă ε ă t and consider
ĳ

Mpt ´ εq dµt,y
0,xfpyq dy

(definition µt,y
0,x) “

ż

Ex rMpt ´ εqp0pε,Xpt ´ εq, yqs fpyq dy
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(Fubini) “ Ex

„

Mpt ´ εq
ż

p0pε,Xpt ´ εq, yqfpyq dy
ȷ

(basic formula: Ex rfpXpsqqs “ rexpp´tK0qf s pxq “
ş

p0ps, x, yqfpyq dy)

“ Ex

“

Mpt ´ εqEXpt´εq tfpXpεqqu
‰

(Markov property) “ Ex rMpt ´ εqfpXptqqs .

Finally, let ε tend to zero to obtain (2).

(3) By assertion (2) we have
ż

ˆ
ż

Mpt1q dµt1,z
0,x

ż

Mpt2q dµt2,y
0,z

˙

dz “ Ex

„

Mpt1q
ż

Mpt2q dµt2,y
0,Xpt1q

ȷ

“ Ex

„

Ex

"

Mpt1q
ż

Mpt1 ` t2 ´ t1qdµt1`t2´t1,y
0,Xpt1q

ˇ

ˇ F0

*ȷ

(martingale property: t1 Ñ 0)

“ Ex

„

Mp0q
ż

Mpt1 ` t2qdµt1`t2,y
0,Xp0q

ȷ

“ Ex rMp0qs
ż

Mpt1 ` t2qdµt1`t2,y
0,x .

We notice
ż

Mptq dµt,z
0,x “ lim

εÓ0

ż

Mpt ´ εqdµt,z
0,x

“ lim
εÓ0

Ex rMpt ´ εqp0pε,Xpt ´ εq, yqs

“ lim
εÓ0

Ex rMp0qMpt ´ εq ˝ ϑ0p0pε,Xpt ´ εq, yq ˝ ϑ0s

“ lim
εÓ0

Ex

“

Mp0qEXp0q tMpt ´ εqp0pε,Xpt ´ εq, yqu
‰

“ lim
εÓ0

Ex rMp0qsEx rMpt ´ εqp0pε,Xpt ´ εq, yqs

“ Ex rMp0qs lim
εÓ0

ż

Mpt ´ εq dµt,z
0,x

“ Ex rMp0qs
ż

Mptq dµt,z
0,x.

Hence, the Chapman-Kolmogorov equality
ĳ

Mpt1q dµt1,z
0,x

ż

Mpt2q dµt2,y
0,z dz “

ż

M pt1 ` t2q dµt1`t2,y
0,x

holds indeed. Finally we also notice that

Ex rMp0qs “ Ex rMp0qMp0q ˝ ϑ0s

“ Ex

“

Mp0qEXp0q tMp0qu
‰

“ pEx rMp0qsq2 “ 1Σpxq,

where Σ “ tx P E : Ex rMp0qs “ 1u.
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The proof of Theorem 6.59 is complete now. �
6.65. Theorem (Khas’minskii’s Lemma: see Simon [126]). Let W : E Ñ r0,8s

be a Borel measurable function. Put γ “ lim
tÓ0

sup
xPE

Ex

„
ż t

0

W pXpsqq ds
ȷ

, and suppose

γ ă 1. The following assertions are true:

(1) γ “ limaÑ8 paI ` K0q´1 W pxq.
(2) Choose t0 ą 0 in such a way that α :“ supxPE Ex

”

şt0
0
W pXpsqq ds

ı

ă 1.

Then

sup
xPE

Ex

„

exp

ˆ
ż t0

0

W pXpsqq ds
˙ȷ

ď
1

1 ´ α
.

(3) Let t0 and α be as in (2). Put M “
1

1 ´ α
and eb “

ˆ

1

1 ´ α

˙1{t0
. Then

Ex

„

exp

ˆ
ż t

0

W pXpsqq ds
˙ȷ

ď M exppbtq, x P E, t ě 0.
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Proof. (1) Fix η ą 0 and choose t0 ą 0 so small that

γ ` η ą sup
xPE

Ex

„
ż t0

0

W pXpsqq ds
ȷ

.

Then we have

paI ` K0q´1W pxq “
ż 8

0

e´asEx rW pXpsqqs ds

“ a

ż 8

0

e´asEx

„
ż t

0

W pXpσqq dσ
ȷ

ds

ď a

ż t0

0

e´asEx

„
ż t0

0

W pXpσqq dσ
ȷ

ds

` a
8
ÿ

k“2

ż kt0

pk´1qt0
e´apk´1qt0

k
ÿ

j“1

Ex

„
ż jt0

pj´1qt0
W pXpσqq dσ

ȷ

ds

ď a

ż t0

0

e´asEx

„
ż t0

0

W pXpσqq dσ
ȷ

ds

` at0

8
ÿ

k“2

e´apk´1qt0
k

ÿ

j“1

Ex

„

EXppj´1qt0q

"
ż t0

0

W pXpσqq dσ
*ȷ

ď
ˆ

1 ` at0 expp´at0q
2 ´ expp´at0q

p1 ´ expp´at0qq2

˙

pγ ` ηq.

Since η ą 0 is arbitrary, it follows that lim supaÑ8 paI ` K0q´1W pxq ď γ.

In order to prove the reverse inequality we fix ε ą 0 and notice the inequality

Ex

«

ż ε{a

0

W pXpσqq dσ

ff

ď aeε
ż 8

0

e´asEx

„
ż s

0

W pXpσqq dσ
ȷ

ds

“ eε
ż 8

0

e´asEx rW pXpsqqs ds “ eε paI ` K0q´1 W pxq.

(2) Upon using the expansion of the exponential and employing the Markov property
we see that

Ex

„

exp

ˆ
ż t0

0

W pXpsqq ds
˙ȷ

“ 1 `
8
ÿ

k“1

Ex

„
ż

0ăs1ă¨¨¨ăsk´1ăt

ż

ds1 . . . dsk´1W pXps1qq . . .W pXpsk´1qq

EXpsk´1q

"
ż t0´sk´1

0

W pXpsqq ds
*ȷ

ď 1 `
8
ÿ

k“1

Ex

«

ż

0ăs1ă¨¨¨ăsk´1ăt

ż

ds1 . . . dsk´1W pXps1qq . . .W pXpsk´1qq

ff

α
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ď 1 `
8
ÿ

k“1

αk “
1

1 ´ α
.

This proves assertion 2.

(3) Fix t ą 0 and choose k P N in such a way that kt0 ď t ă pk ` 1qt0. From the
Markov property we infer:

Ex

„

exp

ˆ
ż t

0

W pXpsqq ds
˙ȷ

“ Ex

„

exp

ˆ
ż kt0

0

W pXpsqq ds
˙

EXpkt0q

"

exp

ˆ
ż t´kt0

0

W pXpsqq ds
˙*ȷ

ď Ex

„

exp

ˆ
ż kt0

0

W pXpsqq ds
˙ȷ

1

1 ´ α

ď
ˆ

1

1 ´ α

˙k`1

ď
1

1 ´ α

ˆ

1

1 ´ α

˙t{t0
“ Mebt.

This completes the proof of Theorem 6.65. �

For the convenience of the reader we insert a proof of the Stein and the Riesz-Thorin
interpolation theorems. The first theorem is the same as Theorem 4.12.

6.66. Theorem (Theorem of Riesz-Thorin). Let pE0,A0,m0q and pE1,A1,m1q be
σ-finite measure spaces, and let

T : Lp0 pE0,A0,m0q ` Lp1 pE0,A0,m0q Ñ Lq0 pE1,A1,m1q ` Lq1 pE1,A1,m1q

be a linear operator such that

T P L pLp0 pE0,A0,m0q , Lq0 pE1,A1,m1qq X L pLp1 pE0,A0,m0q , Lq1 pE1,A1,m1qq .

Define, for 0 ă t ă 1, pt and qt by

1

pt
“

1 ´ t

p0
`

t

p1
, and

1

qt
“

1 ´ t

q0
`

t

q1
. (6.64)

Then T P L pLpt pE0,A0,m0q , Lqt pE1,A1,m1qq, and setting Mi “ }T }qi,pi, i “ 0, 1,

then }T }qt,pt ď M1´t
0 M t

1, 0 ď t ď 1. In the case that some of the pi’s or the q1
is is 8

the statement still holds if we set, as usual,
1

8
“ 0.

Recall that the set of the simple functions (= finite linear combinations of indi-
cator functions of measurable sets with finite measure) a : E0 Ñ C is dense in
Lp pE0,A0,m0q or 1 ď p ă 8, and, for the same reason, the set of the simple func-
tions b : E1 Ñ C is dense in Lq pE1,A1,m1q, for every q P r0,8q. Moreover, for
each measurable function f : E1 Ñ C we have

}f}Lq “ sup
1

}b}Lq1

ˇ

ˇ

ˇ

ˇ

ż

E1

fpxqbpxq dm1pxq
ˇ

ˇ

ˇ

ˇ

,
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where the supremum is taken over all simple function b. Here q1 is the conjugate

exponent of q:
1

q
`

1

q1 “ 1. For a concise formulation of the Stein interpolation

theorem we introduce the notion of a holomorphic, or analytic, family of operators.

6.67. Definition. Let S “ t0 ď ℜz ď 1u be the closed unit strip in the complex
plane, and let z ÞÑ T pzq be family of linear operators defined on the space of simple
functions on pE0,A0,m0q. This operator family is called analytic (or holomorphic) if
for every pair of simple functions a : E0 Ñ C and b : E1 Ñ C, the product rT pzqas¨b
is m1-integrable and the function z ÞÑ

ş

E1
rT pzqas pxqbpxq dm1pxq is continuous and

bounded in S, and holomorphic in the interior of S.

Now we formulate the Stein interpolation theorem.

6.68. Theorem (Stein interpolation theorem). Assume that for every z P S, T pzq is
a linear operator defined in the set of the simple functions on E0, with values in the
measurable functions on E1, such that the function z ÞÑ T pzq is holomorphic in the
sense of Definition 6.67. Moreover, assume that for some pj, qj P r1,8s, j “ 0, 1,
the inequalities

}T pitqa}Lq0 ď M0 }a}Lp0 , and }T p1 ` itqa}Lq1 ď M1 }a}Lp1 , t P R (6.65)

hold for every simple function a, and for some finite constants M0 and M1. Then
for each t P p0, 1q, T ptq may be extended to a bounded linear operator, still called
T ptq), from Lpt pE0,A0,m0q to Lqt pE1,A1,m1q, with pt and qt defined as in (6.64),
and }T ptq}qt,pt ď M1´t

0 M t
1.
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Of course, if T pzq “ T , then, essentially speaking, Theorem 6.68 reduces to Theorem
6.66. A proof of the Stein interpolation theorem may be based on the three line
lemma in complex analysis. This lemma reeds as follows. As above, S denotes the
closed strip t0 ď ℜz ď 1u.
6.69. Proposition (Three line lemma). Let F : S Ñ C be a bounded and continu-
ous on S, and let F be analytic on the interior of S. For 0 ď t ď 1, put

Mt “ sup t|F pt ` iyq| : y P Ru .
Then the inequality Mt ď M1´t

0 M t
1 holds for all 0 ď t ď 1.

Proof. The three line lemma follows by applying the maximum modulus the-
orem to the holomorphic function Fεpzq, ε ą 0, defined by

Fεpzq “
F pzq
1 ` εz

1

α1´zβz
, z P S,

where α ą M0, β ą M1. Then |Fεpzq| ď 1, and hence |F pzq| ď a1´ℜzβℜz. By letting
α tend to M0 and β to M1 we obtain the desired result. �

Proof of Theorem 6.68. For every pair of simple functions a : E0 Ñ C,
and b : E1 Ñ C, we apply the three lines theorem to the function the function
F pzq “

ş

E1
T pzqfpzqpxqgpzqpxq dm1pxq, z P S, where f and g are defined by

fpzqpxq “

#

|apxq|pt
´

1´z
p0

` z
p1

¯

apxq
|apxq| , if x P E0, apxq ‰ 0;

0, if x P E0, apxq “ 0,

and

gpzqpxq “

$

&

%

|bpxq|
q1
t

ˆ

1´z
q1
0

` z
q1
1

˙

bpxq
|bpxq| , if x P E1, bpxq ‰ 0;

0, if x P E1, bpxq “ 0.
(6.66)

Then

|F piyq| ď
ż

E1

|T piyqfpiyqpxqgpiyqpxq| dm1pxq ď }T piyqfpiyq}Lq0 }gpiyq}
L
q1
0

ď }T piyq}q0,p0 }fpiyq}Lp0 }gpiyq}
L
q1
0

ď }T piyq}q0,p0 }a}pt{p0
Lpt }b}q

1
t{q1

0

L
q1
t
, (6.67)

and, similarly,

|F p1 ` iyq| ď
ż

E1

|T p1 ` iyqfp1 ` iyqpxqgp1 ` iyqpxq| dm1pxq

ď }T p1 ` iyqfp1 ` iyq}Lq1 }gp1 ` iyq}
L
q1
1

ď }T p1 ` iyq}q1,p1 }fp1 ` iyq}Lp1 }gp1 ` iyq}
L
q1
1

ď }T p1 ` iyq}q1,p1 }a}pt{p1
Lpt }b}q

1
t{q1

1

L
q1
t
. (6.68)

We get

|F ptq| “
ˇ

ˇ

ˇ

ˇ

ż

E1

rT ptqpaqs pxqbpxq dm1pxq
ˇ

ˇ

ˇ

ˇ

ď M1´t
0 M1´t

1 }a}Lpt }b}
L
q1
t
, (6.69)
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so that
}T ptqa}Lqt ď M1´t

0 M t
1 }a}Lpt

for every simple a defined in E0. Since the set of such functions a is dense in Lp the
statement in Theorem 6.68 follows. �

As noticed earlier, if T pzq ” T in Theorem 6.68, then we get the Riesz-Thorin
interpolation theorem 6.66. For a proof of this result the reader is referred to Reed
and Simon [106], Theorem IX.21 page 40. Other sources of information are Lunardi
[87, 88]. The paper by Stein [131] is the origin of “Stein” interpolation.

6.70. Proposition. Let T : L1pE,mq Ñ L1pE,mq be a continuous linear map, with
norm }T }1,1. Let it also be a continuous linear map from L8pE,mq to L8pE,mq,
with norm }T }8,8. Then T is a continuous linear map from LppE,mq to LppE,mq
for which }T }p,p ď }T }1{p

1,1 }T }1´1{p
8,8 .

Proof. Apply the Riesz-Thorin interpolation theorem with

1

pt
“

1 ´ t

p0
`

t

p1
, where p0 “ 1, p1 “ 8;

1

qt
“

1 ´ t

q0
`

t

q1
, where q0 “ 1, q1 “ 8.

Then
}T }qt,pt ď }T }1´t

q0,p0
}T }tq1,p1 .

With t “ 1 ´ 1{p we obtain the desired result in Proposition 6.70. �
6.71. Proposition. Let T : L1pE,mq Ñ L1pE,mq be a continuous linear map, with
norm }T }1,1. Let it also be a continuous linear map from L8pE,mq to L8pE,mq,
with norm }T }8,8. In addition, suppose that it maps L1pE,mq to L8pE,mq, with
norm }T }8,1. Then T is a continuous linear mapping from LppE,mq to LqpE,mq,
where 1 ď p ď q ď 8. Its norm }T }q,p obeys:

}T }q,p ď }T }1{q
1,1 }T }1{p´1{q

8,1 }T }1´1{p
8,8 .

Proof. We suppose that q ą p. Put t “ 1 ´
1

q
, r “

ppq ´ 1q
q ´ p

, and s “ 1 ´
1

r
.

Then
1

p
“

1 ´ t

1
`

t

r
,

1

q
“

1 ´ t

1
`

t

8
;

1

r
“

1 ´ s

1
`

s

8
,

1

8
“

1 ´ s

8
`

t

8
.

Hence, by Riesz-Thorin interpolation (twice),

}T }q,p ď }T }1´t
1,1 }T }t8,r ď }T }1´t

1,1

´

}T }1´s
8,1 }T }s8,8

¯t

“ }T }1{q
1,1 }T }1{p´1{q

8,1 }T }1´1{p
8,8 .

This completes the proof of Proposition 6.71. �
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6.72. Corollary. Let T : L1pE,mq Ñ L1pE,mq be a continuous linear map, with
norm }T }1,1. Let it also be a continuous linear map from L8pE,mq to L8pE,mq,
with norm }T }8,8. In addition, suppose that it maps L1pE,mq to L8pE,mq, with
norm }T }8,1. Then T is a continuous linear mapping from LppE,mq to LqpE,mq,
where 1 ď p ď q ď 8. Moreover suppose that T “ S2, where S “ S˚. Its norm
}T }q,p obeys:

}T }q,p ď }T }1´p1{p´1{qq
8,8 }S}2p1{p´1{qq

8,2 .

Proof. Since T “ SS˚, it follows that

}T }8,1 “ }SS˚}8,1 ď }S}8,2 }S˚}2,1 “ }S}28,2 .

From this inequality, together with

}T }1,1 “ }T ˚}8,8 “ }T }8,8

the result in Corollary 6.72 follows. �

The previous results can be applied to Feynman-Kac semigroups. Put T ptq “
exp

`

´t
`

K0 9̀ V
˘˘

. Then T ptq “ T ptq˚ “ T pt{2qT pt{2q. We also write Spzq “
V 1´z

´ paI ` K0q´1 V z
´, 0 ď ℜz ď 1. Let M and b in R be such that

}T ptq}8,8 “ }T ptq1}8 “ sup
xPE

Ex

„

exp

ˆ
ż t

0

V´pXpsqq ds
˙ȷ

ď Mebt.

From Khas’minskii’s lemma (Theorem 6.65) it follows that such constants exist.

6.73. Theorem. Let V be a Kato-Feller potential. The following assertions are
valid.

(1) The operator exp
`

´t
`

K0 9̀ V
˘˘

is a mapping from LppE,mq to LppE,mq,
1 ď p ď 8. Moreover the following inequality is valid:

›

›exp
`

´t
`

K0 9̀ V
˘˘›

›

p,p
ď

›

›exp
`

´t
`

K0 9̀ V
˘˘

1
›

›

8 .

(2) The operator V
1{p

´ paI ` K0q´1 V
1{q

´ is a linear mapping from LppE,mq to
LppE,mq, 1 ď p ď 8. Its norm can be estimated as follows:

›

›

›
V

1{p
´ paI ` K0q´1V

1{q
´

›

›

›

p,p
ď

›

›paI ` K0q´1V´
›

›

8 .

Here
1

p
`

1

q
“ 1.

(3) In particular, for a large enough, the operator V
1{2

´ paI ` K0q´1 V
1{2

´ is an
operator from L2pE,mq to L2pE.mq. Its norm can be estimated as follows:

›

›

›
V

1{2
´ paI ` K0q´1V

1{2
´

›

›

›

2,2
ď

›

›paI ` K0q´1V´
›

›

8 ă 1.

Moreover, again for a large enough, the operator

paI ` K0q´1{2 V´ paI ` K0q´1{2 (6.70)
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possesses the same L2-L2-norm as V
1{2

´ paI ` K0q´1 V
1{2

´ , which is strictly
less than 1.

(4) If exp
`

´1
2
tK0

˘

is as mapping from L1pE,mq to L8pE,mq, then the same

is true for the operator exp
`

´t
`

K0 9̀ V
˘˘

. Moreover, for 1 ď p ď q ď 8,
the following norm-inequality is valid:

›

›exp
`

´t
`

K0 9̀ V
˘˘›

›

q,p

ď
›

›exp
`

´t
`

K0 9̀ V
˘˘

1
›

›

1´p1{p´1{qq
8

ˆ
›

›

›

›

exp

ˆ

´
t

2

`

K0 9̀ 2V
˘

˙

1

›

›

›

›

1{p´1{q

8

›

›

›

›

exp

ˆ

´
t

2
K0

˙›

›

›

›

1{p´1{q

8,1

.

Operators of the form (6.70) are called Birman-Schwinger kernels. They are em-
ployed to estimate the number of eigenvalues below a certain threshold for Schrödin-
ger type operators: see e.g. [127].
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Proof. Assertion (1) is a consequence of Proposition 6.70.

(2) In order to prove this assertion we apply Theorem 6.68 (Stein interpolation) to
the holomorphic function Spzq. For ξ P R the norm }Spiξq}1,1 coincides with

›

›V´ paI ` K0q´1
›

›

1,1
“

›

›paI ` K0q´1 V´
›

›

8,8 “
›

›paI ` K0q´1 V´
›

›

8 .

For ξ P R the norm }Sp1 ` iξq}8,8 coincides with
›

›paI ` K0q´1 V´
›

›

8,8 “
›

›paI ` K0q´1 V´
›

›

8 .

Theorem 6.68 with p0 “ q0 “ 1, p1 “ q1 “ 8, and t “ 1 ´ 1{p, yields the desired
result.

(3) In order to prove this assertion we specialize assertion (2) to p “ 2. Since
›

›

›
paI ` K0q´ 1

2 V´ paI ` K0q´ 1
2

›

›

›

2,2

“
›

›

›
paI ` K0q´ 1

2 V
1{2

´

´

paI ` K0q´ 1
2 V

1{2
´

¯˚›

›

›

2,2

“
›

›

›

´

paI ` K0q´ 1
2 V

1{2
´

¯˚
paI ` K0q´ 1

2 V
1{2

´

›

›

›

2,2

“
›

›

›
V

1{2
´ paI ` K0q´1 V

1{2
´

›

›

›

2,2
,

the conclusion in assertion (3) follows.

(4) In order to prove this assertion, we need to estimate the operator T pt{2q as
an operator from L2pE,mq to L8pE,mq. Therefore we pick f P L2pE,mq, and we
estimate

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´
t

2

`

K0 9̀ V
˘

˙

fpxq
ˇ

ˇ

ˇ

ˇ

2

(Feynman-Kac) “

ˇ

ˇ

ˇ

ˇ

ˇ

Ex

«

exp

˜

´
ż t{2

0

V pxpsqq ds

¸

fpXpt{2qq

ffˇ

ˇ

ˇ

ˇ

ˇ

2

ď Ex

«

exp

˜

´2

ż t{2

0

V pxpsqq ds

¸ff

Ex

“

|fpXpt{2qq|2
‰

ď
›

›

›

›

exp

ˆ

´
t

2

`

K0 9̀ 2V
˘

˙

1

›

›

›

›

8

„

exp

ˆ

´
t

2
K0

˙

|f |2
ȷ

pxq

ď
›

›

›

›

exp

ˆ

´
t

2

`

K0 9̀ 2V
˘

˙

1

›

›

›

›

8

›

›

›

›

exp

ˆ

´
t

2
K0

˙›

›

›

›

8,1

}f}22 .

Combined with Corollary 6.72 this yields the desired result, and completes the proof
of 6.73. �
6.74. Lemma. Let T and S be closed linear operators in a Hilbert space H. Suppose
T ě S ě εI ą 0. Then T´1 ď S´1. These inequalities are to be understood in form
sense.
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Proof. Put A “ S´ 1
2TS´ 1

2 . Then T ě S if and only if A ě I. It follows that

⟨f, f⟩ “
⟨
AA´ 1

2f, A´ 1
2f

⟩
ě

⟨
A´ 1

2f, A´ 1
2f

⟩
“
¨
A´1f, f

∂
,

for f in the domain of A
1
2 . This proves A´1 ď I. Hence T´1 ď S´1, and so the

proof of Lemma 6.74 is complete now. �
6.75. Remark. Another proof is based on the equality

S´1 ´ T´1 “
ż 1

0

B
Bα

pp1 ´ αqT ` αSq´1 dα

“
ż 1

0

pp1 ´ αqT ` αSq´1 pT ´ Sq pp1 ´ αqT ` αSq´1 dα.

These integrals and derivatives have to be taken in strong sense.

6.76. Lemma. Let W and V be Kato-Feller potentials on E. Suppose W ě V
(pointwise). Then

`

aI ` K0 9̀ V
˘´1 ě

`

aI ` K0 9̀ W
˘´1

.

This inequality is true in form sense as well as in the sense that f ě 0 implies
`

aI ` K0 9̀ V
˘´1

f ě
`

aI ` K0 9̀ W
˘´1

f, pointwise.

Proof. Suppose W and V to be bounded. Otherwise replace W and V with
respectively Wn,m “ max pmin pW,mq ,´nq and Vn,m “ max pmin pV,mq ,´nq, and
let m and n tend to 8. Since W and are V bounded, we see that in form sense
aI`K0 9̀ W “ aI`K0`W ě aI`K0`V “ aI`K0 9̀ V . Hence, by virtue of Lemma

6.74, we get
`

aI ` K0 9̀ V
˘´1 ě

`

aI ` K0 9̀ W
˘´1

. For the pointwise inequality, one
may use the Feynman-Kac representation.

This completes the proof of Lemma 6.76. �
6.77. Definition. (General facts) As above the generator K0 is perturbed in two
ways. The first is a “regular” perturbation, being a multiplication operator V . That
kind of operator was studied in Theorem 6.56. The other kind of perturbation is
the “singular” one, i.e. a perturbation by a potential barrier on a closed subset
Γ of E. These singular perturbations will be treated presently. Put Σ :“ EzΓ
and introduce the restriction operator J “ JΣ as follows: Jf “ fæΣ. Then its
adjoint J˚ : L2pΣ,mq Ñ L2pE,mq is given by the canonical extension: J˚fpxq “
fpxq for x P Σ and J˚fpxq “ 0 for x P Γ. Moreover, we have J˚J “ 1Σ and
JJ˚ is the identity in L2pΣ,mq. By

`

K0 9̀ V
˘

Σ
we denote the generator of the

semigroup
␣

exp
`

´t
`

K0 9̀ V
˘

Σ

˘

: t ě 0
(

. The operator exp
`

´t
`

K0 9̀ V
˘

Σ

˘

is given
by the formula

“

exp
`

´t
`

K0 9̀ V
˘

Σ

˘

f
‰

pxq “ Ex

„

exp

ˆ

´
ż t

0

V pXpuqq du
˙

fpXptqq : S ą t

ȷ

,

where S is the penetration time of Γ given by

S “ inf

"

s ą 0 :

ż s

0

1ΓpXpσqq dσ ą 0

*

.
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Suppose the set of S-regular points coincides with Γ. Then, for f P C0pEq, the func-
tion g : Σ Ñ C, defined by gpxq “

“

exp
`

´t
`

K0 9̀ V
˘

Σ

˘

f
‰

pxq possesses a continuous
extension to all of E. In fact the canonical extension J˚f is continuous on all of
E. This is a consequence of the fact that the “killed” Feynman-Kac or Dirichlet
semigroup

␣

exp
`

´t
`

K0 9̀ V
˘

Σ

˘

: t ě 0
(

leaves the space C8pΣq invariant: see e.g.
Doob [41], Chapter 1.VIII. For V “ 0, this is shown in Demuth and Van Casteren
[36] Appendix D, Theorem D.21. A function in LppE,mq can be approximated by
functions in C0pEq in the Lp-norm. So that in the presence of L1-L8-smoothing,
the Lp-spaces LppΣ,mq, 1 ď p ă 8, are mapped into C0pΣq by the Feynman-Kac
semigroups “killed” on Γ. Their canonical extensions then belong to C0pEq: for
these results one has to mimic the corresponding proofs of Theorem 2.5 for the
singular case. The proof of this theorem was discussed in Chapter 3 of [32]. From
formula (2.51) in Corollary 2.32 item (b) of Demuth and Van Casteren [36] we see
that the operator

`

K0 9̀ V
˘

Σ
extends the operator J

`

K0 9̀ V
˘

J˚. Like in [36] we are
interested in the harmonic extension operator given by the formula (see Definition
2.30 in Chapter 2 of [36]):

“

Ha`V
Σ f

‰

pxq “ Ex

„

exp

ˆ

´
ż S

0

pa ` V pXpuqqq du

˙

fpXpSqq : S ă 8
ȷ

, (6.71)

for whatever functions f this operator makes sense.
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From the discussions in Proposition 2.31 and its Corollary 2.32 in [36], it follows
that (6.71) has a meaning for functions f P D

`

K0 9̀ V
˘

or even for functions f in
the domain of the generalized Schrödinger form. In Chapter 2 of [36] the relation

between Ha`V
Σ and the resolvents

`

aI ` K0 9̀ V
˘´1

and J˚
Σ

`

aI ` K0 9̀ V
˘´1

Σ
JΣ were

discussed. In fact the following version of Dynkin’s formula holds (see Proposition
2.31 in [36]):

Ha`V
Σ

`

aI ` K0 9̀ V
˘´1 “

`

aI ` K0 9̀ V
˘´1 ´ J˚

Σ

`

aI ` K0 9̀ V
˘´1

Σ
JΣ.

If a ` V “ 0, then we write HΣ instead of H0
Σ, and TΣptq instead of T a`V

Σ ptq.

6.78. Definition. Another family of operators which will play a decisive role con-
sists of the family of projections tTΣptq : t ě 0u, where TΣptq “ T V

Σ ptq is defined by
(see Definition 2.33)

rTΣptqf s pxq “ Ex

„

exp

ˆ

´
ż S

0

V pXpuqq du
˙

fpXpSqq : S ď t

ȷ

.

6.79. Theorem. Let V be a Kato-Feller potentials on E. The following assertions
are valid:

(1) Suppose a ą b, where

Ex

„

exp

ˆ
ż t

0

V´pXpsqq ds
˙ȷ

ď M exppbtq, t ě 0.

Then the supremum sup
xPE

“

Ha`V
Σ 1

‰

pxq is finite.

(2) (Dynkin’s formula) The following equality is valid:

Ha`V
Σ

`

aI ` K0 9̀ V
˘´1 “

`

aI ` K0 9̀ V
˘´1 ´ J˚ `

aI ` K0 9̀ V
˘´1

Σ
J.

(3) The following inequality holds in form sense as well as in pointwise sense:

0 ď Ha`V
Σ

`

aI ` K0 9̀ V
˘´1 ď

`

aI ` K0 9̀ V
˘´1

.

(4) The following inequality in form sense is valid:

0 ď
`

aI ` K0 9̀ V
˘

1
2 Ha`V

Σ

`

aI ` K0 9̀ V
˘´ 1

2 ď I.

Proof. (1) For this result we refer to [36], Proposition 4.20.

(2) For this result we refer also to [36], Proposition 2.31.

(3) This assertion follows from the identities:

Ha`V
Σ

`

aI ` K0 9̀ V
˘´1 “

`

aI ` K0 9̀ V
˘´1 ´ J˚ `

aI ` K0 9̀ V
˘´1

Σ
J

“ s- lim
βÑ8

´

`

aI ` K0 9̀ V
˘´1 ´

`

aI ` K0 9̀ V ` β1Γ
˘´1

¯

,

together with Lemma 6.76.
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(4) This assertion follows from assertion (3). In fact, the form sense part of assertion
(3) is equivalent to assertion (4).

The proof of Theorem 6.79 is now complete. �
6.80. Theorem. Let V be a Kato-Feller potentials on E. The operator

`

aI ` K0 9̀ V
˘

1
2 Ha`V

Σ

`

aI ` K0 9̀ V
˘´ 1

2

is densely defined and extends in a unique fashion to a self-adjoint projection.

Proof. Put

T “
`

aI ` K0 9̀ V
˘´ 1

2

Σ
J

`

aI ` K0 9̀ V
˘

1
2 .

In addition we write

Tβ “
`

aI ` K0 9̀ V ` β1Γ
˘´ 1

2
`

aI ` K0 9̀ V
˘

1
2 .

Then

T ˚
β “

`

aI ` K0 9̀ V
˘

1
2

`

aI ` K0 9̀ V ` β1Γ
˘´ 1

2 , and

T ˚ “
`

aI ` K0 9̀ V
˘

1
2 J˚ `

aI ` K0 9̀ V
˘´ 1

2

Σ
.

As a consequence we obtain
T “ s- lim

βÑ8
Tβ.

From Dynkin’s formula it follows that
`

aI ` K0 9̀ V
˘

1
2 Ha`V

Σ

`

aI ` K0 9̀ V
˘´ 1

2

“ I ´ T ˚T “ s- lim
βÑ8

`

I ´ T ˚
β Tβ

˘

.

It follows that T ˚ is bounded and everywhere defined. Hence the operator T is
closable, with closure T ˚˚. It follows that

`

aI ` K0 9̀ V
˘

1
2 Ha`V

Σ

`

aI ` K0 9̀ V
˘´ 1

2 Ď I ´ T ˚T ˚˚.

Hence the claim in Theorem 6.79 follows, if we can prove that, for any bounded

Borel measurable function f , the equality
`

Ha`V
Σ

˘2
f “ Ha`V

Σ f holds. For this fact
we need the equality S ˝ ϑS “ 0, Px-almost surely on the event tS ă 8u. A proof
of this equality is indicated in Appendix D of [36]: see Theorem D.16 together with
Remark 2 on page 403. Next we consider

”

`

Ha`V
Σ

˘2
f

ı

pxq

“ Ex

„

exp

ˆ

´
ż S

0

pa ` V q pXpuqq du
˙

“

Ha`V
Σ f

‰

pXpSqq, S ă 8
ȷ

“ Ex

«

exp

ˆ

´
ż S

0

pa ` V q pXpuqq du
˙

EXpSq

"

exp

ˆ

´
ż S

0

pa ` V q pXpuqq du
˙

fpXpSqq, S ă 8
*

, S ă 8

ff
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(strong Markov property)

“ Ex

«

exp

ˆ

´
ż S

0

pa ` V q pXpuqq du
˙

exp

ˆ

´
ż S˝ϑS

0

pa ` V q pXpu ` Sqq du
˙

fpXpS ` S ˝ ϑSqq, S ˝ ϑS ă 8, S ă 8

ff

(the equality S ˝ ϑS “ 0 holds Px-almost surely on the event tS ă 8u)

“ Ex

„

exp

ˆ

´
ż S

0

pa ` V q pXpuqq du
˙

fpXpSqq, S ă 8
ȷ

“
“

Ha`V
Σ f

‰

pxq.
This completes the proof of Theorem 6.80. �
6.81. Remark. From Theorem 6.80 it follows that the harmonic extension operator
leaves the form domain of the operator H0 9̀ V invariant. Its proof uses the fact that
the harmonic extension operator Ha`V

Σ is an projection operator from Cb pEq to the
a ` H0 9̀ V -harmonic function on Σ; it preserves the values of a function f P CbpEq
on Γ, i.e. Ha`V

Σ fæΓ “ fæΓ, Γ “ EzΣ.
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In the implication (iii) ñ (ii) of the proof of Theorem 4.2 equality (6.72) of the
following result was used with, H0 “ H1 “ L2 pE,mq, H0 “ K0 9̀ V , H1 “ K0 9̀ W ,
and T “ W ´ V .

6.82. Theorem. Let, for j “ 0, 1, Hj “
ş8

´ωj
ξE pdξjq be a self-adjoint operator in

a Hilbert space Hj with lower bounds ´ωj P R. Let T : H1 Ñ H0 be an appropriate
linear operator. Then the following identity is true:

t exp

ˆ

´
t

2
H0

˙

T exp

ˆ

´
t

2
H1

˙

“
π

2

ż 8

´8

1

pcosh pπτqq2
exp piτ tH0qDptqT exp p´iτ tH1q dτ, where (6.72)

DptqT “
ż t

0

exp p´uH0qT exp p´pt ´ uqH1q du.

In the proof double Stieltjes operator integrals are employed. The interested reader
is referred to the literature on this subject: Birman and Solomyak [17, 18, 19].
Some information on this topic can be found in Yafaev [155] as well. It is not very
clear under what circumstances these double Stieltjes operator integrals are well
defined.

Proof. We will employ double Stieltjes operator integrals. The main formula
in (6.72) is almost trivial from the point of view of double Stieltjes operator integrals
(and if one takes the validity of Fubini’s theorem for such integrals for granted). Put

V0ptq “ e´tH0 “
ż

σpH0q
e´tξE0pdξq and V1ptq “ e´tH1 “

ż

σpH1q
e´tηE1pdηq.

A quick proof of the equality in (6.72) runs as follows:

π

2

ż 8

´8

1

pcosh πτq2
V0piτ t0q

ż t0

0

V0puqTV1pt0 ´ uq duV1p´iτ t0q dτ

“
ż ż

π

2

ż 8

´8

exp p´iτ t0pξ ´ ηqq
pcosh πτq2

dτ
expp´t0ηq ´ expp´t0ξq

ξ ´ η
E0pdξqTE1pdηq

“
ż ż 1

2
t0pξ ´ ηq

sinh
`

1
2
pξ ´ ηqt0

˘

sinh
`

1
2
t0pξ ´ ηq

˘

1
2
pξ ´ ηq

exp

ˆ

´
1

2
t0pξ ` ηq

˙

E0pdξqTE1pdηq

“ t0

ż ż

exp

ˆ

´
1

2
t0pξ ` ηq

˙

E0pdξqTE1pdηq “ t0V0pt0{2qTV1pt0{2q.

A proof without double operator integrals will be based on Cauchy’s theorem from
complex analysis, and on operator valued functions on a horizontal strip in the
complex plane. In fact it follows from assertion (iv) of Theorem 6.87 in Section 5
with

upτ, sq “ t0V0 piτ t0qV0

ˆˆ

1

2
` s

˙

t0

˙

TV1

ˆˆ

1

2
´ s

˙

t0

˙

V1 p´iτ t0q .

This completes the proof of Theorem 6.82. �
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6.83. Theorem (Inverse of the equality in (6.72)). Let f be a rapidly decreasing
function. Then

ż 8

´8
fpσqV0 piσt0qDpt0qTV1 p´iσt0q dσ (6.73)

´
n

ÿ

j“0

ˆ

n ` 1

j ` 1

˙

p´1qj
ż 8

´8
Elogistic rf pσ ´ pU0 ` U1 ` ¨ ¨ ¨ ` Ujqqs

V0 piσt0q t0V0pt0{2qTV1pt0{2qV1 p´iσt0q dσ

“
1

2π

ż 8

´8

ż 8

´8

ˆ

1 ´
ξ{2

sinh pξ{2q

˙n`1

pfpξqeiσξdξV0 piσt0qDpt0qTV1 p´iσt0q dσ.

The random variables Uj, j “ 2, 3, . . ., are independent copies of the logistically
distributed variable U1, U0 ” 0: see Evans, Hastings, and Peacock [50]. For a proof
of Theorem 6.83 the reader is referred to Proposition 6.88. It is taken from [142].

6.84. Remark. Put, for T : H1 Ñ H0 a (bounded) linear operator,

Qpt0qT “ Elogistic rV0 piU1t0qTV1 p´iU1t0qs .

Then the formula in (6.72) is the same as saying that

t0V0 pt0{2qTV1 pt0{2q “ Qpt0qDpt0qT,

and the formula in (6.73) is equivalent to the identity:

Dpt0qT “
ż t0

0

V0puqTV1 pt0 ´ uq du

“
n

ÿ

j“0

ˆ

n ` 1

j ` 1

˙

p´1qjQpt0qj pt0V0 pt0{2qTV1 pt0{2qq ` pI ´ Qpt0qqn`1
Dpt0qT.

The question which poses itself is the following. Let S : H1 Ñ H0 be a bounded
linear operator for which the Schatten class norm }S}p, 1 ď p ď 8 is finite. Does

it follow that limnÑ8
›

›pI ´ Qpt0qqn`1 S
›

›

p
“ 0? If p “ 2 (Hilbert-Schmidt situation),

then this result is correct. An argument for this statement runs as follows. First
approximate the operator S in Hilbert-Schmidt by an operator-valued integral of the
form Sφ :“

ş

φpσqV0piσt0qSV1p´iσt0q dσ, where φ is a rapidly decreasing function

on R. Since limnÑ8
›

›pI ´ Qpt0qqn`1 Sφ

›

›

2
“ 0, and since

›

›pI ´ Qpt0qqn`1 S
›

›

2
ď }S}2,

we obtain the desired result. In [143] this question is answered in more or less full
generality. In the proof of Theorem 12 of [143] it is shown that

›

›

›

›

›

ż t0

0

V0psqTV1 pt0 ´ sq ds ´
n

ÿ

j“0

ˆ

n ` 1

j ` 1

˙

p´1qjQ pt0qj rt0V0 pt0{2qTV1 pt0{2qs

›

›

›

›

›

ď
t0C0

π

ż 8

0

ż 8

0

´

1 ´ pψpξq
¯

1
2
n τ

p1 ` τξq2
dξ

1

1 ` τ 2
}F pτq ´ F p´τq} dτ, (6.74)
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where C0 ă 86, pψpξq “
1
2
ξ

sinh
`

1
2
ξ
˘ , and

F pτq “ exp pit0τH0q pV0 pt0qT ´ TV1 pt0qq exp p´it0τH1q .

The norm in (6.74) can be the usual operator norm, or a Schatten class norm.

4.1. KMS formula. Suppose pτ, sq belongs to R ˆ
`

´1
2
, 1
2

˘

, and let T : H1 Ñ
H0 be a linear operator with the property that the operators V0pt0qT and V1pt0qT ˚

are densely defined. Then, in form sense, the following identity is true:

t0V0 piτ t0qV0

ˆˆ

1

2
` s

˙

t0

˙

TV1

ˆˆ

1

2
´ s

˙

t0

˙

V1 p´iτ t0q

“
t0
2

ż 8

´8

cos πs

cosh πpτ ´ σq ´ sin πs
V0 pt0qV0 piσt0qTV1 p´iσt0q dσ (6.75)

`
t0
2

ż 8

´8

cosπs

cosh πpτ ´ σq ` sin πs
V0 piσt0qTV1 p´iσt0qV1 pt0q dσ.

This formula follows by virtue of the following observation. The function at the right
hand side of Formula (6.75) is harmonic on the strip R ˆ

`

´1
2
, 1
2

˘

and it possesses
boundary values

#

t0V0 pt0qV0 piτ t0qTV1 p´iτ t0q , for s “ 1
2
, and

t0V0 piτ t0qTV1 p´iτ t0qV1 pt0q , for s “ ´1
2
.

The left hand side is harmonic on the same strip (in fact it is holomorphic there),
and has the same boundary values. The uniqueness part on the existence of solutions
to the classical Dirichlet problem on a strip, yields the formula in (6.75). For some
more details about the KMS-formula see Remark 6.85 below. Upon integrating the
identity in (6.75) with respect to s we obtain the next one:

Dpt0qT “
t0
2π

ż 8

´8
log

ˆ

cosh πτ ` 1

cosh πτ ´ 1

˙

V0 piτ t0q tV0 pt0qT ` TV1 pt0quV1 p´iτ t0q dτ

“
t0
π

ż 8

´8
log

ˇ

ˇ

ˇ

ˇ

coth

ˆ

1

2
πτ

˙ˇ

ˇ

ˇ

ˇ

V0 piτ t0q tV0 pt0qT ` TV1 pt0quV1 p´iτ t0q dτ.

6.85. Remark. Again we consider the space H0 ˆ H1 together with

V piτq “
ˆ

V0piτq 0
0 V1piτq

˙

.

Define the flow Aτ on B pH0 ˆ H1,H0 ˆ H1q by Aτ pT q “ V p´iτ t0qTV piτ t0q. De-
fine for pf, gq P H0 ˆ H1, and T P B pH0 ˆ H1,H0 ˆ H1q the function Ff,gpτ ` isq,
τ P R, ´1

2
ď s ď 1

2
by

Ff,gpτ ` isq “ t0

Æ
Aτ

ˆ

V

ˆˆ

1

2
` s

˙

t0

˙

TV

ˆˆ

1

2
´ s

˙

t0

˙˙ ˆ

f
g

˙

,

ˆ

f
g

˙∏
.
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The function Ff,g is K(ubo)-M(artin)-S(chwinger)-admissible for the operators V pt0q
and T in the sense that it is continuous on the closed strip

"

τ ` is : τ P R, ´
1

2
ď s ď

1

2

*

,

and holomorphic on its interior. Moreover,

Ff,g

ˆ

τ `
1

2
i

˙

“ t0

Æ
V pt0qAτ pT q

ˆ

f
g

˙

,

ˆ

f
g

˙∏
;

Ff,g

ˆ

τ ´
1

2
i

˙

“ t0

Æ
Aτ pT qV pt0q

ˆ

f
g

˙

,

ˆ

f
g

˙∏
. (6.76)

If T “ T ˚, then Ff,g

`

τ ´ 1
2
i
˘

“ Ff,g

`

τ ` 1
2
i
˘

.

6.86.Remark. Observe that for T a bounded linear operator the family of operators

t ÞÑ
ˆ

V0ptq DptqT
0 V1ptq

˙

is a strongly continuous semigroup on the space H0 ˆ H1.
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5. Harmonic functions on a strip

The results in Theorem 6.87 of this section are applicable for real-valued harmonic
functions upτ, sq with the property that

lim sup
εÓ0

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1
2

´ε

´ 1
2

`ε

upτ, sq ds

ˇ

ˇ

ˇ

ˇ

ˇ

dτ ă 8,

or for the operator valued function vpτ, sq given by

vpτ, sq “ t0V0 piτ t0qV0

ˆˆ

1

2
` s

˙

t0

˙

TV1

ˆˆ

1

2
´ s

˙

t0

˙

V1 p´iτ t0q .

Then

vpτ, 0q “ t0V0 piτ t0qV0

ˆ

1

2
t0

˙

TV1

ˆ

1

2
t0

˙

V1 p´iτ t0q , and

ż 1
2

´ 1
2

vpτ, sq ds “ V0 piτ t0qDpt0qTV1 p´iτ t0q .

If we read the above function vpτ, sq instead of upτ, sq, the identities in assertion (iv)
of the next theorem yield the basic formula in (6.72) in Theorem 6.82 of Section 4.
The author wonders whether there is some relationship between the Stein interpo-
lation theorem, i.e. Theorem 6.68, and the results on harmonic functions, including
the KMS-function, on the a strip. In fact in both cases (bounded) holomorphic
functions are involved.

6.87. Theorem. Let pX, }¨}q be a Banach space, and let f1, and f2 : R Ñ X be
continuous functions with the property that, for every τ P R, the following quantity
is finite:

ż 8

´8
log

coshpπpτ ´ σqq ` 1

coshpπpτ ´ σqq ´ 1
t}f1pσq} ` }f2pσq}u dσ.

Define the function upτ, sq, τ P R, ´1
2

ă s ă 1
2
, by

upτ, sq

“
1

2

ż 8

´8

cos πs

cosh πpτ ´ σq ´ sin πs
f1pσq dσ `

1

2

ż 8

´8

cos πs

cosh πpτ ´ σq ` sin πs
f2pσq dσ.

The following assertions are true:

(i) The function upτ, sq is harmonic and

lim
sÒ 1

2

upτ, sq “ f1pτq, and lim
sÓ´ 1

2

upτ, sq “ f2pτq;

(ii) If
ş8

´8 }f1pσq} dσ and
ş8

´8 }f2pσq} dσ are finite, then
ż 8

´8
upτ, sq dτ “ p1 ` 2sq

ż 8

´8
f1pσq dσ ` p1 ´ 2sq

ż 8

´8
f2pσq dσ
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“
ż 8

´8
upτ, 0q dτ ` 2s

ż 8

´8
pf1pσq ´ f2pσqq dσ.

(iii) Let the hypotheses be as in (ii). The following equality is valid:

ż 8

´8

ż 1
2

´ 1
2

upτ, sq ds dτ “
ż 8

´8
upτ, 0q dτ.

(iv) The following identity is true:

upτ, 0q “
π

2

ż 8

´8

1

pcosh π pτ ´ σqq2
ż 1

2

´ 1
2

upσ, sq ds dσ

“ Elogistic

«

ż 1
2

´ 1
2

upτ ´ U, sq ds

ff

,

where U is a logistically distributed random variable.

Proof of Theorem 6.87. (i) This is a standard result in harmonic analysis
about the existence of harmonic functions on a strip with given boundary conditions.

(ii) This result follows from the (elementary) identity
ż 8

´8

cos πs

cosh πpτ ´ σq ´ sin πs
dτ “ 1 ` 2s, ´

1

2
ă s ă

1

2
.

(iii) Assertion (iii) follows from (ii) and Fubini’s theorem.

(iv) This equality is somewhat more involved. The second equality is a direct con-
sequence of the fact that the random variable U is supposed to be logistically dis-
tributed. In order to prove the first equality we notice the following identities:

ż 1
2

´ 1
2

upσ, sq ds “
1

2

ż 8

´8

ż 1
2

´ 1
2

cosπs

cosh πpσ ´ ρq ´ sin πs
ds pf1pρq ` f2pρqq dρ

“
1

2

ż 8

´8

ż 1
2

´ 1
2

ℜ
ˆ

1

cosh πpσ ` is ´ ρq

˙

ds pf1pρq ` f2pρqq dρ

“
1

2

ż 1
2

´ 1
2

ż 8

´8
ℜ

ˆ

1

cosh πpσ ` is ´ ρq

˙

pf1pρq ` f2pρqq dρ ds.

Here we used the elementary identity

cosπs

cosh πpσ ´ ρq ´ sin πs
`

cos πs

cosh πpσ ´ ρq ` sin πs
“ 2ℜ 1

cosh πpσ ` is ´ ρq
,

´1
2

ă s ă 1
2
. So, in order establish (iv), it suffices to prove the equality

π

2

ż 8

´8

1

pcosh π pτ ´ σqq2
ż 1

2

´ 1
2

gpσ ` isq ds dσ “ gpτq,
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where gpτ ` isq is an appropriate analytic function on the strip
"

τ ` is : τ P R, ´
1

2
ă s ă

1

2

*

.

For gpτ ` isq we take

gpτ ` isq “
ż 8

´8

1

cosh πpτ ` is ´ ρq
pf1pρq ` f2pρqq dρ.

An application of Fubini’s theorem, in conjunction with Cauchy’s theorem, yields
the following string of identities:

π

2

ż 8

´8

1

pcosh π pτ ´ σqq2
ż 1

2

´ 1
2

gpσ ` isq ds dσ

“ lim
εÓ0

π

2

ż 1
2

´ε

´ 1
2

`ε

ż 8

´8

1

pcosh π pτ ´ σqq2
gpσ ` isq dσ ds

(Cauchy’s theorem)

“ lim
εÓ0

π

2

ż 1
2

´ε

´ 1
2

`ε

ż 8

´8

1

pcosh π pτ ` is ´ σqq2
gpσq dσ ds

(Fubini’s theorem once more)

“ lim
εÓ0

π

2

ż 8

´8

ż 1
2

´ε

´ 1
2

`ε

1

pcosh π pτ ` is ´ σqq2
dsgpσq dσ

“ lim
εÓ0

π

2

ż 8

´8
ℜ

ż 1
2

´ε

´ 1
2

`ε

1

pcosh π pτ ` is ´ σqq2
ds gpσq dσ

“ lim
εÓ0

1

2

ż 8

´8
ℜ

ˆ

1

i
tanh π pτ ´ σ ` isq

ˇ

ˇ

s“ 1
2

´ε

s“´ 1
2

`ε

˙

gpσq dσ

“ lim
εÓ0

ż 8

´8
ℜ

ˆ

1

i

´1

exp p2π pτ ` is ´ σqq ` 1

˙

ˇ

ˇ

s“ 1
2

´ε

s“´ 1
2

`ε
gpσq dσ

“ lim
εÓ0

ż 8

´8

4 cos πε sin πε

pexp pπσq ´ exp p´πσqq2 ` 4 sin2 πε
gpτ ´ σq dσ

“ lim
εÓ0

1

π

ż 8

´8

cos πε

1 ` ξ2
g

ˆ

τ´
1

π
log

´

ξ sin πε `
a

1 ` ξ2 sin2 πε
¯

˙

dξ
a

1 ` ξ2 sin2 πε

“ gpτq.

The latter proves the first identity in assertion (iv), and completes the proof of
Theorem 6.87. �

Upon reading, in Proposition 6.88 below, the above function vpτ, sq for the harmonic
function upτ, sq, the formula in (6.73) of Theorem 6.83 in Section 4 is obtained.
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6.88. Proposition. Let f be an n-times differentiable function, belonging to L1pRq.
Let the harmonic function upτ, sq be as in Theorem 6.87. The following identities
are true

ż 8

´8
fpσq

ż 1
2

´ 1
2

upσ, sq ds dσ

“
ż 8

´8

n`1
ÿ

j“1

ˆ

n ` 1

j

˙

p´1qj´1Elogistic rf pσ ´ pU0 ` ¨ ¨ ¨ ` Uj´1qqsupσ, 0q dσ

`
1

2π

ż 8

´8

«

ż 8

´8

ˆ

1 ´
1
2
ξ

sinh
`

1
2
ξ
˘

˙n`1

pfpξqeiξσdξ

ff

ż 1
2

´ 1
2

upσ, sq ds dσ (6.77)

“
ż 8

´8
fpσqupσ, 0q dσ

`
ż 8

´8
Elogistic

«

n
ź

j“1

Uj

ż 1

0

ds1 . . .

ż 1

0

dsnf
pnq pσ ´ ps1U1 ` ¨ ¨ ¨ ` snUnqq

ff

upσ, 0q dσ

`
1

2π

ż 8

´8

«

ż 8

´8

ˆ

1 ´
1
2
ξ

sinh
`

1
2
ξ
˘

˙n`1

pfpξqeiξσdξ

ff

ż 1
2

´ 1
2

upσ, sq ds dσ. (6.78)
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The sequence pUjqjPN,jě1 in Proposition 6.88 consists of independent logistically
distributed random variables, each distributed according to the same law:

P rUj P Bs “
π

2

ż

B

1

pcosh πτq2
dτ “ π2

ż 8

0

sinh πτ

pcosh πτq3
ż τ

´τ

1Bpσq dσ dτ.

The variable U0 is identically zero.

Proof of Proposition 6.88. The equality of (6.77) and (6.78) is due to the
following equality (n ě 1, f as in Proposition 6.88):

n`1
ÿ

j“1

ˆ

n ` 1

j

˙

p´1qj´1Elogistic rf pσ ´ pU0 ` ¨ ¨ ¨ ` Uj´1qqs

“ fpσq ` Elogistic

«

n
ź

j“1

Uj

ż 1

0

ds1 . . .

ż 1

0

dsnf
pnq pσ ´ ps1U1 ` ¨ ¨ ¨ ` snUnqq

ff

. (6.79)

Let δ be the Dirac measure at the origin and let φ0 be the density corresponding

to the logistical distribution: φ0pτq “
π

2

1

pcosh pπτqq2
. The identities (the symbol

`

pδ ´ φ0q˚˘n`1
denotes the pn ` 1q-fold convolution of δ ´ φ0 with itself)

1

2π

ż 8

´8

«

ż 8

´8

ˆ

1 ´
1
2
ξ

sinh
`

1
2
ξ
˘

˙n`1

pfpξqeiξσdξ

ff

ż 1
2

´ 1
2

upσ, sq ds dσ

“
ż 8

´8

”

`

pδ ´ φ0q˚˘n`1
f

ı

pσq
ż 1

2

´ 1
2

upσ, sq ds dσ

“
ż 8

´8

n`1
ÿ

j“0

ˆ

n ` 1

j

˙

p´1qj
”

pδ˚qn`1´j ˚ pφ˚
0qj f

ı

pσq
ż 1

2

´ 1
2

upσ, sq ds dσ

(assertion (iv) of Theorem 6.87)

“
ż 8

´8
fpσq

ż 1
2

´ 1
2

upσ, sq ds dσ `
ż 8

´8

n`1
ÿ

j“1

ˆ

n ` 1

j

˙

p´1qj
”

pφ˚
0qj´1 f

ı

pσqupσ, 0q dσ

“
ż 8

´8
fpσq

ż 1
2

´ 1
2

upσ, sq ds dσ

`
ż 8

´8

n`1
ÿ

j“1

ˆ

n ` 1

j

˙

p´1qjElogistic rf pσ ´ pU0 ` ¨ ¨ ¨ ` Uj´1qqs upσ, 0q dσ

complete the proof of Proposition 6.88. �
6.89.Theorem. Suppose that the real-valued harmonic upτ, sq possesses the property
mentioned in the beginning of the present section:

lim sup
εÓ0

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1
2

´ε

´ 1
2

`ε

upτ, sq ds

ˇ

ˇ

ˇ

ˇ

ˇ

dτ ă 8,

Download free eBooks at bookboon.com



Partial differential equations and operators

276 

Operator semigroup and Markov processes

276 6. OPERATOR SEMIGROUPS AND MARKOV PROCESSES

suppose that the function has the property that
ż 8

´8

ˇ

ˇ

ˇ

ˇ

„
ż 8

´8
fpξq

sinh
`

1
2
ξ
˘

1
2
ξ

eiτξdξ

ȷˇ

ˇ

ˇ

ˇ

dτ ă 8,

and suppose that vector valued (or operator valued) function vpτ, sq is bounded in
the following sense

sup
τPR

›

›

›

›

›

ż 1
2

´ 1
2

vpτ, sq ds

›

›

›

›

›

ă 8.

Then the following identities are true:
ż 8

´8
upτ, 0q

ż 1
2

´ 1
2

vpτ, sq ds dτ “
ż 8

´8

ż 1
2

´ 1
2

upτ, sq dsvpτ, 0q dτ ; (6.80)

ż 8

´8

„
ż 8

´8
fpξq

sinh
`

1
2
ξ
˘

1
2
ξ

eiτξdξ

ȷ

vpτ, 0q dτ “
ż 8

´8

„
ż 8

´8
fpξqeiτξdξ

ȷ
ż 1

2

´ 1
2

vpτ, sq ds dτ.

(6.81)

Notice the equalities:
ż 8

´8
fpξq exp piτξq dξ“

π

2

ż 8

´8

1

pcosh πpτ ´ σqq2
ż 8

´8
fpξq

sinh
`

1
2
ξ
˘

1
2
ξ

exp piσξq dξ dσ

“ Elogistic

„
ż 8

´8
fpξq

sinh
`

1
2
ξ
˘

1
2
ξ

exp pi pτ ´ Uq ξq dξ

ȷ

.

Proof. The equality in (6.81) follows by inserting the function upτ, sq defined
through

upτ, sq “
ż 8

´8
fpξq exp pipτ ` isqξq dξ,

into (6.80). Equality (6.80) follows from (iv) in Theorem 6.87 and Fubini’s theorem.
In fact we have

ż 8

´8
upτ, 0q

ż 1
2

´ 1
2

vpτ, sq ds dτ

(the equality in assertion (iv) of Theorem 6.87)

“
ż 8

´8
Elogistic

«

ż 1
2

´ 1
2

upτ ´ U, s1q ds1

ff

ż 1
2

´ 1
2

vpτ, s2q ds2 dτ

(Fubini twice, translation invariance of Lebesgue measure, and symmetry of the
logistic distribution)

“
ż 8

´8

ż 1
2

´ 1
2

upτ, s1q ds1 Elogistic

«

ż 1
2

´ 1
2

vpτ ´ U, s2q ds2

ff

dτ
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(another time we use the equality in assertion (iv) of Theorem 6.87)

“
ż 8

´8

ż 1
2

´ 1
2

upτ, sq ds vpτ, 0q dτ.

This concludes the proof of Theorem 6.89. �
6.90. Remark. In particular we have (γ ě 0):

1

π

ż 8

´8

γ ` 1
2

pτ ´ σq2 `
`

γ ` 1
2

˘2

ż 1
2

´ 1
2

vpσ, sq ds dσ

“
1

π

ż 8

´8

ż 1
2

´ 1
2

γ ` 1
2

` s

pτ ´ σq2 `
`

γ ` 1
2

` s
˘2ds vpσ, 0q dσ

“
1

π

ż 8

´8
log

˜

pγ ` 1q2 ` pτ ´ σq2

γ2 ` pτ ´ σq2

¸

vpσ, 0q dσ.

Here we employed the harmonic function

upσ, sq “
1

π

γ ` 1
2

` s

pτ ´ σq2 `
`

γ ` 1
2

` s
˘2 , γ ě 0.
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We also introduce the following convex sets of harmonic functions on the strip
R ˆ

`

´1
2
, 1
2

˘

:

harm1 “
"

u : R ˆ
ˆ

´
1

2
,
1

2

˙

Ñ R : u harmonic and

lim sup
εÓ0

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1
2

´ε

´ 1
2

`ε

upτ, sq ds

ˇ

ˇ

ˇ

ˇ

ˇ

dτ ď 1

+

; (6.82)

harm`
1 “

"

u P harm1 :

ż a

´a

upτ, sq ds ě 0 for all 0 ď a ă
1

2

*

. (6.83)

6.91. Theorem. Let pX, }¨}q be a Banach space, and let vpτ, sq be an X-valued
harmonic function on the strip R ˆ

`

´1
2
, 1
2

˘

. Suppose that sup t}vpτ, 0q} : τ P Ru is
finite. Then the following equalities are true:

sup t}vpτ, 0q} : τ P Ru (6.84)

“ sup

#›

›

›

›

›

ż 8

´8
upτ, 0q

ż 1
2

´ 1
2

vpτ, sq ds dτ

›

›

›

›

›

: u P harm1

+

(6.85)

“ sup

#›

›

›

›

›

ż 8

´8
upτ, 0q

ż 1
2

´ 1
2

vpτ, sq ds dτ

›

›

›

›

›

: u P harm`
1

+

. (6.86)

Proof. The quantity in (6.86) is trivially dominated by the one in (6.85). Equal-
ity (6.80) yields the inequality

›

›

›

›

›

ż 8

´8
upτ, 0q

ż 1
2

´ 1
2

vpτ, sq ds dτ

›

›

›

›

›

ď sup t}vpτ, 0q} : τ P Ru ,

for u belonging to harm1. Hence quantity (6.84) dominates (6.85). The equality

vpτ, 0q “
π

2

ż 8

´8

1

pcosh π pτ ´ σqq2
ż 1

2

´ 1
2

vpσ, sq ds dσ,

together with the identity

π

2

ż 1
2

´ε

´ 1
2

`ε

ℜ 1

pcosh πpτ ` is ´ σqq2
ds “

cos πε sin πε

pcosh πpτ ´ σqq2 ` sin2 πε
,

0 ă ε ă 1
2
, implies that quantity (6.84) is dominated by (6.86). So the proof of

Theorem 6.91 is now complete. �

Another corollary is the following one.

6.92. Corollary. Let v : R ˆ
`

´1
2
, 1
2

˘

be an X-valued harmonic function, with

boundary values v
`

τ, 1
2

˘

and v
`

τ,´1
2

˘

respectively. Suppose

sup

"›

›

›

›

v

ˆ

τ,
1

2

˙

` v

ˆ

τ,´
1

2

˙›

›

›

›

: τ P R
*

ă 8.
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Then the suprema

sup t}vpτ, 0q} : τ P Ru and sup

#›

›

›

›

›

ż 1
2

´ 1
2

vpτ, sq ds

›

›

›

›

›

: τ P R

+

are finite. Moreover they obey the following inequalities:

sup t}vpτ, 0q} : τ P Ru ď sup

#›

›

›

›

›

ż 1
2

´ 1
2

vpτ, sq ds

›

›

›

›

›

: τ P R

+

ď
1

2
sup

"›

›

›

›

v

ˆ

τ,
1

2

˙

` v

ˆ

τ,´
1

2

˙›

›

›

›

: τ P R
*

ă 8.

Proof. This result is an easy consequence of the following identities:

vpτ, 0q “
π

2

ż 8

´8

1

pcosh π pτ ´ σqq2
ż 1

2

´ 1
2

vpσ, sq ds dσ;

ż 1
2

´ 1
2

vpτ, sq ds “
1

2

ż 8

´8

ż 1
2

´ 1
2

cos πs

cosh πpτ ´ σq ´ sin πs
ds

ˆ

v

ˆ

σ,
1

2

˙

` v

ˆ

σ,´
1

2

˙˙

dσ.

The reader should compare this with the proof of assertion (iv) of Theorem 6.87.
This completes the proof of Corollary 6.92. �
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CHAPTER 7

Holomorphic semigroups

In this chapter we will discuss certain aspects of holomorphic semigroups. In The-
orem 7.3 (generators of) exponentially bounded holomorphic semigroups are de-
scribed. This is done via so-called sectorial operators. In Section 3 the same
is done for (generators of) bounded holomorphic semigroups. These semigroups
tP ptq : t ě 0u are not only bounded, but, for some 0 ă α ď 1

2
π, they also have an

analytic extension in some sector Vα “ tz P C : |arg z| ă αu which is bounded in
the sense that sup t}P ptq} : t P Vαu ă 8. In section 4 we discuss the relationship
between the Crank-Nicolson iteration scheme and generators of bounded analytic
semigroups. A certain functional calculus is developed which encompasses the rel-
evant operators; see Theorem 7.13 and its Corollary 7.14, Corollary 7.17. Finally
Section 5 is devoted to a discussion on the stability of the Crank-Nicolson iteration
scheme.

The author is indebted to Sergey Piskarev, University of Moscow, for interesting
discussions on the subject and for some relevant references.

1. Introduction

In this section holomorphic semigroups and their generators are characterized. For
a concise formulation for the results we introduce the following notation. Let 0 ă
α ď π and put Vα “ tz P C : |arg z| ă αu. Let tP ptq : t ě 0u be a semigroup
of continuous linear operators in a Banach space X. This semigroup is said to
be holomorphic or analytic if there exists 0 ă α ď 1

2
π and a holomorphic map

rP : Vα Ñ LpXq such that rP ptq “ P ptq for t ą 0. Instead of rP ptq we usually write
P ptq for this extension. Again we have P pz1 ` z2q “ P pz1q ˝ P pz2q for z1 and z2 in
Vα. We begin with a couple of definitions.

7.1.Definition. The semigroup tP pzq : z P Vαu is said to be exponentially bounded
if for each 0 ă φ ă α, there exists constants M “ Mφ and ω “ ωφ such that
}P pzq} ď M exp pω |z|q for all z P Vφ.

7.2.Definition. Let tP ptq : t ě 0u be a strongly continuous semigroup of operators
on a Banach space X. This semigroup is called (uniformly) bounded if

sup t}P ptq} : t ě 0u ă 8.

It is called a (uniformly) bounded analytic semigroup provided that it is (uniformly)
bounded and extends to a (uniformly) bounded analytic semigroup on a sector Vα

281
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where 0 ă α ď π{2. This means that, for some 0 ă α ď π{2,

sup t}P ptq} : t P Vαu ă 8.

Usually the adverb “uniformly” is omitted. In Theorem 7.9 below we give a char-
acterization of generators of bounded analytic semigroups in terms of sectorial op-
erators: see Definition 7.5. We also notice that part of this material comes from
Chapter 5 in [139].

2. Exponentially bounded analytic semigroups

In what follows we collect some of the characterizations of exponentially bounded
analytic semigroups.

7.3. Theorem. Let tP ptq : t ě 0u be a strongly continuous semigroup in LpXq with
generator A and with resolvent family tRpλq : λ P ρpAqu. The following assertions
are equivalent:

(i) The semigroup tP ptq : t ě 0u is analytic and has an exponentially bounded
extension.

(ii) There exists a complex number ζ, |ζ| “ 1, such that

lim sup
tÓ0

inf t}ζx ´ P ptqx} : x P X, }x} “ 1u ą 0.

(iii) There exists π ą α ą 1
2
π such that ρpAq Ą a`V α for some a ą 0 and such

that

|λ| }Rpλq} ď C, λ P a ` Vα

for an appropriate constant C.
(iv) There exists a constant C and a positive real number b such that ρpAq Ą

tλ P C : ℜλ “ 0, |ℑλ| ą bu and such that

|λ| }Rpλq} ď C, ℜλ “ 0, |λ| ą b.

(v) lim suptÓ0 sup tt }AP ptqx} : x P DpAq, }x} ď 1u ă 8.
(vi) The operator

ˆ

A 0
A A

˙

generates a strongly continuous semigroup in X ˆ X.
(vii) There exist a constant C and a positive real number b such that

n
›

›

›

`

λRpλq
˘n ´

`

λRpλq
˘n´1

›

›

›
ď C, λ ą bn, n P N.

(viii) There exists a polynomial q such that

lim sup
tÓ0

}qpP ptqq} ă sup t|qpzq| : z P C, |z| “ 1u .
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(ix) There exists a polynomial q such that

lim sup
sÓ0,tÓ0,nÑ8

›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

1{n

ă sup t|qpzq| : z P C, |z| “ 1u .

(x) For every polynomial q, for which |qp1q| ă sup t|qpzq| : |z| “ 1u, the strict
inequality

lim sup
sÓ0,tÓ0,nÑ8

›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

1{n

ă sup t|qpzq| : z P C, |z| “ 1u

holds.

7.4. Remark. Let A be the generator of a bounded semigroup tP ptq : t ě 0u. If
in assertion (i) “bounded analytic” replaces “exponentially bounded analytic”, in
assertion (v) we assume

sup tt }AP ptqx} : t ą 0, x P DpAq, }x} ď 1u ă 8,

in assertion (vi) the operator

ˆ

A 0
A A

˙

generates a strongly continuous bounded

semigroup in X ˆ X, and in assertion (vi) we take b “ 0, then a substantial part of
Theorem 7.9 follows.
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7.5. Definition. Operators A which satisfy (iii) in Theorem 7.3 are called sectorial
operators.

For more details on sectorial operators see, e.g., Lunardi [85] and also Haase [60].
The equivalency of (i), (ii) and (iv) is due to Kato: see Kato [75, 76, 77]. A proof
of the equivalency of (i), (iii), (iv) and (v) can be found in Pazy [97], pp. 61-64. In
Yosida [156], pp. 254–255 the equivalency of (i), (iii) and (v) is proved too. The
equivalency of (v), (vi) and (vii) can be found in Crandall, Pazy and Tartar [28]. In
[14] Beurling proves the equivalency of (i), (ix) and (x). The implication (viii) ñ
(ix) is easy. Let q be a polynomial for which the strict inequality in (ix) holds. For
appropriately chosen m and n in N the polynomial q0pzq :“ qpzqnzmn satisfies (viii).

In many textbooks on differential equations applications of analytic semigroup the-
ory can be found. In [132, 133] Stewart gives a number of interesting application of
the use of analytic semigroups. In [128] Sinclair applies holomorphic semigroups to
Banach algebra theory. In [99] and [100] Pisier uses Beurling’s characterization of
holomorphic semigroups to prove some geometric properties of Banach spaces. Here
the following fact is used. If Q1, . . . , Qn are commuting projections in a Banach
space, then the mapping t ÞÑ

śn
k“1 tpI ´ Qkq ` e´tQku, t ě 0, is a holomorphic

semigroup. In [34] de Graaf has yet another application of holomorphic semigroups.
In [35] Delaubenfels introduces the notion of exponentially bounded holomorphic
integrated semigroup. He also gives some examples. For regularity properties of
solutions of initial value problems, in which sectorial operators play a fundamental
role see, e.g., Prüss [103], Prüss and Simonett [104], Lunardi [85] and others.

Before we prove Theorem 7.3 we insert the following proposition. It refines some of
its statements. Moreover it yields the equivalence of the assertions (i), (ii), (iii), (iv)
and (v) of Theorem 7.3.

7.6. Proposition. Let A be the generator of a strongly continuous semigroup tP ptq :
t ě 0u in LpXq. The following assertions are equivalent:

(i) The semigroup tP ptq : t ě 0u has an exponentially bounded holomorphic
extension in some angle Vα with 0 ă α ď 1

2
π.

(ii) For every ζ P C, |ζ| “ 1, ζ ‰ 1, the inverses pζI ´ P ptqq´1 exist, as ev-
erywhere defined bounded linear operators, for all sufficiently small positive
real numbers t.

(iii) There exists ζ P C, |ζ| “ 1, ζ ‰ 1, such that the expression

lim inf
tÓ0

inf t}ζx ´ P ptqx} : x P X, }x} “ 1u

is strictly positive.
(iv) There are constants M ě 0, a P R and b ě 0 such that

M }pa ` iτqx ´ Ax} ě |τ | }x}

for all x P DpAq and for all τ P R with |τ | ě b.
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(v) There exist constants a P R and 1
2
π ă φ ă π such that the resolvent set of

A contains a ` Vφ and such that

sup t|λ| }Rpλq} : λ P a ` Vφu
is finite.

(vi) The expression

lim sup
tÓ0

sup tt }AP ptqx} : x P DpAq, }x} ď 1u

is finite.

Here, as always, Rpλq denotes the operator Rpλq “ pλI ´ Aq´1, whenever it exists
as a bounded linear operator which is everywhere defined. Sometimes we will use
symbolic calculus utilizing operator valued integrals in the complex plane. The
contour Γpa, φq, a P R, 0 ă φ ă π, denotes then the boundary of a ` Vφ oriented in
such a way that a ` Vφ is lying at the right-hand side.

7.7. Remark. Let A be the generator of a bounded semigroup tP ptq : t ě 0u. If in
Proposition 7.6 assertion (i) we replace “exponentially bounded” with “bounded”,
in (iv) we take a “ 0, b “ 0, in (v) we take a “ 0, and in (vi) we assume

sup tt }AP ptqx} : t ą 0, }x} ď 1, x P DpAqu ă 8,

then part of Theorem 7.9 follows from the argumentation in the proof just below.

Proof of Proposition 7.6. (i) ñ (v) Suppose }P ptq} ď M exppωtq, for t P
Vα, where 0 ă α ă 1

2
π is fixed. Choose a1 P R in such a way that a1 cosα ą ω and

for λ P a1 ` Vα` 1
2
π, ℑλ ě 0, the LpXq-valued integrals Rαpλq by

Rαpλqx “ e´iα

ż 8

0

exp
`

´λte´iα
˘

P pte´iαqxdt, x P X.

Since
›

›exp
`

´λte´iα
˘

P
`

te´iα
˘›

› ď M exp p´pa1 cosα ´ ωqtq

for t ě 0 and for λ P
´

a1 ` Vα` 1
2
π

¯

Ş

tλ P C : ℑλ ě 0u, these integrals make sense

indeed. Next fix φ P R in such a way that

α `
1

2
π ą φ ą

1

2
π, φ ą 2α,

and fix a ě a1 in such a way that

a pcosα ´ cospφ ´ αqq “ 2a sin
1

2
φ. sin

ˆ

1

2
φ ´ α

˙

ě ω.

For λ “ a ` |λ ´ a| eiφ the following inequlities are valid:

}Rαpλq} ď M

ż 8

0

exp p´at cosα ´ |λ ´ a| t cospφ ´ αq ` ωtq dt

ď M pa cosα ` |λ ´ a| cospφ ´ αq ´ ωq´1

ď M papcosα ´ cospφ ´ αqq ´ ω ` |λ| cospφ ´ αqq´1
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ď M p|λ| cospφ ´ αqq´1 .

Hence
|λ| }Rαpλq} ď M pcospφ ´ αqq´1 , λ P Γpa, φq, ℑλ ě 0. (7.1)

Similarly the integrals

R´αpλqx :“ eiα
ż 8

0

exp
`

´λteiα
˘

P pteiαqxdt, x P X,

make sense for λ P a1 ` Vα` 1
2
π, ℑλ ď 0. Again we have

|λ| }R´αpλq} ď M pcospφ ´ αqq´1 , λ P Γpa, φq, ℑλ ď 0. (7.2)

By Cauchy’s theorem we have

Rpλq “ Rαpλq, ℜλ ą a1, ℑλ ě 0, (7.3)

and
Rpλq “ R´αpλq, ℜλ ą a1, ℑλ ď 0. (7.4)
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In (7.4), as usually,

Rpλqx “
ż 8

0

expp´λtqP ptqxdt “ pλI ´ Aq´1x, x P X,

for ℜλ ą ω. So the holomorphic map λ ÞÑ Rpλq, ℜλ ą a1, extends to an operator
valued holomorphic map on the interior of a1 ` Vα` 1

2
π. This extension is again

denoted by Rpλq and in fact

Rpλq “ pλI ´ Aq´1, λ P a1 ` Vα` 1
2
π. (7.5)

From (7.1), (7.2), (7.3), (7.4), (7.5) and the maximum modulus theorem the inequal-
ity

|λ| }Rpλq} ď M pcospφ ´ αqq´1 , λ P a ` Vφ, (7.6)

follows.

(v) ñ (vi) Let a and φ be as in (v). Then with Γ “ Γpa, φq we have

P ptqx “
1

2πi

ż

Γ

exppλtqRpλqxdλ, x P X, t ě 0. (7.7)

The latter follows from the equalities:
ż 8

0

expp´µtq
1

2πi

ż

Γ

exppλtqRpλqxdλdt

“
1

2πi

ż

Γ

ˆ
ż 8

0

exp p´pµ ´ λqtq dtRpλqx
˙

dλ

“
1

2πi

ż

Γ

1

µ ´ λ
Rpλqdλ

“ Rpµqx “
ż 8

0

expp´µtqP ptqxdt,

for ℜµ ą 0 and x P X together with the uniqueness of Laplace transforms. Since A
is a closed linear operator and since ARpλq “ λRpλq ´ I equality (7.7) implies that
for x P X and t ą 0 the vector P ptqx belongs to DpAq and that

AP ptqx “
1

2πi

ż

Γ

exppλtqARpλqxdλ

“
1

2πi

ż

Γ

exppλtq pλRpλqx ´ xq dλ

“
1

2πi

ż

Γ

exppλtqλRpλqxdλ. (7.8)

Consequently, withM0 :“ sup t|λ| }Rpλq} : λ P Γpa, φqu, which by (v) is finite, equal-
ity (7.8) yields

πt }AP ptqx} ď t

ż 8

0

exp

ˆ

at ´ ρt sin

ˆ

φ ´
1

2
π

˙˙

dρ.M0 }x}

“ exppatq
ˆ

sin

ˆ

φ ´
1

2
π

˙˙´1

.M0 }x} .
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This proves (vi).

(vi) ñ (i) By (vi) there are constants δ and M1 ą 0 such that

t }AP ptqx} ď M1 }x}

for all x P DpAq and for all 0 ă t ď δ. For t ą 0 arbitrary select k P N in such a
way that kδ ă t ď pk ` 1qδ. With ω ě 0 and M ą 0 satisfying

M “ sup

"

M1

ˆ

t

δ
` 1

˙

expp´ωtq }P psq} : 0 ă s ď t, t ą 0

*

ă 8,

we infer, for x P DpAq,

t }AP ptqx} ď pt ´ kδq }AP pt ´ kδqP pkδqx} ` kδ }AP pδqP pt ´ δqx}
ď M1 p}P pkδqx} ` k }P pt ´ δqx}q

ď M1

ˆ

t

δ
` 1

˙

sup t}P psqx} : 0 ă s ď tu

ď M exppωtq }x} . (7.9)

Consequently, since DpAq is dense in X, the operators AP ptq, t ą 0, can be extended
to all of X. These extensions will be denoted by Cptq, t ą 0. Moreover (7.9) implies

t }Cptq} ď M exppωtq, t ą 0. (7.10)

Put C0ptq “ P ptq and Ckptq “ pCptk´1qqk, t ą 0, k P N, k ě 1. By induction on n
the equality

P ptqx “
n

ÿ

k“0

pt ´ t0qk

k!
Ckpt0qx `

1

n!

ż t

t0

pt ´ sqnCn`1psqxds, (7.11)

is readily verified for t, t0 ą 0, n P N, and for x P X. For the time being fix t0 ą 0
and consider t ą 0 with

pMe ` 1q |t ´ t0| ď t0. (7.12)

By (7.10) and the definitions of the operators Cnptq,

tn }Cnptq} ď tn
›

›Cptn´1q
›

›

n ď nnMn exppωtq, t ą 0, n P N,

and consequently

1

n!

›

›

›

›

ż t

t0

pt ´ sqnCn`1psqds
›

›

›

›

ď
1

n!

ˇ

ˇ

ˇ

ˇ

ż t

t0

pt ´ sqn }Cn`1psq} ds
ˇ

ˇ

ˇ

ˇ

}x}

ď
pn ` 1qn`1

n!
Mn`1

ˇ

ˇ

ˇ

ˇ

ż t

t0

pt ´ sqn exppωsq
sn`1

ds

ˇ

ˇ

ˇ

ˇ

}x}

ď
pn ` 1qn`1

pn ` 1q!
Mn`1 exp pωmaxpt, t0qq

pminpt, t0qqn`1 |t ´ t0|n`1 }x}
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(by Stirling’s formula)

ď
pMeqn`1

a

2πpn ` 1q
exp pωmaxpt, t0qq

pminpt, t0qqn`1 |t ´ t0|n`1 }x}

(by (7.12))

ď
exp pω p1 ` pMe ` 1q´1q t0q

a

2πpn ` 1q
}x} .

Hence in (7.11) the remainder term tends to 0. So

P ptq “
8
ÿ

k“0

pt ´ t0qk

k!
Ckpt0q, |t ´ t0| ď

t0
Me ` 1

, t ą 0. (7.13)

Next let t P C be such that pMe` 1q |t ´ t0| ď t0. Then (7.13) defines P ptq for such
t. Moreover, by (7.12) we have for such complex t,

}P ptq} ď }P pt0q} `
8
ÿ

k“1

|t ´ t0|k

k!
}Ckpt0q}

ď

˜

M

M1

`
8
ÿ

k“1

|t ´ t0|k

k!

kkMk

tk0

¸

exppωt0q

(by Stirling’s formula)

ď

˜

M

M1

`
1?
2π

8
ÿ

k“1

|t ´ t0|k pMeqk

tk0

¸

exp

ˆ

Meω

Me ` 1
|t|

˙

ď M

ˆ

1

M1

`
e?
2π

˙

exp

ˆ

ω
Me

Me ` 1
|t|

˙

ď M0 exppω0 |t|q.

Here M0 “ M
´

M´1
1 ` ep2πq´ 1

2

¯

and ω0 “ ωMe{pMe ` 1q. Thus, for t P Vα with

α “ arcsin
1

Me ` 1
, P ptq satisfies

}P ptq} ď M0 exppω0 |t|q.

This proves (i).

(v) ñ (ii) Let a and φ be as in (v), fix ζ “ exppiϑq, 0 ă ϑ ă 2π and choose t ą 0
so small that

|argp´at ` iϑ ` 2kπiq| ă φ, Dk P Z.
For such t define the operator Bptq by

Bptq “
1

2πi

ż

Γ

exppλtq
exppλtq ´ ζ

Rpλqdλ,
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where Γ “ Γpa, φq. Then by symbolic calculus (see also (7.7)):

P ptqBptq “ BptqP ptq

“
1

2πi

ż

Γ

exppλtq
exppλtq

exppλtq ´ ζ
Rpλq dλ

“
1

2πi

ż

Γ

tpexppλtq ´ ζq ` ζu
exppλtq

exppλtq ´ ζ
Rpλq dλ

“
1

2πi

ż

Γ

exppλtqRpλqdλ `
ζ

2πi

ż

Γ

exppλtq
exppλtq ´ ζ

Rpλq dλ

“ P ptq ` ζBptq.
Hence

pζI ´ P ptqqpI ´ Bptqq “ pI ´ BptqqpζI ´ P ptqq “ ζI.

This shows (ii).

(ii) ñ (iii) Trivial.
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(iii) ñ (iv) Let ζ “ exppiϑq, 0 ă ϑ ă 2π, be as in (iii) and choose a P R in such a
way that

}P ptq} ď C exppatq, t ě 0, (7.14)

for some constant C. Then there exists η ą 0 and t0 ą 0 such that, for all x P DpAq,

η }x} ď }ζx ´ expp´atqP ptqx} , 0 ă t ă t0. (7.15)

Since, for x P DpAq and t ą 0,

ζx ´ expp´atqP ptqx “
ż t

0

exp
´

iϑ
´

1 ´
s

t

¯¯

P psq
ˆˆ

iϑ

t
` a

˙

x ´ Ax

˙

ds.

So from 7.14 and 7.15 it follows that

η }x} ď Ct

›

›

›

›

ˆ

iϑ

t
` a

˙

x ´ Ax

›

›

›

›

, 0 ă t ă t0, x P DpAq.

So, with M1 “ Cη´1ϑ and b1 “ t´1
0 ϑ,

τ }x} ď M1 }piτ ` aqx ´ Ax} , (7.16)

for x in DpAq and τ ě b1. Similarly, upon replacing ϑ with ϑ ´ 2π we infer with
M2 “ Cη´1p2π ´ ϑq and b2 “ t´1

0 p2π ´ ϑq,

|τ | }x} ď M2 }piτ ` aqx ´ Ax} , (7.17)

for x P DpAq and τ ă ´b2. Combining (7.16) and (7.17) yields (iv).

(iv) ñ (v) Let M , a and b be as in (iv). Let ω be the type of the semigroup
tP ptq : t ě 0u. Fix α ą ω, put b1 “ maxp2Mpα ´ ωq, bq and choose π ą φ ą 1

2
π in

such a way that

|cotφ| ă min

ˆ

1

2M
,
α ´ ω

b

˙

“
α ´ ω

b1
. (7.18)

For |τ | ě b1 and x P DpAq the following inequalities hold true:

2M }pa ` iτqx ´ Ax} “ 2M }pa ` iτqx ´ Ax ` pα ´ aqx}
ě 2M }pa ` iτqx ´ Ax} ´ 2M |α ´ a| }x}
ě |τ | }x} ` p|τ | ´ 2M |α ´ a|q }x}
ě |τ | }x} .

Hence

|τ | }Rpα ` iτq} ď 2M, |τ | ě b1. (7.19)

From (7.18) and (7.19) we see that the series

8
ÿ

k“0

p´ρ cosφqk pRpα ` iρ sinφqqk`1

converges for ρ sinφ ě b1. Moreover

Rpα ` ρeiφq “
`

pα ` ρeiφqI ´ A
˘´1 “

8
ÿ

k“0

p´ρ cosφqk pRpα ` iρ sinφqqk`1
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and
›

›Rpα ` ρeiφq
›

› ď
2M

ρ sinφ

1

1 ´ 2M |cotφ|
for ρ sinφ ě b1. Consequently

ˇ

ˇα ` ρeiα
ˇ

ˇ

›

›Rpα ` ρeiαq
›

› ď 2M

ˇ

ˇ

ˇ

ˇ

α

ρ sinφ
` cotφ ` i

ˇ

ˇ

ˇ

ˇ

1

1 ´ 2M |cotφ|

ď 2M

ˆ

|α|
b1

`
1

2M
` 1

˙

1

1 ´ 2M |cotφ|
, (7.20)

for ρ sinφ ě b1. Using the fact that |cotφ| ă
b1

α ´ ω
we see that

sup

"

ˇ

ˇα ` ρeiφ
ˇ

ˇ

›

›Rpα ` ρeiφq
›

› : 0 ď ρ ď
b1

sinφ

*

is finite. This together with (7.20) shows that the expression

sup
␣ˇ

ˇα ` ρeiφ
ˇ

ˇ

›

›Rpα ` ρeiφq
›

› : ρ ě 0
(

(7.21)

is finite. A similar argument shows the finiteness of the expression

sup
␣ˇ

ˇα ´ ρeiφ
ˇ

ˇ

›

›Rpα ´ ρeiφq
›

› : ρ ě 0
(

. (7.22)

Using (7.21) and (7.22) together with the maximum modulus theorem results in the
finiteness of

sup t|λ| }Rpλq} : λ P α ` Vφu .
This proves (v). �

Proof of Theorem 7.3. The assertions (i), (ii), (iii), (iv) and (v) are equiv-
alent by Proposition 7.6.

(iii) ñ (x) Let C, a and α be as in (iii) and let q be any polynomial with

|qp1q| ă sup t|qpzq| : z P C, |z| “ 1u . (7.23)

Fix s0 ą 0 and fix t0 ą 0. Let 0 ă s ď s0, let 0 ă t ď t0 and let Γ “ Γpat0, αq. By
symbolic calculus

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq

“
1

2πi

ż

Γ

"

q

ˆ

exp

ˆ

exp

ˆ

λs

n

˙˙˙*n

exppλtqpλI ´ tAq´1 dλ. (7.24)

By (iii), (7.24) and some elementary estimates we obtain
›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

ď C1 sup

"ˇ

ˇ

ˇ

ˇ

q

ˆ

exp

ˆ

λs

n

˙˙ˇ

ˇ

ˇ

ˇ

n

: λ P Γpat0, αq
*

,

where

C1 “
C

π

ż 8

0

exppat0 ` ρ cosαq
|at0 ` ρ exppiαq|

dρ.
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Hence

sup

"›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

: 0 ă s ď s0, 0 ă t ď t0

*

ď C1 sup

"ˇ

ˇ

ˇ

ˇ

q

ˆ

exp

ˆ

ast0
n

˙

exppλq
˙ˇ

ˇ

ˇ

ˇ

n

: 0 ă s ď s0, λ P Γp0, αq
*

.

Consequently, since q is uniformly continuous on compact subsets of C,

lim sup
nÑ8

sup

#

›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

1
n

: 0 ă s ď s0, 0 ă t ď t0

+

ď sup t|q pexppλqq| : λ P Γp0, αqu . (7.25)

The set texppλq : λ P Γp0, αqu
Ť

t0u is a compact subset of tz P C : |z| ď 1u which
touches the circumference of the unit disc in the singleton 1. So the maximum
modulus theorem together with (7.23) and (7.25) yields

lim sup
nÑ8

sup

#

›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

1
n

: 0 ă s ď s0, 0 ă t ď t0

+

ă sup t|qpzq| : z P C, |z| “ 1u .
Assertion (x) is an easy consequence of this fact.

(x) ñ (ix) Yhis implication is trivial.
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(ix) ñ (viii) Let q be apolynomial that satisfies (ix). Then there are n, m P N and
δ ą 0 such that

sup
0ătďδ

›

›

›

›

"

q

ˆ

P

ˆ

t

mn

˙˙*mn›

›

›

›

ă sup t|qpzq|n : z P C, |z| “ 1u .

So with q0pzq “ qpzqnzmn and δ0 “ pmnq´1δ we obtain

sup
0ătďδ0

}q0 pP ptqq} ă sup t|q0pzq| : z P C, |z| “ 1u .

This proves (viii) with q “ q0.

(viii) ñ (ii) Let the polynomial q be as in (viii) and choose ζ P C, |ζ| “ 1, in such
a way that

|qpζq| “ sup t|qpzq| : z P C, |z| “ 1u .
Then by (viii), there are δ ą 0 and η ą 0 such that

η }x} ď p|qpζq| ´ }qpP ptqq}q }x}
for 0 ă t ă δ and for all x P X. So for 0 ă t ă δ and for x P X we obtain the
inequality:

η }x} ď }qpζqx ´ q pP ptqqx} . (7.26)

Define the polynomial r by the equality qpζq ´ qpzq “ pζ ´ zqrpzq, z P C, and put

C “ sup t}r pP ptqq} : 0 ă t ă δu .
Then, because of (7.26),

η }x} ď }r pP ptqq pζx ´ P ptqxq} ď C }ζx ´ P ptqx}
for all x P X and for all 0 ă t ă δ. So (ii) follows.

(v) ñ (vi) Let δ ą 0 and C ą 0 be such that t }AP ptqx} ď C }x} for all x P DpAq
and for all 0 ă t ă δ. As in the proof implication (vi) ñ (i) of Proposition 7.6 (see
(7.9) and (7.10)) there are constants M and ω such that

t }Cptq} ď M exppωtq, t ą 0, (7.27)

where Cptq is the canonical extension of AP ptq to all of X. Then the map

px, yq ÞÑ pP ptqx, tCptqx ` P ptqyq , x, y P X,

defines a strongly continuous semigroup on X ˆ X with generator

px, yq ÞÑ pAx,Ax ` Ayq , x, y P DpAq.

(vi) ñ (v) Suppose that the map px, yq ÞÑ pAx,Ax ` Ayq, x, y P DpAq, generates a
strongly continuous semigroup tSptq : t ě 0u. Then

Sptqpx, yq “ pP ptqx, tAP ptqx ` P ptqyq , x, y P DpAq. (7.28)

The latter can be seen as follows. Put Bpx, yq “ pAx,Ax ` Ayq for x, y P DpAq
and put Dpx, yq “ pAx,Ayq for x, y P DpAq. Then D generates the semigroup
tQptq : t ě 0u, defined by

Qptqpx, yq “ pP ptqx, P ptqyq , x, y P X.
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Moreover for y P DpAq we have Bp0, yq “ p0, Ayq. Hence Sptqp0, yq “ p0, P ptqyq,
y P X. So, for x and y in DpAq we get

Sptqpx, yq ´ pP ptqx, P ptqyq “ Sptqpx, yq ´ Qptqpx, yq

“
ż t

0

Spt ´ sqpB ´ DqQpsqpx, yq ds

“
ż t

0

Spt ´ sqpB ´ Dq pP psqx, P psqyq ds

“
ż t

0

Spt ´ sq p0, AP psqxq ds

“
ż t

0

p0, P pt ´ sqAP psqxq ds

“
ż t

0

p0, AP pt ´ sqP psqxq ds

“
ż t

0

p0, AP ptqxq ds “ p0, tAP ptqxq .

This shows (7.28). From the strong continuity of the semigroup tSptq : t ě 0u and
(7.28) we see that

sup tt }AP ptqx} : x P DpAq, }x} ď 1, 0 ă t ď 1u

is finite. This proves (v).

(v) ñ (vii) Since λRpλq ´ I “ ARpλq, since for λ sufficiently large

pn ´ 1q!Rpλqnx “
ż 8

0

sn´1 expp´λsqP psqxds, x P X, n P N,

and since A is a closed linear operator, it follows for x P DpAq and n ě 2,

pn ´ 1q!
›

›pλRpλqqn x ´ pλRpλqqn´1 x
›

› “ pn ´ 1q!λn´1 }ARpλqnx}

“ λn´1

›

›

›

›

A

ż 8

0

sn´1 expp´λsqP psqxds
›

›

›

›

“ λn´1

›

›

›

›

ż 8

0

sn´1 expp´λsqAP psqxds
›

›

›

›

ď λn´1

ż 8

0

sn´1 expp´λsq }AP psqx} ds. (7.29)

Since, by (v), for suitable constants δ ą 0 and C ą 0,

t }AP ptqx} ď C }x} , 0 ă t ď δ, x P DpAq,

we obtain as in the proof of Proposition 7.6 (see (7.9)), again for appropriate con-
stants M and ω,

s }AP psqx} ď M exppωsq }x} , s ě 0, x P DpAq. (7.30)
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Inserting (7.30) into (7.29) yields

pn ´ 1q!
›

›pλRpλqqn x ´ pλRpλqqn´1 x
›

›

ď Mλn´1

ż 8

0

sn´2 expp´λsq exppωsqds. }x}

“ M

ˆ

λ

λ ´ ω

˙n´1

pn ´ 2q! }x} ,

for x P DpAq and n ě 2. Hence, for λ ě 2ωn we have

n
›

›pλRpλqqn ´ pλRpλqqn´1 x
›

› ď M1 }x} , x P X,

where

M1 “ M sup
ně2

1
ˆ

1 ´
1

2n

˙n

n ´
1

2
n ´ 1

.

This proves (vii).
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(vii) ñ (v) From (vii) we get, with x P DpAq and M , b ą 0 as in (vii),

n
›

›Rpλq pλRpλqqn´1Ax
›

› ď M }x} , λ ě bn.

So, with 0 ă t ď b´1 and λ “ nt´1,

t
›

›

›

!n

t
R

´n

t

¯)n

Ax
›

›

›
ď M }x} , n P N, x P DpAq.

Hence the next standard result in semigroup theory

P ptqy “ lim
nÑ8

!n

t
R

´n

t

¯)n

y, t ě 0, y P X,

(see e.g. Pazy [97] Corollary 5.4) shows

t }AP ptqx} ď M }x} , 0 ă t ď
1

b
, x P DpAq.

Hence, proof of Theorem 7.3 is now complete. �

We conclude this chapter with the following corollary. It follows from an examination
of the proof of the implication (x) ñ (i) of Theorem 7.3.

7.8. Corollary. Suppose that the operator A is the generator of a strongly contin-
uous semigroup tP ptq : t ě 0u. Then tP ptq : t ě 0u has an exponentially bounded
holomorphic extension if and only if

lim sup
nÑ8

sup
s,tPK

›

›

›

›

"

q

ˆ

P

ˆ

st

n

˙˙*n

P ptq
›

›

›

›

ă sup t|qpzq| : z P C, |z| “ 1u

for all compact subsets K of r0,8q and for all polynomials q with

|qp1q| ă sup t|qpzq| : z P C, |z| “ 1u .

3. Bounded analytic semigroups

The following theorem characterizes generators of bounded analytic semigroups as
sectorial operators whose resolvent sets contain the right half-plane tλ P C : ℜλ ą 0u.

7.9. Theorem. Let A be the generator of strongly continuous semigroup. The fol-
lowing assertions are equivalent:

(i) The operator A generates a bounded analytic semigroup.
(ii) There exists 1

2
π ă α0 ă π such that ρpAq Ą Vα0 and such that

sup
␣

|λ|
›

›pλI ´ Aq´1
›

› : λ P Vα0

(

ă 8. (7.31)

(iii) The resolvent set ρpAq contains the open half-plane tλ P C : ℜλ ą 0u and

sup
␣

|λ|
›

›pλI ´ Aq´1
›

› : ℜλ ą 0
(

ă 8. (7.32)

(iv) sup tt }AP ptqx} : t ą 0, x P DpAq, }x} ď 1u ă 8.
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(v) The operator
ˆ

A 0
A A

˙

generates a strongly continuous bounded semigroup in X ˆ X.
(vi) There exist a finite constant C1 such that

n
›

›pλRpλqqn ´ pλRpλqqn´1
›

› ď C1, λ ą 0, n P N.

Let A be the generator of a semigroup tP ptq : t ě 0u. Informally formulated the

operator

ˆ

A 0
A A

˙

generates the semigroup

"ˆ

P ptq 0
tAP ptq P ptq

˙

: t ě 0

*

. This is a

special case of the following situation. Let A1 be the generator of a strongly contin-
uous semigroup tP1ptq : t ě 0u in a Banach space X1, and let A2 be the generator of
a strongly continuous semigroup tP2ptq : t ě 0u in a Banach space X2. In addition,
let B : X1 Ñ X2 be an appropriate, not necessarily bounded, operator. Then, in

X1 ˆ X2, the operator

ˆ

A1 0
B A2

˙

generates the semigroup

"ˆ

P1ptq 0
şt

0
P2psqBP1pt ´ sq ds P2ptq

˙

: t ě 0

*

.

Proof of Theorem 7.9. The reason that the assertions in (iv), (v) and (vi)
are equivalent to the assertions in (i), (ii) and (iii) can be found in repeating the
proofs of the implications (v) ðñ (vi), (v) ðñ (vii) of Theorem 7.3, and also by
repeating the arguments in the implications (i) ùñ (v) ùñ (vi) ùñ (i) of Proposition
7.6. Proofs of the other implications run as follows.

(i) ùñ (ii) Let 0 ă α ă π{2 be such that A generates the bounded analytic
semigroup tP ptq : t P Vαu. From (i) it follows that the sector Vα is such that the
constant Cα :“ sup t}P ptq} : t P Vαu is finite. Choose 0 ă δ ă min pα, π{2 ´ αq,
and put α0 “ π{2 ` α ´ δ. Let λ P Vα0 . Then λ “ |λ| eiφ with |φ| ď α0. If
α ` δ ´ π{2 ď φ ď α ´ δ ` π{2, the we have

pλI ´ Aq´1 x “ e´iα

ż 8

0

e´λte´iα

P
`

te´iα
˘

x dt, x P X. (7.33)

From (7.33) we infer:

›

›pλI ´ Aq´1 x
›

› ď
ż 8

0

›

›

›
e´λte´iα

P
`

te´iα
˘

x
›

›

›
dt

ď Cα

ż 8

0

e´|λ| cospφ´αq t dt }x}

ď Cα

ż 8

0

e´|λ| cospπ{2´δq t dt }x}

“
Cα

|λ| sin δ
}x} , x P X. (7.34)
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If ´α ` δ ´ π{2 ď φ ď ´α ´ δ ` π{2, the we have

pλI ´ Aq´1 x “ eiα
ż 8

0

e´λteiαP
`

teiα
˘

x dt, x P X. (7.35)

Observe that α` δ ´ π{2 ď π{2´α´ δ, and so that if λ “ |λ| eiφ with ´π ă φ ă π
belongs to Vα0 , then φ satisfies α ` δ ´ π{2 ď φ ď α ´ δ ` π{2 or ´α ` δ ´ π{2 ď
φ ď ´α ´ δ ` π{2. As in (7.34) from (7.35) we again have

›

›pλI ´ Aq´1 x
›

› ď
Cα

|λ| sin δ
}x} , x P X. (7.36)

(ii) ùñ (iii) This implication is trivial.

(iii) ùñ (i) Let tP ptq : t ě 0u be the semigroup generated by A. Define the family
of operators tQptq : t ě 0u such that

tQptqx “
1

2πi

ż ω`i8

ω´i8
eλt pλI ´ Aq´2 x dt, x P X. (7.37)

In (7.37) ω is strictly, but we may choose it as we please. Let µ P C be such that
ℜµ ą ω. Then we have, for x P X,

ż 8

0

e´µttQptqx dt “
1

2πi

ż ω`i8

ω´i8

ż 8

0

e´pµ´λqt dt pλI ´ Aq´2 x dλ

“
1

2πi

ż ω`i8

ω´i8

1

µ ´ λ
pλI ´ Aq´2 x dλ

(Cauchy’s theorem, ω1 ą ℜµ)

“ pµI ´ Aq´2 x `
1

2πi

ż ω1`i8

ω1´i8

1

µ ´ λ
pλI ´ Aq´2 x dλ

(let ω1 tend to 8)

“ pµI ´ Aq´2 x “
ż 8

0

e´µttP ptqx dt. (7.38)

In the final step of (7.38) we employed the fact that the operator A is the generator
of the semigroup tP ptq : t ě 0u. From (7.38) it follows that Qptqx “ P ptqx for t ě 0.
We still have to prove that t ÞÑ P ptqx, t ą 0, extends to an analytic semigroup which
is bounded on sector Vα with 0 ă α ă π{2. To achieve this we apply integration by
parts to obtain, for x P X,

t2P ptqx “ t2Qptqx “
1

πi

ż ω`i8

ω´i8
eλt pλI ´ Aq´3 x dλ. (7.39)

Fix x P X and t ą 0. From (7.39) we readily infer that P ptqx belongs to DpAq, and
that

t2AP ptqx “ t2AQptqx “
1

πi

ż ω`i8

ω´i8
eλt pλI ´ Aq´2

`

λ pλI ´ Aq´1 ´ I
˘

x dλ. (7.40)
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Again employing Cauchy’s theorem and using (7.40) entails

t2AP ptqx “ t2AQptqx

“
1

2πi

ż ω`i8

ω´i8

`

eλt ` e´λt ´ 2
˘

pλI ´ Aq´2
`

λ pλI ´ Aq´1 ´ I
˘

x dλ. (7.41)

Put
C “ sup

␣

|λ|
›

›pλI ´ Aq´1
›

› : ℜλ ą 0
(

. (7.42)

Then by (iii) C ă 8. Employing (7.37) we get by Cauchy’s theorem

tP ptqx “ tQptqx “
1

2πi

ż ω`i8

ω´i8

`

eλt ` e´λt ´ 2
˘

pλI ´ Aq´2 x dt, x P X. (7.43)

From (7.43) we deduce, by letting ω Ó 0, that

}P ptqx} ď
1

2πt

ż 8

´8

2 p1 ´ cos tξq
ξ2

dξ C2 }x} “ C2 }x} , x P X, t ą 0. (7.44)

Similarly, from (7.41) we deduce, by letting ω Ó 0, that

t2 }AP ptqx} ď
1

π

ż 8

´8

2 p1 ´ cos tξq
ξ2

dξ C2 pC ` 1q }x}

“ 2tC2 pC ` 1q }x} . (7.45)
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From (7.45) we see

t }AP ptqx} ď 2C2 pC ` 1q }x} , t ě 0, x P X. (7.46)

Fix t0 ą 0, and choose t P C such that 2 |t ´ t0| eC2 pC ` 1q ă t0. Then we define

the operator rP ptq by the power series:

rP ptqx “ P pt0qx `
8
ÿ

k“1

pt ´ t0qk

k!
AkP pt0qx

“ P pt0qx `
8
ÿ

k“1

kk

k!

ˆ

t

t0
´ 1

˙k ˆ

t0
k
AP

ˆ

t0
k

˙˙k

x, x P X. (7.47)

Hence, from (7.44), (7.45), and (7.47) we deduce

›

›

›

rP ptqx
›

›

›
ď C2 }x} `

8
ÿ

k“1

kk

k!

ˇ

ˇ

ˇ

ˇ

t

t0
´ 1

ˇ

ˇ

ˇ

ˇ

k
`

C2 pC ` 1q
˘k }x}

ď C2 }x} `
1?
2π

8
ÿ

k“1

1?
k

ˇ

ˇ

ˇ

ˇ

t

t0
´ 1

ˇ

ˇ

ˇ

ˇ

k
`

eC2 pC ` 1q
˘k }x} , x P X. (7.48)

In the final inequality in (7.48) we applied Stirling’s formula which implies

?
2πk

kk

ek
ď k! ď

?
2πk

kk

ek
exp

ˆ

1

12k

˙

, k ě 1. (7.49)

From (7.48) it follows that t ÞÑ
›

›

›

rP ptqx
›

›

›
, }x} ď 1, is bounded as long as there exists

1 ą δ ą 0 such that |t ´ t0| eC2 pC ` 1q ď t0 p1 ´ δq. Next we observe that the

operator rP ptq does not really depend on t0 ą 0 in the sense that if t1, t2 ą 0, and if
t P C is such that |t ´ tj| eC2 pC ` 1q ă tj for j “ 1, 2, then

8
ÿ

k“0

pt ´ t1qk

k!
AkP pt1qx “

8
ÿ

k“0

pt ´ t2qk

k!
AkP pt2qx, x P X. (7.50)

This can be achieved by differentiating the functions

s ÞÑ
8
ÿ

k“0

pt ´ sqk

k!
AkP psqx, x P X. (7.51)

Differentiating the function in (7.51) (for fixed x P X) yields:

´
8
ÿ

k“1

pt ´ sqk´1

pk ´ 1q!
AkP psqx `

8
ÿ

k“0

pt ´ sqk

k!
Ak`1P psqx “ 0,

and so the definition of rP ptq does not really depend on t0. In particular, by taking

t0 “ t, it follows that rP ptqx “ P ptqx whenever t ą 0. Also notice that for t0 we may

choose |t|. Consequently, the operators rP ptq are defined in the sector determined by
the inequality

|t ´ |t|| eC2 pC ` 1q ă |t| , t P C.
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In addition sup
!›

›

›

rP ptq
›

›

›
: argptq ď α

)

is finite whenever the angle 0 ă α ă π{2 is

such that
ˇ

ˇeiα ´ 1
ˇ

ˇ eC2 pC ` 1q ď 1 ´ δ. (7.52)

It is not so difficult to prove the semigroup property of the family t ÞÑ rP ptq, t P Vα,
where 0 ă α ă π{2 satisfies (7.52). In fact we have

rP pt1q rP pt2q “
8
ÿ

k1“0

8
ÿ

k2“0

pt1 ´ |t1|qk1

k1!

pt2 ´ |t2|qk2

k2!
Ak1`k2P p|t1| ` |t2|qx

“
8
ÿ

n“0

1

n!

n
ÿ

k“0

ˆ

n

k

˙

pt1 ´ |t1|qk pt2 ´ |t2|qn´k AnP p|t1| ` |t2|q x

“
8
ÿ

n“0

1

n!
pt1 ` t2 ´ |t1| ´ |t2|qnAnP p|t1| ` |t2|qx

“
8
ÿ

n“0

1

n!
pt1 ` t2 ´ |t1 ` t2|qn AnP p|t1 ` t2|qx

“ rP pt1 ` t2q x, x P X. (7.53)

In other words the family
!

rP ptq : t P Vα

)

represents a uniformly bounded analytic

semigroup. The strong continuity at t “ 0 of the the semigroup rP ptq can easily be
proved via the representation

rP ptq x “ P pt0qx `
8
ÿ

k“1

pt ´ t0qk

k!
AkP pt0qx

with t0 “ |t| and t Ñ 0, t P Vα. This proves assertion (i).

Altogether this completes the proof of Theorem 7.9. �

Theorem 7.9 can be strengthened somewhat. The idea is that a densely defined
closed linear operator A which satisfies (iii) in Theorem 7.9 is in fact the generator
of bounded analytic semigroup.

7.10. Theorem. Let A be a closed linear operator with a domain which is dense in
a Banach space X. The following assertions are equivalent:

(i) The operator A generates a bounded analytic semigroup.
(ii) There exists 1

2
π ă α0 ă π such that ρpAq Ą Vα0 and such that

sup
␣

|λ|
›

›pλI ´ Aq´1
›

› : λ P Vα0

(

ă 8. (7.54)

(iii) The resolvent set ρpAq contains the open half-plane tλ P C : ℜλ ą 0u and

sup
␣

|λ|
›

›pλI ´ Aq´1
›

› : ℜλ ą 0
(

ă 8. (7.55)

Our proof requires the following lemma.
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7.11. Lemma. Let the family tQptq : t ě 0u be a uniformly bounded family of lin-
ear operator with the property that for every x P X the mapping t ÞÑ Qptqx is
Borel measurable. Put Rpλqx “

ş8
0
e´λtQptqx dt. Then the following assertions are

equivalent:

(i) The family tQptq : t ě 0u has the semigroup property, i.e. for all x P X the
equality Q ps ` tq x “ QpsqQptqx holds for almost all ps, tq P p0,8qˆp0,8q.

(ii) The family tRpλq : λ ą 0u has the resolvent property, i.e.,

pµ ´ λqRpλqRpµq “ Rpλq ´ Rpµq

for all pλ, µq P p0,8q ˆ p0,8q.

Proof. Fix x P X, and λ, µ ą 0, λ ‰ µ. First we calculate
ż 8

0

ż 8

0

e´λs´µtQps ` tqx dt ds “
ż 8

0

ż 8

0

e´pλ´µqs
ż 8

0

e´µps`tqQps ` tqx dt ds

“
ż 8

0

e´pλ´µqs
ż 8

s

e´µtQptqx dt ds

(Fubini-Tonelli’s theorem)

“
ż 8

0

e´µt

ż t

0

e´pλ´µqs dsQptqx dt

“
ż 8

0

e´λt ´ e´µt

µ ´ λ
Qptqx dt “

Rpλqx ´ Rpµqx
µ ´ λ

.

(7.56)

It is clear that
ż 8

0

ż 8

0

e´λs´µtQpsqQptqx dt ds “ RpλqRpµqx. (7.57)

The implication (i) ùñ (ii) follows from (7.56) and (7.57). The other implication, (ii)
ùñ (i) also follows from these identities in conjunction with uniqueness of Laplace
transforms.

The proof of Lemma 7.11 is complete now. �

Proof of Theorem 7.10. The proofs of the implications (i) ùñ (ii) and (ii)
ùñ (iii) are exactly the same as in the proof of Theorem 7.9. In the proof of
the implication (iii) ùñ (i) we have to show that (iii) implies that the operator A
generates a strongly continuous semigroup. The proof of this implication in Theorem
7.9 supplies us with a candidate semigroup tQptq : t ą 0u determined by the equality
in (7.37)

tQptqx “
1

2πi

ż ω`i8

ω´i8
eλt pλI ´ Aq´2 x dt “

t

2πi

ż ω`i8

ω´i8
eλ pλI ´ tAq´2 x dt, (7.58)
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for x P X. The second equality follows from the substitution tλ “ λ1, and then
replacing λ1 with λ. As in the proof of the implication (iii) ùñ (i) of Theorem 7.9
(see (7.38)) we see

ż 8

0

e´λttQptqx dt “ pλI ´ Aq´2 x, x P X. (7.59)

From (7.59) we obtain, for x P X,

´
d

dλ

ż 8

0

e´λtQptqx dt “
ż 8

0

e´λttQptqx dt “ pλI ´ Aq´2 x “ ´
d

dλ
pλI ´ Aq´1 x,

and hence, for x P X, the vector-valued function

λ ÞÑ
ż 8

0

e´λtQptqx dt ´ pλI ´ Aq´1 x, λ ą 0,

is constant. However, since the function

λ ÞÑ λ

ż 8

0

e´λtQptqx dt ´ λ pλI ´ Aq´1 x, λ ą 0,

is bounded, it follows that this constant vanishes. Consequently, we get
ż 8

0

e´λtQptqx dt “ pλI ´ Aq´1 x, x P X, λ ą 0. (7.60)

Since the family
␣

pλI ´ Aq´1 : λ ą 0
(

has the resolvent property Lemma 7.11 to-
gether with the equality in (7.60) yields the semigroup property of the family
tQptq : t ą 0u.
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It remains to show that the semigroup tQptq : t ě 0u, with Qp0q “ I, is strongly
continuous. Because, once we have established this strong continuity, the proof of
the implication (iii) ùñ (i) can then be finished in the same way as we proved this
implication in Theorem 7.9. In order to prove the strong continuity we invoke the
equality of the ultimate expressions in (7.58). This equality applies to the effect
that

Qptqx ´ x “
1

2πi

ż ω`i8

ω´i8
eλ

`

pλI ´ tAq´2 x ´ λ´2x
˘

dt

“
1

2πi

ż ω`i8

ω´i8

eλ

λ2

`

λ pλI ` tAq´1 ` I
˘ `

λ pλI ´ tAq´1 x ´ x
˘

dt

“
1

2πi

ż ω`i8

ω´i8

eλ

λ2

`

λ pλI ` tAq´1 ` I
˘

ptAq pλI ´ tAq´1 x dt, (7.61)

for x P X. It is not so difficult to show that, for λ P C with ℜλ ą 0 fixed, and
x P X, we have

lim
tÓ0

`

λ pλI ´ tAq´1 x ´ x
˘

“ lim
tÓ0

tA pλI ´ tAq´1 x “ 0. (7.62)

First this equality is proved for x P DpAq, and then the equality in (7.62) extends
to all x P X because DpAq is dense in X and the function t ÞÑ pλI ´ tAq´1 x, t ą 0,
is bounded. The fact that limtÓ0 Qptqx “ x then follows from (7.61) together with
Lebesgue’s dominated convergence theorem.

Altogether this completes the proof of Theorem 7.10. �

4. Bounded analytic semigroups and the Crank-Nicolson iteration
scheme

In the present section we discuss the (implicit) Crank-Nicolson iteration scheme in
which a generator A of a bounded analytic semigroup plays a central role. The
present material is partly taken from [146] and [144]. Let pτjqjPN be a sequence
of strictly positive real numbers, and let A be the generator of a bounded analytic
semigroup in a Banach space X. Fix x0 P DpAq, and define the sequence pxnqnPN Ă
DpAq by the (implicit) Crank-Nicolson scheme:

ˆ

I ´
1

2
τn`1A

˙

xn`1 “
ˆ

I `
1

2
τnA

˙

xn.

Put An “
śn

j“1

`

I ` 1
2
τjA

˘ `

I ´ 1
2
τjA

˘´1
. Then the sequence pxnqnPN Ă X de-

termined by the Crank-Nicolson scheme is given by xn “ Anx0. In this paper it
is investigated under what conditions on x0 and the sequence of step-sizes pτjqjPN
the Crank-Nicolson scheme is stable in the sense that supnPN }Anx0} ă 8. Put

fkpξq “ 2
řk

j“1 arctan
`

1
2
τjξ

˘

, ξ P R, and Ik “
ż 8

0

1

ξ2

ˇ

ˇ

ˇ

ˇ

ż ξ

0

sin fkpηq dη
ˇ

ˇ

ˇ

ˇ

dξ.
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7.12. Theorem. The Crank-Nicolson scheme is stable provided one of the following
conditions is satisfied: (a) supk I2k ă 8 and x P X is arbitrary; (b)

ř8
j“1 τj ă 8

and x belongs to DpAq, the domain of A; (c)
ř8

j“1 τ
´1
j ă 8 and x belongs to RpAq,

the range of A; (d) the sequence of positive step-sizes pτjqjPN is arbitrary, and x

belongs to the intersection DpAq X RpAq.

Suppose that the operator A is the generator of a bounded analytic semigroup in a
complex Banach space X. As is well-known this is the case if and only if DpAq is
dense and there exists a constant C such that

|λ| }Rpλq} ď C, ℜλ ą 0. (7.63)

Here Rpλq “ pλI ´ Aq´1. For more details see theorems 7.9 and 7.10. Let Ω “
tz P C : ℜz ă 0u be the open left half-plane in C, and let f : Ω Ñ C be a bounded
holomorphic function which has a continuous extension up to the boundary which
we call again f . Then we have the following result.

7.13. Theorem. Let A be the generator of a bounded analytic semigroup on the
Banach space pX, }¨}q, and let f : Ω Ñ C be a bounded continuous function on Ω
which is holomorphic on Ω. In addition, let the finite constant C be as in (7.63).
Then the operator fpAq has the following representations (x P X):

fpAqx ´ fp0qx

“
1

2πi

ż i8

´i8

ż λ

0

pfpζq ´ fp´ζqq dζ
␣

pλI ´ Aq´2 ´ λ´2I
(

x dλ (7.64)

“
1

2πi

ż i8

´i8

ż λ

0

pfpζq ` fp´ζq ´ 2fp0qq dζ
␣

pλI ´ Aq´2 ´ λ´2I
(

x dλ (7.65)

“
1

πi

ż i8

´i8

ż λ

0

pfpζq ` fp´ζq ´ 2fp0qq dζ

ż 1

0

A pλI ´ sAq´3 x ds dλ (7.66)

“
´1

πi

ż 8

0

ż ξ

0

pfpiηq ´ fp´iηqq dη
!

`

A2 ´ ξ2I
˘ `

ξ2I ` A2
˘´2 ` ξ´2I

)

x dξ (7.67)

“
1

πi

ż 8

0

ż ξ

0

pfpiηq ´ fp´iηqq dη
B
Bξ

!

ξ´1A2
`

ξ2I ` A2
˘´1

)

x dξ (7.68)

“ ´
1

πi

ż 8

0

fpiξq ´ fp´iξq
ξ

A2
`

ξ2I ` A2
˘´1

x dξ (7.69)

“ lim
RÑ8

"

1

πi

ż R

0

pfpiξq ´ p´iξqq ξ
`

ξ2I ` A2
˘´1

x dξ

`
1

π

ż π{2

´π{2
f

`

´Reiϑ
˘

x dϑ ´ fp0qx

+

(7.70)

“ lim
RÑ8

1

2πi

ż iR

´iR

pfpλq ´ fp´λqq
␣

pλI ´ Aq´1 x ´ λ´1x
(

dλ (7.71)
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“
1

π

ż 8

0

p2fp0q ´ fpiξq ´ fp´iξqqA
`

ξ2I ` A2
˘´1

x dξ. (7.72)

In addition, the following equalities hold for x P X:

fpAqx “ lim
RÑ8

"

1

2πi

ż iR

´iR

ż λ

0

pfpζq ´ fp´ζqq dζ pλI ´ Aq´2 x dλ

`
1

π

ż π{2

´π{2

ż 1

0

f
`

´Reiϑρ
˘

x dρ dϑ

+

“ lim
RÑ8

"

1

πi

ż R

0

ż ξ

0

pfpiηq ´ fp´iηqq dη
`

ξ2I ´ A2
˘ `

ξ2I ` A2
˘´2

x dξ

`
1

π

ż π{2

´π{2

ż 1

0

f
`

´Reiϑρ
˘

x dρ dϑ

+

. (7.73)

Moreover, let the bounded function f be such that the integral

ż 8

0

ˇ

ˇ

ˇ

şξ

0
pfpiηq ` fp´iηq ´ 2fp0qq dη

ˇ

ˇ

ˇ

ξ3
dξ (7.74)

is finite. The following inequalities hold as well:

}fpAq} ď
C2 p1 ` 2C2q

π

ż 8

0

ˇ

ˇ

ˇ

şξ

0
pfpiηq ´ fp´iηqq dη

ˇ

ˇ

ˇ

ξ2
dξ ` sup

ℜλą0
|fp´λq| ,

(7.75)

and for x P DpAq,

}fpAqx ´ fp0qx} ď
p1 ` Cq2

π

ż 1

0

|fpiξq ´ fp´iξq|
ξ

dξ }x}

`
2C p1 ` Cq

π
sup
ξPR

|fpiξq| }Ax} , (7.76)

}fpAqx ´ fp0qx} ď
2C3

π

ż 8

0

ˇ

ˇ

ˇ

şξ

0
pfpiηq ` fp´iηq ´ 2fp0qq dη

ˇ

ˇ

ˇ

ξ3
dξ }Ax} . (7.77)

The integrals in (7.64) through (7.72) have to be interpreted as improper strong
Riemann integrals.

Proof of Theorem 7.13. Let z P C be such that ℜz ă 0. First we prove the
equality:

1

2πi

ż i8

´i8

ż λ

0

pfpζq ´ fp0qq dζ

"

1

pλ ´ zq2
´

1

λ2

*

dλ “ fpzq ´ fp0q. (7.78)
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Let γR be the curve ϑ ÞÑ ´Re´iϑ, ´1
2
π ď ϑ ď 1

2
π, and let

g pλ, zq “
ż λ

0

pfpζq ´ fp0qq dζ

"

1

pλ ´ zq2
´

1

λ2

*

be the integrand in the left-hand side of (7.78). From residue calculus it follows that
the left-hand side of (7.78) is equal to

fpzq ´ fp0q ` lim
RÑ8

1

2πi

ż

γR

g pλ, zq dλ “ fpzq ´ fp0q. (7.79)

The reason that the limit in (7.79) vanishes is due to the fact that by assumption
the function f is bounded. A similar argument shows that

1

2πi

ż i8

´i8

ż λ

0

pfp0q ´ fp´ζqq dζ

"

1

pλ ´ zq2
´

1

λ2

*

dλ “ 0. (7.80)

Adding the equalities in (7.78) and (7.80) yields the equality:

1

2πi

ż i8

´i8

ż λ

0

pfpζq ´ fp´ζqq dζ

"

1

pλ ´ zq2
´

1

λ2

*

dλ “ fpzq ´ fp0q. (7.81)

Subtracting the equalities in (7.78) and (7.80) yields the equality:

1

2πi

ż i8

´i8

ż λ

0

pfpζq ` fp´ζq ´ 2fp0qq dζ

"

1

pλ ´ zq2
´

1

λ2

*

dλ “ fpzq ´ fp0q. (7.82)
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An integration by parts and parametrization in (7.82) yields:

fpzq ´ fp0q “
1

2πi

ż i8

´i8

ż λ

0

pfpζq ` fp´ζq ´ 2fp0qq dζ

"

1

pλ ´ zq2
´

1

λ2

*

dλ

“
1

2πi

ż i8

´i8
pfpλq ` fp´λq ´ 2fp0qq

z

λ ´ z

dλ

λ

“
1

2πi

ż 0

8
pfp´iξq ` fpiξq ´ 2fp0qq

z

´iξ ´ z

dξ

ξ

`
1

2πi

ż 8

0

pfpiξq ` fp´iξq ´ 2fp0qq
z

iξ ´ z

dξ

ξ

“
1

π

ż 8

0

p2fp0q ´ fpiξq ´ fp´iξqq
z

ξ2 ` z2
dξ. (7.83)

The equality in (7.72) is a direct consequence of the identity in (7.83). The equalities
in (7.81) and (7.82) apply to the effect that the the two equalities in (7.64) and (7.65)
hold true. The third equality, i.e. (7.66), follows easily from the second one, i.e.
(7.65). The equalities in (7.67) through (7.69) are consequences of the equality in
(7.64). The equality in (7.70) is an easy consequence of (7.69) and (7.71) follows
from (7.70). The inequality in (7.75) is obtained from the equality in (7.73), the one
in (7.76) follows from the equality in (7.69), and the one in (7.77) follows from the
equality in (7.66). The constant C is as in (7.63).

This completes the proof of Theorem 7.13. �

By choosing in (7.72) the function

fpλq “
k

ź

j“1

1 ` 1
2
τjλ

1 ´ 1
2
τjλ

. (7.84)

we obtain the following corollary.

7.14. Corollary. The following identities hold for x P X:

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x (7.85)

“
1

π

ż 8

0

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
k

ź

j“1

1 ` 1
2
iτjξ

1 ´ 1
2
iτjξ

ˇ

ˇ

ˇ

ˇ

ˇ

2

A
`

ξ2I ` A2
˘´1

x dξ

“
2

π

ż 8

0

p1 ´ cos fkpξqqA
`

ξ2I ` A2
˘´1

x dξ

“
2

π

ż 8

0

`

1 ´ cos fk
`

η´1
˘˘

A
`

I ` η2A2
˘´1

x dη, (7.86)

where fkpξq “ 2
řk

j“1 arctan
`

1
2
τjξ

˘

.
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7.15. Theorem. Let pτjqjPN be a sequence of strictly positive real numbers. Let A
be the generator of a bounded analytic semigroup in the Banach space X, and define
for any compact subset K of the open set p0,8q the operator x ÞÑ νpKqx, x P X, by

νpKqx :“
2

π

ż

K

p´Aq
`

I ` ξ2A2
˘´1

x dξ. (7.87)

Then, for every k P N, the vector

x ´
k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x (7.88)

belongs to the closed convex hull of

t2νpKqx : K compact subset of the open semi-axis p0,8qu . (7.89)

Moreover, the collection mentioned in (7.89) is contained in DpAq X RpAq.

Proof. The vector mentioned in (7.88) can be written in the form

x ´
k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x

“
ż 8

0

`

1 ´ cos fk
`

ξ´1
˘˘

dνpξqx “ lim
δÓ0,RÒ8

ż R

δ

`

1 ´ cos fk
`

ξ´1
˘˘

dνpξqx

“ 2 lim
δÓ0,RÒ8

ż 1

0

ν tξ P rδ, Rs, 1 ´ cos fkpξq ě 2ρu x dρ

“ lim
δÓ0

lim
RÑ8

lim
nÑ8

1

2n´1

2n
ÿ

ℓ“1

ν

""

1 ´ cos fk ě
ℓ

2n´1

*

X rδ, Rs
*

x. (7.90)

The equalities in (7.90) follow from (7.86) in Corollary 7.14. Since sets of the
form t1 ´ cos fk ě ℓ2´n`1u X rδ, Rs, ℓ ě 1, 0 ă δ ă R ă 8, are compact the first
assertion in Proposition 7.15 follows. Let the constant C be as in (7.63), let K be
a compact subset of the open interval p0,8q, and pick x P X. The second assertion
in Proposition 7.15 is a consequence of the following observations:

(1) The inequality

›

›

›
A

`

ξ2I ` A2
˘´1

x
›

›

›
ď

2C

ξ
}x}

implies that νpKqx is a vector in X indeed;
(2) The inequality

›

›

›
A2

`

ξ2I ` A2
˘´1

x
›

›

›
ď

ˆ

1 `
C2

ξ2

˙

}x}

yields the claim that νpKqx belongs to DpAq.
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(3) Finally, the inequality
›

›

›

`

ξ2I ` A2
˘´1

x
›

›

›
ď

C2

ξ2
}x}

entails that νpKqx is a member of RpAq.

The assertions in (1), (2) and (3) imply the second statement in Theorem 7.15, and
complete its proof. �

Let gkpρq be the inverse function of fkpξq “ 2
řn

j“1 arctan
`

1
2
τjξ

˘

, 0 ď ξ ă 8,

fkp8q “ kπ. That is fk pgkpρqq “ ρ, 0 ď ρ ď kπ. Let hkpρq “
1

gkpρq
. An alternative

way of looking at the vector in (7.88) is to rewrite the expression in (7.86) as follows:
ż 8

0

p1 ´ cos fkpξqq p´Aq
`

ξ2I ` A2
˘´1

x dξ

(integration by parts)

“
ż 8

0

sin fkpξqf 1
kpξq

ż 8

ξ

p´Aq
`

η2I ` A2
˘´1

x dη dξ

(make the substitution ρ “ fkpξq, ξ “ gkpρq, 0 ă ρ ă kπ)

“
ż kπ

0

sin ρ

ż 8

gkpρq
p´Aq

`

η2I ` A2
˘´1

x dη dρ

(distinguish cases: k “ 2ℓ, k “ 2ℓ ` 1, g2ℓ`1 pρ ` p2ℓ ` 1πqq “ 8, ρ ě 0)

“

$

’

’

’

’

&

’

’

’

’

%

ż π

0

sin ρ
ℓ´1
ÿ

j“0

ż g2ℓpρ`p2j`1qπq

g2ℓpρ`2jπq
p´Aq

`

η2I ` A2
˘´1

x dη dρ, k “ 2ℓ,

ż π

0

sin ρ
ℓ

ÿ

j“0

ż g2ℓ`1pρ`p2j`1qπq

g2ℓ`1pρ`2jπq
p´Aq

`

η2I ` A2
˘´1

x dη, k “ 2ℓ ` 1,

(h2ℓ`1 pρ ` p2ℓ ` 1qq “ 0, ρ ě 0)

“

$

’

’

’

’

&

’

’

’

’

%

ż π

0

sin ρ
ℓ´1
ÿ

j“0

ż h2ℓpρ`2jπq

h2ℓpρ`p2j`1qπq
p´Aq

`

I ` η2A2
˘´1

x dη dρ, k “ 2ℓ,

ż π

0

sin ρ
ℓ

ÿ

j“0

ż h2ℓ`1pρ`2jπq

h2ℓ`1pρ`p2j`1qπq
p´Aq

`

I ` η2A2
˘´1

x dη, k “ 2ℓ ` 1.

(7.91)

Put, for 0 ă ρ ă π,

O2ℓpρq “
ℓ´1
ď

j“0

ph2ℓ pρ ` p2j ` 1qπq , h2ℓ pρ ` 2jπqq , and
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O2ℓ`1pρq “
ℓ´1
ď

j“0

ph2ℓ pρ ` p2j ` 1qπq , h2ℓ pρ ` 2jπqq Y p0, h2ℓ`1 pρ ` 2ℓπqq . (7.92)

Then, from (7.86), (7.91) and (7.92) it follows that

x ´
k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x “
ż π

0

sin ρ ν pOkpρqqx dρ, (7.93)

where ν is determined by (7.87). Observe that, for x P X,

νpα, βqx “
2

π
parctan p´βAq ´ arctan p´αAqqx, 0 ď α ă β ă 8.

From Corollary 7.14 in conjunction with the theory of vector measures we infer the
result in Theorem 7.16. The Orlicz-Pettis theorem says that a weakly-continuous
X-valued measure, defined on a σ-field F, is in fact an X-valued bounded vector
measure ν: see e.g. Diestel and Uhl [37]. A result by Bartle, Dunford and Schwartz
says that a bounded countably additive vector measure on a σ-field possesses a
relatively weakly compact range: see [37] and also Section 1.2 in [147]. For some
proofs see, e.g., [71] and also [38]. As a consequence it follows that the collection

"
ż

f dν “
ż 1

0

ν tf ą ρu dρ : 0 ď f ď 1, f P L8pλq
*
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is contained in the closed convex hull of tνpBq : B P Fu. The measure λ has to be
such that, for every x˚ P X˚, the complex measure B ÞÑ ⟨νpBqx, x˚⟩ is absolutely
continuous relative to the measure λ. Rybakov’s theorem says that λ can be taken of
the form B ÞÑ ⟨νpBqx, x˚

0⟩ for some x˚
0 P X˚: see [114]. For closely related material

see, e.g., [73]. Because of the nature of νpBqx, in our case for λ we may choose the
Lebesgue mesure on R`. Let X

˚˚ be the topological bi-dual of the Banach space X.

7.16. Theorem. Let pτjqjPN be a sequence of strictly positive real numbers. Let A
be the generator of a bounded analytic semigroup in the Banach space X, and let
x P X be such that the mapping

B ÞÑ ⟨νpBqx, x˚⟩ :“ 2

π

ż

B

⟨
p´Aq

`

I ` ξ2A2
˘´1

x, x˚
⟩
dξ, B P BR` , (7.94)

represents a σ-additive C-valued measure for every x˚ P X˚. Then, for every k P N,
the vector

x ´
k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x (7.95)

belongs to the closed convex hull of the set t2νpKqx : K Ă p0,8q, K compactu, which
is bounded in X, and hence the Crank-Nicolson scheme is stable for such x P X.

Notice that the assumption (7.87) in Theorem 7.16 is equivalent to the fact that

x P X is such that for every x˚ P X˚ the integral
ş8
0

ˇ

ˇ

ˇ

⟨
A pξ2I ` A2q´1

x, x˚
⟩ˇ

ˇ

ˇ
dξ is

finite.

7.17. Corollary. Let the notation and hypotheses be as in Theorem 7.16. In
particular, let pτjqjPN be any sequence of strictly positive real numbers. Then the
Crank-Nicolson iteration scheme with step sizes τj, j P N, is stable provided the
initial vector x belongs to DpAq X RpAq.

Proof. Let x “ Ay P RpAq be a member of DpAq. Then the mapping B ÞÑ
νpBqx, B P R`, represents a bounded vector measure indeed. The result in Corollary
7.17 then follows from Theorem 7.16. �

For a concise formulation of the main result of this paper we introduce the following
definition.

7.18. Definition. Let A be the generator of a bounded analytic semigroup, let
pτjqjPN be a sequence of strictly positive real numbers, and let x P X. The Crank-

Nicolson iteration scheme is said to be stable for x and the step-sizes pτjqjPN if the
sequence

#

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x : k P N

+

is bounded in X.
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7.19. Theorem. Let A be the generator of a bounded analytic semigroup, and let
pτjqjPN be a sequence of strictly positive real numbers. The following assertion hold
true:

(a) If sup
kPN

ż 8

0

1

ξ2

ˇ

ˇ

ˇ

ˇ

ż ξ

0

sin fkpηq dη
ˇ

ˇ

ˇ

ˇ

dξ ă 8, then the Crank-Nicolson scheme is

stable for all x P X. Here fkpξq “ 2
řk

j“1 arctan
`

1
2
τjξ

˘

.

(b) If
ř8

j“1 τj ă 8, then the Crank-Nicolson scheme is stable for all x P DpAq.
(c) If

ř8
j“1 τ

´1
j ă 8, then the Crank-Nicolson scheme is stable for all x P RpAq.

(d) The Crank-Nicolson scheme is stable for all x P DpAq X RpAq and all se-
quences of strictly positive step sizes pτjqjPN.

7.20. Definition. Let x P X and let pτjqjPN. The Crank-Nicolson scheme is called

consistent for x and pτjqjPN, provided that the limit

lim
nÑ8

n
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x (7.96)

exists in X. The Crank-Nicolson scheme is called two step consistent for x and
pτjqjPN, provided that the limit

lim
nÑ8

2n
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x (7.97)

exists.

In Theorem 7.24 we shall prove that in assertion (b) and (c) of Theorem 7.19 the con-
clusion may be strengthened to “consistent” and “two step consistent” respectively
instead of just “stable”.

Proof of Theorem 7.19. (a) Let de function fpλq be as in (7.84). Then

fpiηq ´ fp´iηq
2i

“ ℑ
k

ź

j“1

1 ` 1
2
iτjη

1 ´ 1
2
iτjη

“ sin fkpηq, (7.98)

where fkpηq is as in Corollary 7.14. The inequality in (7.75) then entails the claim
in assertion (a).

(b) Let the function fkpξq be as in Corollary 7.14: see (a). Then the equality in
(7.86) implies, for x P DpAq,

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

“
2

π

ż 8

0

p1 ´ cos fkpξqqA
`

ξ2I ` A2
˘´1

x dξ

“
4

π

ż 8

0

sin2

ˆ

1

2
fkpξq

˙

`

ξ2I ` A2
˘´1

Axdξ. (7.99)
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Let C be the constant from (7.63). Then the equality in (7.99) implies
›

›

›

›

›

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

›

›

›

›

›

ď
4C2

π

ż 8

0

sin2
`

1
2
fkpξq

˘

ξ2
dξ }Ax} . (7.100)

Since
ˇ

ˇ

ˇ

ˇ

sin

ˆ

1

2
fkpξq

˙ˇ

ˇ

ˇ

ˇ

ď
1

2
fkpξq “

k
ÿ

j“1

arctan

ˆ

1

2
τjξ

˙

ď
1

2
ξ

k
ÿ

j“1

τj, (7.101)

we infer

4

π

ż 8

0

`

sin
`

1
2
fkpξq

˘˘2

ξ2
dξ ď

1

π

ż 8

0

´

min
´

2, ξ
řk

j“1 τj

¯¯2

ξ2
dξ “

4

π

k
ÿ

j“1

τj. (7.102)

The assertion in (b) then follows from (7.100) and (7.102).

(c) The proof of assertion (c) is similar to the one of (b). Without loss of generality
assume that k is an even positive integer. Otherwise replace x with the vector
`

I ` 1
2
τ1A

˘ `

I ´ 1
2
τ1A

˘´1
x. Let x “ Ay belong to the range of the operator A.
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Then as in (7.99) we have:

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

“
2

π

ż 8

0

p1 ´ cos fkpξqqA2
`

ξ2I ` A2
˘´1

y dξ

“
4

π

ż 8

0

sin2

ˆ

1

2
fkpξq

˙

!

y ´ ξ2
`

ξ2I ` A2
˘´1

y
)

dξ. (7.103)

And hence, Let C be the constant from (7.63). Then the equality in (7.99) implies
›

›

›

›

›

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

›

›

›

›

›

ď
4 p1 ` C2q

π

ż 8

0

sin2

ˆ

1

2
fkpξq

˙

dξ }y} . (7.104)

Since k is even we have, by the equality arctan ξ ` arctan
1

ξ
“

1

2
π,

ˇ

ˇ

ˇ

ˇ

sin

ˆ

1

2
fkpξq

˙ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

sin

˜

k
ÿ

j“1

arctan

ˆ

1

2
τjξ

˙

¸ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

sin

˜

k
ÿ

j“1

ˆ

1

2
π ´ arctan

ˆ

2

τjξ

˙˙

¸ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

sin

˜

k
ÿ

j“1

arctan

ˆ

2

τjξ

˙

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

ξ

k
ÿ

j“1

1

τj
. (7.105)

From (7.104) and (7.105) it then follows that, with x “ Ay,
›

›

›

›

›

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

›

›

›

›

›

ď
16 p1 ` C2q

π

k
ÿ

j“1

1

τj
}y} . (7.106)

Assertion (c) follows from (7.106).

Assertion (d) being contained in Corollary 7.17 this completes the proof of Theorem
7.19. �
7.21. Remark. Let x P X, and let K be a compact subset of the open interval
p0,8q. A typical element in DpAq X RpAq is given by

ν pKq x “
2

π
p´Aq

ż

K

`

I ` ξ2A2
˘´1

x dξ. (7.107)

Moreover, the family tνpδ, Rqx : 0 ă δ ă R ă 8u is bounded inX, and, for all k P N,
k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

Download free eBooks at bookboon.com



Partial differential equations and operators

317 

Holomorphic semigroups

4. BOUNDED ANALYTIC SEMIGROUPS AND THE CRANK-NICOLSON ITERATION SCHEME317

“ lim
δÓ0, RÒ8

#

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

´ I

+

νpδ, Rqx. (7.108)

7.22. Lemma. Let A be the generator of a bounded analytic semigroup, let pτjqjPN
be a sequence of strictly positive real numbers, and let x P X. The following identity
holds:

k
ÿ

ℓ“1

τℓ

ℓ´1
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1 ˆ

I ´
1

2
τℓA

˙´1

x

“
2

π

ż 8

0

p1 ´ cos fkpξqq
`

ξ2I ` A2
˘´1

x dξ. (7.109)

In general the vector in (7.109) belongs to DpAq, and
k

ÿ

ℓ“1

τℓA
ℓ´1
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1 ˆ

I ´
1

2
τℓA

˙´1

x

“
k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

“
2

π

ż 8

0

p1 ´ cos fkpξqqA
`

ξ2I ` A2
˘´1

x dξ. (7.110)

If k is even, then the vector in (7.110) belongs to DpAqXRpAq. In fact, the following
equalities hold:

2k
ÿ

ℓ“1

τℓA
ℓ´1
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1 ˆ

I ´
1

2
τℓA

˙´1

x

“
2k

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

“
k

ÿ

ℓ“1

pτ2ℓ´1 ` τ2ℓqA
2pℓ´1q
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

ˆ

I ´
1

2
τ2ℓ´1A

˙´1 ˆ

I ´
1

2
τ2ℓA

˙´1

x

“
2

π

ż 8

0

p1 ´ cos f2kpξqqA
`

ξ2I ` A2
˘´1

x dξ (7.111)

“
2

π

ż 8

0

sin f2kpξq f 1
2kpξq

ż 8

ξ

A
`

η2I ` A2
˘´1

x dη dξ (7.112)

“
1

π

ż 8

0

sin f2kpξq f 1
2kpξq

ż π{2

´π{2
ξeiϑ

`

ξeiϑI ´ A
˘´1

x dϑ dξ (7.113)

“
1

π

ż 8

0

sin f2kpξq f 1
2kpξq

ż π{2

´π{2
A

`

ξeiϑI ´ A
˘´1

x dϑ dξ. (7.114)
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Proof. The second equality in (7.110) is a consequence of equality (7.85) in
Corollary 7.14. The first equality in (7.110) and the first two equalities in (7.111)
follow from an appropriate choice of commuting operators pAjq1ďjďk and pBjq1ďjďk

in the equality
k

ź

j“1

Aj ´
k

ź

j“1

Bj “
k

ÿ

ℓ“1

ℓ´1
ź

j“1

Aj pAℓ ´ Bℓq
k

ź

j“ℓ`1

Bj.

Products over a void index set are to be interpreted as I: e.g.,
ś0

j“1Aj “ I. The

final equality in (7.111) then follows from (7.85) in Corollary 7.14. The equality of
the expression in (7.111) and the one in (7.112) follows from integration by parts.
The equality of (7.112) and (7.114) is a consequence of the following identity

2

π

ż R

ξ

A
`

η2I ` A2
˘´1

x dη “
1

π

ż π{2

´π{2
ξeiϑ

`

ξeiϑI ´ A
˘´1

x dϑ

´
1

π

ż π{2

´π{2
Reiϑ

`

ReiϑI ´ A
˘´1

x dϑ, (7.115)

for 0 ă ξ ă R ă 8 and x P X. The equality in (7.115) follows from Cauchy’s
theorem applied to the analytic function λ ÞÑ pλI ´ Aq´1 x, λ P Vα for some α ą π{2
with a contour bordered by two semi-circles, one of radius ξ and the other of radius
R, and two intervals on the imaginary axis, one with endpoints ´iR and ´iξ, and
the other one with endpoints iξ and iR.
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If we let R tend to 8 in (7.115) we obtain:

2

π

ż 8

ξ

A
`

η2I ` A2
˘´1

x dη “
1

π

ż π{2

´π{2
ξeiϑ

`

ξeiϑI ´ A
˘´1

x dϑ

´ lim
RÑ8

1

π

ż π{2

´π{2
Reiϑ

`

ReiϑI ´ A
˘´1

x dϑ

“
1

π

ż π{2

´π{2

!

ξeiϑ
`

ξeiϑI ´ A
˘´1

x ´ x
)

dϑ

“
1

π

ż π{2

´π{2
A

`

ξeiϑI ´ A
˘´1

x dϑ (7.116)

for ξ ą 0 and x P X. The equality in (7.116) yields the equality of (7.112) and
(7.114). The equality of (7.113) and (7.114) follows from the equality

ż 8

0

sin f2kpξqf 1
2kpξq dξ “ 0.

In order to finish the proof of Lemma 7.22 we still need to show the identity in
(7.109). This equality is a consequence of the equalities in (7.110). If the operator
A is invertible, then this implication is immediate, otherwise we replace A with
A ´ ωI, ω ą 0, and let ω Ó 0.

This concludes the proof of Lemma 7.22. �

From the equalities in Lemma 7.22 we obtain the following abstract results in nu-
merical analysis.

7.23. Lemma. For k P N the following equalities hold:

k
ÿ

ℓ“1

τℓ
2

“
1

π

ż 8

0

1 ´ cos fkpξq
ξ2

dξ, and
2k
ÿ

ℓ“1

2

τℓ
“

1

π

ż 8

0

p1 ´ cos f2kpξqq dξ. (7.117)

Proof. The equalities in Lemma 7.22 also hold for complex numbers A with
negative real part. By putting A “ 0 in (7.109) we get the first equality in (7.117).
Taking A a negative real number, and multiplying the equalities in (7.111) by A,
and letting A tend to ´8 shows the second equality in (7.117). �

7.24.Theorem. Let A be the generator of a bounded analytic semigroup in a Banach
space x. Let pτjqjPN be a sequence of strictly positive step sizes in the Crank-Nicolson
iteration scheme:

xn`1 “
n

ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x. (7.118)

The following assertion hold:
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(i) if x belongs to DpAq and
8
ÿ

j“1

τj ă 8, then the Crank-Nicolson iteration

scheme is consistent;

(ii) if x belongs to RpAq and
8
ÿ

j“1

1

τj
ă 8, then the Crank-Nicolson iteration

scheme is two step consistent.

Proof. (i) Assume x P DpAq and
ř8

j“1 τj ă 8. Put

f8pξq “ 2
8
ÿ

j“1

arctan
τjξ

2
“ lim

kÑ8
2

k
ÿ

j“1

arctan
τjξ

2
.

Then the equality in (7.109) implies

lim
kÑ8

k
ÿ

ℓ“1

τℓ

ℓ´1
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1 ˆ

I ´
1

2
τℓA

˙´1

x

“ lim
kÑ8

2

π

ż 8

0

p1 ´ cos fkpξqq
`

ξ2I ` A2
˘´1

x dξ

“
2

π

ż 8

0

p1 ´ cos f8pξqq
`

ξ2I ` A2
˘´1

x dξ. (7.119)

If x P DpAq, then (7.119) together with (7.110) implies:

lim
kÑ8

k
ÿ

ℓ“1

τℓA
ℓ´1
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1 ˆ

I ´
1

2
τℓA

˙´1

x

“ lim
kÑ8

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

“
2

π

ż 8

0

p1 ´ cos f8pξqqA
`

ξ2I ` A2
˘´1

x dξ. (7.120)

This proves assertion (i).

(ii) Assume x “ Ay P RpAq and
8
ÿ

j“1

1

τj
ă 8. Put gkpξq “ 2

k
ÿ

j“1

arctan
2

τjξ
. Then an

elementary calculation shows the equality:

cos gkpξq “ p´1qk cos fkpξq.
In addition we write

g8pξq “ lim
kÑ8

2
k

ÿ

j“1

arctan
2

τjξ
.

Then as a consequence of (7.111) we infer:

lim
kÑ8

2k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x
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“ lim
kÑ8

k
ÿ

ℓ“1

pτ2ℓ´1 ` τ2ℓqA
2pℓ´1q
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

ˆ

I ´
1

2
τ2ℓ´1A

˙´1 ˆ

I ´
1

2
τ2ℓA

˙´1

x

“ lim
kÑ8

2

π

ż 8

0

p1 ´ cos g2kpξqqA
`

ξ2I ` A2
˘´1

x dξ

“
2

π

ż 8

0

p1 ´ cos g8pξqqA
`

ξ2I ` A2
˘´1

x dξ. (7.121)

In order to interchange the integral and the limit in the final step in (7.121) we used
the finiteness of the integral

ż 8

0

sup
k

t1 ´ cos g2kpξqu
›

›

›
A

`

ξ2I ` A2
˘´1

x
›

›

›
dξ. (7.122)

If x “ Ay, y P DpAq, then
›

›

›
A

`

ξ2I ` A2
˘´1

x
›

›

›
ď

`

1 ` C2
˘

}y} , (7.123)

where the constant C is as in (7.63).

This completes the proof of Theorem 7.24. �
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Let x P X and let K be a compact subset of p0,8q. As in (7.87) the symbol νpKqx
stands for:

νpKqx “
2

π

ż

K

p´Aq
`

I ` η2A2
˘´1

x dη.

7.25. Theorem. Define the subspace XA of X by

XA “ tx P X : sup t}νpKqx} : K compact subset of p0,8qu ă 8u . (7.124)

The space XA coincides with the space

Xν,weak “ tx P X : the mapping K ÞÑ ⟨νpKqx, x˚⟩ , K Ă p0,8q, K compact,

extends to a complex measure on BR` for all x˚ P X˚(

(7.125)

“
"

x P X :

ż 8

0

ˇ

ˇ

ˇ

⟨
A

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη ă 8 for all x˚ P X˚

*

.

In addition, the following inequalities hold:

sup
K

|⟨νpKqx, x˚⟩| ď
2

π

ż 8

0

ˇ

ˇ

ˇ

⟨
p´Aq

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη ď 4 sup

K
|⟨νpKqx, x˚⟩|

(7.126)

and hence

sup
K

}νpKqx} ď sup
}x˚}ď1

2

π

ż 8

0

ˇ

ˇ

ˇ

⟨
p´Aq

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη ď 4 sup

K
}νpKqx} .

(7.127)

In (7.126) and (7.127) the suprema are taken over all compact subsets K of p0,8q.

Proof. The fact that the two spaces mentioned in (7.125) coincide is a standard
result in complex measure theory. The theorem of Hahn-Banach shows that the
inequalities in (7.127) follow from those in (7.126). The first inequality in (7.126) is
trivial. The second one can be proved as follows. Fix x P X and x˚ P X˚. Define,
for j “ 1, 2, 3, 4 the open subsets Bx,x˚,j of p0,8q as follows:

Bx,x˚,1 “
!

η ą 0 : ℜ
⟨

´A
`

I ` η2A2
˘´1

x, x˚
⟩

ą 0
)

,

Bx,x˚,2 “
!

η ą 0 : ℜ
⟨

´A
`

I ` η2A2
˘´1

x, x˚
⟩

ă 0
)

,

Bx,x˚,3 “
!

η ą 0 : ℑ
⟨

´A
`

I ` η2A2
˘´1

x, x˚
⟩

ą 0
)

,

Bx,x˚,4 “
!

η ą 0 : ℑ
⟨

´A
`

I ` η2A2
˘´1

x, x˚
⟩

ă 0
)

.

Then we have
ż 8

0

ˇ

ˇ

ˇ

⟨
p´Aq

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bx,x˚,1

ℜ
⟨

p´Aq
`

I ` η2A2
˘´1

x, x˚
⟩
dη

ˇ

ˇ

ˇ

ˇ

ˇ
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`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bx,x˚,2

ℜ
⟨

p´Aq
`

I ` η2A2
˘´1

x, x˚
⟩
dη

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bx,x˚,3

ℑ
⟨

p´Aq
`

I ` η2A2
˘´1

x, x˚
⟩
dη

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bx,x˚,4

ℑ
⟨

p´Aq
`

I ` η2A2
˘´1

x, x˚
⟩
dη

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4 sup
K

ˇ

ˇ

ˇ

ˇ

ż

K

⟨
p´Aq

`

I ` η2A2
˘´1

x, x˚
⟩
dη

ˇ

ˇ

ˇ

ˇ

(7.128)

The second inequality in (7.126) readily follows from (7.128). In order to complete
the proof of Theorem 7.25 it suffices to prove that, if a vector x P X belongs to
Xν,weak, then supK }νpKqx} ă 8. To this end we consider the following subset of
X˚:

Bx,ν :“ tx˚ P X˚ : |⟨νpKqx, x˚⟩| ď 1 for all compact subsets K of p0,8q.u
(7.129)

Then the subset Bx,ν is a closed, absolutely convex and absorbing subset of the
Banach space X˚. In other words it is a barrel in X˚. Since barrels in Banach
spaces contain neighborhoods of the origin, it follows that there exists δpxq ą 0 such
that the ball of radius δpxq is contained in Bx,ν . That is to say, if }x˚} ď δpxq, then
|⟨νpKqx, x˚⟩| ď 1. Or in other words: for all compact subsets K Ă p0,8q we have

}x˚} ď 1 ùñ |⟨νpKqx, x˚⟩| ď
1

δpxq
.

And hence another application of the theorem of Hahn-Banach shows }νpKqx} ď
δpxq´1. This concludes the proof of Theorem 7.25. �

Theorem 7.26 shows that on the subspace XA of X we have stability of the Crank-
Nicolson iteration scheme. As mentioned in (7.125) the subspace XA “ Xν,weak

consists of those x P X for which
ş8
0

ˇ

ˇ

ˇ

⟨
A pI ` η2A2q´1

x, x˚
⟩ˇ

ˇ

ˇ
dη ă 8 for all x˚ P X˚.

It is observed that NpAq ` RpAq X DpAq is contained in XA.

7.26. Theorem. Let x P Xν and let pτjqjPN be any sequence of strictly positive step
sizes in the Crank-Nicolson iteration scheme. Then

sup
}x˚}ď1

ż 8

0

ˇ

ˇ

ˇ

⟨
A

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη ă 8,

and

sup
kPN

›

›

›

›

›

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

›

›

›

›

›

ď
4

π
sup

}x˚}ď1

ż 8

0

ˇ

ˇ

ˇ

⟨
A

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη
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ď
16

π
sup
K

›

›

›

›

ż

K

A
`

I ` η2A2
˘´1

x dη

›

›

›

›

, (7.130)

where in the last step the supremum is taken over all compact subsets K of the open
half-axis p0,8q.

In the following theorem we collect some properties of the operator

x ÞÑ PRpAqx :“
´2

π

ż 8

0

A
`

I ` η2A2
˘´1

x dη

“ lim
εÓ0, RÒ8

´2

π

ż R

ε

A
`

I ` η2A2
˘´1

x dη

“ lim
εÓ0, RÒ8

1

π

ż π{2

´π{2

!

`

I ´ εeiϑA
˘´1 ´

`

I ´ ReiϑA
˘´1

)

x dϑ

“ x ´ lim
RÒ8

1

π

ż π{2

´π{2

`

I ´ ReiϑA
˘´1

x dϑ, (7.131)

for those x P X for which this limit exists. The limit in (7.131) exists if and only
if x belongs to closure of NpAq ` RpAq X DpAq. Let X0 be this closure. Then
X0 “ NpAq ` RpAq X DpAq “ NpAq ` RpAq.
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We also like to mention the following identities (0 ď α ă β ă 8, x P X):

2

π

ż β

α

`

I ` η2A2
˘´1

x dη “
1

π

ż π{2

π{2
pβ ´ αq eiϑ

`

I ´ αeiϑA
˘´1 `

I ´ βeiϑA
˘´1

x dϑ

“
1

π

ż π{2

´π{2
eiϑ

ż β

α

`

I ´ ηeiϑA
˘´2

x dη dϑ, (7.132)

and

2

π

ż β

α

p´Aq
`

I ` η2A2
˘´1

x dη

“
1

π

ż π{2

π{2
pβ ´ αq eiϑ p´Aq

`

I ´ αeiϑA
˘´1 `

I ´ βeiϑA
˘´1

x dϑ

“
1

π

ż π{2

´π{2

!

´βeiϑA
`

I ´ βeiϑA
˘´1 ` αeiϑA

`

I ´ αeiϑA
˘´1

)

x dϑ

“
1

π

ż π{2

´π{2

!

`

I ´ αeiϑA
˘´1 ´

`

I ´ βeiϑA
˘´1

)

x dϑ

“
1

π

ż π{2

´π{2

`

´eiϑA
˘

ż β

α

`

I ´ ηeiϑA
˘´2

x dη dϑ. (7.133)

The equalities in (7.133) can be understood by applying Fubini’s theorem to the
final double integral together with some simple manipulations. The equalities in
(7.132) follow by first applying (7.133) to an operator of the form A´ωI instead of
A, and then letting ω tend to 0.

7.27. Theorem. The following assertions hold true:

(i) The operator PRpAq is a projection operator from X0 onto RpAq, the closure
of RpAq.

(ii) X0 “ NpAq ` PRpAqX0 “ NpAq ` RpAq.
(iii)

›

›PRpAqx
›

› ď p1 ` Cq }x}, for x P X0.
(iv) If the space X is reflexive, then X0 “ X.

7.28. Remark. Theorem 7.25 shows that it is useful to investigate the following
subspace XA of X:

XA “ tx P X : sup t}νpKqx} : K compact subset of p0,8qu ă 8u . (7.134)

As observed earlier the space XA contains the subspace NpAq ` RpAq X DpAq. If
XA is a closed subspace, then XA contains the closure of NpAq ` RpAq X DpAq.
If, in addition, X is reflexive, then X “ NpAq ` RpAq, and X is the closure of
NpAq ` RpAq X DpAq. The space XA coincides with the space

Xν,weak “
␣

x P X : B ÞÑ ⟨νpBqx, x˚⟩ , B P Bp0,8q,

is a complex measure for all x˚ P X˚u (7.135)
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“
"

x P X :

ż 8

0

ˇ

ˇ

ˇ

⟨
A

`

ξ2I ` A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dξ ă 8 for all x˚ P X˚

*

.

The coincidence of the spaces mentioned in (7.135) is closely related to the theory of
vector-valued Pettis integrals and Gelfand integrals: see, e.g., Diestel and Uhl [37],
and also [94]. Pettis’ theorem says that a set function µ on a σ-field F with values
in a Banach space X and has the property that B ÞÑ ⟨µpBq, x˚⟩ for all x˚ P X is in
fact an X-valued measure in the sense that if B “ Y8

j“1Bj, Bj P F, Bj X Bk “ H,
j ‰ k, then limnÑ8

řn
j“1 µ pBjq “ µpBq. Define the operators arctan p´ξAq, ξ ą 0,

by the improper vector valued Riemann integrals:

arctan p´ξAq x “
ż ξ

0

p´Aq
`

I ` η2A2
˘´1

x dη “ lim
δÓ0

ż ξ

δ

p´Aq
`

I ` η2A2
˘´1

x dη,

(7.136)
for x P X. Then the space XA “ Xν,weak also coincides with the space

#

x P X : sup

›

›

›

›

›

n
ÿ

j“1

parctan p´βjAq ´ arctan p´αjAqqx

›

›

›

›

›

ă 8

+

, (7.137)

where the supremum is taken over all finite number of pairs pαj, βjqnj“1 such that

0 ă α1 ă β1 ă α2 ă β2 ă ¨ ¨ ¨ ă αn ă βn. In fact (7.137) says that the compact
subsets in the definition of the space Xν (see (7.134)) may be taken of the form
K “ Yn

j“1 rαj, βjs where 0 ă αj ă βj, 1 ď j ď n.

7.29. Remark. Consider for f P L8 pR`q the function Tf P Hol p´V0q defined by

Tfpµq “
2

π

ż 8

0

fpηq
´µ

1 ` η2µ2
dη. (7.138)

Here the space L8 pR`q consists of all bounded complex-valued Borel-measurable
functions f defined on R` “ p0,8q, and Hol pΩq consists of all holomorphic complex-
valued function on the open subset Ω of C. The subset Vα Ă C, 0 ă α ă π, is defined

as the sector Vα “ tµ P C : |argpzq| ă αu. If |fpηq| ď 1, η ą 0, then |Tfpµq| ď
1

cosα
provided that µ P ´Vα. The latter inequality is a consequence of the fact that

ˇ

ˇ1 ` η2e2iα
ˇ

ˇ ě cosα
`

1 ` η2
˘

, η P R.

In fact for f we may choose indicator functions f “ 1B of Borel subsets B of p0,8q.
Then the mapping B ÞÑ T1Bpµq yields a Hol p´V0q-valued measure. These functions

have upper-bound
1

cosα
if µ belongs to sector ´Vα. In other words the operators

B ÞÑ T1BpAqx :“
2

π

ż

B

p´Aq
`

I ` η2A2
˘´1

x dη, x P X, (7.139)

lead to possible vector measures, like we suggested above. But it also gives rise to
an approach by using an H8-calculus for sectorial operators. For more details, see,
e.g., Haase [60]. If in (7.138) we choose fpηq “ fmpηq “ m p0, ηs where m is a Borel
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measure on R` of bounded variation, then, for x P X0 “ NpAq ` RpAq, we have

TfmpAqx “
2

π

ż 8

0

mp0, ηs p´Aq
`

I ` η2A2
˘´1

x dη

“ lim
RÑ8

2

π

ż R

0

ż R

ρ

p´Aq
`

I ` η2A2
˘´1

x dη dmpρq

(see (7.133))

“ lim
RÑ8

1

π

ż π{2

´π{2

ż R

0

!

`

I ´ ρeiϑA
˘´1 ´

`

I ´ ReiϑA
˘´1

)

x dmpρq dϑ (7.140)

“ lim
RÑ8

1

π

ż π{2

´π{2

ż R

0

`

´pR ´ ρqeiϑA
˘ `

I ´ ρeiϑA
˘´1 `

I ´ ReiϑA
˘´1

x dmpρq dϑ

(apply Theorem 7.27)

“
1

π

ż π{2

´π{2

ż 8

0

`

I ´ ρeiϑA
˘´1

PRpAqx dmpρq dϑ

“
1

π

ż π{2

´π{2

ż 8

0

!

`

I ´ ρeiϑA
˘´1 ´ I

)

PRpAqx dmpρq dϑ ` mp0,8qPRpAqx

(another application of (7.133) with α “ 0 and β “ ρ)

“ ´
2

π

ż 8

0

ż ρ

0

p´Aq
`

I ` η2A2
˘´1

x dη dmpρq ` mp0,8qPRpAqx

“ ´
2

π

ż 8

0

arctan p´ρAq dmpρq ` mp0,8qPRpAqx. (7.141)

Then from (7.140) we infer

}TfmpAqx} ď
2C

π
|m| pR`q }x} , x P X. (7.142)

In (7.142) B ÞÑ |m| pBq “ supB1,...,Bn

řn
j“1 |m pBjq|, B “ Yn

j“1Bj P BR` , Bj1 XBj2 “
H, 1 ď j1, j2 ď, is the variation measure associated to m. The inequality in (7.142)
follows from (7.133) together with (7.42). From (7.141) we also deduce:

2

π

ż 8

0

m pη,8q p´Aq
`

I ` η2A2
˘´1

x dη “
2

π

ż 8

0

arctan p´ρAqx dmpρq, x P X.

(7.143)

We still have another way of checking that under the given conditions of the operator
A integrals of the form as in the definition of Xν,weak (see (7.135)) are finite.

7.30. Lemma. Let px, x˚q P X ˆ X˚, and let the function vpηq “ vx,x˚pηq be such
that

vpηq
⟨

´A
`

I ` η2A2
˘´1

x, x˚
⟩

“
ˇ

ˇ

ˇ

⟨
´A

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
. (7.144)
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Suppose that

p pvq :“ sup
0ăαă1

inf
|φ|ďπ

ż 1

α

|vpηq ´ eiφ|
η

dη ` sup
1ďRă8

inf
|φ|ďπ

ż R

1

|vpηq ´ eiφ|
η

dη ă 8. (7.145)

Then the integral
ż 8

0

ˇ

ˇ

ˇ

⟨
p´Aq

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη

is finite. In fact the following inequality holds:
ż 8

0

ˇ

ˇ

ˇ

⟨
p´Aq

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη ď

!

Cp1 ` Cqp pvq `
π

2
p1 ` 3Cq

)

}x} ¨ }x˚} .

(7.146)
Here the constant C is chosen as in (7.63).

Notice that the condition in (7.145) only is a requirement on the behavior of vpηq
for η small or large.

Proof. Fix 0 ă α ă 1 ă R ă 8, and choose the function v1 P L8 p0,8q in
such a way that |v1pαq| “ 1 “ |v1pRq|, and such that

inf
|φ|ďπ

ż 1

α

|vpηq ´ eiφ|
η

dη “
ż 1

α

|vpηq ´ v1pαq|
η

dη, 0 ă α ă 1, and

inf
|φ|ďπ

ż R

1

|vpηq ´ eiφ|
η

dη “
ż R

1

|vpηq ´ v1pRq|
η

dη, 1 ă R ă 8. (7.147)
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Then the following equalities are self-explanatory:
ż R

α

ˇ

ˇ

ˇ

⟨
´A

`

I ` η2A2
˘´1

x, x˚
⟩ˇ

ˇ

ˇ
dη

“
ż 1

α

vpηq ´ v1pαq
η

⟨
´ηA

`

I ` η2A2
˘´1

x, x˚
⟩
dη

` v1pαq
ż 1

α

⟨
´A

`

I ` η2A2
˘´1

x, x˚
⟩
dη

`
ż R

1

vpηq ´ v1pRq
η

⟨
´ηA

`

I ` η2A2
˘´1

x, x˚
⟩
dη

` v1pRq
ż R

1

⟨
´A

`

I ` η2A2
˘´1

x, x˚
⟩
dη

(employ (7.132)

“
ż 1

α

vpηq ´ v1pαq
iη

¨
`

I ´ pI ´ iηAq´1
˘

pI ` iηAq´1 x, x˚∂ dη

`
v1pαq
2

ż π{2

´π{2

≠
!

`

I ´ αeiϑA
˘´1 ´

`

I ´ eiϑA
˘´1

)

x, x˚
∑
dϑ

`
ż R

1

vpηq ´ v1pRq
iη

¨
`

I ´ pI ´ iηAq´1
˘

pI ` iηAq´1 x, x˚∂ dη

`
v1pRq
2

ż π{2

´π{2

≠
!

`

I ´ eiϑA
˘´1 ´

`

I ´ ReiϑA
˘´1

)

x, x˚
∑
dϑ. (7.148)

The inequality in (7.146) follows from (7.147) and (7.148) together with the choice
of C in (7.63). This completes the proof of Lemma 7.30. �

7.31. Remark. Let v : p0,8q Ñ C be cádlág function of bounded variation and,
for the time being fix 0 ă α ă β ă 8. The variation measure |dv| satisfies:

ż β

α

|dv| pρq “ sup

#

n
ÿ

j“1

|v pρjq ´ v pρj´1q| : α “ ρ0 ă ρ1 ă ¨ ¨ ¨ ă ρn “ β

+

. (7.149)

Then, by (7.132) and (7.133) the following equalities hold:

2

π

ż β

α

vpηq p´Aq
`

I ` η2A2
˘´1

x dη

“ vpβq
2

π

ż β

α

p´Aq
`

I ` η2A2
˘´1

x dη ´
2

π

ż β

α

ż ρ

α

p´Aq
`

I ` η2A2
˘´1

x dη dvpρq

“ vpβq
2

π
parctan p´βAq ´ arctan p´αAqqx

´
2

π

ż β

α

parctan p´ρAq ´ arctan p´αAqqx dvpρq (7.150)
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Here, for ρ ą α, we wrote

parctan p´ρAq ´ arctan p´αAqqx “
ż ρ

α

p´Aq
`

I ` η2A2
˘´1

x dη

“
1

2

ż π{2

´π{2

!

`

I ´ αeiϑA
˘´1 ´

`

I ´ ρeiϑA
˘´1

)

x dϑ

“
1

2

ż π{2

´π{2
´ pρ ´ αq eiϑA

`

I ´ ρeiϑA
˘´1 `

I ´ αeiϑA
˘´1

x dϑ. (7.151)

With C as in (7.63) the equalities in (7.151) imply:

}tarctan p´ρAq ´ arctan p´αAqu x} ď πC }x} . (7.152)

A combination of (7.150) and (7.152) yields:

2

π

›

›

›

›

ż β

α

vpηq p´Aq
`

I ` η2A2
˘´1

x dη

›

›

›

›

ď 2C

"

|vpβq| `
ż β

α

|dv| pρq
*

}x} . (7.153)

From (7.153) we infer:

2

π
sup

0ăαăβă8

›

›

›

›

ż β

α

vpηq p´Aq
`

I ` η2A2
˘´1

x dη

›

›

›

›

ď 2C

"

}v}8 `
ż 8

0

|dv| pρq
*

}x} .

(7.154)

5. Stability of the Crank-Nicolson iteration scheme

In this section we return to the problem of the stability of the Crank-Nicolson
iteration scheme. The equality in (7.73) of Theorem 7.13 yields:

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ p´1qkx

“
2

π

ż 8

0

ż ξ

0

sin fkpηq dη
`

ξ2I ` A2
˘´1

´

2ξ2
`

ξ2I ` A2
˘´1 ´ I

¯

x dξ. (7.155)

In (7.73) we chose fpλq “
k

ź

j“1

1 ` 1
2
τjλ

1 ´ 1
2
τjλ

. Then, as observed in (7.98),

fpiηq ´ fp´iηq
2i

“ ℑ
k

ź

j“1

1 ` 1
2
iτjη

1 ´ 1
2
iτjη

“ sin fkpηq “ sin

˜

2
k

ÿ

j“1

arctan

ˆ

1

2
τjη

˙

¸

,

(7.156)
and so (7.155) follows. By putting A “ 0 in (7.155) we get:

2

π

ż 8

0

1

ξ2

ż ξ

0

sin fkpηq dη dξ “ 1 ´ p´1qk. (7.157)
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7.32. Theorem. Let A be the generator of a bounded analytic semigroup, and let
pτjqjPN be a sequence of strictly positive numbers. Let the constant C be as in (7.63).

Then (7.155) implies:
›

›

›

›

›

k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ p´1qkx

›

›

›

›

›

ď
2C2 p2C2 ` 1q

π

ż 8

0

1

ξ2

ˇ

ˇ

ˇ

ˇ

ż ξ

0

sin fkpηq dη
ˇ

ˇ

ˇ

ˇ

dξ }x} . (7.158)

Proof. The inequality in (7.158) is a consequence of (7.156) which in turn
follows from (7.73) in Theorem 7.13. �

For the convenience of the reader we insert the following lemma.

7.33. Lemma. As before, put fkpηq “ 2
řk

j“1 arctan
`

1
2
τjη

˘

. Define the quantity

b2kpηq by

b2kpηq “

sin

˜

2

2k

2k
ÿ

j“1

arctan

ˆ

1

2
τjη

˙

¸

1

2k

2k
ÿ

j“1

τjη

1 ` 1
4
τ 2j η

2

. (7.159)
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Then (7.159) implies

ż 8

0

1

ξ2

ˇ

ˇ

ˇ

ˇ

ż ξ

0

sin f2kpηq dη
ˇ

ˇ

ˇ

ˇ

dξ ď 2

ż 8

0

1 ´ cos f2kpηq
η2f 1

2kpηq
dη ď 2π sup

ηą0
b2kpηq2. (7.160)

Proof of Lemma 7.33. Integration by parts shows:

1 ´ cos f2kpξq
f 1
2kpξq

´
ż ξ

0

sin f2kpηq dη “
1

2

2k
ÿ

j“1

ż ξ

0

1 ´ cos f2kpηq
f 1
2kpηq

2k
ÿ

j“1

τ 3j η
`

1 ` 1
4
τ 2j η

2
˘2 dη ě 0.

(7.161)
From (7.161) we deduce

ˇ

ˇ

ˇ

ˇ

ż ξ

0

sin f2kpηq dη
ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

1 ´ cos f2kpξq
f 1
2kpξq

´
ˆ

1 ´ cos f2kpξq
f 1
2kpξq

´
ż ξ

0

sin f2kpηq dη
˙ˇ

ˇ

ˇ

ˇ

ď 2 ˆ
1 ´ cos f2kpξq

f 1
2kpξq

`
ż ξ

0

sin f2kpηq dη. (7.162)

Hence, from (7.157) and (7.162) we infer

ż 8

0

1

ξ2

ˇ

ˇ

ˇ

ˇ

ż ξ

0

sin f2kpηq dη
ˇ

ˇ

ˇ

ˇ

dξ ď 2

ż 8

0

1 ´ cos f2kpηq
η2f 1

2kpηq
dη. (7.163)

The inequality in (7.163) proves the first inequality in (7.160). In order to show
the second inequality in (7.160) we proceed as follows. The equality b2kpηq “

2k sin
f2kpηq
2k

ř2k
j“1 sinφjpηq

also follows, and upon writing ψ2kpηq “
f2kpηq
2k

we obtain

ż 8

0

1 ´ cos pf2kpηqq
η2

1

f 1
2kpηq

dη “
ż 8

0

1 ´ cos pf2kpηqq
pηf 1

2kpηqq2
f 1
2kpηq dη

“
ż 8

0

1 ´ cos pf2kpηqq
´

ř2k
j“1 sinφjpηq

¯2f
1
2kpηq dη

“
ż 8

0

1 ´ cos p2kψ2kpηqq
2k sin2 ψ2kpηq

˜

2k sinψ2kpηq
ř2k

j“1 sinφjpηq

¸2

ψ1
2kpηq dη

“
ż 8

0

1 ´ cos p2kψ2kpηqq
2k sin2 ψ2kpηq

pb2kpηqq2 ψ1
2kpηq dη

ď
ˆ

sup
ηą0

b2kpηq
˙2 ż 8

0

1 ´ cos p2kψ2kpηqq
2k sin2 ψ2kpηq

ψ1
2kpηq dη

“
ˆ

sup
ηą0

b2kpηq
˙2 ż π

0

1 ´ cos p2kψq
2k sin2 ψ

dψ “ π

ˆ

sup
ηą0

b2kpηq
˙2

. (7.164)
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In the final step in (7.164) we used integration by parts and the trigonometric
identity

cotψ sin p2kψq “ 1 ´ cos p2kψq ` 2
k

ÿ

j“1

cos p2jψq, k ě 1,

to obtain
ż π

0

1 ´ cos p2kψq
2k sin2 ψ

dψ “
ż π

0

cotψ sin p2kψq dψ

“
ż π

0

˜

1 ´ cos p2kψq ` 2
k

ÿ

j“1

cos p2jψq

¸

dψ “ π.

The inequality in (7.164) yields the second inequality in (7.160) and completes the
proof of Lemma 7.33. �

The following result is an immediate consequence of Theorem 7.32 and Lemma 7.33.

7.34. Theorem. Let the notation and hypotheses be as in Theorem 7.32 and Lemma
(7.33). Then the following inequality holds:

›

›

›

›

›

2k
ź

j“1

ˆ

I `
1

2
τjA

˙ ˆ

I ´
1

2
τjA

˙´1

x ´ x

›

›

›

›

›

ď 4C2
`

2C2 ` 1
˘

ˆ

sup
ηą0

b2kpηq
˙2

}x} .

(7.165)

From Theorem 7.34 we see that that for all x P X the Crank-Nicolson iteration
scheme is stable provided that the sequence of functions η ÞÑ b2kpηq, k P N, is
uniformly bounded. Also notice that, by the inequality

›

›

›

›

›

ˆ

I `
1

2
τA

˙ ˆ

I ´
1

2
τA

˙´1
›

›

›

›

›

“

›

›

›

›

›

2 ´
ˆ

I ´
1

2
τA

˙´1
›

›

›

›

›

ď 2 ` C,

with C as in (7.63), the one-step Crank-Nicolson scheme is stable if and only if the
two-step Nicolson iteration scheme is stable.

7.35. Theorem. Then the following assertions are equivalent:

(1) There exists a constant C1 such that

#
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)

ď C1

2k
ÿ

j“1

φj ^ pπ ´ φjq .

(7.166)
(2) There exists a constant C2 such that

˜

2k
ÿ

j“1

φj

¸

^

˜

2k
ÿ

j“1

pπ ´ φjq

¸

ď C2

2k
ÿ

j“1

φj ^ pπ ´ φjq . (7.167)
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In fact, if C1 is such that (7.166) holds, then C2 “ πC1 ` 2 satisfies (7.166).
Conversely, if C2 is a constant for which (7.167) holds, then (7.166) is true with

C1 “
2C2

π
.

Proof. The proof of Theorem 7.35 is essentially speaking contained in the proof
of Proposition 7.38. �

By choosing φjpηq “ 2 arctan
`

1
2
τjη

˘

, and thus sinφjpηq “
τjη

1 ` 1
4
τ 2j η

2
, the following

result follows from Theorem 7.35.

7.36. Theorem. The following assertions are equivalent:

(1) There exists a constant C1 such that for all η ą 0 and k P N

# t1 ď j ď 2k : τjη ą 2u ^ # t1 ď j ď 2k : τjη ď 2u ď C1

2k
ÿ

j“1

τjη

1 ` 1
4
τ 2j η

2
. (7.168)

(2) There exists a constant C2 such that for all η ą 0 and for all k P N
˜

2k
ÿ

j“1

φjpηq

¸

^

˜

2k
ÿ

j“1

pπ ´ φjpηqq

¸

ď C2

2k
ÿ

j“1

τjη

1 ` 1
4
τ 2j η

2
. (7.169)
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In order to further investigate conditions imposed on the step size pτjqjPN we insert
the following proposition, which has also some relevance on its own.

7.37. Corollary. Let the sequence of positive real numbers tτj : j P Nu satisfy
(7.168) in Theorem 7.36, and let A be the generator of a bounded analytic semigroup
in a Banach space pX, }¨}q with domain DpAq. Then the Crank-Nicolson iteration
scheme

ˆ

I ´
1

2
τn`1A

˙

xn`1 “
ˆ

I `
1

2
τn`1A

˙

xn, x0 P DpAq, (7.170)

is stable in the sense that supnPN }xn} ă 8.

Proof. Corollary 7.37 is a consequence of Theorem 7.36 in conjunction with
Theorem 7.34. �
7.38. Proposition. Put φjpηq “ 2 arctan

`

1
2
τjη

˘

and f2kpηq “ 2
ř2k

j“1 arctan
`

1
2
τjη

˘

,

η ą 0. Then a calculation gives ηφ1
jpηq “ sinφjpηq. In addition, the following

inequalities hold:

π

2

´

#
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)¯

ď

˜

2k
ÿ

j“1

φj

¸

^

˜

2k
ÿ

j“1

pπ ´ φjq

¸

ď π
´

#
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)¯

` 2
2k
ÿ

j“1

φj ^ pπ ´ φjq . (7.171)

In addition the following inequality is true:
˜

2k
ÿ

j“1

φj

¸

^

˜

2k
ÿ

j“1

pπ ´ φjq

¸

ď

$

’

’

’

’

&

’

’

’

’

%

2 `
π

ř2k
j“1 φj1tφjďπ{2u

ř2k
j“1 1tφjďπ{2u

`
ř2k

j“1 pπ ´ φjq1tφjąπ{2u
ř2k

j“1 1tφjąπ{2u

,

/

/

/

/

.

/

/

/

/

-

ˆ
2k
ÿ

j“1

φj ^ pπ ´ φjq .

(7.172)

Proof. The proofs of the inequalities in (7.171) can be seen from the following
more or less self-explanatory arguments:

π

2

´

#
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)¯

ď

˜

2k
ÿ

j“1

φj

¸

^

˜

2k
ÿ

j“1

pπ ´ φjq

¸

ď 2

˜

2k
ÿ

j“1

φj ^
π

2

¸

^

˜

2k
ÿ

j“1

pπ ´ φjq ^
π

2

¸
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“

¨

˝π#
!

1 ď j ď 2k : φj ą
π

2

)

` 2
2k
ÿ

j“1, φjď 1
2
π

φj

˛

‚

^

¨

˝π#
!

1 ď j ď 2k : φj ď
π

2

)

` 2
2k
ÿ

j“1, φją 1
2
π

pπ ´ φjq

˛

‚

“

¨

˝π#
!

1 ď j ď 2k : φj ą
π

2

)

` 2
2k
ÿ

j“1, φjď 1
2
π

φj ^ pπ ´ φjq

˛

‚

^

¨

˝π#
!

1 ď j ď 2k : φj ď
π

2

)

` 2
2k
ÿ

j“1, φją 1
2
π

φj ^ pπ ´ φjq

˛

‚

ď

˜

π#
!

1 ď j ď 2k : φj ą
π

2

)

` 2
2k
ÿ

j“1

φj ^ pπ ´ φjq

¸

^

˜

π#
!

1 ď j ď 2k : φj ď
π

2

)

` 2
2k
ÿ

j“1

φj ^ pπ ´ φjq

¸

“ π
´

#
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)¯

` 2
2k
ÿ

j“1

φj ^ pπ ´ φjq . (7.173)

Next we have the following inequality:

#

ř2k
j“1 φj1tφjďπ{2u

ř2k
j“1 1tφjďπ{2u

`
ř2k

j“1 pπ ´ φjq1tφjąπ{2u
ř2k

j“1 1tφjąπ{2u

+

ˆ #
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)

ď
2k
ÿ

j“1

φj1tφjďπ{2u `
2k
ÿ

j“1

pπ ´ φjq1tφjąπ{2u

“
2k
ÿ

j“1

φj ^ pπ ´ φjq . (7.174)

From (7.174) we see that the right-hand side of (7.172) satisfies:

$

’

’

’

’

&

’

’

’

’

%

2 `
π

ř2k
j“1 φj1tφjďπ{2u

ř2k
j“1 1tφjďπ{2u

`
ř2k

j“1 pπ ´ φjq1tφjąπ{2u
ř2k

j“1 1tφjąπ{2u

,

/

/

/

/

.

/

/

/

/

-

ˆ
2k
ÿ

j“1

φj ^ pπ ´ φjq
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ě

$

’

’

’

’

&

’

’

’

’

%

2 `
π#

␣

1 ď j ď 2k : φj ą π
2

(

^ #
␣

1 ď j ď 2k : φj ď π
2

(

2k
ÿ

j“1

φj ^ pπ ´ φjq

,

/

/

/

/

.

/

/

/

/

-

ˆ
2k
ÿ

j“1

φj ^ pπ ´ φjq

“ 2
2k
ÿ

j“1

φj ^ pπ ´ φjq ` #
!

1 ď j ď 2k : φj ą
π

2

)

^ #
!

1 ď j ď 2k : φj ď
π

2

)

ě

˜

2k
ÿ

j“1

φj

¸

^

˜

2k
ÿ

j“1

pπ ´ φjq

¸

. (7.175)

In the final step of (7.175) we applied the second inequality of (7.171). This shows
the inequality in (7.172) and completes the proof of Proposition 7.38. �
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The following corollary follows from (7.172) by using standard goniometric inequal-
ities like

sinφ ď φ ^ pπ ´ φq ď
π

2
sinφ, 0 ď φ ď π, and

π

4
η ď arctan η ď η, 0 ď η ď 1. (7.176)

7.39. Corollary. Let the function b2kpηq be defined as in (7.159). Then

b2kpηq ď π

$

’

’

’

’

’

&

’

’

’

’

’

%

1 `
1

ř2k
j“1

1
2
τjη1r0,1s

`

1
2
τjη

˘

ř2k
j“1 1r0,1s

`

1
2
τjη

˘ `

ř2k
j“1

2
τjη

1p1,8q
`

1
2
τjη

˘

ř2k
j“1 1p1,8q

`

1
2
τjη

˘

,

/

/

/

/

/

.

/

/

/

/

/

-

, (7.177)

where

min
1ďjď2k

τj ă
2

η
ă max

1ďjď2k
τj.

If
2

η
is outside the interval rmin1ďjď2k τj,max1ďjď2k τjs, then, as is easily seen,

b2kpηq ď 1
2
π.

7.40. Corollary. Suppose that

M
´

pτjqj
¯

:“ inf
k
min
η

$

’

’

’

’

&

’

’

’

’

%

2k
ÿ

j“1

τj
η
1r0,1s

ˆ

τj
η

˙

2k
ÿ

j“1

1r0,1s

ˆ

τj
η

˙

`

2k
ÿ

j“1

η

τj
1r0,1s

ˆ

η

τj

˙

2k
ÿ

j“1

1r0,1s

ˆ

η

τj

˙

,

/

/

/

/

.

/

/

/

/

-

ą 0, (7.178)

where the minimum is taken over all η with the property that

min
1ďjď2k

τj ď η ď max
1ďjď2k

τj.

Then the Crank-Nicolson iteration scheme is stable.

Proof. This result follows from Corollary 7.39 by applying it to the functions
φjpηq “ 2 arctan

`

1
2
τjη

˘

in which η is replaced with 2{η. In addition, the elementary

equality arctan η ` arctan p1{ηq “ 1
2
π, η ą 0, and the inequality

arctan η ě
4

π
η, 0 ď η ď 1,

are used to see that Corollary 7.40 is a consequence of Corollary 7.39. �

The following corollary is a consequence of Theorem 7.34) of Corollary 7.39 and of
Corollary 7.40. It shows that the Crank-Nicolson iteration scheme is stable provided

that the quantity M
´

pτjqj
¯

as defined in (7.178) is strictly positive.
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7.41. Corollary. Let the sequence of positive real numbers tτj : j P Nu satisfy
p7.178q in Corollary 7.40, and let A be the generator of a bounded analytic semigroup
in a Banach space pX, }¨}q with domain DpAq. Then the Crank-Nicolson iteration
scheme in (7.170) is stable in the sense of Corollary 7.37.

7.42.Corollary. Let the sequence τj, j P N, be such that 0 ă infj τj ď supj τj ă 8.
Then Crank-Nicolson iteration scheme, as described in Corollary 7.37 is stable.

Proof. It is not so difficult to see that

M
´

pτjqj
¯

ě 2 inf
k

d

min1ďjď2k τj
max1ďjď2k τj

“ 2

d

infj τj
supj τj

,

and hence, the conclusion in Corollary 7.42 follows from Corollary 7.41. �
7.43. Corollary. Let τj “ Rpjq ą 0, where the function η ÞÑ Rpηq is a rational
function taking its values in p0,8q. Then the Crank-Nicolson iteration scheme, as
described in Corollary 7.37, is stable.

Proof. A rational function possesses either one of the following properties:

(1) it ultimately decreases to 0;
(2) it ultimately increases to 8;
(3) it possesses a strictly positive finite limit.

If limjÑ8 Rpjq exists and is finite and strictly positive, then the result in Corollary

7.43 follows from Corollary 7.42. Since M
´

pτjqj
¯

“ M
´

`

τ´1
j

˘

j

¯

, it suffices to

consider the situation that, ultimately, Rpξq increases to 8. Since stability is only
affected for j large, without loss of generality we may assume that the function
ξ ÞÑ Rpξq is increasing for ξ ě τ1. In fact we let the Crank-Nicolson scheme start
after m steps, and replace τm with τ1. Then we write η “ Rpξq, τj “ Rpjq, to obtain:

2k
ÿ

j“1

τj
η
1r0,1s

ˆ

τj
η

˙

2k
ÿ

j“1

1r0,1s

ˆ

τj
η

˙

“

2k
ÿ

j“1

Rpjq
Rpξq

1r0,1s

ˆ

j

ξ

˙

2k
ÿ

j“1

1r0,1s

ˆ

j

ξ

˙

“
1

tξu

tξu
ÿ

j“1

Rpjq
Rpξq

“
ż 1

0

R prtξu ssq
Rpξq

ds. (7.179)

Let Rpξq be of the form Rpξq “
P pξq
Qpξq

, where P pξq is a polynomial of degree n, and

Qpξq is a polynomial of degree m. From our assumption on the rational function
Rpξq (its limit is 8 as ξ Ñ 8), it follows that n ´ m ě 1. Moreover,

lim
ξÑ8

ż 1

0

R prtξu ssq
Rpξq

ds “
ż 1

0

sn´m ds “
1

n ´ m ` 1
. (7.180)
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Consequently, from (7.179) and (7.180) it follows that M
´

pτjqj
¯

ą 0. The conclu-

sion in Corollary 7.43 then follows form Corollary 7.40. Altogether this completes
the proof of Corollary 7.43. �

Notice the M
´

pτjqj
¯

“ 0 when τj “ ej. So exponential step sizes may result in non

stable Crank-Nicolson schemes.
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CHAPTER 8

Elements of functional analysis

In this chapter we discuss and prove some results which are useful to understand the
main part of the book. Among other things the reader will find formulations of the
Banach-Steinhaus theorem for Fréchet spaces, the closed graph theorem and results
related the Hahn-Banach theorem like Mazur’s theorem. The results and proofs are
taken from Rudin [113], Gohberg and Goldberg [56], and from Waelbroeck [150].
For elementary proofs of the uniform boundedness principle in Banach spaces, not
using a Baire category argument, but kind of a gliding hump technique, see e.g.
Hennefeld [61] or Sokal [129].

1. Theorem of Hahn-Banach

Let X be a real or complex vector space. A functional p : X Ñ R is called sub-
additive if ppx` yq ď ppxq ` ppyq for all x, y P X. It is called positive homogeneous
provided p pλxq “ λppxq for all λ ě 0 and for all x P X. The functional p is called a
semi-norm, if it attains its values in r0,8q, is sub-additive, and if p pλxq “ |λ| ppxq
for all λ P R, or λ P C, and x P X.

8.1. Theorem (Hahn-Banach, analytic version in a real vector space). Let X be a
vector over R, let p : X Ñ R be a sub-additive, positive homogeneous functional on
X, let M be a real linear subspace of X, and let f : M Ñ R be a real-valued linear
functional on M with the property that fpxq ď ppxq for all x P M . Then there exists
a linear functional f0 : X Ñ R which extends f , i.e. f0pxq “ fpxq, x P M , and
which is such that ´pp´xq ď fpxq ď ppxq for all x P X.

Proof. Suppose M ‰ X, and choose x1 R M . Put M1 “ M ` Rx1. Then M1

is a vector subspace of X which contains M , and

fpxq ´ p px ´ x1q ď p py ` x1q ´ fpyq, x, y P M. (8.1)

Choose α P R in such a way that

sup
xPM

tfpxq ´ p px ´ x1qu ď α ď inf
yPM

tpy ` x1q ´ fpyqu .

By (8.1) such a choice is possible. Define the functional f1 : M1 Ñ R by

f1 px ` tx1q “ fpxq ` tα, x P M, t P R.

Then f1pxq “ fpxq, x P M . Moreover, ´pp´yq ď f1pyq ď ppyq, y P M1. Let P be the
collection of all ordered pairs pM 1, f 1q with the following properties: M 1 is a linear

341
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subspace of X containing M , and f 1 is a linear functional on M 1 which extends
f , and which is such that f 1pyq ď ppyq, y P M 1. Partially order this collection by
declaring pM 1, f 1q ď pM2, f 2q to mean that M 1 Ă M2 and f 1pyq “ f 2pyq, y P M 1.
By Hausdorff’s maximality theorem there exists a maximal totally ordered sub-

collection Ω of P. Put ĂM “ Y tM 1 : pM 1, f 1q P Ωu, and define rf : ĂM Ñ R by
rfpyq “ f 1pyq if y P M 1. Then rf is well-defined, and rfpyq ď ppyq, y P ĂM . By the first

part of he proof it follows that ĂM “ X. It also follows that rf can be taken as f in
the theorem. This completes the proof of Theorem 8.1. �
8.2. Theorem (Hahn-Banach, analytic version in a complex vector space). Let X
be a vector over C, let p : X Ñ r0,8q be a semi-norm on X, let M be a linear
subspace of X, and let f : M Ñ C be a complex-valued linear functional on M with
the property that ℜfpxq ď ppxq for all x P M . Then there exists a linear functional
f0 : X Ñ C which extends f , i.e. f0pxq “ fpxq, x P M , and which is such that
|fpxq| ď ppxq for all x P X.

Proof. The proof of the complex version can be recovered from the real version
of the Hahn-Banach theorem, by putting upxq “ ℜfpxq, x P M . Then the real-
valued functional u satisfies the conditions of the (real) Hahn-Banach theorem. Here
f : M Ñ C is as in the theorem. Let u0 : X Ñ R be the real extension of u to all
of X which is such that u0pxq ď ppxq, x P M . The mapping f0pxq “ u0pxq ´ iu0pixq,
x P X, then has the required properties. The proof of Theorem 8.2 is complete
now. �
8.3. Theorem (Hahn-Banach, geometric version). Let A and B be disjoint convex
subsets of a locally convex vector space X.

(a) If B open is (and A X B “ H), then there exists a real number γ and a
contiunuous linear functional Λ : X Ñ C with the property that, for all
vectors b P B and for all vectors a P A, the following inequality is true:

ℜΛpbq ă γ ď ℜΛpaq.
(b) If B is closed and if A is compact (and as above A X B “ H), then there

exist real numbers γ1 and γ2 and a continuous linear functional Λ : X Ñ C
with the property that, for all vectors b P B and for all vectors a P A, the
following inequality is true:

ℜΛpbq ď γ1 ă γ2 ď ℜΛpaq.

Proof. (a) Fix a vector a0 P A and fix a vector b0 P B and consider the
neighborhood of the zero-vector V defined by V “ B ´ A ` a0 ´ b0. Let pV be
its Minkowski functional. Since the vector a0 ´ b0 does not belong to V , it follows
that pV pa0 ´ b0q ě 1. Define the real linear functional f : Rpa0 ´ b0q Ñ R by
f pλpb0 ´ a0qq “ λpV pa0´b0q, λ P R. Then we have fpyq ď ppyq for all y P Rpa0´b0q.
By virtue of the analytic version of the Hahn-Banach theorem there exists a real
linear functional u : X Ñ R with the properties that upxq ď pV pxq for all x P X
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that upa0 ´ b0q “ pV pa0 ´ b0q ě 1. Put Λpxq “ upxq ´ iupixq, x P X, and notice
that Λpλxq “ λΛpxq for λ P C and x P X. Note that the functional Λ is continuous.
Because, let V0 be an absolutely convex closed neighborhood of the origin contained
in V , and let pV0 be its Minkowski functional. Then |Λpxq| ď pV0pxq for all x P X. If
b belongs to B and if a belongs to A, then ℜΛ ppb ´ a ` a0 ´ b0q ă 1 ď ℜΛpa0 ´ b0q.
Define the constant γ by γ “ inf tℜΛpaq : a P Au. This constant γ then verifies the
required conditions.

(b) Select an open absolutely convex neighborhood of the origin U in such a way
that A X pB ` Uq “ H. Since A is a compact set and X is locally convex such a
neighborhood of the origin exists. Define the zero-neighborhood V by V “ B ´A`
U ` a0 ´ b0, where a0 is chosen in A and where b0 is chosen in B. The vector a0 ´ b0
does not belong to V and hence pV pa0 ´ b0q ě 1. Again there exists a functional
Λ : X Ñ C with the property that ℜΛpa0 ´ b0q “ pV pa0 ´ b0q ě 1 and for which
ℜΛpxq ď pV pxq for all x P X. Define γ1 by γ1 “ supbPB ℜΛpbq and define γ2 via the
formula γ2 “ infaPA ℜΛpaq. The inequality ℜΛpyq ď ℜΛpaq ´ ℜΛpbq follows for all
y P U , for all a P A for all b P B. Consequently

γ2 ´ γ1 ě sup
yPU

ℜΛpyq “ sup
yPU

|Λpyq| ą 0

and also

ℜΛpbq ď γ1 ă γ2 ď ℜΛpaq.
This completes the proof of Theorem 8.3. �
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The analytic version of the Hahn-Banach theorem can also be deduced from the
geometric version. Putting it differently, let p : X Ñ R be positive homogeneous
and sub-additive continuous linear functional, defined on a locally convex space
X and let f : M Ñ C be a linear functional, defined on the linear subspace M
and that verifies ℜfpxq ď ppxq for all x P M and that possesses the property
that ℜfpx0q “ ppx0q “ 1 for some x0 P M . Prove that there exists a functional
f0 : X Ñ C with the following properties:

(a) f0pxq “ fpxq for x P M en
(b) ℜf0pxq ď ppxq for x P X.

For a proof we consider the following two convex subsets of X that are disjoint:
U :“ tx P X : ppxq ă 1u and C :“ tx P M : ℜfpxq ě 1u. We notice that the vector
x0 belongs to C and hence C is non-empty. From the geometric version of the
Hahn-Banach theorem it follows that there exists a complex linear functional Λ and
a constant γ such that the following inequalities are satisfied:

ℜΛpuq ă γ ď ℜΛpvq

for all vectors u P U and for all vectors v for which ℜfpvq ě 1. Since the zero-vector

belongs to U , it follows that γ ą 0. So we may consider f0 :“
Λ

γ
. Then ℜf0pxq ă 1

if ppxq ă 1 and if x P M is such that ℜfpxq ě 1, then ℜf0pxq ě 1. It follows that
ℜf0pxq ď ppxq for all x P X and the following assertion follows as well. If x P M is
such that ℜfpxq ě η, then ℜf0pxq ě η and this is true for any η ą 0. Consequently
we see that ℜf0pxq ě ℜfpxq for all x P M . Since M is a linear subspace, it follows
ℜfpxq “ ℜf0pxq for all x P M . This proves the statement.

8.4. Corollary. Let X be a locally convex vector space and let V be a convex neigh-
borhood of the origin. Let pV pxq :“ inf tt ą 0 : x P tV u, x P X, be its Minkowski
functional, and let

V 0 “
č

xPV
tx˚ P X˚ : ℜ ⟨x, x˚⟩ ď 1u

be its polar set. Then pV pxq “ sup tℜ ⟨x, x˚⟩ : x˚ P V 0u for all x P X. In fact, the
proof will show that, for x P X given, there exists a continuous linear functional
x˚ P V 0 such that pV pxq “ ℜ⟨x, x˚⟩.

Proof. Fix x0 P X and define f : Rx0 Ñ R by fpλx0q “ λpV px0q. Then fpyq ď
pV pyq for all y in the real subspace spanned by x0. By the Hahn-Banach extension
theorem there exists a real linear functional f0 : X Ñ R such that f0pxq ď pV pxq,
x P X, and such that fpyq “ f0pyq for all y P Rx0. Define the complex linear
functional x˚

0 by ⟨x, x˚
0⟩ “ f0pxq ´ if0pixq, for x P X. It follows that ℜ⟨x, x˚

0⟩ “
f0pxq ď pV pxq for all x P X. If x belongs to V , then pV pxq ď 1 and so, for such
x, ℜ ⟨x, x˚

0⟩ ď 1. Consequently x˚
0 belongs to V 0 and since ℜ⟨x0, x

˚
0⟩ “ pV px0q, we

infer that pV px0q “ ℜ⟨x0, x
˚
0⟩, with x˚

0 P V 0. This proves the claim in Corollary
8.4. �
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The following result implies that a convex subset of a locally convex topological
vector space pX,Tq is T-closed if and only if it is weakly closed. This is Mazur’s
theorem.

8.5. Proposition. Let C be a closed convex subset of a locally convex topological
vector space pX,Tq. Then

C “
č

tℜΛ ď α : C Ď tℜΛ ď αuu .

Proof. Pick

x0 P
č

tℜΛ ď α : C Ď tℜΛ ď αuu (8.2)

and assume that x0 does not belong to the T-closed convex subset C. From the geo-
metric version of the Hahn-Banach theorem, it follows that there exists a continuous
linear functional Λ : X Ñ C and a constant γ, such that ℜΛpx0q ą γ ě ℜΛpxq for
all x P C. This contradicts (8.2). Whence

č

tℜΛ ď α : C Ď tℜΛ ď αuu Ď C.

The other inclusion being trivial, this proves Proposition 8.5. �

8.6. Corollary. Let C be a convex subset of a locally convex topological vector
space pX,Tq. Then C is T-closed if and only if

C “
č

tℜΛ ď α : C Ď tℜΛ ď αuu .

8.7. Theorem (Alaoglu-Bourbaki). Let E˚ be the topological dual space of a locally
convex topological vector space E, and let B be an equi-continuous family of linear
functionals in E˚. Then B is relatively compact for the weak˚ topology. In particular
it follows that the polar set U˝ of a zero-neighborhood U is σpE˚, Eq-compact.

Proof. Let pW be the Minkowski-functional of the convex zero-neighborhood
W . Since B is equi-continuous there exists an absolutely convex, closed zero-
neighborhood V with the property that

B Ď V ˝ :“
č

xPV
tx˚ P E˚ : Re x˚pxq ď 1u

“
č

xPV
tx˚ P E˚ : |x˚pxq| ď 1u

“
č

xPV
tx˚ : E ÞÑ C : |x˚pxq| ď pV pxq, x˚ linearu

“
č

xPV,α,βPC,u,vPE
tx˚ : E ÞÑ C : |x˚pxq| ď pV pxq,

x˚pαu ` βvq “ αx˚puq ` βx˚pvqu

“
č

xPV,α,βPC,u,vPE

!

pλyqyPE P CE : |λx| ď pV pxq, λαu`βv “ αλu ` βλv

)

.
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It follows that V ˝ can be identified with the closed subset p˚q of the compact set
(Tychonov)

ś

xPE tλ P C : |λ| ď pV pxqu. By Tychonov’s theorem for infinite carte-
sian products, it follows that V ˝ is compact. This completes the proof of Theorem
8.7. �

1.1. Baire category. In Theorem 8.10 we need the notion of Baire category.
The precise definition reads as follows.

8.8. Definition. Let pS,Tq be a topological space. A subset E Ă S is said to be
nowhere dense in S if its closure has empty interior. The sets of first category in S
are those that are countable unions of nowhere dense subsets. Any subset of S that
is not of the first category is said to be of the second category in S.

Sometimes subsets of the first category are called meager, and subsets of the second
category non-meager. Let pS1,T1q and pS2,T2q be topological Hausdorff spaces, and
let h : S1 Ñ S2 be a surjective homeomorphism. Let E be a subset of S1. Then E
and h pE1q are of the same category in pS1,T1q respectively pS2,T2q. Subsets of sets
of the first category are of the first category. Countable unions of sets of the first
category are of the first category. Closed subsets with empty interior are of the first
category. The following theorem implies that complete metric spaces, and locally
compact Hausdorff spaces are of the second category in themselves.
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8.9. Theorem. If S is either

(a) a complete metric space, or
(b) a locally compact Hausdorff space,

then every countable intersection of dense open subsets of S is dense in S.

Although this result is well-known, we include a proof for completeness.

Proof. Suppose that pVjqjPN is a sequence of dense open subsets of S, and
let B0 be an arbitrary nonempty open subset of S. If n ě 1 and an open subset
Bn´1 ‰ H has been chosen, then, because Vn is dense in S, there exists an open
subset Bn ‰ H with Bn Ă Vn X Bn´1. In case (a), Bn may be taken to be ball
of radius ă 1{n; in case (b) this choice is made in such a way that Bn is compact.
Put K “

Ş

nPNBn. In case (a) the centers of the nested balls Bn form a Cauchy
sequence which converge to some point of K, and so K ‰ H. In case (b), K ‰ H by
compactness. The construction shows that K Ă B0 and K Ă Vn for each n. Hence
B0 intersects

Ş

nPN Vn. This completes the proof of Theorem 8.9. �
8.10. Theorem. Let B be a weakly bounded subset of a locally convex topological
vector space pE,Tq. Then B is T-bounded.

Proof. Let V be an arbitrary closed T-zero neighborhood, which is absolutely
convex. It suffices to prove that the set B is contained in a certain scalar multiple
of V . Put

K “ V ˝ “
č

xPV
tx˚ P E˚ : |x˚pxq| ď 1u .

Then it follows that
V “

č

x˚PK
tx P E : |x˚pxq| ď 1u .

Assume that x0 does not belong to V . By the Hahn-Banach theorem there exists a
linear functional x˚

0 P E˚ in such a way that Re x˚
0px0q ą 1 ě |x˚

0pxq| for all x P V .
Hence, x0 is not a member of

Ş

x˚PK tx P E : |x˚pxq| ď 1u. So we obtain
č

x˚PK
tx P E : |x˚pxq| ď 1u Ď V Ď

č

x˚PK
tx P E : |x˚pxq| ď 1u .

The ultimate inclusion is a trivial consequence of the definition of K. Because B is
weakly bounded it follows that

K “
ď

nPN

č

xPB
tx˚ P K : |x˚pxq| ď nu .

The theorem of Alaoglu-Bourbaki yields that the set K is σpE˚, Eq-compact. But a
compact space is a Baire space. So there exist n P N, δ ą 0, x˚

0 P K, and x1, . . . , xm

in E such that

Kn :“
č

xPB
tx˚ P K : |x˚pxq| ď nu Ě

m
č

i“1

tx˚ P K : |x˚pxiq ´ x˚
0pxiq| ď δu
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“ x˚
0 ` W X pK ´ x˚

0q ,
where

W “
m
č

i“1

tx˚ P E˚ : |x˚pxiq| ď δu .

Since Kn is absolutely convex it follows that

Kn Ě
1

2
ppx˚

0 ` W q X K ´ px˚
0 ` W q X Kq Ě β pW X Kq ,

where

β “
δ

δ ` max1ďjďm |x˚
0pxjq|

.

For x˚ belonging to W X K it holds that

βx˚ “
1

2
px˚

0 ` βpx˚ ´ x˚
0qq ´

1

2
px˚

0 ´ βpx˚ ` x˚
0qq .

Because |β px˚pxjq ˘ x˚
0pxjqq| ď δ, 1 ď j ď m, en because K is absolutely convex it

follows that the vectors x˚
0 ` βpx˚ ´ x˚

0q “ p1 ´ βqx˚
0 ` βx˚ and x˚

0 ´ βpx˚ ` x˚
0q “

p1 ´ βqx˚
0 ` βp´x˚q belong to the set px˚

0 ` W q X K. From this we see

β pW X Kq Ď Kn.

Next let y˚ P K and consider the vector

δ

δ ` max1ďjďm |y˚pxjq|
y˚ `

ˆ

1 ´
δ

δ ` max1ďjďm |y˚pxjq|

˙

0.

By the convexity of K and since 0 belongs to K, this vector belongs to K. This

vector is a member of W as well. Thus, if y˚ P K, the vector β
δ

δ ` max |y˚pxjq|
y˚

belongs to Kn. Consequently,

|y˚pxq| ď
1

β

ˆ

1 `
max1ďjďm |y˚pxjq|

δ

˙

n

ď
ˆ

1 `
max1ďjďm |x˚

0pxjq|
δ

˙ ˆ

1 `
max1ďjďm |y˚pxjq|

δ

˙

n

ď
ˆ

1 `
max1ďjďm pV pxjq

δ

˙2

n

for y˚ P K and for x P B. Put M “
ˆ

1 `
max1ďjďm pV pxjq

δ

˙2

n. Then, apparently,

|y˚pxq| ď M, x P B, y˚ P K.

Hence, we see that, for x P B, the vector x{M belongs to the bipolar set pV ˝q˝ “
K˝ “ V . From this we see that B is a subset of MV , and completes the proof of
Theorem 8.10. �

Although the following theorem is not used in the main text we include it, because
it is one of the central results in Functional analysis.
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8.11. Theorem (Krein-Milman). Let C be a compact convex subset of a locally
convex topological space X. Then C coincides with the closed convex hull of the
extreme points of C.

2. Banach-Steinhaus theorems: barreled spaces

A Banach space version of the Banach-Steinhaus theorem, or the uniform bounded-
ness principle reads as follows.

8.12. Theorem (Banach-Steinhaus). Let X and Y be Banach spaces and let F

be a family of continuous linear operators of X to Y . Suppose that the family F is
pointwise bounded in the sense that for every x P X the expression sup t}Tx} : T P Fu
is finite. Then sup t}T } : T P Fu is finite.

The closed graph theorem reads as follows.

8.13. Theorem (Closed graph theorem). Again let X and Y be Banach spaces and
let T : X Ñ Y be an everywhere defined linear operator with the property that its
graph GpT q, defined by GpT q “ tpx, Txq : x P Xu, is a closed linear subspace of the
cartesian product X ˆ Y . Then the operator T is continuous.
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The open mapping theorem for Banach spaces reads as follows: see Theorem 8.24
as well.

8.14. Theorem (Open mapping theorem). Let X be a Banach space and let Y be
a normed linear space. Suppose that T : X Ñ Y is a continuous linear operator
that is surjective. So T pXq “ Y . Let BX be the open unit ball of X: BX “
tx P X :} x }ă 1u. Then TBX is an open subset of Y and Y is also a Banach space.

The following result says that the foregoing theorems (for Banach spaces X and Y )
are equivalent. Theorem 8.19 below characterizes those locally convex topological
vector spaces X for which an adapted version of the Banach-Steinhaus result holds.
For the same spaces the closed graph theorem is valid. The uniform boundedness
in Theorem 8.12 is replaced with the equi-continuity of a family of continuous op-
erators. It turns out that the class of spaces X for which the closed graph theorem
or the Banach-Steinhaus theorem hold for all Banach spaces Y coincides with the
class of the so-called barreled spaces: see Definitions 8.16 and 8.20. Corollary 8.22
shows that Fréchet spaces are barreled.

8.15. Theorem. The following assertions are equivalent for arbitrary Banach spaces
X and Y .

(a) Let F be a pointwise bounded family of continuous linear operators from X
to Y . Then sup

TPF
}T } ă 8. In other words, every pointwise bounded family

of continuous linear operators from X to Y is uniformly bounded.
(b) Every everywhere defined closed linear operator T : X Ñ Y is continuous.
(c) Every surjective continuous linear operator T : X Ñ Y is an open mapping.

Proof. (c) ñ (b). Define the projection Π : X ˆ Y Ñ X by Πpx, Txq “ x.
The restriction of Π to GpT q is surjective (and injective). Let ΠG be this restriction.
From the open mapping theorem it follows that there exists a δ ą 0 with the property
that the subset:

ΠG

´

GpT q
č

tpx, yq P X ˆ Y : }x} ď 1, }y} ă 1u
¯

contains the ball tx P X : }x} ď δu. Consequently: }x} ď δ ñ }Tx} ď 1. For x
arbitrary, x ­“ 0, we obtain

›

›

›

›

T

ˆ

δ
x

}x}

˙›

›

›

›

ď 1.

Hence }Tx} ď
1

δ
}x}. This means that T is continuous.

(b) ñ (a). Suppose that Y is complete (this can always be achieved by taking the
completion of Y instead of Y itself. Let B pF, Y q be the vector space of all functions
f : F Ñ Y with the property that }f} :“ sup t}fpT q} : T P Fu ă 8. Define the
linear operator A : X Ñ B pF, Y q by rAxs pT q “ Tx, x P X. The operator A is
linear, its graph is closed in X ˆ B pF, Y q. The operator A is everywhere defined.
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Hence, by the closed graph theorem, A is continuous. This is the same as saying
that there exists a finite constant c with the property that

sup
TPF

}rAxs pT q} ď c }x}

for all x P X. Hence }Tx} ď c }x}, x P X. Whence }T } ď c, T P F.

(b) ñ (c). Consider the mapping S : Y Ñ X{NpT q, defined by S : Tx ÞÑ x`NpT q,
x P X. The operator S is everywhere defined on the Banach space Y . Moreover
S has a closed graph. This is so because we have the following. Let pxn : n P Nq
be a sequence in X with the property that, in the cartesian product Y ˆ X{NpT q,
pTxn, STxnq converges to py, x ` NpT qq. Then limnÑ8 xn ` NpT q “ x ` NpT q and
limnÑ8 Txn “ y. This means that there exists a sequence pznq in the zero-space of
T such that limnÑ8 }xn ´ x ` zn} “ 0 and such that limnÑ8 }T pxn ` znq ´ y} “ 0.
Since T is continuous it follows that y “ Tx and so T is closed. Consequently the
operator S is closed. So, by the closed graph theorem, it is continuous. Hence there
exists a constant c with the property that

inf t}x ` z} : Tz “ 0u ď c }Tx} ,
for x P X. But the we have

T t}x} ă 1u Ě
1

c
ty P Y : }y} ă 1u .

An easy exercise then shows that T is an open mapping in the sense that open
subsets of X are mapped onto open subsets of Y .

Altogether this completes the proof of Theorem 8.15, except that the implication
(a) ñ (b) has not been established yet. This is part of Theorem 8.19. �

The fact that the Banach-Steinhaus theorem implies the closed graph theorem is part
of the following result. However for a concise formulation we need two definitions.

8.16. Definition. Let X be locally convex topological vector space. A subset W
of X is said to be a barrel if it is closed, balanced, convex and absorbing.

8.17. Definition. Let X and Y be topological vector spaces. A linear operator
T : X Ñ Y is said to be almost continuous if for every zero-neighborhood V in Y
the closure of T´1V contains a zero-neighborhood in X.

8.18. Lemma. Let tpXU , }¨}q : U P Uu be a family of normed spaces. The space
ℓ8pXU : U P Uq, defined by

ℓ8pXU : U P Uq “

#

pxUqUPU P
ź

UPU
XU : sup

UPU
}xU}U ă 8

+

,

is a normed vector space. If every space pXU , }¨}Uq, U P U is a Banach space, then
so is ℓ8 pXU , U P Uq.

Proof. The proof of this lemma is elementary. It is left to the reader as an
exercise. �
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8.19. Theorem. Let X be a locally convex vector space. The following assertions
are equivalent:

(a) Every barrel in X is a zero-neighborhood.
(b) A pointwise bounded family of continuous linear operators from X to any

locally convex topological vector space is equicontinuous.
(c) An everywhere defined operator T defined on all of X with values in a locally

convex topological vector space is almost continuous.
(d) A closed linear operator, that is everywhere defined on X and with values

in a Fréchet space, is continuous.
(e) A pointwise bounded family of continuous linear operators defined on X

with values in a Banach-space is equicontinuous.

Proof. (a) ñ (b). Let Y be any locally convex space and let F be a pointwise
bounded family of continuous linear operators defined on X and with values in Y .
Let V be a closed absolutely convex (= balanced and convex) neighborhood of the
origin in Y . Put W “

Ş

TPF T
´1V . The subset W is closed and absolutely convex.

Since the family F is pointwise bounded, W is also absorbing. So, by definition, W
is a barrel in X. So by (a) W is a neighborhood of the origin in X. This means
that the family F is equicontinuous.
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(b) ñ (c). Let Y be any locally convex vector space and let T : X Ñ Y be
an everywhere defined linear operator. Let V be a absolutely convex closed zero-
neighborhood in Y and let W be the closure of T´1V . Then W is a barrel in
X. Denote by UXp0q the collection of all absolutely convex closed neighborhoods
of the origin in X. Fix U P UXp0q and let GpU ` W q be the largest subspace
contained in the set U ` W . So that GpU ` W q “

Ş8
k“1 2

´k pU ` W q. Define
the vector space XU`W as follows: XU`W “ tλx : λ ě 0, x P U ` W u {GpU ` W q.
The space XU`W is equipped with the Minkowski functional of the union of cosets
U ` W ` GpU ` W q “

Ť

xPU`W px ` GpU ` W qq:

}x ` GpU ` W q}U`W “ inf tλ ą 0 : x P λpU ` W qu .

This functional renders XU`W into a normed linear space. (Verify this precisely.)
Then let XU`W be the vector space defined by

XU`W “
8
ď

m“1

m
ź

UPUXp0q
pU ` W ` GpU ` W qq .

So a vector xU`W “ pxU ` GpU ` W qqUPUXp0q belongs to XU`W if and only if there

exists a natural number m with the property that xU belongs to m pU ` W q for for
all U P UXp0q. It is a matter of routine to verify that XU`W is a vector space and
that the norm }xU`W }U`W , defined by

}xU`W }U`W “ inf tλ ą 0 : xU P λ pU ` W q , U P UXp0qu

turns
`

XU`W , }¨}U`W

˘

into a normed vector space. Here, as above,

xU`W “ ppxU ` GpU ` W qqqUPUXp0q

is supposed to be a member of XU`W . In fact the normed space
`

XU`W , }¨}U`W

˘

coincides with the ℓ8-sum of the spaces
`

XU`W , }¨}U`W

˘

, U P UXp0q.

To be precise:
`

XU`W , }¨}U`W

˘

“ ℓ8 ``

XU`W , }¨}U`W

˘

: U P UXp0q
˘

.

Define for U P UXp0q the operator TU : X Ñ XU`W as follows:

TUpxq “ p. . . , 0, . . . , 0, x ` GpU ` W q, 0, . . . , 0, . . .q , x P X.

So only “site U is occupied” by the vector x ` GpU ` W q. Since the unit ball of
XU`W is given by BXU`W

“
ś

UPUXp0q pU ` W ` GpU ` W qq, it follows that the set

T´1
U BXU`W

contains the set U . So every operator TU is continuous. Next fix x P X.
Since the operator T is everywhere defined, there exists a strictly positive number
λ “ λpxq ą 0 with the property that the vector Tx belongs to λV . Hence the vector
x belongs to λT´1V Ď λW . Consequently the vectors TUpxq, U P UXp0q, belong
to λBXU`W

. This means that the family tTU : U P UXp0qu is pointwise bounded.
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From (b) it follows that the family tTU : U P UXp0qu is equicontinuous. This means
that the intersection

č

UPUXp0q

␣

x P X : TUx P BXU`W

(

“
č

UPUXp0q
tx P X : x P U ` W u “ W

belongs to UXp0q. This proves (c).

(c) ñ (d). Let Y be a Fréchet space and let T : X Ñ Y be an almost continuous
linear operator with a closed graph. Let pVk : k “ 0, 1, 2, . . .q be a sequence of open
absolutely convex neighborhoods of 0 in Y with the property that Vk`1 ` Vk`1 is
contained in Vk, k “ 0, 1, 2, . . .. Also suppose that the sequence pVk : k P Nq consti-
tutes a local basis. We shall prove that the closure of T´1V1 is contained in T´1V0.
Since, by (c), the operator T is almost continuous, this shows that the set T´1V0

contains the zero-neighborhood T´1V1. Hence it will follow that T is continuous.
Pick x in the closure of T´1V1. Since the operator T is almost continuous, it follows
that the closure of T´1V1 is contained in T´1V1 ` ¨ ¨ ¨ ` T´1Vℓ ` T´1Vℓ`1. So, for
every ℓ P N there exist vectors xj, 1 ď j ď ℓ ` 1, such that Txj belongs to Vj,

1 ď j ď ℓ, and such that x ´
řℓ`1

j“1 xj belongs to the closure of T´1Vℓ`1. It also

follows that the sequence of partial sums
´

řℓ
j“1 Txj : ℓ P N

¯

is a Cauchy sequence.

Let y be its limit: y “
ř8

j“1 Txj. Next let U be any neighborhood in UXp0q. Then
the vector x ´

řℓ`1
j“1 xj belongs to T´1Vℓ`1 ` U . Choose u P U with the property

that x ` u ´
řℓ`1

j`1 xj belongs to T´1Vℓ`1. It readily follows that the vector

`

x ` u, T px ` uq
˘

´ px, yq “

˜

u, T px ` uq ´ T
ℓ`1
ÿ

j“1

xj

¸

`

˜

0,
8
ÿ

j“ℓ`2

Txj

¸

belongs to U ˆ Vℓ`1 ` t0u ˆ Vℓ`1. Consequently, we have
`

x ` u, T px ` uq
˘

´ px, yq P U ˆ pVℓ`1 ` Vℓ`1q Ď U ˆ Vℓ.

This proves that the vector px, yq belongs to the closure of the graph of T . By
assumption the operator T is closed and hence the vector px, yq belongs to the
graph of T . So that y “ Tx. Since y belongs to V0, this proves that x belongs to
T´1V0. Whence T´1V1 Ď T´1V0. Another application of the fact that the operator
T is almost continuous proves that the set T´1V0 contains a neighborhood of the
origin in X. Since V0 was an arbitrary absolutely convex neighborhood in Y , this
proves that the operator T is continuous.

(d) ñ (e). Let Y be a Banach space and let F be pointwise bounded family of
continuous linear operators T defined in X with taking values in Y . Let BpF, Y q
be the vector space of all functions f : F Ñ Y with the property that its norm }f},
defined by }f}B “ supTPF }fpT q}, is finite. Supplied with this norm the vector space
BpF, Y q becomes a Banach space. Define the operator A : X Ñ BpF, Y q by AxpT q “
Tx, x P X, T P F. The operator A is a closed linear operator from X to BpF, Y q.
Its domain is all of X, because F is pointwise bounded. Assertion (d) implies that
the operator A is continuous. This means that there exists a neighborhood of the
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origin U such that x P U implies }Ax}B ď 1. So x P U together with T P F implies
}Tx} ď 1. This proves the implication (d) ñ (e).

(e) ñ (a). Let W be a barrel in X and construct the normed linear space XU`W as
in the proof of the implication (b) ñ (c). Also construct the family of continuous
linear operators tTU : U P UXp0qu as in the proof above. This family is pointwise
bounded and so by (e) it follows that it is equicontinuous. As in the proof of the
implication (b) ñ (c) it follows that W is a neighborhood of the origin in X. This
proves assertion (a).

This completes the proof of Theorem 8.19. �
8.20. Definition. A locally convex vector space with the property that every barrel
in it is a neighborhood of the origin is called a barreled space.

From the previous theorem it follows that in a barreled space the closed graph
theorem holds and also that the Banach-Steinhaus theorem is valid. Next we are
going to prove that Fréchet spaces are barreled. The result will be based on the
following proposition.
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8.21. Proposition. Let X be a Fréchet space and let F be a pointwise bounded
family of continuous linear operators from X to a topological vector space Y . Let
pxn : n P Nq be sequence in X that converges to 0. Then the collection

tTxn : T P F, n P Nu

is a bounded subset of Y .

Proof. Assume, to arrive at a contradiction, that the set

tTxn : T P F, n P Nu

is not bounded in Y . Then there exists a balanced neighborhood V of zero in Y
such that for every k P N there exists T P F together with nk P N with the property
that

Txnk
R kV. (8.3)

Put J “ tnk : k P Nu. Since, for every n P N, the set tTxn : T P Fu is bounded, the
set J is an infinite subset of N. Since X is a Fréchet space, there exists an infinite
subset J 1 of J with the property that the sum

ř

jPJ2 xj “ limnÑ8
ř

jPJ2Xr1,ns xj

converges for every subset J2 of J 1. This can be achieved in the following fashion.
The sequence tnk : k P Nu is infinite and so the sequence pxnk

: k P Nq contains a
subsequence that converges to 0. This is so because the original sequence pxn : n P Nq
converges to 0. Since X is a Fréchet space there exists a countable local basis
pUk : k P Nq with the property that Uk`1`Uk`1 Ď Uk. Choose a further subsequence
´

xnkj
: j P N

¯

with the property that xnkj
belongs to Uj. The set J

1 “
␣

nkj : j P N
(

possesses the required property. Since the set V is balanced, it follows from (8.3)
that for each t P p0,8q there exists T P F and n P J 1 with the property that

Txn R tV. (8.4)

From these observations we shall derive a contradiction. First choose a balanced
open zero-neighborhood V0 in Y with the property that

V0 ` V0 ` V0 Ď V. (8.5)

Let rx0 be the zero-vector in X, put m0 “ 0, put ϵ0 “ 1 and let T0 : X Ñ Y be the
zero-map. We shall construct a sequence of positive real numbers pϵn : n P Nq, with
0 ă ϵn ď

1

n
, n P N, a sequence of vectors prxn : n P Nq in X, a strictly increasing

sequence of indexes pmn : n P Nq Ď J 1 together with a sequence pTn : n Pq in FYt0u,
such that for n ě 1 the following conditions are verified:

ϵnTn prxn´1q P V0, piq
ϵkTk prxn ´ rxkq P V0, 0 ď k ď n ´ 1, piiq

rxn ´ rxn´1 “ xmn , piiiq
ϵnTn prxn ´ rxn´1q R V. pivq

First we consider the case n “ 1. Since rx0 “ 0 and T0 “ 0, (i) and (ii) are always
satisfied. By (8.4) there exists an operator T1 P F and there exists m1 P J 1 such
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that T1 pxm1q R V . With rx1 “ xm1 and with ϵ1 “ 1 we have

ϵ1T1 prx1 ´ rx0q “ T1 pxm1q R V.

So the construction of ϵ1, rx1, m1 and T1 has been carried out. Next suppose that
pϵ1, . . . , ϵnq, px1, . . . , xnq, pm1, . . . ,mnq and pT1, . . . , Tnq have been chosen in such a

way that (i), (ii), (iii) and (iv) are satisfied. Then we choose 0 ă ϵn`1 ď
1

n ` 1
in

such a way that
ϵn`1T prxnq P V0, T P F. (8.6)

Since the family F is pointwise bounded such a choice of ϵn`1 is possible. From (ii)
it follows that the set

n
č

k“1

pV0 ´ ϵkTk prxn ´ rxkqq

is a zero-neighborhood in Y . Since limjÑ8,jPJ 1 xj “ 0 and since each operator Tk,
1 ď k ď n, is continuous, it follows that there m1

n ą mn, m
1
n P N, with the property

that

ϵkTk pxmq P V0 ´ ϵkTk prxn ´ rxkq , m ě m1
n, m P J 1, 1 ď k ď n. (8.7)

By (8.4) there exists a number mn`1 ě m1
n, mn`1 P J 1, and Tn`1 P F such that

ϵn`1Tn`1

`

xmn`1

˘

R V. (8.8)

For assume that ϵn`1Tn`1 pxmq belongs to V for all m ě m1
n, m P J 1, and let

tm P p0,8q, 1 ď m ď m1
n ´ 1, m P J 1, be such that Txm belongs to tmV for every

T P F. With

t “ max

ˆ

1

ϵn`1

,max
␣

tm : 1 ď m ď m1
n´1, m P J 1(

˙

,

it follows that the set tTxm : T P F, m P J 1u is a subset of tV . This contradicts
(8.4). Finally put

rxn`1 “ xmn`1 ` rxn. (8.9)

Since mn`1 ě m1
n it follows from (8.7) that

ϵkTk prxn`1 ´ rxnq belongs to V0 ´ ϵkTk prxn ´ rxkq , for 1 ď k ď n.

So

ϵkTk prxn`1 ´ rxkq belongs to V0, for 1 ď k ď n. (8.10)

From (8.6), (8.9), (8.8) and (8.10) it follows that the pn ` 1q-tuples pϵ1, . . . , ϵn`1q,
px1, . . . , xn`1q, pm1, . . . ,mn`1q and pT1, . . . , Tn`1q satisfy (i), (ii), (iii) and (iv) with
n replaced with n ` 1. From (iii) we see that rxn “

řn
k“1 xmk

. Since pmk : k P Nq is
a subset of J 1 we conclude that the vector rx :“ lim

nÑ8
rxn exists, because the space X

is complete. From (ii) together with the continuity of each operator Tk, k P N, it
follows that

ϵkTk prx ´ rxkq belongs to V0, k P N. (8.11)

Since V0 “ ´V0 and since

ϵnTn prxn ´ rxn´1q “ ϵnTn prxq ´ ϵnTn prx ´ rxnq ´ ϵnTn prxn´1q , n P N,
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we conclude from (i) and (8.11) that

ϵnTn prxn ´ rxn´1q belongs to ϵnTn prxq ` V0 ` V0, n P N. (8.12)

Since the sequence pTn prxq : n P Nq is bounded and since limnÑ8 ϵn “ 0, it follows
from (8.12) that the vector ϵnTn prxn ´ rxn´1q belongs to V0 `V0 `V0 for n sufficiently
large. Hence, by (8.5),

ϵnTn prxn ´ rxn´1q belongs to V (8.13)

for n sufficiently large. However (8.13) contradicts (iv). Consequently the assump-
tion that the set tTxn : T P F, n P Nu be not bounded is false. This proves Propo-
sition 8.21. �

The following corollary shows that a Fréchet space is barreled. Consequently, the
Banach-Steinhaus theorem holds in Fréchet spaces.

8.22. Corollary. A Fréchet space is barreled.

Proof. Let X be Fréchet space and let pUn : n P Nq be a local basis of zero-
neighborhoods. Let F be a pointwise bounded family of continuous linear operators
defined on X and attaining values in a locally convex space Y . We have to prove
that the family F is equicontinuous. Suppose not. Then there exists a balanced
convex neighborhood V of the origin in Y with the property that for no n P N the
inclusion TUn Ď V is valid for all T P F. So for every n P N there exists an operator
Tn P F and a vector xn P Un such that the vector Tnxn does not belong to nV . Then
limnÑ8 xn “ 0 and so by the previous proposition the set tTxn : T P F, n P Nu is
bounded in Y . Hence there exists t ą 0 such that the following inclusion is valid:

tTxn : T P F, n P Nu Ď tV.

Since the set V is balanced we have, for n ą t, Tnxn P tV Ă nV . But on the other
hand Tnxn does not belong to nV . This is a contradiction. So our assumption that
the family F is not equicontinuous is false. Consequently a pointwise bounded family
of continuous linear operators defined on a Fréchet space and attaining values in a
locally convex space is equi-continuous. From the main theorem, Theorem 8.19, it
then follows that a Fréchet space is barreled. �
8.23. Example. Next we will give an example of a locally convex topological vector
space which is barreled, but which is not a Fréchet space. Let Ω be an open subset
of Rn, and let D pΩq be the space of all C8-functions whose support is a compact
subset of Ω. Let K Ă Ω be a compact. As in the Chapters 1 and 4 we let DK

be space of all C8-functions in Ω whose support is contained in K. Define the
semi-norms pm,K : DK Ñ r0,8q, m P N, by

pm,Kpφq “ max
αPNn, |α|ďm

sup
xPK

|Dαφpxq| , φ P DK .

The metric

d pφ, ψq “
8
ÿ

m“0

1

2m`1

pm,K pφ ´ ψq
1 ` pm,K pφ ´ ψq

, φ, ψ P DK ,
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turns DK into a complete metric space. Let TK be the corresponding compatible
locally convex topology. That is to say the topological space pDK ,TKq is a complete
metrizable locally convex Hausdorff space. In other words it is a Frëchet space. A
subset W of D pΩq is called TΩ-open if W X DK is TK-open for all compact subsets
K of Ω. This topology TΩ renders D pΩq into a locally convex topological space in
which a sequence pφkqkPN Ă D pΩq converges to φ P D pΩq if and only this sequence
is contained in DK for some compact subset K of Ω, and converges in DK to φ.
Then the space pD pΩq ,TΩq is barreled. However, it is not complete metrizable.
In fact the topology TΩ is the strongest locally convex topology T on D pΩq with
the property that all inclusions pDK ,TKq ãÑ pD pΩq ,Tq, K Ă Ω, K compact, are
continuous. Instead of taking all compact subsets K of Ω, it suffices to take a
sequence of compact subsets Km, m P N, such that Km is contained in the interior
of Km`1, and such that Ω “ YmKm. The corresponding topology is called the
(strict) inductive limit of the family pDK ,TKq. It is often denoted by

pD pΩq ,TΩq “ limÝÑ
KĂΩ, Kcompact

pDK ,TKq “ lim
mÝÑ8

pDKm ,TKmq .

2.1. The open mapping theorem. The following version of the open map-
ping theorem is partly taken from Rudin [113].

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE


Partial differential equations and operators

360 

Elements of functional analysis

360 8. ELEMENTS OF FUNCTIONAL ANALYSIS

8.24. Theorem. Suppose

(a) X is a complete metrizable topological vector space;
(b) Y is a topological vector space;
(c) u : X Ñ Y is a continuous linear mapping;
(d) upXq is of the second category in Y .

Then the following assertions hold:

(i) upXq “ Y ;
(ii) upUq is open for every open subset U of X;
(iii) Y is complete metrizable.

The same conclusion holds provided that:

(a1) X is a complete metrizable locally convex topological vector space (i.e. a
Fréchet space);

(b1) Y is a barreled locally convex topological vector space;
(c1) u : X Ñ Y is a continuous linear mapping;
(d1) upXq “ Y .

Proof. (ii) ñ (i). The open linear subspace upXq coincides with the whole
space.

(ii) ñ (iii). Put rX “ X{Kerpuq; i.e. rX is the quotient space of X modulo the
zero space of u: Kerpuq “ tx P X : upxq “ 0u. The quotient space is also a complete

metrizable space and the mapping ru : rX Ñ Y , defined by ru px ` Kerpuqq “ upxq is
surjective and open. Consequently, it is a homeomorphism. If yn “ upxnq, n P N, is a
Cauchy sequence in Y , then xn`Kerpuq, n P N, is a Cauchy sequence in rX. However,

the quotient space rX inherits its completeness from X. Thus limnÑ xn ` Kerpuq
converges to x ` Kerpuq for some x P X. It follows that upynq “ ru pxn ` Kerpuqq
converges to y “ upxq. Consequently Y is complete. Let d be a translation invariant
distance on X, then dY py1, y2q :“ infzPKerpuq d px1 ` z, x2q, with y1 “ upx1q, y2 “
upx2q, defines a distance on Y . This distance is compatible with the topology.

(ii) Let V be a neighborhood of the origin in X. (If X is a Fréchet space we may
and do assume that V is absolutely convex and closed.) We still have to prove
that upV q contains a neighborhood of the origin in Y . Let d be an invariant metric
on X, and choose r ą 0 so small that V0 defined by V0 “ tx P X : dpx, 0q ă ru is
contained in V . Put Vn “ tx P X : dpx, 0q ă 2´nru. Since upXq “

Ť8
k“1 ku pVnq,

n P N, and since upXq is of the second category in Y it follows that the closure of
u pVnq is a neighborhood of the origin. In case upXq “ Y and Y is barreled the
closure of u pVnq contains a barrel, because Vn contains the closure of an absolutely
convex neighborhood of the origin in X. Consequently, u pVnq is a neighborhood of
the origin. We will show that there exists a neighborhood W of the origin in Y such
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that

W Ď u pV1q Ď u pV0q Ď u pV q . (8.14)

First we have

u pV1q Ě u pV2q ´ u pV2q Ě u pV2q ´ u pV2q Ě W,

whereW is a neighborhood of the origin, because u pV2q has non-empty interior. This
proves the first inclusion in (8.14). In order to prove the second inclusion we pick
y1 P u pV1q. Then y1´u pV2q is a neighborhood of y1. Consequently, it has non-empty
intersection with u pV1q, because y1 belongs to the closure of u pV1q. Hence, there
exists x1 P V1 such that upx1q P y1 ´ u pV2q. Put y2 “ y1 ´ upx1q. Then y2 P u pV2q.
By induction we find yn P u pVnq and xn P Vn such that yn`1 :“ yn´u pxnq P u pVn`1q.
The latter is true because yn´u pVn`1q is a neighborhood of yn and yn belongs to the
closure of u pVnq. Thus yn ´ u pVn`1q has non-empty intersection with u pVnq. Then
the sequence of partial sums

řn
j“1 xj, n P N, is a Cauchy sequence in X. It converges

to x say. Then, since d px1 ` ¨ ¨ ¨ ` xn, 0q ď
řn

j“1 d pxj, 0q ă
řn

j“1 2
´jr ď r, we see

that dpx, 0q “ limnÑ8 d
´

řn
j“1 xj, 0

¯

ă
ř8

j“1 2
´jr “ r. It follows that x belongs to

V0 Ď V . Moreover,
n

ÿ

j“1

u pxjq “
n

ÿ

j“1

pyj ´ yj`1q “ y1 ´ yn`1. (8.15)

Since yn belongs to the closure of u pVnq, and since u is continuous and the sequence
Vn, n P N, is a basis of neighborhoods of the origin in X, we see that yn`1 converges
to 0 in Y . (Let U be a closed neighborhood of the origin in Y . Choose n so large
that u pVnq Ď U . Since U is closed, the closure of u pVnq is also contained in U .) It
follows that

y1 “ lim
nÑ8

py1 ´ yn`1q “ lim
nÑ8

n
ÿ

j“1

u pxjq “ upxq,

where x belongs to V0.

So the proof of Theorem 8.24 is complete now. �

2.2. Krein-Smulian and the Eberlein-Smulian theorem. In this subsec-
tion we will discuss two interesting results in Banach space theory. Similar results
also exist for Frecehet spaces and even for locally convex spaces, e.g., see Schae-
fer. We next go over the proofs of two fundamental results in Banach space theory,
elucidating the weak˚-topology and the weak topology, respectively. We follow Sec-
tion 1.2, Some facts from functional analysis, in [1]. The text of Aaserub in turn
is based on parts from Conway’s book [27], and on Robert Whitley’s paper [153].
We will also quote some results from [118]. We begin with the result of Krein-
Smulian, the proof of which requires the use of the following two lemmas. We
will use the notation B˝ “ tx˚ P X˚ : |⟨b, x˚⟩| ď 1 for all b P Bu, for B Ă X, and
Xs “ tx P X : }x} ď su “ sX1, for s ą 0, with pX˚qs defined similarly. Here B˝ is
called the polar of B.
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8.25. Lemma. Let X be a Banach space, r ą 0 a real number. Let Fr be the collection
of all finite subsets of Xr´1. Then

Ş

FPFr
F ˝ “ pX˚qr.

Proof. Let E denote the intersection on the left-hand side. Clearly, pX˚qr Ă
E. If x˚ P Ez pX˚qr, then |⟨x, x˚⟩| ą r for some x P X with }x} “ 1 so that
|⟨px{rq, x˚⟩| ą 1 with tx{ru P Fr, contradicting the fact that f P tx{ru˝. This
completes the proof of Lemma 8.25. �
8.26. Lemma. Let X be a Banach space and A Ă X˚ a convex set such that AXpX˚qr
is weak˚-closed for every r ą 0. If A X pX˚q1 “ H, then there exists some x P X
such that ℜ⟨x, x˚⟩ ě 1 for all x˚ P A.

Proof. We will construct, recursively, a sequence of finite sets F0, F1, . . . Ă X
such that, for each n P N, we have (i) Fn Ă X1{n and (ii) pX˚qn`1X

Şn
k“0 F

˝
k XA “ H.

Put F0 “ t0u. Assuming that F0, . . . , Fn´1 have been selected such that (i) and (ii)
are satisfied, we must find a finite set Fn Ă X1{n such that

pX˚qn`1 X
n

č

k“0

F ˝
k X A “ H.
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Put Q “ pX˚qn`1 X
Şn´1

k“0 F
˝
k X A. As Q is clearly weak˚-closed and is contained

in the weak˚-compact set pn ` 1q pX˚q1, Q is weak˚-compact. Suppose now for
contradiction that QXF ˝ ‰ H for all finite sets F Ă X1{n. Note that the collection
tQ X F ˝ : F P Fnu consists of non-empty weak˚-closed sets. We claim that it has
the finite intersection property, i.e., that any finite subcollection has non-empty
intersection. Indeed, if we take Q X G˝

1, . . . , Q X G˝
N in the collection, we get easily

that

XN
k“1Q X G˝

k “ Q X
`

XN
k“1G

˝
k

˘

“ Q X
`

YN
k“1Gk

˘˝ ‰ H,

by assumption. As Q is weak˚-compact, it follows that H ‰
Ş

FPFn
Q X F ˝ “

QXpX˚qn by the previous lemma. This contradicts the assumption on F1, . . . , Fn´1.
Thus we can take a finite set Fn Ă X1{n such that Q X F ˝

n “ H. Note that
Ť8

n“1 Fn

is a countable set, which we enumerate as txnu8
n“1. It is immediate from (i) that

xn Ñ 0 in norm when n Ñ 8. Thus we may define a linear map T : X˚ Ñ c0
by x˚ ÞÑ p⟨xn, x

˚⟩q8
n“1, where c0 is the Banach space of complex sequences that

converge to 0, equipped with the supremum-norm.

Note next that A X
Ş8

n“1 F
˝
n “ H, as otherwise we could pick X˚ in this set and

N P N such that N ě }x˚} in which case x˚ belongs to A X pX˚qN X
ŞN´1

k“0 F ˝
k ,

contradicting (ii). Thus }T px˚q} “ supn |⟨xn, x
˚⟩| ą 1 for all x˚ P A. It follows that

the convex sets T pAq and D, the open unit ball of c0, are disjoint. Thus the Hahn-
Banach separation theorem implies that there is some f P ℓ1 “ pc0q˚ and α P R
such that ℜfpφq ă α ď ℜf pT px˚qq for all x˚ P A and all φ P D. Without loss of
generality, we may assume that }f}1 “ 1. If φ P D, then |fpφq| “ ℜf pωφq ď α
for some ω P C of modulus 1. Thus 1 “ }f}1 ď α. Hence, 1 ď α ď ℜf pT px˚qq “
ℜ

ř8
n“1 f penq ⟨xn, x

˚⟩ for all x˚ P A. It follows that x “
ř8

n“1 f penq xn does the
trick. Here en is the nth unit vector in ℓ1And so the proof of Lemma 8.26 is complete
now. �

We have now essentially proved the Krein-Smulian theorem in Banach spaces.

8.27. Theorem. (Krein-Smulian) Let X be a Banach space and A Ă X˚ a convex
set such that A X pX˚qr is weak˚-closed for every r ą 0. Then A is weak˚-closed.

Proof. An analogue of the theorem for norm-closure is trivially true (as every
norm-convergent sequence is bounded). In particular, A is norm-closed. We will
show that X˚zA Ă X˚zB, where B is the weak˚-closure of A. Let x˚

0 P X˚zA be
given. As A is norm-closed, we can find r ą 0 such that Br px˚

0q X A “ H. Thus
p1{rq pA ´ x˚

0qXpX˚q1 “ H, because translations and dilations are bijections of X˚.
By the previous lemma, there exists x P X such that p1{rqℜ px˚ ´ x˚

0q pxq ě 1 for
all x˚ P A. Thus x˚

0 is not in the weak˚-closure of A, which completes the proof of
Theorem 8.27. �

We next prove the theorem of Eberlein-Smulian, concerning weak compactness. We
will say that a set C Ă pX˚q1 is total if XfPCkerpfq “ t0u.
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8.28. Lemma. Let X be a Banach space such that pX˚q1 contains a countable total
set C “ tfnu8

n“1. Then the assignment

dpx, yq “
8
ÿ

n“1

2´n |fnpx ´ yq| ,

for x, y P X defines a metric on X such that the weak topology on any weakly
compact subset of X is generated by d.

Proof. It is clear that d is a metric on X. Let K be weakly compact. Then,
as each f P X˚ is weakly continuous, supxPK |fpxq| ă 8 for each f P X˚ by the
compactness of K. Thus the Uniform Boundedness Principle implies that C “
supxPK }x} ă 8, i.e., that K is norm-bounded. We claim that the identity map on
K is continuous when the domain is equipped with the weak topology and the range
is equipped with the topology generated by d. If this is true, the identity map is
automatically a homeomorphism, which proves what we want. Let xα Ñ x weakly
in K and let ε ą 0 be given. Choose N P N such that

ř8
n“N`1 2

´n ă ε{p4Cq. Now
for α so large that |fn pxα ´ xq| ă ε{p2Nq for n “ 1, . . . , N , we get that

d pxα, xq “
N
ÿ

n“1

2´n |fn pxα ´ xq| `
8
ÿ

n“N`1

2´n |fn pxα ´ xq| ď
ε

2
`

8
ÿ

n“N`1

2´n2C ă ε,

proving what we want. So the proof of lemma 8.28 is complete now. �
8.29. Lemma. Let X be a separable Banach space. Then there exists a countable
total set C Ă pX˚q1.

Proof. Let D “ txnu8
n“1 be a countable dense subset of X. For each n P N,

choose via Hahn-Banach extension fn P X˚ of unit norm such that fn pxnq “ }xn}.
Put C “ tfnu8

n“1. Let x P X be such that fnpxq “ 0 for all n. Choose a subsequence
txnk

u of txnu such that xnk
Ñ x in norm. Then

}x} “ lim
kÑ8

}xnk
} “ lim

kÑ8
|fnk

pxnk
q| “ lim

kÑ8
|fnk

pxq| “ 0.

The proof of Lemma 8.29 is complete now. �

The following theorem is a consequence of Theorem 8.27. The theorem of Krein-
Smulian (see Theorem 6.4 Corollary in [119]), or Grothendieck (see Corollary 2
to Theorem 6.2 in [119]) plays a dominant role in the proof of Theorem 8.30.
Let pX, }¨}q be Banach space. By definition a sequence px˚

nqnPN Ă X˚ belongs to
c0 pN, X˚q if limnÑ8 ⟨x, x˚

n⟩ “ 0 for every x P X.

8.30. Theorem. Let X be a separable Banach space, and let f : X˚ Ñ C be a linear
functional. Then the following assertions are equivalent:

(a) There exists x P X such that f px˚q “ ⟨x, x˚⟩ for all x˚ P X˚;
(b) For every sequence px˚

nqnPN P c0 pN, X˚q the following inequalities hold:

0 ď sup
nPN

ℜf px˚
nq ă 8.
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(c) For every sequence px˚
nqnPN P c0 pN, X˚q the following inequalities hold:

0 ď lim sup
nÑ8

ℜf px˚
nq ă 8.

Proof of Theorem 8.30. (a) ùñ (b) A sequence in c0 pN, X˚q is bounded
with respect to the norm in X˚; this is a consequence of e.g. the Banach-Steinhaus
theorem. It is also a consequence of a Baire-category argument applied to the dual
unit ball. Hence assertion (b) follows from (a).

(b) ùñ (c) Let px˚
nqnPN be any sequence in c0 pN, X˚q. Then px˚

kqkPN,kěn is a sequence

in c0 pN, X˚q, and so, by (b), 0 ď sup
kěn

ℜf px˚
kq ă 8, from which assertion (c) readily

follows.

(c) ùñ (a) In this implication we will employ the Krein-Smulian theorem, or
Grothendieck’s completeness result. So suppose that (c) holds, and let py˚

nqnPN
be any sequence in X˚ which converges in weak˚-sense to y˚ P X˚. By (c) we see
0 ď lim supnÑ8 ℜf py˚

n ´ y˚q ă 8, and hence

ℜf py˚q ď lim sup
nÑ8

ℜf py˚
nq ă 8. (8.16)

From (8.16) it follows that for every M P N and every α P R the subset

tx˚ P X˚ : }x˚} ď M, ℜf px˚q ď αu (8.17)

is sequentially weak˚-closed. Since X is separable, and the set in (8.17) is equi-
continuous, it follows that sets of the form (8.17) are weak˚-closed, not just se-
quentially weak˚-closed. From Krein-Smulian’s theorem it follows that for every
α P R the half-space tx˚ P X˚ : ℜf px˚q ď αu is weak˚-closed. It then follows that
the real hyper-plane tx˚ P X˚ : ℜf px˚q “ 0u is weak˚-closed. Consequently, since
f : X˚ Ñ C is complex linear, there exists a vector x P X such that f px˚q “ ⟨x, x˚⟩,
x˚ P X˚.

We can also use Grothendieck’s theorem. Then we proceed as follows. Instead of
considering a set of the form (8.17) we look at the subset HM,α defined by

HM,α “ tx˚ P X˚ : }x˚} ď M, f px˚q “ αu . (8.18)

Then the set in (8.18) is sequentially weak˚-closed. Let px˚
nqnPN be a sequence in

HM,α which converges to x˚ P X˚ in weak˚-sense. Then, by (c),

ℜf px˚q ď lim sup
nÑ8

ℜf px˚
nq “ lim sup

nÑ8
ℜα “ ℜα. (8.19)

Applying the same argument to the sequence p´x˚
nqnPN which converges in weak˚-

sense to ´x˚ shows f p´x˚q ď ´α. This in combination with (8.19) yields ℜf px˚q “
α. The same argument can applied to the sequences pix˚

nqnPN and to p´ix˚
nqnPN.

Consequently the subset HM,α is sequentially weak˚-closed. Since the space is sep-
arable and the set HM,α is equi-continuous it follows that HM,α is weak˚-closed.
Grothendieck’s theorem then implies that the hyper-plane tx˚ P X˚ : f px˚q “ αu is
weak˚-closed. Again it follows that there exists x P X such that f px˚q “ ⟨x, x˚⟩,
x˚ P X˚.
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This completes the proof of Theorem 8.30. �
8.31. Theorem. (Eberlein-Smulian) Let A be a subset of a Banach space X. Then
the following assertions are equivalent:

(1) A is relatively weakly compact;
(2) Any sequence in A has a weakly convergent subsequence;
(3) Any sequence in A has a weak cluster point.

Proof. (1) ñ (2): Let tanu8
n“1 be a sequence in A. Denote by X0 the norm-

closure of the span of the an. It is easy to see that X0 is separable and that AXX0 is
a relatively weakly closed subset of X0. Indeed, the weak topology on X0 coincides
with the restriction to X0 of the weak topology on X. (Alternatively, one can note
that X0 is actually a weakly closed subspace of X. In either case, we apply the
Hahn-Banach theorem.) By the preceding lemmas, the weak topology on A X X0 is
metrizable. Thus any sequence in A X X0 has a weakly convergent subsequence. In
particular, so does tanu8

n“1.

(2) ñ (3) This implication is trivial.
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(3) ñ (1) Assume that A satisfies (3). We claim that A must be norm-bounded.
Indeed, for each x˚ P X˚, the set t⟨x, x˚⟩ : x P Au is bounded in C. This is a
consequence of (3). As above, it follows from the uniform boundedness principle
that A is norm-bounded. Denote by J the canonical embedding X Ñ X˚˚. It
suffices to show that the weak˚-closure B of JpAq, which is weak˚-compact by the
Banach-Alaoglu theorem and the previous paragraph, is contained in JpXq. Let
now x˚˚ P B be given. We will use compactness to construct a sequence tanu8

n“1 in
A such that, if x P X is any weak cluster point of this sequence, x˚˚ “ Jpxq. This
will then complete the proof.

We need the following remark. Suppose Y is a Banach space and F is a finite-
dimensional subspace of Y ˚. Then the unit sphere of F is compact in F equipped
with the norm inherited from Y ˚. Thus we can find a 1{4-net y˚

1 , . . . , y
˚
n in the

unit sphere of F , i.e., a set such that for every y˚ P F with }y˚} “ 1 there is
a 1 ď j ď n such that

›

›y˚ ´ y˚
j

›

› ă 1{4. We can choose y1, . . . , yn P X of unit

norm such that
ˇ

ˇ

¨
yj, y

˚
j

∂ˇ
ˇ ě 3{4 for 1 ď j ď n. Then, for any y˚ P F , we obtain

max t|⟨yj, y˚⟩| : 1 ď j ď nu ě p1{2q }y˚} by the triangle inequality.
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We will now construct the promised sequence taku8
k“1 in A as well as a sequence

tx˚
mu8

m“1 in X˚. They will be constructed recursively such that, for some strictly
increasing sequence tnpkqu8

k“1 of integers,

(i) |rx˚˚ ´ Jaks px˚
mq| ă 1{k for m ď npkq, and

(ii) max t|y˚˚px˚
mq| : npk ´ 1q ă m ď npkqu ě p1{2q }y˚˚}

for all y˚˚ P span tx˚˚, x˚˚ ´ Ja1, . . . , x
˚˚ ´ Jak´1u.

Fix x˚
1 P X˚ of norm 1 such that |x˚˚ px˚

1q| ě p1{2q }x˚˚} and put np1q “ 1. As
x˚˚ P B we can find a1 P A such that |rx˚˚ ´ J pa1qs px˚

1q| ă 1. Thus (i) and (ii)
hold when k “ 1. Assume now that we have chosen a1, . . . , ak´1, x

˚
1 , . . . , x

˚
npk´1q, and

np0q, np1q, . . . , npk´1q in such a way that (i) and (ii) hold (where k ě 2). By the pre-
ceding remark, i.e., the previous paragraph, we can find npkq and x˚

npk´1q`1, . . . , x
˚
npkq

such that, for any y˚˚ P span tx˚˚, x˚˚ ´ J pa1q , . . . , x˚˚ ´ J pak´1qu,
max t|y˚˚ px˚

mq| : npk ´ 1q ă m ď npkqu ě p1{2q }y˚˚} .
Choose next, using the fact that x˚˚ P B, ak P A such that |rx˚˚ ´ Jaks px˚

mq| ă
1{k whenever m ď npkq. Let now x be a weak cluster point of tanu8

n“1. By the
Hahn-Banach theorem, x is contained in the norm-closed convex linear span of the
sequence tanunPN. As J is an isometry (by the Hahn-Banach theorem), it follows
that x˚˚ ´ Jpxq belongs to the norm-closed linear span of the vectors x˚˚ ´ Jan,
n “ 1, 2, . . .. It follows from (ii) above that sup t|y˚˚ px˚

mq| : m P Nu ě p1{2q }y˚˚}
for all y˚˚ P span tx˚˚, x˚˚ ´ Ja1, x

˚˚ ´ Ja2, . . . , u. Hence the triangle inequality
implies that

sup t|y˚˚ px˚
mq| : m P Nu ě p1{2q }y˚˚}

for all y˚˚ P span tx˚˚, x˚˚ ´ Ja1, x
˚˚ ´ Ja2, . . .u. In particular, we may take y˚˚ “

x˚˚ ´ Jx. Fix m. Given N ą m there exists n ą npNq ě N ą m such that
|x˚

m pan ´ xq| ă 1{N . It follows by (i) that

|rx˚˚ ´ Jxs px˚
mq| ď |rx˚˚ ´ Jans px˚

mq| ` |x˚
m pan ´ xq| ă 2{N.

Letting N tend to 8, we get that |rx˚˚ ´ Jxs px˚
mq| “ 0 for all m, whence

}x˚˚ ´ Jx} ď 2 sup
mPN

|rx˚˚ ´ Jxs px˚
mq| “ 0.

Altogether, this completes the proof of Theorem 8.31. �

The following theorem is known as Grothendieck’s completeness theorem.

8.32. Theorem. Let X be a locally convex vector space. The following assertions
are equiavalent:

(a) The space X is complete;
(b) Every linear form on X˚, the topological dual of X, which is σ pX˚, Xq-

continuous on every equi-continuous subset of X˚ is σ pX˚, Xq-continuous
on X˚.

(c) Every hyperplane H in X˚ for which H X A is pσ pX˚, Xqq-closed in A for
every equi-continuous subset A of X˚ is itself pσ pX˚, Xqq-closed.
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Here the topology σ pX˚, Xq is the weakest locally convex topology on X˚ which
makes all functionals of the form x˚ ÞÑ ⟨x, x˚⟩, x˚ P X˚, where x varies over X,
continuous. Of course, this topology is called the weak˚-topology. The following
theorem is a version of the Krein-Smulian theorem for metrizable locally convex
spaces.

8.33. Theorem. A metrizable locally convex space X is complete if and only a
convex set M Ă X˚ is σ pX˚, Xq-closed whenever M X U˝ is σ pX˚, Xq-closed for
every 0-neighborhood U in X.

For the proofs of Theorems 8.32 and 8.33 the reader is referred to the literature,
e.g., Schaefer [119] or Schaefer and Wolff [118].
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Subjects for further research and presentations

The following topics may be of interest for a presentation and/or further research:

(1) Detailed treatment of the wave equation. A text can be found in Chapter

3. The wave equation is based on the operator
B2

Bt2
´ ∆. For a connection

with unitary semigroups see Subsection 2.5.
(2) Pseudo-differential operators of general order. For details see, e.g., Trèves

[137]. An operator of the form

P px,Dqupxq “
1

p2πqn

ż

Rn

ż

Rn

eipx´yq¨ξP px, ξqupyq dy dξ,

where the function P px, ξq is an appropriate function, is called a pseudo-
differential operator. The integrand belongs to a certain symbol class. For
instance, if P px, ξq is an infinitely differentiable function on Rn ˆ Rn with
the property that

ˇ

ˇDα
ξ D

β
xP px, ξq

ˇ

ˇ ď Cα,β p1 ` |ξ|qm´|α|

for all x, ξ P Rn, all multi-indices α, β. some constants Cα,β and some real
number m, then P belongs to the symbol class Sm

1,0 of Hörmander. The
corresponding operator P px,Dq is called a pseudo-differential operator of
order m and belongs to the class Ψm

1,0.
(3) Certain pseudo-differential operators of order less than or equal to 2 can

be put into correspondence with space-homogeneous or non-space-homo-
geneous Markov processes. A detailed exposition can be found in Jacob
[68, 69, 70].

(4) Non-linear partial differential operators: the Hamilton-Jacobi-Bellmann
equation, the Hamilton-Jacobi equation, the Euler-Lagrange equation, the
Korteweg-Devries equation. A good reference for some of these topics is
Evans [49]. Some of these equations are (closely) related to optimization
problems: see e.g. [13].

(5) Viscosity solutions to partial differential equations. The standard reference
for this subject is Crandall, Ishii, and Lions [29]. This topic can also
be treated in the context of Backward Stochastic Differential Equations
(BSDEs): see, e.g., Pardoux [95].

(6) Stationary phase methods for Fourier integral operators. For this topic the
reader is referred to Simon [105]. The books [109], [108], and [107] by
the same authors are also quite interesting. An important related topic
is the notion of wavefront set in connection with the singular support of a
distribution. The text in [130] authored by Hansen, Hilgert, and Paravicini
contains relevant material.

(7) General differential operators of elliptic type. An important role is played
by Sobolev theory. Some of these operators generate analytic semigroups.
The reader may consult Chazarain and Piriou [25], Folland [51], Hörmander
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[63, 64, 65, 66], Strichartz [134]. For connection with regularity properties
and analytic semigroups the reader is referred to, e.g., Prüss [103], Prüss
and Simonett [104], or Lunardi [86].

(8) Elliptic differential operators of second order (and Markov processes); see,
e.g., Øksendael [138].

(9) Parabolic differential operators (of second order and Markov processes). An
interesting article in this context is [23]. The abstract of this paper reads:
“We present the main concepts of the theory of Markov processes: tran-
sition semigroups, Feller processes, infinitesimal generator, Kolmogorov’s
backward and forward equations, and Feller diffusion. We also give sev-
eral classical examples including stochastic differential equations (SDEs)
and backward stochastic differential equations (BSDEs) and describe the
links between Markov processes and parabolic partial differential equations
(PDEs). In particular, we state the Feynman-Kac formula for linear PDEs
and BSDEs, and we give some examples of the correspondence between
stochastic control problems and Hamilton-Jacobi-Bellman (HJB) equations
and between optimal stopping problems and variational inequalities. Sev-
eral examples of financial applications are given to illustrate each of these
results, including European options, Asian options, and American put op-
tions.”
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(10) Differential operators and boundary value problems. A recent book on this
topic is Pinsky [98]. Several books on partial differential equations contain
a chapter on boundary value problems, e.g., see [110]. For a more applied
version of this topic see, e.g., [6]. A modern book with excellent critics is
[123] written by Shaurer and Levy.

(11) Operator semigroups and differential operators in Banach space; see Chap-
ter 6 in this book. Other texts can be found in [33], [48], [139].

(12) Solutions to stochastic differential equations and the corresponding sec-
ond order differential equation (of parabolic type) satisfied by the one-
dimensional distributions.

(13) Backward stochastic differential equations and their viscosity solutions; see,
e.g. Pardoux [95].

(14) The equation of Rudin-Osher. A relevant book on this topic is [93] written
by Jean-Michel Morel and Sergio Solimini. A related equation, the equation
of Perona-Malik, is discussed in Otmar Scherzer [120]. From the description
of this book we quote “The Handbook of Mathematical Methods in Imaging
provides a comprehensive treatment of the mathematical techniques used in
imaging science. The material is grouped into two central themes, namely,
Inverse Problems (Algorithmic Reconstruction) and Signal and Image Pro-
cessing. Each section within the themes covers applications (modeling),
mathematics, numerical methods (using a case example) and open ques-
tions. Written by experts in the area, the presentation is mathematically
rigorous. The entries are cross-referenced for easy navigation through con-
nected topics. Available in both print and electronic forms, the handbook
is enhanced by more than 150 illustrations and an extended bibliography.
It will benefit students, scientists and researchers in applied mathematics.
Engineers and computer scientists working in imaging will also find this
handbook useful.” Other related work is Grasmair and Lenzen [58]

(15) Heat equation on a Riemannian manifold. A relevant book in this context
is [59]. For connections with stochastic differential equations on manifolds
see, e.g., Elworthy [45, 46].

(16) Interpolation theorems: Riesz-Thorin, Stein, Marcinkiewicz, and others.
An interesting book is [78]. In the abstract, the author Mark Kim writes
“This expository thesis contains a study of four interpolation theorems, the
requisite background material, and a few applications. The materials in-
troduced in the first three sections of Chapter 1 are used to motivate and
prove the Riesz-Thorin interpolation theorem and its extension by Stein,
both of which are presented in the fourth section. Chapter 2 revolves around
Calderón’s complex method of interpolation and the interpolation theorem
of Fefferman and Stein, with the material in between providing the nec-
essary examples and tools. The two theorems are then applied to a brief
study of linear partial differential equations, Sobolev spaces, and Fourier
integral operators, presented in the last section of the second chapter.” A
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rather recent book on interpolation is [88]. For abstract interpolation re-
sults see e.g., Voigt [148, 149]. Another text containing material about
interpolation is Lunardi [87].

(17) Oscillatory integrals and related path integrals. There is a lot of literature
on this subject. Nice papers on this topic are [2, 3]. Interesting books are,
e.g., Mazzucchi [91], Johnson and Lapidus [72], and Kleinert [79].

(18) Eigenvalue problems and spectral theory. A possible reference for this topic
is Gilbarg and Trudinger [54]. There are several other references for this
kind of subject.
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closable operator, 197, 198
closed graph theorem, 124, 307
closed linear operators, 181
closed operator, 181
closed quadratic form, 123
compact difference of semigroups, 227
compact embedding, 120, 125
compact operator, 227
compact range

relatively weak;y, 283
completeness theorem of Grothendieck, 329
complex homomorphism, 151
connected component, 171
connected component of GpAq, 172
connected open set, 141
consistent Crank-Nicolson iteration scheme,

285, 289
convergence factor, 43
convergence in D pΩq, 8
convolution of distributions, 29
convolution product, 2, 9, 29, 77, 83, 85,

130, 131
convolution semigroup

vaguely continuous, 208
convolution semigroup of measures, 207
core for operator, 182
core of operator, 197
cover, 5

refinement of, 5
Crank-Nicolson iteration scheme, 189, 277

consistent, 285, 289
non stable, 306
stable, 284, 298, 302, 304
two-step consistent, 285, 289

curve surrounding a subset, 155

d’Alembertian, 72
diffeomorphism, 30
Dirac distribution, 2, 13
Dirac measure, 134

Dirichlet form, 212, 222
regular, 222

Dirichlet problem, 219
Dirichlet semigroup, 242
dissipative operator, 194, 195, 198
distribution, 2, 12

characterization of, 15
Dirac, 2, 13
invariant under transformations, 31
multiplicative, 132
of compact support, 112
singular support of, 20
support of, 19
tempered, 33, 35, 133, 137

distribution as a derivative, 25
distribution of finite order, 13
division algebra, 153
double Stieltjes operator integrals, 211, 245
dual group, 33
Duhamel’s formula, 193
Dynkin’s formula, 242–244
Dyson-Phillips expansion, 207

elliptic operator, 46, 115
entire function, 127
equation

hyperbolic, 48
essentially self-adjoint operator, 182
evolution and semigroup, 214
explicit formula for fundamental solutions of

the wave equation, 72
exponentially bounded analytic semigroup,

258

Feller semigroup, 199, 214, 215, 221–223
Feller semigroups, 211
Feller-Dynkin semigroup, 199, 222, 223
Feynman-Kac formula, 222, 224, 225, 229
Feynman-Kac semigroup, 189, 225, 239

killed, 242
final topology, 10
Fourier tranform

modified, 37
Fourier transform, 1, 2, 33, 83, 89, 95, 110

inverse, 34
inverse of, 2
partial, 43

Fourier transform of tempered distributions,
35

Fréchet space, 8, 314, 323
Fresnel integral, 58
Friedrichs extension, 120, 121
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Friedrichs extension theorem, 124
Fubini’s theorem, 26
Fubini’s theorem for distributions, 130
Fuglede-Putnam-Rosenblum

theorem of, 180
function

rapidly decreasing, 33
fundamental solution, 2, 45, 46, 49, 53, 54,

61
fundamental solution of Cauchy-Riemann

operator, 118
fundamental solution of Laplace operator,

117, 119

Gaussian kernel, 206
Gaussian measure, 212
Gaussian process, 227
Gaussian semigroup, 206, 208, 219
Gelfand transform, 169, 171
Gelfand-Mazur

theorem of, 153
Gelfand-Naimark

theorem of, 170
generalized function, 2
generalized Schrödinger form, 242
generator of Brownian motion, 219
generator of Feller semigroup, 212, 220
generator of Markov process, 227
generator of semigroup, 190
graph of operator, 182
Grothendieck

completeness theorem of, 329

Hahn-Bamach
theorem of, 140

Hahn-Banach
theorem of, 103, 310

Hahn-Banach theorem, 21, 134, 307, 310
complex analytic version, 308
geometric version, 308–310

Hamiltonian, 211
harmonic extension operator, 242, 245
harmonic function, 53, 247, 249, 254
Hausdorff’s maximality theorem, 308
heat equation, 1, 38, 47, 54
heat kernel, 206
heat semigroup, 219
Heaviside function, 18, 43, 49, 99
Hille-Yosida theorem, 194
hitting time, 218
holomorphic semigroup, 257
homomorphism

compex, 151
Huygens principle, 75
hyperbolic equation, 48
hyperbolic operator, 48
hypo-elliptic operator, 47, 48

ideal, 132
identity, 151
identity for convolution products, 2
inductive limit

(strict), 10
initial value problem, 189, 203, 206
integral kernel, 224
interpolation

Riesz-Thorin, 94
Stein, 94

interpolation theorem of Riesz-Thorin, 238
interpolation theorem of Stein, 238
inverse, 151
inverse Fourier transform, 2, 34
involution, 159
iteration scheme

Crank-Nicolson, 277

Jacobian, 30

Kato-Feller potential, 224, 227, 231, 239,
241, 243

Khas’minskii’s lemma, 226, 234
KMS formula, 247, 248
Kolmogorov extension theorem, 221
Korovkin property, 215
Krein-Milman theorem, 313
Krein-Smulian

theorem of, 330
Krein-Smulian theorem, 325
Kubo-Martin-Schwinger (KMS) formula, 248

Lévy process, 227
Lévy process, 208, 212
Laplace equation, 1, 46
Laplace operator, 4, 53, 121
Laplace transform, 262
Lebesgue’s dominated convergence theorem,

277
Leibniz’ rule, 15, 19, 21, 116, 131
lemma

of Khas’minskii, 226
lemma of Khas’minskii’s, 234
life time, 216
Liouville’s theorem, 181
locally Hs in Ω, 114, 115
locally convex space, 10
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locally finite collection, 5
locally finite cover, 5
locally finite partition, 5
logistic density, 252
logistic distribution, 254
logistical law, 210
Logistically distributed variable, 252
logistically distributed variable, 246, 249
Lorentz transformation, 48, 61, 67–69
Lumer-Phillips for Feller semigroups

theorem of, 201
Lumer-Phillips theorem, 177, 194

Malgrange and Eherenpreis
theoem of, 45

Malgrange and Ehrenpeis
theorem of, 101

Malgrange and Ehrenpreis
theorem of, 103

Markov bridge kernel, 224, 232
Markov process, 5, 189, 199, 208, 214, 216,

217, 220–223, 225, 227
generator of, 5
strong, 212, 214, 215, 217

Markov property, 217, 220, 226, 235
martingale, 215, 219, 220, 224, 227
martingale problem, 215, 223

uniquely solvable, 215
well-posed, 215

maximal ideal
proper, 132, 153

maximal ideal space, 169
maximum principle of operator, 198
Mazur s theorem, 307
Mazur’s theorem, 310
Minkowski functional, 310
modified Fourier transform, 37
Morera’s theorem, 128, 130
multiplication property, 156
multiplicative distribution, 132

negative definite function, 207
normal operator, 176, 180, 188

polar decomposition, 188
normality property, 217

one-step Crank-Nicolson scheme
stable, 301

open mapping theorem, 322
operator

almost continuous, 316
anti-flip, 181
Cauchy-Riemann, 51

closable, 197, 198
closed, 181
core for, 182
core of, 197
dissipative, 194, 195, 198
elliptic, 46
essentially self-adjoint, 182
graph of, 182
hpo-elliptic, 47
hyperbolic, 48
hypo-elliptic, 48
Laplace, 53
normal, 180, 188
order of, 111
polar decomposition of, 184
positive, 181
satisfying the maximum principle, 198,

199, 201
sectorial, 258, 259
self-adjoint, 182
spectrum of, 182
square root of, 210
symmetric, 181
unitary, 180

operator of order 0, 117
operator semigroup, 1, 111, 177, 189, 205
order of a distribution, 13
order of operator, 111, 117
Orlicz-Pettis theorem, 283
Ornstein-Uhlenbeck process, 4

generator of, 4
Ornstein-Uhlenbeck semigroup, 213

generator of, 213

Paley-Wiener
theorem of, 36, 127

partial Fourier transforms, 43
partition of unity, 5, 6, 19

locally finite, 6
subordinate to, 5, 19

path with left limits, 216
penetration time, 218, 242
Pettis’ theorem, 294
Plancherel

theorem of, 37
Plancherel’s formula, 36, 89
Plancherel’s theorem, 111
Poisson proces, 222
Poisson semigroup, 208
polar decomposition, 166, 167, 176, 177, 184
polar decomposition of normal operator, 188
polar set, 310
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polar subset, 219
positive element, 163
positive operator, 181
predual, 208
problem

martingale, 223
projection operator, 243
pseudo-differential operator, 3, 211

quadratic form
closable, 122
closed, 121, 123
closure of, 122
densely defined, 121
symetric, 122
symmetric, 121

quadratic forms and semigroups, 212
quantum dynamical semigroup, 210

random walk, 228
rapidly decreasing function, 33
refinement of a cover, 5
reflection, 28
regular point, 219
regularity theorem, 107
relatively weakly compact range, 283
resolution of the identity, 3, 172, 173, 175,

176, 227
resolvent family, 189
resolvent property, 275
Riesz representation theorem, 26, 172, 221
Riesz-Fischer representation theorem, 181
Riesz-Thorin

interpolation theorem of, 94
Riesz-Thorin interpolation, 94
Riesz-Thorin interpolation theorem, 235, 238
right continuity of path, 217
right continuous path, 216
Runge

theorem of, 140
Runge’s theorem, 142, 157, 160

Schrödinger equation, 1, 38, 47, 57
free, 57

Schrödinger operator, 240
Schwarz space, 136
second category

Baire, 322
sectorial operator, 258, 259
self-adjoint semigroup, 205
self-adjoint subalgebra, 209
semi-norm, 10
semigroup

adjoint, 207
analytic, 257
Cauchy, 208
contraction, 190
Feller, 199, 215, 223
Feller-Dynkin, 199, 223
Gaussia, 208
Gaussian, 206
generator of, 190
holomorphic, 257
operator, 1, 4, 189
Poissin, 208
quantum dynamical, 210
self-adjoint, 205
strongly continuous, 190, 248
translation, 205
uniformly continuous, 205
weakly continuous, 190, 204

semigroups
strongly continuous, 204

semigroups and system theory, 211
singular support of distribution, 20
Skorohod space, 215–217, 221, 223
Sobolev space, 110, 117
Sobolev theory, 46
Sobolev’s lemma, 105
solution

fundamental, 45
space

barreled, 8
Fréchet, 8
locally convex, 10

spectral decomposition, 3, 172, 175, 176,
178, 211, 227

spectral mapping theorem, 157, 174, 176,
177

spectral radius, 152, 165
spectrum, 155
spectrum of element, 152
spectrum of operator, 182
square root, 159
square root and involution, 160
square root of operator, 210

positive, 123
stable Crank-Nicolson iteration scheme, 284,

292, 298, 302, 304
stable one-step Crank-Nicolson scheme, 301
stable two-step Crank-Nicolson scheme, 301
state space, 216
state variable, 216
Stein

interpolation theorem of, 94, 238
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Stein interpolation theorem, 236
Stirling’s formula, 264
stochastic state space, 216
stochastic time change, 218
Stone’s theorem, 207
Stone-Weierstrass theorem, 134, 177
stopping time, 217, 218

terminal, 218
strong Markov process, 215, 217
strong Markov property, 221, 245
strongly continuous semigroup, 190, 204
subcover, 5
subordinate partition of unity, 5
subset of first category, 311
subset of second category, 311
support of distribution, 19
surrounding a subset

curve, 155
symbolic calculus, 156, 171, 173, 175
symmetric operator, 181
symmetric quadratic form, 121

tempered distribution, 33, 35, 52, 110, 133,
137

tensor product, 51
terminal stopping time, 218
Theorem

of Grothendieck, 328
theorem

of Titchmarsh, 36
Baire category, 311
completeness theorem of Grothendieck,
329

Fubini’s, 26
Malgrange and Ehrenpreis, 1, 2
of Alaoglu-Bourbaki, 311
of Arzela-Ascoli, 126
of Banach-Alaoglu, 170, 312
of Banach-Steinhaus, 86, 191, 193, 307,
314, 321

of Fuglede-Putnam-Rosenblum, 180
of Gelfand-Mazur, 153
of Gelfand-Naimark, 170
of Hahn-Banach, 103, 140, 307, 310
of Hahn-Banach geometric version, 308
of Hille-Yosida, 194
of Hille-Yosida for contraction semigroups,
194

of Krein-Milman, 313
of Krein-Smulian, 324, 325, 330
of Liouville, 181
of Lumer-Phillips, 177, 194

of Lumer-Phillips for Feller semigroups,
201

of Malgrange and Ehrenpreis, 1, 45, 101
of Mazur, 307, 310
of Morera, 128, 130
of Orlicz Pettis, 283
of Paley-Wiener, 36, 127
of Pettis, 294
of Plancherel, 37, 103
of Rellich-Kondrachov, 125
of Riesz-Fischer, 181
of Runge, 140, 142, 157, 160
of Stone, 207
of Stone-Weierstrass, 134, 177
of Titchmarsh, 94
of Tychonov, 311
open mapping, 322
Riesz representation, 26
Riesz-Thorin interpolation, 235
Riesz-Thorin interpolation theorem, 94
Stein interpolation, 236

Theorem of
Banach-Steinhaus, 327
Grothenddieck, 326
Krein-Smulian, 326

theorem of
Grothendieck, 327
Krein-Smulian, 327

Titchmarsh
theorem of, 36

topology
final, 10

trace norm, 210
translation, 28
translation operator, 217
translation semigroup, 205
two-step consistent Crank-Nicolson iteration

scheme, 285, 289
two-step Crank-Nicolson scheme

stable, 301
Tychonov’s theorem, 311

uniform boundedness principle, 307, 314
uniformly continuous semigroup, 205
unitary operator, 180

variation of constants formula, 193
vector measure, 283
vector valued Riemann integra, 295

wave equation, 61
wave equation in one dimension, 46
weakly bounded subset, 312
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weakly continuous semigroup, 190, 200, 204
Weyl’s lemma, 54
Wiener process, 4

generator of, 4
Wiener space, 213

abstract, 212
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