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Preface

Preface
Mathematical Modeling I – preliminary is designed for undergraduate students. Two other followup 
books, Mathematical Modeling II – advanced and Mathematical Modeling III – case studies in biology, 
will be published. II and III will be designed for both graduate students and undergraduate students. 
All the three books are independent and useful for study and application of mathematical modeling in 
any discipline.
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Introduction

1 Introduction
Mathematical models are of broad use in physics, life sciences, engineering, economics, management, 
social sciences, and many other disciplines. However, all mathematical models are “wrong”, but some 
are useful to help us better understand real-world systems. Models should be made for specific goals 
with clear assumptions since they are only “valid” under certain conditions.

Figure 1:  A flow chart of the modeling process

Modeling Process:

Step 1. Identify the problem with specific goals and questions 

Step 2. Post assumptions unambiguously 

Step 3. Define variables and construct the model 

Step 4. Analyze and simulate the model 

Step 5. Validate the model with real phenomena or empirical data 

Step 6. Apply the model to make predictions 

Step 7. Possibly calibrate and extend the model 

We can always improve the model with more details, but meanwhile we want to keep the model as simple 
as possible such that we can obtain useful and in-depth results.

There have been many famous yet simple mathematical models in literature, such as the following ones: 

•	 Newton’s law . F = ma , where . F  is force, . m  is mass, . a is acceleration. 
•	 Ohm’s law . V = IR, where . V  is voltage, . I is current, . R  is resistance. 
•	 Kepler’s third law . T = cR3/2, where . T  is the orbital period of the planet, . R is the mean 

distance from the planet to the sun. 
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•	 Einstein’s relativity theory . E = Mc2 , where . E  is energy, . M  is mass, . c  is light speed. 
•	 Metabolic theory of ecology . B = B0M

3/4, where . B is organism metabolic rate, . B0  is a 
mass-independent normalization constant, . M  is organism mass. 

•	 Logistic population model .
dN

dt
= rN

(
1− N

K

)
, where . N  is population size, . r is the maximum 

per capita growth rate, . K  is carrying capacity. 

Download free eBooks at bookboon.com



Mathematical Modeling I – preliminary

9 

Discrete-time models

2 Discrete-time models
2.1 Motivation

Discrete-time models are constructed to describe phenomenon in terms of fixed time steps. In general, 
we consider a sequence of quantities, . x0, x1, x2, ..., where . xi denotes the quantity after . i time steps. If 

. xn+1 depends only on . xn, a discrete-time (in abbreviation, discrete) model is expressed by 

xn+1 = f(xn), n = 0, 1, 2, ...

with some initial condition . x0 . This discrete model is called a difference equation.

This discrete model gives 

x1 = f(x0)

x2 = f(x1) = f(f(x0)) = f [2](x0)

x3 = f(x2) = f(f(x1)) = f(f(f(x0))) = f [3](x0)
...

The resulting sequence . x0, x1, x2, x3, ...  is called an orbit of the map . f .

. xn in the discrete model can represent the population size of lemmings in month . n, or the number of 
bacterial cells in a culture on day . n, or the concentration of oxygen in the lung after the . nth breath.

The difficulty is how choose the map . f : 

•	 Start with a knowledgable guess and necessary assumptions. 
•	 Make adjustments to get a better model by comparing behavior of the current model to 

reality. 
•	 A good model should be in close agreement with the real-world data. 

2.2 An example – bacterial reproduction

Bacterial cells divide into more cells after one sampling time. The number of bacterial cells in the next 
measurement will be some multiple of the current number. We assume that this multiple is a constant 
over several sample times. Note that this assumption is obviously invalid for many sampling times due 
to resource and space limitations.
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Denote . Bn as the cell number observed at the . nth sampling time, then the model can be written as 

Bn+1 = rBn (Malthus model, 1798)

where the constant . r is called the growth rate.

Solution: Given the initial cell number . B0 , 

B1 = rB0

B2 = rB1 = r2B0

B3 = rB2 = r3B0

...

Bn = rnB0

which is the solution of this discrete model.

In reality, the growth rate . r usually depends on the cell number because of competition for resource 
and space. . r = r(Bn) is a decreasing function of . Bn. The more general model than Malthus model is 
of the form 

Bn+1 = r(Bn)Bn.
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For instance, Verhulst model assumes 

r(Bn) =
2

1 + Bn

K

and thus the model becomes 

Bn+1 =
2Bn

1 + Bn

K

.

The function . r(Bn) is a decreasing function of . Bn with the maximum . 2 occurring at . Bn = 0 . When 
. Bn = K , . r(Bn) = 1 , one-half of its maximum.

Solution: Direct iteration does not work. However, if we introduce a new variable . Rn = 1/Bn, then the 
sequence . R0, R1, R2, ... satisfies the linear relationship 

Rn+1 =
Rn

2
+

1

2K
.

Hence, 

Rn =
Rn−1

2
+

1

2K

=
1

2

(
Rn−2

2
+

1

2K

)
+

1

2K

=
Rn−2

22
+

1

2K

(
1 +

1

2

)

=
1

22

(
Rn−3

2
+

1

2K

)
+

1

2K

(
1 +

1

2

)

=
Rn−3

23
+

1

2K

(
1 +

1

2
+

1

22

)

...

=
R0

2n
+

1

2K

(
1 +

1

2
+ · · ·+ 1

2n−1

)

︸ ︷︷ ︸
a geometric series

=
R0

2n
+

1

2K
·
1 · (1− (1

2
)n)

1− 1
2

=
R0

2n
+

1− (1
2
)n

K
.

Equivalently, 

Bn =
1

1
2nB0

+
1−( 1

2
)n

K

.

The asymptotic behavior is 
Bn → K, as n → ∞.

Download free eBooks at bookboon.com



Mathematical Modeling I – preliminary

12 

Discrete-time models

2.3 Solution and equilibrium of a discrete model

The solution of a linear discrete model . xn+1 = rxn  (. r is a constant) is . xn = rnx0, . n = 0, 1, 2, 3, ... , 
since . xn = rxn−1 = r2xn−2 = · · · = rn−1x1 = rnx0.

The long-term behavior as . n → ∞ is given as follows:

If . r > 1, . xn = rnx0 → ∞ as . n → ∞. 

If . r = 1, . xn = x0 → x0 as . n → ∞. 

If . − 1 < r < 1, . xn = rnx0 → 0  as . n → ∞. 

If . r = −1, . xn = (−1)nx0 =

{
x0, n even,
−x0, n odd,

 and thus no convergence as . n → ∞. 

If . r < −1, . xn = rnx0 , thus . |xn| = |r|n|x0| → ∞ as . n → ∞, thus no convergence as . n → ∞. In 
addition, . rn is positive when . n is even, negative when . n is odd. 

Now we start to discuss equilibrium or fixed point.

Definition 1 A number . x∗ is called an equilibrium or fixed point of . xn+1 = f(xn) , if . xn = x∗  for all 
. n = 1, 2, 3, ...  when . x0 = x∗. That is, . xn = x∗ is a constant solution to the discrete model. 

For the model . xn+1 = rxn, an equilibrium satisfies . x∗ = rx∗. If . r �= 1 , . x∗ = 0  is the only equilibrium. 
If . r = 1, every number is an equilibrium.

Now let’s look at a slightly more complicated discrete model 

xn+1 = rxn + b,

where . r and . b  are constants. An equilibrium . x∗ satisfies . x∗ = rx∗ + b. If . r �= 1, . x∗ =
b

1− r
 . If 

. r = 1 , . x∗ = x∗ + b  . ⇒  . b = 0, then there are two subcases: every number is an equilibrium if . b = 0 ; 
no equilibrium exists if . b �= 0.

As a summary, results for equilibria are listed below: 

•	  . x∗ =
b

1− r
 is the only equilibrium if . r �= 1. 

•	 Every number is an equilibrium if . r = 1 and . b = 0. 
•	 no equilibrium exists if . r = 1 and . b �= 0. 
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Solution of the model . xn+1 = rxn + b : 

xn = rxn−1 + b

= r(rxn−2 + b) + b

= r2xn−2 + b(1 + r)

= r2(rxn−3 + b) + b(1 + r)

= r3xn−3 + b(1 + r + r2)
...

= rnx0 + b(1 + r + r2 + · · ·+ rn−1)

= rnx0 + b · 1 · (1− rn)

1− r
(if r �= 1)

= rnx0 +
b

1− r
− b

1− r
rn

= rn
(
x0 −

b

1− r

)
+

b

1− r
.

If . r = 1, . xn+1 = xn + b, then . xn = xn−1 + b = xn−2 + 2b = · · · = x0 + nb.
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As a summary, the solution is 

xn = rn
(
x0 −

b

1− r

)
+

b

1− r
if r �= 1;

xn = x0 + nb if r = 1.

Now let’s discuss the long-term behavior for the case . b �= 0, since . b = 0 reduces the model to 
. xn+1 = rxn  which has been discussed before.

Then if . r �= 1 , . xn = rn
(
x0 +

b
1−r

)
+ b

1−r . There are two cases: 

•	 When . |r| < 1 , . xn → b
1−r  (the only equilibrium) as . n → ∞. We call the equilibrium 

. x∗ = b
1−r  stable. 

•	 When . |r| > 1, . xn  is not convergent as . n → ∞. We call the equilibrium . x∗ = b
1−r  

unstable. 

If . r = 1 , . xn = x0 + nb →
{

∞ if b > 0
−∞ if b < 0  as . n → ∞ . We have known that no equilibrium 

exists in this case (. r = 1, b �= 0).

2.4 Cobwebbing

Revisit the nonlinear bacterial reproduction model 

Bn+1 =
2Bn

1 + Bn

K

� F (Bn).

Equilibria . B∗ satisfy . B∗ =
2B∗

1 + B∗

K

 . ⇒ . B∗ = 0  or . B∗ = K . In the first panel of Figure 2, we plot the curve 

. F (Bn)  and the diagonal line, whose intersections are equilibria. The red curves represent two sample 

solutions. For the left one, we start from . B0 = 0.2, then plot a vertical line and find its intersection with 

the curve . F (Bn). The . y  value of the intersection is . B1  . Plot a horizontal line from the intersection 
. (B0, B1) and then find the intersection . (B1, B1) with the diagonal line. From this intersection, we 

plot a vertical line and find the intersection . (B1, B2) with the curve . F (Bn). Repeat this process, we 

can find the orbit . {B0, B1, B2, ...}. Graphically we can see that this orbit is increasing and tends to 

the equilibrium . B∗ = K . For the right solution, we start from . B0 = 1.8  and use the same graphic 

approach to see that the orbit is decreasing but also tends to the equilibrium . B∗ = K . This graphical 

method is called cobwebbing.
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The second panel of Figure 2 exhibits the above two solutions in cobwebbing analysis. Both solutions 
tend to the equilibrium . B∗ = K  (in this simulation . K = 1). Actually all solutions with . B0 > 0  tend 
to . K. Hence, the equilibrium . B∗ = K  is called stable, while the trivial equilibrium . B∗ = 0  is called 
unstable. We will discuss the stability theorem in the next section.

In reality there should be a threshold size below which bacteria go extinct due to predation. Hence, a 
more complicated nonlinear bacterial reproduction model is given as 

Bn+1 =
rB2

n

1 + (Bn

K
)2

� F (Bn).

Equilibria . B∗  satisfy . B∗ =
rB∗2

1 + (B
∗

K
)2

 . ⇒  . B∗ = 0  or . 1 =
rB∗

1 + (B
∗

K
)2

. 

The second case leads to a quadratic equation . B∗2 − rK2B∗ +K2 = 0 whose roots are 
. B∗ = K

(
rK
2
±

√
( rK

2
)2 − 1

)
 . There are three cases: 

If . rK > 2, there are three equilibria . B∗ = 0, . B∗ = K
(

rK
2
−

√
( rK

2
)2 − 1

)
,     

  . B∗ = K
(

rK
2
+
√

( rK
2
)2 − 1

)
 . 

If . rK = 2 , there are two equilibria . B∗ = 0 , . B∗ = K . 
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0.6

0.8

1
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1.6
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2
Cobwebbing for B
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=2B

n
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n
/K)

Stable

Unstable 

B
n
 

F(B
n
) 

B
n+1
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n

B
n

Two sample solutions from cobwebbing

Figure 2: Cobwebbing analysis for the model Bn+1 =
2Bn

1+Bn/K

If rK < 2, there is only one equilibrium B∗ = 0.

See the first two panels of Figure 3 for the case rK > 2, the third panel for the case
rK = 2, and the fourth panel for the case rK < 2.

Figure 2: Cobwebbing analysis for the model  

If . rK < 2 , there is only one equilibrium . B∗ = 0 . 

See the first two panels of Figure 3 for the case . rK > 2 , the third panel for the case . rK = 2 , and the 
fourth panel for the case . rK < 2 .
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n

1+(Bn/K)2

For the case rK > 2, we can observe from the cobwebbing that solutions with B0 >

K
(

rK
2
−

√
( rK

2
)2 − 1

)
tend to K

(
rK
2
+
√

( rK
2
)2 − 1

)
, while solutions with

B0 < K
(

rK
2
−

√
( rK

2
)2 − 1

)
tend to 0 (extinction). The equilibria B∗ = 0 and B∗ =

K
(

rK
2
+
√

( rK
2
)2 − 1

)
are stable, while the equilibrium B∗ = K

(
rK
2
−

√
( rK

2
)2 − 1

)

is unstable. The interval (0, K
(

rK
2
−

√
( rK

2
)2 − 1

)
is a pit of extinction. The extinc-

tion scenario, generated by the stable trivial equilibrium is the main difference between
the model with predation and the model without predation.

For the case rK = 2, solutions with B0 ≥ K tend to K, while solutions with

Figure 3: Cobwebbing analysis for the model . Bn+1 =
rB2

n

1+(Bn/K)2

For the case . rK > 2 , we can observe from the cobwebbing that solutions with 

. B0 > K
(

rK
2
−

√
( rK

2
)2 − 1

)
 tend to . K

(
rK
2
+
√

( rK
2
)2 − 1

)
, while solutions with 

. B0 < K
(

rK
2
−

√
( rK

2
)2 − 1

)
 tend to . 0  (extinction).  The equilibria . B∗ = 0  and 

. B∗ = K
(

rK
2
+
√

( rK
2
)2 − 1

)
 are stable, while the equilibrium . B∗ = K

(
rK
2
−

√
( rK

2
)2 − 1

)
 

is unstable. The interval (. (0, K
(

rK
2
−
√

( rK
2
)2 − 1

)
) is a pit of extinction. The extinction scenario, 

generated by the stable trivial equilibrium is the main difference between the model with predation 
and the model without predation.

For the case . rK = 2 , solutions with . B0 ≥ K  tend to . K , while solutions with . 0 ≤ B0 < K tend to . 0 . 
The equilibrium . B∗ = K  is semi-stable (stable from right, unstable from left), while the equilibrium . B∗ = 0  
is stable.

For the case . rK < 2 , all solutions tend to . 0 . The only equilibrium . B∗ = 0  is stable.
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2.5 General theory and analytical methods

In this section, we discuss the linear stability analysis for a discrete-time model . xn+1 = f(xn) .

Let . x∗  be an equilibrium of the model . xn+1 = f(xn) , that is, . x∗ = f(x∗) . Consider a perturbation 
of . x∗ : . xn = x∗ + yn  with tiny . yn . Substitute it into the model to obtain . x∗ + yn+1 = f(x∗ + yn) . 
Apply Taylor’s series to obtain . x∗ + yn+1 = f(x∗) + f ′(x∗)yn + higher order terms , which leads 
to . yn+1 = f ′(x∗)yn + higher order terms . For tiny . yn , higher order terms are negligible compared 
the first order term . f ′(x∗)yn : . yn+1 ≈ f ′(x∗)yn . We call . yn+1 = f ′(x∗)yn  the linearized equation, 
where . f ′(x∗)  is a constant. Given the initial condition . y0 , the solution is 

yn = (f ′(x∗))ny0.

There are four cases for the deviation . yn : 

•	. f ′(x∗) > 1 : the deviation has geometric growth, thus the equilibrium . x∗  is unstable. 
•	. 0 < f ′(x∗) < 1, the deviation has geometric decay, thus the equilibrium . x∗  is stable. 
•	. − 1 < f ′(x∗) < 0 : the deviation has geometric decay with sign switch, thus the 

equilibrium . x∗  is stable. 
•	. f ′(x∗) < −1 , the deviation has geometric growth with sign switch, thus the equilibrium 
. x∗  is unstable. 

As a summary of all the above cases, we arrive at the following theorem: 

Theorem 1 (Stability Criterion) Let . x∗  be an equilibrium of . xn+1 = f(xn) , then we have the results: 

If . |f ′(x∗)| < 1, . x∗  is stable. 

If . |f ′(x∗)| > 1, . x∗  is unstable. 

If . |f ′(x∗)| = 1, there is no conclusion about the stability of . x∗ . Higher order terms need to be examined 
to determine stability. 

The constant . f ′(x∗)  is called the eigenvalue of the map . f  at . x∗. 

Let’s look at a few examples to apply this theorem.

Example 1 Consider the discrete logistic equation . yn+1 = ryn(1− yn/K), where the parameters . r ≥ 0  , 
. K > 0. Find all equilibria and determine their stability. 
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Solution: Let . xn = yn/K , then . xn+1 = rxn(1− xn). Note that . xn ≥ 0  represents population size, 
and . r ≥ 0  is the maximum growth rate. Equilibria satisfy 

x∗ = rx∗(1− x∗)

which leads to . x∗ = 0  or . x∗ = 0. ∗ = r−1
r

. The nontrivial equilibrium . x∗ =
r − 1

r
> 0  if and only if . r > 1 .

To check stability, we compute the eigenvalue: 

f ′(x∗) = r(1− 2x∗).

For the trivial equilibrium . x∗ = 0 , the eigenvalue . f ′(0) = r , thus . x∗ = 0  is stable if . 0 ≤ r < 1  and 
unstable if . r > 1 .

For the nontrivial equilibrium . x∗ = 0. ∗ = r−1
r

, the eigenvalue . f ′(0) = r. ′( r−1
r
) = 2− r , thus . x∗ = 0. ∗ = r−1

r
 is stable if 

. 1 < r < 3  (from . |2− r| < 1) and unstable if . r > 3  (from . |2− r| > 1  and . r > 1).

Example 2 Consider the Beverton-Holt model . xn+1 =
rxn

1 + r−1
K

xn

 with . r > 0  and . K > 0. Find all 
equilibria and determine their stability. 

Solution: Equilibria . x∗  satisfy 

x∗ =
rx∗

1 + r−1
K

x∗

which leads to . x∗ = 0  or . x∗ = K  (if . r �= 1). Note that for . r = 1  the model becomes . xn+1 = xn , 
which is not interesting.

To check stability, we compute the eigenvalue 

f ′(x∗) =
r

(1 + r−1
K

x∗)2
.

For the trivial equilibrium . x∗ = 0 , the eigenvalue . f ′(0) = r , thus . x∗ = 0  is stable if . 0 < r < 1  and 
unstable if . r > 1 .

For the nontrivial equilibrium . x∗ = K , the eigenvalue . f ′(K) =
1

r
, thus . x∗ = K  is stable if . r > 1  

and unstable if . 0 < r < 1 .

Download free eBooks at bookboon.com



Mathematical Modeling I – preliminary

19 

Discrete-time models

Example 3 Revisit the bacterial reproduction models:w

Model I: 
Bn+1 = rBn;

Model II: 

Bn+1 =
2Bn

1 + Bn

K

;

Model III: 

Bn+1 =
rB2

n

1 + (Bn

K
)2
.

Solution: For Model I, equilibria . B∗  satisfy . B∗ = rB∗ . If . r �= 1 , . B∗ = 0  is the only 
equilibrium. If . r = 1 , every nonnegative number is an equilibrium. The eigenvalue is 

. f ′(B∗) = r . For the case . r �= 1 , . B∗ = 0  is stable if . 0 < r < 1 , unstable if . r > 1 .  
This result is consistent to cobwebbing analysis. For the case . r = 1 , . |f ′(B∗)| = 1 for all equilibria, 
there is no conclusion about stability from the stability theorem. Actually this case is a trivial case 

. Bn+1 = Bn  whose solutions are obvious.
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For Model II, equilibria . B∗  satisfy . B∗ = 2B∗

1+B∗
K

 which has two roots . B∗ = 0  or . B∗ = K . The 

eigenvalue at . B∗  is . f ′(B∗) =
2

(1 + B∗

K
)2

. For the trivial equilibrium . B∗ = 0 , . |f ′(0)| = 2 > 1 , 

thus . B∗ = 0  is unstable. for the nontrivial equilibrium . B∗ = K , . |f ′(K)| = 1

2
< 1 , thus . B∗ = k  

is stable. The results are consistent to cobwebbing analysis.

For Model III, equilibria . B∗  satisfy . B∗ =
rB∗2

1 + (B
∗

K
)2

  whose roots are . B∗ = 0 , 

. B∗ = K



rK

2
−

√(
rK

2

)2

− 1



 , . B∗ = K



rK

2
+

√(
rK

2

)2

− 1



.  

Hence, there are three equilibria if . rK > 2 . The eigenvalue at . B∗  is . ′(B∗) = 2rB∗

[1+(B
∗

K
)2]2

.

For . B∗ = 0 , . |f ′(0)| = 0 < 1 , thus . B∗ = 0  is stable.

For . B∗ = K



rK

2
−

√(
rK

2

)2

− 1



 , the eigenvalue 

f ′



K



rK

2
−

√(
rK

2

)2

− 1









=
2rK

(
rK
2
−
√
( rK

2
)2 − 1

)

[
1 +

(
rK
2
−
√
( rK

2
)2 − 1

)2
]2

=
2rK

(
rK
2
−
√
( rK

2
)2 − 1

)

(
r2K2

2
− rK

√
( rK

2
)2 − 1

)2

=
2

rK
(

rK
2
−
√
( rK

2
)2 − 1

)

=
2
(

rK
2
+
√

( rK
2
)2 − 1

)

rK
(

rK
2
−
√
( rK

2
)2 − 1

)(
rK
2
+
√
( rK

2
)2 − 1

)

=
rK + 2

√
( rK

2
)2 − 1

rK

= 1 +
2
√
( rK

2
)2 − 1

rK
> 1,

thus . B∗ = K



rK

2
−

√(
rK

2

)2

− 1



  is unstable.
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We can apply the same idea to obtain 

f ′



K



rK

2
+

√(
rK

2

)2

− 1







 = 1−
2
√
( rK

2
)2 − 1

rK
.

Since . 0 <
2
√
( rK

2
)2 − 1

rK
=

√
( rK

2
)2 − 1

rK
2

=

√
( rK

2
)2 − 1

√
( rK

2
)2

< 1 , then 

0 < f ′



K



rK

2
+

√(
rK

2

)2

− 1







 = 1−
2
√
( rK

2
)2 − 1

rK
< 1,

thus . B∗ = K

(
rK
2
+
√(

rK
2

)2 − 1

)
 is stable.

For the case . rK < 2 , the only equilibrium is . B∗ = 0  which is stable. The case . rK = 2  is the degenerate 
case in which there are two equilibria . B∗ = 0  (stable) and . B∗ = K  (semi-stable).

All these results are consistent to cobwebbing analysis.

Example 4 Consider the annuity for retirement with . 0.5%  as the monthly interest rate and a monthly 
withdrawal of . $2000. Develop a discrete-time model to describe the annuity problem. Determine equilibria 
and stability. How much of an initial deposit is needed to deplete the annuity in . 30  years?  

Solution: Let . xn  be the amount in the account after . n  months, then the discrete-time model is provided 
by 

xn+1 = xn(1 + 0.5%)− 2000

which can be simplified as 

xn+1 = 1.005xn − 2000

with the initial deposit . x0 .

Equilibria . x∗  satisfy . x∗ = 1.005x∗ − 2000  which leads to . x∗ = 400000. The eigenvalue is 
. f ′(x∗) = 1.005 > 1 , thus the only equilibrium . x∗ = 400000 is unstable.
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Recall that the solution of . xn+1 = rxn + b  is 

xn = rn
(
x0 −

b

1− r

)
+

b

1− r
if r �= 1;

xn = x0 + nb if r = 1.

In this example, . r = 1.005 �= 1 and . b = −2000, thus we use the first formula to obtain 

0 = a360 = 1.005360
(
x0 −

−2000

1− 1.005

)
+

−2000

1− 1.005

from which we solve for the initial deposit: . x0 = 333580.

As a conclusion, an initial deposit of . $333580  allows the withdrawal of . $2000 per month from the 
account from . 30  years. The total withdrawal is . $720000 , and at the end of . 30  years the account is 
depleted.

For discrete models, we have three ways to judge stability of equilibrium values: 

1. Solving the model; 
2. Cobwebbing analysis; 
3. Stability criterion. 
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2.6 Optimization of discrete models

The basic optimization model is given as 

Optimize (maximize or minimize) f(X)

subject to 





g1(X)
g2(X)

...
gn(X)










≥
=
≤










b1
b2
...
bn





Here, 

•	. X  is a vector with a group of decision variables whose values are discrete. 

•	. f(X)  is called the objective function. 

•	. g1(X), g2(X), ..., gn(x)  are called constraint functions, and their associated side 
conditions are called constraints. 

Goal: We seek the vector . X = X0  to optimize the objective function . f(X)  and meanwhile to satisfy 

all constraints . gi(X)






≥
=
≤




 bi , . i = 1, 2, ..., n .

Example 5 A carpenter wants to decide how many chairs and how many benches he should make each 
month. One chair contributes to $20 net profit, and one bench contributes to $18 net profit. A chair requires 
10 board-feet of lumber and 5 hours of labor, and a bench requires 20 board-feet of lumber and 4 hours of 
labor. Every month the carpenter has lumber up to 1000 board-feet and labor up to 360 hours. 

Solution: Let . x1  and . x2  are the number of chairs and the number of benches produced each month, 
respectively. The optimization problem can be described as 

Maximize the total net profit f(x1, x2) = 20x1 + 18x2

subject to 
10x1 + 20x2 ≤ 1000 (lumber)

5x1 + 4x2 ≤ 360 (labor)

x1 ≥ 0 (nonnegativity)

x2 ≥ 0 (nonnegativity)
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Figure 4: The convex set (shaded region) formed by constraints.

If an optimal solution to a linear problem (both the object function and all constraints are linear) exists, 
it must occur among the extreme points of the convex set formed by the set of constraints (see the 
shaded region of Figure 4). A set . C  is convex if for any two vectors . x, y ∈ C , . (1− r)x+ ry ∈ C  
for all . 0 ≤ r ≤ 1 .

The shaded region generated by constraints has four extreme points: . (0, 0), . (72, 0), . (0, 50), 
. (160/3, 70/3) . We evaluate the objection function at each extreme point: . f(0, 0) = 0 , . f(70, 0) = 1440  , 
. f(0, 50) = 900  , . f(160/3, 70/3) = 1486.7 . Hence, the maximum monthly profit is $1486.7, occurring 

at the internal extreme point . (160/3, 70/3) , about 53 chairs and 23 benches.

Note: The maximum monthly profit can occur at a boundary extreme point. For instance, if we assume 
that one chair contributes to $20 net profit and one bench contributes to $15 net profit, then the maximum 
monthly profit occurs at . (70, 0) .
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3 Continuous-time models
3.1 Motivation and derivation of continuous models

We derive a continuous model from a discrete model for population prediction. Let . N(t)  be the 
population size at time . t . In a small time period . ∆t, a percentage . b  of the population is born, and a 
percentage . d  of the population dies. Thus the change of the population size during the time period . ∆t  is 

N(t +∆t)−N(t) = bN(t)∆t − dN(t)∆t.

Note that . b and . d  have the unit per time, and they are called growth and death rates. Divide both sides 
by . ∆t  to obtain 

N(t+∆t)−N(t)

∆t
= (b− d)N(t).

Let . ∆t → 0, we have 

dN(t)

dt
= (b− d)N(t)
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using the definition of derivative. Let . α = b− d , then the model becomes 

dN

dt
= αN.

Give the initial condition . N(t0) = N0 , the continuous-time model .
dN

dt
= αN  is defined for . t ≥ t0 .

Solution: We apply separation of variables to obtain 

∫
dN

N
=

∫
αdt

which leads to 

lnN = αt+ C

for some constant . C . We then use the initial condition . N(t0) = N0  to obtain . lnN0 = αt0 + C , thus 
. C = lnN0 − αt0. Substitute it back into the solution, then . lnN = αt+ lnN0 − αt0 , which leads 

to . ln(N/N0) = α(t− t0) , and thus 

N(t) = N0e
α(t−t0),

which is the solution of the continuous model.

We apply this model to the Chinese census data: the 2000 census for the population of China was 
1262600000 and in 1980 it was 981235000. Substitute these values into the solution by letting . t0 = 1980  
and . N0 = 981235000: 

1262600000 = 981235000eα(2000−1980),

from which we solve for . α : . α = 0.0126 . Hence the model becomes 

N(t) = 981235000e0.0126(t−1980),

which can be used to predict future population. For example, in 2010 the Chinese population size should 
be . N(2010) = 981235000e0.0126(2010−1980) = 1432000000, overestimate the realistic number 
1338300000. How about the year 2100?  . N(2100) = 981235000e0.0126(2100−1980) = 4450700000, 
obviously unsustainable in China. Clearly the model is oversimplified.
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We improve the model with limited growth. The constant . α  should be a decreasing function of the 
population size . N  and becomes zero when . N  reaches the sustainable maximum populations size . M . 
The simplest to incorporate the population ceiling is 

α = r(M −N)

which is 

•	 positive when . N < M ; 
•	 zero when . N = M ; 
•	 negative when . N > M . 

Therefore, the improved model is provided by 

dN

dt
= r(M −N)N,

called logistic population growth model.
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Solution: We apply separation of variables to obtain 

∫
dN

(M −N)N
=

∫
rdt

∫
1

M

(
1

M −N
+

1

N

)
dN =

∫
rdt

1

M
(− ln |M −N | + lnN) = rt+ C

lnN − ln |M −N | = M(rt + C)

Use the initial condition . N(t0) = N0 < M ⇒ lnN0 − ln(M −N0) = M(rt0 + C) , from which 

we solve for . C : . C =
1

M
ln

N0

M −N0
− rt0 . Hence, 

lnN − ln |M −N | = M

(
rt+

1

M
ln

N0

M −N0
− rt0

)

Consider the case . N < M  which is usually valid according to the definition of . M , then 

ln
N(M −N0)

N0(M −N)
= rM(t− t0)

N(M −N0) = N0(M −N)erM(t−t0)

N(M −N0) +N0NerM(t−t0) = N0MerM(t−t0)

N(t) =
N0MerM(t−t0)

M −N0 +N0erM(t−t0)

N(t) =
MN0

N0 + (M −N0)e−rM(t−t0)

This is the solution of the improved model with limited growth. We can easily observe that 

N(t) → M as t → ∞.
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M 

N0 

t0 

N(t) 

t 
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Figure 5: The logistic curve: the solution of the model . dN
dt

= r(M −N)N  with the initial condition . N(t0) = N0 .

3.2 Differential equation models

Consider a general first-order differential equation: 

dx

dt
= f(t, x).

Definition 2 The collection of short line segments of slope . f(t, x) at selected points . (t, x)  in tx-plane is 
called a slope field. Solution curves follow these tangents.

If . f(t, x) is independent of . t , i.e. .
dx

dt
= f(x), then the differential equation is called autonomous. The 

values of . x such that .
dx

dt
= 0 are called equilibrium values or steady states or fixed points. A phase line is 

a plot on the x axis that shows all fixed points together with the intervals where we can determine the signs 

of .
dx

dt
 and .

d2x

dt2
, from which we know the monotonicity and concavity of solution curves.

Given an initial condition . x(t0) = x0 , the solution curve of the initial value problem (IVP) 

.
dx

dt
= f(t, x), x(t0) = x0  passes through the point . (t0, x0)  and has slope . f(t0, x0)  there. 

Let’s look at a simple example to perform the phase line analysis.
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Example 6 For the autonomous differential equation .
dx

dt
= x(x− 1) , determine equilibrium values and 

perform the phase line analysis. 

Equilibrium values are . x∗ = 0  and . x∗ = 1 , i.e. the equation has two constant solutions . x = 0  for all 
. t  and . x = 1  for all . t.

It is easy to determine that

.
dx

dt
= x(x− 1)  is positive if . x < 0  or . x > 1 ; negative if . 0 < x < 1 .

We can compute .
d2x

dt2
=

d

dt
(
dx

dt
) =

d

dt
(x(x− 1)) = (2x− 1)

dx

dt
= (2x− 1)x(x− 1), which is 

positive if . x > 1  or . 0 < x < 1/2; negative if . 1/2 < x < 1 or . x < 0 . According to these facts, we 

can plot the phase line as in Figure 6.

 
Figure 6: The phase line analysis of .

dx

dt
= x(x− 1) .
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Without solving the differential equation, we can also sketch representative solution curves using the 
phase line (see Figure 7). It is not difficult to observe that Figures 6&7 are consistent.

The equilibrium . x = 0  is stable since solution curves near . x = 0  tend toward to . x = 0  as . t  increases. 
The equilibrium . x = 1  is unstable since solution curves near . x = 1  (except . x = 1  itself) move away 
from . x = 1  as . t  increases. Note that the phase line is enough to judge stability of equilibrium values. 
Strict definitions of stability can be found in most ordinary differential equation textbooks.

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

t

x

equilibrium 

equilibrium 

Figure 7: Some representative solution curves of .
dx

dt
= x(x− 1) .

3.3 Some basic theorems

For the differential equation .
dx

dt
= f(t, x), we have the following basic theorems that can be useful for 

the preliminary analysis of a differential equation model.

Theorem 2 (Existence and Uniqueness) Under some mild conditions (. f(t, x)  and .
df

dx
(t, x)  are continuous 

with respect to . t  and . x ) most differential equation models satisfy, we have the following basic results for 

.
dx

dt
= f(t, x) :

•	 Existence of solutions Each point in tx-plane has a solution passing through it. 
•	 Uniqueness of solutions Only one solution passes through each point . (t, x). 
•	 Continuous dependence Solution curves through nearby initial points remain close over a 

short time. 
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Theorem 3 (Stability Criterion) Let . x∗  be an equilibrium of an autonomous equation .
dx

dt
= f(x) . Then 

•	. x∗ is stable when . f ′(x∗) < 0 ; 
•	. x∗ is unstable when . f ′(x∗) > 0 ; 
•	 there is no conclusion about the stability of . x∗ when . f ′(x∗) = 0 . 

Note that . f ′(x∗) is called the eigenvalue of . x∗ .

Example 7 Determine equilibrium values and their stability for the differential equation 

dx

dt
= (x+ 1)(x− 2).

Solution: Equilibrium values are . x∗ = −1  and . x∗ = 2 .
. f(x) = (x+ 1)(x− 2) = x2 − x− 2 ,

then . f ′(x) = 2x− 1 , thus . f ′(x∗) = 2x∗ − 1 .
. f ′(−1) = −3 < 0, hence the equilibrium solution . x = −1 is stable.
. f ′(2) = 3 > 0 , hence the equilibrium solution . x = 2  is unstable.

Example 8 Revisit the logistic population growth model .
dN

dt
= r(M −N)N  to determine equilibrium 

values and their stability. 

Solution: Equilibrium values are . N∗ = M  and . N∗ = 0 .
. f(N) = r(M −N)N = rMN − rN2,

then . f ′(N) = rM − 2rN , thus . f ′(N∗) = rM − 2rN∗ .
. f ′(M) = −rM < 0 , hence the equilibrium solution . N = M  is stable.
. f ′(0) = rM > 0 , hence the equilibrium solution . N = 0  is unstable.

Similar to discrete models, we have three ways to judge stability of equilibrium values of autonomous 
differential equations (a group of continuous models): 

1. Solving the model; 
2. Phase line analysis; 
3. Stability criterion. 
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3.4 Separation of variables

Consider the nonautonomous differential equation 

dx

dt
= f(t, x),

which is separable if 

f(t, x) = p(t)q(x).

Note that . p(t)  or . q(x) may be a constant function. For a separable equation, we can express it as 

dx

dt
= p(t)q(x) ⇒

∫
dx

q(x)
=

∫
p(t)dt,

from which we can obtain the general solution to the differential equation.
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Example 9 Solve the differential equation .
dx

dt
= t2 + (xt)2. 

Solution: This equation is separable because we can rewrite it as 

dx

dt
= t2(1 + x2),

then 

∫
dx

1 + x2
=

∫
t2dt,

tan−1(x) = t3/3 + C,

x = tan(t3/3 + C),

where . C  is a constant determined by the initial condition.

Example 10 Solve .
dx

dt
=

t

et+x
. 

Solution: This equation is separable because it is equivalent to 

dx

dt
=

t

et
1

ex
.

Thus, 

∫
exdx =

∫
t

et
dt

⇒ ex =
∫
te−tdt = integration by parts = −(te−t−

∫
e−tdt)+C = −(te−t+e−t)+C =

−(t + 1)e−t + C. Hence, the general solution is x(t) = ln[−(t + 1)e−t + C], where the

constant C depends on the initial condition.

For instance, given the initial condition . x(0) = 0 , then 

x(0) = ln[−1 + C] = 0,
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which leads to . C = 2 . Then the solution of the IVP 






dx

dt
=

t

et+x
,

(0) = 0,

is . x(t) = ln[−(t + 1)e−t + 2] .

Example 11 Solve the IVP .






dx

dt
=

ex

t2x
,

(1) = 0.

 

Solution: We apply separation of variables to obtain 

∫
xe−xdx =

∫
t−2dt,

−(xe−x −
∫

e−xdx) = −t−1 + C,

−(xe−x + e−x) = −t−1 + C,

−(x+ 1)e−x = −t−1 + C.

Then use the initial condition . x(1) = 0  to obtain . − (0 + 1)e−0 = −1−1 + C , which gives  
. C = 0 . Hence, the solution to IVP is 

−(x+ 1)e−x = −1

t
− 1

2
,

which provides an implicit formula for . x(t) . There is no explicit formula for . x(t)  since the resulting 
algebraic equation is a transcendental equation.

3.5 Linear equations

Let’s start with a lake pollution problem, which is a common and extremely severe issue in many lakes 
around the world. We let . V (t)  be the lake volume at time . t , and . p(t)  be the amount of pollutant in 
the lake at time . t . Then the concentration of pollutant is the ratio 

c(t) =
p(t)

V (t)
.
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Over the time interval . [t, t+�t], the change in the amount of pollutant . �p  is the amount of pollutant 
that enters the lake minus the amount that leaves: 

�p = amount input− amount output.

If water enters the lake with a constant concentration . cin  at a rate . rin , then 

amount input = rincin�t.

If water leaves the lake at a constant rate . rout , since the concentration of pollutant in lake is .
p(t)

V (t)
, then 

amount output = rout
p(t)

V (t)
�t.

Thus, 

�p = rincin�t− rout
p(t)

V (t)
�t,

�p

�t
= rincin − rout

p(t)

V (t)
.
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Let . �t → 0 , we have 

dp

dt
= rincin −

rout
V

p.

Suppose . V (0) = V0  is the volume of the lake initially, then . V (t) = V0 + (rin − rout)t , then the 
model becomes 

dp

dt
= rincin −

rout
V0 + (rin − rout)t

p.

We can rewrite this differential equation as 

dp

dt
+

rout
V0 + (rin − rout)t

p = rincin,

dp

dt
+ g(t)p = rincin,

where . (t) = rout
V0+(rin−rout)t

, is the lake pollution model.

This is an example of a linear first-order differential equation. Can we solve this equation to find the 
amount . p(t)  of pollutant in the lake at time . t ?  The answer is positive. We will discuss the general 
method and then come back to the lake pollution example.

In general, the first-order linear equation is of the form 

a1(t)x
′ + a0(t)x = b(t),

x′ +
a0(t)

a1(t)
x =

b(t)

a1(t)
,

x′ + P (t)x = Q(t),

which is the standard form of the linear equation. The method is to multiply both sides by an integrating 
factor 

µ(t) = e
∫
P (t)dt.

(Note that we introduce no arbitrary constant of .
∫
P (t)dt  since only one function is needed for  

. µ(t).) Then the equation becomes 

µ(t)x′ + P (t)µ(t)x = µ(t)Q(t).

Download free eBooks at bookboon.com



Mathematical Modeling I – preliminary

38 

Continuous-time models

Because . µ′(t) = p(t)µ(t), then the equation becomes 

(µ(t)x(t))′ = µ(t)Q(t),

µ(t)x(t) =

∫
µ(t)Q(t)dt+ C,

then we obtain the general solution x(t) =
C

µ(t)
+

1

µ(t)

∫
µ(t)Q(t)dt = Ce−

∫
P (t)dt +  

e−
∫
P (t)dt

∫
e
∫
P (t)dtQ(t)dt

︸ ︷︷ ︸
.

t in the first factor is different from t in the second factor

Example 12 (Lake pollution problem) Return to the lake pollution example: 

dp

dt
+ g(t)p = rincin,

where . g(t) =
rout

V0 + (rin − rout)t
.

Let . α = rincin , then .
dp

dt
+ g(t)p = α . 

Solution: Multiple both sides by an integrating factor 

µ(t) = e
∫
g(t)dt = e

∫ rout
V0+(rin−rout)t

dt
= e

rout
rin−rout

ln |V0+(rin−rout)t|,

then 

d

dt
(µ(t)p(t)) = αµ(t),

µ(t)p(t) =

∫
αµ(t)dt+ C,

p(t) =
C

µ(t)
+

α

µ(t)

∫
µ(t)dt,

where . µ(t) = e
rout

rin−rout
ln |V0+(rin−rout)t|  and . C  is a constant determined by the initial condition. Note 

that . µ(t) in the second term cannot be canceled out.
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If we assume that . V0 + (rin − rout)t > 0  for all . t  in the studied interval . [0, T ] , then 

. µ(t) = e
rout

rin−rout
ln(V0+(rin−rout)t) = eln(V0+(rin−rout)t)

rout
rin−rout

= (V0+(rin−rout)t)
rout

rin−rout .

Then µ(t)dt =

∫
(V0 + (rin − rout)t)

rout
rin−rout dt =

1

rin − rout

1
rout

rin−rout
+ 1

(V0 + (rin −

rout)t)
rout

rin−rout
+1

=
1

rin − rout

rin − rout
rin

(V0 + (rin − rout)t)
rin

rin−rout =
1

rin
(V0 + (rin −

rin

rout)t)
rin

rin−rout .No arbitrary constant is needed in the above calculation since . C  is already 
incorporated in the expression of . p(t) .

Therefore, the solution is,

p(t) = C(V0+(rin−rout)t)
rout

rout−rin+α(V0+(rin−rout)t)
rout

rout−rin
1
rin

(V0+(rin−rout)t)
rin

rin−rout =

C(V0 + (rin − rout)t)
rout

rout−rin + α
rin

(V0 + (rin − rout)t).
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Example 13 Find the general solution of the linear equation 

tx′ + x = cos(t), t > 0.

Solution: Rewrite the linear equation in the standard form 

x′ +
1

t
x =

cos(t)

t
,

thus s P (t) =
1

t
, Q(t) =

cos(t)

t
. An integrating factor satisfies 

µ(t) = e
∫
P (t)dt = e

∫
1
t
dt = eln t = t.

Multiply both sides of the linear equation by . µ(t) to obtain 

tx′ + x = cos(t),

(tx)′ = cos(t),

tx =

∫
cos(t)dt+ C,

tx = sin(t) + C,

x =
sin(t)

t
+

C

t
, t > 0.

Hence, the general solution is . (t) = sin(t)
t

+ C
t  for . t > 0 .

Example 14 Solve the IVP 

{
x′ + x = et, t ≥ 0
x(0) = 1.

Solution: An integrating factor is . µ(t) = e
∫
1dt = et . Multiply both sides of the linear equation by . et  

to obtain 

etx′ + etx = e2t,

(etx)′ = e2t,
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etx =

∫
e2tdt+ C,

etx =
1

2
e2t + C,

x =
1

2
et + Ce−t.

The general solution is . x(t) = 1
2
et + Ce−t . The initial condition . x(0) = 1  implies that .

1

2
+ C = 1, 

thus . C =
1

2
. Therefore, the solution to IVP is 

x(t) =
1

2
et +

1

2
e−t =

et + e−t

2
= cosh(t)

(a hyperbolic cosine function).

3.6 Optimization of continuous models

We study the optimization problem: 

Optimizef(X)

subject to constraints 

gi(X)

{
≥
≤

}
bi for all i ∈ I,

where the objective function . f  is continuous but nonlinear. We discuss a representative example to 
show how to construct and solve an optimization problem.

Example 15  A PC company plans to introduce two new products: 21-inch all-in-one computer and 27-
inch all-in-one computer. The cost of a 21-inch all-in-one computer is $500, the cont of a 27-inch all-in-one 
computer is $600, and the fixed cost is $100,000. The suggested retail price of a 21-inch all-in-one computer 
is $900, and the suggested retail price of a 27-inch all-in-one computer is $1050. In the competitive market, 
for each additional computer of a particular type sold, the selling price falls by $0.10. Furthermore, the 
selling price for each 21-inch computer is reduced by $0.03 for each 27-inch computer sold, and the selling 
price for each 27-inch computer is reduce by $0.04 for each 21-inch computer sold. If we assume that all 
computers made by this company can be sold at the above prices, how many computers of each type should 
the company manufacture to maximize its profit?  
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Solution: We define the variables for the two types of computers (. i = 1, 2 ):

. x1  — number of 21-inch all-in-one computers
. x2  — number of 27-inch all-in-one computers
. Pi  — selling price of . xi

. R  — revenue obtained from computer sales

. C  — cost to produce the computers

. P  — net profit from the sales of the computers

We have two independent variables . x1  and . x2 , all other variables defined above can be expressed as 
functions of . x1  and . x2 : 

P1 = 900− 0.1x1 − 0.03x2

P2 = 1050− 0.04x1 − 0.1x2

R = P1x1 + P2x2

C = 100000 + 500x1 + 600x2

P = R− C

and 
x1 ≥ 0, x2 ≥ 0.
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Optimization problem:

To maximize the profit function 

P (x1, x2) = R− C

= (P1x1 + P2x2)− (100000 + 500x1 + 600x2)

= (900− 0.1x1 − 0.03x2)x1 + (1050− 0.04x1 − 0.1x2)x2

−(100000 + 500x1 + 600x2)

= 400x1 − 0.1x2
1 + 450x2 − 0.1x2

2 − 0.07x1x2 − 100000

The necessary conditions of obtaining the maximum net profit are 

∂P

∂x1
= 0 and

∂P

∂x2
= 0,

that is, 
∂P

∂x1

= 400− 0.2x1 − 0.07x2 = 0

∂P

∂x2

= 450− 0.2x2 − 0.07x1 = 0

⇒ x1 ≈ 1382, x2 ≈ 1766.

At . x1 = 1382, . x2 = 1766, the total net profit is 

P (1382, 1766) = $573790.

This should be the maximum profit or the minimum profit. We have three ways to judge whether it is 
the maximum profit:

1) Compute. P (x1, x2)  at some positive integers . x̄1  and . x̄2  (we can choose. (x̄1, x̄2)  
near. (1382, 1766)), and compare with . P (1382, 1766). It is easy to see that 

. (x̄1, x̄2) < P (1382, 1766), thus . P (1382, 1766) is the maximum profit.
2) Use the second-derivative test from multivariable calculus: 

∂2P

∂x2
1

(1382, 1766) = −0.2 < 0

and
[
∂2P

∂x2
1

∂2P

∂x2
2

−
(

∂2P

∂x1∂x2

)2
]
(1382, 1766) = 0.0351 > 0.

These two inequalities imply that . P (1382, 1766) is the maximum profit.
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3) Sketch . P (x1, x2)  for . x1 ≥ 0 , . x2 ≥ 0 , which can show that the profit . P (x1, x2)  at 
. (1382, 1766) is indeed the maximum profit.

Another important type of optimization problems is listed as follows:

maximize or minimize . f(x)  subject to . g(x) = c . Here . x ∈ Rn .

To find the local maxima and minima of the function . f(x)  subject to equality constraints . g(x) = c

, we introduce a new variable . λ  called a Lagrange multiplier and study the Lagrange function defined 
by . L(x, λ) = f(x) + λ[g(x)− c], where the . λ  term may be either added or subtracted. If . f(x)  is 
a maximum or minimum, then there exists . λ  such that . (x, λ)  is a stationary point for the Lagrange 
function. Note that the method of Lagrange multipliers provides a necessary condition for optimality, 
that is, not all stationary points of the Lagrange function yield a solution of the optimization problem.

Example 16 Maximize . f(x1, x2) = x1 + x2 subject to the constraint . x2
1 + x2

2 = 1 . 

Solution: We apply the method of Lagrange multipliers to obtain the Lagrange function 

L(x1, x2, λ) = f(x1, x2) + λ(g(x1, x2)− c) = x1 + x2 + λ(x2
1 + x2

2 − 1).

Stationary points satisfy 

∂L

∂x1

= 1 + 2λx1 = 0

∂L

∂x2

= 1 + 2λx2 = 0

∂L

∂λ
= x2

1 + x2
2 − 1 = 0

. ⇒ λ = ±
√
2/2  which lead to two stationary points . (−

√
2/2,−

√
2/2)  and . (

√
2/2,

√
2/2).

We evaluate the objective function . f(x1, x2)  at these stationary points: 

f(−
√
2/2,−

√
2/2) = −

√
2

and 
f(
√
2/2,

√
2/2) =

√
2.

Hence, similar to the example 15, we can judge that the maximum is .
√
2 , occurring at . (

√
2/2,

√
2/2).
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4 Sensitivity analysis
Sensitivity analysis is to study how the variation in the output of a mathematical model depends on 
different sources of variation in the input of a mathematical model.

One common type of sensitivity analysis is to determine how a focused quantity (depending on variables) 
is related to perturbation of each parameter.

Sensitivity analysis is of important use in many ways. For instance, we perform sensitivity analysis to test 
robustness of model predictions, or to understand (relative) importance of parameters to the focused 
quantity and check their relationships (positively or negatively related, strength of relationships).

Definition 3 The normalized forward sensitivity index of a variable, . u , that depends differentiably on a 
parameter, . p , is defined as 

γu
p :=

∂u

∂p
× p

u
.

We now look at some examples to show how to use sensitivity analysis.
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Example 17 We consider the logistic population growth model 

dx

dt
= rx

(
1− x

K

)
.

Assume the experiment (or field observation) is terminated at . t = 10 , how does the final population size 
depend on the parameters . r  and . K ? 

Here, given the initial condition . x(0) = 1 , and the default parameter values are . r = 0.1 , . K = 5, 
compute the normalized forward sensitivity index of the final population size that depends on . r  or . K . 

Solution: We apply Separation of Variables to find the solution 

x(t) =
K

1 + (K − 1)e−rt
.

In the end of the experiment, the final population size is 

x(10) =
K

1 + (K − 1)e−10r
.

The . r -related sensitivity index is 

γx(10)
r =

∂x(10)

∂r
× r

x(10)

=
−K[(K − 1)(−10)e−10r]

(1 + (K − 1)e−10r)2
r

K/[1 + (K − 1)e−10r]

=
10r(K − 1)e−10r

1 + (K − 1)e−10r
.

At default parameter values, . γ
x(10)
r |r=0.1,K=5 = 0.5954. 

γ
x(10)
K =

∂x(10)

∂K
× K

x(10)

=
1 + (K − 1)e−10r −Ke−10r

(1 + (K − 1)e−10r)2
K

K/[1 + (K − 1)e−10r]

=
1− e−10r

1 + (K − 1)e−10r
.

At default parameter values, . γ
x(10)
K |r=0.1,K=5 = 0.2558.
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The sign of the sensitivity index means positive or negative dependence of the studied quantity on the 
parameter. The absolute value of the sensitivity index indicates how sensitive the studied quantity depends 
on the parameter. Positive . γ

x(10)
r  and positive . γ

x(10)
K  mean that the final population size is positively 

related to . r and . K. And . |γx(10)
r | > |γx(10)

K |  means that the final population size is more sensitive to . r  
(growth rate) than to . K  (carrying capacity), or . r  has larger effect on the final population size than . K.

Note 1: If we cannot find an explicit expression for . u , we can still compute . γu
p  numerically: 

γu
p =

∂u

∂p
× p

u
≈

u(p+�p)− u(p)

�p

p

u(p)
,

in which . �p  should be tiny, for example, . 1% of the default . p  value. We can use Matlab solver to obtain 
. u  at . p  and . u  at . p+�p , then we can compute . γu

p  numerically. Of course, the above discussion is 
under default parameter values, which are needed in Matlab simulations.

Note 2: The sensitivity index can be applied to any mathematical model, for instance, a discrete equation, 
a system of differential equations, a system of discrete equations, etc.

Example 18 Revisit the discrete bacterial reproduction model: 

Bn+1 =
rB2

n

1 +
(
Bn

K

)2 .

Determine sensitivity of the stable internal equilibrium with respect to the parameters . r  and . K. The default 
parameters values are . r = 1 , . K = 4. 

Solution: Equilibrium values satisfy 

B∗ =
rB∗2

1 +
(
B∗

K

)2

. ⇒ B∗ = 0, B∗ = K

(
rK
2
−

√(
rK
2

)2 − 1

)
, B∗ = K

(
rK
2
+
√(

rK
2

)2 − 1

)
. As we have discussed 

in Chapter 2, the stable internal equilibrium is . B∗ = K

(
rK
2
+
√(

rK
2

)2 − 1

)
. The sensitivity indices are 
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γB∗

r |r=1,K=4 =
∂B∗

∂r
× r

B∗

∣∣∣
r=1,K=4

= K



K

2
+

2 · rK
2
· K

2

2
√(

rK
2

)2 − 1



 · r

K

(
rK
2
+
√(

rK
2

)2 − 1

)
∣∣∣
r=1,K=4

= 4

(
2 +

8

2
√
3

)
· 1

4(2 +
√
3)

≈ 1.15,

γB∗

K |r=1,K=4 =
∂B∗

∂K
× K

B∗

∣∣∣
r=1,K=4

=







rK

2
+

√(
rK

2

)2

− 1



+K



r

2
+

2 · rK
2
· r
2

2
√(

rK
2

)2 − 1









· K

K

(
rK
2
+
√(

rK
2

)2 − 1

)
∣∣∣
r=1.K=4

=

[
(2 +

√
3) + 4

(
1

2
+

2

2
√
3

)]
· 1

2 +
√
3

≈ 2.15.

Hence, the stable internal equilibrium is positively related to the parameters . r  and . K , and it is more 
sensitive to . K  than to . r .
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Example 19 We consider nearly pristine coral reefs where much of the prey use coral as refuge and are 
inaccessible to the predators. Singh, Wang, Morrison, Weiss (2012) constructed a mathematical model 
with an explicit refuge to illustrate a new biologically plausible mechanism that can explain stable inverted 
biomass pyramids in nearly pristine coral reefs. New modeling components include a refuge of explicit size, 
a refuge size dependent functional response, and refuge size dependent prey growth rate. The prey-predator 
model in a coral reef is provided by 

dx

dt
= a(r)x

(
1− x

K

)
− bf(x, r)y,

dy

dt
= cbf(x, r)y − dy,

where . x  is the prey biomass, . y  is the predator biomass, . b  is the maximum predation rate, . K  is the prey 
carrying capacity, . r  is the refuge size in coral reef, . c  is the biomass conversion efficiency, and . d  is the pre-
dator death rate. The functions in the model are the prey growth rate function . a(r) = 0.003 +

(
0.004r12
0.1+r12

)
;

the predation response function . f(x, r) = 1
1+e−10(x−r) .

Compute sensitivity indices of the biomass ratio (predator to prey) at the coexistence equilibrium with 
respect to all parameters.

Note: We will learn how to analyze such a model in Chapter 6. Usually explicit solutions cannot be obtained, 
thus qualitative analysis is of necessary use. 

Solution: Similar to the case of one differential equation, equilibrium points . (x∗, y∗) satisfy 

dx

dt
= 0

dy

dt
= 0

. ⇒  

a(r)x(1− x/K)− bf(x, r)y = 0

cbf(x, r)y − dy = 0

. ⇒ three possibilities: . (0, 0) , . (K, 0), and the coexistence equilibrium . (x̄, ȳ)  where 

satisfy

dx

dt
= 0

dy

dt
= 0

⇒

a(r)x(1− x/K)− bf(x, r)y = 0

cbf(x, r)y − dy = 0

⇒ three possibilities: (0, 0), (K, 0), and the coexistence equilibrium (x̄, ȳ) where x̄ =

r − 1
10
ln
(
bc
d
− 1

)
> 0, ȳ = a(r)c

d
x̄
(
1− x̄

K

)
> 0. The biomass ratio at the coexistence

equilibrium is

BR =
ȳ

x̄
=

a(r)c

d

(
1 +

1

10K
ln

(
bc

d
− 1

)
− r

K

)
,

from which we can compute γBR
r , γBR

c , γBR
d , γBR

K , γBR
b . Given default parameter values:

r = 0.9, c = 0.15, d = 0.0005, K = 2.0, b = 0.24, we can obtain the sensitivity table:
Parameters Sensitivity index

r 1.55
c 0.61
d -0.61
K 0.11
b 0.05

The biomass ratio is most sensitive to variation in the refuge size (r) and least sensitive
to variation in the predation response (b). The signs of the sensitivity indices illustrate
that the biomass ratio is an increasing function of r (per unit area coral reef refuge size),
b (maximum predation rate), c (biomass conversion efficiency) and K (prey carrying
capacity) and a decreasing function of d (predator death rate).

satisfy

dx

dt
= 0

dy

dt
= 0

⇒

a(r)x(1− x/K)− bf(x, r)y = 0

cbf(x, r)y − dy = 0

⇒ three possibilities: (0, 0), (K, 0), and the coexistence equilibrium (x̄, ȳ) where x̄ =

r − 1
10
ln
(
bc
d
− 1

)
> 0, ȳ = a(r)c

d
x̄
(
1− x̄

K

)
> 0. The biomass ratio at the coexistence

equilibrium is

BR =
ȳ

x̄
=

a(r)c

d

(
1 +

1

10K
ln

(
bc

d
− 1

)
− r

K

)
,

from which we can compute γBR
r , γBR

c , γBR
d , γBR

K , γBR
b . Given default parameter values:

r = 0.9, c = 0.15, d = 0.0005, K = 2.0, b = 0.24, we can obtain the sensitivity table:
Parameters Sensitivity index

r 1.55
c 0.61
d -0.61
K 0.11
b 0.05

The biomass ratio is most sensitive to variation in the refuge size (r) and least sensitive
to variation in the predation response (b). The signs of the sensitivity indices illustrate
that the biomass ratio is an increasing function of r (per unit area coral reef refuge size),
b (maximum predation rate), c (biomass conversion efficiency) and K (prey carrying
capacity) and a decreasing function of d (predator death rate).

, . ȳ = a(r)c
d

x̄
(
1− x̄

K

)
> 0 . The biomass ratio at the coexistence 

equilibrium is 
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BR =
ȳ

x̄
=

a(r)c

d

(
1 +

1

10K
ln

(
bc

d
− 1

)
− r

K

)
,

from which we can compute . γBR
r , γBR

c , γBR
d , γBR

K , γBR
b . Given default parameter values: 

. r = 0.9, c = 0.15, d = 0.0005, K = 2.0, b = 0.24 , we can obtain the sensitivity table: 

Parameters Sensitivity index

r 1.55

c 0.61

d -0.61

K 0.11

b 0.05

The biomass ratio is most sensitive to variation in the refuge size (r) and least sensitive to variation in 
the predation response (b). The signs of the sensitivity indices illustrate that the biomass ratio is an 
increasing function of r (per unit area coral reef refuge size), b (maximum predation rate), c (biomass 
conversion efficiency) and K (prey carrying capacity) and a decreasing function of d (predator death rate).
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5  Systems of difference equations 
(discrete)

5.1 Analytical methods

We consider a two-dimensional discrete-time system: 

xn+1 = f(xn, yn),

yn+1 = g(xn, yn).

The qualitative analysis of a higher dimensional discrete-time system is, although more complicated, 
similar to a two-dimensional discrete-time system.

Same logic as the scalar case, equilibria . (x∗, y∗) satisfy 

x∗ = f(x∗, y∗),

y∗ = g(x∗, y∗).
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Stability of an equilibrium . (x∗, y∗) can be determined by the following theorem: 

Theorem 4 (Linear stability analysis) Let . (x∗, y∗) be an equilibrium of 

xn+1 = f(xn, yn),

yn+1 = g(xn, yn),

and . f, g  are at least twice continuously differentiable. Let 

J(x∗, y∗) =

(
∂f
∂xn

(x∗, y∗) ∂f
∂yn

(x∗, y∗)
∂g
∂xn

(x∗, y∗) ∂g
∂yn

(x∗, y∗)

)

be the Jacobian matrix of .

(
f
g

)
, evaluated at . (x∗, y∗). Then

. (x∗, y∗) is stable if all eigenvalues of . J  have magnitude less than one;

. (x∗, y∗) is unstable if at least one of the eigenvalues has magnitude greater than one. 

Note 1: Eigenvalues . λ  of . J  are obtained from the characteristic equation . det(J − λI) = 0  where 
. I  denotes the identity matrix.

Note 2: Magnitude of a real eigenvalue is absolute value, while magnitude of a complex eigenvalue 
. |a+ bi| =

√
a2 + b2 .

Note 3: This stability theorem can be easily extended to a higher dimensional system. For a system of . m  
difference equations, the Jacobian matrix will be . m×m , and there will be . m  eigenvalues (counting 
multiplicity).

Note 4: For a two-dimensional system, the characteristic equation . det(J − λI) = 0  is equivalent to 

. λ2 − (trJ)λ+ det J = 0. We can show that . |trJ | < 1 + det J < 2  (Jury conditions) are sufficient 
and necessary conditions for all eigenvalues of . J  to have magnitude less than one, then the equilibrium 

. (x∗, y∗) is stable.

If additionally . (trJ)2 − 4 det J > 0, then . (x∗, y∗) is a stable node (real eigenvalues);
If additionally . (trJ)2 − 4 det J < 0, then . (x∗, y∗) is a stable spiral (complex eigenvalues).

We will apply the above definition and theorem to analysis some discrete-time systems.
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5.2 Some examples

Example 20 We consider love affairs between Romeo and Juliet. Let . xn  be Romeo’s love/hate for Juliet on 
day . n , and let . yn  be Juliet’s love/hate for Romeo on day . n . . xn > 0  implies Romeo loves Juliet, . xn < 0  
implies Romeo hates Juliet, and . xn = 0  implies Romeo is neutral to Juliet. The larger . |xn| , the stronger 
feeling of love/hate. Parallel assumptions hold for . yn . A simple linear model is provided by 

xn+1 = axn + byn,

yn+1 = cxn + dyn,

where . a  and . d  are response rates to their own feelings, . b  and . c  are response rates to the feelings of the 
other. The sign of . b  or . c  determines a particular romantic style. Analyze this linear model mathematically. 

Solution: Equilibria . (x∗, y∗) satisfy 
x∗ = ax∗ + by∗

y∗ = cx∗ + dy∗

. ⇔  
(a− 1)x∗ + by∗ = 0

cx∗ + (d− 1)y∗ = 0

. ⇔  (
a− 1 b
c d− 1

)(
x∗

y∗

)
=

(
0
0

)
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Two cases: i) . det

(
a− 1 b
c d− 1

)
�= 0; ii) . det

(
a− 1 b
c d− 1

)
= 0. We discuss these two cases 

one by one.

i) If . det

(
a− 1 b
c d− 1

)
�= 0, then . (x∗, y∗) = (0, 0) is the only equilibrium. Stability of this unique 

equilibrium is determined by the Jacobian matrix . J =

(
a b
c d

)
. ⇒  . trJ = a + d , . det J = ad− bc . 

According to Jury conditions, . (0, 0)  is stable if . |a+ d| < 1 + ad− bc < 2 .

If . det

(
a− 1 b
c d− 1

)
= 0, then . (a− 1)(d− 1)− bc = 0, that is .

a− 1

c
=

b

d− 1
, thus the two 

algebraic equations are identical, we only need to solve from one equation, e.g. the first equation: 
. ∗ = 1−a

b
x∗ , which is the only condition for equilibria to

 

 

 

Figure 8: Different showcases of Romeo and Juliet’s love affairs.
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satisfy. Hence, all points of the form . (x∗, y∗) = (x∗,
1− a

b
x∗) are equilibria. All equilibria have 

the same Jacobian matrix because the system is linear. Therefore, any equilibrium . (x∗,
1− a

b
x∗)  

is stable if . |a+ d| < |1 + ad− bc < 2|  which is equivalent to . |a+ d| < a+ d < 2  (since 

. det

(
a− 1 b
c d− 1

)
= 0 ⇒ ad− bc + 1 = a+ d ). However, the first Jury condition is never satisfied, 

then at least one eigenvalue has magnitude greater than or equal to one. To determine stability, We need 

to examine more details.

Actually when . a+ d > 0 , . |a+ d| = a+ d , at least one eigenvalue has magnitude one with the proof: 

. λ2 − (trJ)λ+ det J = 0 ⇒ λ2 − (a + d)λ+ ad− bc = 0 ⇒  

λ =
a+ d±

√
(a + d)2 − 4(ad− bc)

2

=
a+ d±

√
(a + d)2 − 4(a+ d− 1)

2

=
a+ d±

√
(a + d− 2)2

2

=
a+ d± (a+ d− 2)

2

which leads to eigenvalues . λ1 = a+ d− 1 , . λ2 = 1 . In general, we may need to look at higher order 
terms of the right hand side of the system when one or a few eigenvalues have magnitude one and all 
other eigenvalues have magnitudes less than one. Fortunately the system here is linear (no high order 
terms), then the stability is determined by the eigenvalue whose magnitude is not one. Hence, all equilibria 

. (x∗,
1− a

b
x∗)  are stable if . |a+ d− 1| < 1 ⇔ 0 < a+ d < 2 .

When . a+ d < 0 , . |a+ d| > a+ d , the eigenvalues . λ1 = a+ d− 1 < −1, λ2 = 1 . Since 
. |λ1| = |a+ d− 1| > 1 , then the stability theorem implies that all equilibria . (x∗,

1− a

b
x∗)  are 

unstable.

Figure 8 shows various possible relations between Romeo and Juliet, depending on different parameter 
values. We only vary the parameters in the first equation since . xn  and . yn  are symmetric. From the 
figure, we can observe that when Romeo and Juliet have opposite response rates of their own feelings 
(first and second panels), or when the response rates of the feeling of the other have opposite signs 
(fifth and sixth panels), oscillations occur, that is, Romeo and Juliet love or hate each other alternatively. 
When all response rates are nonnegative, there are two possibilities: the feeling variables are increasing 
functions of time when at least one response rate of the feeling of the other is large (. b = 0.8  in the 
third panel), that is, Romeo and Juliet love each other more and more if one of them loves the other 
deeply; the feeling variables are decreasing functions of time when both response rates of the feeling of 
the other are small (. b = 0.3  in the fourth panel), that is, Romeo and Juliet love each other less and less 
if both of them only love each other a little bit.
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Example 21 We consider host-parasitoid interactions (see Figure 9). Parasitoids lay eggs on hosts, and thus 
hosts are separated into two groups. Parasitized hosts give rise to the next generation of parasitoids, while 
non-parasitized hosts give rise to the next generation of hosts. Write up a simple model for host-parasitoid 
interactions and perform mathematical analysis. 

 
Figure 9: A flowchart of host-parasitoid model.

Solution: Let . Hn  be the number of hosts at generation . n , . Pn be the number of parasitoids at generation 
. n . Let . f(Hn, Pn)  be the fraction of hosts that are not parasitized, then the number of hosts not 

parasitized is . f(Hn, Pn)Hn , and the number of hosts parasitized is . [1− f(Hn, Pn)]Hn . To simplify 
the model, we assume that the host population grows geometrically in the absence of the parasitoids 
with the reproduction rate . b > 1, and that the average number of eggs laid in one host that give rise 
to adult parasitoids is . c > 0 . With these assumptions, we obtain the discrete model: 

Hn+1 = bf(Hn, Pn)Hn,

Pn+1 = c[1− f(Hn, Pn)]Hn.

If we assume that the fraction of hosts not parasitized is a decreasing function of the parasitoid population 
and independent of the host population, then we can choose . f(Hn, Pn) = e−aPn . Hence, the model 
becomes 

Hn+1 = bHne
−aPn ,

Pn+1 = cHn[1− e−aPn ],

which is the classic Nicholson and Bailey’s model.

Equilibria satisfy 
H∗ = bH∗e−aP ∗

,

P ∗ = cH∗[1− e−aP ∗
],

which leads to . (H∗, P ∗) = (0, 0) and . (H∗, P ∗) = ( b ln b
ac(b−1)

, ln b
a
)  (it makes sense since . b > 1).

We determine stability by evaluating the Jacobian matrix 

J(H∗, P ∗) =

(
be−aP ∗ −abH∗e−aP ∗

c[1− e−aP ∗
] acH∗e−aP ∗

)
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at each equilibrium: . J(0, 0) =

(
b 0
0 0

)
 which leads to eigenvalues . λ1 = b > 1, λ2 = 0 , thus . (0, 0)  

is unstable; . J( b ln b
ac(b−1)

, ln b
a
) =

(
1 − b ln b

c(b−1)
c(b−1)

b
ln b
b−1

)
 whose trace and determinant are . trJ = 1 + ln b

b−1
 , 

. det J = ln b+ ln b
b−1. Since . b > 1, . |trJ | < 1 + det J , the first Jury condition is satisfied. Since 

. det J > 1 for all . b > 1, then the second Jury condition (. 1 + det J < 2 ) is never satisfied (the 

inequality has the opposite direction without equal). Hence, . ( b ln b
ac(b−1)

, ln b
a
) is unstable. A natural question 

appears: where do solutions go?  A stable cycle or chaotic attractor!  This is out of the scope of this book.

Note: If . 1 + det J = 2 , then the situation can be more complicated. Besides the Jacobian matrix, high 
order terms need to be examined to determine stability. Same logic holds for the first Jury condition.

A sample simulation will be provided in Chapter 8 (see Figure 20).
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6  Systems of differential equations 
(continuous)

6.1 Some motivation examples

Example 22  (A competition model) Consider a pond that supports two fish types: trout and bass. They 
compete for food. Let . x(t) be the population of trout at time . t  and . y(t) be the population of bass at 
time . t . The model is provided by 

dx

dt
= ax− bxy, (growth-competition)

dy

dt
= my − nxy, (growth-competition)

where . a, b,m, n > 0 , . x, y ≥ 0 . The parameters . a  and . m  represent the per capita growth rates of trout 
and bass, respectively. The parameters . b  and . n  represent the competition strengths between trout and bass. 

The mathematical analysis of this model will be discussed later. This model only considers the between-
species competition. To incorporate both between-species and within-species competitions, we have the 
following well-known model.

Example 23  (The Lotka-Volterra competition model) Let . y1(t)  be the population of species 1 and . y2(t)  
be the population of species 2. The model incorporating both between-species and within-species competitions 
can be provided by 

dy1
dt

= r1y1(1− y1 − a1y2),

dy2
dt

= r2y2(1− y2 − a2y1),

where . r1, r2, a1, a2 > 0 , . y1, y2 ≥ 0 . The right hand side of either equation is formulated as growth – 
within species competition – between species competition. This model is usually called the Lotka-Volterra 
competition model. 

We will return to this example as well after we study basic analytical methods.

Download free eBooks at bookboon.com



Mathematical Modeling I – preliminary

59 

Systems of differential equations (continuous)

Example 24  (A basic epidemic model) Epidemic models are constructed for understanding the spread of 
an infectious disease in a host population.

We define the variables and the parameters as follows:

. S  — the number of susceptible individuals

. I  — the number of infected&infectious individuals

. R  — the number of recovered individuals

. β > 0  — the transmission coefficient

. α > 0  — the recovery rate

. γ > 0  — the rate for the loss of immunity

 
Figure 10: A flowchart of SIR epidemic model.

Infected individuals can infect susceptible individuals and can be recovered. It is possible for recovered 
individuals to lose their immunity after some time. The classical SIR (susceptible-infected-recovered) model 
describing the above process is provided by 

S ′ = −βSI + γR,

I ′ = βSI − αI,

R′ = αI − γR,

where . βSI  is the rate of new incidences via direct contact between . S  and . I , using the mass-action form. 

. (S + I +R)′ = 0 ⇒ S + I +R = constant , say . N , then 

S ′ = −βSI + γ(N − S − I),

I ′ = βSI − αI,

R = N − S − I,
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which is actually a two-dimensional system of differential equations since the third equation is an 
algebraic equation.

If we assume permanent immunity, then . γ = 0 , then 

S ′ = −βSI,

I ′ = βSI − αI,

R′ = αI,

or equivalently 

S ′ = −βSI,

I ′ = βSI − αI,

R = N − S − I,

6.2 Nondimensionalization

Nondimensionalization is a technique to reduce the number of free parameters without losing any 
property of the model. We discuss this technique in two examples.

Example 25 Nondimensionalize the logistic growth model . ′ = rN
(
1− N

K

)
. ′ = rN

(
1− N

K

)
. 
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Let . Ñ =
N

K
 which has no unit, then 

N ′

K
= r

N

K

(
1− N

K

)
,

which leads to 

Ñ ′ = rÑ(1− Ñ).

Let . t̃ = rt  which has no unit, then 

Ñ

dt
=

dÑ

dt̃

dt̃

dt
= r

dÑ

dt̃
,

thus 

r
dÑ

dt̃
= rÑ(1− Ñ),

dÑ

dt̃
= Ñ(1− Ñ).

If we delete tilde, then we obtain the nondimensionalized model . N ′ = N(1−N)  which has no 
parameters! 

Example 26 Nondimensionalize the competition model 

x′ = ax− bxy,

y′ = my − nxy.

Let . x̃ =
n

a
x , . ỹ =

b

a
y , . t̃ = at , . µ =

m

a
, all of which have no units, then the model becomes 

x̃′ = x̃− x̃ỹ,

ỹ′ = µỹ − x̃ỹ.

Delete tilde to obtain the nondimensionalized model: 

x′ = x− xy,

y′ = µy − xy,

which has only one parameter! 
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6.3 Analytical methods

For a system of differential equations, usually we cannot solve it explicitly, thus qualitative analysis is 
useful to understand dynamical behaviors of a system. In this section, we study the qualitative analysis 
of a system of two differential equations: 

x′
1 = f1(x1, x2),

x′
2 = f2(x1, x2).

Let . x =

(
x1

x2

)
, . f(x) =

(
f1(x)
f2(x)

)
=

(
f1(x1, x2)
f2(x1, x2)

)
, we have the vector form: 

x′ = f(x).

Actually, for any number of autonomous differential equations, we can always write the system as this 
vector form.

Nullclines

The . x1 -nullcline is the set of points . (x1, x2)  such that . x′
1 = f1(x1, x2) = 0 .

The . x2 -nullcline is the set of points . (x1, x2)  such that . x′
2 = f2(x1, x2) = 0 .

Equilibrium points (or fixed points or steady states)

All equilibrium points . (x∗
1, x

∗
2)  satisfy 

f1(x
∗
1, x

∗
2) = 0,

f2(x
∗
1, x

∗
2) = 0,

the intersection(s) of . x1 - and . x2 -nullclines.

Stability of equilibrium points

Jacobian matrix at . (x∗
1, x

∗
2) : . J(x∗

1, x
∗
2) =

(
∂f1
∂x1

(x∗
1, x

∗
2)

∂f1
∂x2

(x∗
1, x

∗
2)

∂f2
∂x1

(x∗
1, x

∗
2)

∂f2
∂x2

(x∗
1, x

∗
2)

)
 Characteristic equation: 

. det(J(x∗
1, x

∗
2)− λI) = 0  whose roots . λ1, λ2  are eigenvalues.

Stability criterion:

The equilibrium point . (x∗
1, x

∗
2)  is (asymptotically) stable if all eigenvalues have negative real parts.

The equilibrium pint . (x∗
1, x

∗
2)  is unstable if at least one of the eigenvalues has positive real part.

For a system of two differential equations, the condition “all eigenvalues have negative real parts” is 
equivalent to . det J(x∗

1, x
∗
2) > 0 and . trJ(x∗

1, x
∗
2) < 0.
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Figure 11: Types and stability of an equilibrium point.
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Besides stability, we can classify equilibria in more detail (see Figure 11). 

•	 When both eigenvalues are real and negative, then the equilibrium point . (x∗
1, x

∗
2)  is a stable 

node (see panel (a)). 
•	 When both eigenvalues are real and positive, then the equilibrium point . (x∗

1, x
∗
2)  is an 

unstable node (see panel (b)). 
•	 When one eigenvalue is negative (real) and one eigenvalue is positive (real), then the 

equilibrium point . (x∗
1, x

∗
2)  is a saddle (unstable) (see panel (c)). 

•	 When both eigenvalues are complex and have negative real parts, then the equilibrium point 
. (x∗

1, x
∗
2)  is a stable spiral (see panel (d), counterclockwise versus clockwise). 

•	 When both eigenvalues are complex and have positive real parts, then the equilibrium point 
. (x∗

1, x
∗
2)  is an unstable spiral (see panel (e), counterclockwise versus clockwise). 

Note: For a system of two differential equations, complex eigenvalues are complex conjugates which have 
the same real parts, thus the following two cases are impossible: i) one complex eigenvalue has positive 
real part while the other complex eigenvalue has negative real part; ii) one eigenvalue is complex while 
the other eigenvalue is real.

Revisit Example 22: 

dx

dt
= ax− bxy,

dy

dt
= my − nxy,

where . a, b,m, n > 0 , . x, y ≥ 0 .

Equilibrium points . (x∗, y∗) satisfy 

ax∗ − bx∗y∗ = 0

my∗ − nx∗y∗ = 0

There are two possibilities: . (0, 0) , . (m/n, a/b) .

We can determine their stability by checking the Jacobian matrix 

J(x, y) =

(
a− by −bx
−ny m− nx

)
.

At each equilibrium point . (x∗, y∗), . J(x∗, y∗) =

(
a− by∗ −bx∗

−ny∗ m− nx∗

)
.
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For the equilibrium . (0, 0) , 

J(0, 0) =

(
a 0
0 m

)

det(J(0, 0)− λI) = 0

det

(
a− λ 0
0 m− λ

)

(a− λ)(m− λ) = 0

Eigenvalues: . λ1 = a > 0 , . λ2 = m > 0 . Thus, the equilibrium . (0, 0)  is an unstable node.

For the equilibrium . (m/n, a/b) , 

J(m/n, a/b) =

(
0 −bm/n

−na/b 0

)

det(J(m/n, a/b)− λI) = 0

det

(
−λ −bm/n

−na/b −λ

)
= 0

λ2 − am = 0

λ = ±
√
am

Since . am > 0 , we obtain two real eigenvalues: . λ1 =
√
am > 0, λ2 = −

√
am < 0 . Thus the 

equilibrium . (m/n, a/b)  is a saddle (unstable).

Revisit Example 23: 

dy1
dt

= r1y1(1− y1 − a1y2),

dy2
dt

= r2y2(1− y2 − a2y1),

where . r1, r2, a1, a2 > 0 , . y1, y2 ≥ 0 .
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Equilibrium points . (ȳ1, ȳ2)  satisfy 

r1ȳ1(1− ȳ1 − a1ȳ2) = 0

r2ȳ2(1− ȳ2 − a2ȳ1) = 0

There are four possibilities: . (0, 0), (1, 0), (0, 1), (y∗1, y
∗
2)  where . y∗1, y

∗
2  satisfy 

1− y∗1 − a1y
∗
2 = 0

1− y∗2 − a2y
∗
1 = 0

. ⇒ . y∗1, y
∗
2. ∗

1 =
1−a1

1−a1a2
, . y∗1, y

∗
2. ∗
2 =

1−a2
1−a1a2

.

Jacobian matrix 

J(ȳ1, ȳ2) =

(
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

)

(ȳ1,ȳ2)

=

(
r1(1− 2y1 − a1y2) −r1a1y1

−r2a2y2 r2(1− 2y2 − a2y1)

)

=

(
r1(1− 2ȳ1 − a1ȳ2) −r1a1ȳ1

−r2a2ȳ2 r2(1− 2ȳ2 − a2ȳ1)

)
.
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For the equilibrium point . (0, 0) , the Jacobian matrix . J(0, 0) =

(
r1 0
0 r2

)
 has eigenvalues 

. λ1 = r1 > 0, λ2 = r2 > 0 , thus the equilibrium . (0, 0)  is an unstable node.

For the equilibrium point . (1, 0) , the Jacobian matrix . J(1, 0) =

(
−r1 −r1a1
0 r2(1− a2)

)
 has eigenvalues 

. λ1 = −r1 < 0, λ2 = r2(1− a2) . Thus the equilibrium . (1, 0)  is asymptotically stable (a stable node) 

if . a2 > 1, and it is unstable (a saddle) if . a2 < 1.

For the equilibrium point . (0, 1) , the Jacobian matrix . J(0, 1) =

(
r1(1− a1) 0
−r2a2 −r2

)
 has eigenvalues 

. λ1 = r1(1− a1), λ2 = −r2 < 0 . Thus the equilibrium . (0, 1)  is asymptotically stable (a stable node) 

if . a1 > 1, and it is unstable (a saddle) if . a1 < 1.

For the coexistence/internal equilibrium point . (y∗1, y
∗
2) , the Jacobian matrix 

J(y∗1, y
∗
2) =

(
r1(1− 2y∗1 − a1y

∗
2) −r1a1y

∗
1

−r2a2y
∗
2 r2(1− 2y∗2 − a2y

∗
1)

)

=

(
r1(1− 2−2a1

1−a1a2
− a1−a1a2

1−a1a2
) −r1

a1−a21
1−a1a2

−r2
a2−a22
1−a1a2

r2(1− 2−2a2
1−a1a2

− a2−a1a2
1−a1a2

)

)

=

(
r1(1−a1a2−2+2a1−a1+a1a2)

1−a1a2

r1(a21−a1)

1−a1a2
r2(a22−a2)

1−a1a2

r2(1−a1a2−2+2a2−a2+a1a2)
1−a1a2

)

=
1

1− a1a2

(
r1(a1 − 1) r1a1(a1 − 1)
r2a2(a2 − 1) r2(a2 − 1)

)
.

Now we check the conditions . trJ(y∗1, y
∗
2) < 0  and . det J(y∗1, y

∗
2) > 0. All eigenvalues have negative 

real parts if and only if 

trJ =
r1(a1 − 1) + r2(a2 − 1)

1− a1a2
< 0

and 

det J =
r1r2(a1 − 1)(a2 − 1)

(1− a1a2)2
− a1a2r1r2(a1 − 1)(a2 − 1)

(1− a1a2)2
=

r1r2(a1 − 1)(a2 − 1)

1− a1a2
> 0.
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We consider four cases: 

(i)  . a1 > 1 and . a2 > 1 . ⇒  .
r1r2(a1 − 1)(a2 − 1)

1− a1a2
< 0 , the second inequality is violated, 

thus the coexistence equilibrium . (y∗1, y
∗
2)  is unstable. 

(ii)  . a1 < 1 and . a2 < 1 . ⇒  both inequalities are valid, thus the coexistence equilibrium 
. (y∗1, y

∗
2)  is asymptotically stable. 

(iii)  . a1 > 1 and . a2 < 1 . ⇒  it is difficult to determine whether any of the two inequalities are 
valid. 

(iv)  . a1 < 1 and . a2 > 1 . ⇒  it is difficult to determine whether any of the two inequalities are 
valid. 

Since populations . y1, y2  are nonnegative, we only consider the first quadrant of the phase plane  
(. y1-. y2  plane). We need to examine whether . y∗1, y

∗
2  are nonnegative.

For case (iii) and case (iv), . y∗1. ∗
1y

∗
2 = (1−a1)(1−a2)

(1−a1a2)2
< 0, thus either . y∗1  or . y∗2  is negative. This means that 

the coexistence equilibrium . (y∗1, y
∗
2) is unfeasible.

For case (i) and case (ii), the coexistence equilibrium . (y∗1, y
∗
2)  is obviously feasible in the first quadrant.

As a conclusion, there are four cases under different values of . a1  and . a2 .
. y1-nullcline: . f1(y1, y2) = 0  . ⇔  . y1 = 0  or . 1− y1 − a1y2 = 0.
. y2-nullcline: . f2(y1, y2) = 0  . ⇔  . y2 = 0  or . 1− y2 − a2y1 = 0.

Intersections of different nullclines provide equilibrium points.

We plot phase portraits for the four cases in Figure 12 accordingly. Nullclines and equilibria are sketched 
with some representative solutions. Solid points represent stability while circles represent instability. The 
dotted curve in the first panel represents the separatrix (stable manifold of the internal saddle) for the 
attracting basins of the two stable equilibrium points. This panel indicates that when both species are 
strong in between-species competition (. a1 > 1, a2 > 1), who wins the competition depends on the 
initial population sizes. All solutions in the second panel tend to the only stable equilibrium . (y∗1, y

∗
2) . This 

panel indicates that when the between-species competition is weak (. a1 < 1, a2 < 1), the two competing 
species can coexist. All solutions in the third panel tend to the only stable equilibrium . (0, 1) , and the 
intersection of the two internal nullclines is in the second quadrant. This panel indicates that when 
species 1 is stronger than species 2 (. a1 > 1 > a2), species 1 always wins the competition. All solutions 
in the fourth panel tend to the only stable equilibrium . (1, 0) , and the intersection of the two internal 
nullclines is in the fourth quadrant. This panel indicates that when species 1 is weaker than species 2  
(. a1 < 1 < a2), species 2 always wins the competition. These results are all reasonable in biology, thus the 
simple Lotka-Volterra competition model captures the main qualitative features of species competition.
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Figure 12: Phase portrait of the Lotka-Volterra competition model.

Revisit Example 24: 

S ′ = −βSI

I ′ = βSI − αI

d

dt

(
S
I

)
=

(
−βSI

βSI − αI

)

which is simple but still a nonlinear system.
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Equilibria . (S∗, I∗)  satisfy 

−βS∗I∗ = 0,

βS∗I∗ − αI∗ = 0.

The first equation implies that . S∗ = 0  or . I∗ = 0.
When . S∗ = 0 , the second equation implies that . I∗ = 0.
When . I∗ = 0, the second equation is always satisfied, thus . S∗  can be any nonnegative number.
Hence, we have infinitely many equilibria . (S̄, 0) , . S̄ ≥ 0 .

To determine the type and stability of equilibria, we need to consider the Jacobian matrix at each 

equilibrium and compute eigenvalues. The Jacobian matrix . J(S, I) =

(
−βI −βS
βI βS − α

)
 

. ⇒  . J(S̄, 0) =

(
0 −βS̄
0 βS̄ − α

)
 . ⇒  Eigenvalues are . λ1 = 0  (neutral for stability), 

. λ2 = βS̄ − α

{
> 0 if S̄ > α/β;
< 0 if S̄ < α/β.

Based on the value of . S̄ , should the model have a group of equilibria unstable and a group of equilibria 
stable? 

.
dI

dS
=

dI/dt

dS/dt
=

βSI − αI

−βSI
= −1 +

α

βS ,

then I. =
∫ (

−1 + α
βS

)
dS = −S + α

β
lnS + C .

If the initial point is . (S0, I0) , then I. 0 = −S0 +
α
β
lnS0 + C ⇒ C = I0 + S0 − α

β
lnS0 . Hence,  

I . = α
β
lnS − S + (I0 + S0 − α

β
lnS0).

Phase portrait is sketched in Figure 13 that shows the following observations:

If . S0 > α/β , then . I  initially increases, reaching its maximum at . S = α/β , and then decreases. 
Therefore, there is an outbreak (or epidemic) in this case.

If . S0 < α/β , then no epidemic is possible, and I decreases from the beginning.

Obviously, the value . α/β  represents the critical population size for causing an epidemic.
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Figure 13: Phase portrait of the SIR epidemic model.

We look at one more example, which will be discussed again in Chapter 7.

Example 27 Analyze the model 

dx1

dt
= −x2 + x1(µ− x2

1 − x2
2),

dx2

dt
= x1 + x2(µ− x2

1 − x2
2).

Solution:
. x1 -nullcline: . − x2 + x1(µ− x2

1 − x2
2) = 0,

. x2 -nullcline: . x1 + x2(µ− x2
1 − x2

2) = 0 ,
both of which are not straight lines.

Equilibria . (x∗
1, x

∗
2)  satisfy 

−x∗
2 + x∗

1(µ− x∗
1
2 − x∗

2
2) = 0

x∗
1 + x∗

2(µ− x∗
1
2 − x∗

2
2) = 0

. ⇔  

x∗
1(µ− x∗

1
2 − x∗

2
2) = x∗

2

x∗
2(µ− x∗

1
2 − x∗

2
2) = −x∗

1

. ⇒  

(x∗
1
2 + x∗

2
2)(µ− x∗

1
2 − x∗

2
2) = 0
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. ⇒  

x∗
1
2 + x∗

2
2 = 0 or µ− x∗

1
2 − x∗

2
2 = 0

. ⇒  

x∗
1 = x∗

2 = 0.

The system has only one equilibrium point . (0, 0).

To determine its stability, we examine its Jacobian matrix: 

J(x1, x2) =

(
µ− 3x2

1 − x2
2 −1− 2x1x2

1− 2x1x2 µ− x2
1 − 3x2

2

)

J(0, 0) =

(
µ −1
1 µ

)

det(J(0, 0)− λI) = 0

det

(
µ− λ −1
1 µ− λ

)
= 0

(µ− λ)2 + 1 = 0

(µ− λ)2 = −1

(λ− µ)2 = −1

λ− µ = ±i

λ = µ± i

Eigenvalues are two complex conjugates: . λ1 = µ+ i , . λ2 = µ− i .

Hence, the only equilibrium point . (0, 0)  is 

•	 a stable spiral when . µ < 0 , 
•	 an unstable spiral when . µ > 0 . 

This example provides the canonical form for the Hopf bifurcation, from which the limit cycle occurs. 
We will discuss basic bifurcations in Chapter 7.

Stability of an equilibrium we discuss in this book is local stability (initial points are close to the 
equilibrium). Global stability of an equilibrium in a two dimensional system can be determined by 
Poincaré-Bendixson theorem (to claim all possibilities) and Dulac criterion (to exclude limit cycles).
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6.4 Higher dimensional systems

In this section, we briefly mention the analysis of a system with dimension three or higher. The general 
system can be expressed as 

dx1

dt
= f1(x1, · · · , xn)

...
dxn

dt
= fn(x1, · · · , xn)

In the vector notation, the system is .
dx

dt
= f(x), where . =




x1
...
xn



, . f(x) =




f1(x)
...

fn(x)



 =




f1(x1, · · · , xn)

...
fn(x1, · · · , xn)



.

Equilibria . x∗  satisfy . f(x∗) = 0  . ⇔  

f1(x
∗) = 0

...

fn(x
∗) = 0
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. ⇔ 

f1(x
∗
1, x

∗
2, · · · , x∗

n) = 0
...

fn(x
∗
1, x

∗
2, · · · , x∗

n) = 0

Stability of each equilibrium . x∗  is determined by the associated Jacobian matrix 

J(x∗) =





∂f1
∂x1

(x∗) · · · ∂f1
∂xn

(x∗)
... · · · ...

∂fn
∂x1

(x∗) · · · ∂fn
∂xn

(x∗)





. det(λI − J(x∗)) = 0 . ⇒  Eigenvalues . λ1, λ2, · · · , λn  (some of them may be same) . ⇒  Stability of 
. x∗  and local solution behaviors.

The characteristic equation . det(λI − J(x∗)) = 0 is a polynomial with degree . n . Here . n ≥ 3 , thus 
it is likely that we cannot obtain all eigenvalues explicitly. We usually apply Routh-Hurwitz theorem that 
provides conditions for all eigenvalues to have negative real parts.

Global stability of an equilibrium in a system with dimension three or higher is extremely complicated 
and may be determined by Lyapunov functions or theory of monotone dynamics systems or compound 
matrices if lucky.
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7 Bifurcation analysis
Bifurcation analysis is an important technique to understand the role of key parameters in the output 
of the studied model and to examine the robustness of theoretical results. In this textbook, we only 
consider one bifurcation parameter. Multiple bifurcation parameters are more complicated but follow 
similar ideas. We will discuss one-dimensional flows (generated from one equation) for typical bifurcation 
types: saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation. We will also discuss two-
dimensional flows (generated from a system of two equations) for typical bifurcation types: saddle-node 
bifurcation, transcritical bifurcation, pitchfork bifurcation, Hopf bifurcation. Note that Hopf bifurcation 
can only occur in a system of two or more equations. These typical bifurcation types frequently appear 
in higher dimensional equations as well.

7.1 Saddle-node bifurcation

The saddle-node bifurcation occurs when equilibrium points are created and destroyed. As the bifurcation 
parameter varies, two equilibrium points move toward each other, collide, and finally disappear.

Example 28  For the equation .
dx

dt
= r + x2 , discuss how equilibrium points and their stability change 

as the parameter . r varies. 

Solution: When . r < 0 , there are two equilibrium points: . x =
√
−r  (unstable), . x = −

√
−r  (stable).

When . r = 0 , the only equilibrium point . x = 0  is half-stable.

When . r > 0 , no equilibrium points exist.

These three cases are plotted in Figure 14.

We can plot these results in a bifurcation diagram (the last panel of Figure 14) which sketches the key 
dynamical features (equilibria, limit cycles, etc.) versus the bifurcation parameter. The saddle-node 
bifurcation occurs at . r = 0 .

Example 29 For the equation .
dx

dt
= r − x2 , discuss how equilibrium points and their stability change as 

the parameter . r  varies. Plot the bifurcation diagram. 

We leave this problem to readers since the process is same as Example 28.

Other names of saddle-node bifurcation include fold bifurcation, turning-point bifurcation.
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Figure 14: Three cases of Example 28 and the bifurcation diagram.

7.2 Transcritical bifurcation

The transcritical bifurcation occurs when an equilibrium point always exists but changes its stability as 
the bifurcation parameter varies.

Example 30  Perform bifurcation analysis of the equation .
dx

dt
= rx− x2. 

Solution: Equilibrium points are . x = 0 and . x = r.

When . r < 0 , the equilibrium point . x = 0  is stable and the equilibrium point . x = r  is unstable.
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When . r = 0 , the equilibrium point . x = 0  and the equilibrium point . x = r  collide and are half-stable.

When . r > 0 , the equilibrium point . x = 0  is unstable and the equilibrium point . x = r  is stable.

These three cases are plotted in Figure 15.

The equilibrium point . x = 0  exists for all values of . r. As . r  increases from negative to positive, the two 
equilibrium points exchange their stabilities. We conclude these results in a bifurcation diagram (the 
last panel of Figure 15). The transcritical bifurcation occurs at . r = 0 .

Figure 15: Three cases and the bifurcation diagram of Example 30.
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7.3 Pitchfork bifurcation

There are two types of pitchfork bifurcation: supercritical and subcritical. The supercritical pitchfork 
bifurcation occurs when the following dynamical switch occurs: As the bifurcation parameter varies, 
a forever existing equilibrium changes its stability from stable to unstable, and two new equilibrium 
points appear and are stable. The subcritical pitchfork bifurcation occurs when the following dynamical 
switch occurs: As the bifurcation parameter varies, a forever existing equilibrium changes its stability 
from unstable to stable, and two new equilibrium points appear and are unstable.

Example 31 Perform bifurcation analysis of the equation .
dx

dt
= rx− x3 (supercritical case). 

Solution: When . r ≤ 0 , . x = 0  is the only equilibrium and stable.

When . r > 0 , there are three equilibria: . x = 0  is unstable, and . x = ±
√
r  are stable.

The first two panels of Figure 16 show the phase portraits of these two cases.

We conclude the supercritical pitchfork bifurcation (occurring at . r = 0) in a bifurcation diagram (the 
third panel of Figure 16). We can observe that as the bifurcation parameter . r  increases from negative 
to positive, the trivial equilibrium changes its stability from stable to unstable, and two new stable 
equilibria appear.
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Example 32 Perform bifurcation analysis of the equation .
dx

dt
= rx+ x3  (subcritical case). 

Solution: When . r > 0 , . x = 0  is the only equilibrium and unstable.

When . r ≤ 0 , there are three equilibria: . x = 0  is stable, and . x = ±
√
−r  are unstable.

The fourth and fifth panels of Figure 16 show the phase portraits of these two cases.

We conclude the subcritical pitchfork bifurcation (occurring at . r = 0) in a bifurcation diagram (the 
last panel of Figure 16). We can observe that as the bifurcation parameter . r decreases from positive 
to negative, the trivial equilibrium changes its stability from unstable to stable, and two new unstable 
equilibria appear.

The supercritical pitchfork bifurcation is also called a forward bifurcation. The subcritical pitchfork 
bifurcation is also called an inverted or backward bifurcation.

7.4 Generic saddle-node bifurcation

In this section, we discuss the generic form of saddle-node bifurcation which can be extended from the 
normal from of saddle-node bifurcation (Section 7.1). Similar ideas can be applied to discuss generic 
transcritical or pitchfork bifurcation.
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Figure 16: The first three panels are for supercritical pitchfork bifurcation  
and the last three panels are for subcritical pitchfork bifurcation.
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The normal form of saddle-node bifurcation is .
dx

dt
= r + x2 . We first discuss the extension of this 

normal form with a higher order term, and then we discuss the generic form.

Lemma 1  The equation .
dx

dt
= r + x2 +O(x3) is locally topologically equivalent near the origin to the 

equation .
dx

dt
= r + x2 . 

Topological equivalence means that one object can be continuously deformed to the other, i.e. there is a 
homeomorphism of one onto the other, i.e. there is a one-to-one map between them that is continuous 
in both directions. This lemma claims that adding a higher order term will not change the existence of 
saddle-node bifurcation. The proof can be found in “Elements of Applied Bifurcation Theory” by Yuri 
A. Kuznetsov.

Generic case: .
dx

dt
= f(x, r), x ∈ R1, r ∈ R1 , with s smooth function . f , and at . r = 0 , the equilibrium 

. x = 0  has the eigenvalue . λ = fx(0, 0) = 0  (saddle-node bifurcation condition).

Expand . f(x, r)  as a Taylor series with respect to . x  at . x = 0 : 

f(x, r) = f0(r) + f1(r)x+ f2(r)x
2 +O(x3).

Equilibrium condition: . f(0, 0) = 0 , i.e. . f0(0) = 0 ;

Saddle-node bifurcation condition: . fx(0, 0) = 0 , i.e. . f1(0) = 0 .

When solutions are near the bifurcation point, the generic equation becomes the normal equation plus 
higher order terms.

Theorem 5  Suppose that a one-dimensional system .
dx

dt
= f(x, r), x ∈ R1, r ∈ R1, with smooth . f , 

has the equilibrium . x = 0  at . r = 0 . Assume that 

(A1) . λ = fx(0, 0) = 0  

(A2) . fxx(0, 0) �= 0 

(A3) . fr(0, 0) �= 0  
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where (A2) and (A3) are for invertibility. Then there exist invertible coordinate and parameter changes 
transforming the system into 

dx̂

dτ
= r̂ ± x̂2 +O(x̂3).

Theorem 5 together with Lemma 1 implies that the generic case .
dx

dt
= f(x, r) with (A1),(A2),(A3) 

and the equilibrium . x = 0  at . r = 0 , is locally topologically equivalent near the origin to one of the 
normal forms: 

dx̂

dτ
= r̂ ± x̂2.

Is this useful?  No doubt! 

Even if we cannot compute bifurcation points by hand, the existence conditions of bifurcations provide 
underlying ideas for programming of bifurcation diagrams (Matlab, xppaut, etc.).

Example 33 Determine whether the equation .
dx

dt
= r − x− e−x � f(x, r)  possesses saddle-node 

bifurcation. 

Solution: At . r = 0 , . x = 0  is not an equilibrium, since . f(0, 0) = −1 �= 0.

Rewrite the equation as .
dx

dt
= (r − 1) + 1− x− e−x .
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Let . r̄ = r − 1, then .
dx

dt
= r̄ + 1− x− e−x � f̄(x, r̄).

Now . f̄(0, 0) = 0 , i.e. . x = 0  is an equilibrium at . r̄ = 0 . We can check the three conditions in 
Theorem 5: 

(A1) . λ = f̄x(0, 0) = −1 + e−x|(0,0) = 0  

(A2) . f̄xx(0, 0) = −e−x|(0,0) = −1 �= 0  

(A3) . f̄r̄(0, 0) = 1 �= 0 

Hence, there exists a saddle-node bifurcation as the bifurcation parameter . r̄  (or . r ) varies. The bifurcation 
value of the parameter for the original equation is . r = 1  (i.e. . r̄ = 0). The bifurcation diagram can be 
plotted using Matlab or xppaut.

7.5  Saddle-node, transcritical, and pitchfork bifurcations in two-dimensional 
systems

We start our discussion from an example.

Example 34  Perform bifurcation analysis of a simple decoupled system: 

dx

dt
= µ− x2,

dy

dt
= −y.

Solution: If . µ > 0 , there are two equilibria . (
√
µ, 0), (−√

µ, 0) . Their stability can be determined by 
their Jacobian matrices:

. J(
√
µ, 0) =

(
−2

√
µ 0

0 −1

)
 . ⇒  . (

√
µ, 0)  is a stable node;

. J(−√
µ, 0) =

(
2
√
µ 0

0 −1

)
 . ⇒  . (−√

µ, 0) is a saddle.

If . µ = 0 , the system has a unique equilibrium . (0, 0) . The Jacobian matrix is . J(0, 0) =

(
0 0
0 −1

)
 

which cannot tell the stability. However, we can solve the decoupled system easily to obtain that the 
equilibrium . (0, 0)  is a saddle-node (one side like a saddle and one side like a stable node). This may be 
the reason for the name “saddle-node” bifurcation.

If . µ < 0 , no equilibria exist since . µ− x2 < 0 .

These three cases are plotted in Figure 17.
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Figure 17: Three cases and the bifurcation diagram of Example 34.

As . µ  decreases from positive to negative, the saddle and the node approach each, then collide when 
. µ = 0 , and finally disappear when . µ < 0 . We conclude these results in a bifurcation diagram (the last 

panel of Figure 17) in which we plot . x  versus . µ  since the change of equilibria occurs in . x -coordinate. 
The bifurcation diagram is the same as the one-dimensional case .

dx

dt
= µ− x2.
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Typical examples for transcritical and pitchfork bifurcations of two dimensional flows are listed below:

(transcritical) 

dx

dt
= µx− x2

dy

dt
= −y

(supercritical pitchfork) 

dx

dt
= µx− x3

dy

dt
= −y

(subcritical pitchfork) 

dx

dt
= µx+ x3

dy

dt
= −y

More complicated examples can be found in “Nonlinear dynamics and chaos” by S.H. Strogatz.

7.6 Introduction of Hopf bifurcations

As the bifurcation parameter varies, a real eigenvalue passes through . λ = 0 (see the first panel of Figure 
18). This is the case for saddle-node, transcritical, or pitchfork bifurcation.

As the bifurcation parameter varies, two complex conjugate eigenvalues simultaneously cross the 
imaginary axis into the right half-plane (see the second panel of Figure 18). This is the case for Hopf 
bifurcations.

Hopf bifurcation has two main types: supercritical and subcritical.

Example 35  Perform bifurcation analysis for the system 

dr

dt
= µr − r3

θ

dt
= ω + br2

in polar coordinates where . µ  is the bifurcation parameter. (supercritical case) 
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Figure 18: Two complex planes, and two phase portraits and the bifurcation diagram of supercritical Hopf bifurcation (Example 35), 
and two phase portraits and the bifurcation diagram of subcritical Hopf bifurcation (Example 36).
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Solution: In Cartesian coordinates, . x = r cos θ, y = r sin θ, then 

.
dx

dt
=

dr

dt
cos θ− r

dθ

dt
sin θ = (µr− r3) cos θ− r(ω+ br2) sin θ = (µ− (x2+y2))x−

(ω + b(x2 + y2))y

.
dx

dt
=

dr

dt
cos θ− r

dθ

dt
sin θ = (µr− r3) cos θ− r(ω+ br2) sin θ = (µ− (x2+y2))x−

(ω + b(x2 + y2))y ; similar for .
dy

dt
. Hence the system becomes 

dx

dt
= µx− ωy + cubic terms

dy

dt
= ωx+ µy + cubic terms

The Jacobian matrix at the origin (the trivial equilibrium) is 

A =

(
µ −ω
ω µ

)

Eigenvalues . λ = µ± iω  cross the imaginary axis from left to right as . µ  increases from negative to 
positive values.

When . µ < 0 , the origin is a spiral sink.

When . µ > 0 , the origin is a spiral source, and all solutions tend to a limit cycle.

The third and fourth panels of Figure 18 exhibit the phase portraits of these two cases.

We conclude these results in a bifurcation diagram (the fifth panel of Figure 18). The supercritical Hopf 
bifurcation occurs at . µ = 0 . It is usually difficult to prove existence of a limit cycle and its stability, but 
we can definitely check them numerically.

Example 36  Perform bifurcation analysis for the system 

dr

dt
= µr + r3 − r5

dθ

dt
= ω + br2

in polar coordinates where . µ  is the bifurcation parameter. (subcritical case) 

Solution: Similar to Example 35, we can obtain the system in Cartesian coordinates 
. x = r cos θ, y = r sin θ, and perform local stability analysis.
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When . − 1/4 < µ < 0, the origin is a spiral sink. There is an unstable limit cycle and a stable limit 
cycle. Bistability occurs with the unstable limit cycle as the separatrix.

When . µ > 0 , the origin is a spiral source, and there is a stable limit cycle.

The sixth and seventh panels of Figure 18 exhibit the phase portraits of these two cases.

We conclude these results in a bifurcation diagram (the last panel of Figure 18). The subcritical Hopf 
bifurcation occurs at . µ = 0 .

Readers may be curious about the case . µ ≤ −1/4 . Actually . µ = −1/4  is a saddle-node bifurcation of 

limit cycles (a type of global bifurcations). When . µ < −1/4 , no limit cycles exist. When . µ = −1/4  , 

one limit cycle exists and is half-stable. When . − 1/4 < µ < 0, two limit cycles exist (one stable, one 

unstable). We do not expand the details of this global bifurcation since we only discuss local bifurcations 

in this textbook.

7.7 Normal form of Hopf bifurcation

The normal form of supercritical case is provided by 

dx

dt
= µx− y − x(x2 + y2)

dy

dt
= x+ µy − y(x2 + y2)

The normal form of subcritical case is provided by 

dx

dt
= µx− y + x(x2 + y2)

dy

dt
= x+ µy + y(x2 + y2)

Supercritical case:

The system has the equilibrium . (0, 0)  for all . µ  values (additional equilibria are possible). The Jacobian 

matrix . J(0, 0) =

(
µ −1
1 µ

)
 . ⇒  Eigenvalues . λ = µ± i.
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Figure 19: Two phase portraits and two bifurcation diagrams of supercritical Hopf bifurcation (normal form),  
and two phase portraits and two bifurcation diagrams of subcritical Hopf bifurcation (normal form).
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Introduce the complex variable . z = x+ iy , then . z̄ = x− iy , . |z|2 = zz̄ = x2 + y2 .

 .

Let . z = reiθ , where . r =
√
x2 + y2 ≥ 0, tan θ = y/x , then

dz

dt
=

dr

dt
eiθ + ri

dθ

dt
eiθ.

Hence, 

dr

dt
eiθ + ir

dθ

dt
eiθ = (µ+ i)z − z|z|2 = z(µ + i− |z|2) = reiθ(µ+ i− r2).

There are two groups in this equality: . eiθ  and . ieiθ . Setting the coefficients of them equal on both sides 
to obtain 

dr

dt
= r(µ− r2)

dθ

dt
= 1

.
dz

dt
=

dx

dt
+ i

dy

dt
= µ(x+ iy) + i(x+ iy)− (x+ iy)(x2 + y2) = (µ+ i)z − z|z|2
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The second equation implies that all orbits keep rotating in the counterclockwise direction with a 
constant speed.

When . µ < 0 , we have .
dr

dt
< 0  for . r > 0  (actually . r > 0  is always true except for the origin where 

. r = 0), and thus the only equilibrium (of the original system) . r = 0  is a spiral sink.

When . µ = 0 , we have .
dr

dt
= −r3 < 0  for . r > 0 , and thus the only equilibrium . r = 0  is still a spiral 

sink.

When . µ > 0 , we have .
dr

dt
= r(µ− r2) > 0  for . 0 < r <

√
µ . In this case, there are two possibilities 

from .
dr

dt
= 0 : . r = 0  and . r =

√
µ  (since . r ≥ 0 , the negative one is not feasible). . r = 0  is corresponding 

to an unstable equilibrium, and . r =
√
µ  is corresponding to a stable limit cycle.

The first two cases above are combined in the first panel of Figure 19, and the third case is plotted in 
the second panel of Figure 19.

We conclude the above results in bifurcation diagrams (the third and fourth panels of Figure 19). Similar 
analysis can be done for the subcritical case, for which we also plot phase portraits (the fifth and sixth 
panels of Figure 19) and bifurcation diagrams (the seventh and eighth panels of Figure 19).

7.8 Generic Hopf bifurcation

We start this section with a lemma.

Lemma 2  The system 

d

dt

(
x
y

)
=

(
µ −1
1 µ

)(
x
y

)
± (x2 + y2)

(
x
y

)
+O

(∥∥∥
(

x
y

)∥∥∥
4
)

is locally topologically equivalent near the origin to the system 

d

dt

(
x
y

)
=

(
µ −1
1 µ

)(
x
y

)
± (x2 + y2)

(
x
y

)
.

Any generic two-dimensional system undergoing a Hopf bifurcation can be transformed into one of the 
normal forms (supercritical “-” in cubic terms, subcritical “+” in cubic terms) plus some higher order 
terms.

Consider .
d

dt

(
x
y

)
= f(x, y, µ), with a smooth vector function . f , which has at . µ = 0  the equilibrium 

. (0, 0)  with eigenvalues . λ = ±iω0 , . ω0 > 0.
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Theorem 6  Suppose a two-dimensional system .
d

dt

(
x
y

)
= f(x, y, µ) with smooth . f , has the equilibrium 

. (0, 0)  with eigenvalues . λ(µ) = α(µ)± iβ(µ) for all sufficiently small . |µ| . Assume the following 

conditions are satisfied: 

(B1) . α(0) = 0 , . β(0) = ω0 > 0 (key Hopf bifurcation condition). 

(B2) . l1(0) �= 0 , where . l1  is the first Lyapunov coefficient (nondegeneracy condition). 

(B3) . α′(0) �= 0  (transversality condition). 

Then there exist invertible coordinate and parameter changes and a time reparametrization transforming 

the system .
d

dt

(
x
y

)
= f(x, y, µ)  into 

d

dτ

(
x̄
ȳ

)
=

(
µ̄ −1
1 µ̄

)(
x̄
ȳ

)
± (x̄2 + ȳ2)

(
x̄
ȳ

)
+O

(∥∥∥
(

x̄
ȳ

)∥∥∥
4
)
.

Theorem 6 together with Lemma 2 leads to the following theorem.
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Theorem 7 (Topological normal form of Hopf bifurcation) Any generic (=(B2)+(B3)) two-dimensional, 

one-parameter system .
d

dt

(
x
y

)
= f(x, y, µ), having at . µ = 0  the equilibrium . (0, 0) with eigenvalues 

((B1) . ⇔) . λ1(0) = iω0 , . λ2(0) = −iω0 , . ω0 > 0, is locally topologically equivalent near the origin to 

one of the following normal forms: 

d

dτ

(
x̄
ȳ

)
=

(
µ̄ −1
1 µ̄

)(
x̄
ȳ

)
± (x̄2 + ȳ2)

(
x̄
ȳ

)
.

Example 37 Consider a predator-prey model 

dx

dt
= rx(1− x)− cxy

α + x
dy

dt
=

cxy

α + x
− dy

to examine whether Hopf bifurcation exists. 

See the solution in “Elements of Applied Bifurcation Theory” by Yuri A. Kuznetsov.

The bifurcations we discussed so far are popular ones, but there are many other bifurcations we have not 
discussed, for example, saddle-node bifurcation of limit cycles, infinite-period bifurcation, homoclinic 
bifurcation, etc.
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8 Matlab programming
All basic Matlab knowledge can be learned from Matlab manual. All Matlab commands and the way to 
use them can be found from Matlab help files. In this chapter, we use Matlab to run simulations for some 
typical examples that are relevant to contents we have learned so far. Readers can modify these sample 
Matlab files for similar models. To change the model dimension, we need to change the dimensions of 
vectors and matrices.

The Matlab .m file for the host-parasitoid model is listed below.

% TwoDifferenceEquations.m – this MATLAB file simulates the host-parasitoid model
k=1.8; %parameter input
a=1; %parameter input
c=1; %parameter input
x0=1; %input initial population of host
y0=1; %input initial population of parasitoid
n=30; %input time period of run
x=zeros(n+1,1);
y=zeros(n+1,1);
t=zeros(n+1,1);
x(1)=x0;
y(1)=y0;
for i=1:n
t(i)=i-1;
x(i+1)=k*x(i)*exp(-a*y(i));
y(i+1)=c*x(i)*(1-exp(-a*y(i)));
end
t(n+1)=n;
figure
subplot(221)
plot(t,x,t,x,’o’)
title(’Host population’)
subplot(222)
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plot(t,y,t,y,’*’)
title(’Parasitoid population’)
subplot(223)
plot(t,y,t,x,t,x,’o’,t,y,’*’)
title(’Host and parasitoid populations’)
subplot(224)
plot(x,y,’o-’)
title(’Host vs parasitoid’);
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Figure 20: The sample simulation for the host-parasitoid model.

The simulation results of this program are sketched in Figure 20. Readers can simply modify this program 
to run simulations for any model with a group of difference equations.
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Figure 21: The sample simulation for a system of three dierential equations.

Matlab programs for a system of differential equations are simple. We provide an example of three 
differential equations below.

%ThreeDmodel.m
function dy = ThreeDmodel(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.5 * y(1) * y(2);

%ThreeDifferentialEquations.m
options = odeset(’RelTol’,1e-3,’AbsTol’,[1e-3 1e-3 1e-4]);

. [T,Y] = ode45(@ThreeDmodel,[0 20],[0 1 1],options);
plot(T,Y(:,1),’-’,T,Y(:,2),’-.’,T,Y(:,3),’.’)

The simulation result is sketched in Figure 21.

Download free eBooks at bookboon.com



Mathematical Modeling I – preliminary

98 

Matlab programming

pplane8.m, copyright by John C. Polking at Rice University, is a useful program for a system of two 
differential equations, more specifically for planar autonomous systems. We can use it to simply plot 
equilibria, nullclines, sample solutions, etc.. pplane8.m can be downloaded from John C. Polking’s 
website. We show how to use pplane8.m in Figures 22 and 23. We first download pplane8.m into our own 
computer and run it in Matlab. A user friendly interface shows up. We can define our two dimensional 
system, parameters, plotting window size, and the type of direction field. Click “proceed” on the right-
bottom corner to obtain the phase plane in which we can plot all dynamical features we want, such as 
equilibria and nullclines. We can also sketch sample solutions by simply clicking on the phase plane. 
The point we click will be used as the initial point for the generated solution.

pplane8.m can be applied to plot phase portraits of all the two dimensional examples in Chapters 6 and 7.
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Figure 22: pplane8.m guidance.
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Figure 23: pplane8.m guidance – continued.
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Two sample .m files to plot the Hopf bifurcation are provided below. The first one defines the model, 
and the second one sketches the Hopf bifurcation diagram using a “for” loop.

%bif    odef.m
function xprime=bif    odef(t,x)

global R;
us=12;
Km=2000;
A=15;
B=70;
Gs=.44*A;
Gw=.63*A;
alpha=0.5;
l=0.01;
ut=us/6;
Gt=5*Gw/6+Gs/6;

xprime=[ut*x(1)*(1-x(1)/Km)-alpha*A*x(1)*x(2)/(alpha*x(1)+B)
R*x(2)*(A*alpha*x(1)/(alpha*x(1)+B)-Gt)-l*x(2)^2
];

%bif    odemain.m
rect = [200 80 700 650]; %fix the window size and position
set(0, ’defaultfigureposition’,rect);

global R;

option=odeset(’AbsTol’,1e-8,’RelTol’,1e-5);
inc=[0:0.1:50]’;
time=[ inc ] ;
limit=[ 400:1:500];
for R=0:0.01:1;
IC=[1000,20];

. [t,U] = ode23s(’bif    odef ’,time,IC,option);
u2=U(limit,2);
usmin=min(u2);
usmax=max(u2);
plot(R, usmax,’b.’,’MarkerSize’, 5);
plot(R, usmin,’r.’,’MarkerSize’, 5);
hold on
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Figure 24: A sample Hopf bifurcation diagram.

end
xlim([0 1]);
ylim([0 300]);
xlabel(’conversion rate, R’);
ylabel(’lemming’);

The Hopf bifurcation, sketched by these two .m files, is shown in Figure 24. The main idea is to take 
maxima and minima of the tail of the solution. We need to run the simulation for a sufficiently long 
time such that the solution is stabilized, and we need to choose the length of the tail reasonably long 
such that at least one period of the limit cycle is included.
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9 Data fitting
In this chapter, we focus on the most popular and simplest technique – least-square method – to perform 
data fitting. Given a model and a data set, how to obtain optimal parameter values to fit data?  If the 
model with optimal parameter values cannot fit data well, then either the model is problematic or the 
data is not accurate.

The least-square data fitting method is defined as follows:

Consider a system of differential equations 

y′ = f(t, y, p), y ∈ Rn, f ∈ Rn, p ∈ Rm,

where . p is the vector of . m parameters. Given a group of . k data points: 

(t1, y1), (t2, y2), · · · , (tk, yk),

we can compute optimal parameter values for the parameters . p  by minimizing the error 

error(p) =

k∑

i=1

|y(ti, p)− yi|2.
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Sample .m files to apply this technique are provided below. The first file is to define the model, the second 
file is to compute the error function defined in least-square method, and the third file is to find optimal 
parameter values and use them to run the solution for a comparison with data.

%PPmodel.m
function value = PPmodel(t,y,p)
%Predator-prey model
%Parameters: p(1)=a, p(2) = b, p(3) = c, p(4) = d.
value=[p(1)*y(1)-p(2)*y(1)*y(2)
p(3)*y(1)*y(2)-p(4)*y(2)];

%PPerror.m
function error = PPerror(p)
%Error function for the predator-prey model
clear y;
years = 0:20;
DataX = [20.0 45.1 70.2 78.3 36.4 21.5 18.6 21.7 22.8 25.9 27.0 40.1 57.2 77.3 52.4 19.5 11.6 8.7 15.8 
16.9 25.0];
DataY = [5.0 6.1 10.2 35.3 60.4 42.5 19.6 13.7 8.8 9.9 7.0 8.1 12.2 20.3 46.4 51.5 30.6 16.7 10.8 11.9 9.0];

. [t,y] = ode23 (@PPmodel,years,[DataX(1); DataY(1)],[],p);
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Figure 25: Least-square data fitting of the Lotka-Volterra predator-prey model to a data set.
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value = (y(:,1)-DataX’).^2+(y(:,2)-DataY’).^2;
error = sum(value);

%LeastSquareDataFitting.m
%Parameter estimation and run the simulation to compare with data
guess = [0.5; 0.02; 0.02; 0.8];

. [p,error] = fminsearch(@PPerror, guess)

. [t,y] = ode23 (@PPmodel,[0, 20],[20.0; 5.0],[],p);
years = 0:20;
DataX = [20.0 45.1 70.2 78.3 36.4 21.5 18.6 21.7 22.8 25.9 27.0 40.1 57.2 77.3 52.4 19.5 11.6 8.7 15.8 
16.9 25.0];
DataY = [5.0 6.1 10.2 35.3 60.4 42.5 19.6 13.7 8.8 9.9 7.0 8.1 12.2 20.3 46.4 51.5 30.6 16.7 10.8 11.9 9.0];
subplot(2,1,1)
plot(t,y(:,1),’r’,years,DataX,’ko’)
axis([0 20 0 100])
subplot(2,1,2)
plot(t,y(:,2),’r’,years,DataY,’ko’)
axis([0 20 0 100])

The least-square data fitting for the Lotka-Volterra predator-prey model is shown in Figure 25. We can 
observe that the model fits the data well with the optimal parameter values.

The optimal values of the parameters . a, b, c, d  can be read from the command window of Matlab as 
below. The vector . p  gives optimal parameter values . a, b, c, d in the order.

. >>

p =

0.7571
0.0374
0.0234
0.6547

error =

2.0503e+003
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