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Preface

Preface

This book deals with several aspects of stochastic process theory: Markov
chains, renewal theory, Brownian motion, Brownian motion as a Gaussian pro-
cess, Brownian motion as a Markov process, Brownian motion as a martingale,
stochastic calculus, Itô’s formula, regularity properties, Feller-Dynkin semi-
groups and (strong) Markov processes. Brownian motion can also be seen as
limit of normalized random walks. Another feature of the book is a thorough
discussion of the Doob-Meyer decomposition theorem. It also contains some
features of stochastic differential equations and the Girsanov transformation.
The first chapter (Chapter 1) contains a (gentle) introduction to the theory
of stochastic processes. It is more or less required to understand the main
part of the book, which consists of discrete (time) probability models (Chap-
ter 2), of continuous time models, in casu Brownian motion, Chapter 3, and
of certain aspects of stochastic differential equations and Girsanov’s transfor-
mation (Chapter 4). In the final chapter (Chapter 5) a number of other, but
related, issues are treated. Several of these topics are explicitly used in the
main text (Fourier transforms of distributions, or characteristic functions of
random vectors, Lévy’s continuity theorem, Kolmogorov’s extension theorem,
uniform integrability); some of them are treated, like the important Doob-Meyer
decomposition theorem, but are not explicitly used. Of course Itô’s formula
implies that a C2-function composed with a local semi-martingale is again a
semi-martingale. The Doob-Meyer decomposition theorem yields that a sub-
martingale of class (DL) is a semi-martingale. Section 1 of Chapter 5 contains
several aspects of Fourier transforms of probability distributions (characteristic
functions). Among other results Bochner’s theorem is treated here. Section
2 contains convergence properties of positive measures. Section 3 gives some
results in ergodic theory, and gives the connection with the strong law of large
numbers (SLLN). Section 4 gives a proof of Kolmogorov’s extension theorem
(for a consistent family of probability measures on Polish spaces). In Section
5 the reader finds a short treatment of uniform integrable families of functions
in an L1-space. For example Scheffé’s theorem is treated. Section 6 in Chapter
5 contains a precise description of the regularity properties (like almost sure
right-continuity, almost sure existence of left limits) of stochastic processes like
submartingales, Lévy processes, and others; it also contains a proof of Doob’s
maximal inequality for submartingales. Section 7 of the same chapter contains
a description of Markov process theory starting from just one probability space
instead of a whole family. The proof of the Doob-Meyer decompositon theorem
is based on a result by Komlos: see Section 8. Throughout the book the reader
will be exposed to martingales, and related processes.

i
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Readership. From the description of the contents it is clear that the text
is designed for students at the graduate or master level. The author believes
that also Ph.D. students, and even researchers, might benefit from these notes.
The reader is introduced in the following topics: Markov processes, Brownian
motion and other Gaussian processes, martingale techniques, stochastic differ-
ential equations, Markov chains and renewal theory, ergodic theory and limit
theorems.
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Stochastic processes: prerequisites

CHAPTER 1

Stochastic processes: prerequisites

In this chapter we discuss a number of relevant notions related to the theory
of stochastic processes. Topics include conditional expectation, distribution of
Brownian motion, elements of Markov processes, and martingales. For com-
pleteness we insert the definitions of a σ-field or σ-algebra, and concepts related
to measures.

1.1. Definition. A σ-algebra, or σ-field, on a set Ω is a subset A of the power
set P pΩq with the following properties:

(i) Ω P A;
(ii) A P A implies Ac :“ ΩzA P A;

(iii) if pAnqně1 is a sequence in A, then
8
ď

n“1

An belongs to A.

Let A be a σ-field on Ω. Unless otherwise specified, a measure is an application
µ : A Ñ r0,8s with the following properties:

‚ µ pHq “ 0;
‚ if pAnqně1 is a mutually disjoint sequence in A, then

µ

˜

8
ď

n“1

An

¸

“
ÿ

NÑ8

N
ÿ

j“1

µ pAnq “
8
ÿ

n“1

µ pAnq .

If µ is measure on A for which µ pΩq “ 1, then µ is called a probability measure;
if µ pΩq ď 1, then µ is called a sub-probability measure. If µ : A Ñ r0, 1s is a
probability space, then the triple pΩ,A, µq is called a probability space, and the
elements of A are called events.

Let M be a collection of subsets of P pΩq, where Ω is some set like in Definition
1.1. The smallest σ-field containing M is called the σ-field generated by M, and
it is often denoted by σ pMq. Let pΩ,A, µq be a sub-probability space, i.e. µ is
a sub-probability on the σ-field A. Then, we enlarge Ω with one point △, and
enlarge A to

A△ :“ σ pA Y t△uq “
␣

A P P
`

Ω△˘

: A X Ω P A
(

.

Then µ△ : A△ Ñ r0, 1s, defined by

µ△ pAq “ µ pA X Ωq ` p1 ´ µ pΩqq 1A p△q , A P A△, (1.1)

turns the space
`

Ω△,A△, µ△
˘

into a probability space. Here Ω△ “ Ω Y t△u.
This kind of construction also occurs in the context of Markov processes with

1
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Stochastic processes: prerequisites2 1. PREREQUISITES

finite lifetime: see the equality (3.75) in (an outline of) the proof of Theorem
3.37. For the important relationship between Dynkin systems, or λ-systems,
and σ-algebras, see Theorem 2.42.

1. Conditional expectation

1.2. Definition. Let pΩ,A,Pq be a probability space, and let A and B be

events in A such that P rBs ą 0. The quantity P
`

A
ˇ

ˇ B
˘

“
P pA X Bq
P pBq

is then

called the conditional probability of the event A with respect to the event B.
We put P

`

A
ˇ

ˇ B
˘

“ 0 if P pBq “ 0.

Consider a finite partition tB1, . . . , Bnu of Ω with Bj P A for all j “ 1, . . . , n,
and let B be the subfield of A generated by the partition tB1, . . . , Bnu, and
write

P
“

A
ˇ

ˇ B
‰

“
n

ÿ

j“1

P
`

A
ˇ

ˇ Bj

˘

1Bj
.

Then P
“

A
ˇ

ˇ B
‰

is a B-measurable stochastic variable on Ω, and
ż

B

P
“

A
ˇ

ˇ B
‰

dP “
ż

B

1AdP for all B P B.
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Conversely, if f is a B-measurable stochastic variable on Ω with the property
that for all B P B the equality

ş

B
fdP “

ş

B
1AdP holds, then f “ P

“

A
ˇ

ˇ B
‰

P-almost surely. This is true, because
ş

B

`

f ´ P
“

A
ˇ

ˇ B
‰˘

dP “ 0 for all B P B.
If B is a sub-field (more precisely a sub-σ-field, or sub-σ-algebra) generated by
a finite partition of Ω, then for every A P A there exists one and only one class
of variables in L1 pΩ,B,Pq, which we denote by P

“

A
ˇ

ˇ B
‰

, with the following
property

ż

B

P
“

A
ˇ

ˇ B
‰

dP “
ż

B

1AdP for all B P B.

The variable
řn

j“1 P
`

A
ˇ

ˇ Bj

˘

1Bj
is an element from the class P

“

A
ˇ

ˇ B
‰

.

If we fix B P A with P pBq ą 0, then the measure A ÞÑ P
`

A
ˇ

ˇ B
˘

is a probability

measure on pΩ,Aq. If P pBq “ 0, then the measure A ÞÑ P
`

A
ˇ

ˇ B
˘

is the zero-
measure.

Let X be a P-integrable real or complex valued stochastic variable on Ω. Then
X is also P

`

¨
ˇ

ˇ B
˘

-integrable, and
ż

XdP
`

¨
ˇ

ˇ B
˘

“
E rX1Bs
P pBq

, provided P pBq ą 0.

This quantity is the average of the stochastic variable over the event B. As
before, it is easy to show that if B is a subfield of A generated by a finite
partition tB1, . . . , Bnu of Ω, then there exists, for every P-integrable real or
complex valued stochastic variable X on Ω one and only one class of functions
in L1 pΩ,B,Pq, which we denote by E

“

X
ˇ

ˇ B
‰

with the property that
ż

B

E
“

X
ˇ

ˇ B
‰

dP “
ż

B

X dP for all B P B.

The variable
řn

j“1

ş

XdP
`

¨
ˇ

ˇ Bj

˘

1Bj
is an element from the class E

“

X
ˇ

ˇ B
‰

.

The next theorem generalizes the previous properties to an arbitrary subfield
(or more precisely sub-σ-field) B of A.

1.3. Theorem (Theorem and definition). Let pΩ,A,Pq be a probability space
and let B be a subfield of A. Then for every stochastic variable X PL1 pΩ,A,Pq
there exists one and only one class in L1 pΩ,B,Pq, which is denoted by E

“

X
ˇ

ˇB
‰

and which is called the conditional expectation of X with respect to B, with the
property that

ż

B

E
“

X
ˇ

ˇ B
‰

dP “
ż

B

X dP for all B P B.

If X “ 1A, with A P A, then we write P
“

A
ˇ

ˇ B
‰

instead of E
“

1A

ˇ

ˇ B
‰

; if B

is generated by just one stochastic variable Y , then we write E
“

X
ˇ

ˇ Y
‰

and

P
“

A
ˇ

ˇ Y
‰

instead of respectively E
“

X
ˇ

ˇ σ pY q
‰

and P
“

A
ˇ

ˇ σ pY q
‰

.

Proof. Suppose that X is real-valued; if X “ Re X ` iIm X is complex-
valued, then we apply the following arguments to Re X and Im X. Upon writ-
ing the real-valued stochastic variable X as X “ X` ´ X´, where X˘ are

Download free eBooks at bookboon.com
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non-negative stochastic variables in L1 pΩ,A,Pq, without loss of generality we
may and do assume that X ě 0. Define the measure µ : A Ñ r0,8q by

µpAq “
ż

A

XdP, A P A. Then µ is finite measure which is absolutely contin-

uous with respect to the measure P. We restrict µ to the measurable space
pΩ,Bq; its absolute continuity with respect to P confined to pΩ,Bq is preserved.
From the Radon-Nikodym theorem it follows that there exists a unique class
Y P L1 pΩ,B,Pq such that, for all B P B, the following equality is valid:

µpBq “
ż

B

Y dP, and hence

ż

B

XdP “
ż

B

Y dP.

This proves Theorem1.3. �

If B is generated by a countable or finite partition tBj : j P Nu, then it is fairly
easy to give an explicit formula for the conditional expectation of a stochastic
X P L1 pΩ,A,Pq with respect to B:

E
“

X
ˇ

ˇ B
‰

“
ÿ

jPN

ş

Bj
XdP

P pBjq
1Bj

“
ÿ

jPN
E

“

X
ˇ

ˇ Bj

‰

1Bj
.

Next let B be an arbitrary subfield of A, let X belong to L1 pΩ,A,Pq, and let
B be an atom in B. The latter means that P pBq ą 0, and if A P B is such
that A Ă B, then either P pAq “ 0 or P pBzAq “ 0. If Y represents E

“

X
ˇ

ˇ B
‰

,
then Y 1B “ b1B, P-almost surely, for some constant b. This follows from the
B-measurability of the variable Y together with the fact that B is an atom for
pΩ,B,Pq. So we get

ş

B
XdP “

ş

B
E

“

X
ˇ

ˇ B
‰

dP “
ş

Y 1BdP “ bP pBq, and hence

b “
ş

B
XdP

P pBq
. Consequently, on the atom B we have:

E
“

X
ˇ

ˇ B
‰

“
ş

B
XdP

P pBq
“ b, P-almost surely.

In particular, for X “ 1A, we have on the atom B the equality

P
“

A
ˇ

ˇ B
‰

“
P pA X Bq
P pBq

, P-almost surely.

If B is not an atom, then the conditional expectation on B need not be constant.

In the following theorem we collect some properties of conditional expectation.
For the notion of uniform integrability see Section 5.

1.4. Theorem. Let pΩ,A,Pq be a probability space, and let B be a subfield of
A. Then the following assertions hold.

(1) If all events in B have probability 0 or 1 (in particular if B is the
trivial field tH,Ωu), then for all stochastic variables X P L1 pΩ,A,Pq
the equality E

“

X
ˇ

ˇ B
‰

“ E pXq is true P-almost surely.
(2) If X is a stochastic variable in L1 pΩ,A,Pq such that B and σpXq

are independent, then the equality E
“

X
ˇ

ˇ B
‰

“ E pXq is true P-almost
surely.
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(3) If a and b are real or complex constants, and if the stochastic variables
X and Y belong to L1 pΩ,A,Pq, then the equality

E
“

aX ` bY
ˇ

ˇ B
‰

“ aE
“

X
ˇ

ˇ B
‰

` bE
“

Y
ˇ

ˇ B
‰

is true P-almost surely.

(4) If X and Y are real stochastic variables in L1 pΩ,A,Pq such that X ď
Y , then the inequality E

“

X
ˇ

ˇ B
‰

ď E
“

Y
ˇ

ˇ B
‰

holds P-almost surely.

Hence the mapping X ÞÑ E
“

X
ˇ

ˇ B
‰

is a mapping from L1 pΩ,A,Pq
onto L1 pΩ,B,Pq.

(5) (a) If pXn : n P Nq is a non-decreasing sequence of stochastic variables
in L1 pΩ,A,Pq, then

sup
n

E
“

Xn

ˇ

ˇ B
‰

“ E
„

sup
n

Xn

ˇ

ˇ B

ȷ

, P-almost surely.

(b) If pXn : n P Nq is any sequence of stochastic variables in
L1 pΩ,A,Pq which converges P-almost surely to a stochastic vari-
able X, and if there exists a stochastic variable Y P L1 pΩ,A,Pq
such that |Xn| ď Y for all n P N, then

lim
nÑ8

E
“

Xn

ˇ

ˇ B
‰

“ E
”

lim
nÑ8

Xn

ˇ

ˇ B
ı

, P-almost surely, and in L1 pΩ,B,Pq.

The condition “|Xn| ď Y for all n P N with Y P L1 pΩ,A,Pq”
may be replaced with “the sequence pXnqnPN is uniformly integrable in
the space L1 pΩ,A,Pq” and still keep the second conclusion in (5b).
In order to have P-almost sure convergence the uniform integrability
condition should be replaced with the condition

inf
Mą0,MPR

sup
nPN

E
“

|Xn| , |Xn| ą M
ˇ

ˇ B
‰

“ 0, P-almost surely. (1.2)

(6) If cpxq is a convex continuous function from R to R, and if X belongs
to L1 pΩ,A,Pq, then

c
`

E
“

X
ˇ

ˇ B
‰˘

ď E
“

cpXq
ˇ

ˇ B
‰

, P-almost surely.

(7) Let p ě 1, and let X be a stochastic variable in Lp pΩ,A,Pq. Then the
stochastic variable E

“

X
ˇ

ˇ B
‰

belongs to Lp pΩ,B,Pq, and
›

›E
“

X
ˇ

ˇ B
‰›

›

p
ď }X}p .

So the linear mapping X ÞÑ E
“

X
ˇ

ˇB
‰

is a projection from Lp pΩ,A,Pq
onto Lp pΩ,B,Pq.

(8) (Tower property) Let B1 be another subfield of A such that B Ď B1 Ď A.
If X belongs to L1 pΩ,A,Pq, then the equality

E
“

E
“

X
ˇ

ˇ B1‰ ˇ

ˇ B
‰

“ E
“

X
ˇ

ˇ B
‰

holds P-almost surely.

(9) If X belongs to L1 pΩ,B,Pq, then E
“

X
ˇ

ˇ B
‰

“ X, P-almost surely.
(10) If X belongs to L1 pΩ,A,Pq, and if Z belongs to L8 pΩ,B,Pq, then

E
“

ZX
ˇ

ˇ B
‰

“ ZE
“

X
ˇ

ˇ B
‰

, P-almost surely.

(11) If X belongs to L2 pΩ,A,Pq, then E
“

Y
`

X ´ E
`

X
ˇ

ˇ B
‰˘‰

“ 0 for all

Y P L2 pΩ,B,Pq. Hence, the mapping X ÞÑ E
“

X
ˇ

ˇ B
‰

is an orthogonal
projection from L2 pΩ,A,Pq onto L2 pΩ,B,Pq.
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Observe that for B the trivial σ-field, i.e. B “ tH, Ωu, the condition in (1.2) is
the same as saying that the sequence pXnqn is uniformly integrable in the sense
that

inf
Mą0,MPR

sup
nPN

E r|Xn| , |Xn| ą M s “ 0. (1.3)

Proof. We successively prove the items in Theorem 1.4.

(1) For every B P B we have to verify the equality:
ż

B

XdP “
ż

B

E pXq dP.

If P pBq “ 0, then both members are 0; if P pBq “ 1, then both mem-
bers are equal to E pXq. This proves that the constant E pXq can be
identified with the class E

“

X
ˇ

ˇ B
‰

.
(2) For every B P B we again have to verify the equality:

ş

B
XdP “

ş

B
E pXq dP. Employing the independence of X and B P B this can be

seen as follows:
ż

B

X dP “
ż

Ω

X1B dP “ E rX1Bs “ E rXsE r1Bs “
ż

B

E rXs dP. (1.4)
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(3) This assertion is clear.
(4) This assertion is clear.
(5) (a) For all B P B and n P N we have

ş

B
E

“

Xn

ˇ

ˇ B
‰

dP “
ş

B
Xn dP. By

(4) we see that the sequence of conditional expectations

E
“

Xn

ˇ

ˇ B
‰

, n P N, increases P-almost surely.

The assertion in (5a) then follows from the monotone convergence
theorem.

(b) Put X˚
n “ supkěn Xk, X

˚˚
n “ infkěn Xk. Then we have ´Y ď

X˚˚
n ď Xn ď X˚

n ď Y , P-almost surely. Moreover, the sequences
pY ´ X˚

nqnPN and pY ` X˚˚
n qnPN are increasing sequences consisting

of non-negative stochastic variables with Y ´ lim supnÑ8 Xn and
Y ` lim infnÑ8 Xn as their respective suprema. Since the sequence
pXnqnPN converges P-almost surely to X, it follows by (5a) together
with (4) that

E
“

X˚˚
n

ˇ

ˇ B
‰

Ò E
“

X˚˚ ˇ

ˇ B
‰

and E
“

X˚
n

ˇ

ˇ B
‰

Ó E
“

X˚˚ ˇ

ˇ B
‰

.
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From the pointwise inequalities X˚˚
n ď Xn ď X˚

n it then follows
that lim

nÑ8
E

“

Xn

ˇ

ˇB
‰

“ E
“

X
ˇ

ˇ B
‰

, P-almost surely. Next let the

uniformly integrable sequence pXnqn in L1 pΩ,A,Pq be pointwise
convergent to X. Then lim

nÑ8
E r|Xn ´ X|s “ 0. What we need is

that

lim
nÑ8

E
“

|Xn ´ X|
ˇ

ˇ B
‰

“ 0. (1.5)

Under the extra hypothesis (1.2) this can be achieved as follows:

lim sup
nÑ8

E
“

|Xn ´ X|
ˇ

ˇ B
‰

ď lim sup
nÑ8

E
“

|Xn ´ X| , |Xn ´ X| ď M
ˇ

ˇ B
‰

` lim sup
nÑ8

E
“

|Xn ´ X, |Xn ´ X| ą M |
ˇ

ˇ B
‰

(apply what already has been proved in (5b), with |Xn ´ X| in-
stead of Xn, to the first term)

ď lim sup
nÑ8

E
“

|Xn ´ X, |Xn ´ X| ą M |
ˇ

ˇ B
‰

. (1.6)

In (1.6) we let M tend to 8, and employ (1.2) to conclude (1.5).
This completes the proof of item (5).

(6) Write cpxq as a countable supremum of affine functions

cpxq “ sup
nPN

Lnpxq, (1.7)

where Lnpzq “ anz ` bn ď cpzq, for all those z for which cpzq ă 8,
i.e. for appropriate constants an and bn. Every stochastic variable
Ln pXq is integrable; by linearity (see (3)) we have Ln

`

E
“

X
ˇ

ˇ B
‰˘

“
E

“

Ln pXq
ˇ

ˇ B
‰

. Hence

Ln

`

E
“

X
ˇ

ˇ B
‰˘

ď E
“

c pXq
ˇ

ˇ B
‰

.

Consequently,

c
`

E
“

X
ˇ

ˇ B
‰˘

“ sup
nPN

Ln

`

E
“

X
ˇ

ˇ B
‰˘

ď E
“

c pXq
ˇ

ˇ B
‰

.

The fact that convex function can be written in the form (1.7) can be
found in most books on convex analysis; see e.g. Chapter 3 in [28].

(7) It suffices to apply item (6) to the function cpxq “ |x|p.
(8) This assertion is clear.
(9) This assertion is also obvious.
(10) This assertion is evident if Z is a finite linear combination of indicator

functions of events taken from B. The general case follows via a limiting
procedure.

(11) This assertion is clear if Y is a finite linear combination of indicator
functions of events taken from B. The general case follows via a limiting
procedure.

The proof of Theorem 1.4 is now complete. �
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2. Lemma of Borel-Cantelli

1.5. Definition. The limes superior or upper-limit of a sequence pAnqnPN in
a universe Ω is the set A of those elements ω P Ω with the property that ω
belongs to infinitely many An’s. In a formula:

A “ lim sup
nÑ8

An “
č

nPN

ď

kěn

Ak.

The indicator-function 1A of the limes-superior of the sequence pAnqnPN is equal
to the lim sup of the sequence of its indicator-functions: 1A “ lim sup

nÑ8
1An .

The limes inferior or lower-limit of a sequence pAnqnPN in a universe Ω is the set
A of those elements ω P Ω with the property that, up to finitely many Ak’s, the
element (sample) ω belongs to all An’s. In a formula:

A “ lim inf
nÑ8

An “
ď

nPN

č

kěn

Ak.

The indicator-function 1A of the limes-inferior of the sequence pAnqnPN is equal
to the lim inf of the sequence of its indicator-functions: 1A “ lim inf

nÑ8
1An .
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1.6. Lemma. Let pαnqnPN be a sequence of real numbers such that 0 ď αn ă 1.
Then limnÑ8

řn
k“1 αk ă 8 if and only if limnÑ8

śn
k“1 p1 ´ αkq ą 0.

Proof. For 0 ď α ă 1 the following elementary inequalities hold:

´
α

1 ´ α
ď log p1 ´ αq ď ´α.

Hence we see

´
n

ÿ

k“1

αk

1 ´ αk

ď log

˜

n
ź

k“1

p1 ´ αkq

¸

ď ´
n

ÿ

k“1

αk.

The assertion in Lemma 1.6 easily follows from these inequalities. �
1.7. Lemma (Lemma of Borel-Cantelli). Let pAnqnPN be a sequence of events,
and put A “ lim supnÑ8 An “

Ş

nPN
Ť

kěn Ak.

(i) If
ř8

n“1 P pAnq ă 8, then P pAq “ 0.
(ii) If the events An, n P N, are mutually P-independent, then the converse

statement is true as well: P pAq ă 1 implies
ř8

k“1 P pAkq ă 8, and
hence

ř8
k“1 P pAkq “ 8 if and only if P pAq “ 1.

Proof. (i) For P pAq we have the following estimate:

P pAq ď inf
nPN

8
ÿ

k“n

P pAkq . (1.8)

Since
ř8

n“1 P pAnq ă 8, we see that the right-hand side of (1.8) is 0.

(ii) The statement in assertion (ii) is trivial if for infinitely many numbers k the
equality P pAkq “ 1 holds. So we may assume that for all k P N the probability
P pAkq is strictly less than 1. Apply Lemma 1.6 with αk “ P pAkq to obtain that
ř8

k“1 P pAkq ă 8 if and only if

0 ă lim
nÑ8

n
ź

k“1

p1 ´ P pAkqq “ lim
nÑ8

n
ź

k“1

P pΩzAkq

(the events pAkqnPN are independent)

“ lim
nÑ8

P

˜

n
č

k“1

pΩzAkq

¸

“ lim
nÑ8

P

˜

Ωz
n

ď

k“1

Ak

¸

“ 1 ´ P pAq . (1.9)

This proves assertion (ii) of Lemma 1.7. �

3. Stochastic processes and projective systems of measures

1.8. Definition. Consider a probability space pΩ,A,Pq and an index set I.
Suppose that for every t P I a measurable space pEt,Etq and an A-Et-measurable
mapping Xptq : Ω Ñ Et are given. Such a family tXptq : t P Iu is called a
stochastic process.
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1.9. Remark. The space Ω is often called the sample path space, the space
Et is often called the state space of the state variable Xptq. The σ-field A

is often replaced with (some completion of) the σ-field generated by the state
variables Xptq, t P I. This σ-field is written as F. Let pS, Sq be some measurable
space. An F-S measurable mapping Y : Ω Ñ S is called an S-valued stochastic
variable. Very often the state spaces are the same, i.e. pEt,Etq “ pE,Eq, for all
state variables Xptq, t P I.

In applications the index set I is often interpreted as the time set. So I can
be a finite index set, e.g. I “ t0, 1, . . . , nu, or an infinite discrete time set, like
I “ N “ t0, 1, . . .u or I “ Z. The set I can also be a continuous time set: I “ R
or I “ R` “ r0,8q. In the present text, most of the time we will consider
I “ r0,8q. Let I be N, Z, R, or r0,8q. In the so-called time-homogeneous or
stationary case we also consider mappings ϑs : Ω Ñ Ω, s P I, s ě 0, such that
Xptq˝ϑs “ Xpt`sq, P-almost surely. It follows that these translation mappings
ϑs : Ω Ñ Ω, s P I, are Ft-Ft´s-measurable, for all t ě s. If Y is a stochastic
variable, then Y ˝ ϑs is measurable with respect to the σ-field σ tXptq : t ě su.
The concept of time-homogeneity of the process pXptq : t P Iq can be explained
as follows. Let Y : Ω Ñ R be a stochastic variable; e.g. Y “

śn
j“1 fj pX ptjqq,

where fj : E Ñ R, 1 ď j ď n, are bounded measurable functions. Define the
transition probability P ps, Bq as follows: P ps, Bq “ P pXpsq P Bq, s P I, B P E.
The measure B ÞÑ E rY ˝ ϑs, Xpsq P Bs is absolutely continuous with respect to
the measure B ÞÑ P ps, Bq, B P E. It follows that there exists a function F ps, xq,
called the Radon-Nikodym derivative of the measure B ÞÑ E rY ˝ ϑs, Xpsq P Bs
with respect B ÞÑ P ps, Bq, such that E rY ˝ ϑs, Xpsq P Bs “

ş

F ps, xqP ps, dxq.
The function F ps, xq is usually written as

F ps, xq “ E
“

Y ˝ ϑs

ˇ

ˇ Xpsq P dx
‰

“
E rY ˝ ϑs, Xpsq P dxs

P rXpsq P dxs
.

1.10. Definition. The process pXptq : t P Iq is called time-homogeneous or
stationary in time, provided that for all bounded stochastic variables Y : Ω Ñ R
the function

E
“

Y ˝ ϑs

ˇ

ˇ Xpsq P dx
‰

is independent of s P I, s ě 0.

In practice we only have to verify the property in Definition 1.10 for Y of the
form Y “

śn
j“1 fj pX ptjqq, where fj : Etj Ñ R, 1 ď j ď n, are bounded

measurable functions. Then Y ˝ ϑs “
śn

j“1 fj pX ptj ` sqq. This statement is a
consequence of the monotone class theorem.

3.1. Finite dimensional distributions. As above let pΩ,A,Pq be a prob-
ability space and let tXptq : t P Iu be a stochastic process where each state
variable Xptq has state space pEt,Etq. For every non-empty subset J of I we
write EJ “

ś

tPJ Et and EJ “ btPJEt denotes the product-field. We also write
XJ “ btPJXt. So that, if J “ tt1, . . . , tnu, then XJ “ pX pt1q , . . . , X ptnqq. The
mapping XJ is the product mapping from Ω to EJ . The mapping XJ : Ω Ñ EJ
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is A-EJ -measurable. We can use it to define the image measure PJ :

PJ pBq “ XJP pBq “ P
“

X´1
J B

‰

“ P rω P Ω : XJpωq P Bs “ P rXJ P Bs ,

where B P EJ . Between the different probability spaces
`

EJ ,EJ ,PJ

˘

there exist
relatively simple relationships. Let J andH be non-empty subsets of I such that
J Ă H, and consider the EH-EJ -measurable projection mapping pHJ : EH Ñ EJ ,
which ”forgets” the ”coordinates” in HzJ . If H “ I, then we write pJ “ pIJ .
For every pair J and H with J Ă H Ă I we have XJ “ pHJ ˝ XH , and hence we
get PJ pBq “ pHJ PH pBq “ PH

“

pHJ P B
‰

, where B belongs to EJ . In particular
if H “ I, then PJ pBq “ pJP pBq “ P rpJ P Bs, where B belongs to EJ . If
J “ tt1, . . . , tnu is a finite set, then we have

PJ rB1 ˆ ¨ ¨ ¨ ˆ Bns “ P
“

X´1
J pB1 ˆ ¨ ¨ ¨ ˆ Bnq

‰

“ P rX pt1q P B1, . . . , X ptnq P Bns ,
with Bj P Etj , for 1 ď j ď n.

1.11. Remark. If the process tXptq : t P Iu is interpreted as the movement
of a particle, which at time t happens to be in the state spaces Et, and if
J “ tt1, . . . , tnu is a finite subset of I, then the probability measure PJ has the
following interpretation:

For every collection of sets B1 P Et1 , . . . , Bn P Etn the number

PJ rB1 ˆ ¨ ¨ ¨ ˆ Bns
is the probability that at time t1 the particle is in B1, at time t2 it is
in B2, . . ., and at time tn it is in Bn.
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1.12. Definition. Let H be the collection of all finite subsets of I. Then the
family

␣`

EJ ,EJ ,PJ

˘

: J P H
(

is called the family of finite-dimensional distri-
butions of the process tXptq : t P Iu; the one-dimensional distributions

␣`

Et,Et,Pttu
˘

: t P I
(

are often called the marginals of the process.

The family of finite-dimensional distributions is a projective or consistent family
in the sense as explained in the following definition.

1.13. Definition. A family of probability spaces
␣`

EJ ,EJ ,PJ

˘

: J P H
(

is
called a projective, a consistent system, or a cylindrical measure provided that

PJ pBq “ pHJ pPHq pBq “ PH

“

pHJ P B
‰

for all finite subsets J Ă H, J , H P H, and for all sets B P EJ .

1.14. Theorem (Theorem of Kolmogorov). Let
␣`

EJ ,EJ ,PJ

˘

: J P H
(

be a
projective system of probability spaces. Suppose that every space Et is a σ-
compact metrizable Hausdorff space. Then there exists a unique probability space
`

EI ,EI ,PI

˘

with the property that for all finite subsets J P H the equality
PJ pBq “ PI rpJ P Bs holds for all B P EJ .

Theorem 5.81 is the same as Theorem 1.14, but formulated for Polish and
Souslin spaces; its proof can be found in Chapter 5. Theorem 1.14 is the same
as Theorem 3.1. The reason that the conclusion in Theorem 1.14 holds for σ-
compact metrizable topological Hausdorff spaces is the fact that a finite Borel
measure µ on a metrizable σ-compact space E is regular in the sense that

µpBq “ sup
KĂB,K compact

µpKq “ inf
UĄK,U open

µpUq, B any Borel subset E. (1.10)

1.15. Lemma. Let E be a σ-compact metrizable Hausdorff space. Then the
equality in (1.10) holds for all Borel subsets B of E.

Proof. The equalities in (1.10) can be deduced by proving that the collec-
tion D define by

D “
"

B P BE : sup
KĂB

µpKq “ inf
UĄB

µpUq
*

“
"

B P BE : sup
FĂB

µpF q “ inf
UĄB

µpUq
*

(1.11)

contains the open subsets of E, is closed under taking complements, and is
closed under taking mutually disjoint countable unions. The second equality
holds because every closed subset of E is a countable union of compact subsets.
In (1.11) the sets K are taken from the compact subsets, the sets U from the
open subsets, and the sets F from the closed subsets of E. It is clear that D is
closed under taking complements. Let px, yq ÞÑ dpx, yq be a metric on E which
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is compatible with its topology. Let F be a closed subset of E, and define Un

by

Un “
"

x P E : inf
yPF

d px, yq ă
1

n

*

.

Then the subset Un is open, Un`1 Ą Un, and F “
Ş

Un. It follows that µ pF q “
infn µ pUnq, and consequently, F belongs to D. In other words the collection D

contains the closed, and so the open subsets of E. Next let pBnqn be a sequence
of subsets in D. Fix ε ą 0, and choose closed subsets Fn Ă Bn, and open
subsets Un Ą Bn, such that

µ pBnzFnq ď ε2´n´1, and µ pUnzBnq ď ε2´n. (1.12)

From (1.12) it follows that

µ

˜˜

8
ď

n“1

Un

¸

z

˜

8
ď

n“1

Bn

¸¸

ď µ

˜

8
ď

n“1

pUnzBnq

¸

ď
8
ÿ

n“1

µ pUnzBnq ď ε
8
ÿ

n“1

2´n “ ε. (1.13)

From (1.13 it follows that

µ

˜

8
ď

n“1

Bn

¸

“ inf

#

µpUq : U Ą
8
ď

n“1

Bn, U open

+

. (1.14)

The same argumentation shows that

µ

˜˜

8
ď

n“1

Bn

¸

z

˜

8
ď

n“1

Fn

¸¸

ď
8
ÿ

n“1

µ pBnzFnq ď ε
8
ÿ

n“1

2´n´1 “
1

2
ε. (1.15)

From (1.15) it follows that

µ

˜˜

8
ď

n“1

Bn

¸

z

˜

Nε
ď

n“1

Fn

¸¸

ď ε (1.16)

for Nε large enough. From (1.16 it follows that

µ

˜

8
ď

n“1

Bn

¸

“ sup

#

µpF q : F Ă
8
ď

n“1

Bn, F closed

+

. (1.17)

From (1.14) and (1.17) it follows that
Ť8

n“1Bn belongs to D. As already men-
tioned, since every closed subset is the countable union of compact subsets the
supremum over closed subsets in (1.17) may replaced with a supremum over
compact subsets. Altogether, this completes the proof of Lemma 1.15. �

It is a nice observation that a locally compact Hausdorff space is metrizable and
σ-compact if and only if it is a Polish space. This is part of Theorem 5.3 (page
29) in Kechris [68]. This theorem reads as follows.

1.16. Theorem. Let E be a locally compact Hausdorff space. The following
assertions are equivalent:
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(1) The space E is second countable, i.e. E has a countable basis for its
topology.

(2) The space E is metrizable and σ-compact.
(3) The space E has a metrizable one-point compactification (or Alexan-

droff compactification).
(4) The space E is Polish, i.e. E is complete metrizable and separable.
(5) The space E is homeomorphic to an open subset of a compact metrizable

space.

A second-countable locally-compact Hausdorff space is Polish: let pUiqi be a
countable basis of open subsets with compact closures pKiqi, and let Vi be an
open subset with compact closure and containing Ki. From Urysohn’s Lemma,
let 0 ď fi ď 1 be continuous functions identically 0 off Vi, identically 1 on Ki,
and put

dpx, yq “
8
ÿ

i“1

2´i |fipxq ´ fipyq| `
ˇ

ˇ

ˇ

ˇ

1
ř8

i“1 2
´ifipxq

´
1

ř8
i“1 2

´ifipyq

ˇ

ˇ

ˇ

ˇ

, x, y P E.

(1.18)
The triangle inequality for the usual absolute value shows that this is a metric.
This metric gives the same topology, and it is straightforward to verify its
completeness. For this argument see Garrett [57].
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4. A definition of Brownian motion

In this section we give a (preliminary) definition of Brownian motion.

4.1. Gaussian measures on Rd. For every t ą 0 we define the Gaussian
kernel on Rd as the function

pd pt, x, yq “
1

p2πtqd{2 exp

˜

´
|x ´ y|2

2t

¸

.

Then we have
ş

pd pt, x, zq dz “ 1, and

pdps, x, zqppt, z, yq “ pdps ` t, x, yqpd
ˆ

st

s ` t
,
sx ` ty

s ` t
, z

˙

.

Hence the function pd pt, x, yq satisfies the equation of Chapman-Kolmogorov:
ż

pdps, x, zqpdpt, z, yqdz “ pd ps ` t, x, yq .

This property will enable us to consider d-dimensional Brownian motion as a
Markov process. Next we calculate the finite-dimensional distributions of the
Brownian motion.

4.2. Finite dimensional distributions of Brownian motion. Let 0 ă
t1 ă ¨ ¨ ¨ ă tn ă 8 be a sequence of time instances in p0,8q, and fix x0 P Rd.
Define the probability measure Px0;t1,...,tn on the Borel field of Rd ˆ ¨ ¨ ¨ ˆ Rd (n
times) by (t0 “ 0)

Px0;t1,...,tn rB1 ˆ ¨ ¨ ¨ ˆ Bns “
ż

B1

. . .

ż

Bn

dxn . . . dx1

n
ź

j“1

pd ptj ´ tj´1, xj´1, xjq ,

(1.19)
where B1, . . . , Bn are Borel subsets of Rd. Then, with Bk “ Rd, we have

Px0;t1,...,tk´1,tk,tk`1,...,tn

“

B1 ˆ ¨ ¨ ¨ ˆ Bk´1 ˆ Rd ˆ Bk`1 ˆ ¨ ¨ ¨ ˆ Bn

‰

“
ż

B1

. . .

ż

Bk´1

ż

Rd

ż

Bk`1

. . .

ż

Bn

dxn . . . dxk`1 dxk dxk´1 . . . dx1

k´1
ź

j“1

pd ptj ´ tj´1, xj´1, xjq

pd ptk ´ tk´1, xk´1, xkq pd ptk`1 ´ tk, xk, xk`1q
n

ź

j“k`2

p ptj ´ tj´1, xj´1, xjq

(Chapman-Kolmogorov)

“
ż

B1

. . .

ż

Bk´1

ż

Bk`1

. . .

ż

Bn

dxn . . . dxk`1 dxk´1 . . . dx1

k´1
ź

j“1

pd ptj ´ tj´1, xj´1, xjq

pd ptk`1 ´ tk´1, xk´1, xk`1q
n

ź

j“k`2

p ptj ´ tj´1, xj´1, xjq
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“ Px0;t1,...,tk´1,tk`1,...,tn rB1 ˆ ¨ ¨ ¨ ˆ Bk´1 ˆ Bk`1 ˆ ¨ ¨ ¨ ˆ Bns . (1.20)

It follows that the family
$

&

%

¨

˝Rd ˆ ¨ ¨ ¨ ˆ Rd
looooooomooooooon

n times

,Bd b ¨ ¨ ¨ b Bd
looooooomooooooon

n times

,Px0;t1,...,tn

˛

‚; 0 ă t1 ă ¨ ¨ ¨ ă tn ă 8, n P N

,

.

-

is a projective or consistent system. Such families are also called cylindrical
measures. The extension theorem of Kolmogorov implies that in the present
situation a cylindrical measure can be considered as a genuine measure on the

product field of Ω :“
`

Rd
˘r0,8q

. This is the measure corresponding to Brownian
motion starting at x0. More precisely, the theorem of Kolmogorov says that
there exists a probability space pΩ,F,Px0q and state variables Xptq : Ω Ñ Rd,
t ě 0, such that

Px0 rX pt1q P B1, . . . , X ptnq P Bns “ Px0;t1,...,tn rB1 ˆ ¨ ¨ ¨ ˆ Bns ,

where the subsets Bj, 1 ď j ď n, belong to Bd. It is assumed that

Px0 rXp0q “ x0s “ 1.

5. Martingales and related processes

Let pΩ,F,Pq be a probability space, and let tFt : t P Iu be a family of subfields
of F, indexed by a totally ordered index set pI,ďq. Suppose that the family
tFt : t P Iu is increasing in the sense that s ď t implies Fs Ď Ft. Such a family
of σ-fields is called a filtration. A stochastic process tXptq : t P Iu, where Xptq,
t P I, are mappings from Ω to Et, is called adapted, or more precisely, adapted
to the filtration tFt : t P Iu if every Xptq is Ft-Et-measurable. For the σ-field
Ft we often take (some completion of) the σ-field generated by Xpsq, s ď t:
Ft “ σ tXpsq : s ď tu.

1.17. Definition. An adapted process tXptq : t P Iu with state space pR,Bq
is called a super-martingale if every variable Xptq is P-integrable, and if s ď t,
s, t P I, implies E

“

Xptq
ˇ

ˇ Fs

‰

ď Xpsq, P-almost surely. An adapted process
tXptq : t P Iu with state space pR,Bq is called a sub-martingale if every variable
Xptq is P-integrable, and if s ď t, s, t P I, implies E

“

Xptq
ˇ

ˇ Fs

‰

ě Xpsq, P-
almost surely. If an adapted process is at the same time a super- and a sub-
martingale, then it is called a martingale.

The martingale in the following example is called a closed martingale.

1.18. Example. Let X8 belong to L1 pΩ,F,Pq, and let tFt : t P r0,8qu be a
filtration in F. Put Xptq “ E

“

X8
ˇ

ˇ Ft

‰

, t ě 0. Then the process tXptq : t ě 0u
is a martingale with respect to the filtration tFt : t P r0,8qu.

The following theorem shows that uniformly integrable martingales are closed
martingales.
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1.19. Theorem (Doob’s theorem). Any uniformly integrable martingale

tXptq : t ě 0u in L1 pΩ,F,Pq
converges P-almost surely and in mean (i.e. in L1 pΩ,F,Pq) to a stochastic
variable X8 such that for every t ě 0 the equality Xptq “ E

“

X8
ˇ

ˇ Ft

‰

holds
P-almost surely.

Let F be a subset of L1 pΩ,F,Pq. Then F is uniformly integrable if for every
ε ą 0 there exists a function g P L1 pΩ,F,Pq such that

ş

t|f |ě|g|u |f | dP ď ε for all

f P F . Since P is a finite positive measure we may assume that g is a (large)
positive constant.

1.20. Theorem. Sub-martingales constitute a convex cone:

(i) A positive linear combination of sub-martingales is again a sub-martin-
gale; the space of sub-martingales forms a convex cone.

(ii) A convex function of a sub-martingale is a sub-martingale.

Not all martingales are closed, as is shown in the following example.

1.21. Example. Fix t ą 0, and x, y P Rd. Let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt : t ě 0q , pRn,Bnqu
be Brownian motion starting at x P Rd, and put, as above,

pd pt, x, yq “
1

p2πtqd{2 exp

˜

´
|x ´ y|2

2t

¸

.

The process s ÞÑ p pt ´ s,Xpsq, yq is Px-martingale on the half-open interval
r0, tq.

5.1. Stopping times. A stochastic variable T : Ω Ñ r0,8s is called a
stopping time with respect to the filtration tFt : t ě 0u, if for every t ě 0 the
event tT ď tu belongs to Ft. If T is a stopping time, the process t ÞÑ 1rTďts is
adapted to tFt : t ě 0u. The meaning of a stopping is the following one. The
moment T is the time that some phenomena happens. If at a given time t the
information contained in Ft suffices to conclude whether or not this phenomena
occurred before time t, then T is a stopping time. Let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt : t ě 0q , pRn,Bnqu
be Brownian motion starting at x P Rd, let p : Rd Ñ p0,8q be a strictly positive
continuous function, and O an open subset of Rd. The first exit time from O,
or the first hitting time of the complement of O, defined by

T “ inf
␣

t ą 0 : Xptq P RdzO
(

is a (very) relevant stopping time. The time T is a so-called terminal stopping
time: on the event tT ą su it satisfies s ` T ˝ ϑs “ T . Other relevant stopping
times are:

τξ “ inf

"

t ą 0 :

ż t

0

p pXpsqq ds ą ξ

*

, ξ ě 0.
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Such stopping times are used for (stochastic) time change:

τξ ` τη ˝ ϑτξ “ τξ`η, ξ, η ě 0.

Note that the mapping ξ ÞÑ τξ is the inverse of the mapping t ÞÑ
şt

0
p pXpsqq ds.

Also note the equality: tτξ ă tu “
!

şt

0
p pXpsqq ą ξ

)

,
ş8
0
p pXpsqq ds ą ξ ą 0.

The mapping ξ ÞÑ τξ is strictly increasing from the interval
“

0,
ş8
0
p pXpsqq ds

˘

onto r0,8q. Arbitrary stopping times T are often approximated by “discrete”
stopping times: T “ limnÑ8 Tn, where Tn “ 2´n r2nT s. Notice that T ď Tn`1 ď
Tn ď T ` 2´n, and that tTn “ k2´nu “ tpk ´ 1q2´n ă T ď k2´nu, k P N.

1.22. Theorem. Let pΩ,F,Pq be a probability space, and let tFt : t ě 0u be a
filtration in F. The following assertions hold true:

(1) constant times are stopping times: for every t ě 0 fixed the time T ” t
is a stopping time;

(2) if S and T are stopping times, then so are min pS, T q and max pS, T q;
(3) If T is a stopping time, then the collection FT defined by

FT “ tA P F : A X tT ď ts P Ft, for all t ě 0u
is a subfield of F;

(4) If S and T are stopping times, then S`T ˝ϑS is a stopping time as well,
provided the paths of the process are P-almost surely right-continuous
and the same is true for the filtration tFt : t ě 0u.

The filtration tFt : t ě 0u is right-continuous if Ft “
Ş

sąt Fs, t ě 0. The (sam-
ple) paths t ÞÑ Xptq are said to be P-almost surely right-continuous, provided
for all t ě 0 we have Xptq “ limsÓt Xpsq, P-almost surely.
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The following theorem shows that in many cases fixed times can be replaced
with stopping times. In particular this is true if we study (right-continuous)
sub-martingales, super-martingales or martingales.

1.23. Theorem (Doob’s optional sampling theorem). Let pXptq : t ě 0q be a
uniformly integrable process in L1 pΩ,F,Pq which is a sub-martingale with re-
spect to the filtration pFt : t ě 0q. Let S and T be stopping times such that
S ď T . Then E

“

XpT q
ˇ

ˇ FS

‰

ě XpSq, P-almost surely.

Similar statements hold for super-martingales and martingales.

Notice that XpT q stands for the stochastic variable ω ÞÑ X pT pωqq pωq “
X pT pωq, ωq.

We conclude this introduction with a statement of the decomposition theorem
of Doob-Meyer. A process tXptq : t ě 0u is of class (DL) if for every t ą 0 the
family

tXpτq : 0 ď τ ď t, τ is an pFtq -stopping timeu
is uniformly integrable. An Ft-martingale tMptq : t ě 0u is of class (DL), an
increasing adapted process tAptq : t ě 0u in L1pΩ,F,Pq is of class (DL) and
hence the sum tMptq ` Aptq : t ě 0u is of class (DL). If tXptq : t ě 0u is a
submartingale and if µ is a real number, then the process tmax pXptq, µq : t ě 0u
is a sub-martingale of class (DL). Processes of class (DL) are important in the
Doob-Meyer decomposition theorem. Let pΩ,F,Pq be a probability space, let
tFt : t ě 0u be a right-continuous filtration in F and let tXptq : t ě 0u be right
continuous sub-martingale of class (DL) which possesses almost sure left limits.
We mention the following version of the Doob-Meyer decomposition theorem.
See Remark 3.54 as well.

1.24. Theorem. Let tXptq : t ě 0u be a sub-martingale of class (DL) which
has P almost surely left limits, and which is right-continuous. Then there ex-
ists a unique predictable right continuous increasing process tAptq : t ě 0u with
Ap0q “ 0 such that the process tXptq ´ Aptq : t ě 0u is an Ft-martingale.

A process pω, tq ÞÑ Xptqpωq “ X pt, ωq is predictable if it is measurable with
respect to the σ-field generated by tA ˆ pa, bs : A P Fa, a ă bu. For more details
on càdlàg sub-martingales, see Theorem 3.77. The following proposition says
that a non-negative right-continuous sub-martingale is of class (DL).

1.25. Proposition. Let pΩ,F,Pq be a probability space, let pFtqtě0 be a filtration
of σ-fields contained in F. Suppose that t ÞÑ Xptq is a right-continuous sub-
martingale relative to the filtration pFtqtě0 attaining its values in r0,8q. Then
the family tXptq : t ě 0u is of class (DL).

In fact it suffices to assume that there exists a real number m such that Xptq ě
´m P-almost surely. This follows from Proposition 1.25 by consideringXptq`m
instead of Xptq.

If t ÞÑ Mptq is a continuous martingale in L2 pΩ,F,Pq, then t ÞÑ |Mptq|2 is a
non-negative sub-martingale, and so it splits as the sum of a martingale t ÞÑ
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|Mptq|2 ´ ⟨M,M⟩ ptq and an increasing process t ÞÑ ⟨M ă M⟩ ptq, the quadratic
variation process of Mptq.

Proof of Proposition 1.25. Fix t ą 0, and let τ : Ω Ñ r0, ts be a
stopping time. Let for m P N the stopping time τm : Ω Ñ r0,8s be defined by
τm “ inf ts ą 0 : Xpsq ą mu if Xpsq ą m for some s ă 8, otherwise τm “ 8.
Then the event tXpτq ą mu is contained in the event tτm ď τu. Hence,

E rXpτq : Xpτq ą ms ď E rXptq : Xpτq ą ms ď E rXptq : τm ď τ s
ď E rXptq : τm ď ts . (1.21)

Since, P-almost surely, τm Ò 8 for m Ñ 8, it follows that

lim
mÑ8

sup tE rXpτq : Xpτq ą ms : τ P r0, ts : τ stopping timeu “ 0.

Consequently, the sub-martingale t ÞÑ Xptq is of class (DL). The proof of Propo-
sition 1.25 is complete now. �

It is perhaps useful to insert the following proposition.

1.26. Proposition. Processes of the form Mptq`Aptq, with Mptq a martingale
and with Aptq an increasing process in L1 pΩ,F,Pq are of class (DL).

Proof. Let tXptq “ Mptq ` Aptq : t ě 0u be the decomposition of the
sub-martingale tXptq : t ě 0u in a martingale tMptq : t ě 0u and an increasing
process tAptq : t ě 0u with Ap0q “ 0 and 0 ď τ ď t be any Ft-stopping time.
Here t is some fixed time. For N P N we have

E p|Xpτq| : |Xpτq| ě Nq ď E p|Mpτq| : |Xpτq| ě Nq ` E pApτq : |Xpτq| ě Nq
ď E p|Mptq| : |Xpτq| ě Nq ` E pApτq : |Xpτq| ě Nq
ď E p|Mptq| ` Aptq : |Xpτq| ě Nq

ď E
ˆ

|Mptq| ` Aptq : sup
0ďsďt

|Xpsq| ě N

˙

.

Since, by the Doob’s maximality theorem 1.28,

NP
"

sup
0ďsďt

|Xpsq| ě N

*

ď NP
"

sup
0ďsďt

|Mpsq| ě
N

2

*

` NP
"

sup
0ďsďt

Apsq ě
N

2

*

ď 2E p|Mptq| ` Aptqq ,

it follows that

lim
NÑ8

sup tE p|Xpτq| : |Xpτq| ě Nq : 0 ď τ ď t, τ stopping timeu “ 0.

This proves Proposition 1.26. �

First we formulate and prove Doob’s maximal inequality for time-discrete sub-
martingales. In Theorem 1.27 the sequence i ÞÑ Xi is defined on a filtered
probability space pΩ,Fi.PqiPN, and in Theorem 1.28 the process t ÞÑ Xptq is
defined on a filtered probability space pΩ,Ft.Pqtě0.
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1.27. Theorem (Doob’s maximal inequality). Let pXiqiPN be a sub-martingale
w.r.t. a filtration pFiqiPN. Let Sn “ max1ďiďn Xi be the running maximum of
Xi. Then for any ℓ ą 0,

P rSn ě ℓs ď
1

ℓ
E

“

X`
n 1tSněℓu

‰

ď
1

ℓ
E

“

X`
n

‰

, (1.22)

where X`
n “ Xn _ 0. In particular, if Xi is a martingale and Mn “ max

1ďiďn
|Xi|,

then

P rMn ě ℓs ď
1

ℓ
E

“

|Xn|1tMněℓu
‰

ď
1

ℓ
E r|Xn|s . (1.23)

Proof. Let τℓ “ inf ti ě 1 : Xi ě ℓu. Then P rSn ě ℓs “
řn

i“1 P rτℓ “ is.
For each 1 ď i ď n,

P rτℓ “ is “ E
“

1tXiěℓu1tτℓ“iu
‰

ď
1

ℓ
E

“

X`
i 1tτℓ“iu

‰

. (1.24)

Note that tτℓ “ iu P Fi, and X`
i is a sub-martingale because Xi itself is a

sub-martingale while φpxq “ x` “ x _ 0 “ maxpx, 0q is an increasing convex
function. Therefore

E
“

X`
n 1tτℓ“iu

ˇ

ˇ Fi

‰

“ 1tτℓ“iuE
“

X`
n

ˇ

ˇ Fi

‰

ě 1tτℓ“iu
`

E
“

Xn

ˇ

ˇ Fi

‰˘` ě 1tτℓ“iuX
`
i ,

and hence E
“

X`
i 1tτℓ“iu

‰

ď E
“

X`
n 1tτℓ“iu

‰

. Substituting this inequality into
(1.24) and then summing over 1 ď i ď n then yields (1.22). The inequality in
(1.23) follows by applying (1.22 to the sub-martingale |Xi|. �
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Next we formulate and prove Doob’s maximal inequality for continuous time
sub-martingales.

1.28.Theorem (Doob’s maximal inequality). Let pXptqqtě0 be a sub-martingale
w.r.t. a filtration pFtqtě0. Let Sptq “ sup0ďsďtXpsq be the running maximum
of Xptq. Suppose that the process t ÞÑ Xptq is P-almost surely continuous from
the right (and possesses left limits P-almost surely). Then for any ℓ ą 0,

P rSptq ě ℓs ď
1

ℓ
E

“

Xptq`1tSptqěℓu
‰

ď
1

ℓ
E

“

X`ptq
‰

, (1.25)

where X`ptq “ Xptq _ 0 “ max pXptq, 0q. In particular, if t ÞÑ Xptq is a
martingale and Mptq “ sup

0ďsďt
|Xptq|, then

P rMptq ě ℓs ď
1

ℓ
E

“

|Xptq|1tMptqěℓu
‰

ď
1

ℓ
E r|Xptq|s . (1.26)

Proof. Let, for every N P N, τN be the pFtqtě0-stopping time defined
by τN “ inf tt ą 0 : Xptq` ě Nu. In addition define the double sequence of
processes Xn.Nptq by

Xn,Nptq “ X
`

2´n r2nts ^ τN
˘

.

Theorem 1.28 follows from Theorem 1.27 by applying it the processes t ÞÑ
Xn,Nptq, n P N, N P N. As a consequence of Theorem 1.27 we see that Theorem
1.28 is true for the double sequence t ÞÑ Xn,Nptq, because, essentially speaking,
these processes are discrete-time processes with the property that the processes
pn, tq ÞÑ Xn,Nptq` attain P-almost surely their values in the interval r0, N s.
Then we let n Ñ 8 to obtain Theorem 1.28 for the processes t ÞÑ X pt ^ τNq,
N P N. Finally we let N Ñ 8 to obtain the full result in Theorem 1.28. �

5.2. Additive processes. In this final section we introduce the notion
of additive and multiplicative processes. Let E be a second countable locally
compact Hausdorff space. In the non-time-homogeneous case we consider real-
valued processes which depend on two time parameters: pt1, t2q ÞÑ Z pt1, t2q,
0 ď t1 ď t2 ď T . It is assumed that for all 0 ď t1 ď t2 ď T , the variable
Z pt1, t2q only depends, or is measurable with respect to, σ tXpsq : t1 ď s ď t2u.
Such a process is called additive if

Z pt1, t2q “ Z pt1, tq ` Z pt, t2q , t1 ď t ď t2.

The process Z is called multiplicative if

Z pt1, t2q “ Z pt1, tq ¨ Z pt, t2q , t1 ď t ď t2.

Let p : r0, T s ˆ E Ñ R be a continuous function, and let tXptq : 0 ď t ď T u be
an E-valued process which has left limits in E, and which is right-continuous
(i.e. it is càdlàg). Put Z pt1, t2q “

şt2
t1
p ps,Xpsqq ds. Then the process pt1, t2q ÞÑ

Z pt1, t2q, 0 ď t1 ď t2 ď T is additive, and the process pt1, t2q ÞÑ exp pZ pt1, t2qq,
0 ď t1 ď t2 ď T , is multiplicative.
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Next we consider the particular case that we deal with time-homogeneous pro-
cesses like Brownian motion:

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt : t ě 0q , pRn,Bnqu ,

which represents Brownian motion starting at x P Rd. An adapted process
t ÞÑ Zptq is called additive if Z ps ` tq “ Z psq ` Z ptq ˝ ϑs, Px-almost surely,
for all s, t ě 0. It is called multiplicative provided Z ps ` tq “ Z psq ¨ Z ptq ˝ ϑs,
Px-almost surely, for all s, t ě 0. Examples of additive processes are integrals
of the form Zptq “

şt2
0
p pXpsqq ds, where x ÞÑ ppxq is a continuous (or Borel)

function on Rd, or stochastic integrals (Itô, Stratonovich integrals) of the form

Zptq “
şt

0
p pXpsqq dXpsq. Such integrals have to be interpreted in some L2-

sense. More details will be given in Section 6. If t ÞÑ Zptq is an additive
process, then its exponent t ÞÑ exp pZptqq is a multiplicative process. If T is a
terminal stopping time, then the process t ÞÑ 1tTątu is a multiplicative process.

Let pXnqnPN be a sequence of non-negative i.i.d. random variables each of which
has density f1 ě 0. Suppose that fn is the density of the distribution of
řn

j“1 Xj. Note “i.i.d.” means “independent, identically distributed”. Then

P

«

n
ÿ

j“1

Xj ď t

ff

“
ż t

0

fnpsqds, and hence

ż t

0

fn`1psqds “ P

«

n`1
ÿ

j“1

Xj ď t

ff

“ P

«

n
ÿ

j“1

Xj ` Xn`1 ď t

ff

“
ż t

0

fnpρqf1pt ´ ρqdρ.

It follows that
ż t

0

fnpsqds ´
ż t

0

fn`1pρqdρ “
ż t

0

fnpsqds ´
ż t

0

ż ρ

0

fnpsqf1pρ ´ sqds dρ

“
ż t

0

fnpsqds ´
ż t

0

fnpsq
ż t

s

f1pρ ´ sqdρ ds

“
ż t

0

fnpsq
ˆ

1 ´
ż t

s

f1pρ ´ sqdρ
˙

ds

“
ż t

0

fnpsq
ż 8

t

f1pρ ´ sqdρ ds

“
ż t

0

fnpsq
ż 8

t´s

f1pρqdρ ds. (1.27)

If f1psq “ λe´λs, then fnpsq “
λnsn´1

pn ´ 1q!
e´λs. This follows by induction.

5.3. Continuous time discrete processes. Here we suppose that the
process

tpΩ,F,Pq , pXptq : t ě 0q , pϑt : t ě 0q , pS, Squ
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is governed by a time-homogeneous or stationary transition probabilities:

pj,iptq “ P
“

Xptq “ j
ˇ

ˇ Xp0q “ i
‰

“ P
“

Xpt ` sq “ j
ˇ

ˇ Xpsq “ i
‰

, i, j P S,
(1.28)

for all s ě 0. Here, S is a discrete state space, e.g. S “ Z, S “ Zn, S “ N, or
S “ t0, Nu. The measurable space pΩ,Fq is called the sample or sample path
space. Its elements ω P Ω are called realizations. The mappings Xptq : Ω Ñ S
are called the state variables; the application t ÞÑ Xptqpωq is called a sample
path or realization. The translation operators ϑt, t ě 0, are mappings from
Ω to Ω with the property that: Xpsq ˝ ϑt “ Xps ` tq, P-almost surely. For
the time being these operators will not be used; they are very convenient to
express the Markov property in the time-homogeneous case. We assume that
the Chapman-Kolmogorov conditions are satisfied:

pj,i ps ` tq “
ÿ

kPS
pj,kpsqpk,iptq, i, j P S, s, t ě 0. (1.29)

In fact the Markov property is a consequence of the Chapman-Kolmogorov
identity (1.29). From the Chapman-Kolmogorov (1.29) the following important
identity follows:

P ps ` tq “ P psqP ptq, s, t ě 0. (1.30)

The identity in (1.30) is called the semigroup property; the identity has to be
interpreted as matrix multiplication. Suppose that the functions t ÞÑ pj,iptq, j,
i P S, are right differentiable at t “ 0. The latter means that the following
limits exist:

qj,i “ lim
△Ó0

pj,i p△q ´ pj,ip0q
△

, i, j P S.
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We assume that pj,ip0q “ δj,i, where δj,i is the Dirac delta function: δj,i “ 0 if
j ‰ i, and δj,j “ 1. Put Q “ pqj,iqi,jPS. Then the matrix Q is a Kolmogorov

matrix in the sense that qj,i ě 0 for j ‰ i and
ř

jPS qj,i “ 0. It follows that

qi,i “ ´
ř

jPS,j‰i qj,i ď 0. The reason that the off-diagonal entries qj,i, j ‰ i, are
non-negative is due to the fact that for j ‰ i we have

qj,i “ lim
tÓ0

pj,iptq ´ pj,ip0q
t

“ lim
tÓ0

pj,iptq ´ δj,ip0q
t

“ lim
tÓ0

pj,iptq
t

ě 0.

In addition, we have
ÿ

jPS
qj,i “

ÿ

jPS
lim
tÓ0

pj,iptq ´ pj,ip0q
t

“ lim
tÓ0

ÿ

jPS

pj,iptq ´ pj,ip0q
t

“ lim
tÓ0

ř

jPS pj,iptq ´
ř

jPS pj,ip0q
t

“ lim
tÓ0

1 ´ 1

t
“ 0, (1.31)

provided we may interchange the summation and the limit. Finally we have the
following general fact. Let t ÞÑ P ptq be the matrix function t ÞÑ ppj,iptqqi,jPS.

Then P ptq satisfies the Kolmogorov backward and forward differential equation:

dP ptq
dt

“ QP ptq “ P ptqQ, t ě 0. (1.32)

The first equality in (1.32) is called the Kolmogorov forward equation, and the
second one the Kolmogorov backward equation. The solution of this matrix-
valued differential equation is given by P ptq “ etQP p0q. But since P p0q “
ppj,ip0qqj,iPS “ pδj,iqi,jPS is the identity matrix, it follows that P ptq “ etQ. The

equalities in (1.32) hold true, because by the semigroup property (1.30) we have:

P pt ` △ptqq ´ P ptq
△ptq

“
P p△ptqq ´ P p0q

△ptq
P ptq “ P ptq

P p△ptqq ´ P p0q
△ptq

. (1.33)

Then we let △ptq tend to 0 in (1.33) to obtain (1.32).

5.4. Poisson process. We begin with a formal definition.

1.29. Definition. A Poisson process

tpΩ,F,Pq , pXptq, t ě 0q , pϑt, t ě 0q , pN,Nqu
(see (1.46) below) is a continuous time process Xptq, t ě 0, with values in
N “ t0, 1, . . .u which possesses the following properties:

(a) For ∆t ą 0 sufficiently small the transition probabilities satisfy:

pi`1,ip∆tq “ P
“

X pt ` ∆tq “ i ` 1
ˇ

ˇ Xptq “ i
‰

“ λ∆t ` o p∆tq ;
pi,ip∆tq “ P

“

X pt ` ∆tq “ i
ˇ

ˇ Xptq “ i
‰

“ 1 ´ λ∆t ` o p∆tq ;
pj,ip∆tq “ P

“

X pt ` ∆tq “ j
ˇ

ˇ Xptq “ i
‰

“ o p∆tq ;
pj,ip∆tq “ 0, j ă i. (1.34)

(b) The probability transitions ps, i; t, jq ÞÑ P
“

X ptq “ j
ˇ

ˇ Xpsq “ i
‰

, t ą s,
only depend on t ´ s and j ´ i.

(c) The process tXptq : t ě 0u has the Markov property.
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Item (b) says that the Poisson process is homogeneous in time and in space: (b)
is implicitly used in (a). Note that a Poisson process is not continuous, because
when it moves it makes a jump. Put

piptq “ pi0ptq “ pj`i,jptq “ P
“

Xptq “ j ` i
ˇ

ˇ Xp0q “ i
‰

, i, j P N. (1.35)

1.30. Proposition. Let the process

tpΩ,F,Pq , pXptq, t ě 0q , pϑt, t ě 0q , pN,Nqu

possess properties (a) and (b) in Definition 1.29. Then the following equality
holds for all t ě 0 and i P N:

piptq “
pλtqi

i!
e´λt. (1.36)

1.31. Remark. It is noticed that the equalities in (1.42), (1.40), and (1.44) only
depend on properties (a) and (b) in Definition 1.29. So that from (a), and (b)
we obtain

d

dt
piptq ` λpiptq “ λ

pλtqi´1

pi ´ 1q!
e´λt “ λpi´1ptq, i ě 1, (1.37)

and hence

pj,iptq “ pj´iptq “ P
“

Xptq “ j
ˇ

ˇ Xp0q “ i
‰

“
pλtqj´i

pj ´ iq!
e´λt, j ě i. (1.38)

If 0 ď j ă i, then pj,iptq “ 0.

Proof. By definition we see that pjp0q “ P
“

Xp0q “ j
ˇ

ˇ Xp0q “ 0
‰

“ δ0,j,
and so p0p0q “ 1 and pjp0q “ 0 for j ‰ 0. Let us first prove that the functions
t ÞÑ piptq, i ě 1, satisfy the differential equation in (1.45) below. First suppose
that i ě 2, and we consider:

pi pt ` ∆tq ´ piptq “ P rX pt ` ∆tq “ is ´ piptq

“
i

ÿ

k“0

P rX pt ` ∆tq “ i, Xptq “ ks ´ piptq

“
i

ÿ

k“0

P
“

X pt ` ∆tq “ i
ˇ

ˇ Xptq “ k
‰

P rXptq “ ks ´ piptq

“ P
“

X pt ` ∆tq “ i
ˇ

ˇXptq “ i
‰

piptq ` P
“

X pt ` ∆tq “ i
ˇ

ˇXptq “ i ´ 1
‰

pi´1ptq

`
i´2
ÿ

k“0

P
“

X pt ` ∆tq “ i
ˇ

ˇ Xptq “ k
‰

pkptq ´ piptq

“ p1 ´ λ∆t ` o p∆tqq piptq ` pλ∆t ` o p∆tqq pi´1ptq `
i´2
ÿ

k“0

pkptqo p∆tq ´ piptq

“ ´λ∆tpiptq ` λ∆tpi´1ptq `
i

ÿ

k“0

pkptqo p∆tq . (1.39)
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From (1.39) we obtain

d

dt
piptq “ ´λpiptq ` λpi´1ptq. (1.40)

Next we consider i “ 0:

p0 pt ` ∆tq ´ p0ptq “ P rX pt ` ∆tq “ 0s ´ p0ptq
“ P

“

X pt ` ∆tq “ 0
ˇ

ˇ Xptq “ 0
‰

P rXptq “ 0s ´ p0ptq
“ P

“

X pt ` ∆tq “ 0
ˇ

ˇ Xptq “ 0
‰

p0ptq ´ p0ptq “ p´λ∆t ` o p∆tqq p0ptq. (1.41)

From (1.41) we get the equation

d

dt
p0ptq “ ´λp0ptq. (1.42)

For i “ 1 we have:

p1 pt ` ∆tq ´ p1ptq “ P rX pt ` ∆tq “ 1s ´ p1ptq
“ P

“

X pt ` ∆tq “ 1
ˇ

ˇ Xptq “ 1
‰

P rXptq “ 1s ´ p1ptq
` P

“

X pt ` ∆tq “ 1
ˇ

ˇ Xptq “ 0
‰

P rXptq “ 0s
“ P

“

X pt ` ∆tq “ 1
ˇ

ˇ Xptq “ 1
‰

p1ptq ´ p1ptq
` P

“

X pt ` ∆tq “ 1
ˇ

ˇ Xptq “ 0
‰

p0ptq
“ p´λ∆t ` o p∆tqq p1ptq ` pλ∆t ` o p∆tqq p0ptq. (1.43)
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From (1.43) we obtain:

d

dt
p1ptq “ ´λp1ptq ` λp0ptq. (1.44)

By definition we see that pjp0q “ P
“

Xp0q “ j
ˇ

ˇ Xp0q “ 0
‰

“ δ0,j, and so p0p0q “
1 and pjp0q “ 0 for j ‰ 0. From (1.42) we get p0ptq “ e´λt. From (1.40) and
(1.44) we obtain

d

dt

`

eλtpiptq
˘

“ λeλtpi´1ptq, i ě 1. (1.45)

By induction it follows that piptq “
pλtqi

i!
e´λt. This completes the proof of

Proposition 1.30. �

In the Proposition 1.33 below we show that a process

tpΩ,F,Pq , pXptq, t ě 0q , pϑt, t ě 0q , pN,Nqu (1.46)

which satisfies (a) and (b) of Definition 1.29 is a time-homogeneous Markov
process if and only if its increments are P-independent. First we prove a lemma,
which is of independent interest.

1.32. Lemma. Let the functions piptq be defined as in (1.35). Then the equality

piptq “ P rXps ` tq ´ Xpsq “ is (1.47)

holds for all i P N and all s, t ě 0.

Proof. Using the space and time invariance properties of the process Xptq
shows:

P rXps ` tq ´ Xpsq “ is “
8
ÿ

k“0

P rX ps ` tq ´ Xpsq “ i, Xpsq “ ks

“
8
ÿ

k“0

P rX ps ` tq “ i ` k, Xpsq “ ks

“
8
ÿ

k“0

P
“

X ps ` tq “ i ` k
ˇ

ˇ Xpsq “ k
‰

P rXpsq “ ks

(space and time invariance properties of piptq)

“
8
ÿ

k“0

piptqP rXpsq “ ks “ piptq. (1.48)

The conclusion in Lemma 1.32 follows from (1.48). �

The following proposition says that a time and space-homogeneous process sat-
isfying the equalities in (1.34) of Definition 1.29 is a Poisson process if and only
if its increments are P-independent.
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1.33. Proposition. The process tXptq : t ě 0u possessing properties (a) and
(b) of Definition 1.29 possesses the Markov property if and only if its increments
are P-independent. Moreover, the equalities

P rXptq ´ Xpsq “ j ´ is “ P
“

Xptq “ j
ˇ

ˇ Xpsq “ i
‰

“ pj´ipt ´ sq “
pλpt ´ sqqj´i

pj ´ iq!
e´λpt´sq (1.49)

hold for all t ě s ě 0 and for all j ě i, i, j P N.

Proof. First assume that the process in (1.46) has the Markov property.
Let tn`1 ą tn ą ¨ ¨ ¨ ą t1 ą t0 “ 0, and let ik, 1 ď k ď n ` 1, be nonnegative
integers. Then by induction we have

P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n ` 1s

“
8
ÿ

k“0

P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n ` 1, X ptnq “ ks

“
8
ÿ

k“0

P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n ` 1, X ptnq “ ks
P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n, X ptnq “ ks

ˆ P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n, X ptnq “ ks

“
8
ÿ

k“0

P
“

X ptn`1q ´ X ptnq “ in`1

ˇ

ˇ X ptℓq ´ X ptℓ´1q “ iℓ, X ptnq “ k,

1 ď ℓ ď ns
ˆ P rX ptℓq ´ X ptℓ´1q “ iℓ, X ptnq “ k, 1 ď ℓ ď n, s

(Markov property)

“
8
ÿ

k“0

P
“

X ptn`1q ´ X ptnq “ in`1

ˇ

ˇ X ptnq “ k
‰

ˆ P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n, X ptnq “ ks

“
8
ÿ

k“0

P
“

X ptn`1q “ in`1 ` k
ˇ

ˇ X ptnq “ k
‰

ˆ P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n, X ptnq “ ks

(homogeneity in space and time of the function t ÞÑ pin`1ptq)

“
8
ÿ

k“0

pin`1 ptn`1 ´ tnqP rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n, X ptnq “ ks

(apply equality (1.47) in Lemma 1.29)

“
8
ÿ

k“0

P rX ptn`1q ´ X ptnq “ in`1s

P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď n, X ptnq “ ks
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“ P rX ptn`1q ´ X ptnq “ in`1sP rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď ns . (1.50)

By induction and employing (1.50) it follows that

P rX ptℓq ´ X ptℓ´1q “ iℓ, 1 ď ℓ ď ns “
n

ź

ℓ“1

P rX ptℓq ´ X ptℓ´1q “ iℓs

“
n

ź

ℓ“1

piℓ ptℓ ´ tℓ´1q . (1.51)

We still have to prove the converse statement, i.e. to prove that if the increments
of the process Xptq are P-independent, then the process Xptq has the Markov
property. Therefore we take states 0 “ i0, i1, . . . , in, in`1, and times 0 “ t0 ă
t1 ă ¨ ¨ ¨ ă tn ă tn`1, and we consider the conditional probability:

P
“

X ptn`1q “ in`1

ˇ

ˇ X pt0q “ i0, . . . , X ptnq “ in
‰

“
P rX ptn`1q “ in`1, X pt0q “ i0, . . . , X ptnq “ ins

P rX pt0q “ i0, . . . , X ptnq “ ins

“
P rX pt0q “ i0, X ptℓq ´ X ptℓ´1q “ iℓ ´ iℓ´1, 1 ď ℓ ď n ` 1s
P rX pt0q “ i0, X ptℓq ´ X ptℓ´1q “ iℓ ´ iℓ´1, 1 ď ℓ ď ns

(increments are P-independent)

“ P rX ptn`1q ´ X ptnq “ in`1 ´ ins
“ P

“

X ptn`1q “ in`1

ˇ

ˇ X ptnq “ in
‰

. (1.52)
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The final equality in (1.52) follows by invoking another application of the fact
that increments are P-independent. More precisely, since X ptn`1q ´X ptnq and
X ptnq ´ Xp0q are P-independent we have

P
“

X ptn`1q “ in`1

ˇ

ˇ X ptnq “ in
‰

“
P rX ptn`1q ´ X ptnq “ in`1 ´ in, X ptnq ´ Xp0q “ ins

P rX ptnq ´ Xp0q “ ins
“ P rX ptn`1q ´ X ptnq “ in`1 ´ ins . (1.53)

The equalities in (1.49) follow from equality (1.47) in Lemma 1.32, from (1.53),
from the definition of the function piptq (see equality (1.37)), and from the
explicit value of piptq (see (1.36) in Proposition 1.30). This completes the proof
of Proposition 1.33. �

Let pΩ,F,Pq be a probability space and let the process t ÞÑ Nptq and the proba-

bility measures Pj, j P N in
!

pΩ,F,PjqjPN , pNptq : t ě 0q , pϑs : s ě 0q , pN,Nq
)

have the following properties:

(a) It has independent increments: Npt ` hq ´ Nptq is independent of

F0
t “ σ pNpsq ´ Np0q : 0 ď s ď tq .

(b) Constant intensity: the chance of arrival in any interval of length h is
the same:

P rN pt ` hq ´ Nptq ě 1s “ λh ` ophq.

(c) Rarity of jumps ě 2:

P rN pt ` hq ´ Nptq ě 2s “ ophq.

(d) the measures Pj, j ě 1, are defined by: PjrAs “ P
“

A
ˇ

ˇ Np0q “ j
‰

;
moreover, it is assumed that P0rNp0q “ 0s “ 1.

The following theorem and its proof are taken from Stirzaker [126] Theorem
(13) page 74.

1.34. Theorem. Suppose that the process Nptq and the probability measures
satisfy (a), (b), (c) and (d). Then the process Nptq is a Poisson process and

Pj rNptq “ ks “
pλtqk´j

pk ´ jq!
e´λpk´jq, k ě j. (1.54)

Proof. In view of Proposition 1.33 it suffices to prove the identity in (1.54).
To this end we put

fnptq “ P0 rNptq “ ns “ P
“

Nptq “ n
ˇ

ˇ Np0q “ 0
‰

“ P rNptq ´ Np0q “ ns .

Then we have, for n ě 2 fixed,

fnpt ` hq “ P0 rN pt ` hq “ ns “
n

ÿ

k“0

P0 rN pt ` hq ´ Nptq “ k, Nptq “ n ´ ks
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(the variables Npt ` hq ´ Nptq and Nptq are P0-independent)

“
n

ÿ

k“0

P0 rN pt ` hq ´ Nptq “ ks ˆ P0 rNptq “ n ´ ks

“ P0 rN pt ` hq ´ Nptq “ 0s ˆ P0 rNptq “ ns
` P0 rN pt ` hq ´ Nptq “ 1s ˆ P0 rNptq “ n ´ 1s

`
n

ÿ

k“2

P0 rN pt ` hq ´ Nptq “ ks ˆ P0 rNptq “ n ´ ks

“ p1 ´ P0 rN pt ` hq ´ Nptq ě 1sq ˆ P0 rNptq “ ns
` P0 rN pt ` hq ´ Nptq ě 1s ˆ P0 rNptq “ n ´ 1s
´ P0 rN pt ` hq ´ Nptq ě 2s ˆ P0 rNptq “ n ´ 1s

`
n

ÿ

k“2

P0 rN pt ` hq ´ Nptq “ ks ˆ P0 rNptq “ n ´ ks

“ p1 ´ λh ` ophqq ˆ fnptq ` pλh ` ophqq fn´1ptq ` ophq
n

ÿ

k“1

fn´kptq

“ p1 ´ λhq fnptq ` λhfn´1ptq ` ophq. (1.55)

Observe that a similar argument yields

f1pt ` hq “ p1 ´ λhq f1ptq ` λhf0ptq ` ophq, (1.56)

and also
f0pt ` hq “ p1 ´ λhq f0ptq ` ophq. (1.57)

From (1.55), (1.56) and (1.57) we obtain by rearranging, dividing by h and
allowing h Ó 0:

f 1
nptq “ ´λfnptq ` λfn´1ptq, n ě 1,

f 1
0ptq “ ´λfptq.

These equations can be solved by induction relative to n. A alternative way is
to consider the generating function

Gps, tq :“ E0

“

esNptq‰ “
8
ÿ

n“0

snP0 rNptq “ ns “
8
ÿ

n“0

snfnptq.

Then
BGps, tq

Bt
“ λps ´ 1qGps, tq, and so Gps, tq “ eλtps´1q. It follows that

P0 rNptq “ ns “ fnptq “ e´λt pλtqn

n!
. Consequently, for k ě j we obtain

Pj rNptq “ ks “ P
“

Nptq “ k
ˇ

ˇ Np0q “ j
‰

“ P
“

Nptq ´ Np0q “ k ´ j
ˇ

ˇ Np0q “ j
‰

“ P rNptq ´ Np0q “ k ´ js “ e´λpk´jq pλtqk´j

pk ´ jq!
“ (RHS of (1.54).

This completes the proof of Theorem 1.34. �
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CHAPTER 2

Renewal theory and Markov chains

Our main topic in this chapter is a discussion on renewal theory, classification
properties of irreducible Markov chains, and a discussion on invariant measures.
Its contents is mainly taken from Stirzaker [126].

1. Renewal theory

Let pXrqrPN be a sequence of independent identically distributed random vari-
ables with the property that P rXr ą 0s ą 0. Put Sn “

řn
r“1 Xr, S0 “ 0, and

define the renewal process Nptq by Nptq “ max tn : Sn ď tu, t ě 0. The mean
mptq “ E rNptqs is called the renewal function. We have Nptq ě n if and only
if Sn ď t, and hence

P rNptq “ ns “ P rSn ď ts ´ P rSn`1 ď ts , and (2.1)

E rNptqs “
8
ÿ

r“1

P rNptq ě rs “
8
ÿ

r“1

P rSr ď ts . (2.2)

For more details see e.g. [4] (for birth-death processes) and [126] (for renewal
theory).

2.1. Theorem. If E rXrs ą 0, then Nptq has finite moments for all t ă 8.

Proof. Since E rXrs ą 0 there exists ε ą 0 such that P rXr ě εs ě ε.
Put Mptq “ max

␣

n : ε
řn

r“1 1tXrěεu ď t
(

. Since ε
řn

r“1 1tXrěεu ď
řn

r“1 Xr it
follows that Nptq ď Mptq, and hence, with m “ ttε´1u,

E rNptqs ď E rMptqs “
8
ÿ

n“1

P rMptq ě ns “
8
ÿ

n“1

P

«

ε
n

ÿ

r“1

1tXrěεu ď t

ff

“
8
ÿ

n“1

ÿ

ΛĂt1,...,nu,#Λďm

P rXj ě ε, j P Λ, Xj ă ε, j R Λs

“
8
ÿ

n“1

ÿ

ΛĂt1,...,nu,#Λďm

P rX1 ě εs#Λ p1 ´ P rX1 ě εsqn´#Λ

“
8
ÿ

n“1

n^m
ÿ

k“0

ˆ

n

k

˙

P rX1 ě εsk p1 ´ P rX1 ě εsqn´k

ď
m
ÿ

k“0

P rX1 ě εsk
8
ÿ

n“k

ˆ

n

k

˙

p1 ´ P rX1 ě εsqn´k

35
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“
m
ÿ

k“0

P rX1 ě εsk
8
ÿ

n“0

ˆ

n ` k

n

˙

p1 ´ P rX1 ě εsqn

“
1

P rXr ě εu

ˆZ

t

ε

^

` 1

˙

. (2.3)

In the final equality in (2.3) we used the equality:
8
ÿ

n“0

ˆ

n ` k

n

˙

zk “
1

p1 ´ zqk`1

for |z| ă 1. The inequality in (2.3) shows Theorem 2.1. �

It follows that E rNptqs is finite whenever E rXrs is strictly positive. This fact
will be used in Theorem 2.2.

2.2. Theorem. The following equality is valid:

E
“

SNptq`1

‰

“ E rX1sE rNptq ` 1s .

The equality in Theorem 2.2 is called Wald’s equation.

Proof. The time Nptq ` 1 is a stopping time with respect to the filtration

Fn “ σ pXr : 0 ď r ď nq “ σ pSr ´ rE rX1s : 0 ď r ď nq .

Notice that the process n ÞÑ Sn ´ nE rX1s is a martingale, and hence

E
“

SpNptq`1q^n ´ ppNptq ` 1q ^ nqE rX1s
‰

“ E
“

SpNptq`1q^0 ´ ppNptq ` 1q ^ 0qE rX1s
‰

“ 0. (2.4)

Since E rNptqs is finite, from (2.4) we get by letting n tend to 8:

0 “ lim
nÑ8

E
“

SpNptq`1q^n ´ ppNptq ` 1q ^ nqE rX1s
‰

“ E
“

SpNptq`1q ´ ppNptq ` 1qqE rX1s
‰

. (2.5)

Consequently, the conclusion in Theorem 2.2 follows. �

2.3. Theorem. Let pXrqrPN be a sequence of independent, identically distributed
random variables such that P rXr “ 0s “ 0. Put S0 “ 0 and Sn “

řn
r“1 Xr. Let

the process Nptq be defined as in (2.2). Let F ptq be the distribution function of
the variable Xr. Put mptq “ E rNptqs. Then mptq satisfies the renewal equation:

mptq “ F ptq `
ż t

0

mpt ´ sqdF psq “
8
ÿ

k“1

pµ˚
F qk r0, ts, (2.6)

where µF pa, bs “ F pbq ´F paq, and µ1 ˚µ2pa, bs “
ş8
0

ş8
0
1pa,bsps` tqdµ1psqdµ2ptq,

0 ď a ă b (i.e. convolution product of the measures µ1 and µ2). Moreover,
ˆ

1 ´
ż 8

0

e´λsdF psq
˙

ˆ λ

ż 8

0

e´λtmptq dt “
ż 8

0

e´λsdF psq.

If Xr are independent exponentially distributed random variables, and thus the
process pNptq : t ě 0q is Poisson of parameter λ ą 0, then mptq “ λt.
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Proof. On the event tX1 ą tu we have Nptq “ 0, and hence by using
conditional expectation we see

mptq “ E rNptqs “ E
“

Nptq1tX1ďtu
‰

“ E
“

E
“

Nptq1tX1ďtu
ˇ

ˇ σ pX1q
‰‰

“ E
“

1tX1ďtuE
“

Nptq ´ N pX1q
ˇ

ˇ σ pX1q
‰‰

` E
“

1tX1ďtuE
“

N pX1q
ˇ

ˇ σ pX1q
‰‰

(on the event tX1 ď tu we have N pX1q “ 1)

“ E
“

1tX1ďtuE
“

Nptq ´ N pX1q
ˇ

ˇ σ pX1q
‰‰

` E
“

1tX1ďtuE
“

1
ˇ

ˇ σ pX1q
‰‰

(the distribution ofNptq´Npsq, t ą s, is the same as the distribution ofNpt´sq)

“ E
“

1tX1ďtuE
“

N pt ´ X1q
ˇ

ˇ σ pX1q
‰‰

` E
“

1tX1ďtuE
“

1
ˇ

ˇ σ pX1q
‰‰

“ E
“

N pt ´ X1q1tX1ďtu
‰

` E
“

1tX1ďtu
‰

“
ż t

0

m pt ´ xq dF pxq ` F ptq. (2.7)

This completes the proof of Theorem 2.3. �
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2.4. Lemma. Suppose P rXr ă 8s “ 1. Then

lim
tÑ8

Nptq “ 8, P-almost surely. (2.8)

Proof. Put Z “ lim
tÑ8

Nptq “ sup
tě0

Nptq. Observe that

Nptq`1
ÿ

k“1

Xk ě t, and

hence by letting t Ñ 8, the event tZ ă 8u is contained in
Z`1
ď

r“1

tXr “ 8u, and

thus

P rZ ă 8s “ P

«

Z`1
ď

r“1

tXr “ 8u , Z ă 8

ff

ď P

«

8
ď

r“1

tXr “ 8u

ff

ď
8
ÿ

r“1

P rXr “ 8s “ 0. (2.9)

The result in Lemma 2.4 follows from (2.9). �

Since limtÑ8 Nptq “ 8 P-almost surely, we have lim
tÑ8

Nptq ` 1

Nptq
“ 1 P-almost

surely. The following proposition follows from the strong “law” of large numbers
(SSLN).

2.5. Proposition. Let pXrqrPN be a sequence of non-negative independent, iden-
tically distributed random variables in L1 pΩ,F,Pq such that P rXr ă 8s “ 1.
Then

lim
tÑ8

SNptq`1

Nptq ` 1
“ lim

tÑ8

SNptq

Nptq
“ E rX1s , P-almost surely. (2.10)

2.6. Theorem (First renewal theorem). Let the hypotheses be as in Proposition
2.5. Then

lim
tÑ8

Nptq
t

“
1

E rX1s
, P-almost surely. (2.11)

Proof. By definition we have SNptq ď t ă SNptq`1, therefore

SNptq

Nptq
ď

t

Nptq
ď

Nptq ` 1

Nptq
SNptq`1

Nptq ` 1
. (2.12)

The result in (2.11) now follows from (2.12) in conjunction with (2.8) and (2.10).
This proves Theorem 2.6. �

The proof of the following theorem is somewhat more intricate.

2.7. Theorem (Elementary renewal theorem). Let the hypotheses be as in
Proposition 2.5. As above, put mptq “ E rNptqs. Then

lim
tÑ8

mptq
t

“
1

E rX1s
. (2.13)
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2.8. Remark. From Theorem 2.6 and 2.7 it follows that the family
"

Nptq
t

: t ě 0

*

is uniformly integrable. Here we use Scheffé’s theorem.

Proof of Theorem 2.7. This equality has to be considered as two in-
equalities. First we have t ă SNptq`1, and hence by Theorem 2.6 we see

t ă E
“

SNptq`1

‰

“ E rX1s pE rNptqs ` 1q “ E rX1s pmptq ` 1q . (2.14)

The inequality in (2.14) is equivalent to

mptq
t

ě
1

E rX1s
´

1

t
. (2.15)

From (2.15) we see

lim inf
tÑ8

mptq
t

ě lim inf
tÑ8

ˆ

1

E rX1s
´

1

t

˙

“
1

E rX1s
. (2.16)

For the second inequality we proceed as follows. Fix a strictly positive real
number a, and put Naptq “ max tn P N :

řn
r“1 min pa,Xrq ď tu. Then Nptq ď

Naptq. Moreover, by Theorem 2.2 we have

t ě E
“

SNaptq
‰

“ E
“

SNaptq`1 ´ min
`

a,XNaptq`1

˘‰

“ E rmin pa,X1qsE rNaptq ` 1s ´ E
“

min
`

a,XNaptq`1

˘‰

ě E rmin pa,X1qsE rNptq ` 1s ´ a “ pmptq ` 1qE rmin pa,X1qs ´ a. (2.17)

Hence, from (2.17) we obtain:

mptq
t

ď
1

E rmin pa,X1qs
`

a ´ E rmin pa,X1qs
tE rmin pa,X1qs

. (2.18)

From (2.18) we deduce:

lim sup
tÑ8

mptq
t

ď
1

E rmin pa,X1qs
, for all large a ą 0. (2.19)

By letting a Ñ 8 in (2.19) we see

lim sup
tÑ8

mptq
t

ď
1

E rX1s
. (2.20)

A combination of the inequalities (2.16) and (2.20) yields the result in Theorem
2.7. �

Next we extend these renewal theorems a little bit, by introducing a renewal-
reward process pRnqnPN, where “costs” are considered as negative rewards. We
are also interested in the cumulative reward up to time t: Cptq (the reward is
collected at the end of any interval); Ciptq (the reward is collected at the start of
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any interval); CP ptq (the reward accrues during any given time interval). More
precisely we have:

Cptq “
Nptq
ÿ

j“1

Rj, terminal reward at the end of time interval, (2.21)

Ciptq “
Nptq`1

ÿ

j“1

Rj, initial reward at the beginning of time interval, (2.22)

CP ptq “
Nptq
ÿ

j“1

Rj ` PNptq`1, partial rewards during time interval. (2.23)

For the corresponding reward functions we write

cptq “ E rCptqs , ciptq “ E rCiptqs and cpptq “ E rCP ptqs . (2.24)

We are interested in the rates of reward:
Cptq
t

,
Ciptq
t

, and
CP ptq

t
. It is assumed

that the renewal process Nptq is defined by inter-arrival times Xr, r P N. As
above these inter-arrival times are non-negative, independent and identically
distributed on a probability space pΩ,F,Pq. It is also assumed that the renewal-
reward process Rn, n P N, consists of independent and identically distributed
random variables in the space L1 pΩ,F,Pq.
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The following theorem will be proved.

2.9. Theorem (Renewal-reward theorem). Suppose that 0 ă E rX1s ă 8,
E r|R1|s ă 8, and that the sequence pn´1PnqnPN is uniformly bounded in n P N
and ω, and has the property that limnÑ8 n´1Pn “ 0, P-almost surely. Let the
notation be as in (2.21), (2.22), (2.23), and (2.24). Then the following time

average limits exist P-almost surely and they are identified as
E rR1s
E rX1s

:

lim
tÑ8

Cptq
t

“ lim
tÑ8

Ciptq
t

“ lim
tÑ8

CP ptq
t

“
E rR1s
E rX1s

, P-almost surely. (2.25)

The following equalities hold as well:

lim
tÑ8

cptq
t

“ lim
tÑ8

ciptq
t

“ lim
tÑ8

cP ptq
t

“
E rR1s
E rX1s

. (2.26)

Observe that the quotient
E rR1s
E rX1s

can be interpreted as the “expected reward

accruing in a cycle” divided by “expected duration of a cycle”.

Other conditions on the sequence pPn : n P Nq can be given while retaining the
conclusion in Theorem 2.9. For example the following conditions could be im-
posed. The sequence pPn : n P Nq is P-independent and identically distributed,
or there are finite deterministic constants c1 and c2 such that |Pn| ď c1n`c2 |Rn|

and lim
nÑ8

Pn

n
“ 0. In these cases the sequence

ˆ

Pn

n
: n P N

˙

is uniformly inte-

grable and lim
nÑ8

Pn

n
“ 0 P-almost surely.

Proof. By employing Theorem 2.2 and the strong law of large numbers we
have

lim
tÑ8

Cptq
t

“ lim
tÑ8

řNptq
k“1 Rk

Nptq
Nptq
t

“
E rR1s
E rX1s

. (2.27)

In exactly the same manner, with Nptq ` 1 replacing Nptq, we see lim
tÑ8

Ciptq
t

“
E rR1s
E rX1s

. By hypothesis we know that lim
nÑ8

Pn

n
“ 0 P-almost surely. Since

lim
tÑ8

Nptq “ 8 P-almost surely

we see that lim
tÑ8

PNptq`1

Nptq ` 1
“ 0. This together with (2.27) shows that

lim
tÑ8

CP ptq
t

“
E rR1s
E rX1s

.

These arguments take care of the P-almost sure convergence.

Next we consider the convergence of the time averaged expected values. For
convergence of time average of the reward function ciptq “ E rCiptqs we use
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Wald’s equation (see Theorem 2.2) and the elementary renewal Theorem 2.7.
More precisely we have:

ciptq “ E rCiptqs “ E

«

Nptq`1
ÿ

j“1

Rj

ff

“ E rR1s pE rNptqs ` 1q . (2.28)

Then we divide by t, take the limit in (2.28) as t tends to 8. An appeal to

Theorem 2.6 then shows the existence of the limit lim
tÑ8

ciptq
t

“
E rR1s
E rX1s

which

is the second part of (2.26) in Theorem 2.9. First observe that lim
nÑ8

Rn

n
“ 0

P-almost surely. This can be seen by an appeal to the Borel-Cantelli lemma. In
fact we have

8
ÿ

n“1

P
„

|Rn|
n

ą ε

ȷ

“
8
ÿ

n“1

P
„

|R1|
ε

ą n

ȷ

ď
ż 8

0

P
„

|R1|
ε

ą x

ȷ

dx ď E
„

|R1|
ε

ȷ

.

(2.29)

From (2.29) together with the Borel-Cantelli lemma it follows that lim
nÑ8

Rn

n
“ 0

P-almost surely. Consequently, the sequence

"

Rn

n
: n P N

*

is P-uniformly in-

tegrable. Then we have
ˇ

ˇRNptq`1

ˇ

ˇ

t
ď

Nptq ` 1

t

řNptq`1
k“1 |Rn|
Nptq ` 1

, (2.30)

and hence by Wald’s equality

E

«

ˇ

ˇRNptq`1

ˇ

ˇ

t

ff

ď E

«

Nptq ` 1

t

řNptq`1
k“1 |Rn|
Nptq ` 1

ff

“
mptq ` 1

t
E r|R1|s . (2.31)

By the strong law of large numbers and by the elementary renewal theorem 2.7
we see that the families of random variables

řNptq`1
k“1 |Rn|

t
“

Nptq ` 1

t

řNptq`1
k“1 |Rn|
Nptq ` 1

, t ą 0, (2.32)

is uniformly integrable. Consequently the family

"

RNptq`1

t
: t ą 0

*

is uniformly

integrable, and hence it converges pointwise and in L1 pΩ,F,Pq to 0. Since

cptq
t

“
1

t

˜

E

«

Nptq`1
ÿ

k“1

Rk

ff

´ E
“

RNptq`1

‰

¸

“
mptq ` 1

t
E rR1s ´

E
“

RNptq`1

‰

t
.

(2.33)

The right-hand side of (2.33) converges to
E rR1s
E rX1s

. This proves the first part of

(2.26) in Theorem 2.9. In order to prove the third part we need the uniform

integrability of the family

"

PNptq`1

t
: t ě 1

*

. This fact is not entirely trivial.
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Let the finite constant C be such that |Pn`1| ď Cpn ` 1q for all n P N and P-
almost surely; by hypothesis such a constant exists. From Remark 2.8 it follows

that the family

"

Nptq ` 1

t
: t ě 1

*

is uniformly integrable. Since

ˇ

ˇPNptq`1

ˇ

ˇ

t
“

ˇ

ˇPNptq`1

ˇ

ˇ

Nptq ` 1

Nptq ` 1

t
ď C

Nptq ` 1

t
(2.34)

it follows that the family

"

PNptq`1

t
: t ě 1

*

is uniformly integrable as well. If

t Ò 8, then Nptq Ò 8, and lim
tÑ8

Nptq
t

“
1

E rX1s
in L1 pΩ,F,Pq as well as P-

almost surely: see Lemma 2.4, theorems 2.6, 2.7, and Remark 2.8. From (2.34)

it follows that lim
tÑ8

E
“ˇ

ˇPNptq`1

ˇ

ˇ

‰

t
“ 0, which concludes the proof of Theorem

2.9. �
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1.1. Renewal theory and Markov chains. Next we consider this re-
newal theory in the context of strong Markov chains. Let pΩ,F,Pq be a proba-
bility space and let Xm, m P N, be a Markov chain on pΩ,F,Pq with state space

pS, Sq. Fix two states j and k P S. Define the sequence of stopping times T
prq
k ,

r P N, as follows:

T
pr`1q
k “ min

!

n ą T
prq
k : Xn “ k

)

, T
p0q
k “ 0. (2.35)

If Xn ­“ k for n ą T
prq
k , then we put T

pr`1q
k “ 8. The sequence of differences

T
prq
k ´ T

pr´1q
k , r ě 1, are Pj-independent and identically distributed.

2.10. Theorem. Let f : r0,8s ˆ S Ñ R be a bounded measurable function.
Then

T
pr`sq
k “ T

prq
k ` T

psq
k ˝ ϑ

T
prq
k

on
!

T
prq
k ă 8

)

, and (2.36)

Ej

”

f
´

T
pr`sq
k , X

T
pr`sq
k

¯

1tT prq
k ă8u

ˇ

ˇ F
T

prq
k

ı

“ Ej

”

f
´

T
pr`sq
k , X

T
pr`sq
k

¯

1tT prq
k ă8u

ˇ

ˇ σ
´

T
prq
k , X

T
prq
k

¯ı

“ Ej

”

f
´

T
pr`sq
k , X

T
pr`sq
k

¯

1tT prq
k ă8u

ˇ

ˇ σ
´

T
prq
k

¯ı

“ ω ÞÑ EX
T

prq
k

pωq
pωq

”

ω1 ÞÑ f
´

T
prq
k pωq ` T

psq
k pω1q , X

T
psq
k pω1q pω1q

¯ı

1tT prq
k ă8upωq

“ ω ÞÑ Ek

”

ω1 ÞÑ f
´

T
prq
k pωq ` T

psq
k pω1q , X

T
psq
k pω1q pω1q

¯ı

1tT prq
k ă8upωq. (2.37)

Consequently, conditioned on the event
!

T
prq
k ă 8

)

the stochastic variable

T
pr`sq
k ´ T

prq
k

and the σ-field F
T

prq
k

are Pj-independent.

Suppose that Pk

”

T
prq
k ă 8

ı

“ 1 and Pj

”

T
p1q
k ă 8

ı

ą 0. Then

Pj

”

T
pr`1q
k ă 8

ı

“ Pj

”

T
p1q
k ă 8

ı

,

and the variables T
pr`1q
k ´ T

prq
k , r P N, have the same distribution with respect

to the probability measure A ÞÑ Pj

”

A
ˇ

ˇ T
p1q
k ă 8

ı

.

Here PjpAq “ P
“

A
ˇ

ˇ X0 “ j
‰

, A P F, j P S. Theorem 2.10 is a consequence of
the strong Markov property.

Proof. First we prove (2.36). On the event
!

T
prq
k ă 8

)

we have

T
pr`1q
k “ min

!

n ą T
prq
k : Xn “ k

)

“ min
!

n ą T
prq
k : X

n´T
prq
k

˝ ϑ
T

prq
k

“ k
)

“ T
prq
k ` min

!

n ´ T
prq
k ě 1 : X

n´T
prq
k

˝ ϑ
T

prq
k

“ k
)

“ T
prq
k ` min

!

m ě 1 : Xm ˝ ϑ
T

prq
k

“ k
)
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“ T
prq
k ` T

p1q
k ˝ ϑ

T
prq
k
. (2.38)

The equality in (2.38) shows (2.36) in case s “ 1. We use (2.38) with s respec-
tively r ` s instead of r to obtain (2.36) by induction on s. More precisely we
have

T
prq
k ` T

ps`1q
k ˝ ϑ

T
prq
k

“ T
prq
k `

´

T
psq
k ` T

p1q
k ˝ ϑ

T
psq
k

¯

˝ ϑ
T

prq
k

(2.39)

“ T
prq
k ` T

psq
k ˝ ϑ

T
prq
k

` T
p1q
k ˝ ϑ

T
prq
k `T

psq
k ˝ϑ

T
prq
k

(induction hypothesis)

“ T
pr`sq
k ` T

p1q
k ˝ ϑ

T
pr`sq
k

“ T
pr`s`1q
k , (2.40)

where in (2.39) we employed (2.38) with s instead of r and in (2.40) we used
r` s instead of r. The equality in (2.40) shows (2.36) for s` 1 assuming that it
is true for s. Since by (2.38) the equality in (2.36) is true for s “ 1, induction
shows the equality in (2.36).

Next we will prove the equality in (2.37). From equality (2.36) we get

Ej

”

f
´

T
pr`sq
k , X

T
pr`sq
k

¯

1tT prq
k ă8u

ˇ

ˇ F
T

prq
k

ı

“ Ej

„

f

ˆ

T
prq
k ` T

psq
k ˝ ϑ

T
prq
k
, X

T
prq
k `T

psq
k ˝ϑ

T
prq
k

˙

1tT prq
k ă8u

ˇ

ˇ F
T

prq
k

ȷ

“ Ej

”

f
´

T
prq
k ` T

psq
k ˝ ϑ

T
prq
k
, X

T
psq
k

˝ ϑ
T

prq
k

¯

1tT prq
k ă8u

ˇ

ˇ F
T

prq
k

ı

(the variable T
prq
k is F

T
prq
k
-measurable in combination with the strong Markov

property)

“ ω ÞÑ EX
T

prq
k

pωq
pωq

”

f
´

T
prq
k pωq ` T

psq
k , X

T
psq
k

¯ı

1tT prq
k ă8upωq

“ ω ÞÑ Ek

”

f
´

T
prq
k pωq ` T

psq
k , X

T
psq
k

¯ı

1tT prq
k ă8upωq. (2.41)

The equalities in (2.41) show that the first, penultimate and ultimate quantity
in (2.37) are equal. Another appeal to the strong Markov property shows that

the first and second quantity in (2.37) coincide. Since on the event
!

T
prq
k ă 8

)

the equality X
T

prq
k

“ k holds, the second and third quantity in (2.37) are equal

as well. This proves that all quantities in (2.37) in Theorem 2.10 are the same.

We still have to prove that on the event
!

T
prq
k ă 8

)

the stochastic variable

T
pr`sq
k ´ T

prq
k and the σ-field F

T
prq
k

are Pj-independent. This can be achieved

as follows. Let the event A be F
T

prq
k
-measurable and let g : r0,8s Ñ R be a

bounded measurable function. Then we have

Ej

”

g
´

T
pr`sq
k ´ T

prq
k

¯

1A 1tT prq
k ă8u

ı

“ Ej

”

g
´

T
psq
k ˝ ϑ

T
prq
k

¯

1A 1tT prq
k ă8u

ı

(2.42)

“ Ej

”

Ej

”

g
´

T
psq
k ˝ ϑ

T
prq
k

¯

1A

ˇ

ˇ F
T

prq
k

ı

1tT prq
k ă8u

ı
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“ Ej

”

Ej

”

g
´

T
psq
k ˝ ϑ

T
prq
k

¯

ˇ

ˇ F
T

prq
k

ı

1A 1tT prq
k ă8u

ı

(strong Markov property: (2.37))

“ Ej

„

EX
T

prq
k

”

g
´

T
psq
k

¯ı

1A 1tT prq
k ă8u

ȷ

“ Ej

”

Ek

”

g
´

T
psq
k

¯ı

1A 1tT prq
k ă8u

ı

“ Ek

”

g
´

T
psq
k

¯ı

Ej

”

1A 1tT prq
k ă8u

ı

(2.43)

(another appeal to the strong Markov property: (2.37))

“ Ej

”

Ej

”

g
´

T
psq
k

¯

˝ ϑ
T

prq
k
1tT prq

k ă8u
ˇ

ˇ F
T

prq
k

ıı Ej

”

1A 1tT prq
k ă8u

ı

Pj

”

T
prq
k ă 8

ı

“ Ej

”

Ej

”

g
´

T
psq
k ˝ ϑ

T
prq
k

¯

1tT prq
k ă8u

ˇ

ˇ F
T

prq
k

ıı

Ej

”

1A

ˇ

ˇ T
prq
k ă 8

ı

(use (2.36))

“ Ej

”

Ej

”

g
´

T
pr`sq
k ´ T

prq
k

¯

1tT prq
k ă8u

ˇ

ˇ F
T

prq
k

ıı

Ej

”

1A

ˇ

ˇ T
prq
k ă 8

ı

“ Ej

”

g
´

T
pr`sq
k ´ T

prq
k

¯

1tT prq
k ă8u

ı

Ej

”

1A

ˇ

ˇ T
prq
k ă 8

ı

. (2.44)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


Advanced stochastic processes: Part I

47 

Renewal theory and Markov chains1. RENEWAL THEORY 47

From (2.44) the Pj-independence of T
pr`sq
k ´T

prq
k and the σ-field F

T
prq
k

conditioned

on the event
!

T
prq
k ă 8

)

follows. Since the expressions in (2.42) and (2.43) are

equal it follows that the Pj

”

¨
ˇ

ˇ T
p1q
k ă 8

ı

-distribution of the variable T
pr`1q
k ´

T
prq
k does not depend on r, provided that

Pj

”

␣

T 1
k ă 8

(

z
!

T
prq
k ă 8

)ı

“ 0. (2.45)

By the strong Markov property it follows that

Pj

”

T
pr`1q
k ă 8

ı

“ Pj

”

T
p1q
k ă 8

ı

Pk

”

T
p1q
k ă 8

ır

. (2.46)

Since, by assumption, Pk

”

T
p1q
k ă 8

ı

“ 1, (2.46) implies that the probabilities

Pj

”

T
prq
k ă 8

ı

do not depend on r P N, and hence (2.45) follows. This proves

Theorem 2.10. �

2.11. Definition. Let j P S. If Pj

”

T
p1q
j ă 8

ı

“ 1, then j is called recurrent

(or persistent). If Pj

”

T
p1q
j ă 8

ı

ă 1, then j is called a transient state. A

recurrent state for which Ej

”

T
p1q
j

ı

“ 8 is called a null state. A recurrent state

for which Ej

”

T
p1q
j

ı

ă 8 is called a non-null or positive state.

From (2.46) it follows that Pj

”

T
prq
j ă 8

ı

“ Pj

”

T
p1q
j ă 8

ır

, and hence if a

state j is recurrent it is expected to be visited infinitely many times. Let
Nk “

ř8
n“1 1tXn“ku be the number of visits to the state k, and put νk

j “
Ej

“

Nk
‰

“ E
“

Nk
ˇ

ˇ X0 “ j
‰

. Then

νk
j “

8
ÿ

n“1

p
pnq
jk “

8
ÿ

n“1

P
“

Xn “ k
ˇ

ˇ X0 “ j
‰

. (2.47)

We also have
␣

Nk ě r ` 1
(

“
!

T
pr`1q
k ă 8

)

and hence by (2.46) we get

Pj

”

T
pr`1q
k ă 8

ı

“ Pj

“

Nk ě r ` 1
‰

“ Pj

“

Nk ą 0
‰

Pk

“

Nk ą 0
‰r

“ Pj

”

T
p1q
k ă 8

ı

Pk

”

T
p1q
k ă 8

ır

. (2.48)

From (2.47) and (2.48) it follows that

νk
j “

8
ÿ

n“1

p
pnq
jk “

8
ÿ

n“1

P
“

Xn “ k
ˇ

ˇ X0 “ j
‰

“ Pj

“

Nk ą 0
‰

8
ÿ

r“1

Pk

“

Nk ą 0
‰r
.

(2.49)

Suppose that the state j communicates with k, i.e. suppose that p
pnq
jk ą 0 for

some integer n ě 1. From (2.49) it follows that the state k is recurrent if and

only if
ř8

n“1 p
pnq
jk “ 8. The state k is transient if and only if

ř8
n“1 p

pnq
jk ă 8.
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2.12. Theorem. Suppose that the states j and k intercommunicate. Then either
both states are recurrent or both states are transient.

Proof. Since the states j and k intercommunicate the exist positive inte-

gers m and n such that p
pmq
jk ą 0 and p

pnq
kj ą 0. For any positive integer r we

then have
p

pm`r`nq
jj ě p

pmq
jk p

prq
kk p

pnq
kj (2.50)

By summing over r in (2.50) we see that
ř8

r“1 p
prq
jj ă 8 if and only if

ř8
r“1 p

prq
kk ă

8. From this fact together with (2.49) the statement in Theorem 2.12 follows.
�

2.13. Definition. A Markov chain with state space S is called irreducible of all

states communicate, i.e. for every j, k P S there exists n P N such that p
pnq
j,k ą 0.

If X is irreducible and all states and one, and so all states, are recurrent, then
X is called recurrent.

2.14. Theorem. Let X be a recurrent and irreducible Markov chain. Put

vkj “ E

»

–

T
p1q
k

ÿ

u“1

1tXu“ju
ˇ

ˇ X0 “ k

fi

fl “ Ek

»

–

T
p1q
k

ÿ

u“1

1tXu“ju

fi

fl . (2.51)

Then 0 ă vkj ă 8, j, k P S, and vkj “
ř

iPS v
k
i pij. In other words the vector

`

vkj : j P S
˘

is an invariant measure for X.

Proof. First we prove that 0 ă vkj ă 8. Therefore we notice that

vkj “ Ek

»

–

T
p1q
k

ÿ

u“1

1tXu“ju

fi

fl “
8
ÿ

r“0

Pk

”

T
p1q
k ě T

pr`1q
j

ı

“
8
ÿ

r“0

Pk

”

T
p1q
k ě T

p1q
j

ı ´

Pj

”

T
p1q
k ě T

p1q
j

ı¯r

, (2.52)

where we used the equality:

Pk

”

T
p1q
k ě T

pr`1q
j

ı

“ Pk

”

T
p1q
k ě T

p1q
j

ı ´

Pj

”

T
p1q
k ě T

p1q
j

ı¯r

. (2.53)

Suppose j ­“ k; for j “ k we have vkk “ 1. The equality in (2.53) follows from
the strong Markov property as follows. For r “ 0 the equality is clear. For
r ě 1 we have

Pk

”

T
p1q
k ě T

pr`1q
j

ı

“ Pk

”

T
p1q
k ě T

pr`1q
j , T

p1q
k ě T

prq
j ` 1

ı

“ Pk

”

T
prq
j ` T

p1q
k ˝ ϑ

T
prq
j

ě T
prq
j ` T

p1q
j ˝ ϑ

T
prq
j
, T

p1q
k ě T

prq
j ` 1

ı

“ Ek

”

Pk

”

T
p1q
k ˝ ϑ

T
prq
j

ě T
p1q
j ˝ ϑ

T
prq
j

ˇ

ˇ F
T

prq
j

ı

, T
p1q
k ě T

prq
j ` 1

ı

(strong Markov property)

“ Ek

„

PX
T

prq
j

”

T
p1q
k ě T

p1q
j

ı

, T
p1q
k ě T

prq
j ` 1

ȷ
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“ Ek

”

Pj

”

T
p1q
k ě T

p1q
j

ı

, T
p1q
k ě T

prq
j ` 1

ı

“ Pj

”

T
p1q
k ě T

p1q
j

ı

Pk

”

T
p1q
k ě T

prq
j ` 1

ı

(induction with respect to r)

“
´

Pj

”

T
p1q
k ě T

p1q
j

ı¯r

Pk

”

T
p1q
k ě T

p1q
j

ı

. (2.54)

Since Pk

”

T
p1q
k ě T

p1q
j

ı

ą 0 it follows by (2.52) that vkj ą 0. By the same equality

and using the fact that Pj

”

T
p1q
k ě T

p1q
j

ı

ă 1 we see vkj ă 8.

Next we prove the equality: vkj “
ř

iPS v
k
i pij. Therefore we write

vkj “ Ek

»

–

T
p1q
k

ÿ

n“1

1tXn“ju

fi

fl “
8
ÿ

n“1

Pk

”

Xn “ j, T
p1q
k ě n

ı

“
ÿ

iPS

8
ÿ

n“1

Pk

”

Xn “ j, Xn´1 “ i, T
p1q
k ě n

ı

“
ÿ

iPS

8
ÿ

n“1

Ek

”

Pk

“

Xn “ j
ˇ

ˇ Fn´1

‰

, Xn´1 “ i, T
p1q
k ě n

ı

(Markov property)

“
ÿ

iPS

8
ÿ

n“1

Ek

”

PXn´1 rX1 “ js , Xn´1 “ i, T
p1q
k ě n

ı

“
ÿ

iPS
Pi rX1 “ js

8
ÿ

n“0

Pk

”

Xn “ i, T
p1q
k ´ 1 ě n

ı

“
ÿ

iPS
Pi rX1 “ jsEk

»

–

T
p1q
k ´1
ÿ

n“0

1tXn“iu

fi

fl

“
ÿ

iPS
Pi rX1 “ jsEk

»

–

T
p1q
k

ÿ

n“1

1tXn“iu

fi

fl . (2.55)

In the last equality of (2.55) we used the equality

Ek

»

–

T
p1q
k ´1
ÿ

n“0

1tXn“iu

fi

fl “ Ek

»

–

T
p1q
k

ÿ

n“1

1tXn“iu

fi

fl ,

which is evident for i ­“ k and both are equal to 1 for i “ k. As a consequence
from (2.55) we see that vkj “

ř

iPS v
k
i pij. �

2.15. Corollary. Let the row vector vk :“
`

vkj : j P S
˘

be as in equality (2.51)

of Theorem 2.14. Then vk is minimal invariant measure in the sense that if
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x “ pxj : j P Sq is another invariant measure such that xk “ 1. Then xj ě vkj ,
j P S.

Proof. We write:

xj “ pkj `
ÿ

sPS, s ­“k

xspsj

“ Pk

”

X1 “ j, T
p1q
k ě 1

ı

`
ÿ

s1PS, s1 ­“k

ÿ

s2PS
xs2ps2s1ps1j

“ Pk

”

X1 “ j, T
p1q
k ě 1

ı

`
ÿ

s1PS, s1 ­“k

pks1ps1j `
ÿ

s1PS, s1 ­“k

ÿ

s2PS, s2 ­“k

xs2ps2s1ps1j

ě Pk

”

X1 “ j, T
p1q
k ě 1

ı

` Pk

”

X2 “ j, T
p1q
k ě 2

ı

` ¨ ¨ ¨ ` Pk

”

Xn “ j, T
p1q
k ě n

ı

. (2.56)

Upon letting n tend to 8 in (2.56) we see that xj ě vkj . This proves Corollary
2.15. �
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2.16. Theorem. Let X be a irreducible Markov chain with transition matrix

P “ ppijqpi,jqPSˆS .

The following assertions hold:

(a) If any state is non-null recurrent, then all states are.
(b) The chain is non-null recurrent if and only if there exists a stationary

distribution π or invariant measure. If this is the case, then

πk “
1

Ek

”

T
p1q
k

ı and vkj “
πj

πk

(see (2.51)). (2.57)

As a consequence of (2.57) stationary distributions are unique.

Proof. (a) The proof of assertion will follow from the proof of assertion
(b).

(b) Let k be a state which is non-null recurrent. By Theorem 2.12 it follows
that the chain is recurrent. By Theorem 2.14 the vector

`

vkj : j P S
˘

as defined
in (2.51) is an invariant vector. Since k is non-null recurrent it follows that

0 ă Ek

”

T
p1q
k

ı

ă 8, and that the vector

˜

vkj
πk

: j P S

¸

, with πk “
1

Ek

”

T
p1q
k

ı ,

is a stationary vector. It follows that if the irreducible chain X contains at
least one non-null recurrent state, then there exists a stationary distribution.
Next suppose that there exists a stationary distribution π :“ pπj : j P Sq. Then
πk “

ř

jPS πjp
pnq
jk for all n P N. Since the chain is irreducible, and the vector is

a probability vector, at least one πj0 ­“ 0. By irreducibility there exists n P N
such that p

pnq
j0k

­“ 0, and hence πk ­“ 0, k P S. Consider for any given k P S the

vector x “
ˆ

πj

πk

: j P S

˙

. Then xk “ 1 and by Corollary 2.15 xj ě vkj for all

j P S. It follows that

Ek

”

T
p1q
k

ı

“
ÿ

jPS
vkj ď

ÿ

jPS

πj

πk

“
1

πk

. (2.58)

Therefore k is non-null recurrent for all k P S. It follows that if there exists
one non-null recurrent vector k P S, then all states in S are non-null recurrent.
Altogether this proves assertion (a), and also a large part of (b). From (2.58)
the first equality in (2.57) follows. Finally we will show the second equality

in (2.57). The vector x ´ vk is invariant and, by Corollary 2.15
πj

πk

´ vkj ě 0.

Hence we obtain, for all positive integers n,

0 “ 1 ´ vkk “
ÿ

iPS

ˆ

πi

πk

´ vki

˙

p
pnq
ik ě

ˆ

πj

πk

´ vkj

˙

p
pnq
jk . (2.59)
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In (2.59) we choose n in such a way that p
pnq
jk ą 0. By irreducibility this is

possible. It follows that (see (2.51))

vkj “ E

»

–

T
p1q
k

ÿ

u“1

1tXu“ju
ˇ

ˇ X0 “ k

fi

fl “ Ek

»

–

T
p1q
k

ÿ

u“1

1tXu“ju

fi

fl “
πj

πk

“
Ek

”

T
p1q
k

ı

Ej

”

T
p1q
j

ı . (2.60)

The second equality in (2.57) is the same as (2.60). This concludes the proof of
Theorem 2.16. �

Let k be a non-null recurrent state, and suppose that the state is j intercom-
municates with k. Then both states are non-null or positive recurrent. Next we
define the renewal process Nkpnq, n P N, as follows:

Nkpnq “ max
!

r : T
prq
k ď n

)

. (2.61)

Notice the inequalities:

T
pNkpnqq
k ď n ă T

pNkpn`1qq
k ,

and hence T
pmq
k “ n if m “ Nkpnq. We are interested in the following type of

limits:

lim
nÑ8

1

n

n
ÿ

ℓ“1

p
pℓq
kj “ lim

nÑ8

1

n

n
ÿ

ℓ“1

P
“

Xℓ “ j
ˇ

ˇ X0 “ k
‰

“ lim
nÑ8

E

«

1

n

n
ÿ

ℓ“1

1tXℓ“ju
ˇ

ˇ X0 “ k

ff

. (2.62)

Put m “ Nkpnq. Then T
pmq
k “ n, and consequently we see

1

n

n
ÿ

ℓ“1

1tXℓ“ju “
Nkpnq
n

1

m

m
ÿ

u“1

T
puq
k

ÿ

ℓ“T
pu´1q
k `1

1tXℓ“ju. (2.63)

Notice that for j “ k we have

1

m

m
ÿ

u“1

T
puq
k

ÿ

ℓ“T
pu´1q
k `1

1tXℓ“ju “ 1,

and consequently,

1

n

n
ÿ

ℓ“1

1tXℓ“ku “
Nkpnq
n

.

Hence, we observe that (see Theorem 2.6)

lim
nÑ8

1

n

n
ÿ

ℓ“1

1tXℓ“ku “ lim
nÑ8

Nkpnq
n

“
1

E
”

T
p1q
k

ˇ

ˇ X0 “ k
ı “

1

µk

, Pk-almost surely.

(2.64)
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We also see that

Njpnq
n

“
1

n

n
ÿ

ℓ“1

1tXℓ“ju “
Nkpnq
n

1

m

m
ÿ

u“1

T
puq
k

ÿ

ℓ“T
pu´1q
k `1

1tXℓ“ju. (2.65)

From the strong law of large numbers we get:

lim
mÑ8

1

m

m
ÿ

u“1

T
puq
k

ÿ

ℓ“T
pu´1q
k `1

1tXℓ“ju “ E

»

–

T
p1q
k

ÿ

u“1

1tXu“ju
ˇ

ˇ X0 “ k

fi

fl “ vkj . (2.66)

From (2.63), (2.64), and (2.65) we obtain:

1

E
”

T
p1q
j

ˇ

ˇ X0 “ j
ı “ lim

nÑ8

Njpnq
n

“ lim
nÑ8

1

n

n
ÿ

ℓ“1

1tXℓ“ju

“ lim
nÑ8

Nkpnq
n

1

m

m
ÿ

u“1

T
puq
k

ÿ

ℓ“T
pu´1q
k `1

1tXℓ“ju “
vkj

E
”

T
p1q
k

ˇ

ˇ X0 “ k
ı . (2.67)

The equality in (2.67) together with Theorem 2.9 shows the following theorem.

2.17. Theorem. Let the sequence of stopping times
´

T
prq
k

¯

rPN
be defined as in

(2.35), and let vkj be defined as in (2.66). Suppose that the states j and k
intercommunicate and that one of them is non-null recurrent, then the other is
also non-null recurrent. Moreover,

lim
nÑ8

1

n

n
ÿ

ℓ“1

1tXℓ“ju “
1

E
”

T
p1q
j

ˇ

ˇ X0 “ j
ı “

vkj

E
”

T
p1q
k

ˇ

ˇ X0 “ k
ı , and (2.68)

lim
nÑ8

1

n

n
ÿ

ℓ“1

p
pℓq
kj “ lim

nÑ8

1

n

n
ÿ

ℓ“1

P
“

Xℓ “ j
ˇ

ˇ X0 “ k
‰

“
1

E
”

T
p1q
j

ˇ

ˇ X0 “ j
ı “

vkj

E
”

T
p1q
k

ˇ

ˇ X0 “ k
ı . (2.69)

Hence, with πj “ lim
nÑ8

1

n

n
ÿ

ℓ“1

p
pℓq
kj , µj “ E

”

T
p1q
j

ˇ

ˇ X0 “ j
ı

, and vkj as in equality

(2.66) we have πj “
1

µj

“
vkj
µk

.

1.1.1. Random walks. In this example the state space is Z, and the process
Xn, n P N, has a transition probability matrix with the following entries: pi´1,i “
q, pi`1,i “ p, 0 ă p “ 1 ´ q ă 1, and pj,i “ 0, j ‰ i ˘ 1. Such a random walk
can be realized by putting Xn “

řn
k“0 Sk, where S0 is the initial state (which

may be random), the variables Sk, k P N, k ě 1, are P-independent of each
other and are also P-independent of S0. Moreover, each variable Sk, k ě 1, is
a Bernoulli variable taking the value `1 with probability p and the value ´1
with probability q. This Markov chain is irreducible: every state communicates
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with every other one. The set of states is closed. The corresponding infinite
transition matrix looks as follows:

¨

˚

˚

˚

˚

˚

˚

˚

˝

. . . . . . . . .
...

...
...

. . . q 0 p 0 . . .

. . . 0 q 0 p . . .

. . . 0 0 q 0
. . .

...
...

...
. . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The state 0 has period two p
p2n`1q
00 “ 0, and p

p2nq
00 “

ˆ

2n

n

˙

pnqn. In order to

check transiency (or recurrence) we need to calculate
8
ÿ

n“0

p
p2nq
00 “

8
ÿ

n“0

ˆ

2n

n

˙

pnqn. (2.70)

By Stirling’s formula we have n! „
?
2πnnne´n, which means that

lim
nÑ8

n!?
2πnnne´n

“ 1.
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Since
ˆ

2n

n

˙

“
p2nq!
pn!q2

„
?
4πn p2nq2n e´2n

2πn2n`1e´2n
“

4n?
πn

(2.71)

the sum in (2.70) is finite if and only if the sum

8
ÿ

n“1

p4pqqn?
πn

ă 8. (2.72)

If p “ 1 ´ q ‰ 1
2
, then 4pq ă 1, and hence the sum in (2.72) is finite, and

so the unrestricted asymmetric random walk in Z is transient. However, if
p “ q “ 1

2
, then 4pq “ 1 and the sum in (2.72) diverges, and so the symmetric

unrestricted random walk in Z is recurrent. One may also do similar calculations
for symmetric random walks in Z2, Z3, and Zd, d ě 4. It turns out that in Z2 the

2n-th symmetric transition probability p
p2nq
00 satisfies (for n Ñ 8) p

p2nq
00 „

1

πn
,

and hence the sum
ř8

n“0 p
p2nq
00 “ 8. It follows that the symmetric random walk

in Z2 is recurrent. The corresponding return probability p
p2nq
00 for the symmetric

random walk in Z3 possesses the following asymptotic behavior:

p
p2nq
00 „

1

2

ˆ

3

π

˙3{2
1

n3{2 .

Hence the sum
ř8

n“0 p
p2nq
00 ă 8, and so the state 0 is transient. The 2n-th return

probabilities of the symmetric random walk in Zd satisfies

p
p2nq
00 „

cd
nd{2 , n Ñ 8,

for some constant cd and hence the sum
ř8

n“0 p
p2nq
00 ă 8 in dimensions d ě 3.

So in dimensions d ě 3 the symmetric random walk is transient, and in the
dimension d “ 1, 2, the symmetric random walk is recurrent.

We come back to the one-dimensional situation, and we reconsider the return

times to a state k P Z: T p1q
k “ inf tn ě 1 : Xn “ ku. Notice that Sk, k P N, are

the step sizes which are ˘1. Also observe that Xk “
řk

j“0 Sj. We consider the

moment generating function Gj,kpsq “ Ej

”

sT
p1q
k

ı

, 0 ď s ă 1. Observe that on

the event
!

T
p1q
k “ 8

)

the quantity sT
p1q
k has to be interpreted as 0. In addition,

we have Pj

”

T
p1q
k ą T

p1q
k´1

ı

“ Pj

”

T
p1q
k´1 ă 8

ı

for k ą j, k, j P Z. Then it follows

that T
p1q
k “ T

p1q
k´1 ` T

p1q
k ˝ ϑ

T
p1q
k´1

, Pj-almost surely, k ą j, k, j P Z. Then by the

strong Markov property we get

Gj,kpsq “ Ej

”

sT
p1q
k

ı

“ Ej

«

s
T

p1q
k´1`T

p1q
k ˝ϑ

T
p1q
k´1 , T

p1q
k´1 ă 8

ff

“ Ej

«

sT
p1q
k´1Ej

«

s
T

p1q
k ˝ϑ

T
p1q
k´1

ˇ

ˇ G
T

p1q
k´1

ff

, T
p1q
k´1 ă 8

ff
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(Markov property)

“ Ej

„

sT
p1q
k´1EX

T
p1q
k´1

”

sT
p1q
k

ı

, T
p1q
k´1 ă 8

ȷ

“ Ej

”

sT
p1q
k´1Ek´1

”

sT
p1q
k

ıı

“ Ej

”

sT
p1q
k´1

ı

Ek´1

”

sT
p1q
k

ı

. (2.73)

From (2.73) we see by induction with respect to k that

Gj,kpsq “
k´1
ź

ℓ“j

Gℓ,ℓ`1psq “ G0,1psqk´j. (2.74)

In the final step of (2.74) we used the fact that the Pℓ-distribution of T
p1q
ℓ`1 is

the same as the P0-distribution of T
p1q
1 . This follows from the fact that the

variables Sm, m P N, m ě 1, are independent identically (Bernoulli) distributed

random variables. Notice that T
p1q
1 “ 1 ` T

p0q
1 ˝ ϑ1, P0-almost surely. Here

T
p0q
1 “ inf tn ě 0 : Xn “ 1u. Again we use the Markov property to obtain:

G0,1psq “ E0

”

esT
p1q
1

ı

“ E0

”

s1`T
p0q
1 ˝ϑ1

ı

“ sE0

”

E0

”

sT
p1q
1 ˝ϑ1

ˇ

ˇ G1

ıı

“ sE0

”

EX1

”

sT
p0q
1

ıı

“ sE0

”

EX1

”

sT
p0q
1

ı

, X1 “ 1s
ı

` sE0

”

EX1

”

sT
p0q
1

ı

, X1 “ ´1
ı

“ sE0

”

E1

”

sT
p0q
1

ı

, X1 “ 1
ı

` sE0

”

E´1

”

sT
p0q
1

ı

, X1 “ ´1
ı

(notice that T
p0q
1 “ 0 P1-almost surely, and T

p0q
1 “ T

p1q
1 P´1-almost surely)

“ sp ` sqE´1

”

sT
p1q
1

ı

“ sp ` sqG´1,1psq

“ sp ` sqG0,2psq “ sp ` sqG0,1psq2. (2.75)

In the final step of (2.75) we employed (2.74) with j “ ´1 and k “ 1. From
(2.75) we infer

G0,1psq “
1 ´ p1 ´ 4pqs2q1{2

2qs
. (2.76)

By a similar token (i.e. by interchanging p and q) we also get

G1,0psq “
1 ´ p1 ´ 4pqs2q1{2

2ps
. (2.77)

Next we rewrite G0,0psq:

G0,0psq “ E0

”

sT
p1q
0

ı

“ E0

”

s1`T
p0q
0 ˝ϑ1

ı

“ sE0

”

E0

”

sT
p0q
0 ˝ϑ1

ˇ

ˇ G1

ıı

“ sE0

”

EX1

”

sT
p1q
0

ıı

(on the event tX1 “ ˘1u the equality T
p0q
0 “ T

p1q
0 holds PX1-almost surely)

“ sE0

”

EX1

”

sT
p1q
0

ı

, X1 “ 1
ı

` sE0

”

EX1

”

sT
p1q
0

ı

, X1 “ ´1
ı
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“ sE0

”

E1

”

sT
p1q
0

ı

, X1 “ 1
ı

` sE0

”

E´1

”

sT
p1q
0

ı

, X1 “ ´1
ı

“ spE1

”

sT
p1q
0

ı

` sqE´1

”

sT
p1q
0

ı

((space) translation invariance)

“ spE1

”

sT
p1q
0

ı

` sqE0

”

sT
p1q
1

ı

“ spG1,0psq ` sqG0,1psq

(employ the equalities in (2.76) and (2.77))

“ sp
1 ´ p1 ´ 4pqs2q1{2

2ps
` sq

1 ´ p1 ´ 4pqs2q1{2

2qs

“ 1 ´
`

1 ´ 4pqs2
˘1{2

.

Then we infer

P0

”

T
p1q
0 ă 8

ı

“ lim
sÒ1, să1

G0,0psq “ 1 ´ p1 ´ 4pqq1{2

“ 1 ´ |1 ´ 2p| “ 1 ´ |q ´ p| .
As a consequence we see that the non-symmetric random walk, i.e. the one with
q ‰ p, is transient, and that the symmetric random walk (i.e. p “ q “ 1

2
) is

recurrent. However, since

E0

”

T
p1q
0

ı

“ lim
sÒ1,să1

G1
0,0psq “ lim

sÒ1,să1

s

p1 ´ s2q3{2 “ 8,

it follows that the symmetric random walk is not positive recurrent.
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In the following lemma we prove some of the relevant equalities concerning
stopping times and one-dimensional random walks.

2.18. Lemma. Employing the above notation and hypotheses yields the following
equalities:

(i) The equality T
p1q
j “ 1`T

p0q
j ˝ϑ1 holds Pk-almost surely for all states k,

j P Z.
(ii) For k ą j, k, j P Z the equality T

p1q
k “ T

p1q
k´1`T

p1q
k ˝ϑ

T
p1q
k´1

holds Pj-almost

surely.

Proof. First let us prove assertion (i). Let j and k be states in Z. Then
Pk-almost surely we have

1 ` T
p0q
j ˝ ϑ1 “ 1 ` inf tn ě 0 : Xn ˝ ϑ1 “ ju

“ inf tn ` 1 : n ě 0, Xn`1 “ ju “ inf tn ě 1Xn “ ju “ T
p1q
j . (2.78)

The equality in (2.78) shows assertion (i). Next we prove the somewhat more
difficult equality in (ii). As remarked above we have

Pj

”

T
p1q
k ą T

p1q
k´1

ı

“ Pj

”

T
p1q
k´1 ă 8

ı

.

Indeed, in order to visit the state k ą j the process Xn, starting from j has

to visit the state k ´ 1, and hence Pj

”

T
p1q
k´1 ă T

p1q
k

ı

“ Pj

”

T
p1q
k´1 ă 8

ı

. Without

loss of generality we may and shall assume that in the following arguments

we consider the process Xn on the event
!

T
p1q
k´1 ă 8

)

. (Otherwise we would

automatically have T
p1q
k´1 ` T

p1q
k ˝ ϑ

T
p1q
k´1

“ T
p1q
k .) Next on the event

!

T
p1q
k´1 ă 8

)

we write:

T
p1q
k´1 ` T

p1q
k ˝ ϑ

T
p1q
k´1

“ T
p1q
k´1 ` inf

!

n ě 1 : Xn ˝ ϑ
T

p1q
k´1

“ k
)

“ inf
!

T
p1q
k´1 ` n : n ě 1, X

n`T
p1q
k´1

“ k
)

“ inf
!

n ą T
p1q
k´1 : Xn “ k

)

“ T
p1q
k . (2.79)

Assertion (ii) follows from (2.79). Altogether this proves Lemma 2.18. �

Perhaps it is useful to prove in an explicit manner that the one-dimensional
random walk is a Markov chain. This is the content of the next lemma.

2.19. Lemma. Let tSn : n P N, n ě 1u be independent identically distributed
random variables taking their values in Z. Put X0 “ S0 be the initial value
of the process Xn, n P N, where Xn “

řn
m“0 Sm. Put

Ej rf pX0, X1, . . . , Xnqs “ E rf pX0 ` j,X1 ` j, . . . , Xn ` jqs (2.80)

for all bounded functions f : Zn`1 Ñ R, j P Z, n P N. Then the equality in
(2.80) expresses the fact that the process

!

pΩ,G,PjqjPZ , pXn, n P Nq , pϑn, n P Nq ,Z
)
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is a space homogeneous process, with the property that the distribution of the
process pXn`1 ´ XnqnPN does not depend on the initial value j. It is also a
time-homogeneous Markov chain.

Proof. The first equality say that the finite dimensional distributions of
the process pXnqnPN are homogeneous in space. If

f px0, x1, . . . , xnq “ g px1 ´ x0, x2 ´ x1, . . . , xn ´ xn´1q ,

then from (2.80) we see that

Ej rf pX0, X1, . . . , Xnqs “ E rf pX0 ` j,X1 ` j, . . . , Xn ` jqs
“ E rg pX1 ´ X0, X2 ´ X1, . . . , Xn ´ Xn´1qs
“ Ej rg pX1 ´ X0, X2 ´ X1, . . . , Xn ´ Xn´1qs . (2.81)

The equality in (2.81) shows that the distribution of the process

pXn`1 ´ XnqnPN

does not depend on the initial value j. Next we prove the Markov property. Let
f be any bounded function on Z. To this end we consider:

Ej

“

f pXn`1q
ˇ

ˇ Gn

‰

“ E
“

f pXn`1 ` jq
ˇ

ˇ Gn

‰

“ E
“

f pXn`1 ´ Xn ` Xn ` jq
ˇ

ˇ Gn

‰

(the variable Xn`1 ´ Xn and the σ-field Gn are P-independent)

“ ω ÞÑ E rω1 ÞÑ f pXn`1 pω1q ´ Xn pω1q ` Xn pωq ` jqs

(the P-distribution of Xn`1 pω1q´Xn pω1q neither depends on n nor on the initial
value X0 pω1q)

“ ω ÞÑ E rω1 ÞÑ f pX1 pω1q ´ X0 pω1q ` Xn pωq ` jqs

(choose X0 pω1q “ j)

“ ω ÞÑ E rω1 ÞÑ f pX1 pω1q ´ j ` Xn pωq ` jqs
“ ω ÞÑ E rω1 ÞÑ f pX1 pω1q ` Xn pωqqs
“ ω ÞÑ EXnpωq rω1 ÞÑ f pX1 pω1qqs “ EXn rf pX1qs . (2.82)

The equality in (2.82) proves Lemma 2.19. �

2.20. Remark. It would have been sufficient to take f of the form f “ 1k,
k P Z.

2.21. Remark. Lemma 2.19 proves more than just the Markov property for a
random walk. It only uses the fact that the increments Sn are identically P-
distributed and independent, and that the process pXnqnPN possesses the same
Pj-distribution as the P-distribution of the process pXn ` jqnPN, j P Z. The
proof only simplifies a little bit if one uses the random walk properties in an
explicit manner.
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1.1.2. Some remarks. From a historic point of view the references [6, 47,
151] are quite relevant. The references [10, 43] are relatively speaking good
accessible. The reference [153] gives a detailed treatment of martingale theory.
Citations, like [54, 140, 142, 145] establish a precise relationship between
Feller operators, Markov processes, and solutions to the martingale problem.
The references [49, 50] establish a relationship between hedging strategies (in
mathematical finance) and (backward) stochastic differential equations.
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2. Some additional comments on Markov processes

In this section we will discuss some topics related to Markov chains and Markov
processes. We consider a quadruple

tpΩ,F,Pq , pXn, n P Nq , pϑn, n P Nq , pS, Squ . (2.83)

In (2.83) the triple pΩ,F,Pq stands for a probability space, Ω is called the
“sample space”, F is a σ-field on Ω, and P is a probability measure on F. The
σ-field F is called the σ-field of events. The symbol pS, Sq stands for the state
space of our process pXn : n P Nq. In the present situation the state space S is
discrete and countable with the discrete σ-field S.

Let pΩ,F,Pq be a probability space and let Xj : Ω Ñ S, j P N “ t0, 1, 2, . . .u,
be state variables. It is assumed that the σ-field F is generated by the state
variables Xj, j P N. Let ϑk : Ω Ñ Ω, k P N, be time shift operators, which are
also called time translation operators: Xj ˝ϑk “ Xj`k, j, k P N. For a bounded
σ pXj : j P Nq-measurable stochastic variable F : Ω Ñ R and x P S we write

Ex rF s “ E
“

F
ˇ

ˇ X0 “ x
‰

“
E rF,X0 “ xs
P rX0 “ xs

.

We also write

Tx,y “
P rX1 “ y,X0 “ xs

P rX0 “ xs
“ Px rX1 “ ys “ P

“

X1 “ y
ˇ

ˇ X0 “ x
‰

.

Here x has the interpretation of state at time 0, and y is the state at time
1. Let Gn, n P N, be the internal memory up to the moment n. Hence Gn “
σ pXj : 0 ď j ď nq.

2.22. Theorem. Suppose that pXn : n P Nq is a stochastic process with values
in a discrete countable state space S with the discrete σ-field S. The state
variables Xn, n P N, are defined on a probability space pΩ,F,Pq. Write, as
above, Tx,y “ P

“

X1 “ y
ˇ

ˇ X0 “ x
‰

, x, y P S. Then the following assertions are
equivalent:

(1) For all finite sequences of states ps0, . . . , sn`1q in S the following iden-
tity holds:

P
`

Xn`1 “ sn`1

ˇ

ˇ X0 “ s0, . . . , Xn “ sn
˘

“ Tsn,sn`1 ; (2.84)

(2) For all bounded functions f : S Ñ R and for all times n P N the
following equality holds:

E
“

f pXn`1q
ˇ

ˇ Gn

‰

“ EXn rf pX1qs P-almost surely; (2.85)

(3) For all bounded functions f0, . . . , fk op S and for all times n P N the
following equality holds P-almost surely:

E
“

f0pXnqf1pXn`1q . . . fkpXn`kq
ˇ

ˇ Gn

‰

“ EXn rf0pX0qf1pX1q . . . fkpXkqs ; (2.86)

(4) For all bounded measurable functions F : pΩ,Fq Ñ R (stochastic vari-
ables) and for all n P N the following identity holds:

E
“

F ˝ ϑn

ˇ

ˇ Gn

‰

“ EXn rF s P-almost surely; (2.87)
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(5) For all bounded functions f : S Ñ R and for all pGnqnPN-stopping times
τ : Ω Ñ r0,8s the following equality holds:

E
“

fpXτ`1q
ˇ

ˇ Gτ

‰

“ EXτ rfpX1qs P-almost surely on the event tτ ă 8u ;
(2.88)

(6) For all bounded measurable functions F : pΩ,Fq Ñ R (random vari-
ables) and for all stopping times τ the following identity holds:

E
“

F ˝ ϑτ

ˇ

ˇ Gτ

‰

“ EXτ rF s P-almost surely on the event tτ ă 8u . (2.89)

Before we prove Theorem 2.22 we make some remarks and give some explana-
tion.

2.23. Remark. Let Ω “ SN, equipped with the product σ-field, and let Xj :
Ω Ñ S be defined by Xjpωq “ ωj where ω “ pω0, . . . , wj, . . .q belongs to Ω. If
ϑk : Ω Ñ Ω is defined by ϑk pω0, . . . , ωj, . . .q “ pωk, . . . , ωj`k, . . .q, then it follows
that Xj ˝ ϑk “ Xj`k.

2.24. Remark. Instead of one probability space pΩ,F,Pq we often consider a
family of probability spaces pΩ,F,PxqxPS. The probabilities Px, x P S, are
determined by

Ex rF s “ E
“

F
ˇ

ˇ X0 “ x
‰

“
E rF, X0 “ xs
P rX0 “ xs

, x P S. (2.90)

Here F : Ω Ñ R is F-BR-measurable, and hence by definition it is a random or
stochastic variable. Since Px rAs “ Ex r1As, A P F, and Px rΩs “ Ex r1s “ 1, the
measure Px is a probability measure on F.

2.25. Remark. Let F : Ω Ñ R be a bounded stochastic variable. The variable
EXn rF s is a stochastic variable which is measurable with respect to the σ-field
σ pXnq, i.e. the σ-field generated by Xn. In fact we have

EXnpωq rF s “ E
“

F
ˇ

ˇ X0 “ Xnpωq
‰

“
E rF, X0 “ Xnpωqs
P rX0 “ Xnpωqs

“ E
“

ω1 ÞÑ F pω1q ˆ 1tX0“Xnpωqu pω1q
‰

. (2.91)

If we fix ω P Ω, then in (2.91) everything is determined, and there should be no
ambiguity any more.

2.26. Remark. Fix n P N. The σ-field Gn is generated by events of the form

tpX0, X1, . . . , Xnq “ ps0, s1, . . . , snqu .

Here ps0, s1, . . . , snq varies over Sn`1. It follows that

Gn “ σ
␣

tpX0, X1, . . . , Xnq “ ps0, s1, . . . , xnqu : ps0, s1, . . . , snq P Sn`1
(

“
␣

tpX0, X1, . . . , Xnq P Bu : B P Sbpn`1q(

“ σ pX0, X1, . . . , Xnq . (2.92)

The σ-field in (2.92) is the smallest σ-field rendering all state variables Xj,
0 ď j ď n, measurable. It is noticed that Gn Ă F.
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2.27. Remark. Next we discuss conditional expectations. Again let F : Ω Ñ R
be a bounded stochastic variable. If we write Z “ E

“

F
ˇ

ˇ Gn

‰

, then we mean
the following:

(1) The stochastic variable Z is Gn-BR-measurable. This a qualitative as-
pect of the notion of conditional expectation.

(2) The stochastic variable Z possesses the property that E rF,As“E rZ,As
for all events A P Gn. This is the quantitative aspect of the notion of
conditional expectation.

Notice that the property in (2) is equivalent to the following one: the stochastic
variable Z satisfies the equality E

“

F
ˇ

ˇ A
‰

“ E
“

Z
ˇ

ˇ A
‰

for all events A P Gn.

2.28. Remark. Let G be a sub-σ-field of F. The mapping F ÞÑ E
“

F
ˇ

ˇ G
‰

is an
orthogonal projection from L2 pΩ,F,Pq onto L2 pΩ,G,Pq. Let F P L2 pΩ,F,Pq,
and put Z “ E

“

F
ˇ

ˇ G
‰

. In fact we have to verify the following conditions:

(1) Z P L2 pΩ,G,Pq;
(2) If G P L2 pΩ,G,Pq, then the following inequality is satisfied:

E
“

|F ´ Z|2
‰

ď E
“

|F ´ G|2
‰

.

This claim is left as an exercise for the reader. For more details on conditional
expectations see Section 1 in Chapter 1.

2.29. Remark. Next we will give an explicit formula for the conditional ex-
pectation in the setting of a enumerable discrete state space S. Let Gn “
σ pX0, X1, . . . , Xnq where Xj : Ω Ñ S, 0 ď j ď n, are state variables with a
discrete countable state space S. In addition, let F : Ω Ñ R be a bounded
stochastic variable. Then we have

E
“

F
ˇ

ˇ Gn

‰

“
ÿ

i0,...,inPS
E

“

F
ˇ

ˇ X0 “ i0, . . . , Xn “ in
‰

1tX0“i0u ¨ ¨ ¨1tXn“inu. (2.93)

Writing the conditional expectation in (2.93) in an explicit manner as a function
of ω yields

E
“

F
ˇ

ˇ Gn

‰

pωq

“
ÿ

i0,...,inPS
E

“

F
ˇ

ˇ X0 “ i0, . . . , Xn “ in
‰

1tX0“i0upωq ¨ ¨ ¨1tXn“inupωq. (2.94)

From (2.93) and also (2.94) it is clear that the conditional expectation

E
“

F
ˇ

ˇ Gn

‰

is Gn-measurable.

2.30. Remark. Put G “ G8 “ σ pX0, . . . , Xn, . . .q “ σ
`

X
˘

where X : Ω Ñ SN

is the variable defined by X pωq “ pX0pωq, . . . , Xnpωq, . . .q, ω P Ω. Then

G “ G8 (2.95)

“
␣␣

X P B
(

: B is measurable with respect to the product σ-field on SN(

.

2.31. Remark. Let τ : Ω Ñ N Y t8u be a random variable. This random
variable is called a stopping time relative the filtration pGnqnPN, or, more briefly,
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τ is called a pGnqnPN-stopping time, provided that for every k P N an event of
the form tτ ď ku is Gk-measurable. The latter property is equivalent to the
following one. For every k P N the event tτ “ ku is Gk-measurable. Note that
tτ “ ku “ tτ ď ku z tτ ď k ´ 1u, k P N, k ě 1, and tτ ď ku “ Yk

j“0 tτ “ ju.
From these equalities it follows that τ is a pGnqnPN-stopping time if and only if
for every k P N the event tτ “ ku is Gk-measurable.

2.32. Remark. Let B be a subset of S. Important examples of stopping times
are

τ 0B “ inf tk ě 0 : Xk P Bu on Y8
k“0 tXk P Bu and 8 elsewhere;

τ 1B “ inf tk ě 1 : Xk P Bu on Y8
k“1 tXk P Bu and 8 elsewhere. (2.96)

Similarly we also write τ sB “ inf tk ě s : Xk P Bu on the event Y8
k“s tXk P Bu,

and τ sB “ 8 elsewhere. The time τ 0B is called the first income time, and τ 1B is
called the first hitting time, or the first income time after 0.

We also notice that τ 1B “ min tk ě 1 : Xk P Bu on Y8
k“1 tXk P Bu and τ 1B “ 8

on X8
ℓ“1 tXℓ P SzBu. In addition: 1 ` τ 0B ˝ ϑ1 “ ϑ1

B.

2.33. Remark. Again let τ : Ω Ñ N Y t8u be a pGnqnPN-stopping time. The
σ-field Gτ containing the information from the past of τ is defined by

Gτ “ XkPN tA P F : A X tτ ď ku P Gku
“ σ pXj^τ : j P Nq (2.97)

where Xj^τ pωq “ Xj^τpωqpωq, ω P Ω.
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2.34. Remark. Let F be a stochastic variable. What is meant by F ˝ ϑk and
F ˝ ϑτ on the event tτ ă 8u? Here k P N, and τ is a pGnqnPN-stopping time.
For F “

śn
j“0 fj pXjq we write:

F ˝ ϑk “
n

ź

j“0

fj pXjq ˝ ϑk “
n

ź

j“0

fj pXj`kq ,

and on the event tτ ă 8u

F ˝ ϑτ “
n

ź

j“0

fj pXjq ˝ ϑτ “
n

ź

j“0

fj pXj`τ q . (2.98)

2.35. Proposition. Let
´

T
pnq
x,y

¯

px,yqPSˆS
be a sequence of square matrices with

positive entries, possibly with infinite countably many entries (when S is count-
able, not finite). Put

T 0
x,y “ I, T 1

x,y “ T p1q
x,y , T n

x,y “
ÿ

s1,...,snPS

n`1
ź

j“1

Tsj´1,sj , s0 “ x, sn`1 “ y. (2.99)

The equalities in (2.99) are to be considered as matrix multiplications. Fix
1 ď n1 ă ¨ ¨ ¨ ă nk ď n, and let the measure space

`

Sk,bk
j“1S, µ

0,x
n1,...,nk,n`1,y

˘

,
px, yq P S ˆ S, n P N be determined by the equalities:

ż

Sk

n
ź

j“1

fj psjq dµ0,s0
n1,...,nk,n`1,sn`1

ps1, . . . , skq

“
ÿ

ps1,...,skqPSk

k`1
ź

j“1

T pnj´nj´1q
sj´1,sj

fj psjq , fj P L8 pS, Sq , (2.100)

where ps0, sn`1q “ px, yq P S ˆ S, n0 “ 0, and nk`1 “ n ` 1. Then for every
1 ď j0 ď n, and fj P L8 pE,Eq, 1 ď j ď n, this family satisfies the following
equality:

ż

Sn

n
ź

j“1

fj psjq dµ0,s0
1,...,n,n`1,sn`1

ps1, . . . , snq (2.101)

“
ż

Sn´1

n
ź

j“1, j‰j0

fj psjq dµ0,s0
n,sn`1

ps1, . . . , sj0´1, sj0`1, . . . , snqT 2
sj0´1,sj0`1

where T 2
x,y “

ř

zPS T
p1q
x,zT

p1q
z,y for all px, yq P S ˆ S (matrix multiplication). Let

1 ď n1 ă ¨ ¨ ¨ ă nk ď n, and put

µ0,x
n1,...,nk,n`1 pB0 ˆ Bq “

ÿ

yPS
1B0pxqµ0,x

n1,...,nk,n`1,y pBq , B0 P S, B P bkS.

(2.102)

Suppose that the matrices
´

T
pnq
x,y

¯

px,yqPSˆS
, n P N, are stochastic. Then the

measures in (2.102) do not depend on n` 1. Moreover, the following assertions
are equivalent:
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(a) The family of measure spaces
␣`

Sk`1,bk`1S, µ0,x
n1,...,nk,n`1

˘

: 1 ď n1 ă ¨ ¨ ¨ ă nk ď n, n P N
(

(2.103)

is a consistent family of probability measure spaces.
(b) The family of measure spaces defined in (2.100) is consistent.

(c) For every n P N and px, yq P S ˆ S the equality T
pnq
x,y “ T n

x,y holds.

Suppose that the family in (2.103) is a consistent family of probability spaces.
Then the corresponding process

tpΩ,F,PxqxPS , pXn : n P Nq , pϑn, n P Nq , pS, Squ . (2.104)

is a Markov chain if and only if for px, yq P S ˆ S and n, m P N the following
matrix multiplication equality holds:

T pn`mq
x,y “

ÿ̀

zPS
T pnq
x,z T

pmq
z,y “

ÿ

zPS
T n
x,zT

m
z,y. (2.105)

This means that

Px rX0 P B0, . . . , Xn P Bns “ 1B0pxqµ0,x
1,...,n,n`1 pB1 ˆ ¨ ¨ ¨ ˆ Bnq ,

for Bj P S, 0 ď j ď n, and that the family in (2.104) possesses the Markov
property if and only (2.105) holds.

In addition, we have T
pnq
x,y “ Px rXn “ ys, x, y P S; i.e. the quantities T

pnq
x,y

represent the n time step transition probabilities from the state x to the state y.

2.36. Theorem. Let the notation be as in Theorem 2.22. The following asser-
tions are equivalent:

(1) For every s P S, for every bounded function f : S Ñ R, and for all
n P N the following equality holds Ps-almost surely:

Es

“

f pXn`1q
ˇ

ˇ Gn

‰

“ EXn rf pX1qs . (2.106)

(2) For every bounded function f : S Ñ R, and for all n P N the following
equality holds P-almost surely:

E
“

f pXn`1q
ˇ

ˇ Gn

‰

“ EXn rf pX1qs . (2.107)

2.37. Remark. From the proof it follows that in Theorem 2.36 we may replace
the stochastic variable f pX1q by any bounded stochastic variable Y : Ω Ñ R.
At the same f pXn`1q “ f pX1q ˝ ϑn has to be replaced by Y ˝ ϑn.

2.38. Remark. Theorem 2.36 together with Remark 2.37 shows that through-
out in Theorem 2.22 we may replace the probability P with Ps for any s P S.
Consequently, we could have defined a time-homogeneous Markov chain as a
quadruple

tpΩ,F,PsqsPS , pXn : n P Nq , pϑk, k P Nq , pS, Squ
satisfying the equivalent conditions in Theorem 2.22 with Ps, for all s P E,
instead of P.
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Proof of Theorem 2.36. (1) ùñ (2) Let s P S, f : S Ñ R a bounded
function, and n P N. From (2.106) we infer

Es rf pXn`1q , As “ Es rEXn rf pX1qs , As for all A P Gn. (2.108)

From (2.108) we infer

E rf pXn`1q , A, X0 “ ss
“ E rEXn rf pXn`1qs , A, X0 “ ss for all A P Gn, and s P S. (2.109)

By summing over s P S in (2.109) we obtain

E rf pXn`1q , As “ E rEXn rf pXn`1qs , As for all A P Gn. (2.110)

From (2.110) the equality in (2.107) easily follows.

(2) ùñ (1) Let f : S Ñ R and n P N be such that (2.107) holds. Then, since all
events of the form tX0 “ su, s P S, belong to Gn, (2.107) implies that (2.109)
holds for f and hence by dividing by P rX0 “ ss, for s P S, we obtain (2.108).
Hence (2.106) follows.

All this completes the proof of Theorem 2.36. �
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The following theorem is similar to the formulation of Theorem 2.36 but now
with stopping times and having remark 2.37 taken into account:

2.39. Theorem. Let the notation be as in Theorem 2.22, and let τ : Ω Ñ r0,8s
be a pGnqnPN-stopping time. The following assertions are equivalent:

(1) For every s P S, and for every bounded stochastic variable Y : Ω Ñ R
the following equality holds Ps-almost surely on the event tτ ă 8u:

Es

“

Y ˝ ϑτ

ˇ

ˇ Gτ

‰

“ EXτ rY s . (2.111)

(2) For every bounded stochastic variable Y : Ω Ñ R the following equality
holds P-almost surely on the event tτ ă 8u:

E
“

Y ˝ ϑτ

ˇ

ˇ Gτ

‰

“ EXτ rY s . (2.112)

2.40.Remark. Let τ : Ω Ñ NYt8u be a pGnqnPN-stopping time, and let A P Gτ .
Let m P NY t8u. Put τm “ m1ΩzA ` τ1A. Then τm is a pGnqnPN-stopping time.
If PrAs ă 1 and m “ 8, then τm “ 8 on the event ΩzA which is non-negligible.

2.41. Definition. Let Ω be a set and let S be a collection of subsets of Ω. Then
S is called a Dynkin system, if it has the following properties:

(a) Ω P S;
(b) if A and B belong to S and if A Ě B, then AzB belongs to S;
(c) if pAn : n P Nq is an increasing sequence of elements of S, then the union

Ť8
n“1 An belongs to S.

In the literature Dynkin systems are also called λ-systems: see e.g. [3]. A
π-system is a collection of subsets which is closed under finite intersections. A
Dynkin system which is also a π-system is a σ-field. The following result on
Dynkin systems, known as the π-λ theorem, gives a stronger result.

2.42. Theorem. Let M be a collection of subsets of Ω, which is stable under
finite intersections, so that M is a π-system on Ω. The Dynkin system generated
by M coincides with the σ-field generated by M.

Proof. LetD pMq be the smallest Dynkin-system containingM, i.e. D pMq
is the Dynkin-system generated by M. For all A P D pMq, we define:

ΓpAq :“ tB P D pMq : A X B P D pMqu .
then we have

(1) if A belongs to M, M Ă ΓpAq,
(2) for all A P M, ΓpAq is a Dynkin system on Ω.
(3) if A belongs to M, then D pMq Ă ΓpAq,
(4) if B belongs to D pMq, then M Ă ΓpBq,
(5) for all B P D pMq the inclusion, D pMq Ă ΓpBq holds.

It follows that D pMq is also a π-system. It is esay to see that a Dynkin system
which is at the same time a π-system is in fact a σ-field (or σ-algebra). This
completes the proof of Theorem 2.42. �
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2.43. Theorem. Let Ω be a set and let M be a collection of subsets of Ω, which
is stable (or closed) under finite intersections. Let H be a vector space of real
valued functions on Ω satisfying:

(i) The constant function 1 belongs to H and 1A belongs to H for all
A P M;

(ii) if pfn : n P Nq is an increasing sequence of non-negative functions in H

such that f “ supnPN fn is finite (bounded), then f belongs to H.

Then H contains all real valued functions (bounded) functions on Ω, that are
σpMq measurable.

Proof. Put D “ tA Ď Ω : 1A P Hu. Then by (i) Ω belongs to D and
D Ě M. If A and B are in D and if B Ě A, then BzA belongs to D. If
pAn : n P Nq is an increasing sequence in D, then 1YAn “ supn 1An belongs to
D by (ii). Hence D is a Dynkin system, that contains M. Since M is closed
under finite intersection, it follows by Theorem 2.42 that D Ě σpMq. If f ě 0 is

measurable with respect to σpMq, then f “ sup
n

2´n
ÿn2n

j“1
1tfěj2´nu. Since the

subsets tf ě j2´nu, j, n P N, belong to σpMq, we see that f is a member of H.
Here we employed the fact that σpMq Ď D. If f is σ pMq-measurable, then we
write f as a difference of two non-negative σ pMq-measurable functions. �

The previous theorems (Theorem 2.42 and Theorem 2.43) are used in the fol-
lowing form. Let Ω be a set and let pSi, SiqiPI be a family of measurable spaces,
indexed by an arbitrary set I. For each i P I, let Mi denote a collection of
subsets of Si, closed under finite intersection, which generates the σ-field Si,
and let fi : Ω Ñ Si be a map from Ω to Si. In this context the following two
propositions follow.

2.44. Proposition. Let M be the collection of all sets of the form
Ş

iPJ f
´1
i pAiq,

Ai P Mi, i P J , J Ď I, J finite. Then M is a collection of subsets of Ω which is
stable under finite intersection and σpMq “ σ pfi : i P Iq.

2.45. Proposition. Let H be a vector space of real-valued functions on Ω such
that:

(i) the constant function 1 belongs to H;
(ii) if phn : n P Nq is an increasing sequence of non-negative functions in H

such that h “ supn hn is finite (bounded), then h belongs to H;
(iii) H contains all products of the form

ś

iPJ 1Ai
˝ fi, J Ď I, J finite, and

Ai P Mi, i P J .

Under these assumptions H contains all real-valued functions (bounded) func-
tions in σpfi : i P Iq.

The theorems 2.42 and 2.43, and the propositions 2.44 and 2.45 are called the
monotone class theorem.
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In the propositions 2.44 and 2.45 we may take Si “ S, Mi the collection of finite
subsets of Si, and fi “ Xi, i P I “ N.

3. More on Brownian motion

Further on in this book on stochastic processes we will discuss Brownian motion
in more detail. In fact we will consider Brownian motion as a Gaussian process,
as a Markov process, and as a martingale (which includes a discussion on Itô
calculus). In addition Brownian motion can be viewed as weak limit of a scaled
symmetric random walk. For this result we need a Functional Central Limit
Theorem (FCLT) which is a generalization of the classical central limit theorem.

2.46. Theorem (Multivariate Classical Central Limit Theorem). Let pΩ,F,Pq
be a probability space, and let tZn : n P Nu be a sequence of P-independent and
P-identically distributed random variables with values in Rd in L1

`

Ω,F,P;Rd
˘

.
Let µ “ E rZ1s, and let D be the dispersion matrix of Z1 (i.e. the variance-
covariance of the random vector Z1). Then there exists a centered Gaussian (or
multivariate normal) random vector X with dispersion matrix D such that the
sequence

Xn :“
Z1 ` ¨ ¨ ¨ ` Zn ´ nµ?

n

converges weakly (or in distribution) to a centered random vector X with dis-
persion matrix D as n Ñ 8. The latter means that lim

nÑ8
E rf pZnqs “ E rf pZqs

for all bounded continuous functions f : Rd Ñ R.

Notice that by a non-trivial density argument we only need to prove the equality

lim
nÑ8

E
„

f

ˆ

Z1 ` ¨ ¨ ¨ ` Zn ´ nµ?
n

˙ȷ

“ E rf pXqs

for all functions f of the form fpxq “ e´i⟨x,ξ⟩, x P Rd, ξ P Rd.

Next let us give a (formal) definition of Brownian motion.

2.47. Definition. A one-dimensional Brownian motion with drift µ and diffu-
sion coefficient σ2 is a stochastic process tXptq : t ě 0u with continuous sam-
ple paths having independent Gaussian increments with mean and variance of
an increment Xpt ` sq ´ Xptq given by sµ “ E rXpt ` sq ´ Xptqs and sσ2 “
E

“

pXpt ` sq ´ Xptqq2
‰

, s, t ě 0. If X0 “ x, then this Brownian is said to start
at x. A Brownian motion with drift µ “ 0, and σ2 “ 1 is called a standard
Brownian motion.

One of the problems is whether or not such a process exists. One way of resolv-
ing this problem is to put the Functional Central Limit Theorem at work. Let
us prepare for this approach. Let tZj : j P Nu be a sequence of centered inde-
pendent identically distributed real valued random variables in L1 pΩ,F,Pq with
variance σ2 “ E rZ2

1 s. For example these variables could be Bernoulli variables
taking the values `σ and ´σ with the same probability 1

2
. Put S0 “ Z0 “ 0,
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Sn “ Z1 ` ¨ ¨ ¨ ,`Zn, n P N, n ě 1. Define for each scale parameter n ě 1 the
stochastic process Xpnqptq by

Xpnqptq “
Stntu?

n
“

řtntu
k“0 Zk?
n

, t ě 0. (2.113)

Here tntu is the integer part of nt, i.e. the largest integer k for which k ď nt ă
k ` 1. The it is relatively easy to see that

E
“

Xpnqptq
‰

“ 0, and Var
`

Xpnqptq
˘

“ E
“

Xpnqptq2
‰

“ tσ2. (2.114)

Then the classical CLT (Central Limit Theorem) implies that there exists a
process tXptq : t ě 0u with the property that for every m P N, for every choice
pt1, . . . , tmq of m positive real numbers, and every bounded continuous function
f : Rm Ñ C the following limit equality holds:

lim
nÑ8

E
“

f
`

Xpnqptq
˘‰

“ E rf pXptqqs . (2.115)

The equality in (2.115) says the finite-dimensional distributions of the sequence
of processes

␣

Xpnqptq : t ě 0
(

nPN converges weakly to the finite-dimensional
distributions of the process tXptq : t ě 0u. This limit should then be one-
dimensional Brownian motion with drift zero and variance σ2. A posteriori
we know that Brownian motion should be P-almost surely continuous. How-
ever the processes

␣

Xpnqptq : t ě 0
(

nPN have jumps. It would be nice if we were
able to replace these processes which have jumps by processes without jumps.
Therefore we employ linear interpolation. This can be done as follows. We
introduce the following interpolating sequence of continuous processes:

rXpnqptq “
Stntu?

n
` pnt ´ tntuq

Ztntu`1?
n

, t ě 0. (2.116)

Let m and n be positive integers. Then on the half open interval

„

m

n
,
m ` 1

n

˙

the variable Xnptq is constant in time t at level
Sm

n
, while rXnptq changes linearly

from

Sm

n
at time t “

m

n
to

Sm`1?
n

“
Sm?
n

`
Zm`1?

n
at time t “

m ` 1

n
. (2.117)

It can be proved that the sequence of stochastic processes
!

rXpnqptq : t ě 0
)

nPN
converges weakly to Brownian motion with drift µ and variance σ2. This is
the contents of the following FCLT (Functional Central Limit Theorem). The
following result also goes under the name “Donsker’s invariance principle”: see,
e.g., [15] or [42].

2.48.Theorem (Functional Central Limit Theorem). Let
!

rXpnqptq : t P r0, T s
)

,

n P N, and tXptq : t P r0, T su be stochastic processes possessing sample paths
which are P-almost surely continuous with the property that the finite-dimen-

sional distributions of the sequence
!

rXpnqptq : t P r0, T s
)

nPN
converge weakly to
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those of tXptq : t P r0, T su. Then the sequence
!

rXpnqptq : t P r0, T s
)

nPN
con-

verges weakly to tXptq : t P r0, T su if and only if for every ε ą 0 the following
equality holds:

lim
δÓ0

sup
nPN

P

«

sup
0ďs,tďT, |s´t|ďδ

ˇ

ˇ

ˇ

rXpnqpsq ´ rXpnqpsq
ˇ

ˇ

ˇ
ě ε

ff

“ 0. (2.118)

This result is based on Prohorov’s tightness theorem and the Arzela-Ascoli
characterization of compact subsets of Cr0, T s.

2.49. Theorem (Prohorov theorem). Let pPn : n P Nq be a sequence of proba-
bility measures on a separable complete metrizable topological space S with Borel
σ-field S. Then the following assertions are equivalent:

(i) For every ε ą 0 there exists a compact subset Kε of S such that
Pn rKεs ě 1 ´ ε for all n P N.

(ii) Every subsequence of pPn : n P Nq has a subsequence which converges
weakly to a probability measure on pS, Sq.

A sequence pPnqn satisfying (i) (or (ii)) in Theorem 2.49 is called a Prohorov
set. Theorem 2.48 can be proved by applying Theorem 2.49 with Pn equal to

the P-distribution of the process
!

rXpnqptq : 0 ď t ď T
)

.
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2.50. Theorem (Arzela-Ascoli). Endow Cr0, T s with the topology of uniform
convergence. A subset A of Cr0, T s has compact closure if and only if it has the
following properties:

(i) sup
ωPA

|ωp0q| ă 8;

(ii) The subset A is equi-continuous in the sense that

lim
δÓ0

sup
0ďs,tďT, |s´t|ďδ

sup
ωPA

|ωpsq ´ ωptq| “ 0.

From (i) and (ii) it follows that sup
ωPA

sup
sPr0,T s

|ωpsq| ă 8, and hence A is uniformly

bounded. The result which is relevant here reads as follows. It is the same as
Theorem T.8.4 in Bhattacharaya and Waymire [15].

2.51. Theorem. Let pPnqn be a sequence of probability measures on Cr0, T s.
Then pPnqn is tight if and only if the following two conditions hold.

(i) For each η ą 0 there is a number B such that

Pn rω P Cr0, T s : |ωp0q| ą Bs ă η, n “ 1, 2, . . .

(ii) For each ε ą 0, η ą 0, there is a 0 ă δ ă 1 such that

Pn

«

ω P Cr0, T s : sup
0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ě ε

ff

ď η, n “ 1, 2, . . .

Proof. If the sequence pPnqn is tight, then given η ą 0 there is a compact
subset K of C pr0, T sq such that PnpKq ą 1 ´ η for all n. By the Arzela-Ascoli
theorem (Theorem 2.50), if B ą supωPK |ωp0q|, then

Pn rω P Cr0, T s : |ωp0q| ě Bs ď Pn rKcs ď 1 ´ p1 ´ ηq “ η.

Also given ε ą 0 select δ ą 0 such that sup
ωPK

sup
0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ă ε. Then

Pn

«

ω P Cr0, T s : sup
0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ě ε

ff

ď Pn rKcs ă η for all n ě 1.

The converse goes as follows. Given η ą 0, first select B using (i) such that
Pn rω P C pr0, T sq : |ωp0q| ď Bs ě 1 ´ 1

2
η, for n ě 1. Select δr ą 0 using (ii)

such that

Pn

«

ω P C pr0, T sq : sup
0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ă
1

r

ff

ě 1 ´ 2´pr`1qη for n ě 1.

Now take K to be the uniform closure of
8
č

r“1

#

ω P C pr0, T sq : |ωp0q| ď B, sup
0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ă
1

r

+

.

Then PnpKq ą 1´η for n ě 1, and K is compact by the Arzela-Ascoli theorem.
This completes the proof Theorem 2.51. �
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For convenience of the reader we formulate some limit theorems which are rel-
evant in the main text of this book. The formulations are taken from Stirzaker
[126]. For proofs the reader is also referred to Stirzaker. For convenience
we also insert proofs which are based on Birkhoff’s ergodic theorem. Define
Sn “

řn´1
k“0 Xk, where the variables tXkukPN Ă L1 pΩ,F,Pq are independent and

identically distributed (i.i.d.). Then we have the following three classic results.

2.52. Theorem (Central limit theorem, standard version). If E rXks “ µ and
0 ă var pXkq “ σ2 ă 8, then

lim
nÑ8

P
„

Sn ´ nµ

pnσ2q1{2 ď x

ȷ

“ Φpxq, x P R,

where Φpxq is the standard normal distribution, i.e. Φpxq “
1?
2π

ż x

´8
e´ 1

2
x2

dx.

Proof. Let f : R Ñ C be a bounded C2-function with a bounded second
derivative. Then by Taylor’s formula (or by integration by parts) we have

fpyq “ fp0q ` yf 1p0q `
1

2
y2f 2p0q `

ż 1

0

p1 ´ sq y2 tf2 psyq ´ f 2p0qu ds. (2.119)

Put Yn,k “
Xk ´ µ

σ
?
n

. Inserting y “ Yn,k into (2.119) yields

f pYn,kq “ fp0q `Yn,kf
1p0q `

1

2
Y 2
n,kf

2p0q `
ż 1

0

p1 ´ sqY 2
n,k tf 2 psYn,kq ´ f2p0qu ds.

(2.120)
Then we take expectations in (2.120) to obtain:

E rf pYn,kqs “ fp0q `
1

2n
f 2p0q `

ż 1

0

p1 ´ sqE
“

Y 2
n,k tf 2 psYn,kq ´ f 2p0qu

‰

ds.

(2.121)
Put

εnptq “ n

ż 1

0

p1 ´ sqE
“

Y 2
n,1

`

1 ´ e´istYn,1
˘‰

ds, t P R,

and choose fpyq “ e´ity. Observe that, uniformly in t on compact subsets of
R, limnÑ8 εnptq “ 0. Then, since the variables Yn,k, 1 ď k ď n, are i.i.d., from
(2.121) we get

E
“

e´itYn,k
‰

“ 1 ´
t2

2n
`

t2εnptq
n

. (2.122)

From (2.122) we infer

E
”

e´it
řn

k“1 Yn,k

ı

“
`

E
“

e´itYn,1
‰˘n “

ˆ

1 ´
t2

2n
`

t2εnptq
n

˙n

. (2.123)

Let Y : Ω Ñ R be a standard normally distributed random variable. From the
properties of the sequence tεnptqun and (2.123) we see that, for every 0 ă R ă 8,

lim
nÑ8

sup
|t|ďR

!

E
”

e´it
řn

k“1 Yn,k ´ e´itY
ı)
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“ lim
nÑ8

sup
|t|ďR

!

E
”

e´it
řn

k“1 Yn,k

ı

´ e´ 1
2
t2

)

“ lim
nÑ8

sup
|t|ďR

"

E
”

e´it
řn

k“1 Yn,k

ı

´
ˆ

1 ´
t2

2n
`

t2εnptq
n

˙n*

“ 0. (2.124)

The conclusion in Theorem 2.52 then follows from (2.124) together with Lévy’s
continuity theorem: see Theorem 5.42, and Theorem 5.43 assertions (9) and
(10). �
2.53. Theorem (Weak law of large numbers). If E rXks “ µ ă 8, then for all
ε ą 0,

lim
nÑ8

P
„ˇ

ˇ

ˇ

ˇ

Sn

n
´ µ

ˇ

ˇ

ˇ

ˇ

ą ε

ȷ

“ 0.

For a proof of the following theorem see (the proof of) Theorem 5.60. It is
proved as a consequence of the (pointwise) ergodic theorem of Birkhoff: see
Theorems 5.59 and 5.66, and Corollary 5.67.
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2.54. Theorem (Strong law of large numbers). The equality

lim
nÑ8

Sn

n
“ µ, holds P-almost surely (2.125)

for some finite constant µ, if and only if E r|Xk|s ă 8, and then µ “ E rX1s.
Moreover, the limit in (2.125) also exists in L1-sense.

We will show that Theorem 2.53 is a consequence of Theorem 2.54.

Proof of Theorem 2.53. Let ε ą 0 be arbitrary, and let tXkuk and µ
be as in Theorem 2.53. Then

P
„ˇ

ˇ

ˇ

ˇ

Sn ´ nµ

n

ˇ

ˇ

ˇ

ˇ

ě ε

ȷ

ď
1

ε
E

„ˇ

ˇ

ˇ

ˇ

Sn

n
´ µ

ˇ

ˇ

ˇ

ˇ

ȷ

. (2.126)

By the L1-version of Theorem 2.54 it follows that the right-had side of (2.126)
converges to 0. This shows that Theorem 2.53 is a consequence of Theorem
2.54. �

The central limit theorem is the principal reason for the appearance of the nor-
mal (or “bell-shaped”) distribution in so many statistical and scientific contexts.
The first version of this theorem was proved by Abraham de Moivre before 1733.
The laws of large numbers supply a solid foundation for our faith in the useful-
ness and good behavior of averages. In particular, as we have remarked above,
they support one of our most appealing interpretations of probability as long-
term relative frequency. The first version of the weak law was proved by James
Bernoulli around 1700; and the first form of the strong law by Emile Borel in
1909. We include proofs of these results in the form as stated. As noted above
a proof of Theorem 2.54 will be based on Birkhoff’s ergodic theorem.

2.55. Remark. The following papers and books give information about the
central limit theorem in the context of Stein’s method which stems from Stein
[124]: see Barbour and Hall [9], Barbour and Chen [8], Chen, Goldstein and
Shao [31], Nourdin and Peccati [101], Berckmoes et al [13]. This is a very inter-
esting and elegant method to prove convergence and give estimates for partial
sums of so-called standard triangular arrays (STA). It yields sharp estimates:
see the forthcoming paper [14].

4. Gaussian vectors.

The following theorem gives a definition of a Gaussian (or a multivariate nor-
mally distributed) vector purely in terms of its characteristic function (Fourier
transform of its distribution.

2.56. Theorem. Let pΩ,F,Pq be a probability space, and let X “ pX1, . . . , Xnq
be an Rn-valued Gaussian vector in the sense that there exists a vector µ :“
pµ1, . . . , µnq P Rn and a symmetric square matrix σ :“ pσj,kqnj,k“1 such that the
characteristic function of the vector X is given by

E
“

e´i⟨ξ,X⟩‰ “ e´i⟨ξ,µ⟩´ 1
2

řn
j,k“1 ξjξkσj,k for all ξ “ pξ1, . . . , ξnq P Rn. (2.127)
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Then for every 1 ď j ď n the variable Xj belongs to L2 pΩ,F,Pq, µj “ E rXjs,
and

σj,k “ cov pXj, Xkq “ E rpXj ´ E rXjsq pXk ´ E rXksqs . (2.128)

Proof. Put Y “ X ´ µ, and fix ε ą 0. Then the equality in (2.127) is
equivalent to

E
“

e´i⟨ξ,Y ⟩‰ “ e´ 1
2

řn
j,k“1 ξjξkσj,k for all ξ “ pξ1, . . . , ξnq P Rn. (2.129)

From Cauchy’s theorem and the equality
1?
2π

ż 8

´8
e´ 1

2
η2dη “ 1 we obtain

e´ 1
2
ε|Y |2 “

1
`?

2πε
˘n

ż

Rn

e´i⟨η,Y ⟩e´ 1
2ε

|η|2 dη “
1

`?
2π

˘n

ż

Rn

e´i⟨
?
εη,Y ⟩e´ 1

2
|η|2 dη.

(2.130)
From (2.129) and (2.130) we infer:

E
”

e´i⟨ξ,Y ⟩e´ 1
2
ε|Y |2

ı

“
1

`?
2π

˘n

ż

Rn

E
”

e´i⟨ξ`
?
εη,Y ⟩

ı

e´ 1
2

|η|2 dη

(employ (2.129) with ξ `
?
εη instead of ξ)

“
1

`?
2π

˘n

ż

Rn

e´ 1
2

řn
j,k“1pξj`

?
εηjqpξk`

?
εηkqσj,ke´ 1

2
|η|2 dη.

(2.131)

Next we take 1 ď ℓ1, ℓ2 ď n, and we differentiate the right-hand side and
left-hand side of (2.131) with respect to ξℓ2 and the result with respect ξℓ1 . In
addition we write a negative sign in front of this. Then we obtain:

E
”

e´i⟨ξ,Y ⟩Yℓ1Yℓ2e
´ 1

2
ε|Y |2

ı

“
1

`?
2π

˘n

ż

Rn

e´ 1
2

řn
j,k“1pξj`

?
εηjqpξk`

?
εηkqσj,ke´ 1

2
|η|2

¨

˝

σℓ1,ℓ2 ` σℓ2,ℓ1

2
´

˜

n
ÿ

j“1

`

ξj `
?
εηj

˘ σj,ℓ2 ` σℓ1,j

2

¸2
˛

‚dη. (2.132)

Inserting ξ “ 0 into (2.132) yields:

E
”

Yℓ1Yℓ2e
´ 1

2
ε|Y |2

ı

“
1

`?
2π

˘n

ż

Rn

e´ 1
2
ε

řn
j, k“1 ηjηkσj,ke´ 1

2
|η|2

¨

˝

σℓ1,ℓ2 ` σℓ2,ℓ1

2
´ ε

˜

n
ÿ

j“1

ηj
σj,ℓ2 ` σℓ1,j

2

¸2
˛

‚dη. (2.133)

First assume that ℓ1 “ ℓ2 “ ℓ. Then the left-hand side of (2.133) increases to

E rY 2
ℓ s, and the right-hand side increases to

1
`?

2π
˘n

ż

Rn

e´ 1
2

|η|2 dη σℓ,ℓ “ σℓ,ℓ if ε

decreases to zero. Consequently, Yℓ P L2 pΩ,F,Pq and E rY 2
ℓ s “ σℓ,ℓ, 1 ď ℓ ď n.
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It follows that Yℓ belongs to L1 pΩ,F,Pq, and that we also have that Yℓ1Yℓ2 P
L1 pΩ,F,Pq. By applying the same procedure as above we also obtain that

E rYℓ1Yℓ2s “
σℓ1,ℓ2 ` σℓ2,ℓ1

2
“ σℓ1,ℓ2 . (2.134)

In (2.134) we employed the symmetry of the matrix pσℓ1,ℓ2qnℓ1,ℓ2“1. Again we fix

1 ď ℓ ď n, and we differentiate the equality in (2.131) with respect to ξℓ to
obtain

iE
”

e´i⟨ξ,Y ⟩Yℓe
´ 1

2
ε|Y |2

ı

“
1

`?
2π

˘n

ż

Rn

dη e´ 1
2

řn
j,k“1pξj`

?
εηjq `

ξk `
?
εηk

˘

e´ 1
2

|η|2

n
ÿ

j“1

`

ξj `
?
εηj

˘ σj,ℓ ` σℓ,j

2
. (2.135)

In (2.135) we set ξ “ 0, and we let ε Ó 0 to obtain E rYℓs “ 0, and hence Xℓ P
L1 pΩ,F,Pq and E rXℓs “ µℓ. This completes the proof of Theorem 2.56. �

5. Radon-Nikodym Theorem

We begin by formulating a convenient version of Radon-Nikodym’s theorem.
For a proof the reader is referred to Bauer [10] or Stroock [130].

2.57. Theorem (Radon-Nikodym theorem). Let pΩ,F, µq be a σ-finite measure
space, and let ν be a finite measure on F. Suppose that ν is absolute continuous
relative to µ, i.e. µpBq “ 0 implies νpBq “ 0. Then there exists a function
f P L1 pΩ,F, µq such that νpBq “

ş

B
f dµ for all B P F. In particular the

function f is F-measurable.

The following corollary follows from Theorem 2.57 by taking F “ B, µ the
measure P confined to B, and νpBq “ E rX, Bs, B P B.

2.58. Corollary. Let pΩ,A,Pq be a probability space, and let B be a subfield
(i.e. a sub-σ-field) of A. Let X be a stochastic variable in L1 pΩ,A,Pq. Then
there exists a B-measurable variable Z on Ω with the following properties:

(1) (qualitative property) the variable Z is B-measurable;
(2) (quantitative property) for every B P B the equality E rZ, Bs“E rX, Bs

holds.

The variable Z is called the conditional expectation of X, and is denoted by
Z “ E

“

X
ˇ

ˇ B
‰

. The existence is guaranteed by the Radon-Nikodym theorem.

6. Some martingales

Let E be a locally compact Hausdorff space which is second countable, and let

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ (2.136)

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

79 

Renewal theory and Markov chains6. SOME MARTINGALES 79

be a time-homogeneous strong Markov process with right-continuous paths,
which also have left limits in the state space E on their life time. Put Sptqfpxq “
Ex rf pXptqqs, f P C0pEq, and assume that Sptqf P C0pEq whenever f P C0pEq.
Here a real or complex valued function f belongs to C0pEq provided that it is
continuous and that for every ε ą 0 the subset tx P E : |fpxq| ě εu is compact
in E. Let the operator L be the generator of this process. This means that
its domain DpLq consists of those functions f P C0pEq for which the limit

Lf “ lim
tÓ0

Sptqf ´ f

t
exists in C0pEq equipped with the supremum norm, i.e.

}f}8 “ supxPE |fpxq|, f P C0pEq. The Markov property of the process in (2.136)
together with the right continuity of paths implies that the family tSptq : t ě 0u
is a Feller, or, more properly, a Feller-Dynkin semigroup.

(1) The semigroup property can be expressed as follows:

S pt1 ` t2q “ S pt1qS pt2q , t1, t2 ě 0, Sp0q “ I.

(2) Moreover, the right-continuity of paths implies

lim
tÓ0

Sptqfpxq “ lim
tÓ0

Ex rf pXptqqs “ Ex rf pXp0qqs “ fpxq, f P C0pEq.

(3) In addition, if 0 ď f ď 1, then 0 ď Sptqf ď 1.

A semigroup with the properties (1), (2) and (3) is a called a Feller, or Feller-
Dynkin semigroup. In fact, it can be proved that a Feller-Dynkin semigroup
tSptq : t ě 0u satisfies

lim
sÑt, są0

}Spsqf ´ Sptqf}8 “ 0, t ě 0, f P C0pEq.

Let tSptq : t ě 0u be a Feller-Dynkin semigroup. Then it can be shown that
there a exists a Markov process, as in (2.136) with right-continuous paths such
that Sptqfpxq “ Ex rf pXptqqs, f P C0pEq, t ě 0. For details, see Blumenthal
and Getoor [20]. Similar results are true for states spaces which are Polish; see,
e.g., [146].

Let t ÞÑ Mptq, t ě 0, be an adapted right-continuous multiplicative process,
i.e. Mp0q “ 1 and MpsqMptq ˝ ϑs “ Mps ` tq, s, t ě 0. Put SMptqfpxq “
Ex rMptqf pXptqqs, f P C0pEq, t ě 0. Assume that the operators SMptq leave
the space C0pEq invariant, so that SMptqf belongs to C0pEq whenever f P
C0pEq. Then the family tSMptq : t ě 0u has the semigroup property SMps`tq “
SMpsqSMptq, s, t ě 0, and limtÓ0 SMptqfpxq “ fpxq, t ě 0, f P C0pEq. If, in ad-
dition, for every f P C0pEq there exists a δ ą 0 such that sup0ďtďδ }SMptqf}8 ă
8, then

lim
tÓ0

}SMptqf ´ f}8 “ 0, f P C0pEq. (2.137)

Moreover, there a exists a closed densely defined linear operator LM such that

LMf “ C0pEq- lim
tÓ0

SMptqf ´ f

t
(2.138)

for f P D pLMq, the domain of LM . If Mptq “ 1, then LM “ L.
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2.59. Proposition. The following processes are Px-martingales:

t ÞÑ Mptqf pXptqq ´ Mp0qfpXp0qq ´
ż t

0

MpsqLMf pXpsq dsq ,

t ě 0, f P D pLMq , (2.139)

s ÞÑ MpsqEXpsq rMpt ´ sqf pXpt ´ sqqs , 0 ď s ď t, f P C0pEq, (2.140)

s ÞÑ MpsqEXpsq rMpt ´ s ´ uqp pu,Xpt ´ s ´ uq, yqs , 0 ď s ď t ´ u. (2.141)

In (2.141) it is assumed that there exists a “reference” measure m on the Borel
field E together with an density function ppt, x, yq, pt, x, yq P p0,8q ˆ E ˆ E
such that Ex rf pXptqqs “

ş

p pt, x, yq fpyq dmpyq for all f P C0pEq and for all
x P E and all t ą 0. From the semigroup property it follows that pps` t, x, yq “
ş

pps, x, zqppt, z, yqdmpzq for m-almost all y P E. Assuming that mpOq ą 0
for all non-empty open subsets of E, and that the function pt, x, yq ÞÑ ppt, x, yq
is continuous on p0,8q ˆ E ˆ E, it follows that the equality pps ` t, x, yq “
ş

pps, x, zqppt, z, yqdmpzq holds for s, t ą 0 and for all x, y P E.
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The following corollary is the same as Proposition 2.59 with M “ 1.

2.60. Corollary. The following processes are Px-martingales:

t ÞÑ f pXptqq ´ fpXp0qq ´
ż t

0

Lf pXpsq dsq , t ě 0, f P D pLq , (2.142)

s ÞÑ EXpsq rf pXpt ´ sqqs , 0 ď s ď t, f P C0pEq, (2.143)

s ÞÑ p pt ´ s,Xpsq, yq , 0 ď s ă t. (2.144)

Like in Proposition 2.59 in (2.144) it is assumed that there exists a “reference”
strictly positive Borel measure m such that for a (unique) continuous density
function ppt, x, yq the identity Ex rf pXptqqs “

ş

p pt, x, yq fpyq dmpyq holds for
all f P C0pEq and for all x P E and all t ą 0.

2.61. Lemma. Let the continuous density be as in Proposition 2.59, and let
z P E. Then the following equality holds for all 0 ď s ă t and for all y P E:

Ez rp pt ´ s,Xpsq, yqs “ ppt, x, yq. (2.145)

Proof of Lemma 2.61. Let the notation be as in Lemma 2.61. Then by
the identity of Chapman-Kolmogorov we have

Ez rp pt ´ s,Xpsq, yqs “
ż

p ps, z, wq ppt ´ s, w, yqdmpwq “ ppt, x, yq. (2.146)

The equality in (2.146) is the same as the one in (2.145), which completes the
proof of Lemma 2.61. �

Proof of Proposition 2.59. First let f belong to the domain of LM ,
and let t2 ą t1 ě 0. Then we have

Ex

„

M pt2q f pX pt2qq ´ Mp0qf pXp0qq ´
ż t2

0

MpsqLMf pXpsqq ds
ˇ

ˇ Ft1

ȷ

´ M pt1q f pX pt2qq ` Mp0qf pXp0qq `
ż t1

0

MpsqLMf pXpsqq ds

“ Ex

„

M pt1q
ˆ

M pt2 ´ t1q f pX pt2 ´ t1qq ´ Mp0qf pXp0qq

´
ż t2´t1

0

MpsqLMf pXpsqq ds

˙

˝ ϑt1

ˇ

ˇ Ft1

ȷ

(Markov property)

“ M pt1qEXpt1q

„

M pt2 ´ t1q f pX pt2 ´ t1qq ´ Mp0qf pXp0qq

´
ż t2´t1

0

MpsqLMf pXpsqq ds

ȷ

(definition of the operator SMptq; put z “ X pt1q, and t “ t2 ´ t1)

“ M pt1q
ˆ

SM ptq fpzq ´ Ez rMp0qfpXp0qqs ´
ż t

0

SMpsqLMfpzq ds
˙
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“ M pt1q
ˆ

SM ptq fpzq ´ Ez rMp0qf pXp0qqs ´
ż t

0

B
Bs

SMpsqfpzq ds
˙

“ M pt1q pSM ptq fpzq ´ Ez rMp0qf pXp0qqs ´ SMptqfpzq ` SMp0qfpzqq “ 0.
(2.147)

The equalities in (2.147) show the equality in (2.139).

Let f P C0pEq and t ą 0. In order to show that the process

s ÞÑ MpsqEXpsq rMpt ´ sqf pXpt ´ sqqs
is a Px-martingale we proceed as follows:

MpsqEXpsq rMpt ´ sqf pXpt ´ sqqs

(Markov property)

“ MpsqEx

“

Mpt ´ sq ˝ ϑsf pXpt ´ sqq ˝ ϑs

ˇ

ˇ Fs

‰

“ Ex

“

MpsqMpt ´ sq ˝ ϑsf pXptqq
ˇ

ˇ Fs

‰

“ Ex

“

Mptqf pXptqq
ˇ

ˇ Fs

‰

. (2.148)

It is clear that the process in (2.148) is a martingale. This proves that the
process in (2.140) is a martingale. A similar argument shows the equality:

MpsqEXpsq rMpt ´ s ´ uqp pu,Xpt ´ s ´ uq, yqs
“ Ex

“

Mpt ´ uqp pu,Xpt ´ uq, yq
ˇ

ˇ Fs

‰

, 0 ď s ă t ´ u. (2.149)

Again it is clear that the process in (2.149) as a function of s is a Px-martingale.

Altogether this proves Proposition 2.59. �

Proof of Corollary 2.60. The fact that the processes in (2.142) and
(2.143) are Px-martingales is an immediate consequence of (2.139) and (2.140)
respectively by inserting Mpρq “ 1 for all 0 ď ρ ď t. If Mpρq “ 1 for all
0 ă ρ ă t, then by Lemma 2.61 we get

MpsqEXpsq rMpt ´ s ´ uqp pu,Xpt ´ s ´ uq, yqs
“ EXpsq rp pu,Xpt ´ s ´ uq, yqs “ p pt ´ s,Xpsq, yq . (2.150)

On the other hand by the Markov property we also have:

EXpsq rp pu,Xpt ´ s ´ uq, yqs “ Ex

“

p pu,Xpt ´ uq, yq
ˇ

ˇ Fs

‰

. (2.151)

As a consequence of (2.150) and (2.151) we see that the process in (2.144) is a
martingale. This completes the proof of Corollary 2.60. �
2.62. Remark. In general the process s ÞÑ p pt ´ s,Xpsq, yq, 0 ď s ă t, is not a
closed martingale. In many concrete examples we have lim

sÒt,săt
p pt ´ s,Xpsq, yq “

0, Px-almost surely, on the one hand, and Ex rp pt ´ s,Xpsq, yqs “ p pt, x, yq ą
0 on the other. For an example of this situation take d-dimensional Brow-
nian motion. By Scheffé’s theorem it follows that the Px-martingale s ÞÑ
p pt ´ s,Xpsq, yq, 0 ď s ă t, can not be a closed martingale. If it were, then
there would exist an Ft-measurable variable F ptq “ limsÒ,săt p pt ´ s,Xpsq, yq
with the property that p pt ´ s,Xpsq, yq “ Ex

“

F ptq
ˇ

ˇ Fs

‰

. Since F ptq “ 0, Px-
almost surely, this is a contradiction.
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In the following corollary we consider a special multiplicative process: Mpsq “
1tTąsu, where T is a terminal stopping time, i.e. T “ s ` T ˝ ϑs, Px-almost
surely, on the event tT ą su for all s ą 0 and for all x P E.

2.63. Corollary. The following processes are Px-martingales:

t ÞÑ 1tTątuf pXptqq ´ 1tTą0ufpXp0qq ´
ż t^T

0

LMf pXpsq dsq ,

t ě 0, f P D pLMq , (2.152)

s ÞÑ 1tTąsuEXpsq rf pXpt ´ sqq , T ą t ´ ss , 0 ď s ď t, f P C0pEq, (2.153)

s ÞÑ 1tTąsu
`

p pt ´ s,Xpsq, yq ´ EXpsq rp pt ´ s ´ T,XpT q, yq , T ă t ´ ss
˘

,

0 ď s ă t. (2.154)

In (2.141) it is assumed that there exists a “reference” measure m on the Borel
field E together with an density function ppt, x, yq, pt, x, yq P p0,8qˆEˆE such
that Ex rf pXptqqs “

ş

p pt, x, yq fpyq dmpyq for all f P C0pEq and for all x P E
and all t ą 0.
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It is noticed that the definition of LMfpxq is only defined pointwise, and that
for certain points x P E the limit

LMfpxq:“ lim
tÓ0

Ex rMptqf pXptqqs ´ Ex rMp0qf pXp0qqs
t

does not even exist. A good example is obtained by taking for T the exit
time from an open subset U : T “ τU “ inf ts ą 0 : Xpsq P EzUu. If the

lim
tÓ0

Px rT ď ts
t

“ 0 for all x P U , then LMfpxq “ Lfpxq for x P U .

Proof of Corollary 2.63. It is only (2.154) which needs some explana-
tion; the others are direct consequences of Proposition 2.59. To this end we fix
0 ă u ă t. Then by (2.141) the process:

s ÞÑ 1tTąsuEXpsq rp pu,Xpt ´ s ´ uq, yq , T ą t ´ s ´ us
is a martingale on the closed interval r0, t ´ us. Next we rewrite

EXpsq rp pu,Xpt ´ s ´ uq, yq , T ą t ´ s ´ us
“ EXpsq rp pu,Xpt ´ s ´ uq, yqs ´ EXpsq rp pu,Xpt ´ s ´ uq, yq , T ď t ´ s ´ us

(2.155)

(the process ρ ÞÑ p pt ´ s ´ ρ,Xpρq, yq is Pz-martingale with z “ Xpsq; put
u “ t ´ s in the first term, and u “ t ´ s ´ T in the second term of the
right-hand side of (2.155))

“ EXpsq rp pt ´ s,Xp0q, yqs ´ EXpsq rp pt ´ s ´ T,XpT q, yq , T ď t ´ s ´ us .
(2.156)

By letting u Ó 0 in (2.156) and using (2.141) of Proposition 2.59 we obtain that
the process in (2.154) is a Px-martingale. This completes the proof of Corollary
2.63. �

Next let
␣

pΩ,F,Pxq , pBptq, t ě 0q , pϑt, t ě 0q ,
`

Rd,BRd

˘(

be the Markov process of Brownian motion. Another application of martingale
theory is the following example. Let U be an open subset of Rd with smooth
enough boundary BU (C1 will do), and let f : BU Ñ R be a bounded continuous
function on the boundary BU of U . Let u : U Ñ R be a continuous function
such that upxq “ fpxq for x P BU and such that ∆upxq “ 0 for x P U . Let τU
be the first exit time from U : τU “ inf

␣

s ą 0 : Bpsq P RdzU
(

. Then

upxq “ Ex rf pB pτUqq : τU ă 8s ` lim
tÑ8

Ex ru pB ptqq : τU “ 8s . (2.157)

Notice that the first expression in (2.157) makes sense, because it can be proved
that Brownian motion is Px-almost surely continuous for x P Rd. The proof
uses the following facts: stopped martingales are again martingales, and the
processes

t ÞÑ f pBptqq ´ f pBp0qq ´
1

2

ż t

0

∆f pBpsqq ds, f P Cb

`

Rd
˘

, ∆f P Cb

`

Rd
˘

,

(2.158)
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are martingales. The fact that a process of the form (2.158) is a martingale
follows from (2.142) in Corollary 2.60. It can also be proved using the equality

B
Bt
pd pt, x, yq “

1

2
∆ypd pt, x, yq (2.159)

where

pd pt, x, yq “
1

b

p2πtqd
e´ |x´y|2

2t .

A proof of (2.158) runs as follows. Pick t2 ą t1 ě 0 en a function f P Cb

`

Rd
˘

,

such that ∆f also belongs to Cb

`

Rd
˘

. Then we have:

Ex

„

f pB pt2qq ´ f pB p0qq ´
1

2

ż t2

0

∆f pBpsqq ds
ˇ

ˇ Ft1

ȷ

´ f pB pt1qq ` f pB p0qq `
1

2

ż t1

0

∆f pBpsqq ds

“ Ex

„ˆ

f pB pt2 ´ t1qq ´ f pB p0qq ´
1

2

ż t2´t1

0

∆f pBpsqq ds

˙

˝ ϑt1

ˇ

ˇ Ft1

ȷ

(Markov property of Brownian motion)

“ EBpt1q

„

f pB pt2 ´ t1qq ´ f pB p0qq ´
1

2

ż t2´t1

0

∆f pBpsqq ds

ȷ

(put z “ B pt1q, and t “ t2 ´ t1)

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´
1

2

ż t

0

Ez r∆f pBpsqqs ds

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´
1

2

ż t

0

ż

Rd

pd ps, z, yq∆f pyq dy ds

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´ lim
εÓ0

1

2

ż t

ε

ż

Rd

pd ps, z, yq∆f pyq dy

(integration by parts)

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´ lim
εÓ0

ż t

ε

ż

Rd

1

2
∆ypd ps, z, yq f pyq dy ds

(use the equality in (2.159))

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´ lim
εÓ0

ż t

ε

ż

Rd

B
Bs

pd ps, z, yq f pyq dy ds

(interchange integration and differentiation)

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´ lim
εÓ0

ż t

ε

B
Bs

ż

Rd

pd ps, z, yq f pyq dy ds

(fundamental rule of calculus)

“ Ez rf pBptqqs ´ Ez rf pBp0qqs
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´ lim
εÓ0

ˆ
ż

Rd

pd pt, z, yq f pyq dy ´
ż

Rd

pd pε, z, yq f pyq dy

˙

“ Ez rf pBptqqs ´ Ez rf pBp0qqs ´ Ez rf pBptqqs ` lim
εÓ0

Ez rf pBpεqqs

“ lim
εÓ0

Ez rf pBpεqqs ´ Ez rf pBp0qqs “ 0. (2.160)

From Doob’s optional sampling theorem it follows that processes of the form

t ÞÑ f pB pτU ^ tqq ´ f pBp0qq ´
1

2

ż τU^t

0

∆f pBpsqq ds, f P Cb

`

Rd
˘

, (2.161)

f P Cb

`

Rd
˘

, ∆f P Cb

`

Rd
˘

, are Px-martingales for x P U . We can apply this
property to our harmonic function u. It follows that the process

t ÞÑ u pB pτU ^ tqq´u pBp0qq´
1

2

ż τU^t

0

∆u pBpsqq ds “ u pB pτU ^ tqq´u pBp0qq

(2.162)
is a martingale. Consequently, from (2.162) we get

upxq “ u pBp0qq “ Ex ru pB pτU ^ tqqs
“ Ex ru pB pτU ^ tqq , τU ď ts ` Ex ru pB pτU ^ tqq , τU ą ts
“ Ex ru pB pτUqq , τU ď ts ` Ex ru pBptqq , τU ą ts (2.163)

In (2.163) we let t Ñ 8 to obtain the equality in (2.157).
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2.64. Proposition. Let t ÞÑ M1ptq and t ÞÑ M2ptq be two continuous martin-
gales in L2 pΩ,F,Pq with covariation process t ÞÑ ⟨M1,M2⟩ ptq, so that in partic-
ular the process t ÞÑ M1ptqM2ptq ´ ⟨M1,M2⟩ ptq is a martingale in L1 pΩ,F,Pq.
Then the process

t ÞÑ pM1ptq ´ M1psqq pM2ptq ´ M2psqq ´ ⟨M1,M2⟩ ptq ` ⟨M1,M2⟩ psq, t ě s,
(2.164)

is a martingale.

In fact by Itô calculus we have the following integration by parts formula:

pM1ptq ´ M1psqq pM2ptq ´ M2psqq

“
ż t

s

pM1pρq ´ M1psqq dM2pρq `
ż t

s

pM2pρq ´ M2psqq dM1pρq

` ⟨M1,M2⟩ ptq ´ ⟨M1,M2⟩ psq, t ě s. (2.165)

Proof of Proposition 2.64. Fix t2 ą t1 ě s. Then we calculate:

E
“

pM1 pt2q ´ M1 psqq
`

M2 pt2q ´ M2 psq
ˇ

ˇ Ft1

˘‰

´ E
“

⟨M1,M2⟩ pt2q ´ ⟨M1,M2⟩ psq
ˇ

ˇ Ft1

‰

´ pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq ` ⟨M1,M2⟩ pt1q ´ ⟨M1,M2⟩ psq
“ E

“

pM1 pt2q ´ M1 psqq pM2 pt2q ´ M2 psqq
ˇ

ˇ Ft1

‰

´ E
“

⟨M1,M2⟩ pt2q ´ ⟨M1,M2⟩ pt1q
ˇ

ˇ Ft1

‰

´ pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq
“ E rpM1 pt2q ´ M1 pt1q ` M1 pt1q ´ M1 psqq

pM2 pt2q ´ M2 pt1q ` M2 pt1q ´ M2 psqq
´ ⟨M1,M2⟩ pt2q ` ⟨M1,M2⟩ pt1q

ˇ

ˇ Ft1

‰

´ pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq
“ E

“

pM1 pt2q ´ M1 pt1qq pM2 pt2q ´ M2 pt1qq
ˇ

ˇ Ft1

‰

´ E
“

⟨M1,M2⟩ pt2q ` ⟨M1,M2⟩ pt1q
ˇ

ˇ Ft1

‰

` E
“

pM1 pt1q ´ M1 psqq pM2 pt2q ´ M2 pt1qq
ˇ

ˇ Ft1

‰

` E
“

pM1 pt2q ´ M1 pt1qq pM2 pt1q ´ M2 psqq
ˇ

ˇ Ft1

‰

` E
“

pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq
ˇ

ˇ Ft1

‰

´ pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq
“ E

“

M1 pt2qM2 pt2q ´ ⟨M1,M2⟩ pt2q ` ⟨M1,M2⟩ pt1q ´ M1 pt1qM2 pt1q
ˇ

ˇ Ft1

‰

´ E
“

M1 psq pM2 pt2q ´ M2 pt1qq
ˇ

ˇ Ft1

‰

´ E
“

pM1 pt2q ´ M1 pt1qqM2 psq
ˇ

ˇ Ft1

‰

` E
“

pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq
ˇ

ˇ Ft1

‰

´ pM1 pt1q ´ M1 psqq pM2 pt1q ´ M2 psqq “ 0. (2.166)
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In the final step of (2.166) we employed the martingale property of the following
processes:

t ÞÑ M1ptqM2ptq ´ ⟨M1,M2⟩ ptq, t ÞÑ M1ptq, and t ÞÑ M2ptq.
This completes the proof of Proposition 2.64. �
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CHAPTER 3

An introduction to stochastic processes: Brownian
motion, Gaussian processes and martingales

In this chapter of the book we will study several aspects of Brownian motion:
Brownian motion as a Gaussian process, Brownian motion as a Markov process,
Brownian motion as a martingale. It also includes a discussion on stochastic
integrals and Itô’s formula.

1. Gaussian processes

We begin with an important extension theorem of Kolmogorov, which enables
us to construct stochastic processes like Gaussian processes, Lévy processes,
Poisson processes and others. It is also useful for the construction of Markov
processes. In Theorem 3.1 the symbol ΩJ , J Ď I, stands for the product space
ΩJ “

ś

jPJ Ωj endowed with the product σ-field FJ . By saying that the system

tpΩJ ,FJ ,PJq : J Ď I, J finiteu is a projective system (or a consistent system,
or a cylindrical measure) we mean that

PJ1

“

pJ1J2 P A
‰

“ PJ1

”

`

pJ1J2
˘´1 pAq

ı

“ PJ2 rAs ,

where A P FJ2 , and where J2 Ď J1 Ď I, J1 finite. The mapping pJ1J2 , J2 Ď J1, is

defined by pJ1J2 pωjqjPJ1 “ pωjqjPJ2 . In practice this means that in order to prove

that the system tpΩJ ,FJ ,PJq : J Ď I, J finiteu is a projective system indeed,
we have to show an equality of the form (j0 R J):

PJYtj0u rB ˆ Ωj0s “ PJ rBs , B P FJ .

The following proposition says that under certain conditions a cylindrical mea-
sure in fact is a genuine measure.

3.1. Theorem (Extension theorem of Kolmogorov). Let

tpΩJ ,FJ ,PJq : J Ď I, J finiteu
be a projective system of probability spaces (or distributions). Suppose that each
Ωi is a metrizable and σ-compact Hausdorff space endowed with its Borel field
Ai. Then there exists a unique probability measure PI on pΩI ,AIq, such that

PI rpJ P As “ PI

`

p´1
J pAq

˘

“ PJpAq (3.1)

for every J Ď I, J finite, and for every A P AJ .

For an extensive discussion on Kolmogorov’s extension theorem see, e.g., the
Probability Theory lecture notes of B. Driver [40]. These lecture notes include

89
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a discussion on standard Borel spaces and on Polish spaces. The Kolmogorov’s
extension theorem is also valid if the spaces Ωi are Polish spaces, or Souslin
spaces which are continuous images of Polish spaces. For more details see Ap-
pendix 17.6 in [40]. The reader may also consult [21] or [137]. In Theorem
7.4.3 of [21] the author shows that finite positive measures on Souslin spaces
are regular and concentrated on σ-compact subsets. Bogachev’s book contains
lots of information on Souslin spaces. In fact much material which is presented
in this book, can also be found in the lecture notes by Bruce Driver. A proof of
Kolmogorov’s extension theorem is supplied in Section 4 of Chapter 5: see (the
proof of) Theorem 5.81.

Next we recall Bochner’s theorem.

3.2. Theorem. (Bochner) Let φ : Rn Ñ C be a continuous complex function,
that is positive definite in the sense that for all r P N

r
ÿ

k,ℓ“1

λkλℓφ
`

ξk ´ ξℓ
˘

ě 0, (3.2)

for all λ1, . . . , λr P C and for all ξ1, . . . , ξr P Rn. Then there exists a unique
non-negative Borel measure µ on Rn such that its Fourier transform

ż

expp´i ⟨ξ, x⟩qdµpxq

is equal to φpξq for ξ P Rn. In particular µpRnq “ φp0q.

3.3. Example. Let, for every i P I, Pi, i P I, be a probability measures on Ωi

and define PJ on ΩJ , J Ď I, J finite, by PJpAq “ Pj1 b¨ ¨ ¨bPjnpAq, where A be-
longs to AJ and where J “ pj1, . . . , jnq. Then the family tPJ : J Ă I, J finiteu
is a consistent system or cylindrical measure.

3.4. Example. Let σ : I ˆ I Ñ R be a symmetric (i.e. σpi, jq “ σpj, iq for all i,
j in I) function such that for every finite subset J “ pj1, . . . , jnq of I the matrix
pσpi, jqqi,jPJ is positive-definite in the sense that

ÿ

i,jPJ
σpi, jqξiξj ě 0, (3.3)

for all ξj1 , . . . , ξjn P R. In the non-degenerate case we shall assume that the
inequality in (3.3) is strict whenever the vector pξj1 , . . . , ξjnq is non-zero. De-
fine the process pi, ωq ÞÑ Xipωq by Xipωq “ ωi, where ω P ΩI “ RI is given
by ω “ pωiqiPI . Let µ “ pµiq P RI be a map from I to R. There exists a
unique probability measure P on the σ-field on ΩI generated by pXiqiPI with the
following property:

E

˜

exp

˜

´i
ÿ

jPJ
ξjXj

¸¸

“ exp

˜

´i
ÿ

jPJ
ξjµj

¸

exp

˜

´
1

2

ÿ

i,jPJ
σpi, jqξiξj

¸

. (3.4)

This measure possesses the following additional properties:

E pXjq “ µj, j P I, and cov pXi, Xjq “ σpi, jq, i, j P I. (3.5)
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Notice that
n

ÿ

u,v“1

ξuξvcov pXju , Xjvq ě 0 whenever ξ1, . . . , ξn belong to R. For

a proof of this result we shall employ both Bochner’s theorem as well as Kol-
mogorov’s extension theorem. Therefore let J “ pj1, . . . , jnq be a finite subset
of I, let λk, 1 ď k ď r, be complex numbers and let ξk, 1 ď k ď r, be vectors in
Rn ” RJ . Put λ1

k “ λk exp
`

i
řn

u“1 ξ
k
juµ

k
ju

˘

and let U be an orthogonal matrix

with the property that the matrix pUσU´1pu, vqqnu,v“1 has the diagonal form

`

UσU´1pu, vq
˘

“

¨

˚

˚

˝

s21 0 . . . 0
0 s22 . . . 0
...

...
. . .

...
0 0 0 s2n

˛

‹

‹

‚

. We also write
`

ηℓ1, . . . , η
ℓ
n

˘

“ U

¨

˚

˝

ξℓj1
...
ξℓjn

˛

‹

‚

.

We may and do suppose that the eigenvalues s1, . . . , sm, m ď n, are non-zero
and the others (if any) are 0. Then we get

r
ÿ

k,ℓ“1

λkλℓ exp

˜

´
1

2

n
ÿ

u,v“1

σpju, jvq
`

ξℓju ´ ξkju
˘ `

ξℓjv ´ ξkjv
˘

¸

ˆ exp

˜

´i
n

ÿ

u“1

`

ξℓju ´ ξkju
˘

µju

¸

“
r

ÿ

k,ℓ“1

λ1
kλ

1
ℓ exp

˜

´
1

2

n
ÿ

u,v“1

`

UσU´1
˘

pu, vq
`

ηℓu ´ ηku
˘ `

ηℓv ´ ηkv
˘

¸

“
r

ÿ

k,ℓ“1

λ1
kλ

1
ℓ exp

˜

´
1

2

n
ÿ

u“1

s2u
`

ηℓu ´ ηku
˘2

¸

“
r

ÿ

k,ℓ“1

λ1
kλ

1
ℓ exp

˜

´
1

2

m
ÿ

u“1

s2u
`

ηℓu ´ ηku
˘2

¸

“
r

ÿ

k,ℓ“1

λ1
kλ

1
ℓ

1

p
?
2πqm

1
śm

u“1 su

ż

. . .

ż

dx1 . . . dxm

exp

˜

´i
m
ÿ

u“1

`

ηℓu ´ ηku
˘

xu

¸

exp

˜

´
1

2

m
ÿ

u“1

x2
u

s2u

¸

“
1

p
?
2πqm

1
śm

u“1 su

ż

. . .

ż

dx1 . . . dxm

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

k“1

λ1
k exp

˜

i
m
ÿ

u“1

ηℓuxu

¸ˇ

ˇ

ˇ

ˇ

ˇ

2

exp

˜

´
1

2

m
ÿ

u“1

x2
u

s2u

¸

ě 0. (3.6)

From Bochner’s Theorem 3.2 it follows that there exists a probability measure
ΠJ on RJ such that, for all ξ P Rn,

ż

RJ

exp

˜

´i
n

ÿ

u“1

ξuxu

¸

dΠJ
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“ exp

˜

´i
n

ÿ

u“1

ξuµu

¸

exp

˜

´
1

2

n
ÿ

u,v“1

σpju, jvqξuξv

¸

. (3.7)

Define the probability measure PJ on ΩJ “
ś

jPJ Ωj by

PJ ppXj1 , . . . , Xjnq P Bq “ ΠJpBq,
where B is a Borel subset of RJ . The collection pΩJ ,AJ ,PJq is a projective
system, because let J 1 :“ tj0u YJ be a subset of I, which is of size 1` size J “
1 ` n and let B be a Borel subset of RJ . The Fourier transform of the measure
B ÞÑ ΠJ 1 rR ˆ Bs is given by the function:

pξj1 , . . . , ξjnq ÞÑ
ż

RJ

exp

˜

´i
ÿ

jPJ
ξjxj

¸

ΠJ 1 rR ˆ dxs

“
ż

RJ

ż

R
exp

˜

´i
ÿ

jPJ 1

ξjxj

¸

ΠJ 1 rdy ˆ dxs

“ exp

˜

´i
ÿ

jPJ 1

ξjµj

¸

exp

˜

´
1

2

ÿ

i,jPJ 1

σpi, jqξiξj

¸

“ exp

˜

´i
ÿ

jPJ
ξjµj

¸

exp

˜

´
1

2

ÿ

i,jPJ
σpi, jqξiξj

¸

“
ż

RJ

e´i
ř

jPJ ξjxj ΠJpdxq.
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In the previous formula we used the equality ξj0 “ 0 several times: J 1 “ JYtj0u.
It follows that ΠJ rBs “ ΠJ 1 rR ˆ Bs. An application of the extension theorem
of Kolmogorov yields the desired result in Example 3.4.

Suppose that the matrix pσpju, jvqqnu,v“1 be non-degenerate (i.e. suppose that

its determinant is non-zero) and let pαpu, vqqnu,v“1 be its inverse. Then

P ppXj1 , . . . , Xjnq P Bq (3.8)

“
pdetαq1{2

p2πqn{2

ż

. . .

ż

dx1 . . . dxn1Bpx1, . . . , xnq

exp

˜

´
1

2

n
ÿ

u,v“1

αpu, vq pxu ´ µuq pxv ´ µvq

¸

.

Equality (3.8) can be proved by showing that the Fourier transforms of both
measures in (3.8) coincide. In the following propositions (Propositions 3.5 and
3.6) we mention some elementary facts on Gaussian vectors. Gaussian vectors
are multivariate normally distributed random vectors.

3.5. Proposition. Let pΩ,F,Pq be a probability space and let X i : Ω ÞÑ Rni,
i “ 1, 2, be random vectors with the property that the random vector Xpωq :“
pX1pωq, X2pωqq is Gaussian in the sense that (n “ n1 ` n2)

E

˜

exp

˜

´i
n

ÿ

k“1

ξkXk

¸¸

“ exp

˜

´i
n

ÿ

k“1

ξkµk ´
1

2

n
ÿ

k,ℓ“1

σpk, ℓqξkξℓ

¸

, (3.9)

where the matrix σpk, ℓqnk,ℓ“1 is positive definite and where pµ1, . . . , µnq is a vec-

tor in Rn. The vectors X1 and X2 are P-independent if and only if they are
uncorrelated in the sense that

E
`

X1
i X

2
j

˘

“ E
`

X1
i

˘

E
`

X2
j

˘

(3.10)

for all 1 ď i ď n1 and for all 1 ď j ď n2.

Proof. The necessity is clear. For the sufficiency we proceed as follows.
Put

`

X1, X2
˘

“ pX1, . . . , Xn1 , Xn1`1, . . . , Xn1`n2q .
Since the vectors X1 and X2 are uncorrelated (see (3.10)), it follows that

n
ÿ

k,ℓ“1

σpk, ℓqξkξℓ “
n1
ÿ

k,ℓ“1

σpk, ℓqξkξℓ `
n

ÿ

k,ℓ“n1`1

σpk, ℓqξkξℓ. (3.11)

From (3.9) it follows that

E

˜

exp

˜

´i
n

ÿ

k“1

ξkXk

¸¸

“ E

˜

exp

˜

´i
n1
ÿ

k“1

ξkXk

¸¸

E

˜

exp

˜

´i
n1`n2
ÿ

k“n1`1

ξkXk

¸¸

(3.12)

and hence that the random vectors X1 and X2 are independent. �
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3.6. Proposition. Let pΩ,F,Pq be a probability space.

(a) Let Q : Rm Ñ Rn be a linear map. If X : Ω Ñ Rm is a Gaussian
vector, then so is QX.

(b) A random vector X : Ω Ñ Rn is Gaussian if and only if for every
ξ P Rn the random variable ω ÞÑ ⟨ξ,Xpωq⟩ is Gaussian.

Proof. (a) A random vector X is Gaussian if and only if the Fourier trans-
form of the measure B ÞÑ P pX P Bq is of the form

ξ ÞÑ exp

ˆ

´i ⟨ξ, µ⟩ ´
1

2
⟨σξ, ξ⟩

˙

.

By a standard result on image measures the Fourier transform of the measure
B ÞÑ P pQX P Bq, where X : Ω Ñ Rn is Gaussian and where B is a Borel subset
of Rm, is given by

ξ ÞÑ E rexp p´i ⟨ξ,QX⟩qs “ E rexp p´i ⟨Q˚ξ,X⟩qs

“ exp p´i ⟨Q˚ξ, µ⟩q exp
ˆ

´
1

2
⟨σQ˚ξ,Q˚ξ⟩

˙

. (3.13)

This proves (a). It also proves that the dispersion matrix of QX is given by
QσQ˚.

(b) For the necessity we apply (a) with the linear map Qx :“ ⟨ξ, x⟩, x P Rn,
where ξ P Rn is fixed. For the sufficiency we again fix ξ P Rn. Since Y :“ ⟨ξ,X⟩
is a Gaussian variable we have

E pexp p´i ⟨ξ,X⟩qq “ E pexp p´iY qq

“ exp p´iEpY qq exp
ˆ

´
1

2
E pY ´ EpY qq2

˙

“ exp p´i ⟨ξ, µ⟩q exp
ˆ

´
1

2
⟨σξ, ξ⟩

˙

, (3.14)

where µ “ EpXq and where

σpk, ℓq “ cov pXk, Xℓq “ E pXk ´ EpXkqq pXℓ ´ E pXℓqq .
This completes the proof of (b). �
3.7. Theorem. Let σ : I ˆI Ñ R be a positive-definite function and let µ : I Ñ
R be a map. There exists a probability space pΩ,F,Pq together with a Gaussian
process pt, ωq ÞÑ Xtpωq “ Xpt, ωq, t P I, ω P Ω, such that EpXtq “ µt and such
that covpXs, Xtq “ σps, tq for all s, t P I.

Proof. The proof is essentially given in Example 3.4. �

We conclude this section with the introduction of Brownian motion and Brow-
nian bridge as Gaussian processes. First we show that the function σ : r0,8q ˆ
r0,8q Ñ R, defined by σpu, vq “ minpu, vq, u, v P r0,8q, and, for t ě 0 fixed,
the function σt : r0, ts ˆ r0, ts Ñ R, defined by σtpu, vq “ tminpu, vq ´ uv, u,
v P r0, ts, are positive definite.
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3.8. Proposition. The functions σpu, vq “ minpu, vq, u, v P r0,8q, σtpu, vq “
tminpu, vq ´ uv, u, v P r0, ts, and σRpu, vq “

1

2
exp p´ |u ´ v|q, u, v P R, are

positive definite. In addition, the function σ0pu, vq defined by

σ0pu, vq “
1

2
exp

`

´pu ` vq
˘

pexp p2minpu, vqq ´ 1q, u, v ě 0,

is positive definite.
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Proof. Let 0 “ s0 ă s1 ă s2 ă s3 ă ¨ ¨ ¨ ă sn ă t and let λ1, . . . , λn be
complex numbers. The following identities are valid:

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“j

λkpt ´ skq

ˇ

ˇ

ˇ

ˇ

ˇ

2
tpsj ´ sj´1q

pt ´ sjqpt ´ sj´1q

“
n

ÿ

j“1

n
ÿ

k1“j

n
ÿ

k2“j

λk1λk2 pt ´ sk1q pt ´ sk2q
"

sj
t ´ sj

´
sj´1

t ´ sj´1

*

“
n

ÿ

k1“1

n
ÿ

k2“1

minpk1,k2q
ÿ

j“1

λk1λk2

"

sj
t ´ sj

´
sj´1

t ´ sj´1

*

pt ´ sk1q pt ´ sk2q

“
n

ÿ

k1“1

n
ÿ

k2“1

λk1λk2

sminpk1,k2q

t ´ sminpk1,k2q
pt ´ sk1q pt ´ sk2q

“
n

ÿ

k1“1

n
ÿ

k2“1

λk1λk2sminpk1,k2q
`

t ´ smaxpk1,k2q
˘

“
n

ÿ

k1,k2“1

λk1λk2σt psk1 , sk2q (3.15)

and hence the function σt is positive definite. Since

n
ÿ

j,k“1

λjλktminpsj, skq “
n

ÿ

j,k“1

λjλkσtpsj, skq `

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

λjsj

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

it follows that the function σ is positive definite as well.

In order to prove that the function σR is positive definite we first notice that
the Fourier transform of the function t ÞÑ exp p´ |t|q is given by

ż 8

´8
e´iξte´|t|dt “ 2

ż 8

0

cos pξtq e´tdt

“ 2Re

ż 8

0

e´tp1´iξqdt “ 2Re
1

1 ´ iξ
“

2

1 ` ξ2
. (3.16)

Hence upon taking the inverse Fourier transform we obtain:

1

2
e´|t´s| “

1

2π

ż 8

´8

exp piξpt ´ sqq
ξ2 ` 1

dξ. (3.17)

Let λ1, . . . , λn be complex numbers and let s1, . . . , sn be real numbers. From
(3.16) and (3.17) it follows that

n
ÿ

k,ℓ“1

λkλℓ
1

2
exp p´ |sk ´ sℓ|q “

1

2π

ż 8

´8

1

ξ2 ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

λk exp piξskq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ. (3.18)

An easier way to establish the positive-definiteness of σRpu, vq is the following.
For λ1, . . . , λn in C and for real numbers s1, . . . , sn we write

n
ÿ

k,ℓ“1

λkλℓ exp p´ |sk ´ sℓ|q

“
n

ÿ

k,ℓ“1

λkλℓ min
`

exp
`

´psk ´ sℓq
˘

, exp
`

´psℓ ´ skq
˘˘
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“
n

ÿ

k,ℓ“1

expp´skqλk expp´sℓqλℓ min
`

exp
`

2sk
˘

, exp
`

2sℓ
˘˘

“
ż 8

0

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

exp p´skqλk1r0,expp2skqspξq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ ě 0.

A similar argument can be used to prove that the function σ0pu, vq is positive
definite. �
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We now give existence theorems for the Wiener process (or Brownian motion),
for Brownian bridge and for the oscillator process.

3.9. Theorem. The following assertions are true.

(a) There exists a probability space pΩ,F,Pq together with a real-valued
Gaussian process tbpsq : s ě 0u, called Wiener process or Brownian mo-
tion, such that Epbpsqq “ 0 and such that E pbps1qbps2qq “ minps1, s2q
for all s1, s2 ě 0.

(b) Fix t ą 0. There exists a probability space pΩ,F,Pq together with a real-
valued Gaussian process tXtpsq : t ě s ě 0u, called Brownian bridge,
such that EpXtpsqq “ 0 and such that

E pXtps1qXtps2qq “ minps1, s2q ´
s1s2
t

for all s1, s2 P r0, ts.
(c) There exists a probability space pΩ,F,Pq together with a real-valued

Gaussian process tqpsq : s P Ru, called oscillator process, which is cen-
tered, i.e. Epqpsqq “ 0 and which is such that

E pqps1qqps2qq “
1

2
exp p´ |s1 ´ s2|q

for all s1, s2 P R.
(d) There exists a probability space pΩ,F,Pq together with a real-valued

Gaussian process tXpsq : s ě 0u, called Ornstein-Uhlenbeck process,
such that EpXpsqq “ 0 and such that

E pXps1qXps2qq “
1

2
exp

`

´ps1 ` s2q
˘ `

exp
`

2minps1, s2q
˘

´ 1
˘

(3.19)

“
1

2

`

exp p´ |s1 ´ s2|q ´ exp
`

´ps1 ` s2q
˘˘

for all s1, s2 ě 0.

2. Brownian motion and related processes

In what follows x and y are real numbers and so is µ. Let tbpsq : s ě 0u be
Brownian motion (starting in 0) on a probability space pΩ,F,Pq (i.e. E rbpsqs “
0 and E rb ps1q b ps2qs “ min ps1, s2q). Then the process tx ` bpsq ` µs : s ě 0u
is a Brownian motion with drift µ starting at x. Let tXtpsq : 0 ď s ď tu be
a Brownian bridge on a probability space pΩ,F,Pq. Then the process s ÞÑ
´

1 ´
s

t

¯

x `
s

t
y ` Xtpsq 0 ď s ď t is called pinned Brownian motion, namely

pinned at x at time 0 and pinned at y at time t. Let tbjpsq : s ě 0u, 1 ď
j ď d, be d independent Brownian motions on the probability space pΩ,F,Pq.
The process tpb1psq, . . . , bdpsqq : s ě 0u is called d-dimensional Brownian motion.
The characteristic function for d-dimensional Brownian motion starting at x P
Rd is given by:

Ex

”

e´i
řn

j“1⟨Xpsjq,ξj⟩
ı

“ e´i
řn

j“1⟨ξj ,x⟩e´ 1
2

řn
j,k“1⟨ξj ,ξk⟩minpsj ,skq

“ e´i
řn

j“1⟨ξj ,x⟩e´ 1
2

řn
ℓ“1psℓ´sℓ´1q|řn

j“ℓ ξ
j|2 , (3.20)
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where x0 “ x and where 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sn. A similar definition can be
given for d-dimensional Brownian bridge and for the d-dimensional oscillator
process. Notice that a d-dimensional process tbpsq “ pb1psq, . . . , bdpsqq : s ě 0u
is a d-dimensional Brownian motion, starting at 0, on the probability space
pΩ,F,Pq if and only if E pbjps1q, bkps2qq “ δj,k minps1, s2q. Let us prove the
above equalities.

3.10. Theorem. Let 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sn ă 8. Fix the vectors x and
ξ1, . . . , ξn in Rd. Put s0 “ 0 and x0 “ x. The following equalities are valid:

n
ÿ

ℓ“1

psℓ ´ sℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“ℓ

ξj

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
n

ÿ

j,k“1

⟨ξj, ξk⟩min psj, skq ; (3.21)

ż

Rd

dx1 . . .

ż

Rd

dxn exp

˜

´i
n

ÿ

j“1

⟨ξj, xj⟩

¸

(3.22)

n
ź

j“1

1
`a

2π psj ´ sj´1q
˘d

exp

˜

´
|xj ´ xj´1|2

2 psj ´ sj´1q

¸

“ exp

˜

´i

⟨
n

ÿ

j“1

ξj, x

⟩¸

exp

˜

´
1

2

n
ÿ

j,k“1

⟨ξj, ξk⟩min psj, skq

¸

. (3.23)

For a and b P Rd we write pa ` biq2 “ |a|2 ` 2i ⟨a, b⟩ ´ |b|2.

Proof. In order to see the first equality we write

n
ÿ

ℓ“1

psℓ ´ sℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“ℓ

ξj

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
n

ÿ

ℓ“1

psℓ ´ sℓ´1q
n

ÿ

j1,j2“ℓ

⟨ξj1 , ξj2⟩

“
n

ÿ

j1,j2“1

minpj1,j2q
ÿ

ℓ“1

psℓ ´ sℓ´1q ⟨ξj1 , ξj2⟩ “
n

ÿ

j1,j2“1

`

sminpj1,j2q ´ s0
˘

⟨ξj1 , ξj2⟩

“
n

ÿ

j1,j2“1

sminpj1,j2q ⟨ξj1 , ξj2⟩ . “
n

ÿ

j1,j2“1

min psj1 , sj2q ⟨ξj1 , ξj2⟩ . (3.24)

For the second equality we proceed as follows:

ż

Rd

dx1 . . .

ż

Rd

dxn exp

˜

´i
n

ÿ

j“1

⟨ξj, xj⟩

¸

n
ź

j“1

1
`a

2π psj ´ sj´1q
˘d

exp

˜

´
|xj ´ xj´1|2

2 psj ´ sj´1q

¸

(3.25)

(substitute xj “ x ` y1 ` ¨ ¨ ¨ ` yj)

“ exp

˜

´i
n

ÿ

j“1

⟨ξj, x⟩

¸

ż

Rd

dy1 . . .

ż

Rd

dyn exp

˜

´i
n

ÿ

ℓ“1

⟨
n

ÿ

j“ℓ

ξj, yℓ

⟩¸
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n
ź

j“1

1
`a

2π psj ´ sj´1q
˘d

exp

˜

´
|yj|2

2 psj ´ sj´1q

¸

(substitute yℓ “ psℓ ´ sℓ´1q1{2 zℓ)

“ exp

˜

´i
n

ÿ

j“1

⟨ξj, x⟩

¸

ż

Rd

dz1 . . .

ż

Rd

dzn

exp

˜

´i
n

ÿ

ℓ“1

psℓ ´ sℓ´1q1{2
n

ÿ

j“ℓ

⟨ξj, zℓ⟩

¸

n
ź

j“1

1
`?

2π
˘d

exp

˜

´
|zj|2

2

¸

“ exp

˜

´i
n

ÿ

j“1

⟨ξj, x⟩

¸

exp

¨

˝´
1

2

n
ÿ

ℓ“1

psℓ ´ sℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“ℓ

ξj

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

n
ź

ℓ“1

1
`?

2π
˘d

ż

Rd

dzℓ exp

¨

˝´
1

2

˜

zℓ ` i
?
sℓ ´ sℓ´1

n
ÿ

j“ℓ

ξj

¸2
˛

‚,
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From Cauchy’s theorem, it then follows that
ż

Rd

dx1 . . .

ż

Rd

dxn exp

˜

´i
n

ÿ

j“1

⟨ξj, xj⟩

¸

(3.26)

n
ź

j“1

1
`a

2π psj ´ sj´1q
˘d

exp

˜

´
|xj ´ xj´1|2

2 psj ´ sj´1q

¸

(3.27)

“ exp

˜

´i
n

ÿ

j“1

⟨ξj, x⟩

¸

exp

¨

˝´
1

2

n
ÿ

ℓ“1

psℓ ´ sℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“ℓ

ξj

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ (3.28)

n
ź

ℓ“1

1
`?

2π
˘d

ż

Rd

dzℓ exp

ˆ

´
1

2
|zℓ|2

˙

(3.29)

“ exp

˜

´i
n

ÿ

j“1

⟨ξj, x⟩

¸

exp

¨

˝´
1

2

n
ÿ

ℓ“1

psℓ ´ sℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“ℓ

ξj

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ (3.30)

(first equality)

“ exp

˜

´i
n

ÿ

j“1

⟨ξj, x⟩

¸

exp

˜

´
1

2

n
ÿ

j,k“1

⟨ξj, ξk⟩min psj, skq

¸

.

This completes the proof of Theorem 3.10. �

In the following proposition we collect a number of interesting properties of the
(finite dimensional) joint distributions of some of the Gaussian processes we
introduced so far.

3.11. Proposition. Let tbpsq : s ě 0u be d-dimensional Brownian motion and
let

tXtpsq : 0 ď s ď tu
be d-dimensional Brownian bridge. In addition let x and y be vectors in Rd and
let Q : Rd Ñ Rd be an orthogonal linear map. Also fix a strictly positive number
a.

(a) The joint distributions of the processes

tbpsq : s ą 0u and

"

sb

ˆ

1

s

˙

: s ą 0

*

coincide.
(b) The joint distributions of the processes

tbpasq : s ě 0u and
␣?

ab psq : s ě 0
(

coincide.
(c) The joint distributions of the processes

tqpsq : s P Ru and

"

e´sb

ˆ

e2s

2

˙

: s P R
*

coincide.
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(d) The joint distributions of the processes

tXptq : t ě 0u and

"

e´tb

ˆ

e2t ´ 1

2

˙

: t ě 0

*

coincide. The process tXptq : t ě 0u also possesses the same joint dis-

tribution as
!

şt

0
exp p´pt ´ sqq dbpsq : t ě 0

)

.

(e) The joint distributions of the following processes also coincide:
´

1 ´
s

t

¯

x `
s

t
y ` Xtpsq, 0 ă s ă t, (3.31)

´

1 ´
s

t

¯

x `
s

t
y `

´

1 ´
s

t

¯

b

ˆ

st

t ´ s

˙

, 0 ă s ă t, (3.32)

´

1 ´
s

t

¯

x `
s

t
y ` bpsq ´

s

t
bptq, 0 ă s ă t. (3.33)

(f) The process tQbpsq : s ě 0u is d-dimensional Brownian motion and so
its joint distribution coincides with that of tbpsq : s ě 0u.

Notice that instead of the “distribution” of a random variable or a stochastic
process, the name “law” is in vogue.

3.12. Remark. Put bxptq “ x ` bptq. Then tbxptq : t ě 0u is Brownian motion
that starts in x. PutXxptq “ expp´tqx`Xptq. Then the process tXxptq : t ě 0u
is the Ornstein-Uhlenbeck process of initial velocity x.

3.13. Remark. The stochastic integral
şt

0
expp´pt ´ sqqdbpsq can be defined as

the L2-limit of
řn

j“1 e
´pt´sj´1q pbpsjq ´ bpsj´1qq, whenever max

1ďjďn
psj ´ sj´1q tends

to zero. Here 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sn “ t is a subdivision of the interval r0, ts.
3.14. Remark. Let f : Rd Ñ C be a bounded Borel measurable function. Then
E rfpXxptqqs is given by

E rf pXxptqqs “
ż

f
´

e´tx `
?
1 ´ e´2ty

¯ exp
`

´ |y|2
˘

p
?
πqd

dy.

Moreover the Ornstein-Uhlenbeck process is a strong Markov process.

3.15. Remark. Let tbxptq : t ě 0u be Brownian motion that starts at x (and
has drift zero). Fix s ą 0. The processes

tbxps ` tq ´ bxpsq : t ě 0u and tbxptq ´ x : t ě 0u
possess the same (joint) distribution. In order to see this one may calculate the
Fourier transforms, or characteristic functions, of their distributions.

3.16. Remark. Suppose that the Markov process

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pRn,Bqu (3.34)

is Brownian motion in Rn, and put p0pt, x, yq “
1

p2πtqn{2 exp

˜

´
|x ´ y|2

2t

¸

,

t ą 0, x, y P Rn. Define the measure µx,y
0,t by

µt,y
0,xpAq “ Ex r1Ap0pt ´ s,Xpsq, yqs , (3.35)
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where the event A belongs to Fs “ σ pXpuq : u ď sq, for s ă t. Since the process
s ÞÑ p0pt ´ s,Xpsq, yq is a Px-martingale on the half-open interval 0 ď s ă t,
it follows that the quantity µt,y

0,xpAq is well-defined: its value does not depend
on s, as long as A belongs to Fs and s ă t. From the monotone class theorem
it follows that µx,y

0,t can be considered as a positive measure on the σ-field Ft´

given by Ft´ “ σ pXpsq : 0 ď s ă tq. Then the measure µt,y
0,x defined in (3.35)

is called the conditional Brownian bridge measure. It can be normalized upon
dividing it by the density p0pt, x, yq.

Proof of Proposition 3.11. Since all the indicated processes are d-dim-
ensional Gaussian (the definition of a d-dimensional Gaussian process should be
obvious: in fact in the discussion of 3.4 and in Theorem 3.7. The expected value
µ should be map from I to Rd and the entries of the diffusion matrix σ should
be d ˆ d-matrices), it suffices to show that the corresponding expectations and
covariance matrices are the same for the indicated processes. In most cases this
is a simple exercise. For example let us prove (f). Let qpk, ℓq be the entries of
the matrix Q. Then

E
´

pQbps1qqj pQbps2qqk
¯

“
d

ÿ

m“1

qpj,mq
d

ÿ

n“1

qpk, nqE pbmps1qbnps2qq

“
d

ÿ

m“1

qpj,mq
d

ÿ

n“1

qpk, nqδm,n minps1, s2q “
d

ÿ

m“1

qpj,mqqpk,mqminps1, s2q

“ pQQ˚q pj, kqminps1, s2q “ δj,k minps1, s2q. (3.36)

This proves that tQbpsq : s ě 0u is again d-dimensional Brownian motion. This
completes the brief outline of the proof of Proposition 3.11. �
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In the proof of the existence of a continuous version of Brownian motion, we
shall employ the following maximal inequality of Lévy.

3.17. Theorem. (Lévy) Let X1, . . . , Xn be random variables with values in Rd.
Suppose that the joint distribution of X1, . . . , Xn is invariant under any change
of sign px1, . . . , xnq ÞÑ pϵ1x1, . . . , ϵnxnq, where ϵj “ ˘1. Put Sk “

řk
j“1 Xj.

Then for any λ ą 0

P
ˆ

max
1ďkďn

|Sk| ě λ

˙

ď 2P p|Sn| ě λq . (3.37)

If d “ 1, then

P
ˆ

max
1ďkďn

Sk ě λ

˙

ď 2P pSn ě λq . (3.38)

Proof. We prove (3.37). Put

Ak “
k´1
č

j“1

t|Sj| ă λu X t|Sk| ě λu

and put A “
Ťn

k“1Ak. Write Tk “
řk

j“1 Xj´
řn

j“k`1Xj. Then Sk “
1

2
Sn `

1

2
Tk

and so

t|Sk| ě λu Ă t|Sn| ě λu Y t|Tk| ě λu .
Hence, from the invariance of the joint distribution of pX1, . . . , Xnq under sign
changes we see

P pAkq “ P pAk, |Sk| ě λq
ď P pAk, |Sn| ě λq ` P pAk, |Tk| ě λq “ 2P pAk, |Sn| ě λq .

Since the events Ak, 1 ď k ď n, are mutually disjoint, we infer

P
ˆ

max
1ďkďn

|Sk| ě λ

˙

“ PpAq “
n

ÿ

k“1

PpAkq ď 2
n

ÿ

k“1

P pAk, |Sn| ě λq ď 2P p|Sn| ě λq .

This proves (3.37). The proof of (3.38) is similar and will be left to the reader.
Altogether this completes the proof Theorem 3.17. �

Let tXptq : t ě 0u be Brownian motion on the probability space pΩ,F,Pq. We
shall prove that there exists a continuous process tbptq : t ě 0u, that is indistin-
guishable from the process tXptq : t ě 0u. This means that PpXptq “ bptqq “ 1
for all t ě 0.

3.18. Theorem. Let tXptq : t ě 0u be Brownian motion on some probability
space pΩ,F,Pq. Then there exists stochastic process tbptq : t ě 0u which is P-
almost surely continuous, and that is also a Brownian motion on the probability
space pΩ,F,Pq and that is indistinguishable from the process tXpsq : s ě 0u.
Here we suppose that F contains the P-zero sets.
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Proof. Without loss of generality we may and do assume that the Brownian
motion tXpsq : s ě 0u has drift 0 and diffusion matrix identity. For the proof
we shall rely on Theorem 3.17 and on the Borel-Cantelli lemma, which reads as
follows. Let pAn : n P Nq be a sequence of events with

ř8
n“1 PpAnq ă 8. Then

P
`
Ş8

m“1

Ť8
n“m An

˘

“ 0. In Theorem 3.18 we choose the sequence pAn : n P Nq
as follows. Let D be the set of non-negative dyadic rational numbers and put

An “

#

max
0ďkăn2n

sup
qPDXrk2´n,pk`1q2´ns

ˇ

ˇXpqq ´ Xpk2´nq
ˇ

ˇ ą
1

n

+

.

An application of Theorem 3.17, withXpt`jδ2´mq´Xpt`pj´1qδ2´mq replacing
Xj yields

P
ˆ

max
1ďjď2m

ˇ

ˇX
`

t ` jδ2´m
˘

´ Xptq
ˇ

ˇ ě α

˙

ď 2P p|Xpt ` δq ´ Xptq| ě αq

ď
2

α4
E |Xpt ` δq ´ Xptq|4 “

2δ2

α4

1
`?

2π
˘d

ż

Rd

exp

ˆ

´
1

2
|y|2

˙

|y|4 dy

“
2δ2 p2d ` d2q

α2
. (3.39)

In (3.39) we let m tend to infinity to obtain:

P
ˆ

sup
0ďqď1,qPD

|Xpt ` qδq ´ Xptq| ą α

˙

ď
2δ2 p2d ` d2q

α4
. (3.40)

Hence, with Jn,k “ rk2´n, pk ` 1q2´ns (see also (3.46) below), and with t “ k2´n

and δ “ 2´n,

P

˜

max
0ďkăn2n

sup
qPDXJn,k

ˇ

ˇXpqq ´ Xpk2´nq
ˇ

ˇ ą
1

n

¸

ď
n2n´1

ÿ

k“0

P

˜

sup
qPDXJn,k

ˇ

ˇXpqq ´ Xpk2´nq
ˇ

ˇ ą
1

n

¸

ď n2n
2 p2d2´2n ` d22´2nq

pn´1q4
“

2 p2d ` d2qn5

2n
ď

6d2n5

2n
. (3.41)

Since the sequence in (3.41) is summable, we may apply Borel-Cantelli’s lemma
to conclude that P-almost surely, for all t ą 0, the path q ÞÑ Xpqq is uniformly
continuous on DXr0, ts. So it makes sense to define the P-almost surely continu-
ous function s ÞÑ bpsq by bpsq “ limqÑs,qPD Xpsq. It is not so difficult to see that
the process tbpsq : s ě 0u is also a Brownian motion. In fact let ξ1, . . . , ξn be n
vectors in Rd and suppose 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sn. Then we choose sequences
0 “ q0pmq ă s1 ă q1pmq ă s2 ă q2pmq ă sn´1 ă ¨ ¨ ¨ ă qn´1pmq ă sn ă qnpmq,
m P N, in D, such that qkpmq Ó sk, if m tends to infinity and this for 1 ď k ď n.
Since tXpsq : s ě 0u is d-dimensional Brownian motion we have

E

˜

exp

˜

´i
n

ÿ

k“1

⟨ξk, X pqkpmqq⟩

¸¸
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“ exp

¨

˝´
1

2

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“j

ξk

ˇ

ˇ

ˇ

ˇ

ˇ

2

pqjpmq ´ qj´1pmqq

˛

‚. (3.42)

In (3.42) we let m tend to 8 to obtain

E

˜

exp

˜

´i
n

ÿ

k“1

⟨ξk, b pskq⟩

¸¸

“ exp

¨

˝´
1

2

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“j

ξk

ˇ

ˇ

ˇ

ˇ

ˇ

2

psj ´ sj´1q

˛

‚. (3.43)

This equality shows that tbpsq : s ě 0u is a Brownian motion. In order to prove
that it cannot be distinguished from the process tXpsq : s ě 0u, we notice first
that

E pexp p´i ⟨ξ,Xpt ` sq ´ Xptq⟩qq “ exp

ˆ

´
1

2
|ξ|2 s

˙

, ξ P Rd. (3.44)

Hence, for ξ P Rd,

E |exp p´i ⟨ξ,Xptq⟩q ´ exp p´i ⟨ξ, bptq⟩q|2

“ E p2 ´ exp pi ⟨ξ,Xptq ´ bptq⟩q ´ exp p´i ⟨ξ,Xptq ´ bptq⟩qq
“ lim

qÓt,qPD
p2 ´ E pexp p´i ⟨ξ,Xpqq ´ Xptq⟩qq ´ E pexp p´i ⟨ξ,Xptq ´ Xpqq⟩qqq

“ 2 ´ 2 lim
qÓt,qPD

exp

ˆ

´
1

2
|ξ|2 pq ´ tq

˙

“ 0. (3.45)

From (3.45) it readily follows that the processes tXpsq :s ě 0u and tbpsq :s ě 0u
cannot be distinguished. �
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In this proof of Theorem 3.18 we have also used the fourth moment

E |Xpt ` sq ´ Xptq|4 .

From (3.44) it follows that this moment does not depend on t and hence

E |Xpt ` sq ´ Xptq|4 “ E |Xpsq ´ Xp0q|4 “ E |Xpsq|4 .

A way of computing E |Xpsq|4 is the following:

E |Xpsq|4 “

˜

d
ÿ

j“1

B2

Bξ2j

¸2

E pexp p´i ⟨ξ,Xpsq⟩qq
ˇ

ˇ

ξ“0

“

˜

d
ÿ

j“1

B2

Bξ2j

¸2

exp

ˆ

´
1

2
|ξ|2 s

˙

ˇ

ˇ

ξ“0

“
`

2ds2 ´ 2s3 |ξ|2 ` s4 |ξ|4 ´ 2ds3 |ξ|2 ` d2s2
˘

exp

ˆ

´
1

2
|ξ|2

˙

ˇ

ˇ

ξ“0

“
`

2ds2 ´ 2pd ` 1qs2 |ξ|2 ` s4 |ξ|4 ` d2s2
˘

exp

ˆ

´
1

2
|ξ|2 s

˙

ˇ

ˇ

ξ“0

“ 2ds2 ` d2s2. (3.46)

In the following theorem we compute the finite dimensional distributions of d-
dimensional Brownian motion starting at 0 and possessing drift µ. Therefore

we define the Gaussian kernel ppt, x, yq by ppt, x, yq “
1

p2πtq
1
2
d
exp

˜

´
|x ´ y|2

2t

¸

.

Notice the Chapman-Kolmogorov identity

pps, x, zqppt, z, yq “ pps ` t, x, yqp
ˆ

st

s ` t
,
sx ` ty

s ` t
, z

˙

.

3.19. Theorem. Let tbpsq : s ě 0u be d-dimensional Brownian motion with dif-
fusion matrix identity, with drift 0 and which starts in 0. Let f1, . . . , fn be
bounded Borel measurable functions on Rd and let 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sn.
Then

E

˜

n
ź

j“1

fjpx ` bpsjq ` µsjq

¸

(3.47)

“
ż

Rd

. . .

ż

Rd

dx1 . . . dxn

n
ź

j“1

fjpxjq
n

ź

j“1

p psj ´ sj´1, xj´1 ´ µsj´1, xj ´ µsjq ,

where x0 “ x.

3.20. Remark. Equality (3.47) determines the joint distribution of the process

tXpsq :“ x ` bpsq ` µs : s ě 0u .

This will follow from the monotone class theorem. The vector µ is the so-called
drift vector and the process X “ tXpsq : s ě 0u starts at x in Rd.
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3.21. Remark. Another consequence of equality (3.47) is the fact that the
random vector bptq´bpsq, t ą s fixed, is independent of the σ-field generated by
the process tbpσq : 0 ď σ ď su. This fact also follows from (3.48) below together
with the monotone class theorem. For ξ P Rd, ξj P Rd, 1 ď j ď n, t ą s ě sn ą
¨ ¨ ¨ s1 ą s0 “ 0 the following identity is valid and relevant:

E

˜

exp

˜

´i ⟨ξ, bptq ´ bpsq⟩ ´ i
n

ÿ

j“1

⟨ξj, bpsjq⟩

¸¸

“ exp

˜

´
1

2
|ξ|2 pt ´ sq ´

1

2

n
ÿ

j,k“1

minpsj, skq ⟨ξj, ξk⟩

¸

“ E pexp p´i ⟨ξ, bptq ´ bpsq⟩qqE

˜

exp

˜

´i
n

ÿ

j“1

⟨ξj, bpsjq⟩

¸¸

. (3.48)

In other words a Brownian motion (diffusion matrix identity) is a Gaussian
process tbpsq : s ě 0u with independent increments bptq ´ bpsq, t ą s, with
mean µpt´sq and covariance matrix covpbkptq ´ bkpsq, bℓptq ´ bℓpsqq “ δk,ℓpt´sq.

Proof. Theorem 3.10 shows that the equality in (3.47) holds for functions
fj, 1 ď j ď n, of the form

fjpxq “
ż

exp p´i ⟨ξ, x⟩q dµjpξq, (3.49)

where µj “ δξj is the Dirac measure ξj. Fubini’s theorem then implies that
(3.47) also holds for functions fj, 1 ď j ď n, of the form (3.49) with µjpBq “
ş

B
gjpξq dξ, with gj P L1

`

Rd
˘

, 1 ď j ď n. Since, by the Stone-Weierstrass the-

orem functions of the form (3.49) with µjpBq “
ş

B
gjpξq dξ where gj P L1

`

Rd
˘

,

are dense in the space C0

`

Rd
˘

, it follows that (3.47) holds for functions fj P
C0

`

Rd
˘

, 1 ď j ď d. By approximating indicator functions of open subsets from

below by functions in C0

`

Rd
˘

it follows that the equality in (3.47) holds for
functions fj which are indicator functions of open subsets. A Dynkin argument
(or the monotone class theorem) then shows that (3.47) is also true if the func-
tions fj are indicator functions of Borel subsets Bj, 1 ď j ď n. But then this
equality also holds for bounded Borel functions fj, 1 ď j ď n.

This completes the proof of Theorem 3.19. �

Next we want to define standard Brownian motion, with drift vector µ, that
starts at x P Rd.

3.22. Definition. The standard Brownian motion, starting at x P Rd and with
drift µ is defined as the canonical Gaussian process tXpsq : s ě 0u defined on
pΩ,F,Pxq with the property that the increments Xpt ` hq ´ Xptq are mutually
independent and have Px-expectation µh. Moreover it starts Px-almost surely at
x, i.e. PxpXp0q “ xq “ 1 and cov pXkpt ` hq ´ Xkptq, Xℓpt ` hq ´ Xℓpt ` hqq “
δk,ℓh. The covariance is of course also taken with respect to Px. The process is
canonical because for Ω we take Ω “ C

`

r0,8q,Rd
˘

, for Xptq we take Xptqpωq “
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ωptq, ω P Ω. For F we take the σ-field in Ω, generated by the state variables
tXpsq : s ě 0u. For all this we often write

␣

pΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q ,
`

Rd,B
˘(

.

Here the shift or translation operators ϑt, t ě 0, are defined by ϑtpωqpsq “
ωps ` tq, ω P Ω. We also introduce the filtration pFt : t ě 0q defined as the full
history: Ft is the σ-field generated by the variables Xpsq, 0 ď s ď t. We also
shall need the right closure Ft` defined by Ft` “

Ş

sąt Fs.

In the following result we give some interesting martingale properties for Brow-
nian motion.

3.23. Proposition. Let
␣

pΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q ,
`

Rd,B
˘(

be standard Brownian motion that starts at x P Rd and that has drift µ. For
t ą s the variable Xptq ´Xpsq does not depend on the σ-field Fs. The following
processes are Px-martingales with respect to the filtration Ft, t ě 0:

t ÞÑ Xptq ´ tµ, t ÞÑ |Xptq ´ tµ|2 ´ dt.

Proof. The fact that the increment Xptq ´ Xpsq does not depend on the
past Fs is explained in Remark 3.21 following Theorem 3.19. The other asser-
tions are consequences of this. Let s and t be positive real numbers. Then we
have

Ex

`

Xps ` tq ´ ps ` tqµ
ˇ

ˇ Fs

˘

´ pXpsq ´ sµq
“ Ex

`

Xps ` tq ´ Xpsq
ˇ

ˇ Fs

˘

´ tµ

(increments are independent of the past)

“ Ex pXps ` tq ´ Xpsqq ´ tµ “ tµ ´ tµ “ 0. (3.50)

Similarly, but more complicated, we also see

Ex

“

|Xps ` tq ´ ps ` tqµ|2 ´ dps ` tq ´ |Xpsq ´ sµ|2 ` ds
ˇ

ˇ Fs

‰

“ Ex

“

|Xps ` tq ´ Xpsq ´ tµ ` Xpsq ´ sµ|2 ´ dt ´ |Xpsq ´ sµ|2
ˇ

ˇ Fs

‰

“ Ex

“

|Xps ` tq ´ Xpsq ´ tµ|2 ´ dt ` ⟨Xps ` tq ´ Xpsq ´ tµ,Xpsq ´ sµ⟩
ˇ

ˇ Fs

‰

(use (3.50))

“ Ex

“

|Xps ` tq ´ Xpsq ´ tµ|2
ˇ

ˇ Fs

‰

´ dt

(again an application of (3.50))

“ Ex

“

|Xps ` tq ´ Xpsq ´ tµ|2
‰

´ dt

“
d

ÿ

k“1

cov pXkps ` tq ´ Xkpsq, Xkps ` tq ´ Xkpsqq ´ dt “ dt ´ dt “ 0. (3.51)

This proves Proposition 3.23. �
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So far we have looked at Brownian motion as a Gaussian process. On the
other hand it is also a Markov process. We would like to discuss that now. In
fact mathematically speaking equality (3.47) in Theorem 3.19 is an equivalent
form of the Markov property. As already indicated in Remark 3.20 following
Theorem 3.19 the monotone class theorem is important for the proofs of the
several versions of the Markov property.

3.24. Definition. Let Ω be a set and let S be a collection of subsets of Ω. Then
S is a Dynkin system if it has the following properties:

(a) Ω P S;

(b) if A and B belong to S and if A Ě B, then AzB belongs to S;

(c) if pAn : n P Nq is an increasing sequence of elements of S, then the union
Ť8

n“1An belongs to S.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 - 
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future 

AxA globAl grAduAte 
progrAm 2015 

axa_ad_grad_prog_170x115.indd   1 19/12/13   16:36

http://s.bookboon.com/AXA


Advanced stochastic processes: Part I

111 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales2. BROWNIAN MOTION AND RELATED PROCESSES 111

The following result on Dynkin systems is well-known.

3.25. Theorem. Let M be a collection of subsets of Ω, which is stable under
finite intersections. The Dynkin system generated by M coincides with the σ-
field generated by M.

3.26. Theorem. Let Ω be a set and let M be a collection of subsets of Ω, which
is stable (or closed) under finite intersections. Let H be a vector space of real
valued functions on Ω satisfying:

(i) The constant function 1 belongs to H and 1A belongs to H for all A P M;

(ii) if pfn : n P Nq is an increasing sequence of non-negative functions in H such
that f “ supnPN fn is finite (bounded), then f belongs to H.

Then H contains all real valued functions (bounded) functions on Ω, that are
σpMq measurable.

Proof. Put D “ tA Ď Ω : 1A P Hu. Then by (i) Ω belongs to D and
D Ě M. If A and B are in D and if B Ě A, then BzA belongs to D. If
pAn : n P Nq is an increasing sequence in D, then 1YAn “ supn 1An belongs to
D by (ii). Hence D is a Dynkin system, that contains M. Since M is closed
under finite intersection, it follows by Theorem 3.25 that D Ě σpMq. If f ě 0
is measurable with respect to σpMq, then

f “ sup
n

2´n
ÿn2n

j“1
1tfěj2´nu. (3.52)

Since 1tfěj2´nu, j, n P N, belong to σpMq, we see that f belongs to H. Here we
employed the fact that σpMq Ď D. If f is σpMq-measurable, then we write f
as a difference of two non-negative σpMq-measurable functions. �

The previous theorems (Theorems 3.25 and 3.26) are used in the following form.
Let Ω be a set and let pEi,EiqiPI be a family of measurable spaces, indexed by an
arbitrary set I. For each i P I, let Si denote a collection of subsets of Ei, closed
under finite intersection, which generates the σ-field Ei, and let fi : Ω Ñ Ei be
a map from Ω to Ei. In this context the following two propositions follow.

3.27. Proposition. Let M be the collection of all sets of the form
č

iPJ
f´1
i pAiq, Ai P Si,

i P J , J Ď I, J finite. Then M is a collection of subsets of Ω which is stable
under finite intersection and σpMq “ σ pfi : i P Iq.

3.28. Proposition. Let H be a vector space of real-valued functions on Ω such
that:

(i) the constant function 1 belongs to H;
(ii) if phn : n P Nq is an increasing sequence of non-negative functions in H

such that h “ supn hn is finite (bounded), then h belongs to H;
(iii) H contains all products of the form

ś

iPJ 1Ai
˝ fi, J Ď I, J finite, and

Ai P Si, i P J .
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Under these assumptions H contains all real-valued functions (bounded) func-
tions in σpfi : i P Iq.

The Theorems 3.25 and 3.26 and the Propositions 3.27 and 3.28 are called the
monotone class theorem.

In the following theorem F is the σ-field generated by tXpsq : s ě 0u and Ft is
the σ-field generated by the past or full history, i.e. Ft “ σ tXpsq : 0 ď s ď tu.
If T is an pFt`q-stopping time we write

FT` “
č

tě0

tA P F : A X tT ď tu P Ft`u .

An pFt`q-stopping is an F-measurable map T from Ω to r0,8s with the property
that tT ď tu belongs to Ft` for all t ě 0.

Notice that stopping times may take infinite values. Often this is very interest-
ing.

3.29. Theorem. Let
␣

pΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q ,
`

Rd,B
˘(

, x P Rd,
be d-dimensional Brownian motions. Then the following conditions are verified:

(a1) For every α ą 0, for every t ě 0 and for every open subset U of Rd,
the set

␣

x P Rd : PxpXptq P Uq ą α
(

is open;
(a2) For every α ą 0, for every t ě 0 and for every compact subset K of

Rd, the set
␣

x P Rd : PxpXptq P Kq ě α
(

is compact;

(b) For every open subset U of Rd and for every x P U , the equality
lim
tÓ0

Px pXptq P Uq “ 1 is valid.

Moreover d-dimensional Brownian motion has the following properties:

(i) For all t ě 0 and for all bounded random variables Y : Ω Ñ C the equality

Ex pY ˝ ϑt | Ftq “ EXptqpY q (3.53)

holds Px-almost surely for all x P Rd;

(ii) For all finite tuples 0 ď t1 ă t2 ă . . . ă tn ă 8 together with Borel subsets
B1, . . . , Bn of Rd the equality

Px pXpt1q P B1, . . . , Xptnq P Bnq

“
ż

B1

. . .

ż

Bn´1

ż

Bn

P ptn ´ tn´1, xn´1, dxnqP ptn´1 ´ tn´2, xn´2, dxn´1q

. . . P pt2 ´ t1, x1, dx2qP pt1, x, dx1q (3.54)

is valid for all x P Rd (here PxpXptq P Bq “ P pt, x, Bq);

(iii) For every pFt`q-stopping time T and for every bounded random variable
Y : Ω Ñ C the equality

Ex pY ˝ ϑT | FT`q “ EXpT q pY q , (3.55)

holds Px-almost surely on tT ă 8u for all x P Rd;
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(iv) Let B1 be the Borel field of r0,8q. For every bounded function F : r0,8q ˆ
Ω Ñ C, which is measurable with respect to BbF, and for every pFt`q-stopping
time T the equality

Ex ptω ÞÑ F pT pωq, ϑT pωqqu | FT`q “
␣

ω1 ÞÑ EXpT pω1qq tω ÞÑ F pT pω1q, ωqu
(

(3.56)

holds Px-almost surely tT ă 8u for all x P Rd.

Since d-dimensional Brownian motion verifies (a1), (a2) and (b), the properties
in (i), (ii), (iii) and (iv) are all equivalent. Properties (i) and (ii) are always
equivalent and also (iii) and (iv). The implication (iii) ñ (ii) is also clear. For
the reverse implication the full strength of (a1), (a2) and (b) is employed. The
fact that Brownian motion possesses property (ii) is a consequence of Theorem
3.19. In fact the right continuity of paths is very important. Since we have
proved that Brownian motion possesses continuous paths Px-almost surely this
condition is verified. Property (i) is called the Markov property and property
(iii) is called the strong Markov property. Equality (3.56) is called the strong
time-dependent Markov property. We shall not prove this result. It is part of the
general theory of Markov processes and their sample path properties. It is also
closely connected to the theory of Feller semigroups. As in Theorem 3.29 let
␣

pΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q ,
`

Rd,B
˘(

be Brownian motion starting
in x. In fact the family of operators tP ptq : t ě 0u defined by rP ptqf s pxq “
Ex pfpXptqq, f P L8pRdq, t ě 0, is a Feller semigroup, because it possesses the
properties mentioned in the following definition.

In what follows E is a second countable locally compact Hausdorff space, e.g.
E “ Rd. We define a Feller semigroup as follows.

3.30. Definition. A family tP ptq : t ě 0u of operators defined on L8pEq is a
Feller semigroup, or, more precisely, a Feller-Dynkin semigroup on C0pEq if it
possesses the following properties:

(i) It leaves C0pEq invariant: P ptqC0pEq Ď C0pEq for t ě 0;
(ii) It is a semigroup: P ps` tq “ P psq ˝P ptq for all s, t ě 0, and P p0q “ I;
(iii) It consists of contraction operators: }P ptqf}8 ď }f}8 for all t ě 0 and

for all f P C0pEq;
(iv) It is positivity preserving: f ě 0, f P C0pEq, implies P ptqf ě 0;
(v) It is continuous for t “ 0: limtÓ0 rP ptqf s pxq “ fpxq, for all f P C0pEq

and for all x P E.

In the presence of (iii) and (ii), property (v) is equivalent to:

(v1) limtÓ0 }P ptqf ´ f}8 “ 0 for all f P C0pEq.

So that a Feller semigroup is in fact strongly continuous in the sense that, for
every f P C0pEq,

lim
sÑt

}P psqf ´ P ptqf}8 “ 0.
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It is perhaps useful to observe that C0pEq, equipped with the supremum-norm
}¨}8 is a Banach space (in fact it is a Banach algebra). A function f : E Ñ C
belongs to C0pEq if it is continuous and if for every ϵ ą 0, there exists a compact
subset K of E such that |fpxq| ă ϵ for x R K. We need one more definition.
Let tP ptq : t ě 0u be a Feller semigroup. Define for U an open subset of E, the
transition probability P pt, x, Uq, t ě 0, x P E, by

P pt, x, Uq “ sup trP ptqus pxq : 0 ď u ď 1U , u P C0pEqu .
This transition function can be extended to all Borel subsets by writing

P pt, x,Kq “ inf tP pt, x, Uq : U open U Ě Ku ,
for K a compact subset of E. If B is a Borel subset of E, then we write

P pt, x, Bq “ inf tP pt, x, Uq : U Ě B,U open u
“ sup tP pt, x,Kq : K Ď B,K compact u .

It then follows that the mapping B ÞÑ P pt, x, Bq is a Borel measure on E, the
Borel field of E. The Feller semigroup is said to be conservative if, for all t ě 0
and for all x P E, P pt, x, Eq “ 1.
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We want to conclude this section with a convergence result for Gaussian pro-
cesses.

3.31. Proposition. Let
´

X
pnq
s : s P I

¯

, n P N, be a sequence of Gaussian pro-

cesses. Let pXs : s P Iq be a process with property that

E rXuXvs “ lim
nÑ8

E
“

Xpnq
u Xpnq

v

‰

, for all u and v in I and

E rXus “ lim
nÑ8

E
“

Xpnq
u

‰

, for all u P I.

Also suppose that, in weak sense,

lim
nÑ8

`

Xpnq
u1

, . . . , Xpnq
um

˘

“ pXu1 , . . . , Xumq

for all finite subsets pu1, . . . , umq of I. Then the process pXs : s P Iq is Gaussian
as well.

Proof. Let ξ1, . . . , ξm be real numbers, and let u1, . . . , um be members of
I. Then

E

˜

exp

˜

´i
m
ÿ

k“1

ξkX
pnq
uk

¸¸

“ exp

˜

´i
m
ÿ

k“1

ξkE
`

Xpnq
uk

˘

´
1

2

m
ÿ

k,ℓ“1

ξkξℓcov
`

Xpnq
uk

, Xpnq
uℓ

˘

¸

.

Next let n tend to infinity to obtain (here we employ Lévy’s theorem on weak
convergence):

E

˜

exp

˜

´i
m
ÿ

k“1

ξkXuk

¸¸

“ exp

#

´i
m
ÿ

k“1

ξkE rXuk
s ´

1

2

m
ÿ

k,ℓ“1

ξkξℓE rpXuk
´ E pXuk

qq pXuℓ
´ E pXuℓ

qqs

+

.

So the result in Proposition 3.31 follows. �

For Lévy’s weak convergence theorem see Theorem 5.42.

3.32. Theorem. Brownian motion is a Markov process. More precisely, (3.53)
is satisfied.

Proof. Let F be a bounded stochastic variable. We have to show the
following identity:

Ex

“

F ˝ ϑt

ˇ

ˇ Ft

‰

“ EXptq rF s , Px-almost surely.

It suffices to show that

Ex rF ˝ ϑt ˆ Gs “ Ex

“

EXptq rF sG
‰

(3.57)

for all bounded stochastic variables F and for all bounded Ft-measurable func-
tions G. By an application of the monotone class theorem twice (see Proposi-
tion 3.28) it suffices to take F of the form F “

śm
j“1 fj pX psjqq, 0 ď s1 ă s2 ă
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¨ ¨ ¨ sm ă 8, and G of the form G “
śn

j“1 gj pX ptjqq, 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ă t.

Here f1, . . . , fm and g1, . . . , gm are bounded continuous functions from Rd to R
or C. Once the monotone class theorem is applied to the vector space

␣

G P L8 pΩ,Ftq : Ex

“

EXptq rF s ˆ G
‰

“ Ex rF ˝ ϑt ˆ Gs
(

,

where F is as above, and once to the vector space
␣

F P L8 pΩ,Fq : EXptq rF s “ Ex

“

F ˝ ϑt

ˇ

ˇ Ft

‰

, Px-almost surely
(

.

Then (3.57) may be rewritten as

Ex rf1 pX ps1 ` tqq ¨ ¨ ¨ fm pX psm ` tqq g1 pX pt1qq ¨ ¨ ¨ gn pX ptnqqs
“ Ex

“

EXptq rf1 pX ps1qq ¨ ¨ ¨ fm pX psmqqs g1 pX pt1qq ¨ ¨ ¨ gn pX ptnqq
‰

. (3.58)

Put τj “ tj, 1 ď j ď n, τn`k “ sk `t, 1 ď k ď m; hj “ gj, 1 ď j ď n, hn`k “ fk,
1 ď k ď m. By definition we have

Ex rf1 pX ps1 ` tqq ¨ ¨ ¨ fm pX psm ` tqq g1 pX pt1qq ¨ ¨ ¨ gn pX ptnqqs
“ Ex rhj px pτ1qq ¨ ¨ ¨hn`m pX pτn`mqqs

“
ż

. . .

ż

dx1 . . . dxn`mh1 px1q ¨ ¨ ¨hn`m pxn`mq

p pτ1, x, x1q ¨ ¨ ¨ p pτn`m ´ τn`m´1, xn`m´1, xn`mq . (3.59)

Next we rewrite the right-hand side of (3.58):

Ex

“

EXptq rf1 pX ps1qq ¨ ¨ ¨ fm pX psmqqs g1 pX pt1qq ¨ ¨ ¨ gn pX ptnqq
‰

“ Ex

„

g1 pX pt1qq ¨ ¨ ¨ gn pX ptnqq
ż

. . .

ż

dy1 . . . dymf1 py1q ¨ ¨ ¨ fm pymq

p ps1, Xptq, y1q ¨ ¨ ¨ p psm ´ sm´1, ym´1, ymq
ȷ

“
ż

. . .

ż

dz1 . . . dzng1 pz1q ¨ ¨ ¨ gn pznq

p pt1, x, z1q ¨ ¨ ¨ p ptn ´ tn´1, zn´1, znq
ż

dzp pt ´ tn, zn, zq
ż

. . .

ż

dy1 . . . dymf1 py1q ¨ ¨ ¨ fm pymq

p ps1, z, y1q ¨ ¨ ¨ p psm ´ sm´1, ym´1, ymq

(Chapman-Kolmogorov:
ş

p pt ´ tn, zn, zq p ps1, z, yq dz “ p ps1 ` t ´ tn, zn, yq)

“
ż

. . .

ż

dz1 . . . dzng1 pz1q ¨ ¨ ¨ gn pznq
ż

. . .

ż

dy1 ¨ ¨ ¨ dymf py1q ¨ ¨ ¨ fm pymq

p pt1, x, z1q ¨ ¨ ¨ p ptn ´ tn´1, zn´1, znq
p ps1 ` t ´ tn, zn, y1q ¨ ¨ ¨ p psm ´ sm´1, ym´1, ymq

“ Ex rf1 pX ps1 ` tqq ¨ ¨ ¨ fm pX psm ` tqq g1 pX pt1qq ¨ ¨ ¨ gn pX ptnqqs . (3.60)

Since the expressions in (3.59) and (3.60) are the same, this proves the Markov
property of Brownian motion. The proof of Theorem 3.32 is now complete. �
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3. Some results on Markov processes, on Feller semigroups and on
the martingale problem

Let E be a second countable locally compact Hausdorff space, let E△ be its
one-point compactification or, if E is compact, let △ be an isolated point of
E△ “ E

Ť

△. Define the path space Ω as follows. The path space Ω is a subset

of
`

E△
˘r0,8q

with the following properties:

(i) If ω belongs to Ω, if t ě 0 is such that ωptq “ △ and if s ě t, then
ωpsq “ △;

(ii) Put ζpωq “ inf ts ą 0 : ωpsq “ △u for ω P Ω. If ω belongs to Ω, then ω
possesses left limits in E△ on the interval r0, ζs and it is right-continuous
on r0,8q;

(iii) If ω belongs to Ω, if t ě 0 is such that ωptq belongs to E, then the closure
of the set tωpsq : 0 ď s ď tu is a compact subset of E or, equivalently,
if t ą 0 is such that ωpt´q “ △ and if s ě t, then ωpsq “ △.

3.33. Definition. The random variable ζ, defined in (iii.) is called the life
time of ω. A path ω P Ω is said to be cadlag on its life time. We also define
the state variables Xptq : Ω Ñ E△ by Xptqpωq “ Xpt, ωq “ ωptq, t ě 0,
ω P Ω. The translation or shift operators are defined in the following way:

rϑtpωqspsq “ ωps ` tq, s, t ą 0 and ω P Ω. The largest subset of
`

E△
˘r0,8q

with the properties (i), (ii) and (iii) is sometimes written as D
`

r0,8q , E△
˘

or
as DE△pr0,8qq. Let F be a σ-field on Ω. A function Y : Ω Ñ C is called a
random variable if it is measurable with respect to F. Of course C is supplied
with its Borel field. The so-called state space E is also equipped with its Borel
field E and E△ is also equipped with its Borel field E△. The path ω△ is given
by ω△psq “ △, s ě 0. Unless specified otherwise we write Ω “ Dpr0,8q , E△q.
The space Dpr0,8q , E△q is also called Skorohod space. In addition let F be a
σ-field on Ω and let tFt : t ě 0u be a filtration on Ω. Suppose Ft Ď F, t ě 0,
and suppose that every state variable Xptq, t ě 0, is measurable with respect to
Ft. (This is the case where e.g. Ft is the σ-field generated by tXpsq : s ď tu.)
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We also want to make a digression to operator theory. Let L be a linear operator
with domain DpLq and range RpLq contained in C0pEq. The operator L is said
to be closable if the closure of its graph is again the graph of an operator. Here
the graph of L, GpLq, is defined by GpLq “ tpf, Lfq : f P DpLqu. Its closure
is the closure of GpLq in the cartesian product C0pEq ˆ C0pEq. If the closure
of GpLq is the graph of an operator, then this operator is, by definition, the
closure of L. It is written as L. Sometimes L is called the smallest closure of L.

3.34. Definition. Let L be a linear operator with domain and range in C0pEq.

(i) The operator L is said to be dissipative if, for all λ ą 0 and for all
f P DpLq,

}λf ´ Lf}8 ě λ }f}8 . (3.61)

(ii) The operator L is said to verify the maximum principle if for every f P
DpLq with sup tRe fpxq : x P Eu strictly positive, there exists x0 P E
with the property that

Re fpx0q “ sup tRe fpxq : x P Eu and Re Lfpx0q ď 0.

(iii) The martingale problem is said to be uniquely solvable, or well-posed,
for the operator L, if for every x P E there exists a unique probability
P “ Px which satisfies:
(a) For every f P DpLq the process

fpXptqq ´ fpXp0qq ´
ż t

0

LfpXpsqqds, t ě 0,

is a P-martingale;
(b) PpXp0q “ xq “ 1.

(iv) The operator L is said to solve the martingale problem maximally if
for L the martingale problem is uniquely solvable and if its closure L is
maximal for this property. This means that, if L1 is any linear operator
with domain and range in C0pEq, which extends L and for which the
martingale problem is uniquely solvable, then L coincides with L1.

(v) The operator L is said to be the (infinitesimal) generator of a Feller
semigroup

tP ptq : t ě 0u ,

if L “ s-lim
tÓ0

P ptq ´ I

t
. This means that a function f belongs to DpLq

whenever Lf :“ lim
tÓ0

P ptqf ´ f

t
exists in C0pEq.

An operator which verifies the maximum principle is dissipative (see e.g. [141],
p. 14) and can be considered as kind of a generalized second order derivative
operator. A prototype of such an operator is the Laplace operator. An operator
for which the martingale problem is uniquely solvable is closable. This follows
from (3.125) below. Our main result says that linear operators in C0pEq which
maximally solve the martingale problem are generators of Feller semigroups and
conversely.
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3.35. Definition. Next suppose that, for every x P E, a probability measure
Px on F is given. Suppose that for every bounded random variable Y : Ω Ñ R
the equality Ex pY ˝ ϑt | Ftq “ EXptqpY q holds Px-almost surely for all x P E
and for all t ě 0. Then the process

tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ
is called a Markov process. If the fixed time t may be replaced with a stopping
time T , the process tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ is called a
strong Markov process. By definition P△pAq “ 1Apω△q “ δω△pAq. Here A
belongs to F. If the process tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ is a
Markov process, then we write

P pt, x, Bq “ PxpXptq P Bq, t ě 0, B P E, x P E, (3.62)

for the corresponding transition function. The operator family tP ptq : t ě 0u is
defined by rP ptqf spxq “ Ex pfpXptqqq, f P C0pEq.

An relevant book on Markov processes is Ethier and Kurtz [54]. An elementary
theory of diffusions is given in Durrett [45]. In this aspect the books of Stroock
and Varadhan [133], Stroock [132] [131], and Ikeda and Watanabe [61] are of
interest as well.

We shall mainly be interested in the case that the function P ptqf is a mem-
ber of C0pEq whenever f is so. In the following theorem F is the σ-field
generated by tXpsq : s ě 0u and Ft is the σ-field generated by the past or
full history, i.e. Ft “ σ tXpsq : 0 ď s ď tu. If T is a stopping time we write
FT` “

Ş

tě0 tA P F : A X tT ď tu P Ft`u.

3.36. Theorem. Let pΩ,F,Pxq, x P E, be probability spaces with the following
properties:

(a1) For every α ą 0, for every t ě 0 and for every open subset U of E, the
set tx P E : PxpXptq P Uq ą αu is open;

(a2) For every α ą 0, for every t ě 0 and for every compact subset K of E,
the set tx P E : PxpXptq P Kq ě αu is compact;

(c) For every open subset U of E and for every x P U , the equality
lim
tÓ0

Px pXptq P Uq “ 1 is valid.

The following assertions are equivalent:

(i) For all t ě 0 and for all bounded random variables Y : Ω Ñ C the equality

Ex pY ˝ ϑt | Ftq “ EXptqpY q (3.63)

holds Px-almost surely for all x P E;

(ii) For all finite tuples 0 ď t1 ă t2 ă . . . ă tn ă 8 together with Borel subsets
B1, . . . , Bn of E the equality

Px pXpt1q P B1, . . . , Xptnq P Bnq

“
ż

B1

. . .

ż

Bn´1

ż

Bn

P ptn ´ tn´1, xn´1, dxnqP ptn´1 ´ tn´2, xn´2, dxn´1q
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. . . P pt2 ´ t1, x1, dx2qP pt1, x, dx1q (3.64)

is valid for all x P E (here PxpXptq P Bq “ P pt, x, Bq);

(iii) For every pFt`q-stopping time T and for every bounded random variable
Y : Ω Ñ C the equality

Ex pY ˝ ϑT | FT`q “ EXpT q pY q , (3.65)

holds Px-almost surely on tT ă 8u for all x P E;

(iv) Let B be the Borel field of r0,8q. For every bounded function F : r0,8q ˆ
Ω Ñ C, which is measurable with respect to BbF, and for every pFt`q-stopping
time T the equality

Ex ptω ÞÑ F pT pωq, ϑT pωqqu | FT`q “
␣

ω1 ÞÑ EXpT pω1qq tω ÞÑ F pT pω1q, ωqu
(

(3.66)

holds Px-almost surely tT ă 8u for all x P E.

Equality (3.66) is called the strong time-dependent Markov property. We shall
not prove this result.
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3.37. Theorem. Let tP ptq : t ě 0u be a Feller semigroup. There exists a col-
lection of probabilities pPxqxPE on the σ-field F generated by the state variables
tXptq : t ě 0u defined on Ω :“ D

`

r0,8q , E△
˘

in such a way that

Ex rf pXpt1q, . . . , Xptnqqs “
ż

f pXpt1q, . . . , Xptnqq dPx

“
ż

. . .

ż

fpx1, x2, . . . , xnqP ptn ´ tn´1, xn´1, dxnqP ptn´1 ´ tn´2, xn´2, dxn´1q

. . . P pt2 ´ t1, x1, dx2qP pt1, x, dx1q, (3.67)

where f is any bounded complex or non-negative Borel measurable function de-
fined on E△ ˆ . . . ˆ E△, that vanishes outside of E ˆ . . . ˆ E. Let the measure
spaces pΩ,F,PxqxPE be as in (3.67). The process

tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ

is a strong Markov process.

The proof of this result is quite technical. The first part follows from a well-
known theorem of Kolmogorov on projective systems of measures: see Theorems
1.14, 3.1, 5.81. In the second part we must show that the indicated path space
has full measure, so that no information is lost. Proofs are omitted. They can
be found in for example Blumenthal and Getoor [20], Theorem 9.4. p. 46.
For a discussion in the context of Polish spaces see, e.g., Sharpe [120] or Van
Casteren [146]. For the convenience of the reader we include an outline of the
proof of Theorem 3.37. The following lemma is needed in the proof.

3.38. Lemma. Let pΩ,Ft,Pq be a probability space, and let t ÞÑ Y ptq, be a
supermartingale, which attains positive values. Fix t ą 0 and let D be a dense
countable subset of r0,8q. Then

P
„

Y ptq ą 0, inf
0ăsăt, sPD

Y psq “ 0

ȷ

“ 0. (3.68)

Proof. Let psjqj be an enumeration of the set D X r0,8q. Fix n, N P N,
and define the stopping time Sn,N by

Sn,N “ min

"

sj : min
1ďjďN

Y psjq ă 2´n

*

.

Then we have Y pSn,Nq ă 2´n on the event tSn,N ă 8u. In addition, by the
supermartingale property (for discrete stopping times) we infer

E
„

Y ptq, min
1ďjďN

Y psjq ă 2´n

ȷ

ď E rY ptq, Sn,N ă ts

“ E rY ptq, min pSn,N , tq ă ts
ď E rY pmin pSn,N , tqq , min pSn,N , tq ă ts
“ E rY pSn,Nq , Sn,N ă ts
ď E

“

2´n, Sn,N ă t
‰

ď 2´n. (3.69)
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In (3.69) we let N Ñ 8 to obtain:

E
„

Y ptq, inf
0ăsăt, sPD

Y psq ă 2´n

ȷ

ď 2´n. (3.70)

In (3.70) we let n Ñ 8 to get:

E
„

Y ptq, inf
0ăsăt, sPD

Y psq “ 0

ȷ

“ 0. (3.71)

Let α ą 0 be arbitrary. From (3.71) it follows that

P
„

Y ptq ą α, inf
0ăsăt, sPD

Y psq “ 0

ȷ

ď
1

α
E

„

Y ptq, inf
0ăsăt, sPD

Y psq “ 0

ȷ

“ 0.

(3.72)
Then in (3.72) we let α Ó 0 to complete the proof of Lemma 3.38. �

Let tP ptq : t ě 0u be a Feller-Dynkin semigroup acting on C0pEq where E is a
locally compact Hausdorff space. In the proof of Theorem 3.37 we will also use
the resolvent operators tRpαq : α ą 0u: Rpαqfpxq “

ş8
0
e´αtP ptqfpxq dt, α ą 0,

f P C0pEq. An important property is the resolvent equation:

Rpβq ´ Rpαq “ pα ´ βqRpαqRpβq, α, β ą 0.

The latter property is a consequence of the semigroup property.

3.39. Remark. The space E is supposed to be a second countable (i.e. it
is a topological space with a countable base for its topology) locally compact
Hausdorff space (in particular it is a Polish space). A second-countable locally-
compact Hausdorff space is Polish. Let pUiqi be a countable basis of open
subsets with compact closures, choose for each i P N, yi P Ui, together with a
continuous function fi : E Ñ r0, 1s such that fi pyiq “ 1 and such that fi pyq “ 0
for y R Ui. Since a locally compact Hausdorff space is completely regular this
choice is possible. Put

dpx, yq “
8
ÿ

i“1

2´i |fipxq ´ fipyq| `
ˇ

ˇ

ˇ

ˇ

1
ř8

i“1 2
´ifipxq

´
1

ř8
i“1 2

´ifipyq

ˇ

ˇ

ˇ

ˇ

, x, y P E.

This metric gives the same topology, and it is not too difficult to verify its
completeness. For this notice that the sequence pfiqi separates the points of E,
and therefore the algebraic span (i.e. the linear span of the finite products of
the functions fi) is dense in C0pEq for the topology of uniform convergence. A
proof of the fact that a locally compact space is completely regular can be found
in Willard [152] Theorem 19.3. The connection with Urysohn’s metrization
theorem is also explained. A related construction can be found in Garrett [57]:
see Dixmier [39] Appendix V as well.

3.40. Remark. Next we present the notion of Skorohod space. Let D pr0, 1s,Rq
be the space of real-valued functions ω defined on the interval r0, 1s that are
right-continuous and have left-hand limits, i.e., ωptq “ ω pt`q “ limsÓt ωpsq for
all 0 ď t ă 1, and ω pt´q “ limsÒt ωpsq exists for all 0 ă t ď 1. (In probabilistic
literature, such a function is also said to be a cadlag function, “cadlag” being an
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acronym for the French “continu à droite, limites à gauche”.) The supremum
norm on D pr0, 1s,Rq, given by

}ω}8 “ sup
tPr0,1s

|ωptq| , ω P D pr0, 1s,Rq ,

turns the space D pr0, 1s,Rq into a Banach space which is non-separable. This
non-separability causes well-known problems of measurability in the theory of
weak convergence of measures on the space. To overcome this inconvenience,
A.V. Skorohod introduced a metric (and topology) under which the space be-
comes a separable metric space. Although the original metric introduced by
Skorohod has a drawback in the sense that the metric space obtained is not
complete, it turned out (see Kolmogorov [70]) that it is possible to construct
an equivalent metric (i.e., giving the same topology) under which the space
D pr0, 1s,Rq becomes a separable and complete metric space. Such metric space
the term Polish space is often used. This metric is defined as follows, and
taken from Paulauskas in [110]. Let Λ denote the class of strictly increasing
continuous mappings of r0, 1s onto itself. For λ P Λ, let

}λ} “ sup
0ďsătď1

ˇ

ˇ

ˇ

ˇ

log
λptq ´ λpsq

t ´ s

ˇ

ˇ

ˇ

ˇ

.

Then for ω1 and ω2 P D pr0, 1s,Rq we define

d pω1, ω2q “ inf
λPΛ

max p}λ} , }ω1 ´ ω2 ˝ γ}8q .

The topology generated by this metric is called the Skorohod topology and
the complete separable metric space D pr0, 1s,Rq is called the Skorohod space.
This space is very important in the theory of stochastic processes. The general
theory of weak convergence of probability measures on metric spaces and, in
particular, on the space D pr0, 1s,Rq is well developed. This theory was started
in the fundamental papers like Chentsov [33], Kolmogorov [70], Prohorov [112],
Skorohod [122]. A well-known reference on these topics is Billingsley [17].
Generalizations of the Skorohod space are worth mentioning. Instead of real-
valued functions on r0, 1s it is possible to consider functions defined on r0,8q and
taking values in a metric space E. The space of cadlag functions obtained in this
way is denoted by D pr0,8q, Eq and if E is a Polish space, then D pr0,8q, Eq,
with the appropriate topology, is also a Polish space, see Ethier and Kurtz [54]
and Pollard [111], where these spaces are treated systematically.

Outline of a proof of Theorem 3.37. Firstly, the Riesz representa-
tion theorem, applied to the functionals f ÞÑ P ptqfpxq, f P C0pEq, pt, xq P
r0,8q ˆ E, provides a family of sub-probability measures B ÞÑ P pt, x, Bq,
B P E, pt, xq P r0,8q ˆ E, with P p0, x, Bq “ δx pBq “ 1Bpxq. From the semi-
group property, i.e. P ps ` tq “ P psqP ptq, s, t ě 0, it follows that the family
tP pt, x, ¨q : pt, xq P r0,8qu obeys the Chapman-Kolmogorov identity:

P ps ` t, x, Bq “
ż

P pt, y, BqP ps, x, dyq , B P E, s ě 0, t ě 0, x P E. (3.73)
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The measures B ÞÑ P pt, x, Bq, B P E, are inner and outer regular in the sense
that, for all Borel subsets B (i.e. B P E),

P pt, x, Bq “ sup tP pt, x,Kq : K Ă B, K compactu
“ inf tP pt, x, Oq : O Ą B, O openu . (3.74)

In general we have 0 ď P pt, x, Bq ď 1, pt, x, Bq P r0,8q ˆ E ˆ E. In order
to apply Kolmogorov’s extension theorem we need that, for every x P E, the
function t ÞÑ P pt, x, Eq is constant. Since P p0, x, Eq “ 1 this constant must be
1. This can be achieved by adding an absorption point △ to E. So instead of
E we consider the state space E△ “ E Y t△u, which, topologically speaking,
can be considered as the one-point compactification of E, if E is not compact.
If E is compact, △ is an isolated point of E△. Let E△ be the Borel field of E△.
Then the new family of probability measures tN pt, x, ¨q : pt, xq P r0,8q ˆ Eu is
defined as follows:

N pt, x, Bq “ P pt, x, B X Eq ` p1 ´ P pt, x, Eqq 1B p△q , pt, xq P r0,8q ˆ E,

N pt,△, Bq “ 1B p△q , t ě 0, B P E△. (3.75)
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Compare this construction with the one in (1.1). The family

N :“ tN pt, x, ¨q : pt, xq P r0,8q ˆ Eu
again satisfies the Chapman-Kolmogorov identity with state space E△ instead of
E. Notice thatN pt, x, Bq “ P pt, x, Bq whenever pt, x, Bq belongs to r0,8qˆEˆ
E. Employing the family N we define a family of probability spaces as follows.
For every x0 P E, and every increasing n-tuple 0 ď t1 ă ¨ ¨ ¨ ă tn ă 8 in r0, qn

we consider the probability space
``

E△
˘n

,bnE△, Px0,t1,...,tn

˘

: the probability
measure Px0,t1,...,tn is defined by

Px0,t1,...,tnpBq “
ż

. . .

ż

B

N pt1 ´ t0, x0, dx1q ¨ ¨ ¨N ptn ´ tn´1, xn´1, dxnq , (3.76)

where B P bnE△. By an appeal to the Chapman-Kolmogorov identity it follows
that, for x0 P E fixed, the family of probability spaces:

␣``

E△˘n
,bnE△, Px0,t1,...,tn

˘

: 0 ď t1 ă ¨ ¨ ¨ ă tn ă 8, n P N
(

(3.77)

is a projective system of probability spaces. Put rΩ△ “
`

E△
˘r0,8q

, and equip this

space with the product σ-field rF△ :“ br0,8qE△. In addition, write rXptqpωq “
ωptq, ϑtωpsq “ ωps ` tq, s, t ě 0, ω P rΩ△. The variables rXptq, t ě 0, are called
the state variables, and the mappings ϑt, t ě 0, are called the (time) translation
or shift operators. By Kolmogorov’s extension theorem there exists, for every

x P E△, a probability measure rPx on the σ-field rF△ such that

rPx

”´

rX pt1q , ¨ ¨ ¨ , rX ptnq
¯

P B
ı

“ Px,t1,...,tn rBs . (3.78)

In (3.78) B belongs to bnE△, and 0 ď t1 ă ¨ ¨ ¨ ă tn ă 8 is an arbitrary increas-
ing n-tuple in r0,8q. Another appeal to the Chapman-Kolmogorov identity and
the monotone class theorem shows that the quadruple

!´

rΩ△, rF△, rPx

¯

,
´

rXptq, t ě 0
¯

, pϑt, t ě 0q ,
`

E△,E△˘

)

(3.79)

is a Markov process relative to the internal history, i.e. relative to the filtration
rF
△
t “ σ

´

rXpsq : 0 ď s ď t
¯

, t ě 0. Moreover, we have rPx

”

rXp0q “ x
ı

“ 1, and,

by the Markov property, we also have, for x P E△, t ą s ě 0,

rPx

”

rXptq “ △, rXpsq “ △
ı

“ rEx

”

rPx

”

rXpt ´ sq ˝ ϑs “ △
ˇ

ˇ rF△
ı

, rXpsq “ △
ı

(Markov property)

“ rEx

”

rP
rXpsq rXpt ´ sq “ △s , rXpsq “ △

ı

“ rEx

”

rP△

”

rXpt ´ sq “ △
ı

, rXpsq “ △
ı

“ N pt ´ s,△, t△uq ¨ N ps, x, t△uq

“ N ps, x, t△uq “ rPx

”

rXpsq “ △
ı

. (3.80)

The equality in (3.80) says that once the process t ÞÑ rXptq enters △ it stays

there. In other words△ is an absorption point for the process rX. Define, for t ą
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0, the mapping rP ptq : C
`

E△
˘

Ñ C
`

E△
˘

by rP ptqfpxq “ rEx

”

f
´

rXptq
¯ı

, f P

C
`

E△
˘

. From the Markov property of the process rX, and since the semigroup

t ÞÑ P ptq is a Feller-Dynkin semigroup, it follows that the mappings rP ptq, t ě 0,
constitute a Feller (or Feller-Dynkin semigroup) on C

`

E△
˘

. Consequently, for

any f P C
`

E△
˘

, and any t0 ě 0, we have

lim
s,tÑt0, s, tě0

sup
xPE△

rEx

”ˇ

ˇ

ˇ
f

´

rXptq
¯

´ f
´

rXpsq
¯ˇ

ˇ

ˇ

ı

“ 0. (3.81)

Let D be the collection of non-negative dyadic rational numbers. Since the
space E△ is compact-metrizable, it follows from (3.81) that, for all x P E△, the
following limits

lim
sÒt, sPD

rXpsq, and lim
sÓt, sPD

rXpsq, (3.82)

exist in E△
rPx-almost surely. Define the mapping π : rΩ△ Ñ Ω by

πpωqptq “ lim
sÓt, sPD

rXpsq pωq “: Xptq pπpωqq , t ě 0, ω P rΩ△. (3.83)

Then we have that, for every x P E△ fixed, the processes t ÞÑ Xptq ˝ π and t ÞÑ
rXptq are rPx-indistinguishable in the sense that there exists an event rΩ△,1 Ă rΩ△

such that rPx

”

rΩ△,1
ı

“ 1 and such that for all t P r0,8q the equality rXptq “

Xptq˝π holds on the event rΩ△,1. This assertion is a consequence of the following
argument. For every pt, xq P r0,8q ˆ E△ and for every f P C

`

E△
˘

we see

rEx

”

f pXptq ˝ πq ´ f
´

rXptq
¯ı

“ lim
sÓt, sPD

rEx

”

f
´

rXpsq
¯

´ f
´

rXptq
¯ı

“ rEx

”

f
´

rXptq
¯

´ f
´

rXptq
¯ı

“ 0. (3.84)

Since the space E△ is second countable, the space C
`

E△
˘

is separable, the

equalities in (3.82) and (3.84) imply that, up to an event which is rPx-negligible
rXptq “ Xptq ˝ π for all t ě 0. See Definition 5.88 as well. In addition, we have

that, for ω P rΩ the realization t ÞÑ πpωqptq belongs to the Skorohod space Ω, i.e.
it is continuous from the right and possesses left limits. We still need to show

that rXptq P E implies that the closure of the orbit
!

rXpsq : 0 ď s ď t, s P D
)

is a closed, and so, compact subset of E. For this purpose we choose a strictly
positive function f P C0 pEq which we extend to a function, again called f , such
that f p△q “ 0. It is convenient to employ the resolvent operators Rpαq, α ą 0,

here. We will prove that, for α ą 0 fixed, the process t ÞÑ e´αtR pαq f
´

rXptq
¯

is rPx-supermartingale relative to the filtration
!

rF
△
t ; t ě 0

)

. Therefore, let t2 ą
t1 ě 0. Then we write:

rEx

”

e´αt2Rpαqf
´

rX pt2q
¯

ˇ

ˇ rF
△
t1

ı

“ rEx

„

e´αt2

ż 8

0

e´αs
rE

rXpt2q

”

f
´

rXpsq
¯ı

ds
ˇ

ˇ rF
△
t1

ȷ
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(Markov property)

“ rEx

„

e´αt2

ż 8

0

e´αs
rEx

”

f
´

rX ps ` t2q
¯

ˇ

ˇ rF
△
t2

ı

ds
ˇ

ˇ rF
△
t1

ȷ

(Fubini’s theorem and tower property of condiitonal expectation)

“ rEx

„

e´αt2

ż 8

0

e´αsf
´

rX ps ` t2q
¯

ds
ˇ

ˇ rF
△
t1

ȷ

“ rEx

„
ż 8

t2

e´αsf
´

rX psq
¯

ds
ˇ

ˇ rF
△
t1

ȷ

(the function f is non-negative and t2 ą t1)

ď rEx

„
ż 8

t1

e´αsf
´

rX psq
¯

ds
ˇ

ˇ rF
△
t1

ȷ

“ rEx

„

e´αt1

ż 8

0

e´αsf
´

rX ps ` t1q
¯

ds
ˇ

ˇ rF
△
t1

ȷ

(Fubini’s theorem in combinaton with the Markov property)

“ e´αt1

ż 8

0

e´αs
rE

rXpt1q

”

f
´

rX psq
¯ı

ds “ e´αt1Rpαqf
´

rX pt1q
¯

. (3.85)
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Put rY ptq “ e´αtRpαqf
´

rX ptq
¯

, and fix x P E. From (3.85) we see that the

process t ÞÑ rY ptq is a rPx-supermartingale relative to the filtration
´

rF
△
t

¯

tě0
.

From Lemma 3.38 with rY ptq instead of Y ptq and rPx in place of P we infer

rPx

„

rXptq P E, inf
sPDXp0,tq

rY psq “ 0

ȷ

“ rPx

„

rY ptq ą 0, inf
sPDXp0,tq

rY psq “ 0

ȷ

“ 0.

(3.86)

From (3.86) we see that, rPx-almost surely, rXptq P E implies infsPDXp0,tq rY psq ą 0.
Consequently, for every x P E, the equality

rPx

”

rXptq P E
ı

“ rPx

”

rXptq P E, closure
!

rXpsq : s P D X p0, tq
)

Ă E
ı

, (3.87)

holds. In other words: the closure of the orbit
!

rXpsq : s P D X p0, tq
)

is con-

tained in E whenever rXptq belongs to E. We are almost at the end of the proof.
We still have to carry over the Markov process in (3.79) to a process of the form

tpΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ (3.88)

with Ω “ D
`

r0,8q , E△
˘

the Skorohod space of paths with values in E△. This

can be done as follows. Define the state variables Xptq : Ω Ñ E△ by Xptqpωq “
ωptq, ω P Ω, and let ϑt : Ω Ñ Ω be defined as above, i.e. ϑtpωqpsq “ ωps ` tq,
ω P Ω. Let the mapping π : rΩ Ñ Ω be defined as in (3.83). Then, as shown

above, for every x P E, the processes rXptq and Xptq˝π are rPx-indistinguishable.

The probability measures Px, x P E, are defined by Px rAs “ rPx rπ P As where A
is a Borel subset of Ω. Then all ingredients of (3.88) are defined. It is clear that
the quadruple in (3.88) is a Markov process. Since the paths, or realizations,
are right-continuous, it represents a strong Markov process.

This completes an outline of the proof of Theorem 3.37. �

As above L is a linear operator with domain DpLq and range RpLq in C0pEq.
Suppose that the domain DpLq of L is dense in C0pEq. The problem we want to
address is the following. Give necessary and sufficient conditions on the operator
L in order that for every x P E there exists a unique probability measure Px on
F with the following properties:

(i) For every f P DpLq the process fpXptqq ´ fpXp0qq ´
şt

0
LfpXpsqqds,

t ě 0, is a Px-martingale;
(ii) PxpXp0q “ xq “ 1.

Here we suppose Ω “ D
`

r0,8q , E△
˘

(Skorohod space) and F is the σ-field gen-
erated by the state variables Xptq, t ě 0. Let P pΩq be the set of all probability
measures on F and define the subset P 1pΩq of P pΩq by

P 1pΩq “
ď

xPE△

"

P P P pΩq : PrXp0q “ xs “ 1 and for every f P DpLq the process
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fpXptqq ´ fpXp0qq ´
ż t

0

LfpXpsqqds, t ě 0, is a P-martingale

*

.

(3.89)

Let pvj : j P Nq be a sequence of continuous functions defined on E with the
following properties:

(i) v0 ” 1;
(ii) }vj}8 ď 1 and vj belongs to DpLq for j ě 1;
(iii) The linear span of vj, j ě 0, is dense in CpE△q.

In addition let pfk : k P Nq be a sequence in DpLq such that the linear span
of tpfk, Lfkq : k P Nu is dense in the graph GpLq :“ tpf, Lfq : f P DpLqu of the
operator L. Moreover let psj : j P Nq be an enumeration of the set Q X r0,8q.
The subset P 1pΩq may be described as follows:

P 1pΩq “
8
č

n“1

8
č

k“1

8
č

m“1

č

pj1,...,jm`1qPNm`1

č

0ďsj1ă...ăsjm`1

(3.90)

"

P P P pΩq : inf
xPE

max
1ďjďn

ˇ

ˇ

ˇ

ˇ

ż

vjpXp0qqdP ´ vjpxq
ˇ

ˇ

ˇ

ˇ

“ 0,

ż
ˆ

fkpXpsjm`1qq ´
ż sjm`1

0

LfkpXpsqqds
˙

źm

k“1
vjk pXpsjkqq dP

“
ż

ˆ

fkpXpsjmqq ´
ż sjm

0

LfkpXpsqqds
˙

źm

k“1
vjk pXpsjkqq dP

*

.

It follows that P 1pΩq is a weakly closed subset of P pΩq. In fact we shall prove
that, if for the operator L, the martingale problem is uniquely solvable, then
the set P 1pΩq is compact metrizable for the metric d pP1,P2q given by

dpP1,P2q “
ÿ

ΛĂN,|Λ|ă8
2´|Λ|

ÿ

pℓjqjPΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ź

jPΛ
2´j´ℓjvj

`

X
`

sℓj
˘˘

d pP2 ´ P1q

ˇ

ˇ

ˇ

ˇ

ˇ

.

(3.91)
The following result should be compared to the comments in 6.7.4. of [133]. It
is noticed that in Proposition 3.41 below the uniqueness of the solutions to the
martingale problem is not used.

3.41. Proposition. The set P 1pΩq supplied with the metric d defined in (3.91)
is a compact Hausdorff space.

Proof. Let pPn : n P Nq be any sequence in P 1pΩq. Let pPnℓ
: ℓ P Nq be

a subsequence with the property that for every m P N, for every m-tuple
pj1, . . . , jmq in Nm and for every m-tuple psj1 , . . . , sjmq P Qm the limit

lim
ℓÑ8

ż

źm

k“1
vjk pX psjkqq dPnℓ
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exists. We shall prove that for every m P N, for every m-tuple pj1, . . . , jmq in
Nm and for every m-tuple ptj1 , . . . , tjmq P r0,8qm the limit

lim
ℓÑ8

ż

źm

k“1
ujk pX ptjkqq dPnℓ

(3.92)

exists for all sequences puj : j P Nq in C0pEq. But then there exists, by Kol-
mogorov’s extension theorem, a probability measure P such that

lim
ℓÑ8

ż

źm

k“1
ujk pX ptjkqq dPnℓ

“
ż

źm

k“1
ujk pX ptjkqq dP, (3.93)

for all m P N, for all pj1, . . . , jmq P Nm and for all ptj1 , . . . , tjmq P r0,8qm. From
the description (3.89) of P 1pΩq it then readily follows that P is a member of
P 1pΩq. So the existence of the limit in (3.92) remains to be verified together
with the fact that Dpr0,8q , E△q has full P-measure. Let t be in Q. Since,
for every j P N, the process vjpXpsqq ´ vjpXp0qq ´

şs

0
LvjpXpσqqdσ, s ě 0, is a

martingale for the measures Pnℓ
, we infer

ż ż t

0

LvjpXpsqqdsdPnℓ
“

ż

vjpXptqqdPnℓ
´

ż

vjpXp0qqdPnℓ
.

and hence the limit limℓÑ8
ş şt

0
LvjpXpsqqdsdPnℓ

exists.
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Next let t0 be in r0,8q. Again using the martingale property we see
ż

vj pXpt0qq d pPnℓ
´ Pnk

q

“
ż

ˆ
ż t

0

Lvj pXpsqq ds
˙

d pPnℓ
´ Pnk

q `
ż

vjpXp0qqd pPnℓ
´ Pnk

q

´
ż

ˆ
ż t

t0

Lvj pXpsqq ds
˙

d pPnℓ
´ Pnk

q , (3.94)

where t is any number in Q X r0,8q. From (3.94) we infer
ˇ

ˇ

ˇ

ˇ

ż

vj pXpt0qq d pPnℓ
´ Pnk

q
ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

ż
ˆ

ż t

0

Lvj pXpsqq ds
˙

d pPnℓ
´ Pnk

q
ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

ż

vjpXp0qqd pPnℓ
´ Pnk

q
ˇ

ˇ

ˇ

ˇ

` 2 |t ´ t0| }Lvj}8 . (3.95)

If we let ℓ and k tend to infinity, we obtain

lim sup
ℓ,kÑ8

ˇ

ˇ

ˇ

ˇ

ż

vj pXpt0qq d pPnℓ
´ Pnk

q
ˇ

ˇ

ˇ

ˇ

ď 2 |t ´ t0| }Lvj}8 . (3.96)

Consequently for every s ě 0 the limit limℓÑ8
ş

vj pXpsqq dPnℓ
exists. The

inequality
ˇ

ˇ

ˇ

ˇ

ż

vj pXptqq dPnℓ
´

ż

vj pXpt0qq dPnℓ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ż ż t

t0

Lvj pXpsqq dsdPnℓ

ˇ

ˇ

ˇ

ˇ

ď |t ´ t0| }Lvj}8

shows that the functions t ÞÑ limℓÑ8
ş

vj pXptqq dPnℓ
, j P N, are continuous.

Since the linear span of pvj : j ě 1q is dense in C0pEq, it follows that for
v P C0pEq and for every t ě 0 the limit

t ÞÑ lim
ℓÑ8

ż

v pXptqq dPnℓ
(3.97)

exists and that this limit, as a function of t, is continuous. The following step
consists in proving that for every t0 P r0,8q the equality

lim
tÑt0

lim sup
ℓÑ8

ż

|vj pXptqq ´ vj pXpt0qq| dPnℓ
“ 0 (3.98)

holds. For t ą s the following (in-)equalities are valid:
ˆ

ż

|vj pXptqq ´ vj pXpsqq| dPnℓ

˙2

ď
ż

|vj pXptqq ´ vj pXpsqq|2 dPnℓ

“
ż

|vjpXptqq|2 dPnℓ
´

ż

|vjpXpsqq|2 dPnℓ

´ 2Re

ż

pvjpXptqq ´ vjpXpsqqq vjpXpsqqdPnℓ

“
ż

|vjpXptqq|2 dPnℓ
´

ż

|vjpXpsqq|2 dPnℓ
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´ 2Re

ż
ˆ

ż t

s

LvjpXpσqqdσ
˙

vjpXpsqqdPnℓ

ď
ż

|vjpXptqq|2 dPnℓ
´

ż

|vjpXpsqq|2 dPnℓ
` 2pt ´ sq }Lvj}8 . (3.99)

Hence (3.97) together with (3.99) implies (3.93). By (3.93), we may apply
Kolmogorov’s theorem to prove that there exists a probability measure P on
Ω1 :“ pE△qr0,8q with the property that

ż m
ź

k“1

vjkpXpsjkqqdP “ lim
ℓÑ8

ż m
ź

k“1

vjkpXpsjkqqdPnℓ
, (3.100)

holds for all m P N and for all psj1 , . . . , sjmq P r0,8qm. It then also follows that
the equality in (3.100) is also valid for all m-tuples f1, . . . , fm in CpE△q instead
of vj1 , . . . , vjm . This is true because the linear span of the sequence pvj : j P Nq is
dense in CpE△q. In addition we conclude that the processes fpXptqq´fpXp0qq´
şt

0
LfpXpsqqds, t ě 0, f P DpLq are P-martingales. We still have to show

that Dpr0,8q , E△q has P-measure 1. From (3.98) it essentially follows that
set of ω P pE△qr0,8q for which the left and right hand limits exist in E△ has
”full” P-measure. First let f ě 0 be in C0pEq. Then the process rGλf s ptq :“
E

`ş8
t
e´λσfpXpσqqdσ | Ft

˘

is a P-supermartingale with respect to the filtration
tFt : t ě 0u. It follows that the limits limtÒt0 rGλf s ptq and limtÓt0 rGλf s ptq both
exist P-almost surely for all t0 ě 0 and for all f P C0pEq. In particular these
limits exist P-almost surely for all f P DpLq. By the martingale property it
follows that, for f P DpLq,

ˇ

ˇfpXptqq ´ λeλt rGλf s ptq
ˇ

ˇ “
ˇ

ˇ

ˇ

ˇ

λeλtE
ˆ

ż 8

t

e´λσ pfpXpσqq ´ fpXptqqq dσ | Ft

˙ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

λeλtE
ˆ

ż 8

t

e´λσ

ˆ
ż σ

t

LfpXpsqqds
˙

dσ | Ft

˙ˇ

ˇ

ˇ

ˇ

ď λeλt
ż 8

t

e´λσpσ ´ tq }Lf}8 dσ “ λ´1 }Lf}8 .

Consequently, we may conclude that, for all s, t ě 0,

|fpXptqq ´ fpXpsqq| ď 2λ´1 }Lf}8 `
ˇ

ˇλeλt rGλf s ptq ´ λeλs rGλf s psq
ˇ

ˇ

and hence that the limits limtÓs fpXptqq and limtÒs fpXptqq exist P-almost surely
for all f P DpLq. By separability and density of DpLq it follows that the limits
limtÓs Xptq and limtÒsXptq exist P-almost surely for all s ě 0. Put Zpsqpωq “
limtÓs,tPQ Xptqpωq, t ě 0. Then, for P-almost all ω and for all s ě 0, Zpsqpωq is
well-defined, possesses left limits and is right continuous. In addition we have

E pfpZpsqqgpsqq “ E pfpXps`qqgpXpsqqq “ lim
tÓs

E pfpXptqqgpXpsqqq

“ E pfpXpsqqgpXpsqqq , for all f , g P C0pEq

and for all s ě 0: see (3.98). But then we may conclude that Xpsq “ Zpsq P-
almost surely for all s ě 0. Hence we may replace X with Z and consequently
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(see the arguments in the proof of Theorem 9.4. of Blumenthal and Getoor
[[20], p. 49])

P
`

ω P Ω1 : ω is right continuous and has left limits in E△˘

“ 1.

Fix s ą t. We are going to show that the set of paths ω P pE△qr0,8q for which
ωpsq “ Xpsqpωq belongs to E and for which, ωpt´q “ limτÒt Xpτqpωq “ △
possesses P-measure 0. It suffices to prove that, for f P C0pEq, 1 ě fpxq ą 0
for all x P E fixed, the following integral equalities hold:

E rfpXpsqq, fpXpt´qq “ 0s “
ż

fpXpsqq1tf“0upXpt´qq dP “ 0.
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This can be achieved as follows. From the (in-)equalities

E pfpXpsqq, fpXptqq “ 0q

“ lim
nÑ8

E
´

fpXpsqq
´

1 ´ pfpXptqqq1{n
¯¯

“ lim
nÑ8

E
`

fpXpsqq
`

1 ´ fpXptqq1{n˘˘

“ lim
nÑ8

E

˜

fpXpsqq
ż 1{n

0

fpXptqqσ log
1

fpXptqq
dσ

¸

“ lim
nÑ8

ż 1{n

0

E
ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙

dσ

“ lim
nÑ8

ż 1{n

0

pE ´ Enℓ
q

ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙

dσ

` lim
nÑ8

ż 1{n

0

Enℓ

ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙

dσ

ď
ż 1

0

ˇ

ˇ

ˇ

ˇ

E
ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙

´Enℓ

ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙ˇ

ˇ

ˇ

ˇ

dσ

` Enℓ
pfpXpsqq, fpXptqq “ 0q ,

we conclude that

E pfpXpsqq, fpXptqq “ 0q “ lim
nÑ8

E
`

fpXpsqq
`

1 ´ fpXptqq1{n˘˘

ď
ż 1

0

ˇ

ˇ

ˇ

ˇ

E
ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙

´Enℓ

ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙ˇ

ˇ

ˇ

ˇ

dσ.

Since the function x ÞÑ fpxqσ log
1

fpxq
belongs to C0pEq for every σ ą 0, we

obtain upon letting ℓ tend to 8, that E pfpXpsqq, fpXptqq “ 0q “ 0, where
s ą t. To see this apply Scheffé’s theorem (see e.g. Bauer [[10], Corollary

2.12.5. p. 105]) to the sequence σ ÞÑ Enℓ

ˆ

fpXpsqqfpXptqqσ log
1

fpXptqq

˙

.

From description (3.90), it then follows that P belongs to P 1pΩq: it is also clear
that the limits in (3.92) exist. �
3.42. Proposition. Suppose that for every x P E the martingale problem is
uniquely solvable. Define the map F : P 1pΩq Ñ E△ by F pPq “ x, where P P
P 1pΩq is such that PpXp0q “ xq “ 1. Also notice that F pP△q “ △. Then
F is a homeomorphism from P 1pΩq onto E△. In fact it follows that for every
u P C0pEq and for every s ě 0, the function x ÞÑ ExpupXpsqq belongs to C0pEq.

Proof. Since the martingale problem is uniquely solvable for every x P E
the map F is a one-to-one map from the compact metric Hausdorff space P 1pΩq
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onto E△ (see Proposition 3.41). Let for x P E the probability Px be the unique
solution to the martingale problem:

(i) For every f P DpLq the process fpXptqq ´ fpXp0qq ´
şt

0
LfpXpsqqds,

t ě 0, is a Px-martingale;
(ii) PxpXp0q “ xq “ 1.

Then, by definition F pPxq “ x, x P E, and F pP△q “ △. Moreover, since
for every x P E the martingale problem is uniquely solvable we see P 1pΩq “
␣

Px : x P E△
(

. Let pxℓ : ℓ P Nq be a sequence in E△ with the property that

limℓÑ8 d pPxℓ
,Pxq “ 0 for some x P E△. Then limℓÑ8 |vj pxℓq ´ vjpxq| “ 0, for

all j P N, where, as above, the span of the sequence pvj : j P Nq is dense in
C

`

E△
˘

. It follows that limℓÑ8 xℓ “ x in E△. Consequently the mapping F
is continuous. Since F is a continuous bijective map from one compact metric
Hausdorff space P 1pΩq onto another such space E△, its inverse is continuous as
well. Among others this implies that, for every s P Q X r0,8q and for every
j ě 1, the function x ÞÑ

ş

vj pXpsqq dPx belongs to C0pEq. Since the linear span
of the sequence pvj : j ě 1q is dense in C0pEq it also follows that for every
v P C0pEq, the function x ÞÑ

ş

v pXpsqq dPx belongs to C0pEq. Next let s0 ě 0
be arbitrary. For every j ě 1 and every s P Q X r0,8q, s ą s0, we have by the
martingale property:

sup
xPE

|Ex pvjpXpsqqq ´ Ex pvjpXps0qqq| “ sup
xPE

ˇ

ˇ

ˇ

ˇ

ż s

s0

Ex pLvj pXpσqqq dσ
ˇ

ˇ

ˇ

ˇ

ď ps ´ s0q }Lvj}8 . (3.101)

Consequently, for every s P r0,8q, the function x ÞÑ Ex pvj pXpsqqq, j ě 1,
belongs to C0pEq. It follows that, for every v P C0pEq and every s ě 0, the
function x ÞÑ Ex pvpXpsqqq belongs to C0pEq. This proves Proposition 3.42. �

The proof of the following proposition may be copied from Ikeda and Watanabe
[61], Theorem 5.1. p. 205.

3.43. Proposition. Suppose that for every x P E△ the martingale problem:

(i) For every f P DpLq the process fpXptqq ´ fpXp0qq ´
şt

0
LfpXpsqqds,

t ě 0, is a P-martingale;
(ii) PpXp0q “ xq “ 1,

has a unique solution P “ Px. Then the process

tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ

is a strong Markov process.

Proof. Fix x P E and let T be a stopping time and choose a realization of

A ÞÑ Ex r1A ˝ ϑT | FT s , A P F.

Fix any ω P Ω for which

A ÞÑ QypAq :“ Ex r1A ˝ ϑT | FT s pωq,
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is defined for all A P F. Here, by definition, y “ ωpT pωqq. Notice that, sice the
space E is a topological Hausdorff space that satisfies the second countability
axiom, this construction can be performed for Px-almost all ω. Let f be in DpLq
and fix t2 ą t1 ě 0. Moreover fix C P Ft1 . Then ϑ´1

T pCq is a member of Ft1`T .

Put Mf ptq “ fpXptqq ´ fpXp0qq ´
şt

0
LfpXpsqqds, t ě 0. We have

Ey pMf pt2q1Cq “ Ey pMf pt1q1Cq . (3.102)

We also have
ż

ˆ

fpXpt2qq ´ fpXp0qq ´
ż t2

0

LfpXpsqqds
˙

1CdQy (3.103)

“ Ex

„ˆ

f pXpt2 ` T qq ´ fpXpT qq ´
ż t2

0

Lf pXps ` T qq ds
˙

1C ˝ ϑT | FT

ȷ

pωq

“ Ex

„ˆ

f pXpt2 ` T qq ´ fpXpT qq ´
ż t2`T

T

Lf pXpsqq ds
˙

p1C ˝ ϑT q | FT

ȷ

pωq

“ Ex

„

Ex

„ˆ

f pXpt2 ` T qq ´ fpXpT qq ´
ż t2`T

T

Lf pXpsqq ds
˙

| Ft1`T

ȷ

.

1C ˝ ϑT | FT

ȷ

pωq.
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By Doob’s optional sampling theorem, the process

f pXpt ` T qq ´ fpXpT qq ´
ż t`T

T

Lf pXpsqq ds

is a Px-martingale with respect to the fields Ft`T , t ě 0. So from (3.103) we
obtain:
ż

ˆ

fpXpt2qq ´ fpXp0qq ´
ż t2

0

LfpXpsqqds
˙

1CdQy

“ Ex

„ˆ

f pXpt1 ` T qq ´ fpXpT qq ´
ż t1`T

T

Lf pXpsqq ds
˙

1C ˝ ϑT | FT

ȷ

pωq

“
ż

ˆ

fpXpt1qq ´ fpXp0qq ´
ż t1

0

LfpXpsqqds
˙

1CdQy. (3.104)

It follows that, for f P DpLq, the process Mf ptq is a Py- as well as a Qy-
martingale. Since PyrXp0q “ ys “ 1 and since

QypXp0q “ yq “ Ex

“

1tXp0q“yu ˝ ϑT | FT

‰

pωq
“ Ex

“

1tXpT q“yu | FT

‰

pωq “ 1tXpT q“yupωq “ 1, (3.105)

we conclude that the probabilities Py and Qy are the same. Equality (3.105)
follows, because, by definition, y “ XpT qpωq “ ωpT pωqq. Since Py “ Qy, it then
follows that

PXpT qpωqpAq “ Ex r1A ˝ ϑT | FT s pωq, A P F.

Or putting it differently:

PXpT qpAq “ Ex r1A ˝ ϑT | FT s , A P F. (3.106)

However, this is exactly the strong Markov property and completes the proof of
Proposition 3.43. �

The following proposition can be proved in the same manner as Theorem 5.1
Corollary in Ikeda and Watanabe [61], p. 206.

3.44. Proposition. If an operator L generates a Feller semigroup, then the
martingale problem is uniquely solvable for L.

Proof. Let tP ptq : t ě 0u be the Feller semigroup generated by L and let

tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ
be the associated strong Markov process (see Theorem 3.37). If f belongs to

DpLq, then the process Mf ptq :“ fpXptqq ´ fpXp0qq ´
şt

0
LfpXpsqqds, t ě 0, is

a Px-martingale for all x P E. This can be seen as follows. Fix t2 ą t1 ě 0.
Then

Ex rMf pt2q | Ft1s

“ Mf pt1q ` Ex

ˆˆ

fpXpt2qq ´
ż t2

t1

LfpXpsqqds
˙

| Ft1

˙

´ fpXpt1qq

“ Mf pt1q ` Ex

„ˆ

fpXpt2 ´ t1 ` t1qq ´
ż t2´t1

0

LfpXps ` t1qqds
˙

| Ft1

ȷ
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´ fpXpt1qq

(Markov property)

“ Mf pt1q ` EXpt1q

ˆ

fpXpt2 ´ t1qq ´
ż t2´t1

0

LfpXpsqqds
˙

´ fpXpt1qq. (3.107)

Next we compute, for y P E and s ą 0, the quantity:

Ey

ˆ

fpXpsqq ´
ż s

0

LfpXpσqqdσ
˙

´ fpyq

“ rP psqf s pyq ´
ż s

0

rP pσqpLfqs pyqdσ ´ fpyq

“ rP psqf s pyq ´
ż s

0

d

dσ
rP pσqf s pyqdσ ´ fpyq

“ rP psqf ss pyq ´ prP psqf s pyq ´ rP p0qf s pyqq ´ fpyq “ 0. (3.108)

Hence from (3.107) and (3.108) it follows that the process Mf ptq, t ě 0, is
a Px-martingale. Next we shall prove the uniqueness of the solutions of the
martingale problem associated to the operator L. Let P1

x and P2
x be solutions

”starting” in x P E. We have to show that these probabilities coincide. Let f
belong to DpLq and let T be a stopping time. Then, via partial integration, we
infer

λ

ż 8

0

e´λt

"

fpXpt ` T qq ´
ż t`T

T

LfpXpτqqdτ ´ fpXpT qq
*

dt ` fpXpT qq

“ λ

ż 8

0

e´λt

"

fpXpt ` T qq ´
ż t`T

T

LfpXpτqqdτ
*

dt

“ λ

ż 8

0

e´λtfpXpt ` T qqdt ´ λ

ż 8

0

e´λt

ż t

0

LfpXpτ ` T qqdτdt

“ λ

ż 8

0

e´λtfpXpt ` T qqdt ´ λ

ż 8

0

ˆ
ż 8

τ

e´λtdt

˙

LfpXpτ ` T qqdτ

“
ż 8

0

e´λt rpλI ´ Lqf s pXpt ` T qqdt. (3.109)

From Doob’s optional sampling theorem together with (3.109) we obtain:
ż 8

0

e´λtE1
x ppλI ´ LqfpXpt ` T qq | FT q dt ´ fpXpT qq

“ λ

ż 8

0

e´λtE1
x

"ˆ

fpXpt ` T qq ´
ż t`T

T

LfpXpτqqdτ ´ fpXpT qq
˙

| FT

*

dt

“ 0

“ λ

ż 8

0

e´λtE2
x

"ˆ

fpXpt ` T qq ´
ż t`T

T

LfpXpτqqdτ ´ fpXpT qq
˙

| FT

*

dt

“
ż 8

0

e´λtE2
x ppλI ´ LqfpXpt ` T qq | FT q dt ´ fpXpT qq. (3.110)
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Next we set

rRpλqf s pxq “
ż 8

0

e´λt rP ptqf s pxqdt, x P E, λ ą 0, f P C0pEq. (3.111)

Then

pλI ´ LqRpλqf “ f, f P C0pEq, RpλqpλI ´ Lqf “ f, f P DpLq. (3.112)

Among other things we see that RpλI ´ Lq “ C0pEq, λ ą 0. From (3.110) it
then follows that, for g P C0pEq,

ż 8

0

e´λtE1
x pgpXpt ` T qq | FT q dt “

ż 8

0

e´λtrP ptqgspXpT qqdt

“
ż 8

0

e´λtE2
x pgpXpt ` T qq | FT q dt. (3.113)

Since Laplace transforms are unique, since g belongs to C0pEq and since paths
are right continuous, we conclude

E1
x pgpXpt ` T qq | FT q “ rP ptqgspXpT qq “ E2

x pgpXpt ` T qq | FT q , (3.114)

whenever g belongs to C0pEq, whenever t ě 0 and whenever T is a stopping
time. The first equality in (3.114) holds P1

x-almost surely and the second P2
x-

almost surely. As in Theorem 3.36 it then follows that

E1
x

´

źn

j“1
fjpXptjqq

¯

“ E2
x

´

źn

j“1
fjpXptjqq

¯

(3.115)

for n “ 1, 2, . . . and for f1, . . . , fn in C0pEq. But then the probabilities P1
x and

P2
x are the same. This proves Proposition 3.44. �
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The theorem we want to prove reads as follows.

3.45. Theorem. Let L be a linear operator with domain DpLq and range RpLq
in C0pEq. Let Ω be the path space Ω “ D

`

r0,8q , E△
˘

. The following assertions
are equivalent:

(i) The operator L is closable and its closure generates a Feller semigroup;
(ii) The operator L solves the martingale problem maximally and its domain

DpLq is dense in C0pEq;
(iii) The operator L verifies the maximum principle, its domain DpLq is

dense in C0pEq and there exists λ0 ą 0 such that the range R pλ0I ´ Lq
is dense in C0pEq.

3.46. Remark. The hard part in (iii) is usually the range property: there exists
λ0 ą 0 such that the range R pλ0I ´ Lq is dense in C0pEq. The theorem also
shows, in conjunction with the results on Feller semigroups and Markov pro-
cesses, the relations which exist between the unique solvability of the martingale
problem, the strong Markov property and densely defined operators verifying
the maximum principle together with the range property. However if L is in fact
a second order differential operator, then we want to read of the range property
from the coefficients. There do exist results in this direction. The interested
reader is referred to the literature: Stroock and Varadhan [133] and also Ikeda
and Watanabe [61].

In what follows we shall assume that the equivalence of (i) and (iii) already has
been established. A proof can be found in [141], Theorem 2.2., p.14. In the
proof of (ii) ñ (i) we shall use this result. We shall also show the implication
(i) ñ (ii).

Proof. (ii) ñ (i). Let, for x P E, the probability Px be the unique solution
of the martingale problem associated to the operator L. From Proposition 3.43
it follows that the process tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ is a
strong Markov process. Define the operators tP ptq : t ě 0u as follows:

rP ptqf spxq “ Ex pfpXptqqq , f P C0pEq, t ě 0. (3.116)

We also define the operators tRpλq : λ ą 0u as follows:

rRpλqf spxq “
ż 8

0

e´λtrP ptqf spxqdt, f P C0pEq, λ ą 0. (3.117)

From Proposition 3.42 it follows that the operators P ptq leave C0pEq invariant
and hence we also have RpλqC0pEq Ď C0pEq. From the Markov property it fol-
lows that tP ptq : t ě 0u is a Feller semigroup and that the family tRpλq : λ ą 0u
is a resolvent family in the sense that

P ps ` tq “ P psq ˝ P ptq, s, t ě 0, (3.118)

Rpλ2q ´ Rpλ1q “ pλ1 ´ λ2qRpλ1q ˝ Rpλ2q, λ1, λ2 ą 0. (3.119)

For λ ą 0 fixed the operator rL is defined in C0pEq as follows:

rL : Rpλqf ÞÑ λRpλqf ´ f, f P C0pEq. (3.120)
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Here the domain DprLq is given by DprLq “ tRpλqf : f P C0pEqu. The operator
rL is well-defined. For, if f1 and f2 in C0pEq are such that Rpλqf1 “ Rpλqf2, then
by the resolvent property (3.119) we see µRpµqf1 “ µRpµqf2, µ ą 0. Let µ tend

8, to obtain f1 “ f2. Since the operator Rpλq is continuous, the operator rL is

closed. Next we shall prove that rL is an extension of L. By partial integration,
it follows that, for f P DpLq,

e´λt

"

fpXptqq ´ fpXp0qq ´
ż t

0

LfpXpτqqdτ
*

` λ

ż t

0

e´λs

"

fpXpsqq ´ fpXp0qq ´
ż s

0

LfpXpτqqdτ
*

ds

“ e´λtfpXptqq ´ fpXp0qq `
ż t

0

e´λspλI ´ LqfpXpsqqds. (3.121)

As a consequence upon applying (3.121) once more, the processes
"

e´λtfpXptqq ´ fpXp0qq `
ż t

0

e´λspλI ´ LqfpXpsqqds : t ě 0

*

, f P DpLq,

(3.122)
are Px-martingales for all x P E. Here we employ the fact that the processes

"

fpXptqq ´ fpXp0qq ´
ż t

0

LfpXpsqqds : t ě 0

*

, f P DpLq,

are Px-martingales. This is part of assertion (ii). From assertion (3.122) it
follows that

0 “ Ex

ˆ

e´λtfpXptqq ´ fpXp0qq `
ż t

0

e´λspλI ´ LqfpXpsqqds
˙

, f P DpLq.

(3.123)
Let t tend to infinity in (3.123) to obtain

0 “ ´Ex pfpXp0qqq `
ż 8

0

e´λsEx ppλI ´ LqfpXpsqqq ds, f P DpLq. (3.124)

From (3.124) we obtain fpxq “
ş8
0
e´λs rP psqpλI ´ Lqf s pxqds, f P DpLq. Or

writing this differently f “ RpλqpλI ´ Lqf , f P DpLq. Let f belong to DpLq.
Then f “ Rpλqg, with g “ pλI ´ Lqf and hence f belongs to DprLq. Moreover
we see

rLf “ rLpRpλqgq “ λRpλqg ´ g “ λf ´ pλf ´ Lfq “ Lf. (3.125)

It follows that rL is a closed linear extension of L. In addition we have RpλI ´
rLq “ C0pEq. We shall show that the operator rL verifies the maximum principle.
This can be achieved as follows. Let f in C0pEq be such that, for some x0 P E,

Re pRpλqfqpx0q “ sup tRe Rpλqfpxq : x P Eu ą 0. (3.126)

Then Re pRpλqfqpx0q ě Re RpλqfpXptqq, t ě 0, and hence

Re pRpλqfqpx0q ě Re

ż 8

0

e´λsEXptq pfpXpsqqq ds, t ě 0. (3.127)
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So that, upon employing the Markov property, we obtain for t ě 0:

Re pRpλqfqpx0q ě Re

ż 8

0

e´λsEx0

`

EXptq pfpXpsqqq
˘

ds

“ Re Ex0 prRpλqf s pXptqq . (3.128)

Hence, for µ ą 0, we obtain

1

µ
Re pRpλqfqpx0q “

ż 8

0

e´µtRe Rpλqfpx0qdt

ě Re

ż 8

0

e´µtEx0 prRpλqf s pXptqqq dt

“ Re RpµqRpλqfpx0q

(resolvent equation (3.119)

“ Re
Rpλqfpx0q ´ Rpµqfpx0q

µ ´ λ
. (3.129)

Consequently: rλRe Rpλqf s px0q ď Re rµRpµqf s px0q, µ ą λ. Let µ tend to
infinity, use right continuity of paths and the continuity of f to infer

Re rLRpλqfpx0q “ Re tλRpλqfpx0q ´ fpx0qu ď 0. (3.130)
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This proves that rL verifies the maximum principle. Employing the implication

(iii) ñ (i) in Theorem 3.45 yields that rL is the generator of a Feller semigroup.

From Proposition 3.44 it then follows that for rL the martingale problem is
uniquely solvable. Since L solves the martingale problem maximally and since
rL extends L, it follows that rL “ L, the closure of L. Consequently the operator
L is closable and its closure generates a Feller semigroup.

(i) ñ (ii) Let the closure of L, L, be the generator of a Feller semigroup.
From Proposition 3.44 it follows that for L the martingale problem is uniquely
solvable. Hence this is true for L. We still have to prove that L is maximal with
respect to this property. Let L1 be any closed linear extension of L for which

the martingale problem is uniquely solvable. Define ĂL1 in the same fashion as

in the proof of the implication (ii) ñ (i), with L1 replacing L. Then rL1 is a

closed linear operator, which extends L1. So that rL1 extends L. As in the proof

of the implication (ii) ñ (i) it also follows that rL1 generates a Feller semigroup.
Since, by (i), the closure of L, also generates a Feller semigroup, we conclude by

uniqueness of generators, that L “ rL1. Since rL1 Ě L1 “ L1 Ě L Ě L, it follows
that the closure of L coincides with L1. This proves the maximality property
of L, and so the proof of Theorem 3.45 is complete. �

In fact a careful analysis of the proof of Theorem 3.45 shows the following result.

3.47. Proposition. Let L be a densely defined operator for which the martin-
gale problem is uniquely solvable, and which is maximal for this property. Then
there exists a unique closed linear extension L0 of L, which is the generator of
a Feller semigroup.

Proof. Existence. Let tPx : x P Eu be the solution for L, and assume that
for all f P C0pEq the function x ÞÑ rP ptqf s pxq belongs to C0pEq for all t ě 0.
Here P ptqfpxq is defined by

rP ptqf s pxq “ Ex pfpXptqqq , rRpλqf s pxq “
ż 8

0

e´λs rP psqf s pxqds,

L0pRpλqfq :“ λRpλqf ´ f, f P C0pEq.
Here t ě 0 and λ ą 0 is fixed. Then, as follows from the proof of Theorem 3.45,
the operator L0 generates a Feller semigroup.

Uniqueness. Let L1 and L2 be closed linear extensions of L, which both generate
Feller semigroups. Let

␣

pΩ,F,P1
xq, pXptq : t ě 0q, pϑt : t ě 0q, pE,Eq

(

respectively
␣

pΩ,F,P2
xq, pXptq : t ě 0q, pϑt : t ě 0q, pE,Eq

(

be the corresponding Markov processes. For every f P DpLq, the process

fpXptqq ´ fpXp0qq ´
şt

0
LfpXpsqqds, t ě 0, is a martingale with respect to P1

x

as well as with respect to P2
x. Uniqueness implies P1

x “ P2
x and hence L1 “ L2.

The proof of Proposition 3.47 is complete now. �
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3.48. Corollary. Let L be a densely defined linear operator with domain DpLq
and range RpLq in C0pEq. The following assertions are equivalent:

(i) Some extension of L generates a Feller semigroup.

(ii) For some extension of L the martingale problem is uniquely solvable for
every x P E.

Proof. (i) ùñ (ii). Let L0 be an extension of L that generates a Feller semi-
group. Let tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ be the corresponding
Markov process. For x P E the probability Px is the unique solution for the
martingale problem starting in x.

(ii) ùñ (i). Let L0 be an extension of L for which the martingale problem is
uniquely solvable for every x P E. Also suppose that L0 is maximal for this
property. Let tPx : x P Eu be the unique solution of the corresponding martin-
gale problem. Define the operators P ptq, t ě 0, by rP ptqf s pxq “ Ex pfpXptqqq,
f P C0pEq. From the proof of Theorem 3.45 it follows that tP ptq : t ě 0u is a
Feller semigroup with generator L0.

This completes the proof of Corollary 3.48. �
3.49. Example. Let L0 be an unbounded generator of a Feller semigroup in
C0pEq and let µk and νk, 1 ď k ď n, be finite (signed) Borel measures on E.
Define the operator Lµ⃗,ν⃗ as follows:

D pLµ⃗,ν⃗q “
n

č

k“1

"

f P DpL0q :
ż

L0fdµk “
ż

fdνk

*

,

Lµ⃗,ν⃗f “ L0f, f P D pLµ⃗,ν⃗q .
Then the martingale problem is uniquely solvable for Lµ⃗,ν⃗ . In fact let

tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ
be the strong Markov process associated to the Feller semigroup generated by
L0. Then P “ Px solves the martingale problem

(a) For every f P DpLµ⃗,ν⃗q the process

fpXptqq ´ fpXp0qq ´
ż t

0

Lµ⃗,ν⃗fpXpsqqds, t ě 0,

is a P-martingale;
(b) PpXp0q “ xq “ 1,

uniquely. This can be seen as follows. We may and do suppose that the func-
tionals f ÞÑ

ş

L0fdµk ´
ş

fdνk, f P DpL0q, 1 ď k ď n, are linearly independent.
If some µk belongs to D pL˚

0q, then D pLµ⃗,ν⃗q is not dense and if none of the
measures µk belongs to D pL˚

0q, then D pLµ⃗,ν⃗q is dense in C0pEq. In either case
there exists a unique extension, in fact L0, of Lµ⃗,ν⃗ which generates a Feller semi-
group. Therefore we choose functions uk P DpL0q, 1 ď k ď n, in such a way
that

ş

L0ukdµℓ ´
ş

ukdνℓ “ δk,ℓ, 1 ď k, ℓ ď n. Suppose that P1
x and P2

x are prob-
abilities, that start in x, with the property that for all f P D pLµ⃗,ν⃗q the process
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t ÞÑ fpXptqq ´ fpXp0qq ´
şt

0
L0fpXpsqqds is a P1

x- as well as a P2
x-martingale.

As in (3.110) we see that for all f P DpL0q (vk “ pλI ´ L0quk, 1 ď k ď n):

fpxq ´
n

ÿ

k“1

ˆ
ż

L0fdµk ´
ż

fdνk

˙

ukpxq (3.131)

“
ż 8

0

e´λsE1
x

˜

pλI ´ L0q

˜

f ´
n

ÿ

k“1

ˆ
ż

L0fdµk ´
ż

fdνk

˙

uk

¸

pXpsqq

¸

ds

“
ż 8

0

e´λsE2
x

˜

pλI ´ L0q

˜

f ´
n

ÿ

k“1

ˆ
ż

L0fdµk ´
ż

fdνk

˙

uk

¸

pXpsqq

¸

ds.

Write f “ pλI ´ L0q´1 g “ Rpλqg. From (3.131) we obtain

Rpλqgpxq ´
n

ÿ

k“1

ˆ
ż

pλRpλqg ´ gq dµk ´
ż

Rpλqgdνk
˙

ukpxq (3.132)

“
ż 8

0

e´λsE1
x

«

gpXpsqq ´
n

ÿ

k“1

ˆ
ż

pλRpλqg ´ gq dµk ´
ż

Rpλqgdνk
˙

vkpXpsqq

ff

ds

“
ż 8

0

e´λsE2
x

«

gpXpsqq ´
n

ÿ

k“1

ˆ
ż

pλRpλqg ´ gq dµk ´
ż

Rpλqgdνk
˙

vkpXpsqq

ff

ds.

Put
ÝÑ
F pλq “ pF1pλq, . . . , Fnpλqq and put Upλq “ puk,ℓpλqq, where, for 1 ď k ď n,

Fkpλq “
ż 8

0

e´λs
`

E1
x rpλI ´ L0qukpXpsqqs ´ E2

x rpλI ´ L0qukpXpsqqs
˘

ds,

and where uk,ℓ, 1 ď k, ℓ ď n, is given by

uk,ℓpλq “
ż

λRpλquℓ dµk ´
ż

uℓdµk ´
ż

Rpλquℓ dνk.

Since (3.132) is valid for all g P C0pEq, it follows that
ÝÑ
F pλq “ UpλqÝÑ

F pλq.
Since, in addition limλÑ8 Upλq “ 0, we see Fkpλq “ 0 for all λ ą 0 and
for 1 ď k ď n. So that

ş8
0
e´λsE1

x pukpXpsqqq ds “
ş8
0
e´λsE2

x rukpXpsqqs ds
for all λ ą 0 and for all 1 ď k ď n. Again an application of (3.132) yields
E1

x rgpXpsqqs “ E2
x rgpXpsqqs for all g P C0pEq. Since these arguments are valid

for any x P E, we conclude just as in Proposition 2.9 and its Corollary on page
206 of Ikeda and Watanabe [61]), that P1

x “ P2
x “ Px, x P E, In particular

we may take E “ r0, 1s, L0f “ 1
2
f 2, DpL0q “ tf P C2r0, 1s : f 1p0q “ f 1p1q “ 0u,

µk pIq “
şβk

αk
1Ipsqds, νk “ 0, 0 ď αk ă βk ď 1, 1 ď k ď n. Then L0 generates

the Feller semigroup of reflected Brownian motion: see Liggett [86], Example
5.8., p. 45. For the operator Lµ⃗,ν⃗ the martingale problem is uniquely (but not
maximally uniquely) solvable. However it does not generate a Feller semigroup.
The previous arguments do not seem to be entirely correct. It ought to be
replaced with some results in Section 10 (e.g. Theorem 3.110).

Problem. We want to close this section with the following question. Suppose
that the operator L possesses a unique extension L0, that generates a Feller
semigroup. Is it true that for L the martingale problem is uniquely solvable?
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In general the answer is no, but if we require that L solves the martingale
problem maximally, then the answer is yes, provided as sample space we take
the Skorohod space. This result is proved in Theorem 3.45.

For the time being we will not pursue the Markov property. However, we will
continue with Brownian motion and stochastic integrals. First we give the
definition of some interesting processes.
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4. Martingales, submartingales, supermartingales and
semimartingales

Let pΩ,F,Pq be a probability space and let tFt : t ě 0u be an increasing family
of σ-fields in F. If necessary we suppose that the filtration tFt : t ě 0u is right
continuous, i.e. Ft “

Ş

sąt Fs, or complete in the sense that, for every t ą 0,
the σ-field Ft contains all A P F, with PpAq “ 0.

Let tHptq : t ě 0u be a collection of R-valued functions defined on Ω. Such a
family is called a (real-valued) process.

3.50. Definition. The following processes and σ-fields will play a role in the
sequel.

(a) The process tHptq : t ě 0u is said to be adapted or non-anticipating if,
for every t ě 0, the variable Hptq is measurable with respect to Ft.

(b1 The symbol Λ denotes the σ-field (“ σ-algebra) of subsets of r0,8qˆΩ,
which is generated by the adapted processes which are right-continuous
and which possess left limits. These are the so-called cadlag processes.

(b2) The process tHptq : t ě 0u is said to be optional if the function pt, ωq Ñ
Hpt, ωq is measurable with respect to Λ.

(c1) The symbol Π denotes the σ-field of subsets of r0,8q ˆ Ω, which is
generated by the adapted processes which are left-continuous adapted
processes.

(c2) The process tHptq : t ě 0u is said to be predictable if the function
pt, ωq Ñ Hpt, ωq is measurable with respect to Π.

3.51. Proposition. The collection tpa, bs ˆ A : 0 ď a ă b, A P Fau generates the
σ-field Π.

Proof. Let A belong to Fa. The variable ω ÞÑ 1pa,bspsq1Apωq is measurable
with respect to Fs and the function s ÞÑ 1pa,bspsq1Apωq is left continuous. This
proves that pa, bs ˆ A belongs to Π.

Conversely let F be adapted and left continuous. Put

Fnps, ωq “
ÿ8

k“0
F

`

k2´n, ω
˘

1pk2´n,pk`1q2´nspsq “ F
`

pr2nss ´ 1q 2´n, ω
˘

.

Then, by left continuity, limnÑ8 Fnps, ωq “ F ps, ωq, P-almost surely. Moreover
the processes tFnptq : t ě 0u are adapted and are measurable with respect to
the σ-field generated by tpa, bs ˆ A : 0 ď a ă b, A P Fau. All this completes the
proof of Proposition 3.51. �

3.52. Remark. Since 1pa,bspsq ˆ 1Apωq “ lim
nÑ8

1ran,bnqpsq1Apωq, where an Ó a and

where bn Ó b, it follows that Π Ď Λ. Here we employ Proposition 3.51.

3.53. Definition. Let tXptq : t ě 0u be an adapted process.

(a) The family tXptq : t ě 0u is a martingale if E p|Xptq|q ă 8, t ě 0, and
if, for every t ą s ě 0, E pXptq | Fsq “ Xpsq, P-almost surely.
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(b) The family tXptq : t ě 0u is a submartingale if E p|Xptq|q ă 8, t ě 0,
and if, for every t ą s ě 0, E pXptq | Fsq ě Xpsq, P-almost surely.

(c) The family tXptq : t ě 0u is a supermartingale if E p|Xptq|q ă 8, t ě 0,
and if, for every t ą s ě 0, E pXptq | Fsq ď Xpsq, P-almost surely.

(d) It is P-almost surely of finite variation (on r0, ts) if

sup
!

ÿn

j“1
|Xptjq ´ Xptj´1q| : 0 ď t0 ă t1 ă . . . ă tn ă 8

)

ă 8,
´

sup
!

ÿn

j“1
|Xptjq ´ Xptj´1q| : 0 ď t0 ă t1 ă . . . ă tn ď t

)

ă 8,
¯

P-almost surely.
(e) It is a local martingale if there exists an increasing sequence of stopping

times pTn : n P Nq for which limnÑ8 Tn “ 8, P-almost surely, and for
which the processes

tXpTn ^ tq : t ě 0u , n “ 1, 2, . . .

are martingales with respect to the filtration tFTn^t : t ě 0u.
(f) Let T be a stopping time. The process tXptq : t ě 0u is a local martin-

gale on r0, T q if there exists a sequence of stopping times pTn : n P Nq
which is increasing for which limnÑ8 Tn “ T , P-almost surely, and for
which the processes tXpTn ^ tq : t ě 0u, n “ 1, 2, . . . are martingales
with respect to the filtration tFTn^t : t ě 0u.

(g) The definition of “local submartingale”, “local supermartingale” and
“being locally P-almost surely of finite variation” are now self-explan-
atory.

(h) The process tXptq : t ě 0u is called a semi-martingale if it can be writ-
ten in the form Xptq “ Mptq ` Aptq, where tMptq : t ě 0u is a mar-
tingale and where tAptq : t ě 0u is an adapted process which is finite
variation, P-almost surely, on r0, ts for every t ą 0, and for which
E |Aptq| ă 8, t ě 0.

(i) The process tXptq : t ě 0u is of class (DL) if for every t ą 0 the family

tXpτq : 0 ď τ ď t, τ is a pFtq -stopping timeu
is uniformly integrable.

3.54. Remark. Let tXptq : t ě 0u be a semi-martingale. The decomposition
Xptq “ Mptq ` Aptq, where tMptq : t ě 0u is a martingale and where for every
t ą 0 the process tAptq : t ě 0u is P-almost surely of finite variation and where
tAptq : t ě 0u is predictable and right continuous P-almost surely is unique,
provided Ap0q “ 0, P-almost surely. This follows from the fact that a right-
continuous martingale which is predictable and of finite variation is necessarily
constant: this is a consequence of the uniqueness part of the Doob-Meyer de-
composition: see Theorem 1.24. A proof of the Doob-Meyer decomposition
theorem may start as follows. Put

Xjptq “ E
„

X

ˆ

r2jts
2j

˙

ˇ

ˇ

ˇ
Ft

ȷ

and (3.133)

Ajptq “ Ajp0q `
ÿ

0ďkă2jt

E
„

X

ˆ

k ` 1

2j

˙

´ X

ˆ

k

2j

˙

ˇ

ˇ

ˇ
Fk2´j

ȷ

,
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and prove Mjptq :“ Xjptq ´ Ajptq is a martingale. Then let j Ñ 8 to obtain:
Xptq “ Mptq ` Aptq, where Mptq “ limjÑ8 Mjptq and Aptq “ limjÑ8 Ajptq.

3.55. Remark. An Ft-martingale tMptq : t ě 0u is of class (DL), an increasing
adapted process tAptq : t ě 0u in L1pΩ,F,Pq is of class (DL) and hence the sum

tMptq ` Aptq : t ě 0u

is of class (DL). If tXptq : t ě 0u is a submartingale and if µ is a real number,
then the process tmax pXptq, µq : t ě 0u is a submartingale of class (DL). Pro-
cesses of class (DL) are important in the Doob-Meyer decomposition theorem.

We continue with some examples of martingales, submartingales and the like.

3.56. Example. Let T : Ω Ñ r0,8s be a stopping time. Since T is a stopping
time and since the process

␣

1tTătu : t ě 0
(

is left continuous, it is predictable.

It follows that the process
␣

1tTětu : t ě 0
(

is predictable as well.

3.57. Example. Let I be an open interval in R and let φ : I Ñ p´8,8q be an
increasing convex function. If tXptq : t ě 0u is a submartingale with values in
I, then the process tφpXptqq : t ě 0u is also a submartingale. For let t ą s ě 0.
Then by the Jensen inequality and the monotonicity of φ it follows that

E rφpXptqq | Fss ě φ rE pXptq | Fsqs ě φ pXpsqq .

3.58. Example. Let pBptq,P0q be one-dimensional Brownian motion starting
in 0. Then tBptq : t ě 0u is a martingale. Since the definition of martingale also
makes sense for vector valued processes, we also see that an Rν-valued Brownian
motion is a martingale.

3.59. Example. Let pBptq,P0q be Rν-valued Brownian motion starting in 0.
The process

␣

|Bptq|2 ´ νt : t ě 0
(

is a martingale.

3.60. Example. Let tXptq,Pxu be a (strong) Markov process such that

Ex rfpXptqqs “
ż

ppt, x, yqfpyqdmpyq, f ě 0,

where the density ppt, x, yq verifies the Chapman-Kolmogorov identity:

pps ` t, x, yq “
ż

pps, x, zqppt, z, yqdmpzq.

The process tppt ´ s,Xpsq, yq : 0 ď s ă tu is a martingale on r0, tq. For example
for Xptq we may take Bptq, d-dimensional Brownian motion. Then

ppt, x, yq “ pdpt, x, yq “
1

`?
2πt

˘d
exp

˜

´
|x ´ y|2

2t

¸

.

3.61. Example. Let tXptq : t ě 0u be a right-continuous martingale and let T
be a stopping time. The process tX pT ^ tq : t ě 0u is a martingale with respect
to tFt : t ě 0u and also with respect to the filtration tFT^t : t ě 0u.
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3.62. Example. This is a standard example of a closed martingale, i.e. a
martingale which is written as conditional expectations on σ-fields taken from
a filtration. Let Y be an random variable in L1 pΩ,F,Pq. The process s ÞÑ
E rY | Fss, s ě 0, is a martingale.

We want to insert an inequality on the second moment of a martingale. This is
a special case of the Burkholder-Davis-Gundy inequality.

3.63. Proposition. Let tMptq : t ě 0u be a continuous martingale with Mp0q “
0. Then

E
`

Mptq2
˘

ď E
`

M˚ptq2
˘

ď 4E
`

Mptq2
˘

.

Here M˚ptq “ sup0ďsďt |Mpsq|.
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Proof. Define for ξ ą 0 the stopping time Tξ by

Tξ “ inf tt ą 0 : M˚ptq ě ξu .

Then tM˚ptq ą ξu Ď tTξ ă tu and tTξ ă tu Ď tM˚ptq ě ξu and hence, since
|Mptq| is a submartingale we obtain upon using Doob’s optional sampling

E
`

M˚ptq2
˘

“
ż 8

0

P
`

M˚ptq2 ą λ
˘

dλ

(make the substitution λ “ ξ2)

“ 2

ż 8

0

ξP pM˚ptq ą ξq dξ ď 2

ż 8

0

ξP pTξ ă tq dξ

“ 2

ż 8

0

E p|MpTξq| : Tξ ă tq dξ

(Doob’s optional sampling)

ď 2

ż 8

0

E p|Mptq| : Tξ ă tq dξ

“ 2

ż 8

0

E p|Mptq| : M˚ptq ě ξq dξ

“ 2E p|Mptq|M˚ptqq

(Cauchy-Schwarz’ inequality)

ď 2
`

E
`

Mptq2
˘˘1{2 `

E
`

M˚ptq2
˘˘1{2

.

Consequently E pM˚ptq2q ď 4E pMptq2q. This completes the proof of Proposition
3.63. �

3.64. Remark. The method of works very well if E pM˚ptq2q is finite. If this
is not the case we may use a localization technique. The reader should provide
the details. Perhaps truncating is also possible.

5. Regularity properties of stochastic processes

In Theorem 3.18 we proved that Brownian motion possesses a continuous ver-
sion. We want to amplify this result. In fact we shall prove that Brownian
motion has Hölder continuous paths of any order α ă 1

2
. This means that for

every α ă 1
2
and for every a ą 0, a P R, there exists a random variable Cpbq,

depending on Brownian motion such that for all 0 ď s ă t ď a, the inequality

|bptq ´ bpsq| ď Cpbq |t ´ s|α

holds P-almost surely. This will be the content of Theorem 3.67 below. We
begin with a rather general result, due to Kolmogorov, for arbitrary stochastic
processes.
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3.65. Theorem. Fix a finite interval ra, bs. Let tXpsq : a ď s ď bu be a stochas-
tic process on the probability space pΩ,F,Pq. Suppose that there exist constants
K, r and p, such that 0 ă r ă p ă 8 and such that

E p|Xptq ´ Xpsq|pq ď K |t ´ s|1`r (3.134)

for all a ď s, t ď b. Fix 0 ă α ă r{p. Then there exists a random variable
CpXq, which is finite P-almost surely, such that

|Xptq ´ Xpsq| ď CpXq |t ´ s|α (3.135)

for all dyadic rational numbers s and t in the interval ra, bs. In particular it
follows that a process X “ tXpsq : a ď s ď bu verifying (3.134) has a Hölder
continuous version of order α, α ă r{p.

Proof. It suffices to prove (3.135), because the version problem can be
taken care of as in Theorem 3.18. Without loss of generality we may and do
suppose that a “ 0 and that b “ 1. Otherwise we consider the process Y defined
by Y psq “ X ppa0 ` spb0 ´ a0qq, 0 ď s ď 1, where a0 and b0 are dyadic rational
with a0 ď a and with b ď b0 and where outside of the interval ra, bs the process
X is defined by Xptq “ Xpaq, if a0 ď t ď a, and Xptq “ Xpbq, if b ď t ď b0.
Put ϵ “ r ´ αp. Then

P p|Xptq ´ Xpsq| ě |t ´ s|αq ď |t ´ s|´αp E p|Xptq ´ Xpsq|pq ď K |t ´ s|1`ϵ ,
(3.136)

so that

P
ˆˇ

ˇ

ˇ

ˇ

X

ˆ

k ` 1

2n

˙

´ X

ˆ

k

2n

˙ˇ

ˇ

ˇ

ˇ

ě 2´nα

˙

ď K2´n2´nϵ. (3.137)

Hence
8
ÿ

n“1

2n´1
ÿ

k“0

P
ˆˇ

ˇ

ˇ

ˇ

X

ˆ

k ` 1

2n

˙

´ X

ˆ

k

2n

˙ˇ

ˇ

ˇ

ˇ

ě 2´nα

˙

ď K
8
ÿ

n“1

2n2´n2´nϵ “
K

2ϵ ´ 1
. (3.138)

By the Borel-Cantelli lemma it follows that

P

˜

8
ď

m“1

č

něm

"

max
0ďkď2n´1

ˇ

ˇ

ˇ

ˇ

X

ˆ

k ` 1

2n

˙

´ X

ˆ

k

2n

˙ˇ

ˇ

ˇ

ˇ

ď 2´nα

*

¸

“ 1. (3.139)

Hence there exists a random integer νpXq with the following property: For
P-almost all ω the inequality

max
0ďkď2n´1

ˇ

ˇ

ˇ

ˇ

X

ˆ

k ` 1

2n

˙

´ X

ˆ

k

2n

˙ˇ

ˇ

ˇ

ˇ

ď 2´nα (3.140)

is valid for n ě νpXq. Next let n ě νpXq and let t be a dyadic rational in the
interval rk2´n, pk ` 1q2´ns. Write t “ k2´n `

řm
j“1 γj2

´n´j, each γj equals 0 or
1. Then

ˇ

ˇ

ˇ

ˇ

Xptq ´ X

ˆ

k

2n

˙ˇ

ˇ

ˇ

ˇ

ď
m
ÿ

j“1

γj
2αpn`jq ď

1

2α ´ 1

1

2nα
. (3.141)
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Similarly we have, with t “ ℓ2´N , N ě n, pk ` 1q2´n “ ℓ2´N `
řm1

j“1 γ
1
j2

´N´j,
γ1
j equals 0 or 1,

ˇ

ˇ

ˇ

ˇ

Xptq ´ X

ˆ

k ` 1

2n

˙ˇ

ˇ

ˇ

ˇ

ď
m1
ÿ

j“1

γ1
j

2αpN`jq ď
1

2α ´ 1

1

2Nα
ď

1

2α ´ 1

1

2nα
. (3.142)

Next let s and t be dyadic rationale numbers with 0 ă t ´ s ď 2´νpXq. Take
n P N with 2´n´1 ď t´s ă 2´n and pick k in such a way that k2´n´1 ď s ă pk`
1q2´n´1. Then pk`1q2´n´1 ď t “ t´s`s ă 2´n `pk`1q2´n´1 “ pk`3q2´n´1.
It follows that, since t belongs to rpk ` 1q2´n´1, pk ` 2q2´n´1s or to the interval
rpk ` 2q2´n´1, pk ` 3q2´n´1s,

|Xptq ´ Xpsq|

ď
ˇ

ˇ

ˇ

ˇ

Xptq ´ X

ˆ

k ` 2

2n`1

˙ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

X

ˆ

k ` 2

2n`1

˙

´ X

ˆ

k ` 1

2n`1

˙ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

X

ˆ

k ` 1

2n`1

˙

´ Xpsq
ˇ

ˇ

ˇ

ˇ

ď
3

2α ´ 1
2´pn`1qα ď

3

2α ´ 1
|t ´ s|α . (3.143)

If 1 ě t´s ą 2´νpXq, we choose k and ℓ P N in such a way that 2νpXq ą ℓ ą k ě 0
and that ℓ2´νpXq ă t ď pℓ ` 1q2´νpXq and k2´νpXq ă s ď pk ` 1q2´νpXq. Then
we get

|Xptq ´ Xpsq| ď
ˇ

ˇ

ˇ

ˇ

Xptq ´ X

ˆ

ℓ ` 1

2νpXq

˙ˇ

ˇ

ˇ

ˇ

`
j“ℓ
ÿ

j“k

ˇ

ˇ

ˇ

ˇ

X

ˆ

j ` 1

2νpXq

˙

´ X

ˆ

j

2νpXq

˙ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

X

ˆ

k

2νpXq

˙

´ Xpsq
ˇ

ˇ

ˇ

ˇ

ď
2 ` 2νpXq

2α ´ 1
2´ανpXq ď

2 ` 2νpXq

2α ´ 1
|t ´ s|α . (3.144)

From (3.143) and (3.144) the result in Theorem 3.65 follows. �

In order to apply the previous result to Brownian motion, we insert a general
equality for a Gaussian variable X.

3.66. Proposition. Let X : Ω Ñ R be a non-constant Gaussian variable. Then
its distribution is given by

P pX P Bq “
1

`

2πE
`

X2 ´ pE pXqq2
˘˘1{2

ż

B

exp

˜

´
1

2

|x ´ EpXq|2

E pX2q ´ pE pXqq2

¸

dxq

(3.145)
and its moments E p|X ´ EpXq|pq, p ą ´1, are given by

E p|X ´ EpXq|pq “
2

1
2
pΓ

`

1
2
p ` 1

2

˘

?
π

ˆ

b

E
`

X2 ´ pEpXqq2
˘

˙p

. (3.146)
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Proof. Equality (3.145) follows from formula (3.8) and formula (3.146) is
proved by using (3.145). The formal arguments read (we write Y “ X ´EpXq):

E p|Y |pq “
1

p2πE pY 2qq1{2

ż

|y|p exp
ˆ

´
1

2

y2

EpY 2q

˙

dy

“
´

a

EpY 2q
¯p 2?

2π

ż 8

0

yp exp

ˆ

´
1

2
y2

˙

dy

“
´

a

EpY 2q
¯p 2

1
2
pΓ

`

1
2
p ` 1

2

˘

?
π

.

The latter is the same as (3.146). �
3.67. Theorem. Let tbpsq : s ě 0u be d-dimensional Brownian motion. This
process is P-almost surely Hölder continuous of order α for any α ă 1

2
.
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Proof. It suffices to prove Theorem 3.67 for 1-dimensional Brownian mo-

tion. So suppose d “ 1 and let α ă 1{2. Choose p ą 1 so large that α ă
1

2
´

1

p
.

From inequality (3.146) in Proposition 3.66 with X “ bptq ´ bpsq we obtain

E p|bptq ´ bpsq|pq “ E p|bpt ´ sq|pq “ Cp

`

E
`

|bpt ´ sq|2
˘˘p{2

“ Cp |t ´ s|p{2 “ Cp |t ´ s|1`r , (3.147)

where r “ p{2 ´ 1 ą pα. An application of Theorem 3.65 yields the desired
result. �

The following theorem says that Brownian motion is nowhere differentiable.

3.68. Theorem. Fix α ą 1
2
. Then with probability one, t ÞÑ bptq is nowhere

Hölder continuous of order α. More precisely

P
ˆ

inf
0ďtď1

„

lim sup
hÑ0

|bpt ` hq ´ bptq|
|h|α

ȷ

“ 8
˙

“ 1.

Proof. For a proof we refer the reader to the literature; e.g. Simon [[121],
Theorem 5.4. p. 46]. �

In the theory of stochastic integration we will have a need for the following
lemma. The following lemma can also be proved by the strong law of large
numbers: see e.g. Smythe [123].

3.69. Lemma. Let tbpsq : s ě 0u be one-dimensional Brownian motion. Then,

P-almost surely, limnÑ8
ř2n´1

k“0 |b ppk ` 1q2´ntq ´ b pk2´ntq|2 “ t.

Proof. Put△k,n “ |b ppk ` 1q2´ntq ´ b pk2´ntq|2´2´nt. Then the variables
△k,n, 0 ď k ď 2n ´ 1, are independent and have expectation 0. So that

E

˜

2n´1
ÿ

k“0

△k,n

¸2

“
2n´1
ÿ

k“0

E p△k,nq2 “
2n´1
ÿ

k“0

E
´

ˇ

ˇb
`

2´nt
˘ˇ

ˇ

2 ´ 2´nt
¯2

“ 2n
´

E
ˇ

ˇb
`

2´nt
˘ˇ

ˇ

4 ´ 2E
ˇ

ˇb
`

2´nt
˘ˇ

ˇ

2
2´nt ` 2´2nt2

¯

“ 2 ˆ 2´nt2. (3.148)

Tchebychev’s inequality gives

P

¨

˝

˜

2n´1
ÿ

k“0

△k,n

¸2

ą ϵ

˛

‚ď
2

ϵ
t22´n.

Hence
8
ÿ

n“1

P

¨

˝

˜

2n´1
ÿ

k“0

△k,n

¸2

ą ϵ

˛

‚ď
2t2

ϵ
. Thus we may apply the Borel-Cantelli

lemma to prove the claim in Lemma 3.69. �

3.70. Proposition. Brownian motion is nowhere of bounded variation.
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Proof. Just as in the previous lemma we have that, for t ą s ě 0,

lim
nÑ8

2n´1
ÿ

k“0

ˇ

ˇb
`

s ` pk ` 1q2´npt ´ sq
˘

´ b
`

s ` k2´npt ´ sq
˘ˇ

ˇ

2 ´ pt ´ sq “ 0,

P-almost surely. Since Brownian paths are almost surely continuous it follows
that (for δ ą 0)

0 ă t ´ s ď lim
nÑ8

2n´1
ÿ

k“0

ˇ

ˇb
`

s ` pk ` 1q2´npt ´ sq
˘

´ bp
`

s ` k2´npt ´ sq
˘ˇ

ˇ

2

ď lim inf
nÑ8

max
0ďℓď2n

ˇ

ˇb
`

s ` pℓ ` 1q2´npt ´ sq
˘

´ bp
`

s ` ℓ2´npt ´ sq
˘ˇ

ˇ

ˆ
2n´1
ÿ

k“0

ˇ

ˇb
`

s ` pk ` 1q2´npt ´ sq
˘

´ bp
`

s ` k2´npt ´ sq
˘ˇ

ˇ

ď sup
sďσ1,σ2ďt,|σ2´σ1|ďδ

|bpσ2q ´ bpσ1q| ˆ variation of b on the interval rs, ts.

The statement in the Proposition 3.70 now follows from the continuity of paths.
�

Next we will see how to transfer properties of discrete time semi-martingales
to continuous time semi-martingales. Most of the results in the remainder of
this section are taken from Bhattacharya and Waymire [15]. We begin with an
upcrossing inequality for a discrete time sub-martingale. Consider a sequence
tZn : n P Nu of real-valued random variables and sigma-fields F1 Ă F2 Ă ¨ ¨ ¨ ,
such that, for every n P N, the variable Zn is Fn-measurable. An upcrossing of
an interval pa, bq by tZnu is a passage to a value equal to or exceeding b from an
value equal to or below a at an earlier time. Define the random variables Xn,
n P N, by Xn “ max pZn ´ a, 0q. If the process tZnu is a sub-martingale, then
so is the process tXnu. The upcrossings of p0, b´aq by tXnu are the upcrossings
of the interval pa, bq by tZnu. We define the successive upcrossing times η2k,
k P N, of tXnu as follows:

η1 “ inf tn ě 1 : Xn “ 0u ;
η2 “ inf tn ě η1 : Xn ě b ´ au ;

η2k`1 “ inf tn ě η2k : Xn “ 0u ;
η2k`2 “ inf tn ě η2k`1 : Xn ě b ´ au .

Then every ηk is an tFnu-stopping time. Fix N P N and put τk “ min pηk, Nq.
Then every τk is also a stopping time and τk “ N for k ą tN{2u, the largest
integer smaller than or equal to N{2. It follows that Xτ2k “ XN for k ą tn{2u
and we also have ηk ě k and so k ď τk ď N . Let UNpa, bq be the number of
upcrossings of pa, bq by the process tZnu at time N . That means

UNpa, bq “ sup tk ě 1 : η2k ď Nu (3.149)

with the convention that the supremum over the empty set is 0. Notice that
UNpa, bq is also the number of upcrossings of the interval p0, b ´ aq by tXnu in
time N .
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3.71. Proposition (Upcrossing inequality). Let tZnu be an tFnu-submartin-
gale. For each pair pa, bq, a ă b, the expected number of upcrossings of pa, bq by
Z1, . . . , ZN satisfies the inequality:

E pUNpa, bqq ď
E pmax pZN ´ a, 0q ´ max pZ1 ´ a, 0qq

b ´ a

ď
E pmax pZN ´ Z1, 0qq

b ´ a
. (3.150)

Proof. Since Xτ2k “ XN for k ą tN{2u, we may write (setting τ0 “ 1):

XN ´ X1 “
tN{2u`1

ÿ

k“1

`

Xτ2k´1
´ Xτ2k´2

˘

`
tN{2u`1

ÿ

k“1

`

Xτ2k ´ Xτ2k´1

˘

. (3.151)

Next let ν be the largest integer k with the property that ηk ď N , i.e. ν is
the last time ď N of an upcrossing or a downcrossing. It readily follows that
UNpa, bq “ tν{2u. If ν is even, then

Xτ2k ´ Xτ2k´1
ě b ´ a provided 2k ´ 1 ă ν;

Xτ2k ´ Xτ2k´1
“ XN ´ XN “ 0 provided 2k ´ 1 ą ν. (3.152)

Now suppose that ν is odd. Then we have

Xτ2k ´ Xτ2k´1
ě b ´ a provided 2k ´ 1 ă ν;

Xτ2k ´ Xτ2k´1
“ Xτ2k ´ Xν ě Xτ2k ´ 0 “ Xτ2k provided 2k ´ 1 “ ν;

Xτ2k ´ Xτ2k´1
“ XN ´ XN “ 0 provided 2k ´ 1 ą ν. (3.153)

From (3.152) and (3.153) it follows that

tN{2u`1
ÿ

k“1

`

Xτ2k ´ Xτ2k´1

˘

ě
tν{2u
ÿ

k“1

`

Xτ2k ´ Xτ2k´1

˘

ě tν{2upb ´ aq “ pb ´ aqUNpa, bq. (3.154)

Consequently

XN ´ X1 ě
tN{2u`1

ÿ

k“1

`

Xτ2k´1
´ Xτ2k´2

˘

` pb ´ aqUNpa, bq. (3.155)

So far we did not make use of the fact that the process tXnu is a sub-martingale.
It then follows that the process tXτk : k P Nu is a tFτnu-martingale and hence
k ÞÑ E pXτkq is an increasing sequence of non-negative real numbers. So that
(3.155) yields

E pXN ´ X1q ě
tN{2u`1

ÿ

k“1

E
`

Xτ2k ´ Xτ2k´1

˘

` pb ´ aqE pUNpa, bqq

ě pb ´ aqE pUNpa, bqq . (3.156)

The desired result in Proposition 3.71 follows from (3.156). �
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3.72. Theorem. (Sub-martingale convergence theorem) Let tZnu be a sub-mar-
tingale with the property that supnPN E p|Zn|q ă 8. Then the sequence tZnu
converges almost surely to an integrable random variable Z8. Moreover we have
E p|Z8|q ď lim infnÑ8 E p|Zn|q.

3.73. Remark. In general we do not have E pZ8q “ limnÑ8 E pZnq. In fact
there exist martingales tMn : n P Nu such that Mn ě 0, such that EpMnq “ 1,
n P N, and such that M8 “ limnÑ8 Mn “ 0, P-almost surely. To be specific,
let tbpsq : s ě 0u be ν-dimensional Brownian motion starting at x P Rν and let
ppt, x, yq be the corresponding transition density. Fix t ą 0 and y ­“ x and put

Mn “
p pt{n, bpt ´ t{nq, yq

ppt, x, yq
. (3.157)

The process tMn : n P Nu defined in (3.157) is Px-martingale with respect to
the sigma-fields Fn generated by bpsq, 0 ď s ď t ´ t{n.
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Proof. Let Upa, bq be the total number of upcrossings of pa, bq by the pro-
cess tZn : n P Nu. Then UNpa, bq Ò Upa, bq as N Ò 8. Therefore, by monotone
convergence,

E
`

pUpa, bq
˘

“ lim
NÑ8

E pUNpa, bqq ď sup
NPN

E p|ZN |q ` |a|
b ´ a

ă 8. (3.158)

In particular it follows that Upa, bq ă 8 P-almost surely. Hence

P plim inf Zn ă a ă b ă lim supZnq ď P pUpa, bq “ 8q “ 0. (3.159)

Since

tlim inf Zn ă lim supZnu “
ď

aăb,a,bPQ
tlim inf Zn ă a ă b ă lim supZnu

it follows from (3.159) that P plim inf Zn ă lim supZnq “ 0. By Fatou’s lemma
it follows that E p|Z8|q “ E plim infn |Zn|q ď lim inf E p|Zn|q ă 8.

This completes the proof of Theorem 3.72. �
3.74. Corollary. A non-negative martingale tZnu converges almost surely to
a finite limit Z8. Also E pZ8q ď E pZ1q.

Remark. Convergence properties for supermartingales tZnu are obtained from
the sub-martingale results applied to t´Znu. Since a semi-martingale is a
difference of two sub-martingales, we also have convergence results for semi-
martingales.

3.75. Definition. A continuous time process tXptq : t P Ru is called stochasti-
cally continuous at t0 if for every ε ą 0

lim
tÑt0

P p|Xptq ´ Xpt0q| ą εq “ 0. (3.160)

3.76. Remark. Brownian motion possesses almost surely continuous sample
paths and is stochastically continuous for every t ě 0. On the other hand
a Poisson process is stochastically continuous, but its sample paths are step
functions with unit jumps. In fact, for t ą s, Xptq ě Xpsq P-almost surely and,

again for t ą s, P pXptq ´ Xpsq “ nq “ e´λpt´sq
`

λpt ´ sq
˘n

n!
and hence, always

for t ą s and for ϵ ą 0,

P pXptq ´ Xpsq ě ϵq ď e´λpt´sq
8
ÿ

n“1

`

λpt ´ sq
˘n

n!
“ 1 ´ e´λpt´sq.

3.77. Theorem. Let tXptq : t ě 0u be a sub-martingale or a super-martingale
that is stochastically continuous at each t ě 0. Then there exists a process
!

rXptq : t ě 0
)

with the following properties:

(i) (stochastic equivalence)
!

rXptq
)

is equivalent to tXptqu in the sense

that
P

´

rXptq “ Xptq
¯

“ 1 for every t ě 0;

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

160 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales160 3. BROWNIAN MOTION, GAUSSIAN PROCESSES AND MARTINGALES

(ii) (sample path regularity) with probability 1 the sample paths of the pro-

cess
!

rXptq : t ě 0
)

are bounded on compact intervals ra, bs, a ă b ă 8,

are right-continuous and possess left-hand limits at each t ą 0 (in other

words
!

rXptq : t ě 0
)

is cadlag).

Proof. Fix T ą 0 and let QT denote the set of rational numbers in r0, T s.
Write QT “

Ť8
n“1 Rn, where Rn is a finite subset of r0, T s and where T P R1 Ă

R2 Ă R2 Ă ¨ ¨ ¨ . By Doob’s maximal inequality for sub-martingales we have

P
ˆ

max
tPRn

|Xptq| ą λ

˙

ď
E |XpT q|

λ
, n “ 1, 2, . . .

and hence

P
ˆ

sup
tPQT

|Xptq| ą λ

˙

ď lim
nÑ8

P
ˆ

max
tPRn

|Xptq| ą λ

˙

ď
E |XpT q|

λ
, n “ 1, 2, . . .

For Doob’s maximal inequality see e.g. Proposition 3.107 or Theorem 5.110.
In particular, the paths of tXptq : t P QT u are bounded with probability 1. Let
pc, dq be any interval in R and let U tT upc, dq denote the number of upcrossings of
pc, dq by the process tXptq : t P QT u. Then U tT upc, dq is the limit of the number
U tnupc, dq of upcrossings of pc, dq by tXptq : t P Rnu as n tends to 8. By the
upcrossing inequality we have

E
`

U tnupc, dq
˘

ď
E p|XpT q|q ` |c|

d ´ c
. (3.161)

Since U tnupc, dq increases with n it follows from (3.161) that

E
`

U tT upc, dq
˘

ď
E p|XpT q|q ` |c|

d ´ c
, (3.162)

and hence that U tT upc, dq is almost surely finite. Taking unions over all intervals
pc, dq, with c, d P Q, and c ă d, it follows with probability 1 that the process
tXptq : t P QT u has only finitely many upcrossings of any interval. In particular,
therefore, left- and right-hand limits must exist at each t ă T P-almost surely.

To construct a right-continuous version of tXptqu we define
!

rXptq : t ě 0
)

as

follows: rXptq “ limsÓt,sPQ Xpsq for t ă T . That this process
!

rXptq
)

is stochas-

tically equivalent to tXptqu follows from the stochastic continuity of the process
tXptqu. Further details are left to the reader. This completes the proof of
Theorem 3.77. �

Next we prove Doob’s optional sampling for continuous time sub-martingales
(that are right-continuous) and a similar result holds for martingales (where the
inequality sign in (3.163) is replaced with an equality) and for super-martingales
(where the inequality is reversed). For discrete sub-martingales the result will
be taken for granted: see Theorems 5.104 and 5.114.
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3.78.Theorem. Let tXptq : t ě 0u be a right-continuous sub-martingale of class
(DL) and let T be a stopping time. Suppose t ě s. Then

E
“

X
`

minpt, T q
˘ ˇ

ˇ Fs

‰

ě X
`

minps, T q
˘

, P-almost surely. (3.163)

Proof. Put sn “ 2´nr2nss, tn “ 2´nr2nts and Tn “ 2´nr2nT s. If A belongs
to Fs, then A also belongs to Fsn for all n P N. From Doob’s optional sampling
for discrete time sub-martingales we infer, upon using the (DL)-property,

E rX pminptn, Tnqq 1As ě E rX pminpsn, Tnqq 1As . (3.164)

Upon letting n tend to 8 and using the right-continuity of the process t ÞÑ Xptq,
t ě 0, we infer

E rX pminpt, T qq 1As ě E rX pminps, T qq 1As , (3.165)

where A P Fs is arbitrary. Consequently the result in (3.163) follows from
(3.165), and so the proof of Theorem is complete 3.78. �
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6. Stochastic integrals, Itô’s formula

The assumptions are as in Section 4. The process tbptq : t ě 0u is assumed to
be one-dimensional Brownian motion and hence the process t ÞÑ bptq2 ´ t is a
martingale: see Proposition 3.23. The following proposition contains the basic
ingredients of (the definition of) a stochastic integral.

3.79. Proposition. Let s1, . . . , sn and t1, . . . , tn be non-negative numbers for
which sj´1 ă tj´1 ď sj ă tj, 2 ď j ď n. Let f1, . . . , fn be bounded random
variables which are measurable with respect to Fs1 , . . . ,Fsn respectively. Put

Y ps, ωq “
ÿn

j“1
fjpωq1psj ,tjspsq

and write
ż t

0

Y ps, ¨qdbpsq “
ÿn

j“1
fj tbpminpt, tjqq ´ bpminpt, sjqqu .

The following assertions hold true:

(a) The process
!

şt

0
Y psqdbpsq : t ě 0

)

is a martingale and the process
"

´

şt

0
Y psqdbpsq

¯2

: t ě 0

*

is a submartingale.

(b) The process

"

´

şt

0
Y psqdbpsq

¯2

´
şt

0
Y psq2ds : t ě 0

*

is a martingale.

(c) (Itô isometry) The following equality is valid:

E

«

ˆ
ż t

0

Y psqdbpsq
˙2

ff

“ E
„

ż t

0

Y psq2ds
ȷ

. (3.166)

The equality in assertion (c) is called the Itô isometry. It is an extremely
important equality: the entire Itô calculus is justified by the use of the equality
in (3.166).

Proof. The more or less straightforward calculations are left as an exercise
to the reader. We insert some ways to simplify the computations. Let F and G
be predictable processes of the form F psq “ f1pu,8qpsq and Gpsq “ g1pv,8qpsq,
where f is measurable for the σ-field Fu and g for Fv. Put

ItpF q “
ż t

0

F psqdbpsq :“ f pbptq ´ bpminpu, tqqq

and similarly write

ItpGq “
ż t

0

Gpsqdbpsq “ g pbptq ´ bpminpv, tqqq .

Without loss of generality we assume v ě u (otherwise we interchange the
role of F and G). We begin with a proof of (a). Upon employing linearity it
suffices to show that the process t ÞÑ ItpF q is a martingale. (Also notice that
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şt

0
f1pu,vspsqdbpsq “ ItpF q ´ ItpF1q, where F1psq “ f1pv,8qpsq.) Fix t ą s ě 0 and

consider

E
`

ItpF q
ˇ

ˇ Fs

˘

´ IspF q “ E
`

ItpF q ´ IspF q
ˇ

ˇ Fs

˘

“ E
`

f pbptq ´ bpminpu, tqq ´ bpsq ` bpminpu, sqqq
ˇ

ˇ Fs

˘

“ E
`

E
`

f pbptq ´ bpminpu, tqq ´ bpsq ` bpminpu, sqqq
ˇ

ˇ Fminpmaxpu,sq,tq
˘ ˇ

ˇ Fs

˘

“ E
`

fE
`

pbptq ´ bpminpu, tqq ´ bpsq ` bpminpu, sqqq
ˇ

ˇ Fminpmaxpu,sq,tq
˘ ˇ

ˇ Fs

˘

(Brownian motion is a martingale)

“ E
`

f ppbpminpmaxpu, sq, tqq ´ bpminpu, tqq ´ bpsq ` bpminpu, sqqqq
ˇ

ˇ Fs

˘

“ 0,

proving that the process t ÞÑ ItpF q is a martingale indeed. Next we shall

prove that the process t ÞÑ ItpF qItpGq ´
şt

0
F pτqGpτqdτ is a martingale. Using

bilinearity in F and G yields a proof of (b) and hence also of (c). Again we fix
t ą s and consider

E
ˆ

ItpF qItpGq ´
ż t

0

F pτqGpτqdτ
ˇ

ˇ Fs

˙

´
ˆ

IspF qIspGq ´
ż s

0

F pτqGpτqdτ
˙

“ E
ˆ

ItpF qItpGq ´
ż t

0

F pτqGpτqdτ ´
ˆ

IspF qIspGq ´
ż s

0

F pτqGpτqdτ
˙

ˇ

ˇ Fs

˙

“ E
ˆ

pItpF q ´ IspF qq pItpGq ´ IspGqq ´
ż t

s

F pτqGpτqdτ
ˇ

ˇ Fs

˙

` E
`

IspF q pItpGq ´ IspGqq ` pItpF q ´ IspF qq IspGq
ˇ

ˇ Fs

˘

“ E
ˆ

pItpF q ´ IspF qq pItpGq ´ IspGqq ´
ż t

s

F pτqGpτqdτ
ˇ

ˇ Fs

˙

` IspF qE
`

ItpGq ´ IspGq
ˇ

ˇ Fs

˘

` E
`

ItpF q ´ IspF q
ˇ

ˇ Fs

˘

IspGq

(use the martingale property of ItpF q and ItpGq)

“ E
„

pItpF q ´ IspF qq pItpGq ´ IspGqq ´
ż t

s

F pτqGpτq dτ
ˇ

ˇ Fs

ȷ

“ E
“

fg pbptq ´ b pminpmaxpu, sq, tqqq
`

bptq ´ b
`

minpmaxpv, sq, tq
˘˘

´fg pt ´ minpmaxpu, v, sq, tqq
ˇ

ˇ Fs

‰

(use v ě u and put us,t “ minpmaxpu, sq, tq, vs,t “ minpmaxpv, sq, tq)

“ E
”

fg
´

`

bptq ´ b
`

vs,t
˘˘2

`fg
`

b
`

vs,t
˘

´ b
`

us,t

˘˘ `

bptq ´ b
`

vs,t
˘˘

´ fg pt ´ minpmaxpu, v, sq, tqq
ˇ

ˇ Fs

˘‰

“ E
”

fg
´

`

bptq ´ b
`

vs,t
˘˘2 ´ pt ´ vs,tq

¯

ˇ

ˇ Fs

ı

` E
“`

fg
`

b
`

vs,t
˘

´ b
`

us,t

˘˘ `

bptq ´ b
`

vs,t
˘˘˘ ˇ

ˇ Fs

‰

“ E
”

fgE
”´

`

bptq ´ b
`

vs,t
˘˘2 ´ pt ´ vs,tq

¯

ˇ

ˇ Fvs,t

ı

ˇ

ˇ Fs

ı
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` E
“

fg
`

b
`

vs,t
˘

´ b
`

us,t

˘˘

ˆ E
“`

bptq ´ b
`

vs,t
˘˘ ˇ

ˇ Fvs,t

‰ ˇ

ˇ Fs

‰

(the processes tbpsqu and tbpsq2 ´ su are martingales)

“ E
`

fg.0
ˇ

ˇ Fs

˘

` E
`

fg
`

b
`

vs,t
˘

´ b
`

us,t

˘˘

.0
ˇ

ˇ Fs

˘

“ 0.

The latter yields a proof of (b) (via bilinearity). Altogether this finishes the
proof of Proposition 3.79. �
3.80. Definition. A process of the form

F ps, ωq “
ÿn

j“1
fjpωq1psj ,tjspsq,

where 0 ď sj´1 ă tj´1 ď sj ă tj, 2 ď j ď n, and where the functions f1, . . . , fn
are bounded and measurable with respect to Fs1 , . . . ,Fsn respectively is called
a simple predictable process.
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3.81. Definition. Again let b be Brownian motion with drift zero and let Π2pbq
be the vector space of all predictable processes F with the property that

}F }2b :“ E
ˆ

ż 8

0

|F psq|2 ds
˙

ă 8.

Let Q be the σ-additive measure, defined on the predictable field Π, determined
by

Q pA ˆ ps, tsq “ E r1As pt ´ sq “ PpAqpt ´ sq, A P Fs. (3.167)

The measure Q is called the Doléans measure for Brownian motion.

Then it follows that Π2pbq “ L2 pr0,8q ˆ Ω,Π, Qq. Moreover we have

}F }2b “
ż

|F |2 dQ, F P Π2pbq.

It also follows that, for given F P Π2pbq, there exists a sequence of simple
processes pFn : n P Nq, which are predictable, such that limnÑ8 }Fn ´ F }b “ 0.

Hence in view of Proposition 3.79 it is obvious how to define
şt

0
F psq dbpsq, t ě 0,

for F P Π2pbq. In fact
ż t

0

F psqdbpsq “ L2- lim
nÑ8

ż t

0

Fnpsqdbpsq,

where the sequence pFn : n P Nq verifies limnÑ8 }Fn ´ F }b “ 0 and where Fn

belongs to Π2pbq. Let Π3pbq be the vector space of all predictable processes F for

which the integrals
şt

0
|F psq|2 ds are finite P-almost surely for all t ą 0. In order

to extend the definition of stochastic integral to processes F P Π3pbq we proceed
as follows. Define the stopping times Tn, n P N, in the following fashion:

Tn “ inf

"

t ą 0 :

ż t

0

|F psq|2 ds ą n

*

. (3.168)

We also write Fnpsq “ F psq1tTnąsu and we observe that Fn is a predictable

process with
ş

|Fnpsq|2 ds ď n. Moreover it follows that for n ą m the expression
ż t

0

Fnpsqdbpsq ´
ż t

0

Fmpsqdbpsq “
ż

F psq1pTm,minpTn,tqspsqdbpsq (3.169)

vanishes almost everywhere on the event tTm ą tu. So it makes sense to write
ż t

0

F psqdbpsq “
ż t

0

Fmpsqdbpsq, on tTm ą tu.

Since limnÑ8 Tn “ 8, P-almost surely, the quantity
şt

0
F psqdbpsq is unambigu-

ously defined. Hence the integral
ş

F psqdbpsq is well defined for processes F
belonging to Π3pbq.

3.82. Corollary. Let b be Brownian motion and let F and G be processes in
Π3pbq. The following processes are local martingales:

"
ż t

0

F psqdbpsq : t ě 0

*

,

"
ż t

0

Gpsqdbpsq : t ě 0

*

; (3.170)

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

166 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales166 3. BROWNIAN MOTION, GAUSSIAN PROCESSES AND MARTINGALES

#

ˆ
ż t

0

F psqdbpsq
˙2

´
ż t

0

|F psq|2 ds : t ě 0

+

; (3.171)

"
ż t

0

F psqdbpsq
ż t

0

Gpsqdbpsq ´
ż t

0

F psqGpsqds : t ě 0

*

. (3.172)

Put Xptq “
şt

0
F psqdbpsq and Y ptq “

şt

0
Gpsqdbpsq. The following identity is

valid:

XptqY ptq ´
ż t

0

F psqGpsqds “
ż t

0

F psqY psqdbpsq `
ż t

0

XpsqGpsqdbpsq. (3.173)

Proof. The assertions (3.170), (3.171) and (3.172) follow from Proposition
3.79 together with taking appropriate limits. For the proof of (3.173) we first
take F ” G ” 1. Then (3.173) reduces to showing that

bptq2 ´ 2

ż t

0

bpsqdbpsq ´ t “ 0. (3.174)

Notice that (3.174) is equivalent to 2
şt

0
bpsqdbpsq “ bptq2 ´ t, t ě 0. For the

proof of (3.174) we use Lemma 3.69. to conclude:

bptq2 ´ 2

ż t

0

bpsqdbpsq ´ t

“ lim
nÑ8

˜

bptq2 ´ 2
2n´1
ÿ

k“0

b
`

k2´nt
˘ `

b
`

pk ` 1q2´nt
˘

´ b
`

k2´nt
˘

´ t
˘

¸

“ lim
nÑ8

˜

2n´1
ÿ

k“0

´

b
`

pk ` 1q2´nt
˘2 ´ b

`

k2´nt
˘2

¯

´2
2n´1
ÿ

k“0

b
`

k2´nt
˘ `

b
`

pk ` 1q2´nt
˘

´ b
`

k2´n
˘˘

´ t

¸

“ lim
nÑ8

˜

2n´1
ÿ

k“0

`

b
`

pk ` 1q2´nt
˘

´ b
`

k2´nt
˘˘2 ´ t

¸

“ 0.

For the proof of (3.173) we then take F psq “ f1ps1,8qpsq and Gpsq “ g1ps2,8q,
where f is bounded and measurable with respect to Fs1 and g is measurable
with respect to Fs2 . Formula (3.174) will then yield the desired result. Then we
pass over to linear combinations and finally to limits. This completes the proof
of Corollary 3.82. �

3.83. Proposition. Stochastic integrals with integrands in Π3pbq are continuous
P-almost surely.

Proof. It suffices to prove the result for integrands in Π2pbq. Since Brow-
nian motion is almost surely continuous, it follows that stochastic integrals of
simple predictable processes are continuous. Let F be in Π2pbq and choose a
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sequence pFnqnPN of simple predictable processes with the property that
ˆ

E
ˆ

ż t0

0

|F psq ´ Fnpsq|2 ds
˙˙1{2

“ lim
ℓÑ8

ˆ

E
ˆ

ż t0

0

|Fn`ℓpsq ´ Fnpsq|2 ds
˙˙1{2

ď
8
ÿ

ℓ“1

ˆ

E
ˆ

ż t0

0

|Fn`ℓpsq ´ Fn`ℓ´1psq|2 ds
˙˙1{2

ď
8
ÿ

ℓ“1

2´n´ℓ´2 “ 2´n´1.

From Proposition 3.63 it follows that, for k P N,
˜

E

«

sup
0ďtďt0

ˇ

ˇ

ˇ

ˇ

ż t

0

pFn`kpsq ´ Fnpsqq dbpsq
ˇ

ˇ

ˇ

ˇ

2
ff¸

1
2

ď
k

ÿ

ℓ“1

˜

E

«

sup
0ďtďt0

ˇ

ˇ

ˇ

ˇ

ż t

0

pFn`ℓpsq ´ Fn`ℓ´1psqq dbpsq
ˇ

ˇ

ˇ

ˇ

2
ff¸

1
2

ď 2
8
ÿ

ℓ“1

˜

E

«

ˇ

ˇ

ˇ

ˇ

ż t0

0

pFn`ℓpsq ´ Fn`ℓ´1psqq dbpsq
ˇ

ˇ

ˇ

ˇ

2
ff¸

1
2

“ 2
8
ÿ

ℓ“1

ˆ

E
„

ż t0

0

|Fn`ℓpsq ´ Fn`ℓ´1psq|2 ds
ȷ˙

1
2

ď 2´n. (3.175)

From (3.175) the sample path continuity of stochastic integrals immediately
follows. This completes the proof of Proposition 3.83. �
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3.84. Remark. The theory in this section can be extended to (continuous)
martingales instead of Brownian motion. To be precise, let t ÞÑ Mptq be a
continuous martingale with quadratic variation process t ÞÑ ⟨M,M⟩ ptq. Then
the process t ÞÑ Mptq2 ´ ⟨M,M⟩ ptq is a martingale, and the space Π2pbq should
be replaced with Π2pMq, the space of all predictable processes t ÞÑ F ptq with
the property that

}F }2M “ E
„

ż 8

0

|F psq|2 d ⟨M,M⟩ psq
ȷ

ă 8. (3.176)

The corresponding Doléans measure QM is given by

QM pA ˆ ps, tsq “ E r1A p⟨M,M⟩ ptq ´ ⟨M,M⟩ psqqs , A P Fs, s ă t. (3.177)

It follows that

Π2pMq “ L2 pΩ ˆ r0,8q,Π, QMq .
The space Π3pMq consists of those predictable processes t ÞÑ F ptq which have

the property that
şt

0
|F psq|2 d ⟨M,M⟩ s are finite P-almost surely for all t ą 0.

The definition of stochastic integral to processes F P Π3pMq we proceed as
follows. Define the stopping times Tn, n P N, in the following fashion:

Tn “ inf

"

t ą 0 :

ż t

0

|F psq|2 d ⟨M,M⟩ psq ą n

*

. (3.178)

As in the case of Brownian motion these stopping times can be used to define
stochastic integrals of the form

şt

0
F psq dMpsq, F P Π3pMq. These integrals are

then local martingales.

Next we extend the equality in (3.173) to the multi-dimensional situation.

3.85. Proposition. Let s ÞÑ σpsq “ pσjkpsqq1ďj,kďν be a matrix with predictable
entries and with the property that the expression

ν
ÿ

j,k“1

ż t

0

E |σjkpsq|2 ds (3.179)

is finite for every t ą 0. Put aijpsq “
řν

k“1 σikpsqσjkpsq, 1 ď i, j ď ν. Further-
more let tbpsq “ pb1psq, . . . , bνpsqq : s ě 0u be ν-dimensional Brownian motion.

Put Mjptq “
řν

k“1

şt

0
σjkpsqdbkpsq, 1 ď j ď ν. Then the following identity is

valid:

MiptqMjptq (3.180)

“
ν

ÿ

k“1

ż t

0

Mipsqσjkpsqdbkpsq `
ν

ÿ

k“1

ż t

0

σikpsqMjpsqdbkpsq `
ż t

0

aijpsqds.

Proof. First we suppose ν “ 2, M1ptq “ b1ptq and M2ptq “ b2ptq. Then
(3.180) reads as follows:

b1ptqb2ptq “
ż t

0

b1psqdb2psq `
ż t

0

b2psqdb1psq. (3.181)
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In order to prove (3.181) we write

b1ptqb2ptq ´
ż t

0

b1psqdb2psq ´
ż t

0

b2psqdb1psq

“ lim
nÑ8

2n´1
ÿ

k“0

#

b1
`

pk ` 1q2´nt
˘

b2
`

pk ` 1q2´nt
˘

´ b1
`

k2´nt
˘

b2
`

k2´nt
˘

´ b1
`

k2´nt
˘ `

b2
`

pk ` 1q2´nt
˘

´ b2
`

k2´nt
˘˘

´ b2
`

k2´nt
˘ `

b1
`

pk ` 1q2´nt
˘

´ b1
`

k2´nt
˘˘

+

“ lim
nÑ8

2n´1
ÿ

k“0

`

b1
`

pk ` 1q2´nt
˘

´ b1
`

k2´nt
˘˘ `

b2
`

pk ` 1q2´nt
˘

´ b2
`

k2´nt
˘˘

.

(3.182)

The limit in (3.182) vanishes, because by independence and martingale proper-
ties of the processes b1 and b2, we infer

E

«

2n´1
ÿ

k“0

`

b1
`

pk ` 1q2´nt
˘

´ b1
`

k2´nt
˘˘ `

b2
`

pk ` 1q2´nt
˘

´ b2
`

k2´nt
˘˘

ff2

“ E

˜

2n´1
ÿ

k“0

`

b1
`

pk ` 1q2´nt
˘

´ b1
`

k2´nt
˘˘2 `

b2
`

pk ` 1q2´nt
˘

´ b2
`

k2´nt
˘˘2

¸

“
2n´1
ÿ

k“0

E
“

b1
`

pk ` 1q2´nt
˘

´ b1
`

k2´nt
˘‰2 E

`

b2
`

pk ` 1q2´nt
˘

´ b2
`

k2´nt
˘˘2

“
2n´1
ÿ

k“0

`

2´nt
˘2 “ 2´nt2. (3.183)

From Borel-Cantelli’s lemma it then easily follows that the limit in (3.182) van-
ishes and hence that equality (3.181) is true. The validity of (3.180) is then
checked for the special case that σjkpsq “ fjk1psjk,8qpsq, where fjk is measurable
with respect to Fsjk . The general statement follows via bi-linearity and a lim-
iting procedure together with equality (3.173) in Corollary 5.142. The proof of
Proposition 3.85 is now complete. �

Next let Mptq “ pM1ptq, . . . ,Mνptqq be a ν-dimensional martingale as in Propo-
sition 3.85 and let Aptq “ pA1ptq, . . . , Aνptqq be an adapted ν-dimensional pro-
cess that P-almost surely is of bounded variation on r0, ts for every t ą 0. This
means that

sup
nPN

sup
0ďs0ăs1ă¨¨¨snďt

|Apsjq ´ Apsj´1q| is finite P-almost surely for all t ą 0.

It follows that the random set function µA : pa, bs ÞÑ Apbq ´ Apaq extends
to an Rν-valued measure on r0, ts for every t ą 0. Stieltjes integrals of the

form
şt

0
F psqdApsq may be interpreted as

şt

0
F psqdApsq “

şt

0
F psqdµApsq. The

process A may have jumps. This is not the case for the process M . The latter
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follows from Proposition 3.83. The process X :“ A ` M is a ν-dimensional
semi-martingale with the property that E

`

|Mptq|2
˘

ă 8, t ą 0. Put

JXptq “
ÿ

sďt
pXpsq ´ Xps´qq

“
ÿ

sďt

pMpsq ´ Mps´qq `
ÿ

sďt

pApsq ´ Aps´qq “ JAptq.

The definition of JAptq does not pose to much of a problem. In fact for P-almost

all ω the sum
ÿ

sďt

|Aps, ωq ´ Aps´, ωq| ă 8. The process tXptq ´ JXptq : t ě 0u

is P-almost surely continuous.
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The following result is the fundamental theorem in stochastic calculus.

3.86. Theorem (Itô’s formula). Let X “ pX1, . . . , Xνq “ A ` M be a ν-
dimensional local semi-martingale as described above, and let f : Rν Ñ R be a
twice continuously differentiable function. Put aijptq “

řν
k“1 σikptqσjkptq, 1 ď i,

j ď ν. Then, P-almost surely,

fpXptqq

“ fpXp0qq `
ÿ

sďt

ˆ

fpXpsqq ´ f pXps´qq ´ ∇f pXps´qq . pXpsq ´ Xps´qq
˙

`
ż t

0

∇f pXps´qq ¨ dXpsq `
1

2

ν
ÿ

i,j“1

ż t

0

DiDjfpXpsqqaijpsqds. (3.184)

Before we prove Theorem 3.86 we want to make some comments and we want to
give a reformulation of Itô’s formula. Moreover, we shall not prove Itô’s formula
in its full generality. We shall content ourselves with a proof with A ” 0.

Remark. The integral
şt

0
∇f pXps´qq dXpsq has the interpretation:

ż t

0

∇f pXps´qq dXpsq

“
ν

ÿ

i“1

ˆ
ż t

0

Dif pXps´qq dMipsq `
ż t

0

Dif pXps´qq dAipsq
˙

(3.185)

“
ν

ÿ

i“1

ˆ
ż t

0

Dif pXps´qq dMipsq `
ż t

0

Dif pXps´qq dAipsq
˙

“
ν

ÿ

i“1

˜

ν
ÿ

k“1

ż t

0

Dif pXps´qq σikpsqdbkpsq `
ż t

0

Dif pXps´qq dAipsq

¸

.

Here X “ M ` A is the decomposition of the semi-martingale in a martingale
part M and a process A which is locally of bounded variation.

For ν-dimensional Brownian motion we have the following corollary.

3.87. Corollary. Let bptq “ pb1ptq, . . . , bνptqq be ν-dimensional Brownian mo-
tion. Let f : Rν Ñ R be a twice continuously differentiable function. Then,
P-almost surely,

fpbptqq “ fpbp0qq `
ż t

0

∇fpbpsqqdbpsq `
1

2

ż t

0

△fpbpsqqds. (3.186)

In fact it suffices to suppose that the functions D1f, . . . , Dνf and D2
1f, . . . , D

2
νf

are continuous. Next we reformulate Itô’s formula.

3.88. Theorem. Let X “ pX1, . . . , Xνq be a ν-dimensional right continuous
semi-martingale as in Theorem 3.86 and let f : Rν Ñ R be a twice continuously
differentiable function. Then, P-almost surely,

fpXptqq “ fpXp0qq `
ż t

0

∇f pXps´qq ¨ dXpsq (3.187)
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`
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq,

where

rXi, Xjs ptq “
ż t

0

aijpsqds `
ÿ

sďt

pXipsq ´ Xips´qq pXjpsq ´ Xjps´qq . (3.188)

Remark. In the proof below we employ the following notation. Let Mi be
martingale of the form

Miptq :“
ν

ÿ

k“1

ż t

0

σikpsqdbkpsq.

Then quadratic covariation process ⟨Mi,Mj⟩ ptq satisfies

⟨Mi,Mj⟩ ptq “
ν

ÿ

k“1

ż t

0

σikpsqσjkpsq ds.

Proof of Theorems 3.88 and 3.86. Since, for a and b in Rν

fpbq ´ fpaq “ ∇fpaq.pb ´ aq (3.189)

`
ν

ÿ

i,j“1

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqa ` σbq dσ ˆ pbi ´ aiqpbj ´ ajq

and since

rXi, Xjs ptq “
ż t

0

aijpsqds `
ÿ

sďt

pXipsq ´ Xips´qq pXjpsq ´ Xjps´qq ,

it follows that
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq

“
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσaijpsqds

`
ν

ÿ

i,j“1

ÿ

sďt

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσ

ˆ pXipsq ´ Xips´qq pXjpsq ´ Xjps´qq

“
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσaijpsqds

`
ÿ

sďt

tfpXpsqq ´ f pXps´qq ´ ∇f pXps´qq . pXpsq ´ Xps´qqu . (3.190)

So the formulas in Theorem 3.88 and Theorem 3.86 are equivalent. Also notice
that, since

şt

0
aijpsqds is a continuous process of finite variation (locally), we
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have
ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσaijpsqds

“
ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXps´qq dσaijpsqds

“
1

2

ż t

0

DiDjf pXps´qq aijpsqds.

Hence it suffices to prove equality (3.187) in Theorem 3.88. Assume Xp0q “
Mp0q and hence Ap0q “ 0. Upon stopping we may and do assume that in
X “ M ` A, |Xpt´q| ď L and varApt´q ď L. This can be achieved by
replacing Xptq with Xpminpt, τqq, where τ is the stopping time defined by

τ “ inf ts ą 0 : max p|Mpsq| , varApsqq ą Lu .
Here varApsq is defined by

varApsq “ sup

#

n
ÿ

j“1

|Apsjq ´ Apsj´1q| : 0 ď s0 ă s1 ă . . . ă sn “ s

+

.
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Next we define, for every n P N, the sequence of stopping times tTn,k : k P Nu
as follows:

Tn,0 “ 0;

Tn,k`1 “ inf

"

s ą Tn,k : max ps ´ Tn,k, |Xpsq ´ XpTn,kq|q ą
1

n

*

. (3.191)

Since

max pTn,k`1 ´ Tn,k, |XpTn,k`1q ´ XpTn,kq|q ě
1

n
,

it follows that lim
kÑ8

Tn,k “ 8, P-almost surely. Moreover, since

max pTn,k`1 ´ Tn,k, |XpTn,k`1´q ´ XpTn,kq|q ď
1

n
,

we have Tn,k`1 ´ Tn,k ď
1

n
. Next we write:

fpXptqq ´ fpXp0qq

“
8
ÿ

k“0

tf pX pTn,k`1 ^ t´qq ´ f pX pTn,k ^ tqq

`f pX pTn,k`1 ^ tqq ´ f pX pTn,k`1 ^ t´qqu

“
8
ÿ

k“0

#

ż Tn,k`1^t´

Tn,k^t

∇f pX pTn,k ^ tqq ¨ dXpsq

`
ν

ÿ

i,j“1

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqX pTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

ˆ pXi pTn,k`1 ^ t´q ´ Xi pTn,k ^ tqq pXj pTn,k`1 ^ t´q ´ Xj pTn,k ^ tqq

` f pX pTn,k`1 ^ tqq ´ f pX pTn,k`1 ^ t´qq

+

. (3.192)

On the other hand we also have:
ż t

0

∇f pXps´qq dXpsq

`
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq

“
8
ÿ

k“0

#

ż Tn,k`1^t´

Tn,k^t

∇f pXps´qq ¨ dXpsq

`
ν

ÿ

i,j“0

ż Tn,k`1^t´

Tn,k^t

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq

` ∇f pX pTn,k`1 ^ t´qq . pX pTn,k`1 ^ tq ´ X pTn,k`1 ^ t´qq

`
ν

ÿ

i,j“1

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqX pTn,k`1 ^ t´q ` σX pTn,k`1 ^ tqq dσ
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ˆ pXi pTn,k`1 ^ tq ´ Xi pTn,k`1 ^ t´qq pXj pTn,k`1 ^ tq ´ Xj pTn,k`1 ^ t´qq

+

“
8
ÿ

k“0

#

ż Tn,k`1^t´

Tn,k^t

∇f pXps´qq ¨ dXpsq

`
ν

ÿ

i,j“0

ż Tn,k`1^t´

Tn,k^t

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq

` f pX pTn,k`1 ^ tqq ´ f pX pTn,k`1 ^ t´qq

+

. (3.193)

Upon subtracting (3.193) from (3.192) we infer by employing Proposition 3.85:

fpXptqq ´ fpXp0qq ´
ż t

0

∇f pXps´qq dXpsq

´
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq

“
8
ÿ

k“0

#

´
ż Tn,k`1^t´

Tn,k^t

p∇f pXps´qq ´ ∇f pX pTn,kqqq ¨ dXpsq

`
ν

ÿ

i,j“1

ż Tn,k`1^t´

Tn,k^t

"
ż 1

0

p1 ´ σqDiDjf pp1 ´ σqX pTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

´
ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσ
*

d rXi, Xjs psq

`
ν

ÿ

i,j“1

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqX pTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

ˆ
"

pXi pTn,k`1 ^ t´q ´ Xi pTn,k ^ tqq pXj pTn,k`1 ^ t´q ´ Xj pTn,k ^ tqq

´ rXi, Xjs pTn,k`1 ^ t´q ` rXi, Xjs pTn,k ^ tq
*

+

“
8
ÿ

k“0

#

´
ż Tn,k`1^t´

Tn,k^t

p∇f pXps´qq ´ ∇f pX pTn,kqqq ¨ dXpsq

`
ν

ÿ

i,j“1

ż Tn,k`1^t´

Tn,k^t

ż 1

0

p1 ´ σq tDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq

´DiDjf pp1 ´ σqXps´q ` σXpsqqu dσd rXi, Xjs psq

`
ν

ÿ

i,j“1

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

ˆ

#

ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq dXjpsq
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`
ż Tn,k`1^t´

Tn,k^t

pXjps´q ´ Xj pTn,k ^ tqq dXipsq

++

. (3.194)

We shall estimate the following quantities:

E

¨

˝

˜

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

pDif pXps´qq ´ Dif pX pTn,k ^ tqqq ¨ dMipsq

¸2
˛

‚; (3.195)

E

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

pDif pXps´qq ´ Dif pX pTn,k ^ tqqq ¨ dAipsq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

; (3.196)

E

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

ż 1

0

p1 ´ σq tDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq

´DiDjf pp1 ´ σqXps´q ` σXpsqqu dσd rXi, Xjs psq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

; (3.197)

E

˜˜

8
ÿ

k“0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

ˆ
ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq dMjpsq

¸2¸

; (3.198)

E

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

ˆ
ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq dAjpsq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

. (3.199)

Since the process
şu

0
pDif pXps´qq ´ Dif pX pTn,k ^ tqqq dMipsq, u ě 0, is a mar-

tingale, the quantity in (3.195) verifies

E

¨

˝

˜

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

pDif pXps´qq ´ Dif pX pTn,k ^ tqqq ¨ dMipsq

¸2
˛

‚

“
8
ÿ

k“0

E

¨

˝

˜

ż Tn,k`1^t´

Tn,k^t

pDif pXps´qq ´ Dif pX pTn,k ^ tqqq ¨ dMipsq

¸2
˛

‚

“
8
ÿ

k“0

E

˜

ż Tn,k`1^t´

Tn,k^t

pDif pXps´qq ´ Dif pX pTn,k ^ tqqq2 ¨ d ⟨Mi⟩ psq

¸

ď sup
x,yPRν :|y´x|ď1{n,maxp|x|,|y|qď2L

|Difpyq ´ Difpxq|2 .E p⟨Mi⟩ ptqq . (3.200)

Similarly we obtain an estimate for the quantity in (3.198):

E

˜˜

8
ÿ

k“0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ
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ˆ
ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq dMjpsq

¸2
˛

‚

“ E

˜

8
ÿ

k“0

ˆ
ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ
˙2

ˆ

˜

ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq dMjpsq

¸2
˛

‚

ď
1

2
sup

|y|ď2L

|DiDjfpyq|E

˜

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq2 d ⟨Mj⟩ psq

¸

ď
1

2
sup

|y|ď2L

|DiDjfpyq| ˆ
1

n2
E p⟨Mj⟩ ptqq . (3.201)
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The other estimates are even easier:

“ E

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

pDif pXps´qq ´ Dif pX pTn,kqqq ¨ dAipsq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď sup
x,yPRν :|y´x|ď1{n,maxp|x|,|y|qď2L

|Difpyq ´ Difpxq| .E
ˆ

ż t

0

|dAipsq|
˙

, (3.202)

E

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

ż Tn,k`1^t´

Tn,k^t

ż 1

0

p1 ´ σq tDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq

´DiDjf pp1 ´ σqXps´q ` σXpsqqu dσd rXi, Xjs psq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď
1

2
sup

x,yPRν :|y´x|ď1{n,maxp|x|,|y|qď2L

|DiDjfpyq ´ DiDjfpxq|

ˆ E
ˆ

ż t

0

|d rXi, Xjs psq|
˙

ď
1

2
sup

x,yPRν :|y´x|ď1{n,maxp|x|,|y|qď2L

|DiDjfpyq ´ DiDjfpxq|

ˆ
a

E prXi, Xis ptqq
b

E prXj, Xjs ptqq, and (3.203)

E

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXpTn,k ^ tq ` σX pTn,k`1 ^ t´qq dσ

ˆ
ż Tn,k`1^t´

Tn,k^t

pXips´q ´ Xi pTn,k ^ tqq dAjpsq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď
1

2n
sup

yPRν ,|y|ď2L

|DiDjfpyq|E
ˆ

ż t

0

|dAjpsq|
˙

. (3.204)

The inequality (3.203) will be established shortly. The quantities (3.200),
(3.201), (3.202), (3.203) and (3.204) tend to zero if n tends to infinity. Conse-
quently, from (3.194) it then follows that, P-almost surely,

fpXptqq “ fpXp0qq `
ż t

0

∇fpXpsqqdXpsq (3.205)

`
ν

ÿ

i,j“1

ż t

0

ż 1

0

p1 ´ σqDiDjf pp1 ´ σqXps´q ` σXpsqq dσd rXi, Xjs psq.

So that the formula of Itô has been established now. For completeness we prove
the inequality

E
ˆ

ż t

0

|d rXi, Xjs psq|
˙

ď
a

E prXi, Xis ptqq
b

E prXj, Xjs ptqq. (3.206)
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A proof of (3.206) will establish (3.203). For an appropriate sequence of subdivi-

sions 0 “ s
pnq
0 ă s

pnq
1 ă ¨ ¨ ¨ ă s

pnq
Nn

“ t we have with, temporarily, rXis “ rXi, Xis,
ż t

0

|d rXi, Xjs psq| “ lim
nÑ8

Nn
ÿ

k“1

ˇ

ˇ

ˇ
rXi, Xjs

´

s
pnq
k

¯

´ rXi, Xjs
´

s
pnq
k´1

¯ˇ

ˇ

ˇ

ď lim
nÑ8

Nn
ÿ

k“1

c

rXis
´

s
pnq
k

¯

´ rXis
´

s
pnq
k´1

¯

c

rXjs
´

s
pnq
k

¯

´ rXjs
´

s
pnq
k´1

¯

ď lim
nÑ8

˜

Nn
ÿ

k“1

´

rXi, Xis
´

s
pnq
k

¯

´ rXi, Xis
´

s
pnq
k´1

¯¯

¸1{2

˜

Nn
ÿ

k“1

´

rXj, Xjs
´

s
pnq
k

¯

´ rXj, Xjs
´

s
pnq
k´1

¯¯

¸1{2

“ prXi, Xis ptq ´ rXi, Xis p0qq1{2 prXj, Xjs ptq ´ rXj, Xjs p0qq1{2 (3.207)

Taking expectations and using the inequality of Cauchy-Schwartz once more
yields the desired result.

This completes the proofs of Theorems 3.86 and 3.88. �

Remark. In the proof of equality (3.194) there is a gap. It is correct if the
process A ” 0. In order to make the proof complete, Proposition 3.85 has to be
supplemented with equalities of the form (Miptq “

řν
k“1

şt

0
σikpsqdbkpsq):

MiptqAjptq “
ż t

0

MipsqdAjpsq `
ν

ÿ

k“1

ż t

0

σikpsqAjpsqdbkpsq;

AiptqAjptq “
ż t

0

AipsqdAjpsq `
ż t

0

AjpsqdAipsq.

This kind of equalities is true for continuous processes. If jumps are present
even more care has to be taken. We continue with some examples. We begin
with the heat equation.

Example 1. (Heat equation) Let U be an open subset of Rν , let f : U Ñ R be
a function in C0pEq and let u : r0,8q ˆ U Ñ R be a solution to the following
problem:

$

&

%

Bu
Bt

“ 1
2
∆u in r0,8q ˆ U ;

u is continuous on r0,8q ˆ U and up0, xq “ fpxq.

Moreover we assume that lim
xÑb,xPU

upt, xq “ 0 if b belongs to BU . Then upt, xq “

Ex rfpbptqq : τ ą ts, where τ is the exit time of U : τ “ inf ts ą 0 : bpsq P RνzUu.
Of course tbpsq : s ě 0u stands for ν-dimensional Brownian motion. In order to
prove this claim we fix t ą 0 and we consider the process tMpsq : 0 ď s ď tu
defined by Mpsq “ upt ´ s, bpsqq1tτąsu. An application of Itô’s formula yields
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the following identities:

Mpsq ´ Mp0q “ ´
ż s

0

Bu
Bt

pt ´ r, bprqq1tτąrudr `
ż s

0

∇upt ´ r, bprqq1tτąru ¨ dbprq

`
1

2

ż s

0

∆upt ´ r, bprqq1tτąrudr

“
ż s

0

"

´
Bu
Bt

pt ´ r, bprqq `
1

2
∆upt ´ r, bprqq

*

1tτąrudr

`
ż s

0

∇upt ´ r, bprqq1tτąru ¨ dbprq

“
ż s

0

∇upt ´ r, bprqq1tτąru ¨ dbprq.

Consequently, the process tMpsq : 0 ď s ď tu is a martingale. It follows that

upt, xq “ Ex pupt, bp0qqq “ ExpMp0qq “ ExpMptqq
“ Ex

`

up0, bptqq1tτątu
˘

“ Ex

`

fpbptqq1tτątu
˘

.
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Example 2. Let U be an open subset of Rν , let f belong to C0pUq and let
g : r0,8q ˆ U Ñ R be a function in C0pEq and let u : r0,8q ˆ U Ñ R be a
solution to the following problem:

$

&

%

Bu
Bt

“
1

2
∆u ` g in r0,8q ˆ U ;

u is continuous on r0,8q ˆ U and up0, xq “ fpxq.

Moreover we assume that limxÑb,xPU upt, xq “ 0 if b belongs to BU . Then

upt, xq “ Ex pfpbptqq : τ ą tq ` Ex

´

şminpt,τq
0

gpt ´ r, bprqqdr
¯

, where, as in Ex-

ample 1, τ is the exit time of U . Also as in Example 1, tbpsq : s ě 0u stands for
ν-dimensional Brownian motion. A proof can be given following the same lines
as in the previous example.

Example 3. (Feynman-Kac formula) Let U be an open subset of Rν , let
f belong to C0pUq and let V : U Ñ R be an appropriate function and let
u : r0,8q ˆ U Ñ R be a solution to the following problem:

$

&

%

Bu
Bt

“
1

2
∆u ´ V u in r0,8q ˆ U ;

u is continuous on r0,8q ˆ U and up0, xq “ fpxq.

Moreover we want that limxÑb,xPU upt, xq “ 0 if b belongs to BU . Then upt, xq “
Ex

´

exp
´

´
şt

0
V pbprqqdr

¯

fpbptqq : τ ą t
¯

.

For the proof we fix t ą 0 and we consider the process tMpsq : 0 ď s ď tu defined
by Mpsq “ upt ´ s, bpsqq exp

`

´
şs

0
V pbprqqdr

˘

1tτąsu and we apply Itô’s formula
to obtain:

Mpsq ´ Mp0q

“
ż s

0

"

´
Bu
Bt

pt ´ r, bprqq `
1

2
∆upt ´ r, bprqq ´ V pbprqqupt ´ r, bprqq

*

exp

ˆ

´
ż r

0

V pbpρqqdρ
˙

1tτąrudr

`
ż s

0

∇upt ´ r, bprqq exp
ˆ

´
ż r

0

V pbpρqqdρ
˙

1tτąru ¨ dbprq

“
ż s

0

∇upt ´ r, bprqq exp
ˆ

´
ż r

0

V pbpρqqdρ
˙

1tτąru ¨ dbprq.

Here we used the fact that u is supposed to be a solution of our initial value
problem. It follows that the process tMpsq : 0 ď s ď tu is a martingale. Hence
we may conclude that

upt, xq “ ExrMp0qs “ Ex rMptqs

“ Ex

„

up0, bptqq exp
ˆ

´
ż t

0

V pbpρqqdρ
˙

: τ ą t

ȷ

“ Ex

„

fpbptqq exp
ˆ

´
ż t

0

V pbpρqqdρ
˙

: τ ą t

ȷ

.
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Example 4. (Cameron-Martin or Girsanov transformation). Let U be an open
subset of Rν , let f belong to C0pUq and let c : U Ñ Rν be an appropriate vector
field on U and let u : r0,8q ˆ U Ñ R be a solution to the following problem:

$

&

%

Bu
Bt

“ 1
2
∆u ` c.∇u in r0,8q ˆ U ;

u is continuous on r0,8q ˆ U and up0, xq “ fpxq.

Moreover we want that limxÑb,xPU upt, xq “ 0 if b belongs to BU . Then upt, xq “
Ex pexp pZptqq fpbptqq : τ ą tq, where Zptq “

şt

0
cpbprqq ¨ dbprq ´ 1

2

şt

0
|cpbprqq|2 dr.

For a proof we fix t ą 0 and we consider the process tMpsq : 0 ď s ď tu defined
by Mpsq “ upt ´ s, bpsqq exp pZpsqq 1tτąsu. An application of Itô’s formula to
the function fps, x, yq “ upt ´ s, xq exppyq will yield the following result

Mpsq ´ Mp0q

“
ż s

0

´
Bu
Bt

pt ´ r, bprqq exp pZprqq1tτąrudr

`
ż s

0

∇upt ´ r, bprqq exp pZprqq1tτąru ¨ dbprq

`
ż s

0

upt ´ r, bprqq exp pZprqq dZprq

`
1

2

ż minps,τq

0

∆upt ´ r, bprqq exp pZprqq1tτąrudr

`
ν

ÿ

j“1

ż s

0

Djupt ´ r, bprqq exp pZprqq1tτąrud ⟨bj, Z⟩ prq

`
1

2

ż s

0

upt ´ r, bprqq exp pZprqq1tτąrud ⟨Z,Z⟩ prq

“
ż s

0

"

´
Bu
Bt

pt ´ r, bprqq `
1

2
∆upt ´ r, bprqq ` cpbprqq.∇upt ´ r, bprqq

*

exp pZprqq1tτąrudr

`
ż s

0

t∇upt ´ r, bprqq ` upt ´ r, bprqqcpbprqqu exp pZprqq1tτąru ¨ dbprq

´
1

2

ż s

0

upt ´ r, bprqq exp pZprqq |cpbprqq|2 1tτąrudr

`
1

2

ż s

0

upt ´ r, bprqq exp pZprqq |cpbprqq|2 1tτąrudr

“
ż s

0

t∇upt ´ r, bprqq ` upt ´ r, bprqqcpbprqqu exp pZprqq1tτąru ¨ dbprq.

As above it will follow that upt, xq “ Ex pexp pZptqq fpbptqq : τ ą tq.

Example 5. (Stochastic differential equation). Let pσpxqqνj,k“1, x P Rν , be a

continuous square matrix valued function and let cpxq be a so-called drift vec-
tor field (see the previous example). Suppose that the process tXxpsq : s ě 0u
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satisfies the following (stochastic) integral equation:

Xxptq “ x `
ż t

0

cpXxpsqqds `
ż t

0

σpXxpsqq ¨ dbpsq.

In other words the process tXxpsq : s ě 0u is a solution of the following stochas-
tic differential equation:

dXxptq “ cpXxptqqdt ` σpXxptqq ¨ dbptq

together with Xxp0q “ x. The integral
şt

0
σpXxpsqqdbpsq has the interpretation

ż t

0

σpXxpsqqdbpsq “

˜

ν
ÿ

k“1

ż t

0

σjkpXxpsqqdbkpsq

¸ν

j“1

.

Next let u : r0,8q ˆ Rν Ñ R be a twice continuously differentiable function.
Then, by Itô’s lemma,

u pt ´ s,Xxpsqq ´ u pt,Xxp0qq

“ ´
ż s

0

Bu
Bt

pt ´ r,Xxprqq dr

`
ż s

0

∇u pt ´ r,Xxprqq ¨ dXxprq

`
1

2

ν
ÿ

j,k“1

ż s

0

DjDku pt ´ r,Xxprqq d
⟨
Xx

j , X
x
k

⟩
prq.

Next we compute

d
⟨
Xx

j , X
x
k

⟩
prq “

ν
ÿ

m,n“1

σjm

`

Xx
j mprq

˘

σkn pXxprqq d ⟨bm, bn⟩ prq

“
ν

ÿ

m“1

σjm pXxprqqσkm pXxprqq dr “ pσ pXxprqqσ pXxprqqτ qjk dr,

where σpxqτ is the transposed matrix of σpxq. Next we introduce the differential
operator L as follows:

rLf s pxq “
1

2

ν
ÿ

j,k“1

pσpxqσpxqτ qjk DjDkfpxq `
ν

ÿ

j“1

cjpxqDjfpxq.

For our twice continuously differential function u we obtain:

u pt ´ s,Xxpsqq ´ u pt,Xxp0qq

“ ´
ż s

0

Bu
Bt

pt ´ r,Xxprqq dr

`
ν

ÿ

j“1

ż s

0

cj pXxprqqDju pt ´ r,Xxprqq dr

`
ż s

0

∇u pt ´ r,Xxprqqσ pXxprqq ¨ dbprq
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`
1

2

ν
ÿ

j,k“1

ż s

0

pσ pXxprqqσ pXxprqqτ qj,k DjDku pt ´ r,Xxprqq dr

“
ż s

0

∇u pt ´ r,Xxprqqσ pXxprqq ¨ dbprq `
ż s

0

ˆ

L ´
B
Bt

˙

u pt ´ r,Xxprqq dr.

So that, if

ˆ

L ´
B
Bt

˙

u ” 0, then, for 0 ď s ď t,

u pt ´ s,Xxpsqq ´ u pt,Xxp0qq “
ż s

0

∇u pt ´ r,Xxprqqσ pXxprqq dbprq,

and hence, the process Mpsq :“ u pt ´ s,Xxpsqq is a martingale on the interval
r0, ts. It follows that

upt, xq “ EpMp0qq “ EpMptqq “ E pu p0, Xxptqqq “ E pf pXxptqqq
where up0, xq “ fpxq. For more details on stochastic differential equations see
Chapter 4.
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Example 6. (Quantum mechanical magnetic field). Let a⃗ be an appropriate
vector field on Rν and let H p⃗a, V q “ 1

2
pi∇ ` a⃗q2 `V be the (quantum mechan-

ical) Hamiltonian of a particle under the influence of the scalar potential V in

a magnetic field B⃗pxq with vector potential a⃗pxq: i.e. B⃗ “ ∇ ˆ a⃗. Let f be a
function in C0 pRνq and let u : r0,8q ˆ Rν Ñ R be a solution to the following
problem:

$

&

%

Bu
Bt

“ ´H p⃗a, V qu in r0,8q ˆ Rν ;

u is continuous on r0,8q ˆ Rν and up0, xq “ fpxq.

Moreover we want that lim
xÑ8

upt, xq “ 0. Then upt, xq “ Ex

“

eZptqfpbptqq
‰

, where

Zptq “ ´i

ż t

0

a⃗pbpsqq ¨ dbpsq ´
1

2
i

ż t

0

∇ ¨ a⃗pbpsqqds ´
ż t

0

V pbpsqqds

with ∇ ¨ a⃗ “
ν

ÿ

j“1

Baj
Bxj

. Put Mpsq “ upt ´ s, bpsqq exp pZpsqq, 0 ă s ă t. An

application of Itô’s formula to the function fps, x, yq “ upt ´ s, xq exppyq will
yield the following result

Mpsq ´ Mp0q “ fps, bpsq, Zpsqq ´ fp0, bp0q, Zp0qq

“
ż s

0

Bf
Bs

pσ, bpσq, Zpσqq dσ `
ż s

0

∇xfpσ, bpσq, Zpσqq ¨ dbpσq

`
ż s

0

Bf
By

pσ, bpσq, Zpσqq ¨ dZpσq `
1

2

ż s

0

∆xfpσ, bpσq, Zpσqqdσ

`
1

2

ν
ÿ

j“1

ż s

0

B2

ByBxj

fpσ, bpσq, Zpσqqd ⟨Z, bj⟩ pσq

`
1

2

ν
ÿ

j“1

ż s

0

B2f

BxjBy
pσ, bpσq, Zpσqq d ⟨bj, Z⟩ pσq

`
1

2

ż s

0

B2f

By2
pσ, bpσq, Zpσqqd ⟨Z,Z⟩ pσq

“
ż s

0

Bf
Bs

pσ, bpσq, Zpσqq dσ `
ż s

0

∇xfpσ, bpσq, Zpσqq ¨ dbpσq

`
ż s

0

fpσ, bpσq, Zpσqq ¨ dZpσq `
1

2

ż s

0

∆xfpσ, bpσq, Zpσqqdσ

´ i
ν

ÿ

j“1

ż s

0

Bf
Bxj

pσ, bpσq, Zpσqqajpb
`

σq
˘

dσ

`
1

2

ż s

0

fpσ, bpσq, Zpσqq
ν

ÿ

j“1

aj pbpσqq2 dσ

“ ´
ż s

0

Bu
Bt

pt ´ σ, bpσqq eZpσqdσ `
ż s

0

∇xu pt ´ σ, bpσqq eZpσq ¨ dbpσq
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`
ż s

0

u pt ´ σ, bpσqq eZpσq ¨ dZpσq `
1

2

ż s

0

∆xu pt ´ σ, bpσqq eZpσqdσ

´ i
ν

ÿ

j“1

ż s

0

Bu
Bxj

pt ´ σ, bpσqq eZpσqajpbpσqdσ

`
1

2

ż s

0

u pt ´ σ, bpσqq eZpσq
ν

ÿ

j“1

aj pbpσqq2 dσ

“
ż s

0

"

´
Bu
Bt

`
1

2
∆xu ´ i⃗apbpσqq.∇xu ´

1

2
|⃗apbpσqq|2 u

´
1

2
i∇ ¨ a⃗pbpσqqu ´ V pbpσqqu

*

pt ´ σ, bpσqq eZpσqdσ

`
ż s

0

∇xu pt ´ σ, bpσqq eZpσq ¨ dbpσq ´ i

ż s

0

u pt ´ σ, bpσqq eZpσqa⃗pbpσqq ¨ dbpσq

“
ż s

0

"

´
B
Bt

´
1

2
pi∇ ` a⃗q2 ´ V

*

u pt ´ σ, bpσqq eZpσqdσ

`
ż s

0

∇xu pt ´ σ, bpσqq eZpσq ¨ dbpσq ´ i

ż s

0

u pt ´ σ, bpσqq eZpσqa⃗pbpσqq ¨ dbpσq

“
ż s

0

∇xu pt ´ σ, bpσqq eZpσq ¨ dbpσq ´ i

ż s

0

u pt ´ σ, bpσqq eZpσqa⃗pbpσqq ¨ dbpσq.

Here we used the fact that the function u satisfies the differential equation. The
claim in the beginning of the example then follows as in Example 4.

Example 7. A geometric Brownian motion (GBM) (occasionally called expo-
nential Brownian motion) is a continuous-time stochastic process in which the
logarithm of the randomly varying quantity follows a Brownian motion, also
called a Wiener process: see e.g. Ross [116] Section 10.3.2. It is applicable
to mathematical modelling of some phenomena in financial markets. It is used
particularly in the field of option pricing because a quantity that follows a GBM
may take any positive value, and only the fractional changes of the random vari-
ate are significant. This is a reasonable approximation of stock price dynamics
except for rare events.

A stochastic process St is said to follow a GBM if it satisfies the following
stochastic differential equation:

dSptq “ µSptq dt ` σSptq dW ptq

where W ptq is a Wiener process or Brownian motion and µ (“the percentage
drift” or “drift rate”) and σ (“the (percentage or ratio) volatility”) are constants.

For an arbitrary initial value Sp0q the equation has the analytic solution

Sptq “ Sp0q exp
ˆˆ

µ ´
σ2

2

˙

t ` σW ptq
˙

,

which is a log-normally distributed random variable with expected value given

by ErSptqs “ eµtSp0q and variance by VarpSptqq “ e2µtSp0q2
´

eσ
2t ´ 1

¯

.
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The correctness of the solution can be verified using Itô’s lemma. The random

variable log

ˆ

Sptq
Sp0q

˙

is normally distributed with mean
`

µ ´ 1
2
σ2

˘

t and variance

σ2t, which reflects the fact that increments of a GBM are normal relative to the
current price, which is why the process has the name “geometric”.

Example 8. The term Black-Scholes refers to three closely related concepts:

1. The Black-Scholes model is a mathematical model of the market for an
equity, in which the equity’s price is a stochastic process.

2. The Black-Scholes PDE is a partial differential equation which (in the
model) must be satisfied by the price of a derivative on the equity.

3. The Black-Scholes formula is the result obtained by solving the Black-
Scholes PDE for a European call option.

Fischer Black and Myron Scholes first articulated the Black-Scholes formula in
their 1973 paper, “The Pricing of Options and Corporate Liabilities.”: see [19].
The foundation for their research relied on work developed by scholars such
as Jack L. Treynor, Paul Samuelson, A. James Boness, Sheen T. Kassouf, and
Edward O. Thorp. The fundamental insight of Black-Scholes is that the option
is implicitly priced if the stock is traded.

Robert C. Merton was the first to publish a paper expanding the mathematical
understanding of the options pricing model and coined the term “Black-Scholes”
options pricing model.

Merton and Scholes received the 1997 The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel for this and related work. Though ineligible
for the prize because of his death in 1995, Black was mentioned as a contributor
by the Swedish academy.
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7. Black-Scholes model

The text in this section is taken from Wikipedia (English version). The Black-
Scholes model of the market for a particular equity makes the following explicit
assumptions:

1. It is possible to borrow and lend cash at a known constant risk-free
interest rate.

2. The price follows a geometric Brownian motion with constant drift and
volatility.

3. There are no transaction costs.
4. The stock does not pay a dividend (see below for extensions to handle

dividend payments).
5. All securities are perfectly divisible (i.e. it is possible to buy any frac-

tion of a share).
6. There are no restrictions on short selling.
7. There is no arbitrage opportunity.

From these ideal conditions in the market for an equity (and for an option on
the equity), the authors show that it is possible to create a hedged position,
consisting of a long position in the stock and a short position in [calls on the
same stock], whose value will not depend on the price of the stock.

Notation. We define the following quantities:

- S, the price of the stock (please note as below).
- V pS, tq, the price of a financial derivative as a function of time and
stock price.

- CpS, tq the price of a European call and P pS, tq the price of a European
put option.

- K, the strike of the option.
- r, the annualized risk-free interest rate, continuously compounded.
- µ, the drift rate of S, annualized.
- σ, the volatility of the stock; this is the square root of the quadratic
variation of the stock’s log price process.

- t a time in years; we generally use now “ 0, expiry “ T .
- Π, the value of a portfolio.
- R, the accumulated profit or loss following a delta-hedging trading
strategy.

- Npxq denotes the standard normal cumulative distribution function,

Npxq “
1?
2π

ż x

´8
e´ 1

2
z2 dz.

- N 1pxq “
1?
2π

e´ 1
2
x2

denotes the standard normal probability density

function.
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Black-Scholes PDE. Simulated Geometric Brownian Motions with Parameters
from Market Data

In the model as described above, we assume that the underlying asset (typically
the stock) follows a geometric Brownian motion. That is,

dSptq “ µSptq dt ` σSptq dW ptq,

where W ptq is a Brownian motion; the dW term here stands in for any and all
sources of uncertainty in the price history of a stock.

The payoff of an option V pS, T q at maturity is known. To find its value at an
earlier time we need to know how V evolves as a function of S and T . By Itô’s
lemma for two variables we have

dV pSptq, tq “
BV pSptq, tq

BS
dSptq `

BV pSptq, tq
Bt

dt `
1

2

B2V pSptq, tq
B2S

d xS, Sy ptq

“
ˆ

µSptq
BV pSptq, tq

BS
`

BV pSptq, tq
Bt

`
1

2
σ2Sptq2

B2V pSptq, tq
BS2

˙

dt

` σSptq
BV pSptq, tq

BS
dW ptq. (3.208)

Now consider a trading strategy under which one holds aptq units of a single
option with value Sptq and bptq units of a bond with value βptq at time t. The
value V pSptq, tq of the portfolio of the trading strategy paptq, bptqq is then given
by

V pSptq, tq “ aptqSptq ` bptqβptq. (3.209)

Observe that (3.209) is equivalent to

bptq “
V pSptq, tq ´ aptqSptq

βptq
.

In addition, aptq “
BV pSptq, tq

Bs
, which is called the delta hedging rule. Assum-

ing, like in the Black-Sholes model, that the strategy paptq, bptqq is self-financing,
which by definition implies

dV pSptq, tq “ aptq dSptq ` bptq dβptq, (3.210)

we get

dV ptq “ µaptqSptq dt ` bptq dβptq ` σaptqSptq dW ptq. (3.211)

Assume that the process t ÞÑ βptq, i.e., the bond price, is of bounded varia-
tion. By equating the terms with dW ptq in (3.208) and (3.211) we see aptq “
BV pSptq, tq

BS
. From this and again equating the other terms in (3.208) and

(3.211) and using (3.209) we also obtain
ˆ

BV pSptq, tq
Bt

`
1

2
σ2Sptq2

B2V pSptq, tq
BS2

˙

dt

“ bptq dβptq “
ˆ

V pSptq, tq ´ Sptq
BV pSptq, tq

Bs

˙

dβptq
βptq

. (3.212)
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If the interest rate for the bond is constant, i.e., if dβptq “ rβptq dt, or, what
amounts to the same, βptq “ βp0qert, then from (3.212) it also follows that

BV pSptq, tq
Bt

`
1

2
σ2Sptq2

B2V pSptq, tq
BS2

“ r

ˆ

V pSptq, tq ´ Sptq
BV pSptq, tq

Bs

˙

. (3.213)

If we trade in a single option continuously trades in the stock in order to hold

´
BV
BS

shares, then at time t, the value of these holdings will be

Πptq “ V pSptq, tq ´ Sptq
BV pSptq, tq

BS
.

The composition of this portfolio, called the delta-hedge portfolio, will vary from
time-step to time-step. Let Rptq denote the accumulated profit or loss from
following this strategy. Then over the time period rt, t ` dts, the instantaneous
profit or loss is

dRptq “ dV pSptq, tq ´
BV pSptq, tq

BS
dSptq.

By substituting in the equations above we get

dRptq “
ˆ

BV pSptq, tq
Bt

`
1

2
σ2S2B2V pSptq, tq

BS2

˙

dt.

This equation contains no dW ptq term. That is, it is entirely risk free (delta
neutral). Black, Scholes and Merton reason that under their ideal conditions,
the rate of return on this portfolio must be equal at all times to the rate of return
on any other risk free instrument; otherwise, there would be opportunities for
arbitrage. Now assuming the risk free rate of return is r we must have over the
time period rt, t ` dts (Black-Scholes assumption):

rΠptq dt “ dRptq “
ˆ

BV pSptq, tq
Bt

`
1

2
σ2S2B2V pSptq, tq

BS2

˙

dt.

Observe that the Black-Sholes assumption comes down to the assumption of
self-financing, because the results If we now substitute in for Πptq and divide
through by dt we obtain the Black-Scholes PDE:

BV pSptq, tq
Bt

`
1

2
σ2S2B2V pSptq, tq

BS2
` rS

BV pSptq, tq
BS

´ rV pSptq, tq “ 0. (3.214)

Observe that the Black-Sholes assumption comes down to the assumption of
self-financing, because the resulting partial differential equation in (3.213) and
(3.214) is the same. With the assumptions of the Black-Scholes model, this
partial differential equation holds whenever V is twice differentiable with respect
to S and once with respect to t. Above we used the method of arbitrage-free
pricing (“delta-hedging”) to derive some PDE governing option prices given the
Black-Scholes model. It is also possible to use a risk-neutrality argument. This
latter method gives the price as the expectation of the option payoff under a
particular probability measure, called the risk-neutral measure, which differs
from the real world measure.
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Black-Scholes formula. The Black-Scholes formula is used for obtaining the price
of European put and call options. It is obtained by solving the Black-Scholes
PDE as discussed - see derivation below.

The value of a call option in terms of the Black-Scholes parameters is given by:

CpS, tq “ C pSptq, tq “ SptqNpd1q ´ Ke´rpT´tqNpd2q with (3.215)

d1 “
logp S

K
q `

´

r ` σ2

2

¯

pT ´ tq

σ
?
T ´ t

and d2 “ d1 ´ σ
?
T ´ t. (3.216)

The price of a put option is:

P pS, tq “ P pSptq, tq “ Ke´rpT´tqNp´d2q ´ SptqNp´d1q. (3.217)

For both, as above:

1. Np¨q is the standard normal or cumulative distribution function.
2. T ´ t is the time to maturity.
3. S “ Sptq is the spot price of the underlying asset at time t.
4. K is the strike price.
5. r is the risk free interest rate (annual rate, expressed in terms of con-

tinuous compounding).
6. σ is the volatility in the log-returns of the underlying asset.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


Advanced stochastic processes: Part I

192 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales192 3. BROWNIAN MOTION, GAUSSIAN PROCESSES AND MARTINGALES

Interpretation. The quantities N pd1q and N pd2q are the probabilities of the
option expiring in-the-money under the equivalent exponential martingale prob-
ability measure (numéraire = stock) and the equivalent martingale probability
measure (numéraire = risk free asset), respectively. The equivalent martingale
probability measure is also called the risk-neutral probability measure. Note
that both of these are probabilities in a measure theoretic sense, and neither of
these is the true probability of expiring in-the-money under the real probability
measure.

Derivation. We now show how to get from the general Black-Scholes PDE to
a specific valuation for an option. Consider as an example the Black-Scholes
price of a call option, for which the PDE above has boundary conditions

Cp0, tq “ 0 for all t

CpS, tq Ñ S as S Ñ 8
CpS, T q “ maxpS ´ K, 0q.

The last condition gives the value of the option at the time that the option
matures. The solution of the PDE gives the value of the option at any earlier
time, E rmaxpS ´ K, 0qs. In order to solve the PDE we transform the equation
into a diffusion equation which may be solved using standard methods. To this
end we introduce the change-of-variable transformation

τ “ T ´ t, upx, τq “ C
´

Kex´pr´ 1
2
σ2qτ , T ´ τ

¯

erτ , and x “ log
S

K
` pr´

σ2

2
qτ.

Note: in fact in case we consider a call option we replace V pSptq, tq with
C pSptq, tq. Instead of u we may also consider

vpx, tq “ V
´

Kex´pr´ 1
2
σ2qpT´tq, t

¯

erpT´tq.

In case we consider a European call option we take as final value for v: vpx, T q “
V pKex, T q “ C pKex, T q “ max pKex ´ K, 0q “ Kmax pex ´ 1, 0q. Then the
Black-Scholes PDE becomes a diffusion equation

Bu
Bτ

“
1

2
σ2B2u

Bx2
.

The terminal condition CpS, T q “ maxpS ´ K, 0q now becomes an initial con-
dition

upx, 0q “ u0pxq ” Kmax pex ´ 1, 0q .
Using the standard method for solving a diffusion equation we have

upx, τq “
1

σ
?
2πτ

ż 8

´8
u0pyqe´px´yq2{p2σ2τq dy.

After some calculations we obtain

upx, τq “ Kex`σ2τ{2N pd1q ´ KN pd2q

where

d1 “
x ` σ2τ

σ
?
τ

and d2 “
x

σ
?
τ
.
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Substituting for u, x, and τ , we obtain the value of a call option in terms of the
Black-Scholes parameters is given by

CpS, tq “ SNpd1q ´ Ke´rpT´tqNpd2q,
where d1 and d2 are as in (3.216). The price of a put option may be computed
from this by the put-call parity and simplifies to

P pS, tq “ Ke´rpT´tqNp´d2q ´ SNp´d1q.
Risk neutral measure. Suppose our economy consists of 2 assets, a stock and
a risk-free bond, and that we use the Black-Scholes model. In the model the
evolution of the stock price can be described by Geometric Brownian Motion:

dSptq “ µSptq dt ` σSptq dW ptq
whereW ptq is a standard Brownian motion with respect to the physical measure.
If we define

ĂW ptq “ W ptq `
µ ´ r

σ
t,

Girsanov’s theorem states that there exists a measure Q under which ĂW ptq is a
standard Brownian motion, i.e., a Brownian motion without a drift term and

such that EQ

”

ĂW ptq2
ı

“ t. For a more thorough discussion on the Girsanov’s

theorem, which is in fact (much) more general, see assertion (4) in Proposition

4.24 in Chapter 4 Section 3. The quantity
µ ´ r

σ
is known as the market price

of risk. Differentiating and rearranging yields:

dW ptq “ dĂW ptq ´
µ ´ r

σ
dt.

Put this back in the original equation:

dSptq “ rSptq dt ` σSptq dĂW ptq.
The probability Q is the unique risk-neutral measure for the model. The (dis-
counted) payoff process of a derivative on the stock Hptq “ EQ

`

HpT q
ˇ

ˇ Ft

˘

is
a martingale under Q. Since S and H are Q-martingales we can invoke the
martingale representation theorem to find a replicating strategy – a holding of
stocks and bonds that pays off Hptq at all times t ď T . The measure Q is given
by QpAq “ E

“

e´ZpT q1A

‰

, A P FT , where

Zptq “
1

2

´µ ´ r

σ

¯2

t `
µ ´ r

σ
W ptq.

In fact a more general result is true. Let s ÞÑ hpsq be a predictable process such

that E
„

exp

ˆ

1

2

ż T

0

|hpsq|2 ds
˙ȷ

ă 8. Put

Zhptq “
ż t

0

hpsqdW psq `
1

2

ż t

0

|hpsq|2 ds.

Define the measure Qh by QhpAq “ E
“

e´ZhpT q1A

‰

, A P FT . Put Whptq “
W ptq `

şt

0
hpsq ds. Then the process Wh is a Brownian motion relative to the

measure Qh. The proof of this result uses Lévy’s characterization of Brownian

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

194 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales

194 3. BROWNIAN MOTION, GAUSSIAN PROCESSES AND MARTINGALES

motion: see Corollary 4.7. It says that a process Wh is a Qh-Brownian motion
if and only if the following two conditions are satisfied:

(1) The quadratic variation of Wh satisfies ⟨Wh,Wh⟩ ptq “ t.
(2) The process Wh is a local martingale relative to the measure Qh.

(For a proof of this result see Theorem 4.5.) In our case we have ⟨Wh,Wh⟩ ptq “
⟨W,W ⟩ ptq “ t, and so (1) is satisfied. In order to establish (2) we use Itô
calculus to obtain:

e´ZhptqWhptq “
ż t

0

e´ZhpsqdW psq ´
ż t

0

e´ZhpsqWhpsqhpsq dW psq.

Since the process t ÞÑ e´Zhptq is a martingale we see that the process Wh is a
local Qh-martingale.

We like to spend more time on the Black-Sholes model and the corresponding
risk-neutral measure. Again we have trading strategy paptq, bptqq of a financial
asset and a bond. Its portfolio value V ptq :“ V pSptq, tq is given by V ptq “
aptqSptq ` bptqβptq. Here Sptq is the price of the option at time t and βptq
is the price of the bond at time t. It is assumed that the process t ÞÑ Sptq
follows a geometric Brownian motion: dSptq “ µSptq dt`σSptq dW ptq, or Sptq “
Sp0qeσW ptq`pµ´ 1

2
σ2qt. Let rSptq be the discounted price of the option, i.e.,

rSptq “
βp0q
βptq

Sptq. (3.218)

Put ĂW ptq “ W ptq `
şt

0
qpsq ds, where

qpsq “
1

σ

ˆ

µ ´
β1psq
βpsq

˙

.

Then the process rSptq satisfies the equation

drSptq “ σ
βp0q
βptq

Sptq d
ˆ

1

σ

ż t

0

ˆ

µ ´
β1psq
βpsq

˙

ds ` W ptq
˙

“ σ rSptq dĂW ptq. (3.219)

Put Zqptq “
ż t

0

qpsq dW psq `
1

2

ż t

0

qpsq2 ds. By Girsanov’s theorem the process

t ÞÑ ĂW ptq is a (standard) Brownian motion under the measure Qq given by

QqpAq “ E
“

e´ZqpT q1A

‰

, A P FT . The solution rSptq of the SDE in (3.219) can
be written in the form

rSptq “ rSp0qeσĂW ptq´ 1
2
σ2t. (3.220)

Assume that the portfolio is self-financing we will show that

V ptq “ EQq

„

βptq
βpT q

h pSpT qq
ˇ

ˇ Ft

ȷ

, t P r0, T s, (3.221)

where V pT q is equal to the contingent claim h pSpT qq at the time of maturity
T . Of course, EQq

“

F
ˇ

ˇ Ft

‰

denotes the conditional expectation of F relative
Qq, given the σ-field Ft “ σ pW psq : s ď tq of the variable F P L1 pΩ,FT ,Qqq
with respect to the probability measure Qq. Another application of Itô’s lemma

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

195 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales

7. BLACK-SCHOLES MODEL 195

together with the definition of rSptq, ĂW ptq and rV ptq “
βp0q
βptq

V ptq shows the

following result

drV ptq “ ´
βp0qβ1ptq
βptq2

V ptq dt `
βp0q
βptq

dV ptq

(the hedging strategy paptq, bptqq is self-financing)

“ ´
βp0qβ1ptq
βptq2

V ptq dt `
βp0q
βptq

paptq dSptq ` bptqdβptqq

(employ the equation for the option price Sptq)

“ ´
βp0qβ 1ptq
βptq2

V ptq dt `
βp0q
βptq

Sptq
ˆ

µaptq dt ` bptq
β1ptq
βptq

dt ` σdW ptq
˙

“ ´
βp0qβ1ptq
βptq2

paptqSptq ` bptqβptqq dt

`
βp0q
βptq

Sptq
ˆ

µaptq dt ` bptq
β1ptq
βptq

dt ` σdW ptq
˙

“ σaptq
βp0q
βptq

Sptq d
"

1

σ

ż t

0

ˆ

µ ´
β1psq
βpsq

˙

ds ` W ptq
*

“ σaptq rSptq dĂW ptq. (3.222)
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In fact the equality in (3.222) could also have been obtained by observing that

drV ptq “ aptq drSptq, and drSptq “ σdĂW ptq. (3.223)

From (3.222) we infer

rV ptq “ rV p0q ` σ

ż t

0

apsq dĂW psq, (3.224)

and hence, the process t ÞÑ rV ptq is a martingale with respect to the measure
Qq. So from (3.224) we get

βp0q
βptq

V ptq “ rV ptq “ EQq

”

rV pT q
ˇ

ˇ Ft

ı

“ EQq

„

βp0q
βpT q

V pT q
ˇ

ˇ Ft

ȷ

, (3.225)

and hence

V ptq “ EQq

„

βptq
βpT q

V pT q
ˇ

ˇ Ft

ȷ

“ EQq

„

βptq
βpT q

h pSpT qq
ˇ

ˇ Ft

ȷ

. (3.226)

In addition, we observe that

Sptq
βpT q
βptq

e´ 1
2
σ2pT´tq`σpĂW pT q´ĂW ptqq

“ Sptq exp
ˆ

ż T

t

ˆ

β1psq
βpsq

´
1

2
σ2

˙

ds ` σ
´

ĂW pT q ´ ĂW ptq
¯

˙

“ Sp0q exp
ˆ

σW ptq `
ˆ

µ ´
1

2
σ2

˙

t

˙

ˆ exp

ˆ
ż T

t

ˆ

β1psq
βpsq

´
1

2
σ2

˙

ds ` σ

ˆ

W pT q ´ W ptq `
ż T

t

qpsq ds
˙˙

“ Sp0qepµ´ 1
2
σ2qT`σW pT q “ SpT q. (3.227)

Inserting the equality for SpT q from (3.227) into (3.226) yields

V ptq “ EQq

„

βptq
βpT q

h

ˆ

Sptq
βpT q
βptq

e´ 1
2
σ2pT´tq`σpĂW pT q´ĂW ptqq

˙

ˇ

ˇ Ft

ȷ

. (3.228)

Since the variable Sptq is measurable with respect to Ft, Since process t ÞÑ ĂW ptq
is a Qq-Brownian motion, the variable ĂW pT q ´ ĂW ptq and the σ-field Ft are Qq-
independent. Moreover, the process t ÞÑ βptq is supposed to deterministic.
Hence, since the variable Sptq is measurable with respect to Ft, we deduce that

V ptq “ V pSptq, tq

“
1?
2π

ż 8

´8

βptq
βpT q

h

ˆ

x
βpT q
βptq

e´ 1
2
σ2pT´tq`σ

?
T´ty

˙

e´ 1
2
y2 dy

ˇ

ˇ

x“Sptq . (3.229)

Hence if the pay-off, i.e. the value of the call option at expiry (time of maturity
T ), is given by h pSpT qq “ max tSpT q ´ K, 0u, then the value of the portfolio
at time t ď T is given by the formula in (3.229). If βptq “ βp0qert, then this
integral can be rewritten as in (3.215) with C pS, tq “ C pSptq, tq “ V pSptq, tq “
V ptq. Similarly, if h pSpT qq “ max tK ´ SpT q, 0u, then P pS, tq “ P pSptq, tq “
V pSptq, tq “ V ptq is the price of a European put option: see the somewhat
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more explicit expression in (3.217). For a modern treatment of several stock
price models see, e.g., Gulisashvili [60].

8. An Ornstein-Uhlenbeck process in higher dimensions

Part of this text is taken from [146]. Let C pt, sq, t ě s, t, s P R, be a family of
d ˆ d matrices with real entries, with the following properties:

(a) Cpt, tq “ I, t P R, (I stands for the identity matrix).
(b) The following identity holds: Cpt, sqCps, τq “ Cpt, τq holds for all real

numbers t, s, τ for which t ě s ě τ .
(c) The matrix valued function pt, s, xq ÞÑ Cpt, sqx is continuous as a func-

tion from the set
␣

pt, sq P Rd ˆ Rd : t ě s
(

ˆ Rd to Rd.

Define the backward propagator YC on Cb

`

Rd
˘

by YCps, tqfpxq “ f pCpt, sqxq,
x P Rd, s ď t, and f P Cb

`

Rd
˘

. Then YC is a backward propagator on the space

Cb

`

Rd
˘

, which is σ
`

Cb

`

Rd
˘

,M
`

Rd
˘˘

-continuous. Here the symbol M
`

Rd
˘

stands for the vector space of all signed measures on Rd. The operator family
tYCps, tq : s ď tu satisfies YC ps1, s2qYC ps2, s3q “ YC ps1, s3q, s1 ď s2 ď s3.

Let W ptq be standard m-dimensional Brownian motion on pΩ,Ft,Pq and let
σpρq be a deterministic continuous function which takes its values in the space
of d ˆ m-matrices. Put Qpρq “ σpρqσpρq˚. Another interesting example is the
following:

YC,Q ps, tq fpxq

“
1

p2πqd{2

ż

e´ 1
2

|y|2f

˜

Cpt, sqx `
ˆ

ż t

s

Cpt, ρqQpρqCpt, ρq˚dρ

˙1{2

y

¸

dy

“ E
„

f

ˆ

Cpt, sqx `
ż t

s

Cpt, ρqσpρq dW pρq
˙ȷ

, (3.230)

where Qpρq “ σpρqσpρq˚ is a positive-definite d ˆ d matrix. Then the propaga-
tors YC,Q and YC,S are backward propagators on Cb

`

Rd
˘

. We will prove this.
The equality of the expressions in (3.230) is a consequence of the following ar-
guments. Let the variable ξ P Rd have the standard normal distribution. Fix
t ě τ . Both variables

Xτ,xptq :“ C pt, τqx `
ż t

τ

C pt, ρqσpρqdW pρq, t ě τ, and

Cpt, τqx `
ˆ

ż t

τ

Cpt, ρqQpρqCpt, ρq˚dρ

˙1{2

ξ, t ě τ, (3.231)

are Rd-valued Gaussian vectors. A calculation shows that they have the same
expectation and the same covariance matrix with entries given by (3.242) below
with s “ t.

Next suppose that the forward propagator C on Rd consists of contractive op-
erators, i.e. Cpt, sqCpt, sq˚ ď I (this inequality is to be taken in matrix sense).
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Choose a family S pt, sq of square d ˆ d-matrices such that Cpt, sqCpt, sq˚ `
S pt, sqS pt, sq˚ “ I, and put

YC,S ps, tq fpxq “
1

p2πqd{2

ż

e´ 1
2

|y|2f pCpt, sqx ` Spt, sqyq dy. (3.232)

In fact the example in (3.232) is a special case of the example in (3.230) provided
Qpρq is given by the following limit:

Qpρq “ lim
hÓ0

I ´ C pρ ´ hqC pρ ´ hq˚

h
(3.233)

If Qpρq is as in (3.233), then

S pt, sqS pt, sq˚ “ I ´ C pt, sqC pt, sq˚ “
ż t

s

C pt, ρqQpρqC pt, ρq˚ dρ.

The following auxiliary lemma will be useful. Condition (3.234) is satisfied if the
three pairs pC1, S1q, pC2, S2q, and pC3, S3q satisfy: C1C

˚
1 `S1S

˚
1 “ C2C

˚
2 `S2S

˚
2 “

C3C
˚
3 ` S3S

˚
3 “ I. It also holds if C2 “ C pt2, t1q, and

SjS
˚
j “

ż tj

tj´1

C ptj, ρq σpρqσpρq˚C ptj, ρq˚ dρ, j “ 1, 2, and

S3S
˚
3 “

ż t2

t0

C pt2, ρqσpρqσpρq˚C pt2, ρq˚ dρ.
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3.89. Lemma. Let C1, S1, C2, S2, and C3, S3 be dˆd-matrices with the following
properties:

C3 “ C2C1, and C2S1S
˚
1C

˚
2 ` S2S

˚
2 “ S3S

˚
3 . (3.234)

Let f P Cb

`

Rd
˘

, and put

Y1,2fpxq “
1

p2πqd{2

ż

e´ 1
2

|y|2f pC1x ` S1yq dy; (3.235)

Y2,3fpxq “
1

p2πqd{2

ż

e´ 1
2

|y|2f pC2x ` S2yq dy; (3.236)

Y1,3fpxq “
1

p2πqd{2

ż

e´ 1
2

|y|2f pC3x ` S3yq dy. (3.237)

Then Y1,2Y2,3 “ Y1,3.

Proof. Let the matrices Cj and Sj, 1 ď j ď 3, be as in (3.234). Let
f P Cb

`

Rd
˘

. First we assume that the matrices S1 and C2 are invertible, and

we put A3 “ S´1
1 C´1

2 S3, and A2 “ S´1
1 C´1

2 S2. Then, using the equalities
in (3.234) we see A3A

˚
3 “ I ` A2A

˚
2 . We choose a d ˆ d-matrix A such that

A˚A “ I`A˚
2A2, and we putD “ pA´1q˚

A˚
2A3. Then we have A˚

3A3 “ I`D˚D.
Let f P Cb

`

Rd
˘

. Let the vectors py1, y2q P Rd ˆRd and py, zq P Rd ˆRd be such
that

ˆ

y1
y2

˙

“
ˆ

A3 ´A2A
´1

0 A´1

˙ ˆ

y
z

˙

. (3.238)

Since

A2A
˚
2 pI ` A2A

˚
2q´1 “ A2 pI ` A˚

2A2q´1 A˚
2 ,

we obtain

det pI ` A2A
˚
2q “ det pI ` A˚

2A2q .
Hence, the absolute value of the determinant of the matrix in the right-hand
side of (3.238) can be rewritten as:

ˇ

ˇ

ˇ

ˇ

det

ˆ

A3 ´A2A
´1

0 A´1

˙ˇ

ˇ

ˇ

ˇ

2

“
ˇ

ˇdetA3 pdetAq´1
ˇ

ˇ

2

“
det pA3A

˚
3q

det pA˚Aq
“

det pI ` A2A
˚
2q

det pI ` A˚
2A2q

“ 1. (3.239)

From (3.238) and (3.239) it follows that the corresponding volume elements
satisfy: dy1 dy2 “ dy dz. We also have

|y1|2 ` |y2|2 “ |y|2 ` |z ´ Dy|2 . (3.240)

Employing the substitution (3.238) together with the equalities dy1 dy2 “ dy dz
and (3.240) and applying Fubini’s theorem we obtain:

Y1,2Y2,3fpxq “
1

p2πqd

ĳ

e´ 1
2p|y1|2`|y2|2qf pC2C1x ` C2S1y1 ` S2y2q dy1dy2

“
1

p2πqd

ĳ

e´ 1
2p|y|2`|z´Dy|2qf pC3x ` S3yq dy dz
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“
1

p2πqd{2

ż

e´ 1
2

|y|2f pC3x ` S3yq dy “ Y1,3fpxq (3.241)

for all f P Cb

`

Rd
˘

. If the matrices S1 and C2 are not invertible, then we
replace the C1 with C1,ε “ e´εC1 and S1,ε satisfying C1,εC

˚
1,ϵ ` S1,εS

˚
1,ε “ I,

and limεÓ0 S1,ε “ S1. We take S2,ε “ e´εS2 instead of S2. In addition, we
choose the matrices C2,ε, ε ą 0, in such a way that C2,εC

˚
2,ϵ ` S2,εS

˚
2,ε “ I, and

limεÓ0 C2,ε “ C2.

This completes the proof of Lemma 3.89. �

We formulate a proposition in which an Ornstein-Uhlenbeck process plays a
central role. Here ρ ÞÑ σpρq is a deterministic square matrix function, and
Qpρq “ σpρqσpρq˚.

3.90. Proposition. Put Xτ,xptq “ C pt, τq x `
şt

τ
C pt, ρqσpρqdW pρq. Then the

process Xτ,xptq is Gaussian. Its expectation is given by E rXτ,xptqs “ C pt, τqx,
and its covariance matrix has entries (s, t ě τ

P-cov
`

Xτ,x
j psq, Xτ,x

k ptq
˘

“

˜

ż minps,tq

τ

C ps, ρqQpρqC pt, ρq˚ dρ

¸

j,k

(3.242)

Let
␣

pΩ,F,Pτ,xq , pXptq, t ě 0q ,
`

Rd,Bd
˘(

be the corresponding time-inhomogen-
eous Markov process. By definition, the P-distribution of the process t ÞÑ
Xτ,xptq, t ě τ , is the Pτ,x-distribution of the process t ÞÑ Xptq, t ě τ . Then this
process is generated by the family operators Lptq, t ě 0, where

Lptqfpxq “
1

2

d
ÿ

j,k“1

Qj,kptqDjDkfpxq ` ⟨∇fpxq, Aptqx⟩ . (3.243)

Here the matrix-valued function Aptq is given by Aptq “ lim
hÓ0

Cpt ` h, tq ´ I

h
.

The semigroup esLptq, s ě 0, is given by

esLptqfpxq

“ E
„

f

ˆ

esAptqx `
ż s

0

eps´ρqAptqσptqdW pρq
˙ȷ

“
1

p2πqd{2

ż

e´ 1
2

|y|2f

˜

esAptqx `
ˆ

ż s

0

eρAptqQptqeρAptq˚
dρ

˙1{2

y

¸

dy

“
ż

p ps, x, y; tq fpyqdy (3.244)

where, with QAptqpsq “
ż s

0

eρAptqQptqeρAptq˚
dρ, the integral kernel p ps, x, y; tq is

given by

p ps, x, y; tq

“
1

p2πqd{2 `

detQAptqpsq
˘d{2 e

´

´ 1
2

⟨
pQAptqpsqq´1py´esAptqxq,y´esAptqx

⟩¯

.
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If all eigenvalues of the matrix Aptq have strictly negative real part, then the
measure

B ÞÑ
1

p2πqd{2

ż

e´ 1
2

|y|21B

ˆ
ż 8

0

eρAptqQptqeρAptq˚
dρ y

˙

dy

defines an invariant measure for the semigroup esLptq, s ě 0.

A Markov process of the form
␣

pΩ,F,Pτ,xq , pXptq, t ě 0q ,
`

Rd,BRd

˘(

is called
a (generalized) Ornstein-Uhlenbeck process. It is time-homogeneous by putting
Cpt, sq “ e´pt´sqA, where A is a square d ˆ d-matrix. We will elaborate on the
time-homogeneous case. In this case we write, for x, b P Rd,

Sptqfpxq :“ E
„

f

ˆ

e´tAx `
`

I ´ e´tA
˘

b `
ż t

0

e´pt´sqAσ dBpsq
˙ȷ

, (3.245)

where f : Rd Ñ C is a bounded Borel measurable function. If f belongs to
C0

`

Rd
˘

, then Sptqf does so as well. For brevity we write

Xxptq “ e´tAx `
`

I ´ e´tA
˘

b `
ż t

0

e´pt´sqAσ dW psq.
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It also follows that for such functions limtÓ0 Sptqfpxq “ fpxq for all x P Rd.
Since we also have the semigroup property S pt1 ` t2q f “ S pt1qS pt2q f for all
t1, t2 ě 0, it follows that the semigroup t ÞÑ Sptq is in fact a Feller semigroup.
Theorem 3.37 implies that there exists a time-homogeneous Markov process

␣

pΩ,F,PxqxPRd , pXptq, t ě 0q , pϑt, t ě 0q ,
`

Rd,BRd

˘(

such that for a bounded Borel function f we have

Ex rf pXptqqs “ E rf pXxptqqs “ Sptqfpxq, x P Rd. (3.246)

Nest we prove the semigroup property. First we observe that, for x P Rd and
t1, t2 ě 0,

Xx pt1 ` t2q “ e´t2AXx pt1q`
`

I ´ e´t2A
˘

b`
ż t2

0

e´pt2´sqAσ dW ps ` t1q . (3.247)

Let
`

ΩW ,FW ,P
˘

be the probability space on which the process t ÞÑ W ptq is a

Brownian motion. Let
`

FW
t

˘

tě0
be the internal history of the Brownian motion

tW ptq : t ě 0u, so that FW
t “ σ pW psq : s ď tq. Then by the equality in (3.247)

we have

E
“

f pXx pt1 ` t2qq
ˇ

ˇ FW
t1

‰

(3.248)

“ E
„

f

ˆ

e´t2AXx pt1q `
`

I ´ e´t2A
˘

b `
ż t2

0

e´pt2´sqAσ dW ps ` t1q
˙

ˇ

ˇ FW
t1

ȷ

We employ the fact that the state variable Xx pt1q is FW
t1
-measurable, and that

ż t1`t2

t1

e´pt1`t2´sqAσ dW psq “
ż t2

0

e´pt2´sqAσ d tW ps ` t1q ´ W pt1qu

is P-independent of FW
t1

and possesses the same P-distribution as the variable
şt2
0
e´pt2´sqAσ dW psq to conclude from (3.248) the following equality:

E
“

f pXx pt1 ` t2qq
ˇ

ˇ FW
t1

‰

“ E
„

f

ˆ

e´t2Az `
`

I ´ e´t2A
˘

b `
ż t2

0

e´pt2´sqAσ dW psq
˙ȷ

ˇ

ˇ

z“Xxpt1q

“ E rf pXz pt2qqs
ˇ

ˇ

z“Xxpt1q . (3.249)

From (3.249) it follows that the process t ÞÑ Xxptq is a Markov process and
that, by the definition of the operators Sptq, t ě 0,

S pt1 ` t2q fpxq “ E rf pXx pt1 ` t2qqs

“ E
”

E rf pXz pt2qqs
ˇ

ˇ

z“Xxpt1q

ı

“ E rS pt2q f pXx pt1qqs

“ S pt1qS pt2q fpxq. (3.250)

We calculate the differential dXxptq and the covariation process
@

Xx
j1
, Xx

j2

D

ptq:

dXxptq “ ´A pXxptq ´ bq dt ` σ dW psq, and (3.251)

@

Xx
j1
, Xx

j2

D

ptq “
ż t

0

´

e´sAσσ˚e´sA˚
¯

j1,j2
ds “ cov

`

Xx
j1

ptq, Xx
j2

ptq
˘

. (3.252)
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In other words the process t ÞÑ Xxptq satisfies the equation

Xxptq “ x `
ż t

0

A pb ´ Xxpsqq ds `
ż t

0

σ dW psq. (3.253)

Since its covariation is deterministic we have that the covariation coincides with
its covariance: see (3.252). Let f : Rd Ñ C be a bounded continuous function
with bounded and continuous first and second order derivatives. Next we apply
Itô’s lemma, and employ (3.251) and (3.252) to obtain

f pXxptqq ´ f pXxp0qq “
ż t

0

∇f pXxpsqq ¨ t´A pXxpsq ´ bqu ds

`
1

2

d
ÿ

j1,j2“1

ż t

0

Dj1Dj2f pXxpsqq
´

e´sAσσ˚e´sA˚
¯

j1,j2
ds

`
ż t

0

∇f pXxpsqq ¨ σ dW psq. (3.254)

Upon taking expectations in the right-hand and left-hand sides of (3.254), using
the fact that the stochastic integral in (3.254) ia a martingale, and letting t Ó 0
shows:

LAfpxq :“ lim
tÓ0

Sptqfpxq ´ fpxq
t

“ lim
tÓ0

E rf pXxptqq ´ f pXxp0qqs
t

“ ´ pApx ´ bqq ¨ ∇fpxq `
1

2

d
ÿ

j1,j2“1

pσσ˚qj1,j2 Dj1Dj2fpxq. (3.255)

In the following proposition we collect the main properties of the time-homo-
geneous Ornstein-Uhlenbeck process t ÞÑ Xxptq. It is adapted from Proposition
3.90. In adition, σ “ σpρq is independent of ρ.

3.91. Proposition. Put Xxptq “ e´tAx `
`

I ´ e´tA
˘

b `
şt

0
e´pt´ρqAσ dW pρq.

Then the process Xxptq is Gaussian. Its expectation is given by E rXxptqs “
e´tAx `

`

I ´ e´tA
˘

b, and its covariance matrix has entries

P-cov
`

Xx
j1

psq, Xx
j2

ptq
˘

“

˜

ż minps,tq

0

e´ps´ρqAσσ˚e´pt´ρqA˚
dρ

¸

j1,j2

(3.256)

Let
␣

pΩ,F,Pτ,xq , pXptq, t ě 0q ,
`

Rd,Bd
˘(

be the corresponding time-inhomogen-
eous Markov process. By definition, the P-distribution of the process t ÞÑ Xxptq,
t ě τ , is the Px-distribution of the process t ÞÑ Xptq, t ě 0. Then this process
is generated by the operator LA, t ě 0, where

LAfpxq “
1

2

d
ÿ

j1,j2“1

pσσ˚qj1,j2 Dj1Dj2fpxq ´ ⟨∇fpxq, Apx ´ bq⟩ . (3.257)

The semigroup esLA, s ě 0, is given by

esLAfpxq

“ E
„

f

ˆ

e´sApx ´ bq ` b `
ż s

0

e´ps´ρqAσ dW pρq
˙ȷ
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“
1

p2πqd{2

ż

e´ 1
2

|y|2f

˜

e´sApx ´ bq ` b `
ˆ

ż s

0

e´ρAσσ˚e´ρA˚
dρ

˙1{2

y

¸

dy

“
ż

pA ps, x, yq fpyq dy (3.258)

where, with QApsq “
ż s

0

e´ρAσσ˚e´ρA˚
dρ, the integral kernel pA ps, x, yq is given

by

pA ps, x, yq “
1

p2πqd{2 pdetQApsqqd{2 e
p´ 1

2⟨pQApsqq´1py´e´sApx´bq´bq,y´e´sApx´bq´b⟩q.

If all eigenvalues of the matrix A have strictly positive real part, then the measure

B ÞÑ
1

p2πqd{2

ż

e´ 1
2

|y|21B

ˆ

b `
ż 8

0

e´ρAσσ˚e´ρA˚
y dρ

˙

dy (3.259)

defines an invariant measure for the semigroup esLA, s ě 0.

Proof. The results in Proposition 3.91 follow more or less directly from
those in Proposition 3.90. The result in (3.259) follows by letting s Ñ 8 in
the second equality of (3.258) or in the definition of the probability density
pA ps, x, yq. �

For more information about invariant, or stationary, measures see, e.g., [146]
(Chapter 10) and the references therein like Meyn and Tweedie [97].

In order to apply our results on the Ornstein-Uhlenbeck process to bond pricing
and determining interest rates in financial mathematics the identities and results
in the following proposition are very useful. It will be applied in the context of
the Vasicek model.

3.92. Proposition. Let the notation and hypotheses be as in Proposition 3.91.
Put

Apt, T q “
ż T´t

0

e´ρA dρ “
ż T

t

e´ρs ds “ A´1
`

I ´ e´pT´tqA˘

, 0 ď t ď T,

where the last equality is only valid if A is invertible. Let y be a vector in Rd.
The following assertions hold true.

(1) The following identity is true for 0 ď t ă T :
ż T

t

Xxpsq ds “ Apt, T q pXxptq ´ bq ` pT ´ tqb `
ż T

t

A pρ, T qσ dW pρq. (3.260)

(2) The random vector
şT

t
Xxpsq ds is Gaussian (or, what is the same, mul-

tivariate normally distributed) with conditional expectation given by

E
„

ż T

t

Xxpsq ds
ˇ

ˇ Ft

ȷ

“ E
„

ż T

t

Xxpsq ds
ˇ

ˇ Xxptq
ȷ

“ Apt, T q pXxptq ´ bq`pT´tqb,

(3.261)
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and covariance matrix given by (1 ď j1, j2 ď d)

cov

ˆ
ż T

t

Xx
j1

psq ds
ˇ

ˇ Xxptq,
ż T

t

Xx
j2

psq ds
ˇ

ˇ Xxptq
˙

“
ˆ

ż T

t

A pρ, T qσσ˚A pρ, T q˚ dρ

˙

j1,j2

. (3.262)

(3) The random variable
⟨
y,

şT

t
Xxpsq ds

⟩
is normally distributed with con-

ditional expectation given by

E
„⟨

y,

ż T

t

Xxpsq ds
⟩

ˇ

ˇ Ft

ȷ

“ E
„⟨

y,

ż T

t

Xxpsq ds
⟩

ˇ

ˇ Xxptq
ȷ

“ ⟨y, Apt, T q pXxptq ´ bq⟩ ` pT ´ tq ⟨y, b⟩ , (3.263)

and variance given by

var

ˆ⟨
y,

ż T

t

Xxpsq ds
⟩

ˇ

ˇ Xxptq
˙

“
ż T

t

ˇ

ˇσ˚A pρ, T q˚ y
ˇ

ˇ

2
dρ. (3.264)

(4) The conditional expectation of exp
´

´
⟨
y,

şT

t
Xxpsq ds

⟩¯

given Ft is log-

normal, and

E
„

exp

ˆ

´
⟨
y,

ż T

t

Xxpsq ds
⟩˙

ˇ

ˇ Ft

ȷ

“ E
„

exp

ˆ

´
⟨
y,

ż T

t

Xxpsq ds
⟩˙

ˇ

ˇ Xxptq
ȷ

“ exp

ˆ

´ ⟨y, Apt, T q pXxptq ´ bq⟩ ´ pT ´ tq ⟨y, b⟩ `
1

2

ż T

t

ˇ

ˇσ˚A pρ, T q˚ y
ˇ

ˇ

2
dρ

˙

.

(3.265)
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Proof. (1) From (3.247) we see, for s ě t,

Xx psq “ e´ps´tqA pXx ptq ´ bq ` b `
ż s

t

e´ps´ρqAσ dW pρq . (3.266)

Then we integrate the expressions in (3.266) against s for t ď s ď T , and we
interchange the integrals with respect to ds and dW pρq to obtain the equality
in (3.260). This proves assertion (1).

(2) Although the process t ÞÑ
şT

t
A pρ, T q dW pρq is not a martingale, it has

enough properties of a martingale that its expectation is 0, and that its quadratic
covariation matrix is given by the expression in (3.262). The reason for all this
relies on the equality:

ż T

t

A pρ,Aq dW pρq “
ż T

0

A pρ, T q dW pρq ´
ż t

0

A pρ, T q dW pρq, (3.267)

combined with the fact that the process t ÞÑ
şt

0
A pρ, T q dW pρq is a martingale.

So we can apply the Itô isometry and its consequences to complete the proof
of assertion (2). An alternative way of understanding this reads as follows.

Processes of the form s ÞÑ Xxpsq, s ď 0, and t ÞÑ
şT

t
Xxpsq ds, 0 ď t ď T ,

consist of Gaussian vectors with known means and variances. For s ě t we use
the representation in (3.266) for Xxpsq, and for

şT

t
Xxpsq ds we employ (3.260).

(3) The proof of this assertion follows the same line as the proof of the assertion
in (2).

(4) If the stochastic variable Z is normally distributed with expectation µ and

variance v2 “ E
“

pZ ´ µq2
‰

, then E
“

eZ
‰

“ eµ` 1
2
v2 . This result is applied to the

variable Z “ ´
⟨
y,

şT

t
Xxpsq ds

⟩
to obtain the equality in (3.265).

This completes the proof of Proposition 3.92. �

3.93. Lemma. Let the notation and hypotheses be as in the proposition 3.91 and
3.92. Suppose that the matrix A is invertible. The following equality holds for
0 ď t ď T :

ż T

t

A pρ, T qσσ˚A pρ, T q˚ dρ

“ pT ´ tqA´1σσ˚ pA˚q´1 ´ A pt, T qA´1σσ˚ pA˚q´1 ´ A´1σσ˚ pA˚q´1A pt, T q˚

`
ż T´t

0

e´ρAA´1σσ˚ pA˚q´1 e´ρA˚
dρ. (3.268)

If the invertible matrix A is such that Aσσ˚ “ σσ˚A˚, then the following equality
is valid for 0 ď t ď T :

ż T

t

A pρ, T qσσ˚A pρ, T q˚ dρ

“ pT ´ tqA´1σσ˚ pA˚q´1 ´ A pt, T qA´1σσ˚ pA˚q´1 ´
1

2
pApt, T qq2 σσ˚ pA˚q´1

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

207 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales

8. AN ORNSTEIN-UHLENBECK PROCESS IN HIGHER DIMENSIONS 207

“
ˆ

T ´ t ´ A pt, T q ´
1

2
A pApt, T qq2

˙

A´1σσ˚ pA˚q´1 . (3.269)

Observe that an equality of the form Aσσ˚ “ σσ˚A˚ holds whenever A “ A˚

and the matrix σσ˚ is a “function” of A. In particular this is true when d “ 1
and A “ a is a real number.

Proof. Since A is invertible we have A pρ, T q “
`

I ´ e´pT´ρqA˘

A´1, and so
ż T

t

A pρ, T qσσ˚A pρ, T q˚ dρ

“
ż T

t

`

I ´ e´pT´ρqA˘

A´1σσ˚ pA˚q´1
´

I ´ e´pT´ρqA˚
¯

dρ

“
ż T´t

0

`

I ´ e´ρA
˘

A´1σσ˚ pA˚q´1
´

I ´ e´ρA˚
¯

dρ

“ pT ´ tqA´1σσ˚ pA˚q´1 ´ A pt, T qA´1σσ˚ pA˚q´1 ´ A´1σσ˚ pA˚q´1A pt, T q˚

`
ż T´t

0

e´ρAA´1σσ˚ pA˚q´1 e´ρA˚
dρ. (3.270)

The final equality in (3.270) proves (3.268). Next we also assume that Aσσ˚ “
σσ˚A˚. Then σσ˚e´ρA˚ “ e´ρAσσ˚, and hence

ż T´t

0

e´ρAA´1σσ˚ pA˚q´1 e´ρA˚
dρ

“
ż T´t

0

e´2ρA dρA´1σσ˚ pA˚q´1 e´ρA˚

“
1

2

`

I ´ e2pT´tqA˘

A´2σσ˚ pA˚q´1 e´ρA˚
. (3.271)

A simple calculation shows

1

2

`

I ´ e´2pT´tqA˘

“ Apt, T qA ´
1

2
pApt, T qq2A2, (3.272)

and so the equalities in (3.271) show
ż T´t

0

e´ρAA´1σσ˚ pA˚q´1 e´ρA˚
dρ “

ż T´t

0

e´2ρA dρA´1σσ˚ pA˚q´1

“
ˆ

Apt, T q ´
1

2
pApt, T qq2A

˙

A´1σσ˚ pA˚q´1 . (3.273)

A combination of (3.270) and (3.273) together with the equality σσ˚A pt, T q˚ “
A pt, T qσσ˚ then yields the equality in (3.269), completing the proof of Lemma
3.93. �

Before we discuss the Vasicek model we insert Girsanov’s theorem formulated
in a way as we will use it in Theorem 3.101. In fact we will formulate it in a
multivariate context.
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3.94. Theorem. Let tXptq : 0 ď t ď tu be an Itô process satisfying

dXptq “ vptq dt ` uptq dW ptq. 0 ď t ď T.

Suppose there exists a process tθptq : 0 ď t ď T u, with the property that

P
„

ż T

0

|ϑptq|2 dt ă 8
ȷ

“ 1,

such that the process vptq ´ uptqθptq has this property as well. Assume further-
more that the process t ÞÑ Eptq, 0 ď t ď T , defined by

Eptq “ exp

ˆ

´
ż t

0

θpsq dW psq ´
1

2

ż t

0

|θpsq|2 ds

˙

(3.274)

is a P-martingale, which is guaranteed provided E rEptqs “ 1 for 0 ď t ď T .

Define the measure P˚ such that
dP˚

dP
“ EpT q. Then

t ÞÑ W ˚ptq :“ W ptq `
ż t

0

θpsq ds, t P r0, T s,

is a Brownian motion w.r.t. P˚ and the process tXptq : 0 ď t ď T u has a rep-
resentation w.r.t. W ˚ptq given by

dXptq “ pvptq ´ uptqθptqq dt ` uptq dW ˚ptq.
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We shortly show that tEptq : 0 ď t ď T u is a diffusion process. Set Y ptq “
şt

0
θpsq dW psq, 0 ď t ď T , and consider the function fpt, xq P C2 pr0, T s,Rq

defined by

fpt, xq “ exp

ˆ

´x ´
1

2

ż t

0

|θpsq|2 ds

˙

.

Then we clearly have that Eptq “ f pt, Y ptqq. By Itô’s formula we have

dEptq “ ´
1

2
|θptq|2 Eptq dt ´ Eptqθptq dW ptq `

1

2
Eptq d ⟨Y, Y ⟩ ptq

“ ´
1

2
|θptq|2 Eptq dt ´ Eptqθptq dW ptq `

1

2
Eptq |θptq|2 dt

“ ´θptqEptq dW ptq. (3.275)

Hence, it follows that

Eptq “ Ep0q ´
ż t

0

θpsqEpsq dW psq,

which in general is a local martingale for which E rEptqs ď 1. It is a sub-
martingale, but not necessarily a martingale. If, for 0 ď t ď T , the expecta-
tion E rEptqs “ 1, then t ÞÑ Eptq, 0 ď t ď T , is a martingale. If Novikov’s

condition, i.e., if E
”

exp
´

1
2

şT

0
|θptq|2 dt

¯ı

ă 8 is satisfied, then the process

tEptq : 0 ď t ď T u is a martingale. For details on this condition, see Corollary
4.27 in Chapter 4. For more results on (local) exponential martingales see sub-
section 1.3 of Chapter 4 as well. In section 3 of the same chapter the reader may
find some more information on Girsanov’s theorem. In particular, see assertion
(4) of Proposition 4.24 and Theorem 4.25.

8.1. The Vasicek model. In this subsection we want to employ the results
in Proposition 3.92 with d “ 1 to find the bond prices in the Vasicek model.
Until now we were always working in the physical probability space pΩ,F,Pq.
In order to calculate the fair price of a financial instrument one often uses the
method of risk-neutral pricing. Through this technique the price of a financial
asset is the expectation of its discounted pay-off at the so-called risk-neutral
measure Q. The risk-neutral measure is equivalent to the physical measure P.
Suppose for example that tSptqusě0 is the price of a certain asset at time t.

The price of our asset at time t discounted to time 0 is then given by rSptq :“
e´

şt
0 rpuq duSptq. As a main property of the risk-neutral measure, the family of

discounted prices
!

rSptq
)

tě0
is a Q-martingale. This means that for every s,

0 ď s ď t, we have

E
”

rSptq
ˇ

ˇ Fs

ı

“ E
”

e´
şt
0 rpuq duSptq

ˇ

ˇ Fs

ı

“ e´
şs
0 rpuq duSpsq “ rSpsq, (3.276)

where expectations E are with respect to Q. Because of this property, a risk-
neutral measure is also called an equivalent martingale measure. Roughly speak-
ing, the existence of such a measure is equivalent with the no-arbitrage assump-
tion. We will use this martingale property to price a zero-coupon bond. That
is a financial debt instrument that pays the holder a fixed amount named the
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face value at maturity T . For simplicity we take 1 as face value. The price of a
zero-coupon bond is then given by the following theorem.

3.95. Theorem. Consider a zero-coupon bond which pays an amount of 1 at
maturity T . The price at time t ď T is then

P pt, T q “ E
”

e´
şT
t rpsq ds ˇ

ˇ Ft

ı

. (3.277)

Proof. We use the above explained property that the discounted price

e´
şt
0 rpsq dsP pt, T q is a martingale, and the trivial fact that P pT, T q “ 1,

e´
şt
0 rpsq dsP pt, T q “ E

”

e´
şT
0 rpsq dsP pT, T q

ˇ

ˇ Ft

ı

“ E
”

e´
şT
0 rpsq ds ˇ

ˇ Ft

ı

“ e´
şt
0 rpsq dsE

”

e´
şT
t rpsq ds ˇ

ˇ Ft

ı

. (3.278)

The bond’s price can thus be written as P pt, T q “ E
”

e´
şT
t rpsq ds

ˇ

ˇ Ft

ı

. This

completes the proof of Theorem 3.95. �

Formula (3.277) is an expression of the bond’s price for an arbitrary chosen
interest rate process. We will now apply this to our Vasicek model trptqutě0.
We will investigate three methods that all lead to the same result stated in the
following theorem. We follow the approach of Mamon in [94]. For an alternative
approach see [114] as well.

3.96. Theorem. Consider a zero-coupon bond which pays an amount of 1 at
maturity T . Suppose that under the risk-neutral measure the short rate follows
an Ornstein-Uhlenbeck process: drptq “ a pb ´ rptqq dt`σ dW ptq. The fair price
of the bond at time t ď T is then given by

P pt, T q “ e´Apt,T qrptq`Dpt,T q, (3.279)

where

Apt, T q “
1 ´ e´apT´tq

a
, and

Dpt, T q “
pApt, T q ´ T ` tq pa2b ´ σ2{2q

a2
´

σ2Apt, T q2

4a
. (3.280)

Equation (3.279) is an affine term structure model. In fact, the bond yield ytpT q
is defined as the constant interest rate at which the price of the bond grows to
it’s face value, i.e., P pt, T qeytpT qpT´tq “ 1. We thus find that

ytpT q “
´ logP pt, T q

T ´ t
“

Apt, T qrptq ´ Dpt, T q
T ´ t

,

which is indeed affine in rptq. The yield curve or term structure at time t is the
graph pT, ytpT qq.
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8.1.1. Bond price implied by the distribution of the short rate. The first
method to calculate the bond price is quite straightforward. It calculates the
conditional expectation in formula (3.277) by determining the distribution of

E
”

şT

t
rpsq ds

ˇ

ˇ Ft

ı

.

First proof of Theorem 3.96. Because formula (3.277) shows that the
bond’s price at time t is conditional on Ft, we may assume that rptq is a pa-
rameter. Using formula (3.266) (for d “ 1, and A “ 1) with starting time t we
find, for s ą t,

rpsq “ rptqe´aps´tq ` b
`

1 ´ e´aps´tq˘ `
ż s

t

e´aps´ρqσ dW pρq.

We want to determine the distribution of e´
şT
t rpsq ds conditioned by Ft. Note

that because of the Markov property of the Otnstein-Uhlenbeck process (or
more generally for diffusion processes: see the equality in (3.249)), this distri-
bution will only depend on rptq. Let’s start by determining the distribution of
şT

t
rpsq ds given Ft. This distribution is normal, and essentially speaking this it

follows from Proposition 3.92 and Lemma 3.93. First of all from assertion (3)
in Proposition 3.92 we get by (3.263)

E
„

ż T

t

rpsq ds
ˇ

ˇ Ft

ȷ

“ E
„

ż T

t

rpsq ds
ˇ

ˇ rptq
ȷ

“ Apt, T q prptq ´ bq ` pT ´ tqb.

(3.281)
Secondly from (3.264) and (3.269) in Lemma 3.93 we get

var

ˆ
ż T

t

Xxpsq ds
ˇ

ˇ Xxptq
˙

“
ż T

t

σ2 pA pρ, T qq2 dρ

“
σ2

a2

´

T ´ t ´ A pt, T q ´
a

2
pApt, T qq2

¯

. (3.282)

The equality in (3.279) of Theorem 3.96 then follows from (3.282) and (3.265)
in (4) of Proposition 3.92. �

8.1.2. Bond price by solving the PDE. A second method that is proposed to
calculate the bond’s price in the Vasicek model, is by solving partial differential
equations. More precisely, we will derive a PDE for the bond’s price by using
martingales.

Taking into account the Markov property of the process trptqutě0 (see equality
in (3.249)) one can introduce the following variable:

P pt, T q “ E
”

e´
şT
t rpsq ds ˇ

ˇ Ft

ı

“ E
”

e´
şT
t rpsq ds ˇ

ˇ rptq
ı

“ E
”

e´
şT
t rpsqpzq ds

ı

ˇ

ˇ

z“rptq“: P pt, T, rptqq . (3.283)

Here rpsq, s ą t, is the function of rptq given by

rpsq “ rptqe´aps´tq ` b
`

1 ´ eaps´tq˘ `
ż s

t

e´aps´ρq dW pρq. (3.284)
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We now provide a second proof of Theorem 3.96.

Second proof of Theorem 3.96. We will apply Itô’s formula to the

function fpt, xq “ e´
şt
0 rpsq dsP pt, T, xq. Then we obtain

E
”

e´
şT
0 rpsq ds ´ P p0, T, rp0qq

ˇ

ˇ Ft

ı

“ e´
şt
0 rpsq dsP pt, T, rptqq ´ P p0, T, rp0qq

“
ż t

0

„

´rpuqe´
şu
0 rpsq dsP pu, T, rpuqq ` e´

şu
0 rpsq dsBP pu, T, rpuqq

Bu

ȷ

du

`
ż t

0

„

e´
şu
0 rpsq dsBP pu, T, rpuqq

Brpuq

ȷ

pa pb ´ rpuqq du ` σdW puqq

`
σ2

2

ż t

0

„

e´
şu
0 rpsq dsB2P pu, T, rpuqq

Brpuq2

ȷ

du. (3.285)

Put

fptq “ ´rptqe´
şt
0 rpsq dsP pt, T, rptqq ` e´

şt
0 rpsq dsBP pt, T, rptqq

Bt

`
„

e´
şt
0 rpsq dsBP pt, T, rptqq

Brpuq

ȷ

pa pb ´ rptqqq

`
σ2

2
e´

şt
0 rpsq dsB2P pt, T, rptqq

Brptq2
. (3.286)
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From the equality in (3.285) it follows that the process t ÞÑ
şt

0
fpuq du is a

martingale. By Lemma 3.97 below it follows that fptq “ 0 P-almost surely.
From (3.286) it then follows that the function P pt, T, xq satisfies the following
differential equation:

´xP pt, T, xq `
BP pt, T, xq

Bt
`

BP pt, T, xq
Bx

pa pb ´ xqq `
σ2

2

B2P pt, T, xq
Bx2

“ 0.

(3.287)
From (3.283) and (3.284) it follows that

BP pt, T, xq
Bx

“
´1

a

`

1 ´ e´apT´tq˘P pt, T, xq “ ´Apt, T qP pt, T, xq. (3.288)

From (3.288) we easily infer that

P pt, T, xq “ C pt, T q e´Apt,T qx. (3.289)

Inserting this expression for P pt, T, xq into (3.287) yields the first order equation

´x `
1

Cpt, T q
BCpt, T q

Bt
´

BApt, T q
Bt

x ´ Apt, T q tapb ´ xqu `
σ2

2
Apt, T q2 “ 0.

(3.290)

Because ´1 ´
BApt, T q

Bt
` aApt, T q “ 0, the equality in (3.290) implies:

1

Cpt, T q
BCpt, T q

Bt
´ abApt, T q `

σ2

2
Apt, T q2 “ 0. (3.291)

Since CpT, T q “ P pT, T, 0q “ 1 from (3.291) we infer Cpt, T q “ eDpt,T q and
hence

P pt, T q “ P pt, T, rptqq “ e´Apt,T qrptq`Dpt,T q,

which completes the proof of Theorem 3.96 by employing the PDE as formulated
in (3.287). �

The equation in (3.287) is called the PDE for the bond price in the Vasicek
model.

3.97. Lemma. Let
`

Ω, pFtqtě0 ,P
˘

be filtered probability space, and let the right-
continuous adapted process tfptqutě0 be such that for some sequence of stopping

times pτnqnPN, which increases to 8, the integrals
şt

0
|fpsq|1r1,τns ds are finite P-

almost surely. If the process t ÞÑ
şt

0
fpsq ds is a local martingale, then fptq “ 0

P-almost surely for almost all t.

Proof. Fix 0 ă T ă 8. By localizing at stopping times pτ 1
nqnPN, τ

1
n ď τn,

n P N, τn Ò 8 (n Ñ 8) we may assume that

E
„

ż T

0

|fpsq| ds
ȷ

ă 8. (3.292)

Otherwise we replace fptq with f ptq1r0,τ 1
nsptq, and prove that f ptq1r0,τ 1

nsptq “ 0
for all n P N. But then fptq “ 0, by letting n Ñ 8. So we assume that (3.292)
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is satisfied. Then for 0 ď s ă t ď T we have
ż s

0

fpρq dρ ` E
„

ż t

s

fpρq dρ
ˇ

ˇ Fs

ȷ

“ E
„

ż t

0

fpρq dρ
ˇ

ˇ Fs

ȷ

“
ż s

0

fpρq dρ. (3.293)

From (3.293) we infer that E
”

şt

s
fpρq dρ

ˇ

ˇ Fs

ı

“ 0, P-almost surely, for all 0 ď
s ă t ă T . differentiating with respect to t then results in E

“

fptq
ˇ

ˇ Fs

‰

“ 0
P-almost surely for all 0 ď s ă t ă T . But then, by the right-continuity of the
process tfptqutě0 it follows that

fpsq “ lim
tÓs

E
“

fptq
ˇ

ˇ Fs

‰

“ 0, P-almost surely.

This completes the proof of Lemma 3.97. �

8.1.3. Bond prices using forward rates. The third and last method to calcu-
late a bond’s price in the Vasicek model, is based upon the concept of forward
rates. Indeed, in the Heath-Jarrow-Morton pricing paradigm the closed-form
of the bond’s price follows directly from the short rate dynamics under the so-
called forward measure. Suppose we are at time t. We want to know the rate
of interest in the period of time between T1 en T2 with t ă T1 ă T2. This is
called the forward rate for the period between T1 and T2 and we denote it by
f pt, T1, T2q. When the rates between time t and T1 and between time t and T2

are known - write R1 and R2 - we must have:

eR1pT1´tqefpt,T1,T2qpT2´T1q “ eR2pT2´tq.

Hence, we find for the forward rate

f pt, T1, T2q “
R2 pT2 ´ tq ´ R1 pT1 ´ tq

T2 ´ T1

.

Applying this in our framework of bond prices, R1 and R2 equal the bond yields:

R1 “
´ logP pt, T1q

T1 ´ t
, R2 “

´ logP pt, T2q
T2 ´ t

,

such that the forward rate is given by

f pt, T1, T2q “
´ logP pt, T2q ´ logP pt, T1q

T2 ´ T1

.

When T1 and T2 come infinitesimally close to each other, we obtain a so-called
instantaneous forward rate. The instantaneous forward rate at time T ą t is

fpt, T q “ ´ lim
t1ÑT

logP pt, T q ´ logP pt, t1q
T ´ t1 “ ´

B logP pt, t1q
Bt1

ˇ

ˇ

t1“T
.

Solving this partial differential equation for P pt, T q on rt, T s we find immedi-
ately that

P pt, T q “ e´
şT
t fpt,sq ds. (3.294)

Later on we will see that the link between the instantaneous forward rate and
the short rate is the so-called forward measure. In the sequel, we will need two
properties of conditional expectations under change of measure. These results
can be found in [32]. In the following theorems P is a probability measure on a
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σ-algebra F, the probability measure Q ! P is such that
dQ

dP
“ Z. Furthermore

G is a sub-σ-algebra of F. The symbol E denotes expectation w.r.t. P, while
EQ stands for expectation w.r.t. Q.

3.98. Theorem. In the notation of above, it holds that

dQ
ˇ

ˇ

G

dP
ˇ

ˇ

G

“ E
“

Z
ˇ

ˇ G
‰

.

Proof. Take an arbitrary B P G. We need to show that

QpBq “ E
“

E
“

Z
ˇ

ˇ G
‰

1B

‰

.

Indeed:
E

“

E
“

Z
ˇ

ˇ G
‰

1B

‰

“ E
“

E
“

Z1B

ˇ

ˇ G
‰‰

“ E rZ1Bs “ QpBq.
This completes the proof of Theorem 3.98. �
3.99. Theorem. For any F-measurable random variable X :

E
“

Z
ˇ

ˇ G
‰

EQ
“

X
ˇ

ˇ G
‰

“ E
“

ZX
ˇ

ˇ G
‰

.

Proof. Let Y “ E
“

Z
ˇ

ˇ G
‰

. Take B P G arbitrary, then:

EQ
“

1BE
“

ZX
ˇ

ˇ G
‰‰

“ E
“

Y 1BE
“

ZX
ˇ

ˇ G
‰‰

“ E
“

E
“

Y 1BZX
ˇ

ˇ G
‰‰

“ E rY 1BZXs “ EQ rY 1BXs “ EQ
“

EQ
“

1BY X
ˇ

ˇ G
‰‰

“ EQ
“

1BEQ
“

Y X
ˇ

ˇ G
‰‰

.

In the first step we used that 1BE
“

ZX
ˇ

ˇ G
‰

is G-mesurable. Hence we could

apply Theorem 3.98 which tells us that dQ
ˇ

ˇ

G
“ Y dP

ˇ

ˇ

G
. Because the previous

reasoning holds for all B P G we must have:

E
“

ZX
ˇ

ˇ G
‰

“ EQ
“

Y X
ˇ

ˇ G
‰

“ Y EQ
“

X
ˇ

ˇ G
‰

what proves the claim in Theorem 3.99. �

As well as the economic term forward rates, we introduce the concept of a
numéraire. A numéraire is a tradeable economic security in terms of which
the relative prices of other assets can be expressed. This allows us not only to
compare different financial instruments at a certain moment, it makes it also
possible to compare the prices of assets at different times. A typical example

of a numéraire is money. The random variable Mptq “ e
şt
0 rpsq ds represents the

value at time t of an asset which was invested in the money market at time
0 with value 1. Recall that in accordance with the definition of a risk-neutral
measure Q, the price of an asset relative to the money market is a martingale.
In our new notation the expressions in (3.276) become:

E
„

Sptq
Mptq

ˇ

ˇ Fs

ȷ

“ E
”

e´
şt
0 rpuq duSptq

ˇ

ˇ Fs

ı

“ e´
şs
0 rpuq duSpsq “

Spsq
Mpsq

,

with 0 ď s ď t. We say that Q is an equivalent martingale measure for the
numéraire tMptqutě0. Let Nptq be the price at time t of another traded asset.
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Suppose that Q˚ is an equivalent martingale measure for tNptqutě0, i.e. for all
0 ď s ď t:

E˚
„

Sptq
Nptq

ˇ

ˇ Fs

ȷ

“
Spsq
Npsq

.

We can also define this measure on the basis of the Radon-Nikodym derivative
of Q˚ w.r.t. Q.

3.100. Theorem. Suppose that Q is an equivalent martingale measure for the
numéraire tMptqutě0. Let Q˚ be an absolutely continuous measure w.r.t. Q
defined by the Radon-Nikodym derivative:

Γt :“
dQ˚

dQ

ˇ

ˇ

Ft
“

Mp0q
Mptq

Nptq
Np0q

, (3.295)

where Nptq ą 0 is the price at time t of a particular asset. Then Q˚ is an
equivalent martingale measure for tNptq : t ě 0u.

Proof. Denote expectations w.r.t. Q by E and w.r.t. Q˚ by E˚. Let
Sptq be the price of an asset at time t ě 0 and assume Sptq P L2 pΩ,Ft, Qq X
L2 pΩ,Ft, Q

˚q. For t ě s ě 0 we find using Theorem 3.99

E˚
„

Sptq
Nptq

ˇ

ˇ Fs

ȷ

“ E
„

Mp0qNptq
MptqNp0q

Sptq
Nptq

ˇ

ˇ Fs

ȷ

{E
„

Mp0qNptq
MptqNp0q

ˇ

ˇ Fs

ȷ

“
Mp0q
Np0q

E
„

Sptq
Mptq

ˇ

ˇ Fs

ȷ

Np0q
Mp0q

Mpsq
Npsq

“
Spsq
Npsq

.

The proof of Theorem 3.100 is complete now. �

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into 
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com


Advanced stochastic processes: Part I

217 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales8. AN ORNSTEIN-UHLENBECK PROCESS IN HIGHER DIMENSIONS 217

Note that the measures Q and Q˚ are equivalent because of the strictly posi-
tiveness of the Radon-Nikodym derivative. We already mention the following
theorem which transforms the dynamics of a process under Q to a process under
Q˚.

3.101. Theorem. Let Q be an equivalent martingale measure for tMptqutě0 and
let Q˚ be defined by equation (3.295). Assume tXptq : 0 ď t ď tu a diffusion
process with dynamics under Q

dXptq “ b pt,Xptqq dt ` σ pt,Xptqq dW ptq.

Let also Mptq and Nptq have dynamics under Q given by

dMptq “ mM dt ` σM dW ptq, dNptq “ mN dt ` σN dW ptq.

Then the dynamics of tXptq : 0 ď t ď tu under Q˚ is given by

dXptq “ b pt, ωq dt ´ σ pt, ωq
ˆ

σM

Mptq
´

σN

Nptq

˙

dt ` σ pt, ωq dW ˚ptq,

where

W ˚ptq “ W ptq `
ż t

0

ˆ

σM

Mpsq
´

σN

Npsq

˙

ds.

Proof. It is clear that we want to apply Girsanov’s Theorem 3.94. But then
we need to know how θ pt, ωq in expression (3.274) looks like. From expression
(3.275) we know that

dΓt “ ´θ pt, ¨qΓt dW ptq. (3.296)

On the other hand:

dΓt “
Mp0q
Np0q

d

ˆ

Nptq
Mptq

˙

“
Mp0q
Np0q

dNptqMptq ´ NptqdMptq
Mptq2

“
Mp0q

Np0qMptq2
ppmN dt ` σN dW ptqqMptq ´ Nptq pmM dt ` σM dW ptqqq .

(3.297)

Because tΓt : 0 ď t ď T u is a martingale we must have that the coefficient of dt
is 0, hence

dΓt “
Mp0q

Np0qMptq2
pσN dW ptqMptq ´ NptqσM dW ptqq

“
ˆ

σN

Nptq
´

σM

Mptq

˙

Γt dW ptq.

Comparing this with (3.296) we have that

θpt, ωq “
σM

Mptq
´

σN

Nptq
.

Finally applying Girsanov’s Theorem 3.94 to this we have

dXptq “ b pt, ωq dt ´ σ pt, ωq
ˆ

σM

Mptq
´

σN

Nptq

˙

dt ` σ pt, ωq dW ˚ptq,

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I

218 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales218 3. BROWNIAN MOTION, GAUSSIAN PROCESSES AND MARTINGALES

with

W ˚ptq “ W ptq `
ż t

0

ˆ

σM

Mpsq
´

σN

Npsq

˙

ds.

Altogether this completes the proof of Theorem 3.101. �

In order to make the link between the short rate rptq and the instantaneous
forward rate fpt, T q, we introduce a new measure QT . Suppose again that Q is
the risk neutral measure w.r.t. the money market and E the expectation w.r.t.
Q.

3.102. Definition. Take T ě 0. The forward measure QT is defined on FT by
setting

ΓT :“
dQT

dQ
“

Mp0q
MpT q

P pT, T qP p0, T q “ e´
şT
0 rpsq dsP p0, T q ,

where

Mptq “ e
şt
0 rpsq ds, and P pt, T q “ E

”

e´
şT
t rpsq ds ˇ

ˇ Ft

ı

.

By the previous theorem we conclude that QT is an equivalent martingale mea-
sure which has a bond with maturity T as numéraire.

For t ă T we can easily calculate Γt as follows:

Γt :“ E
“

ΓT

ˇ

ˇ Ft

‰

“
Mp0q

P p0, T q
E

„

P pT, T q
MpT q

ˇ

ˇ Ft

ȷ

“
1

P p0, T q
P pt, T q
Mptq

“ e´
şt
0 rpsq ds P pt, T q

P p0, T q
,

where we used in the second to last equality that Q has tMptqutě0 as numéraire.

Now we have all theoretical background information to formulate the third proof
of Theorem 3.96.

Third proof of Theorem 3.96. Denote as before the expectation w.r.t.
Q by E and the expectation w.r.t. QT by ET . We have by Theorem 3.99 that
for any FT -measurable random variable X and t ď T

ET rXjFts “ Γ´1
t E

“

XΓT

ˇ

ˇ Ft

‰

“ E
„

X
ΓT

Γt

ˇ

ˇ Ft

ȷ

“ E
„

X
MptqP pT, T q
MpT qP pt, T q

ˇ

ˇ Ft

ȷ

“ E

«

X
e´

şT
t rpsq ds

P pt, T q

ff

.

We want to express the forward rate in terms of the short rate. We got a formula
for the bonds price in function of both of them. Differentiating expression (16)
towards T gives

BP pt, T q
BT

“ E
”

´rpT qe´
şT
t rpsq ds ˇ

ˇ Ft

ı

“ ET
“

´rpT qP pt, T q
ˇ

ˇ Ft

‰

“ ´ET
“

rpT q
ˇ

ˇ Ft

‰

P pt, T q . (3.298)
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In the second step we used the above reasoning with X “ ´rpT qP pt, T q. Dif-
ferentiating now formula (3.294) with respect to T gives

BP pt, T q
BT

“ ´P pt, T q fpt, T q. (3.299)

Comparing (3.298) en (3.299) we get the link between short rate and forward
rate

fpt, T q “ ET
“

rpT q
ˇ

ˇ Ft

‰

. (3.300)

Considering the right hand side of (3.300) we will need to describe the dynamics

of rptq under QT . Applying Itô’s formula on fpt, xq “ e
şt
0 rpsq ds we immediately

find that dMptq “ rptqMptq dt. In the notation of Theorem 3.101 we thus have
σM “ 0. If we then apply this theorem withXptq “ rptq, Q˚ “ QT , σ pt,Xptqq “
σ, b pt,Xptqq “ a pb ´ rptqq and σN “ ´σA pt, T qP pt, T q we obtain:

drptq “
`

ab ´ σ2A pt, T q ´ arptq
˘

dt ` σ dW T ptq

“ a

ˆ

b ´
σ2

a2
`

1 ´ e´apT´tq˘ ´ rt

˙

dt ` σ dW T ptq (3.301)

where W T ptq is the QT -Brownian motion defined by

W T ptq “ W ptq ` σ

ż t

0

A ps, T q ds.

Expression (3.301) resembles an ordinary Vasicek process, except that the term

b ´
σ2

a2
`

1 ´ e´apT´tq˘ does depend upon t and is thus not a constant. However,

we will use a similar reasoning as in the classical situation to solve the SDE for
rptq on the interval rt, T s. First, we apply Itô’s formula on gpt, xq “ eatx:

d
`

eatrptq
˘

“ abeat dt ´
1 ´ e´apT´tq

a
σ2eat dt ` σeat dW T ptq

“ abeat dt ´
σ2

a

`

eat ´ e´apT´2tq˘ dt ` σeat dW T ptq.

Integrating from t to T gives

eaT rpT q ´ eatrptq

“ ab

ż T

t

eas ds ´
σ2

a

ż T

t

`

eas ´ e´apT´2sq˘ ds ` σ

ż T

t

eas dW T psq

“ b
`

eaT ´ eat
˘

´
σ2

a

„

1

a

`

eaT ´ eat
˘

´
1

2a

`

eaT ´ e´apT´2tq˘
ȷ

` σ

ż T

t

eas dW T psq

“ b
`

eaT ´ eat
˘

´
σ2

2a2

´

eaT ´ 2eat ` e´apT´2tq
¯

` σ

ż T

t

eas dW T psq.

Thus we have that

rpT q “ rptqe´apT´tq ` b
`

1 ´ e´apT´tq˘ ´
σ2

2a2
`

1 ´ 2e´apT´tq ` e´2apT´tq˘

` σ

ż T

t

e´apT´sq dW T psq.
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And hence,

fpt, sq “ Es
“

rpsq
ˇ

ˇ Ft

‰

“ rptqe´aps´tq ` b
`

1 ´ e´aps´tq˘ ´
σ2

a2
`

1 ´ 2e´aps´tq ` e´2aps´tq˘

“ rptqe´aps´tq `
ˆ

b ´
σ2

2a2

˙

`

1 ´ e´aps´tq˘ `
σ2

2a2
`

e´aps´tq ´ e´2aps´tq˘ .

Integrating results in
ż T

t

Es
“

rpsq
ˇ

ˇ Ft

‰

ds “
rptq
a

`

1 ´ e´apT´tq˘ `
ˆ

b ´
σ2

2a2

˙ ˆ

T ´ t ´
1 ´ e´apT´tq

a

˙

`
σ2

2a3
`

1 ´ e´apT´tq˘ ´
σ2

4a3
`

1 ´ e´2apT´tq˘

“ rptqA pt, T q `
ˆ

b ´
σ2

2a2

˙

pT ´ t ´ A pt, T qq `
σ2

4a
A pt, T q2

“ rptqA pt, T q ´ Dpt, T q. (3.302)

Reminding formula (3.294) and formula (3.300) we find again that

P pt, T q “ e´Apt,T qrt`Dpt,T q.

This completes the third proof of Theorem 3.96. �

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


Advanced stochastic processes: Part I

221 

An introduction to stochastic processes:  
Brownian motion, Gaussian processes and martingales9. A VERSION OF FERNIQUE’S THEOREM 221

9. A version of Fernique’s theorem

The following theorem is due to Fernique. We follow the proof of H.H. Kuo
[77].

3.103. Theorem. Let pΩ,F,Pq be a probability space and let X : Ω Ñ Rd be a
Gaussian vector with mean zero. Put

α “ sup
u,vą0

1

pu ` vq2
log

P p|X| ď vq
P p|X| ą uq

. (3.303)

Then α ą 0 and

E
ˆ

exp

ˆ

1

2
η |X|2

˙˙

ă 8 for η ă α. (3.304)

For the proof we shall need two lemmas. The first one contains the main idea.

3.104. Lemma. Let pΩ,F,Pq and X be as in Theorem 3.103. Let s ą 0 be such
that P p|X| ď sq ą 0 and fix t ą s. Then

P p|X| ą tq
P p|X| ď sq

ď

˜

P
`

|X| ą pt ´ sq{
?
2
˘

P p|X| ď sq

¸2

. (3.305)

Proof. Let pΩ b Ω,F b F,P b Pq be the tensor product space of pΩ,F,Pq
with itself and define Xi, i “ 1, 2, by Xipω1, ω2q “ Xpωiq. Then the variables
X1 and X2 are independent with respect P b P and their P b P-distribution
coincides with the P-distribution of X. We shall prove Lemma 3.104. for s “ v
and t “ u

?
2 ` v. Since the vector pX1, X2q is Gaussian with respect to P b P

and since the components of X1 ´ X2 are uncorrelated with the components
of X1 ` X2 (with respect to the probability P b P), it follows that the vectors
X1 ´ X2 and X1 ` X2 are independent. Notice that

ş

XdP “
ş

X1dP b P “
ş

X2dP b P “ 0 and that the covariance matrices of X, of pX1 ´ X2q {
?
2 and

of pX1 ` X2q {
?
2 all coincide. It follows that the joint distributions of pX1, X2q

and of

ˆ

X1 ´ X2?
2

,
X1 ` X2?

2

˙

are the same as well. Hence the following (in-

)equalities are now self-explanatory:

P p|X| ď vqP
´

|X| ą u
?
2 ` v

¯

“ P b P p|X1| ď vq ˆ P b P
´

|X2| ą u
?
2 ` v

¯

“ P b P
´

|X1| ď v and |X2| ą u
?
2 ` v

¯

“ P b P
´

|X1 ´ X2| ď v
?
2 and |X1 ` X2| ą 2u ` v

?
2
¯

ď P b P
´

ˇ

ˇ|X1| ´ |X2|
ˇ

ˇ ď v
?
2 and |X1| ` |X2| ą 2u ` v

?
2
¯

ď P b P p|X1| ą u and |X2| ą uq “ P p|X| ą uq2 . (3.306)

Inequality (3.305) in Lemma 3.104 follows from (3.306). �
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3.105. Lemma. Let pΩ,F,Pq and X be as in Theorem 3.103. Let v ą 0 be such
that P p|X| ď vq ą 0 and fix ℓ P N and fix u ą 0. Then the following inequality
is valid:

P
´

|X| ą u
`?

2
˘ℓ ` v

´

`?
2
˘ℓ ´ 1

¯

`?
2 ` 1

˘

¯

P p|X| ď vq
ď

ˆ

P p|X| ą uq
P p|X| ď vq

˙2ℓ

. (3.307)

Proof. For ℓ “ 0 this assertion is trivial and for ℓ “ 1 it is the same
as inequality (3.305) in Lemma 3.104. Next suppose that (3.307) is already
established for ℓ. We are going to prove (3.307) with ℓ ` 1 replacing ℓ. Again
we invoke inequality (3.305) to obtain

P
´

|X| ą u
`?

2
˘ℓ`1 ` v

´

`?
2
˘ℓ`1 ´ 1

¯

`?
2 ` 1

˘

¯

P p|X| ď vq

ď

¨

˝

P
´

|X| ą
´

u
`?

2
˘ℓ`1 ` v

´

`?
2
˘ℓ`1 ´ 1

¯

`?
2 ` 1

˘

´ v
¯

{
?
2
¯

P p|X| ď vq

˛

‚

2

“

¨

˝

P
´

|X| ą u
`?

2
˘ℓ ` v

´

`?
2
˘ℓ ´ 1

¯

`?
2 ` 1

˘

¯

P p|X| ď vq

˛

‚

2

(induction hypothesis)

ď
ˆ

P p|X| ą uq
P p|X| ď vq

˙2ℓ`1

. (3.308)

The inequality in (3.308) completes the proof of Lemma 3.105. �

Proof of Theorem 3.103. If X ” 0, then there is nothing to prove. So
suppose X ‰ 0 and choose strictly positive real numbers u and v for which
P p|X| ą uq
P p|X| ď vq

ă 1. Put

αpu, vq “
1

pu ` vq2
log

P p|X| ď vq
P p|X| ą uq

and

βpu, vq “ P p|X| ď vq
ˆ

P p|X| ą uq
P p|X| ď vq

˙

v2
`

1 `
?
2
˘2

2 pu ` vq2 .

Then αpu, vq ą 0 and βpu, vq “ P p|X| ď vq exp
´

´1
2
αpu, vqv2

`

1 `
?
2
˘2

¯

ă 1.

For s ě u choose ℓ P N in such a way that

u
´?

2
¯ℓ`1

` v

ˆ

´?
2
¯ℓ`1

´ 1

˙

´?
2 ` 1

¯

ą s

ě u
´?

2
¯ℓ

` v

ˆ

´?
2
¯ℓ

´ 1

˙

´?
2 ` 1

¯

.
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Then

2ℓ ą
`

s ` v
`

1 `
?
2
˘˘2

2 pu ` vq2
ą

s2

2 pu ` vq2
`

v2
`

1 `
?
2
˘2

2 pu ` vq2

and hence

P p|X| ą sq ď P
ˆ

|X| ą u
´?

2
¯ℓ

` v

ˆ

´?
2
¯ℓ

´ 1

˙

´?
2 ` 1

¯

˙

(inequality (3.307) in Lemma 3.105)

ď P p|X| ď vq
ˆ

P p|X| ą uq
P p|X| ď vq

˙2ℓ

ď βpu, vq exp
ˆ

´
1

2
αpu, vqs2

˙

ă exp

ˆ

´
1

2
αpu, vqs2

˙

. (3.309)

If 0 ď η ă α, then we choose u, v ą 0 in such a way that α ą αpu, vq ą η.
Then, for s ě u, P p|X| ą sq ă exp

`

´1
2
αpu, vqs2

˘

. Consequently, we get from
(3.309):

E
ˆ

exp

ˆ

1

2
η |X|2

˙

: |X| ą u

˙

“
ż 8

0

P
ˆ

exp

ˆ

1

2
η |X|2

˙

ą ξ, |X| ą u

˙

dξ

(substitute ξ “ exp
`

1
2
ηs2

˘

)

ď exp

ˆ

1

2
ηu2

˙

P p|X| ą uq ` η

ż 8

u

P p|X| ą sq exp
ˆ

1

2
ηs2

˙

sds

ď exp

ˆ

1

2
ηu2

˙

P p|X| ą uq ` η

ż 8

u

exp

ˆ

´
1

2
pαpu, vq ´ ηq s2

˙

sds

ď exp

ˆ

1

2
ηu2

˙

`
η

αpu, vq ´ η
exp

ˆ

´
1

2
pαpu, vq ´ ηqu2

˙

ď
αpu, vq

αpu, vq ´ η
exp

ˆ

1

2
ηu2

˙

. (3.310)

From (3.310) we infer

E
ˆ

exp

ˆ

1

2
η |X|2

˙˙

ď
2αpu, vq ´ η

αpu, vq ´ η
exp

ˆ

1

2
ηu2

˙

. (3.311)

Inequality (3.311) yields the desired result in Theorem 3.103. �

10. Miscellaneous

We begin this section with the Doob’s optional stopping property for discrete
time submartingales. Let tXpnq : n P Nu be a submartingale relative to the
filtration tFn : n P Nu. Here the random variables Xpnq are defined on a prob-
ability space pΩ,F,Pq. The following result was used in inequality (3.164), the
basic step for the continuous time version of the following proposition.
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3.106. Proposition. Let τ be a stopping time. The process

tXpminpn, τqq : n P Nu
is a submartingale with respect to the filtration tFn : n P Nu as well as with
respect to the filtration

␣

Fminpn,τq : n P N
(

.
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Proof. Let m and n be natural numbers with m ă n and let A be a
member of Fm. Then we have

E pX pminpn, τqq 1Aq ´ E pX pminpm, τqq 1Aq

“
n

ÿ

k“m`1

tE pX pminpk, τqq 1Aq ´ E pX pminpk ´ 1, τqq 1Aqu

“
n

ÿ

k“m`1

␣

E
`

pX pminpk, τqq ´ X pminpk ´ 1, τqqq 1AXtτěku
˘(

“
n

ÿ

k“m`1

E
␣

E
`

pX pminpk, τqq ´ X pminpk ´ 1, τqqq 1AXtτěku
˘ ˇ

ˇ Fk´1

(

(the event AXtτ ě ku belongs to Fk´1 for k ě m`1, and the variable Xpk´1q
is Fk´1-measurable)

“
n

ÿ

k“m`1

E
``

E
`

Xpkq
ˇ

ˇ Fk´1

˘

´ Xpk ´ 1q
˘

1AXtτěku
˘

(submartingale property of the process tXpkq : k P Nu)

ě
n

ÿ

k“m`1

E
`

0 ˆ 1AXtτěku
˘

“ 0. (3.312)

The inequality in (3.312) proves that the process tXpminpk, τqq : k P Nu is a sub-
martingale for the filtration tFk : k P Nu. Since the σ-field Fminpk,τ is contained
in the σ-field Fk, k P N, it also follows that the process

tXpminpk, τqq : k P Nu
is also a submartingale with respect to the filtration

␣

Fminpk,τq : k P N
(

because
we have

E
`

Xpminpm ` 1, τqq
ˇ

ˇ Fminpm,τq
˘

“ E
`

E
`

Xpm ` 1q
ˇ

ˇ Fm

˘ ˇ

ˇ Fminpm,τq
˘

ě E
`

E
`

Xpminpm ` 1, τqq
ˇ

ˇ Fm

˘ ˇ

ˇ Fminpm,τq
˘

(employ (3.312))

ě E
`

Xpminpm, τqq
ˇ

ˇ Fminpm,τq
˘

“ Xpminpm, τqq. (3.313)

The inequalities (3.312) and (3.313) together prove the results in Theorem 3.106.
�

Next we prove Doob’s maximal inequality for martingales.

3.107. Proposition. Let tMpnq : n P Nu be a martingale. Put

Mpnq˚ “ max
kďn

|Mpnq|.

The following inequalities are valid:

P rMpnq˚ ě λs ď
1

λ
E r|Mpnq| : Mpnq˚ ě λs ; (3.314)
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P rMpnq˚ ě λs ď
1

λ2
E

“

|Mpnq|2 : Mpnq˚ ě λ
‰

. (3.315)

Let tMptq : t ě 0u be a continuous time martingale that is right continuous and
possesses left limits. Put Mptq˚ “ sup0ďsďt |Mpsq|. Again inequalities like
(3.314) and (3.315) are true:

P tMptq˚ ě λu ď
1

λ
E t|Mptq| : Mptq˚ ě λu ; (3.316)

P tMptq˚ ě λu ď
1

λ2
E

␣

|Mptq|2 : Mptq˚ ě λ
(

. (3.317)

Proof. We begin by establishing inequality (3.314). Define the events Ak,
1 ď k ď n, by A0 “ t|Mp0q| ě λu,

Ak “ t|Mpjq| ă λ, 0 ď j ď k ´ 1, |Mpkq| ě λu , 1 ď k ď n.

Then
Ťn

k“0 Ak “ tMpnq˚ ě λu, Ak X Aℓ “ H, for k ­“ ℓ, 1 ď k, ℓ ď n, and
Ak is Fk-measurable for 1 ď k ď n. Moreover on the event Ak the inequality
|Mpkq| ě λ is valid. From the martingale property it then follows that:

P pMpnq˚ ě λq “
n

ÿ

k“0

P pAkq ď
1

λ

n
ÿ

k“0

E p1Ak
|Mpkq|q

“
1

λ

n
ÿ

k“0

E
`

1Ak

ˇ

ˇE
`

Mpnq
ˇ

ˇ Fk

˘ˇ

ˇ

˘

“
1

λ

n
ÿ

k“0

E
`ˇ

ˇE
`

1Ak
Mpnq

ˇ

ˇ Fk

˘ˇ

ˇ

˘

ď
1

λ

n
ÿ

k“0

E
`

E
`

1Ak
|Mpnq|

ˇ

ˇ Fk

˘˘

“
1

λ

n
ÿ

k“0

E p1Ak
|Mpnq|q “

1

λ
E p|Mpnq| : Mpnq˚ ě λq . (3.318)

Notice that inequality (3.318) is the same as (3.314). The proof of (3.315)
goes along the same lines. The fact is used that the process

␣

|Mpnq|2 : n P N
(

constitutes a submartingale. The details read as follows. The events Ak, 1 ď
k ď n, are defined as in the proof of (3.314). The argument in (3.318) is adapted
as below:

P pMpnq˚ ě λq “
n

ÿ

k“0

P pAkq ď
1

λ2

n
ÿ

k“0

E
`

1Ak
|Mpkq|2

˘

ď
1

λ2

n
ÿ

k“0

E
`

1Ak
E

`

|Mpnq|2
ˇ

ˇ Fk

˘˘

ď
1

λ2

n
ÿ

k“0

E
`

1Ak
|Mpnq|2

˘

“
1

λ2

n
ÿ

k“0

E
`

1Ak
|Mpnq|2

˘

“
1

λ2
E

`

|Mpnq|2 : Mpnq˚ ě λ
˘

.

(3.319)
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Again we notice that (3.319) is the same as (3.315). The inequalities in (3.316)
and (3.317) are based on a time discretization of the martingale tMptq : t ě 0u.
Therefore we write Npjq :“ M pj2´ntq and we notice that tNpjq : j P Nu is
a martingale for the filtration tFj2´nt : j P Nu. From (3.314) we obtain the
inequality:

P
ˆ

max
0ďjď2n

|Npjq| ě λ

˙

ď
1

λ
E p|Mptq| : Mptq˚ ě λq . (3.320)

Inequality (3.317) is obtained from (3.320) upon letting tend n to 8. The proof
of (3.317) follows in the same manner from (3.315). �

We continue with a proof of the (DL)-property of martingales. More precisely
we shall prove the following proposition.

3.108. Proposition. Let tMpsq : s ě 0u be a right continuous martingale on
the probability space pΩ,F,Pq. Fix t ě 0. Then the collection of random vari-
ables

tMpτq : 0 ď τ ď t, τ stopping timeu
is uniformly integrable.

Proof. Fix a stopping time 0 ď τ ď t and write τn “ min p2´nr2nts, tq.
Then 0 ď τn ď t and every τn is a stopping time. Moreover τn Ó τ if n tends
to 8. Since the pair pMpτnq,Mptqq is a martingale for the pair of σ-fields
pFτn ,Ftq (Use Proposition 3.106 for martingales), the pair p|M pτnq| , |Mptq|q is
a submartingale with respect to the same pair of σ-fields. As a consequence we
obtain:

E p|Mpτq| : |Mpτq| ě λq “ E
´

lim inf
nÑ8

ˇ

ˇMpτnq1t|Mpτnq|ěλu
ˇ

ˇ

¯

(Fatou’s lemma)

ď lim inf
nÑ8

E
`

|Mpτnq| 1t|Mpτnq|ěλu
˘

(submartingale property)

ď lim inf
nÑ8

E
`

E
`

|Mptq|
ˇ

ˇ Fτn

˘

1t|Mpτnq|ěλu
˘

“ lim inf
nÑ8

E
`

|Mptq| 1t|Mpτnq|ěλu
˘

“ lim inf
nÑ8

E p|Mptq| : |M pτnq| ě λq

ď E p|Mptq| : |Mptq| ě λq . (3.321)

This proves Proposition 3.108. �

Remark. In the proof of Proposition 3.108. we did use a discrete approximation
of a stopping time. However we could have avoided this and consider directly the
pair pMpτq,Mptqq. From Proposition 3.107 we see that this pair is a martingale
with respect to the pair of σ-fields pFτ ,Ftq. This will then imply inequality
(3.321) with τ replacing τn. On the other hand the discrete approximation
of stopping times as performed in the proof of Proposition 3.108 is kind of
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a standard procedure for passing from discrete time valued stopping times to
continuous time valued stopping times. This is a good reason to insert this kind
of argument.

The main result of Section 3 of this chapter says that linear operators in C0pEq
which maximally solve the martingale problem are generators of Feller semi-
groups and conversely. In the sequel we want to verify the claim in the example
of Section 3. Its statement is correct, but its proof is erroneous. Example 3.49
in Section 3 reads as follows.

3.109. Example. Let L0 be an unbounded generator of a Feller semigroup in
C0pEq and let µk and νk, 1 ď k ď n, be finite (signed) Borel measures on E.
Define the operator Lµ⃗,ν⃗ as follows:

D pLµ⃗,ν⃗q “
n

č

k“1

"

f P DpL0q :
ż

L0fdµk “
ż

fdνk

*

,

Lµ⃗,ν⃗f “ L0f, f P D pLµ⃗,ν⃗q .

Then the martingale problem is uniquely solvable for Lµ⃗,ν⃗ . In fact let

tpΩ,F,Pxq , pXptq : t ě 0q , pϑt : t ě 0q , pE,Equ

be the strong Markov process associated to the Feller semigroup generated by
L0. Then P “ Px solves the martingale problem

(a) For every f P DpLµ⃗,ν⃗q the process

fpXptqq ´ fpXp0qq ´
ż t

0

Lµ⃗,ν⃗fpXpsqqds, t ě 0,

is a P-martingale;
(b) PpXp0q “ xq “ 1,

uniquely. In particular we may take E “ r0, 1s, L0f “ 1
2
f2,

DpL0q “
␣

f P C2r0, 1s : f 1p0q “ f 1p1q “ 0
(

,

µk pIq “
şβk

αk
1Ipsqds, νk “ 0, 0 ď αk ă βk ď 1, 1 ď k ď n. Then L0 generates

the Feller semigroup of reflected Brownian motion: see Liggett [86], Example
5.8, p. 45. For the operator Lµ⃗,ν⃗ the martingale problem is uniquely (but not
maximally uniquely) solvable. However it does not generate a Feller semigroup.

From the result in Theorem 3.45 this can be seen as follows. Define the func-
tionals Λj : DpL0q Ñ C, 1 ď j ď n, as follows:

Λjpfq “
ż

L0fdµj ´
ż

fdνj, 1 ď j ď n.

We may and do suppose that the functionals Λj, 1 ď j ď n, are linearly
independent and that their linear span does not contain linear combinations of
Dirac measures. The latter implies that, for every x0 P E and for every function
u P DpL0q, the convex subsets

D pL1q X ttg P C0pEq : Re g ď Re gpx0qu ` uu and
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D pL1q X tth P C0pEq : Re h ě Re hpx0qu ` uu
are non-void. The latter follows from a Hahn-Banach argument. Hopefully,
it will also imply that the quantities in (3.322) and (3.323) coincide. Since
DpL2

0q forms a core for L0 we may choose functions uk, 1 ď k ď n, such that
Λjpukq “ δjk and such that every uk, 1 ď k ď n is in the vector of the two
spaces

␣

u P DpL2
0q : Rp1qu P DpL1q

(

and
␣

u P DpL2
0q : Rp2qu P DpL1q

(

.

As operator L1 we take L1 “ Lµ⃗,ν⃗ and for T we take Tf “
řn

j“1 Λjpfquk,

f P DpL0q.
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The remainder of this section is devoted to the proof of the following result.
Whenever appropriate we write Rpλq for the operator pλI ´ L0q´1.

3.110. Theorem. Let L0 be the generator of a Feller semigroup in C0pEq and
let L1 and T be linear operators with the following properties: the operator I´T
has domain DpL0q and range D pL1q, L1 verifies the maximum principle, the
vector sum of the spaces RpI ´ T q and R pL1pI ´ T qq is dense in C0pEq, and
the operator L1pI ´ T q ´ pI ´ T qL0 can be considered as a continuous linear
operator in the domain of L0. More precisely, it is assumed that

lim sup
λÑ8

}pL1pI ´ T q ´ pI ´ T qL0qRpλq} ă 1.

Then there exists at most one linear extension L of the operator L1 for which
LT is bounded and that generates a Feller semigroup. In particular, if the
martingale problem is solvable for L1, then it is uniquely solvable for L1.

Before we actually prove this result we like to make some comments. In order
to have existence and uniqueness for the extension L on RpT q it suffices that
for every v P RpT q and for every x0 P E the following two expressions are equal:

lim
ϵÓ0

inf
fPDpL1q

"

Re L1fpx0q : inf
yPE

Re pfpyq ´ vpyqq ą Re pfpx0q ´ vpx0qq ´ ϵ

*

;

(3.322)

lim
ϵÓ0

sup
fPDpL1q

"

Re L1fpx0q : sup
yPE

Re pfpyq ´ vpyqq ă Re pfpx0q ´ vpx0qq ` ϵ

*

.

(3.323)

This common value is then by definition Re L2vpx0q. The value of L2vpx0q is
then given by rL2vs px0q “ Re rL2vs px0q ´ iRe rL2pivqs px0q for v P RpT q. Let
Λj, 1 ď j ď n, be as in the example of section 1. For every x0 P E and for
every 1 ď k ď n there exist functions gk and hk P DpL0q with the following
properties: Λℓpgkq “ Λℓphkq “ δk,ℓ, Re gkpxq ď Re gkpx0q and Re hkpx0q ď
hkpxq for all x P E and Re L1 phk ´ gkq px0q “ 0. It then readily follows that
the two expressions in (3.322) and (3.323) are equal for functions v in the linear
span of u1, . . . , un. Notice that the function Re hk attains its minimum at x0

and that the function Re gk attains its maximum at x0. In order to define
rL1uks px0q we choose functions gk and hk with Λℓpgkq “ Re Λℓphkq “ ´δk,ℓ in
such a way that the function Re gk attains its maximum at x0 and that the
function Re hk attains its minimum at the same point x0. Moreover we may
and do suppose that Re L1 pgk ´ hkq px0q “ 0. The value rL2uks px0q is then
given by rL2uks px0q “ rL1 pgk ` ukqs px0q “ rL1 phk ` ukqs px0q.

Proof of Theorem 3.110. Let rL be any linear operator which extends

L1 and that has the property that its domain D
´

rL
¯

contains RpT q “ TDpL0q.

We also suppose that rL verifies the maximum principle. Let L1 be the restriction

of rL to RpI ´T q and let L2 be the operator rL confined to RpT q. We shall prove
that the operator L1 has a unique extension that generates a Feller semigroup.
We start with the construction of a family of kind of intertwining operators
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tV pλq : λ ą 0 and largeu. This is done as follows. The symbol Rpλq is always
used to denote the operator Rpλq “ pλI ´ L0q´1. Define the operator V by

V “ L1pI ´ T q ´ pI ´ T qL0 (3.324)

and define the operator V pλq, λ ą }L2T }β, via the equality

V pλq “ λ pλI ´ L2T q´1 V. (3.325)

Then we have:

pλI ´ L1q pI ´ T q ` pλI ´ L2qT
V pλq
λ

“ pI ´ T q pλI ´ L0 ´ V pλqq . (3.326)

An equivalent form of (3.326) is the equality

pλI ´ L1q pI ´ T q ` pλI ´ L2qT
V pλq
λ

“ pI ´ T q ppλI ´ L0q ´ V pλqq (3.327)

“ pI ´ T q pλI ´ L0q ´ pI ´ T qV pλq “ pI ´ T q pI ´ V pλqRpλqq pλI ´ L0q .

Next we shall prove that the martingale problem is solvable for L1. We do this
by showing that the operator L1 extends to a generator L of a Feller semigroup.
For large positive lambda we define the operators Gpλq in C0pEq as follows. For
f of the form f “ pI ´ T qg, with g “ pI ´ V pλqRpλqqpλI ´ L0qh, we write

Gpλqf “ GpλqpI ´ T qg “
ˆ

I ´ T ` T
V pλq
λ

˙

h. (3.328)

and if the function f is of the form f “ pλI ´ L1q pI ´ T qg we write

Gpλqf “ GpλqpλI ´ L1qpI ´ T qg “ pI ´ T qg. (3.329)

If pλI ´ L1q pI ´ T qg1 “ pI ´ T qg2, then, since I ´ T is mapping attaining
values in the domain of L1, we see that pI ´ T qg1 ´ pI ´ T qg2 belongs to
DpL1q and hence the following identities are mutually equivalent (we write
g2 “ pI ´ V pλqRpλqq pλI ´ L0qh2):

pI ´ T qg1 “
ˆ

I ´ T ` T
V pλq
λ

˙

h2;

pI ´ T qg1 ´ pI ´ T qh2 “ T
V pλq
λ

h2;

pλI ´ L1q ppI ´ T qg1 ´ pI ´ T qh2q “ pλI ´ L1qT
V pλq
λ

h2;

pI ´ T qg2 “ pλI ´ L1q
ˆ

I ´ T ` T
V pλq
λ

˙

h2;

pI ´ T q pI ´ V pλqRpλqq pλI ´ L0qh2 “ pλI ´ L1q
ˆ

I ´ T ` T
V pλq
λ

˙

h2;

pλI ´ L1q pI ´ T qh2 ` pλI ´ L2qT
V pλq
λ

h2 “ pλI ´ L1q
ˆ

I ´ T ` T
V pλq
λ

˙

h2.

(3.330)
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Since g2 “ pI ´ V pλqRpλqqpλI ´ L0qh2 it follows that

´

λI ´ rL
¯

`

pI ´ T q pg1 ´ h2q ´ T
V pλq
λ

h2

˘

pλI ´ L1q ppI ´ T qg1 ´ pI ´ T qh2q ´ pλI ´ L2qT
V pλq
λ

h2

“ pI ´ T qg2 ´ pλI ´ L1q pI ´ T qh2 ´ pλI ´ L2qT
V pλq
λ

h2

“ pI ´ T q pI ´ V pλqRpλqq pλI ´ L0qh2 ´ pλI ´ L1q pI ´ T qh2

´ pλI ´ L2qT
V pλq
λ

h2

“ pλI ´ L1q pI ´ T qh2 ` pλI ´ L2qT
V pλq
λ

h2 ´ pλI ´ L1q pI ´ T qh2

´ pλI ´ L2qT
V pλq
λ

h2 “ 0. (3.331)

Since the operator rL verifies the maximum principle, it is dissipative, and so

the zero space of λI ´ rL is trivial. We conclude from (3.331) the identity
TV pλqRpλqh2 “ pI´T qg1´pI´T qh2 and so the function TV pλqRpλqh2 belongs
to DpL1q. Hence it follows that (3.330) is satisfied and consequently that the
operator Gpλq is well-defined. Next we pick h1 and h2 in the domain of L0 and
we write

f “ λpI ´ T q pλI ´ L0 ´ V pλqqh2 ` pλI ´ L1q pI ´ T q ph1 ´ λh2q . (3.332)

A calculation will yield the following identities:

Gpλqf “ pI ´ T qh1 ` TV pλqh2;

λGpλqf ´ f “ L1pI ´ T qh1 ` L2TV pλqh2 “ rL pGpλqfq . (3.333)

Consequently we get
´

λI ´ rL
¯

Gpλqf “ f , for f of the form (3.332). Since

we know }V pλqRpλq}β ă 1 and since, by assumption the subspace RpI ´ T q `
RpL1pI ´ T qq is dense in C0pEq, it follows that the range RpλI ´ rLq is dense

for λ ą 0, λ large. Since the operator rL satisfies the maximum principle and

since rL “ L1pI ´ T q ` L2T it follows that the operator L that assigns to
Gpλqf the function λGpλqf ´ f , f P RpI ´ T q ` RpL1pI ´ T qq, is well defined
and satisfies the maximum principle. Below we shall show that the family
tGpλq : λ ą 0, λ largeu is a resolvent family indeed: see (3.337). The closure
of its graph contains the graph

tppI ´ T qh1 ` Th2, L1pI ´ T qh1 ` L2Th2q : h1, h2 P DpL0qu .

Denote the operator with graph tpGpλqf, λGpλqf ´ fq : f P C0pEqu again by L.
From the previous remarks it follows that the operator L verifies the maximum
principle, pλI ´ LqGpλqf “ f for f P C0pEq and that it is densely defined. The
latter follows because its domain contains all vectors of the form

pI ´ T qf1 ` L1pI ´ T qf2 “ pI ´ T q pf1 ` pI ´ T qL1pI ´ T qf2 ` TL0f2q ` TV f2.
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From a general argument it then follows that the operator L is the generator of
a Feller semigroup: for more details see [141], Theorem 2.2 page 14. Next let
h1 and h2 belong to DpL0q. Then we have

λ
›

›Gpλq
`

pI ´ T qh1 ` pλI ´ L1q pI ´ T qh2

˘›

›

8
“ λ }GpλqpI ´ T qh1 ` pI ´ T qh2}8

(the operator rL is dissipative)

ď
›

›

›

´

λI ´ rL
¯

`

GpλqpI ´ T qh1 ` pI ´ T qh2

˘

›

›

›

8
“ }pI ´ T qh1 ` pλI ´ L1q pI ´ T qh2}8 . (3.334)

Since the vector sum of the spaces RpI ´T q and RpL1pI ´T qq is dense it follows
from (3.334) that the operator Gpλq extends as a continuous linear operator to
all of C0pEq. Moreover it is dissipative in the sense that

λ }Gpλq} ď 1. (3.335)

Next we prove that the operator Gpλq is positive in the sense that f ě 0,
f P C0pEq, implies Gpλqf ě 0. So let f P C0pEq be non-negative. There exist
sequences of functions pgnq and phnq in the space DpL0q, for which

f “ lim
nÑ8

ppI ´ T qhn ` pλI ´ L1q pI ´ T qgnq .
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Put fn “ pI ´ T qhn ` pλI ´ L1q pI ´ T qgn. Then
´

λI ´ rL
¯

Gpλqfn “ fn (see

(3.332) and (3.333)). Since the operator rL verifies the maximum principle it
follows that

λRe Gpλqfn ě inf
yPE

Re
´

λI ´ rL
¯

Gpλqfnpyq “ inf
yPE

Re fnpyq (3.336)

and hence Re λGpλqf “ Re limnÑ8 λGpλqfn ě 0. A similar argument will show
that the operator Gpλq sends real functions to real function and hence Gpλq is
positivity preserving. Next we prove that the family tGpλq : λ ą 0, largeu is
a resolvent family. So let λ and µ be large positive real numbers. We want to
prove the identity

Gpλq ´ Gpµq ´ pµ ´ λqGpµqGpλq “ 0. (3.337)

First pick the function f P DpL0q and apply the operator in (3.337) to the

function pλI ´ L1q pI ´ T qf and employ identity Gpλq
´

λI ´ rL
¯

f “ f , for f

belonging to D
´

rL
¯

to obtain

pGpλq ´ Gpµq ´ pµ ´ λqGpµqGpλqq pλI ´ L1q pI ´ T qf “ 0.

The operator in (3.337) also sends functions in the space RpI ´T q to 0, because
we may apply (3.333) to see that

´

µI ´ rL
¯

pGpλq ´ Gpµq ´ pµ ´ λqGpµqGpλqq pI ´ T qf “ 0

for f P DpL0q. Finally we show that the resolvent family tGpλq : λ ą 0 largeu
is strongly continuous in the sense that limλÑ8 λRpλqf “ f for all f P C0pEq.
Of course it suffices to prove this equality for a subset with a dense span. Next
we consider f P DpL0q and we estimate

}pI ´ T qf ´ λGpλqpI ´ T qf}8

as follows:

}pI ´ T qf ´ λGpλqpI ´ T qf}8

ď
1

λ
}pλI ´ L1q ppI ´ T qf ´ λGpλqpI ´ T qfq}8

“
1

λ
}pλI ´ L1q pI ´ T qf ´ λpI ´ T qf}8 “

1

λ
}L1pI ´ T qf}8 . (3.338)

Again this expression tends to zero. For brevity we write

F pλq “ pI ´ V pλqRpλqq´1 f.

For f P DpL0q the following equalities are valid:

pλGpλq ´ IqL1pI ´ T qf ´ L1pI ´ T qf
“ λ2GpλqpI ´ T qf ´ λpI ´ T qf ´ L1pI ´ T qf
“

␣

λ2pI ´ T qRpλq ` TV pλqRpλq2 ´ λpI ´ T qpI ´ V pλqRpλqq
(

F pλq
´ L1pI ´ T qf

“
␣

pI ´ T qλL0Rpλq ` λ2TV pλqRpλq2 ` λpI ´ T qV pλqRpλq
(

F pλq
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´ L1pI ´ T qf
Ñ tpI ´ T qL0 ` TV ` pI ´ T qV u f ´ L1pI ´ T qf “ 0. (3.339)

From (3.338) together with (3.339) we conclude that limλÑ8 pλGpλqf ´ fq “ 0
for all in the span of RpI ´ T q and R pL1pI ´ T qq. By assumption this span is
dense and consequently the resolvent family tGpλq : λ ą 0, λ largeu is strongly
continuous. In order to conclude the proof of the existence result we choose f1
and f2 in the space DpL0q and we notice the following identities:

Gpλq tpI ´ T q pI ´ V pλqRpλqq pλI ´ L0qf1 ` pλI ´ L1qpI ´ T qf2u
“ pI ´ T qpf1 ` f2q ` TV pλqRpλqf1,

and so the space GpλqC0pEq contains the linear span of the spaces RpI ´ T q
and R pTV pλqRpλqq. From the resolvent equation it is clear that the space
GpλqC0pEq does not depend on the variable λ. So we see that the space
GpαqC0pEq contains, for a given function f P DpL0q the family tλTV pλqRpλqf :
λ ě αu. Hence the function TV f “ lim

λÑ8
λTV pλqRpλqf belongs to the closure of

the space GpαqC0pEq. Since L1pI´T qf “ TV f `pI´T q pL1pI ´ T qf ` TL0fq,
for f P DpL0q, we conclude that the range of L1pI ´ T q is contained in the clo-
sure of GpαqC0pEq. Since the latter space also contains RpI ´T q it follows from
the density of the space

RpI ´ T q ` R pL1pI ´ T qq

in C0pEq that the domain of the resolvent, i.e. GpαqC0pEq is dense in C0pEq.
From the previous discussion it also follows that the operator which assigns to
Gpλqf the function λGpλqf ´ f extends the operator L1 restricted to RpI ´T q.
It is now also clear that the subspace tGpαqf : f P C0pEqu is dense and so it is
clear that the there exists a Feller semigroup generated by the operator L with
graph tpGpαqf, αGpαqf ´ fq : f P C0pEqu.

For the uniqueness we proceed as follows. Let P1
x and P2

x be two solutions for the
martingale problem. We define the family of operators tSptq : t ě 0u as follows:
Sptqfpxq “ E1

xfpXptq´E2
xfpXptqq from the martingale property, it then follows

that S 1ptqf “ SptqrLf for f belonging to the subspace RpI ´T q `RpL1pI ´T qq.
Moreover we have Sp0qfpxq “ 0 for all functions f P C0pEq. Then we write (for
f1 and f2 P DpL0q)

0 “
ż 8

0

ˆ

´
B
Bt

˙

e´λtSptqGpλq ppI ´ T qf1 ` TL1pI ´ T qf2q dt

“
ż 8

0

e´λtSptq
´

λI ´ rL
¯

Gpλq ppI ´ T qf1 ` TL1pI ´ T qf2q dt

“
ż 8

0

e´λtSptq ppI ´ T qf1 ` TL1pI ´ T qf2q dt. (3.340)

Consequently SptqpI ´T qf1 “ SptqTL1pI ´T qf2 “ 0 for all functions f1 and fn
in the space DpL0q. We also have, upon using (3.340) the following equality:

ż t

0

SpτqL1pI ´ T qfdτ “ SptqpI ´ T qf ´ Sp0qf “ 0. (3.341)
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Since by assumption the sum of the vector spaces RpI ´ T q and RpL1q is dense
in the space C0pEq, we conclude Sptq ” 0 and hence from a general result on
uniqueness of the martingale problem, we finally obtain that P1

x “ P2
x for all

x P E. For more details see Proposition 2.9 (Corollary p. 206 of Ikeda and
Watanabe [61]). This completes the proof of Theorem 3.110. �
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D: dyadic rational numbers, 380
K: strike price, 191
Np¨q: normal distribution, 191
P 1pΩq: compact metrizable Hausdorff

space, 129
S: spot price, 191
T : maturity time, 191
λ-system, 1, 68
Gδ-set, 332, 334
M: space of complex measures on Rν , 298
µx,y
0,t , 103

π-system, 68
σ-algebra, 1, 3
σ-field, 1, 3
σ: volatility, 191
r: risk free interest rate, 191
(DL)-property, 416

adapted process, 17, 374, 389, 406
additive process, 23, 24
affine function, 8
affine term structure model, 210
Alexandroff compactification, 301
almost sure convergence of

sub-martingales, 386
arbitrage-free, 190

backward propagator, 197
Banach algebra, 298, 303
Bernoulli distributed random variable, 56
Bernoulli topology, 310
Beurling-Gelfand formula, 302, 303
Birkhoff’s ergodic theorem, 74
birth-dearth process, 35
Black-Scholes model, 187, 190
Black-Scholes parameters, 193
Black-Scholes PDE, 190
Bochner’s theorem, 90, 91, 308, 314
Boolean algebra of subsets, 361
Borel-Cantelli’s lemma, 42, 105
Brownian bridge, 94, 98, 99, 101
Brownian bridge measure

conditional, 103

Brownian motion, 1, 16–18, 24, 84, 94, 98,
101, 102, 105, 108–110, 113, 115, 181,
189, 193, 197, 243, 283, 290, 291

continuous, 104
distribution of, 107
geometric, 188
Hölder continuity of, 154
pinned, 98
standard, 70

Brownian motion with drift, 98

cadlag modification, 395
cadlag process, 376
Cameron-Martin Girsanov formula, 277
Cameron-Martin transformation, 182, 280
canonical process, 109
Carathéodory measurable set, 363
Carathéodory’s extension theorem, 361,

362, 364
central limit theorem, 74

multivariate, 70
Chapman-Kolmogorov identity, 16, 25,

81, 107, 116, 149
characteristic function, 76, 102, 390
characteristic function (Fourier

transform), 98
classification properties of Markov chains,

35
closed martingale, 17, 150
compact-open topology, 310
complex Radon measure, 296
conditional Brownian bridge measure, 103
conditional expectation, 2, 3, 78
conditional expectation as orthogonal

projection, 5
conditional expectation as projection, 5
conditional probability kernel, 399
consistent family of probability spaces, 66
consistent system of probability measures,

13, 360
content, 362

exended, 362
continuity theorem of Lévy, 324

237
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contractive operator, 197
convergence in probability, 371, 386
convex function and affine functions, 8
convolution product of measures, 298
convolution semigroup of measures, 314
convolution semigroup of probability

measures, 391
coupling argument, 288
covariance matrix, 108, 197, 200, 203
cylinder measure, 360
cylinder set, 358, 367
cylindrical measure, 89, 125

decomposition theorem of Doob-Meyer, 20
delta hedge portfolio, 190
density function, 80
Dirichlet problem, 265
discounted pay-off, 209
discrete state space, 25
discrete stopping time, 19
dispersion matrix, 94
dissipative operator, 118
distribution of random variable, 102
distributional solution, 266
Doléans measure, 168
Donsker’s invariance principle, 71
Doob’s convergence theorem, 17, 18
Doob’s maximal inequality, 21, 23, 160,

384
Doob’s maximality theorem, 21
Doob’s optional sampling theorem, 20, 86,

381, 388, 409
Doob-Meyer decomposition
for discrete sub-martingales, 383

Doob-Meyer decomposition theorem, 148,
149, 295, 384, 410, 419, 421

downcrossing, 157
Dynkin system, 1, 68, 111, 300, 378

Elementary renewal theorem, 38
equi-integrable family, 369
ergodic theorem, 295
ergodic theorem in L2, 342
ergodic theorem of Birkhoff, 76, 340, 344,

354
European call option, 188
European put option, 188
event, 1
exit time, 84
exponential Brownian motion, 186
exponential local martingale, 254, 255
exponential martingale probability

measure, 192
extended content, 362
extension theorem

of Kolmogorov, 360
exterior measure, 364

face value, 210
Feller semigroup, 79, 113, 114, 120, 121,

140, 264
conservative, 114
generator of, 118, 137, 140, 143, 144
strongly continuous, 113

Feller-Dynkin semigroup, 79, 122, 264
Feynman-Kac formula, 181
filtration, 109, 264

right closure of, 109
finite partition, 3
finite-dimensional distribution, 373
first hitting time, 18
forward propagator, 197
forward rate, 214
Fourier transform, 90, 93, 96, 102, 251
Fubini’s theorem, 199
full history, 109
function

positive-definite, 305
functional central limit theorem (FCLT),

70, 71

Gaussian kernel, 16, 107
Gaussian process, 89, 110, 115, 200, 203
Gaussian variable, 153
Gaussian vector, 76, 93, 94
GBM, 186

geometric Brownian motion, 189
generator of Feller semigroup, 118, 137,

140, 144, 228, 230, 231, 233
generator of Markov process, 200, 203
geometric Brownian motion, 188
geometric Brownian motion = GBM, 186
Girsanov transformation, 182, 243, 280
Girsanov’s theorem, 193
graph, 232
Gronwall’s inequality, 246

Hölder continuity of Brownian motion,
154

Hölder continuity of processes, 151
Hahn decomposition, 295
Hahn-Kolmogorov’s extension theorem,

364
harmonic function, 86
hedging strategy, 188
Hermite polynomial, 258
Hilbert cube, 333, 334
hitting time, 18

i.i.d. random variables, 24
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index set, 11
indistinguishable processes, 104, 374, 386
information from the future, 374
initial reward, 40
integration by parts formula, 282
interest rate model, 204
internal history, 374, 394
invariant measure, 35, 48, 51, 201, 204
minimal, 50

irreducible Markov chain, 48, 51, 54
Itô calculus, 87, 278, 279
Itô isometry, 162
Itô representation theorem, 274
Itô’s lemma, 189, 270

Jensen inequality, 149

Kolmogorov backward equation, 26
Kolmogorov forward equation, 26
Kolmogorov matrix, 26
Kolmogorov’s extension theorem, 13, 17,

89–91, 93, 125, 130, 357, 360, 361,
366

Komlos’ theorem, 295, 409, 420

Lévy’s weak convergence theorem, 115
Lévy process, 89, 389, 390, 392
Lévy’s characterization of Brownian

motion, 194, 249
law of random variable, 102
Lebesgue-Stieltjes measure, 364
lemma of Borel-Cantelli, 10, 152
lexicographical ordering, 333
life time, 79, 117
local martingale, 194, 252, 264, 267, 268,

271, 278, 280
local time, 292
locally compact Hausdorff space, 15

marginal distribution, 373
marginal of process, 13
Markov chain, 35, 44, 58, 59, 66
irreducible, 48, 54
recurrent, 48

Markov chain recurrent, 48
Markov process, 1, 16, 29, 30, 61, 79, 89,

102, 110, 113, 115, 119, 144, 202, 406,
408

strong, 119, 406
time-homogeneous, 407

Markov property, 25, 26, 30, 31, 46, 82,
110, 113, 142

strong, 44
martingale, 1, 17, 20, 80–82, 85–88, 103,

109, 243, 280, 281, 378, 382, 396

(DL)-property, 227
closed, 17
local, 194
maximal inequality for, 225

martingale measure, 209, 281
martingale problem, 118, 128, 137, 140,

143, 144, 228, 230, 231, 235, 264, 265
uniquely solvable, 118
well-posed, 118

martingale property, 131
martingale representation theorem, 263,

275
maximal ergodic theorem, 351
maximal inequality of Doob, 386
maximal inequality of Lévy, 104
maximal martingale inequality, 225
maximum principle, 118, 140, 141, 143,

232
measurable mapping, 377
measure

invariant, 48, 201, 204
mesaure

invariant, 204
mesure

stationary, 204
metrizable space, 15
Meyer process, 419
minimal invariant measure, 50
modification, 374
monotone class theorem, 69, 103, 107,

110, 112, 116, 378, 394, 398, 401, 404
alternative, 378

multiplicative process, 23, 24, 79
multivariate classical central limit

theorem, 70
multivariate normal distributed vector, 76
multivariate normally distributed random

vector, 93

negative-definite function, 314, 316, 396
no-arbitrage assumption, 209
non-null recurrent state, 51
non-null state, 47
non-positive recurrent random walk, 57
non-time-homogeneous process, 23
normal cumulative distribution, 188
normal distribution, 197
Novikov condition, 281
Novikov’s condition, 209
null state, 47
numéraire, 215
number of upcrossings, 156, 379, 380

one-point compactification, 15
operator
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dissipative, 118
operator which maximally solves the

martingale problem, 118, 140, 228
Ornstein-Uhlenbeck process, 98, 102, 200,

201, 210
orthogonal projection, 340
oscillator process, 98, 99
outer measure, 363, 364

partial reward, 40
partition, 4
path, 373
path space, 117
pathwise solutions to SDE, 288, 289
unique, 291, 292

pathwise solutions to SDE’s, 244
payoff process
discounted, 193

PDE for bond price in the Vasicek model,
213

pe-measure, 362
persistent state, 47
pinned Brownian motion, 98
Poisson process, 26, 27, 29, 36, 89, 159
Polish space, 15, 90, 123, 334, 335, 360,

361, 366
portfolio
delta hedge, 190

positive state, 47
positive-definite function, 297, 302, 305,

314
positive-definite matrix, 90, 96, 197
positivity preserving operators, 345
pre-measure, 363, 364
predictable process, 20, 193, 418
probability kernel, 399, 408
probability measure, 1
probability space, 1
process
Gaussian, 200, 203
increasing, 21
predictable, 20

process adapted to filtration, 374
process of class (DL), 20, 21, 148, 149,

161, 409–411, 420, 421
progressively measurable process, 377
Prohorov set, 72, 335, 337–339
projective system of probability measures,

13, 121, 360
projective system of probability spaces,

125
propagator
backward, 197

quadratic covariation process, 249, 264,
279

quadratic variation process, 253

Radon-Nikodym derivative, 11, 408
Radon-Nikodym theorem, 4, 78, 408
random walk, 58
realization, 25, 373
recurrent Markov chain, 48
recurrent state, 47
recurrent symmetric random walk, 55
reference measure, 80, 81, 83
reflected Brownian motion, 228
renewal function, 35
renewal process, 35, 40
renewal-reward process, 39, 40
renewal-reward theorem, 41
resolvent family, 122
return time, 55
reward

initial, 40
partial, 40
terminal, 40

reward function, 40
Riemann-Stieltjes integral, 364
Riesz representation theorem, 295, 296,

305
right closure of filtration, 109
right-continuous filtration, 374
right-continuous paths, 19
ring of subsets, 361
risk-neutral measure, 193, 209
risk-neutral probability measure, 192
running maximum, 23

sample path, 25
sample path space, 11, 25
sample space, 25
semi-martingale, 419
semi-ring, 364
semi-ring of subsets, 361, 362
semigroup

Feller, 264
Feller-Dynkin, 264

shift operator, 109, 117
Skorohod space, 117, 122, 128
Skorohod-Dudley-Wichura representation

theorem, 283, 286
Souslin space, 90, 361, 365, 366
space-homogeneous process, 29
spectral radius, 303
standard Brownian motion, 70
state

non-null, 47
null, 47
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persistent, 47
positive, 47
recurrent, 47

state space, 11, 17, 79, 117, 400, 406
discrete, 25

state variable, 11, 25, 117
state variables, 125
state:transient, 47
stationary distribution, 25, 51
stationary measure, 204
stationary process, 11
step functions with unit jumps, 159
Stieltjes measure, 364
Stirling’s formula, 54
stochastic differential equation, 182
stochastic integral, 102, 253
stochastic process, 10
stochastic variable, 11, 371
stochastically continuous process, 159
stochastically equivalent processes, 374
stopped filtration, 377
stopping time, 18, 20, 44, 58, 64, 68, 112,

252, 374–377, 381, 382, 405
discrete, 19
terminal, 18, 24

strong law of large numbers, 41, 76, 155,
340, 344

strong law of large numbers (SLLN), 38
strong Markov process, 102, 119, 121, 140,

406
strong Markov property, 44, 48, 113
strong solution to SDE, 244
strong solutions to SDE
unique, 244

strong time-dependent Markov property,
113, 120

strongly continuous Feller semigroup, 113
sub-martingale, 378, 381, 384
sub-probability kernel, 406
sub-probability measure, 1
submartingale, 17, 20, 227
submartingale convergence theorem, 158
submartingale of class (DL), 421
super-martingale, 378
supermartingale, 17, 20

Tanaka’s example, 292
terminal reward, 40
terminal stopping time, 18, 24, 83
theorem
Itô representation, 274
Kolmogorov’s extension, 278
martingale representation, 275
of Arzela-Ascoli, 72, 73
of Bochner, 90, 304, 308

of Doob-Meyer, 20
of Dynkin-Hunt, 397
of Fernique, 221
of Fubini, 199, 330
of Girsanov, 277, 280
of Helly, 334
of Komlos, 409
of Lévy, 253, 270, 290
of Prohorov, 72
of Radon-Nikodym, 290
of Riemann-Lebesgue, 300
of Scheffé, 39, 278, 369
of Schoenberg, 314
of Stone-Weierstrass, 301, 305
Skorohod-Dudley-Wichura

representation, 283, 286
time, 11
time change, 19

stochastic, 19
time-dependent Markov process, 200, 203
time-homogeneous process, 11, 29
time-homogeneous transition probability,

25
time-homogenous Markov process, 407
topology of uniform convergence on

compact subsets, 310
tower property of conditional expectation,

5
transient non-symmetric random walk, 57
transient state, 47
transient symmetric random walk, 55
transition function, 119
transition matrix, 51
translation operator, 11, 25, 109, 117,

400, 406
translation variables, 125

uniformly distributed random variable,
394

uniformly integrable family, 5, 6, 20, 39,
369, 388

uniformly integrable martingale, 389
uniformly integrable sequence, 385
unique pathwise solutions to SDE, 244
uniqueness of the Doob-Meyer

decomposition, 417
unitary operator, 340, 342
upcrossing inequality, 156, 157, 383
upcrossing times, 156
upcrossings, 156

vague convergence, 371
vague topology, 310, 334
vaguely continuous convolution semigroup

of measures, 315
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vaguely continuous convolution semigroup
of probability measures, 389, 390

Vasicek model, 204, 210
volatility, 188
von Neumann’s ergodic theorem, 340

Wald’s equation, 36
weak convergence, 325
weak law of large numbers, 75, 340
weak solutions, 264
weak solutions to SDE’s, 244, 277, 280,

288
unique, 265, 292

weak solutions to stochastic differential
equations, 265

weak topology, 310
weak˚-topology, 334
weakly compact set, 338, 339
Wiener process, 98
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