
Leif	Mejlbro

The	Laplace	Transformation	I	–
General	Theory
Complex	Functions	Theory	a-4

Download	free	books	at



2 

Leif Mejlbro

The Laplace Transformation I – 
General Theory 
Complex Functions Theory a-4

Download free eBooks at bookboon.com



3 

The Laplace Transformation I – General Theory – Complex Functions Theory a-4
© 2010 Leif Mejlbro & Ventus Publishing ApS
ISBN 978-87-7681-718-3

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

4 

Contents

Contents
 Introduction  6

1  The Lebesgue Integral  7
1.1  Null sets and null functions 7
1.2  The Lebesgue integral 12

2  The Laplace transformation  15
2.1  Definition of the Laplace transformation using complex functions theory 15
2.2  Some important properties of Laplace transforms 26
2.3  The complex inversion formula I 41
2.4  Convolutions 52
2.5  Linear ordinary differential equations 60

3  Other transformations and the general inversion formula 66
3.1  The two-sided Laplace transformation 66
3.2  The Fourier transformation 69
3.3  The Fourier transformation on L1(R) 74
3.4  The Mellin transformation 89
3.5  The complex inversion formula II 93
3.6  Laplace transformation of series 97
3.7  A catalogue of methods of finding the Laplace transform and the inverse  
 Laplace transform 102

Download free eBooks at bookboon.com
Click on the ad to read more

www.sylvania.com

We do not reinvent  
the wheel we reinvent 
light.
Fascinating lighting offers an infinite spectrum of 
possibilities: Innovative technologies and new  
markets provide both opportunities and challenges. 
An environment in which your expertise is in high 
demand. Enjoy the supportive working atmosphere 
within our global group and benefit from international 
career paths. Implement sustainable ideas in close 
cooperation with other specialists and contribute to 
influencing our future. Come and join us in reinventing 
light every day.

Light is OSRAM

http://s.bookboon.com/osram


The Laplace Transformation I – General Theory

5 

Contents

3.7.1  Methods of finding Laplace transforms 102
3.7.2  Computation of inverse Laplace transforms 103

4  Tables 104

 Index 106

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


The Laplace Transformation I – General Theory

6 

Introduction

Introduction

We have in Ventus: Complex Functions Theory a-1, a-2, a-3 given the most basic of the theory of
analytic functions:

a-1 The book Elementary Analytic Functions is defining the battlefield. It introduces the analytic
functions using the Cauchy-Riemann equations. Furthermore, the powerful results of the Cauchy
Integral Theorem and the Cauchy Integral Formula are proved, and the most elementary analytic
functions are defined and discussed as our building stones. The important applications of Cauchy’s
two results mentioned above are postponed to a-2.

a-2 The book Power Series is dealing with the correspondence between an analytic function and
its complex power series. We make a digression into the theory of Harmonic Functions, before
we continue with the Laurent series and the Residue Calculus. A handful of simple rules for
computing the residues is given before we turn to the powerful applications of the residue calculus
in computing certain types of trigonometric integrals, improper integrals and the sum of some not
so simple series.

a-3 The book Stability, Riemann surfaces, and Conformal maps starts with pointing out the con-
nection between analytic functions and Geometry. We prove some classical criteria for stability in
Cybernetics. Then we discuss the inverse of an analytic function and the consequence of extending
this to the so-called multi-valued functions. Finally, we give a short review of the conformal maps
and their importance for solving a Dirichlet problem.

In the following volumes we describe some applications of this basic theory. We start in this book
with the general theory of the Laplace Transformation Operator, and continue in Ventus, Complex
Functions Theory a-5 with applications of this general theory.

The author is well aware of that the topics above only cover the most elementary parts of Complex
Functions Theory. The aim with this series has been hopefully to give the reader some knowledge of
the mathematical technique used in the most common technical applications.

Leif Mejlbro
December 5, 2010
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The Lebesgue Integral

1 The Lebesgue Integral

1.1 Null sets and null functions

The theory of the Laplace transformation presented here relies heavily on residue calculus, cf. Ventus,
Complex Functions Theory a-2 and the Lebesgue integral. For that reason we start this treatise with
a very short (perhaps too short?) introduction of the most necessary topics from Measure Theory and
the theory of the Lebesgue integral.

We start with the definition of a null set, i.e. a set with no length (1 dimension), no area (2 dimension)
or no volume (3 dimensions). Even if Definition 1.1.1 below seems to be obvious most of the problems
of understanding Measure Theory and the Lebesgue integral can be traced back to this definition.

Definition 1.1.1 Let N ⊂ R be a subset of the real numbers. We call N a null set, if one to every
ε > 0 can find a sequence of (not necessarily disjoint) intervals In, each of length � (In), such that

N ⊆
+∞⋃
n=1

In and
+∞∑
n=1

� (In) ≤ ε.

Definition 1.1.1 is easily extended to the n-dimensional space Rn by defining a closed interval by

I := [a1, b1] × · · · × [an, bn] , where aj < bj for all j = 1, . . . , n.

4
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If n = 2, then I = [a1, b1] × [a2, b2] is a rectangle, and m(I) := (b1 − a1) · (b2 − a2) is the area of this
rectangle. In case of n ≥ 3 we talk of n-dimensional volumes instead.

We first prove the following simple theorem.

Theorem 1.1.1 Every finite or countable set is a null set.

Proof. Every subset of a null set is clearly again a null set, because we can apply the same ε-coverings
of Definition 1.1.1 in both cases. It therefore suffices to prove the claim in the countable case. Assume
that N = {xn | n ∈ N}, xn ∈ R, is countable. Choose any ε > 0 and define the following sequence of
closed intervals

In :=
[
xn − ε · 2−n−1, xn + ε · 2−n−1

]
, for all n ∈ N.

Then xn ∈ In and � (In) = ε · 2−n, so

N ⊆
+∞⋃
n=1

In and
+∞∑
n=1

� (In) =
+∞∑
n=1

ε · 2−n = ε.

Since ε was chosen arbitrarily, it follows from Definition 1.1.1 that N is a null set. �

Example 1.1.1 The set of rational numbers Q are dense in R, because given any real numbers r ∈ R
and ε > 0 we can always find q ∈ Q, such that |r − q| < ε. This is of course very convenient for many
applications, because we in most cases can replace a real number r by a neighbouring rational number
q ∈ Q only making an error < ε in the following computations.

However, Q is countable, hence a null set by Theorem 1.1.1, while R clearly is not a null set, so points
from a large set in the sense of measure can be approximated by points from a small set in the sense
of measure, in the present case even of measure 0.

Figure 1: Proof of N × N being countable.

5
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That Q is countable is seen in the following way. Since countability relies on the rational numbers N,
the set N is of course countable. Then N × N := {(m,n) | m ∈ N, n ∈ N} is also countable.

The points of N×N are illustrated on Figure 1, where we have laid a broken line mostly following the
diagonals, so it goes through every point of N×N. Starting at (1, 1) ∼ 1 and (2, 1) ∼ 2 and (1, 2) ∼ 3
following this broken line we see that we at the same time have numbered all points of N×N, so this
set must be countable.

An easy modification of the proof above shows that Z × N is also countable. The reader is urged
as an exercise to describe the extension and modification of Figure 1, such that the broken line goes
through all points of Z × N.

To any given (m, n) ∈ Z × N there corresponds a unique rational number q :=
m

n
∈ Q, and to every

q =
m

n
∈ Q there corresponds infinitely many pairs (p · m, p · n) ∈ Z × N for p ∈ N. Therefore, Q

contains at most as many points as Z × N, so Q is at most countable. On the other hand, Q ⊃ N, so
Q is also at least countable. We therefore conclude that Q is countable, and Q is a null set. ♦

Example 1.1.2 Life would be easier if one could conclude that is a set is uncountable, then it is not
a null set. Unfortunately, this is not the case!!! The simplest example is probably the (classical) set
of points

N :=

{
x ∈ [0, 1]

∣∣∣∣∣ x =
+∞∑
n=1

an · 3−n, an ∈ {0, 2}
}

.

The set N is constructed by dividing the interval [0, 1] into three subintervals
[
0,

1
3

]
,

]
1
3
,
2
3

[
,

[
2
3
, 1

]
,

and then remove the middle one. Then repeat this construction on the smaller intervals, etc.. At

each step the length of the remaining set is multiplied by
2
3
, so N is at step n contained in a union of

intervals of a total length
{

2
3

}n

→ 0 for n → +∞, so N is a null set.

On the other hand, we define a bijective map ϕ : N → M by

ϕ

(
+∞∑
n=1

an · 3−n

)
:=

+∞∑
n=1

an

2
· 2−n =

+∞∑
n=1

b : n · 2n, where bn :=
an

2
∈ {0, 1}.

Clearly, every point y ∈ [0, 1] can be written in the form

y =
+∞∑
n=1

bn · 2−n, bn ∈ {0, 1},

so we conclude that M = [0, 1]. Since ϕ : N → [0, 1] is surjective, N and [0, 1] must have the same
number of elements, or more precisely, N has at least as many elements as [0, 1], but since N ⊂ [0, 1]
it also must have at most as many elements as [0, 1]. The interval [0, 1] is not a null set, because its
length is 1, so it follows from Theorem 1.1.1 that [0, 1] is not countable. Hence, N is a non-countable
null set. ♦

6
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Examples 1.1.1 and 1.1.2 above show that null sets are more difficult to understand than one would
believe from the simple Definition 1.1.1. The reason is that there is a latent aspect of Geometry in
this definition, which has never been clearly described, although some recent attempts have been done
in the Theory of Fractals. So after this warning the reader is recommended always to stick to the
previous Definition 1.1.1 and in the simple cases apply Theorem 1.1.1, and not speculate too much of
the Geometry of possible null sets.

The next definition is building on Definition 1.1.1.

Definition 1.1.2 A function f defined on R is called a null function, if the set {x ∈ R | f(x) �= 0}
is a null set, i.e. if the function is zero outside a null set.
When f is a null function, we define its integral as 0, i.e.

∫ +∞

−∞
f(x) dx = 0, if f is a null function.

That this is a fortunate definition is illustrated by the following example.

Example 1.1.3 Given a subset A ⊆ R, we define its indicator function χA : R → {0, 1} by

χA(x) =





1 for x ∈ A,

0 for x /∈ A.

The indicator function is in some textbooks also called the characteristic function of the set A, and
denoted by 1A.

It follows from the above that A is a null set, if and only if χA is a null function.

Figure 2: The indicator function of Q ∩ [0, 1] is a null function, which is not Riemann integrable.

7
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If we choose A = Q ∩ [0, 1], then A is countable, hence a null set, so by the definition above,

∫ +∞

−∞
χQ∩ [0,1](x) dx = 0.

On the other hand, χQ∩ [0,1] cannot be Riemann integrable. In fact, any approximation from below
is ≤ 0, while any approximation from above is ≥ 1. This illustrates that Definition 1.1.2 cannot be
derived from the well-known Riemann integral.

Clearly, if the integral of f exists and is finite, and g = f + h, where h is a null function, then we put
∫ +∞

−∞
g(x) dx =

∫ +∞

−∞
{f(x) + h(x)}dx =

∫ +∞

−∞
f(x) dx +

∫ +∞

−∞
h(x) dx =

∫ +∞

−∞
f(x) dx,

so we can always change a function on a null set without changing the value of its integral. This
observation will often be convenient in the following.

8
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More generally, we define the following pointwise product

0 · (+∞) = 0 · (−∞) = 0,

so a “pointwise” 0 will always dominate the values ±∞. (The reader should be aware of that these
rules cannot be applied when we are dealing with limits in general.) Then we shall also allow the
(real) functions to have infinite values ±∞. Combining the definitions above we get for a null set A
that

∫ +∞

−∞
(+∞) · χA(x) dx = (+∞) ·

∫ +∞

−∞
χA(x) dx = (+∞) · 0 = 0,

so (+∞) · χA(x) is again a null function.

Furthermore, if g is any real function, and f is a null function, then the pointwise product f(x)g(x)
is again a null function. ♦

If f is a null function, we write f = 0 a.e., where “a.e.” is an abbreviation of “almost everywhere”.
If f − g = 0 a.e., we also write f = g a.e.. If they both are integrable, their integrals are equal.

Remark 1.1.1 The rules of calculation of ±∞ defined above are not universal. There exist other
forms of infinity, which do not obey these rules. One example is given by the so-called “Dirac’s δ
function”, which is 0 at any x �= 0, and a “higher form of infinity” at 0, because one customary puts

“
∫ +∞

−∞
δ(x) dx = 1”,

which is not possible, if δ(x) was an ordinary function, because {0} is a null set. This enigma is
solved by identifying δ as a point measure at 0, and not as a function. We shall return to δ in Ventus,
Complex Functions Theory a-5. ♦

1.2 The Lebesgue integral

As mentioned earlier we shall base our theory of the Laplace transformation on the Lebesgue integral,
and not on the more familiar Riemann integral. We shall only give the most necessary definitions and
results without any proper proof, because this book is not meant to be a course in Measure Theory
and Lebesgue integral.

We shall only consider the so-called measurable functions. This is actually no problem, because every
function stemming from practical applications in Physics or Engineering Sciences are necessarily
measurable, and non-measurable functions only exist in an ideal mathematical world. They do exist,
but it is not possible to construct just one of them without using some doubtful methods. Therefore,
we shall in the following tacitly assume that every function under consideration is indeed measurable,
even if we do not make their definition precise.

Concerning the Lebesgue integral a workable definition for our purposes, though most mathematicians
would not like this version, is the following:

9
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Definition 1.2.1 Assume that f ≥ 0 is a non-negative function. If there exists a Riemann integrable
function g, such that f = g a.e., then we call f Lebesgue integrable (or just integrable), and we define

∫ +∞

−∞
f(x) dx =

∫ +∞

−∞
g(x) dx.

Let f be a real function. We define

f+(x) = max{f(x), 0} = (f ∨ 0)(x), f−(x) = min{f(x), 0} = (f ∧ 0)(x),

where ∨, resp. ∧, is a shorthand for max, resp. min.

Definition 1.2.2 A real function f is (Lebesgue) integrable, if both f+ ≥ 0 and −f− ≥ 0 are inte-
grable in the sense of Definition 1.2.1.
If this is the case, we define

(1)∫ +∞

−∞
f(x) dx :=

∫ +∞

−∞
f+(x) dx−

∫ +∞

−∞
(−f−(x)) dx =

∫ +∞

−∞
(f(x) ∨ 0) dx−

∫ +∞

−∞
{−(f(x) ∧ 0)} dx.

It follows from Definition 1.2.2 that
∫ +∞

−∞
(f ∧ 0)(x) dx =

∫ +∞

−∞
min{f(x), 0} dx = −

∫ +∞

−∞
{−(f ∧ 0)(x) }dx,

so (1) can be written in the usual way,
∫ +∞

−∞
f(x) dx :=

∫ +∞

−∞
f+(x) dx +

∫ +∞

−∞
f−(x) dx =

∫ +∞

−∞
(f ∨ 0)(x) dx +

∫ +∞

−∞
(f ∧ 0)(x) dx.

We define in a similar way the Lebesgue integral of complex functions by requiring that both � f and
� f are Lebesgue integrable.

Consider any (measurable) function f and any number p ∈ [1,+∞[. If |f |p is integrable, we define
the p-norm of f by

‖f‖p :=
{∫ +∞

−∞
|f(x)|p dx

}1/p

(< +∞).

The most important cases are p = 1 and p = 2, and p = (+)∞, the latter being defined in the following
way,

‖f‖∞ := ess.sup {|f(x)| | x ∈ R},

where “ess.sup” means the “essential supremum”. It is defined as the uniquely determined number
‖f‖∞, for which

{x ∈ R | f(x) > a}




is a null set, if a > ‖f‖∞,

is not a null set, if a < ‖f‖∞.

10
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If f(x) is continuous and bounded, then of course

‖f‖∞ = sup{|f(x)| | x ∈ R}.

The set of all functions f on R, for which ‖f‖p < +∞, is denoted by Lp(R).

Of course the above is easily generalized to Rn in the most obvious way.

Finally we mention without proofs in the present section the following main theorems from the theory
of the Lebesgue integral.

Theorem 1.2.1 Theorem of majoring convergence. Let (fn)n∈N be a sequence of functions from
L1(R), and assume that the pointwise sequence (fn(x))n∈N is convergent for almost every (fixed)
x ∈ R with the limit function f(x), defined almost everywhere.
Assume that there is a function g ∈ L1(R), such that

|fn(x)| ≤ g(x) for all n ∈ N and almost every x ∈ R.

Then the limit function f(x) = limn→+∞ fn(x), defined a.e. is Lebesgue integrable, and we have
∫ +∞

−∞
f(x) dx =

∫ +∞

−∞
lim

n→∞
fn(x) dx = lim

n→+∞

∫ +∞

−∞
fn(x) dx,

so in this case the limit process and the integration process can be interchanged.

This theorem is one of the advantages of the Lebesgue integral. It does not hold for the Riemann
integral, unless we replace the pointwise convergence is replaces by the much stronger uniform con-
vergence.

Theorem 1.2.2 Fubini’s theorem. Assume that f(x) = f (x1, x2) for x = (x1, x2) ∈ R2 is a Lebesgue
integrable function.
For almost every fixed x1 = a ∈ R the function f (a, x2) is Lebesgue integrable in x2. Its integral∫ +∞
−∞ f (x1, x2) dx2 (writing x1 again instead of a) is an (almost everywhere defined) Lebesgue inte-

grable function, and we have
∫ ∫

R2
f(x) dx =

∫ +∞

−∞

{∫ +∞

−∞
f (x1, x2) dx2

}
dx1.

Fubini’s theorem states that if f ∈ L1
(
R2

)
, then the order of integration can be interchanged,

∫ ∫

R2
f(x) dx =

∫ +∞

−∞

{∫ +∞

−∞
f (x1, x2) dx2

}
dx1 =

∫ +∞

−∞

{∫ +∞

−∞
f (x1, x2) dx1

}
dx2.

this is a very important result, because formally the three integrations
∫ ∫

R2
f(x) dx,

∫ +∞

−∞

{∫ +∞

−∞
f (x1, x2) dx2

}
dx1,

∫ +∞

−∞

{∫ +∞

−∞
f (x1, x2) dx1

}
dx2,

are constructed in three different ways, and yet they give the same result for all f ∈ L1
(
R2

)
.

11
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2 The Laplace transformation

2.1 Definition of the Laplace transformation using complex functions the-
ory

We shall in the following only consider functions defined a.e. on the nonnegative real axis [0, +∞[
and shall not always specify that f(x) = 0 for x < 0.

Most readers have first met the Laplace transformation more or less given by the following definition.

Definition 2.1.1 The class of functions E consists of all piecewise continuous functions f : [0, +∞[→
C, for which there are constants A > 0 and B ∈ R, such that

(2) |f(t)| ≤ AeBt for every t ∈ [0, +∞[.

Using the quantors ∀ (= “for all”) and ∃ (=“there exists”) we define

(3) �(f) = inf
{
B ∈ R | ∃A > 0 ∀ t ≥ 0 : |f(t)| ≤ AeBt

}
.

In many simple cases concerning the Laplace transformation it suffices just to consider functions
from E . However, we shall here introduce a larger class of functions F ⊃ E , on which the Laplace
transformation is equally well defined and with the same properties. We shall here use our knowledge
of Measure Theory from Chapter 1.

12
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Definition 2.1.2 The class of functions F consists of all (measurable) functions

f : [0,+∞[→ C� = C ∪ {∞},
for which there is a constant σ ∈ R, such that

(4)
∫ +∞

0

|f(t)| e−σt dt < +∞.

We put

(5) σ(f) = inf
{

σ ∈ R |
∫ +∞

0

|f(t)| e−σt dt < +∞
}

.

By introducing the Lebesgue integral in (4) we see that (5) is less complicated than (3). Furthermore,
if (4) holds for some σ0 ∈ R, then it clearly holds for all σ ≥ σ0, because e−σt ≤ e−σ0t. We even get
that if (4) holds for some σ ∈ R, then

∫ +∞

0

f(t) e−zt dt, for z := σ + iτ

is convergent for every τ ∈ R.

Let f ∈ E , i.e. f satisfies condition (2). For given ε > 0 we choose σ = B + ε, from which we get
∫ +∞

0

|f(t)| e−(B+ε)t dt ≤ A

∫ +∞

0

e−εt dt < +∞,

and (4) holds for every σ = B + ε, ε > 0, from which we conclude that E ⊂ F and σ(f) ≤ �(f).

Example 2.1.1 The function defined by

f(x) =





1√
x

for x > 0,

0 for x ≤ 0,

belongs to F . In fact, choose any σ > 0, then by a change of variable for ε > 0,
∫ +∞

ε

|f(t)| e−σt dt =
∫ +∞

ε

1√
t
e−σt dt = 2

∫ +∞

√
ε

e−σ u2
du → 2

∫ +∞

0

e−σ u2
du < +∞ for ε → 0+,

and (4) is proved.

On the other hand, since f(t) → +∞ for t → 0+, there is absolutely no hope for (2) to be fulfilled, so
f ∈ F \ E . ♦

Whenever f ∈ F \ E , we put �(f) = +∞.

It follows immediately from Definition 2.1.2 that αf + βg ∈ F for all f , g ∈ F and all α, β ∈ C, so F
is a vector space over C.

We notice that if f ∈ F and g ∈ E , then it follows from a trivial estimate that the pointwise product
f · g ∈ F . This result is not true in general if both f , g ∈ F .

13
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Definition 2.1.3 Let f ∈ F . We define the Laplace transform L{f} of f as the complex function
given by

(6) L{f}(z) :=
∫ +∞

0

e−zt f(t) dt,

where z belongs to the set of complex numbers, for which the integral on the right hand side of (6) is
convergent.

Remark 2.1.1 It follows from Definition 2.1.2 that the set of points z for which the right hand side
of (6) is convergent, is not the empty set. This shows that the Laplace transform L{f} exists for every
f ∈ F . ♦

Remark 2.1.2 In some very rare and simple applications of the Laplace transformation it suffices
only to consider a real variable. However, in most cases the use of a complex variable is almost
inevitable. ♦

Remark 2.1.3 It is customary in the literature to denote the variable by s, so one writes L{f}(s).
However, in order to keep in line with Complex Functions Theory we have decided in Ventus, Complex
Functions Theory a-4 and a-5 to write z instead, in order to emphasize that the Laplace transform
L{f}(z) is even an analytic function, so we can apply all the previous results from Ventus, Complex
Functions Theory a-1, a-2, a-3. More precisely, we prove in the following that L{f}(z) defined by
(6) is an analytic function in at least an half plane of the form � z > � z0. It will therefore often be
possible to extend L{f}(z) analytically to larger sets than just to this half plane. We shall call any
such analytic extension a Laplace transform L{f}(z) of f . ♦

We shall in the following examples derive the simplest Laplace transforms L{f}(z).

Example 2.1.2 The constant function f(t) = 1 for t ≥ 0 belongs to the class E ⊂ F , and we have
�(1) = σ(1) = 0, and

L{1}(z) =
∫ +∞

0

e−zt · 1 dt =
[
−1

z
e−zt

]+∞

t=0

=
1
z

� z > 0.

Obviously, L{1}(z) =
1
z

is defined in C \ {0}, so we have a unique analytic extension from the half

plane � z > 0 to the deleted plane C \ {0}, cf. Remark 2.1.3 above. ♦

Example 2.1.3 Let f(t) = tn, t ≥ 0 and n ∈ N. Since the exponential dominates the power function,
we see that even tn ∈ E with � (tn) = σ (tn) = 0. For � z > 0 we get by partial integration,

L{tn} (z) =
∫ +∞

0

tn e−zt dt =
[
−1

z
tn e−zt

]+∞

t=0

+
n

z

∫ +∞

0

tn−1 e−zt dt =
n

z
L{

tn−1
}

(z),

14
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so we get by recursion,

L{tn} (z) =
n

z
· n − 1

z
· · · 1

z
· L{1}(z) =

n!
zn

· 1
z

=
n!

zn+1
for � z > 0.

Here we have for the first time used the common convention to write L{f(t)}(z) instead of the formally
more “correct” L{f}. ♦

Example 2.1.4 Let a ∈ C be a constant, and consider the function f(t) = eat for t ≥ 0. Then
eat ∈ E and � (eat) = σ (eat) = � a.

We compute for � z > � a,
∫ +∞

0

e−zt f(t) dt =
∫ +∞

0

e−(z−a)t dt =
]
− 1

z − a
e−(z−a)t

]+∞

0

=
1

z − a
,

thus

L{
eat

}
(x) =

1
z − a

for � z > � a.

Then it follows for � z > |� a| that

L{cosh(at)}(z) =
1
2
L{

eat
}

(z) +
1
2
L{

e−at
}

(z) =
1
2

1
z − a

+
1
2

1
z + a

,(7)

(8)

=
z

z2 − a2
for � z > |� a|,(9)

and similarly,

L{sinh(at)}(z) =
1
2
L{

eat
}

(z) − 1
2
L{

e−at
}

(z) =
1
2

1
z − a

− 1
2

1
z + a

,(10)

(11)

=
a

z2 − a2
for � z > |� a|.(12)

Then put a = ib, so

� a = �(ib) = −� b,

and

cosh(at) = cosh(ibt) = cos(bt), and sinh(at) = sinh(ibt) = i sin(bt),

cf. also Ventus, Complex Functions Theory a-1, Chapter 4. Therefore, by this simple substitution it
follows from the above that

L{cos(bt)}(z) =
z

z2 + b2
for � z > |� b|,

and

L{sin(bt)}(z) =
b

z2 + b2
for � z > |� b|. ♦
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The three examples above cover most of the elementary applications of the Laplace transformation.
We shall in this first book on the Laplace transformation mainly consider examples which can be
derived from these three examples, leaving more advanced applications to Ventus, Complex Functions
Theory a-5, Laplace Transformation II. We collect these simple cases in Table 1. A larger table is
given in Section 4, page 101.vs
We shall now return to the general theory, where the next important topic is to prove that the Laplace
transform L{f}(z) is indeed an analytic function in the half plane � z > σ(f). Once we have proved
this result, we can rely on the theory of analytic functions as derived already in Ventus, Complex
Functions Theory, a-1 – a-3.

In the proof we shall need the following lemma.

Lemma 2.1.1 Assume that L{f} (z0) defined by (6) exists at the point z0. Choose any Θ ∈
[
0,

π

2

]
,

and denote by SΘ (z0) the angular sector

SΘ (z0) := {z ∈ C | Arg (z − z0) ∈ [−Θ, Θ]} .

Then the integral
∫ +∞
0

e−zt f(t) dt is uniformly convergent in z for z ∈ SΘ (z0).

Notice that the vertex z0 /∈ SΘ (z0).
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f(t) L{f}(z) σ(f)

1 1
1
z

0

2 tn
n!

zn+1
0

3 eat 1
z − a

�(a)

4 sin(at)
a

z2 + a2
|�(a)|

5 cos(at)
z

z2 + a2
|�(a)|

6 sinh(at)
a

z2 − a2
|�(a)|

7 cosh(at)
z

z2 − a2
|�(a)|

Table 1: The simplest examples of Laplace transforms.

Proof. We introduce an auxiliary function h(x) by

(13) h(x) :=
∫ x

0

e−z0t f(t) dt −
∫ +∞

0

e−z0t f(t) dt = −
∫ +∞

x

e−z0t f(t) dt,

where x only occurs in the limits of integration. Then clearly, h(x) → 0 for x → +∞.

We shall prove that for any given ε > 0 there is a t0, such that
∣∣∣∣
∫ t2

t1

e−zt f(t) dt

∣∣∣∣ < ε for every t1, t2 ≥ t0 and every z ∈ SΘ (z0) ,

because then we have proved that
∫ x

0
e−zt f(t) dt is uniformly convergent in z on SΘ (z0) for x → +∞.

Let z ∈ SΘ (z0) be fixed, and let h(x) be given by (13) above. Then by a simple rearrangement and
a partial integration,

∫ t2

t1

e−zt f(t) dt =
∫ t2

t1

e−(z−z0)t
{
e−z0t f(t)

}
dt

(14)

= e(z−z0)t2 · h (t2) − e(z−z0)t h (t1) + (z − z0)
∫ t2

t1

e−(z−z0)t h(t) dt.

When ε > 0 is given, we choose t0, such that

|h(t)| <
ε

3
· cosΘ for all t ≥ t0.

17
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Figure 3: The angular sector SΘ (z0).

Since � z > � z0 for all z ∈ SΘ (z0), it follows that
∣∣∣e−(z−z0)t2

∣∣∣ = e−{� z−� z0}t2 ≤ 1,

hence for all t2 > t0 and all z ∈ SΘ (z0),
∣∣∣e−(z−z0)t2 · h (t2)

∣∣∣ ≤ |h (t2)| <
ε

3
cosΘ ≤ ε

3
.

Analogously we get for t1 > t0 that
∣∣∣e−(z−z0)t1 · h (t1)

∣∣∣ <
ε

3
,

and we have estimated the first two terms on the right hand side of (14).

Concerning the estimate of the third term on the right hand side of (14) we put for short

x = � z and x0 = � z0,

and then get the estimate
∣∣∣∣(z − z0)

∫ t2

t1

e−(z−z0)th(t) dt

∣∣∣∣ ≤ |z − z0| · ε

3
· cosΘ ·

∣∣∣∣
∫ t2

t1

e−(x−x0)t dt

∣∣∣∣ .

Since z ∈ SΘ (z0), we have x > x0, and it follows by an elementary geometric consideration, cf.
Figure 4, that we have the estimate

|z − z0| · ε

3
· cosΘ ·

∣∣∣∣
∫ t2

t1

e−(x−x0)t dt

∣∣∣∣ =
ε

3
· cos Θ · |z − z0|

x − x0
·
∣∣∣e−(x−x0)t1 − e−(x−x0)t2

∣∣∣

≤ ε

3
· cosΘ · 1

cosΘ
· 1 =

ε

3
,

and the lemma follows by inserting these estimates into (14). �.

We shall later on need the following classical theorem from Complex Functions Theory.

18
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Figure 4: The geometry of the sector SΘ (z0) in the proof of Lemma 2.1.1.

Theorem 2.1.1 (Karl Weierstraß, appr. 1860). Assume that {fn} is a sequence of analytic functions
in an open domain Ω, where this sequence converges uniformly towards a function f in every closed
disc contained in Ω.
Then the limit function f is analytic in Ω.
Furthermore, f ′

n → f ′ pointwise in Ω, and uniformly in every closed disc contained in Ω.

We shall not prove Theorem 2.1.1, because its proof relies on Morera’s theorem, which again requires
a lot of preparations, and the aim of this book would be in danger of being lost, if we also gave a
proof of Theorem 2.1.1.

Theorem 2.1.1 is used in the proof of the following important theorem.

Theorem 2.1.2 If f ∈ F , then there is a uniquely determined number σ = σ(f) ∈ [−∞, +∞]
(including ±∞ as possibilities), such that the integral

(15)
∫ +∞

0

e−ztf(t) dt is





convergent for � z > σ,

divergent for � z < σ.

The number σ is called the abscissa of convergence of L{f}(z), which is defined by (15) for � z > σ.

The function L{f}(z) is analytic in the open half plane

(16) Ω := {z ∈ C | � z > σ},
and we have for z ∈ Ω,

(17)
d

dz
L{f}(z) = −

∫ +∞

0

t e−zt f(t) dt,

i.e. when z ∈ Ω it is legal to differentiate (15) under the integral sign.
If f ∈ E, then σ ≤ �.

19
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The set Ω given above by (16) is called the half plane of convergence of L{f}. It is clearly in the
extreme case when σ = −∞ not a half plane, though even better, namely all of C.

Usually is is not possible to decide, whether the integral (15) is convergent or divergent on the vertical
line � z = σ.

Notice that it is possible to give examples of functions f ∈ E , for which σ < �.

Proof. Define

(18) σ := inf
{

x ∈ R
∣∣∣∣

∫ +∞

0

e−xtf(t) dt is convergent
}

.

We first use Lemma 2.1.1 to conclude that if
∫ +∞
0

e−z0tf(t) dt is convergent for some z0 ∈ C, then∫ +∞
0

e−ztf(t) dt is convergent for every z, for which � z > � z0. In fact, given z0 and z, such that

� z > � z0, we can always find a Θ ∈
[
0,

π

2

[
, such that z ∈ SΘ (z0).

Let � z > σ. By the definition (18), there always exists an x0 < � z, such that
∫ +∞
0

e−x0tf(t) dt is
convergent, so it follows from Lemma 2.1.1 that

∫ +∞
0

e−ztf(t) dt is also convergent.

20

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED 
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics, 
in one of the most innovative cities in the world. The School 
is ranked by the Financial Times as the number one business 
school in the Nordic and Baltic countries. 

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years 
in a row

http://s.bookboon.com/hhs2016


The Laplace Transformation I – General Theory

24 

The Laplace transformation

Then assume that � z < σ and choose x ∈ ]� z, σ[. If the integral
∫ +∞
0

e−ztf(t) dt were convergent,
then it would follow from Lemma 2.1.1 that

∫ +∞
0

e−xtf(t) dt is convergent. Hence, σ ≤ x by the defi-
nition (18) of σ. This is contradicting the choice of x < σ. We therefore conclude that

∫ +∞
0

e−ztf(t) dt
is divergent for every z, for which � z < σ, and the first part of Theorem 2.1.2 is proved.

Clearly, σ defined by (18), is identical with σ(f) given in Definition 2.1.2.

Consider Ω given by (16). The functions

gn(z) :=
∫ n

0

e−ztf(t) dt, n ∈ N,

are analytic in Ω with the sequence of derivatives

g′n(z) = lim
ζ→z

gn(ζ) − gn(z)
ζ − z

= −
∫ n

0

t e−ztf(t) dt,

where we have used that the interval of integration is bounded for every n ∈ N. Clearly, gn(z) →
L{f}(z) pointwise in Ω for n → +∞. According to Theorem 2.1.1 we shall only prove that gn → L{f}
uniformly for n → +∞ on every closed disc contained in the open half plane Ω.

Now, every closed disc in the open set Ω must lie in some angular sector SΘ (z0) for some z0 ∈ Ω and
some Θ ∈

[
0,

π

2

[
, so Lemma 2.1.1 assures that the convergence is uniform on every closed disc. Then

by Theorem 2.1.1, L{f} is analytic in Ω, and

d

dz
L{f}(z) = −

∫ +∞

0

t e−ztf(t) dt for � z > σ.

In particular, this integral description of the derivative of L{f} is convergent for � z > σ. By iteration,
the same is true for derivatives of any order,

(19)
dn

dzn
L{f}(z) = (−1)n

∫ +∞

0

tne−ztf(t) dt, for � z > σ.

We shall still prove that if f ∈ E , then σ ≤ �(f). It suffices to prove that if |f(t)| ≤ AeBt for
all t ∈ [0,+∞[, then σ ≤ B. According to the above this must be the case, if

∫ +∞
0

e−ztf(t) dt is
convergent, when � z > B. This follows from the following simple estimates,

∣∣∣∣
∫ +∞

0

e−ztf(t) dt

∣∣∣∣ ≤
∫ +∞

0

∣∣e−ztf(t)
∣∣ dt =

∫ +∞

0

∣∣∣e−(z−B) · e−Bt f(t)
∣∣∣ dt

≤
∫ +∞

0

e−(� z−B)t · A dt =
A

� z − B
. �

We have proved that

(20) L{f}(z) =
∫ +∞

0

e−ztf(t) dt for � z > σ(f),

is an analytic function. Therefore, it is tempting to use the following procedure:

21

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

25 

The Laplace transformation

1) First use the integral on the right hand side of (20) to define the uniquely defined analytic function
L{f}(z) on the left hand side of (20) in the set Ω = {z ∈ Ω | � z > σ}.

2) Then extend the analytic function L{f}(z) to a larger set which contains the half plane of conver-
gence Ω.

It will therefore be convenient to extend the definition of the Laplace transform L{f}(z) of a function
f ∈ F .

Definition 2.1.4 Given f ∈ Ω and its half plane of convergence Ω = {z ∈ Ω | � z > σ}. Let F (z) be
an analytic function in an open set Ω̃ ⊆ Ω, such that

F (z) =
∫ +∞

0

e−ztf(t) dt for every z ∈ Ω.

Then F (z) is also called a Laplace transform of f , and we write F (z) = L{f}(z), even if z ∈ Ω̃ \ Ω.

The essence of Definition 2.1.4 is that Ω̃ contains the half plane of convergence Ω. Obviously, Ω̃ is

usually not unique. If e.g. f(t) =
1√
t

for t > 0, then

L
{

1√
t

}
(z) =

∫ +∞

0

1√
t
e−tz dt =

√
π

z
for � z > 0.

The analytic function
√

π

z
can of course be extended analytically to larger sets which also include

subsets of the left half plane, but the extension is not unique, because the branch cut of the square
root is not unique.

Theorem 2.1.3 If f ∈ F , then

L{f}(z) → 0 for � z → +∞.

Proof. When f ∈ F , there is a σ0 ∈ R, such that
∫ +∞

0

|f(t)| e−σ0t dt < +∞.

Since the integral is convergent, we can to every given ε > 0 find a constant a > 0, such that
∫ a

0

|f(t)|e−σ0t dt <
ε

2
.

Then choose σ1 > σ0, such that
∫ +∞

a

|f(t)|e−σ1t dt =
∫ +∞

a

|f(t)|e−σ0te−(σ1−σ0)t dt ≤ e−(σ1−σ0)a

∫ +∞

a

|f(t)| e−σ0t dt <
ε

2
.

It follows for � z ≥ σ1 that
∣∣∣∣
∫ +∞

0

f(t) e−zt dt

∣∣∣∣ ≤
∫ +∞

0

|f(t)| e−σ1t dt

≤
∫ a

0

|f(t)| e−σ0t dt +
∫ +∞

a

|f(t)| e−σ1t dt < ε.
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This is true for every ε > 0, and the claim follows. �

Example 2.1.5 The simplest example of an analytic function, which does not satisfy the condition
of Theorem 2.1.1, is the constant function F (z) = 1. Hence, it cannot be the Laplace transform of
any function f ∈ F . In the technical sciences one claims that the impulse “function” (or Dirac’s
“function”) δ has F (z) = 1 as its Laplace transform. This is not quite true according to the usual
Theory of Distributions, but the theory can be modified. Anyway, since F (z) = “L{δ}(z)” = 1 does
not converge towards 0 for � z → +∞, Theorem 2.1.3 shows that δ cannot be a function from F . ♦

Example 2.1.6 The proof of Theorem 2.1.3 showed that to every ε > 0 there is a σ1 ∈ R, such that

(21) |L{f}(z)| ≤
∫ +∞

0

|f(t)|e−σ1t dt < ε for � z > σ1,

i.e. the estimate (21) holds in a right half plane. As a consequence, the function exp
(−z2

)
cannot be

the Laplace transform of any function f ∈ F . The estimate (21) is of course true for real z = x ≥ σ1.
However, if we put z = λ(1 + i) for λ > 0, then z2 = 2iλ2, and we get

∣∣exp
(
z2

)∣∣ =
∣∣exp

(−2iλ2
)∣∣ = 1 for all λ > 0,

so
∣∣exp

(
z2

)∣∣ does not tend towards 0 for λ → +∞, or � z → +∞. ♦

2.2 Some important properties of Laplace transforms

We shall here list some common and important properties of Laplace transforms.

Let A denote the set of all analytic functions with their domains containing some right half planes.
Then the Laplace transformation is an operator L : F → A.

Theorem 2.2.1 . The linearity property.The operator L : F → A is linear in the following sense:
If λ, µ ∈ C are constants, and f , g ∈ F , then

L{λf + µg}(z) = λL{f}(z) + µL{g}(z) for � z > max{σ(f), σ(g)}.

Sketch of proof. Let � z > max{σ(f), σ(g)}. Prove that the integral (6) corresponding to
L{λf + µg}(z) is convergent, and then use that the integral is linear, where one uses that the two
integrals on the right hand side obviously are convergent for � z > max{σ(f), σ(g)}. The simple
missing details are left to the reader. �

Example 2.2.1 We get for � z > 0 by using the linearity property above and Table 1 that

L{
t2 − 2 cos t − 2e−t

}
(z) = L{

t2
}

(z) − 2L{cos t}(z) − 2L{
e−t

}
(z)

=
2!
z3

− 2 · z

z2 + 1
− 2 · 1

z + 1
= 2

{
1
z3

− z

z2 + 1
− 1

z + 1

}

The right hand side is clearly analytic in C \ {0,−1, i,−i}. ♦
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Theorem 2.2.2 First translation or shifting property. Let f ∈ F and a ∈ C. Then

L{
eatf(t)

}
(z) = L{f}(z − a) for � z > σ(f) + � a.

Proof. Assume that �(z − a) = � z −� a > σ(f). Then by Definition 2.1.3,

L{
eatf(t)

}
(z) =

∫ +∞

0

e−zt · eatf(t) dt =
∫ +∞

0

e−(z−a)tf(t) dt = L{f}(z − a). �

Example 2.2.2 We proved in Example 2.1.4 that

L{cos t}(z) =
z

z2 + 1
for � z > 0.

Then by Theorem 2.2.2 above,

L{
et cos t

}
(z) =

z − 1
(z − 1)2 + 1

=
z − 1

z2 − 2z + 2
for � z > 1.
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By Definition 2.1.4, the analytic function
z

z2 + 1
can be considered as the Laplace transform of cos t

in the set Ω = C \ {i,−i}, so

L{
et cos t

}
(z) =

z − 1
z2 − 2z + 2

for z ∈ C \ {1 + i, 1 − i}. ♦

Theorem 2.2.3 Second translation or shifting property. Let f ∈ F and a > 0, and define
fa : [0, +∞[→ C by

fa(t) =





f(t − a) for t ≥ a,

0 for t < a.

Then fa ∈ F , and

L{fa} (z) = e−azL{f}(z) for � z > σ(f).

Proof. This follows from the simple computation,

L{fa} (z) =
∫ +∞

a

e−ztf(t − a) dt =
∫ +∞

0

e−z(τ+a)f(τ) dτ = e−azL{f}(z),

which is valid for � z > σ(f). �

Example 2.2.3 It follows from Example 2.1.2 that L{1}(z) =
1
z

for � z > 0. Then by the second
shifting property,

L{
χ[a,+∞[

}
(z) =

e−az

z
for � z > 0,

where we define

χ[a,+∞[(t) =





1 for t ≥ a,

0 for t < a.

Obviously, L{
χ[a,+∞[

}
(z) =

e−az

z
is analytic for z ∈ C \ {0}. ♦

Theorem 2.2.4 Change of scale property. Let f ∈ F and k > 0. Then

L{f(k · t)}(z) =
1
k
L{f}

( z

k

)
for � z > k · σ(f).

Proof. This follows again from a simple computation, where it is important that k > 0,

L{f(k · t)}(z) =
∫ +∞

0

e−ztf(k · t) dt =
1
k

∫ +∞

0

exp
(
− z

k
· τ

)
f(τ) dτ =

1
k
L{f}

( z

k

)

for �
( z

k

)
=

1
k
· � z > σ(f), i.e. for �z > k ·σ(f). Here we have used the change of variables τ = k · t.

�
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Example 2.2.4 It follows from Example 2.2.4 that

L{
et cos t

}
(z) =

z − 1
z2 − 2z + 2

for � z > 1.

Choose k = 2 > 0 to get

L{
e2t cos 2t

}
(z) =

1
2
·

z

2
− 1

(z

2

)2

− 2 · z

2
+ 2

=
z − 2

z2 − 4z + 8
for � z > 2. ♦

The importance of the Laplace transformation in the technical applications lies in the fact that it
transforms problems of differential equations (actually also more general problems) into algebraic
problems, which are easier to solve. After the derived algebraic problem has been solved, we imply
the inverse Laplace transformation to obtain the solution of the original problem. We shall first extend
the concept of differentiability in order to meet our more general demands.

Assume that f is a continuous function, which is piecewise of class C1. Then the set of points, where
f is not of class C1, a null set, so it is quite natural to let f ′ denote the function, which is given by

f ′(x) :=





the usual derivative, if f is C1 at x,

any value, if f is not C1 at x.

The philosophy is of course that we can freely change the value of f ′(x) on a null set, and we use this
principle on the null set where the usual derivative does not exist.

Notice that f ′(x) then can be considered as a piecewise continuous function.

Theorem 2.2.5 Laplace transformation of derivatives. Assume that f ∈ E is continuous and piece-
wise C1. Then f ′ ∈ F , and

L{f ′}(z) = z · L{f}(z) − f(0).

Proof. The proof below requires actually that f ∈ E and that we apply �(f) as the bound of the
half plane of convergence instead of σ(f).

Let {tn} denote the null set of points, in which f is not of class C1, and put t0 = 0. We shall assume
that {tn} is infinite, because the proof is modified trivially, if {tn} is finite.

We get by partial integration,

L{f ′}(z) =
+∞∑
n=0

∫ tn+1

tn

e−ztf ′(t) dt =
+∞∑
n=0

{[
e−ztf(t)

]tn+1

tn
+

∫ tn+1

tn

z e−ztf(t) dt

}

= lim
n→+∞

[
e−ztf(t)

]tn+1

0
+ z

∫ +∞

0

e−ztf(t) dt

= lim
n→+∞

e−ztn+1 · f (tn+1) − f(0) + z L{f}(z).
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Here we can only say for sure that limn→+∞ e−ztn+1 · f (tn+1) exists, if f ∈ E and � z > �(f), so we
add these assumptions. Then it follows from the definition of �(f) that we can find real constants
A > 0 and B, where furthermore �(f) < B < � z, such that

∣∣e−Btf(t)
∣∣ ≤ A for all t > 0.

Then
∣∣e−ztf(t)

∣∣ =
∣∣∣e−(z−B)t

∣∣∣ ·
∣∣e−Btf(t)

∣∣ ≤ e−(� z−B)t A → 0 for t → +∞,

from which follows that even

lim
n→+∞

e−ztn+1 · f (tn+1) = 0.

and the theorem is proved. �

Even if the proof of Theorem 2.2.5 required that � z > �(f), it is obvious that the analytic function
L{f ′}(z) = z · L{f}(z)− f(0) may be extended analytically to a larger open set Ω. Now, the analytic
extension to a given open set Ω is always unique, if it exists. This implies that we could define a more
general form of differentiability of functions in F by its Laplace transform, i.e.

(22) L{f ′}(z) := z · L{f}(z) − f(0), for f ∈ F .

There is a lot of truth in (22), though it is not the full story. We shall here point out some pitfalls in
the adoption of (22) as a definition of a more general derivative.

1) Due to the term f(0) we must require that f ∈ F is continuous at t = 0, i.e.

lim
t→0+

f(t) = f(0).

It is of course a strange condition to require continuity at one specific point and not anywhere else.
This is, however, caused by the fact that the Laplace transformation in the Theory of Distributions
has a hidden discontinuity at t = 0, so we must compensate by requiring that f(t) is continuous
at t = 0.

2) The new function f ′ defined by the inverse Laplace transformation of (22) does not have to belong
to F . It even does not have to be an ordinary function

Example 2.2.5 To illustrate some of the problems above we notice the trivial factorization 1 = z · 1
z

for z �= 0. Now,

L{1}(z) = L{
χ[0,+∞[

}
(z) =

1
z
,

so we guess that

1 = L
{

χ′
[0,+∞[

}
(z) = L{δ}(z).

This can actually be justified, but not by using the argument above! The hidden obstacle is that
the discontinuity of the function χ[0,+∞[ at t = 0 coincides with the discontinuity of the Laplace
transformation itself. ♦
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Example 2.2.6 We found in Example 2.1.4 that

L{sin t}(z) =
1

z2 + 1
and L{cos t}(z) =

z

z2 + 1
.

These results are in agreement with Theorem 2.2.5, because

L{cos t}(z) = L
{

d

dt
sin t

}
(z) = z · L{sin t}(z) − sin 0 =

z

z2 + 1
,

and

L{sin t}(z) = L
{
− d

dt
cos t

}
(z) = −z · L{cos t}(z) + cos 0 = −z · z

z2 + 1
+ 1 =

1
z2 + 1

. ♦

Obviously, if f ∈ E is of class C1 and piecewise C2, then it follows by iteration of Theorem 2.2.5 that

(23) L{f ′′}(z) = z · L{f ′}(z) − f ′(0) = z2L{f}(z) − z · f(0) − f ′(0).

It follows by induction that if f ∈ Cn−1 is piecewise Cn, then
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Theorem 2.2.6 Laplace transformation of integrals. Assume that f ∈ F is piecewise continuous and
define

g(t) :=
∫ t

0

f(τ) dτ.

Then even g ∈ E, and

L{g}(z) = L
{∫ t

0

f(τ) dτ

}
(z) =

1
z
L{f}(z) for � z > max{0, σ(f)}.

The simple proof is left to the reader. Here we only prove that if f ∈ F , then g ∈ E . In fact, it follows
from the assumption f ∈ F that

∫ +∞

0

|f(t)|e−σt dt = C < +∞ for some σ ∈ R.

This implies that
∫ t

0
f(τ) dτ is continuous in t ∈ [0, +∞[, and that

|g(t)| =
∣∣∣∣
∫ t

0

f(τ) dτ

∣∣∣∣ ≤
∫ t

0

|f(τ)| dτ ≤
∫ t

0

|f(τ)|e−στeσt ≤ C · eσt,

and we have shown that g(t) =
∫ t

0
f(τ) dτ ∈ E .

Example 2.2.7 At this stage we only know very few Laplace transforms, so we can only apply
Theorem 2.2.6 on very simple examples, where we also have other possibilities of solution. We have
proved in Example 2.1.3 that tn ∈ E with � (tn) = σ (tn) = 0 and

L{tn} (z) =
n!

zn+1
for � z > 0.

It follows from Theorem 2.2.6 and g(t) =
∫ t

0
τn dτ =

tn+1

n + 1
that

L
{

tn+1

n + 1

}
(z) =

n!
zn+2

, for � z > 0,

so when we multiply by n + 1 we get

L{
tn+1

}
(z) =

(n + 1)!
z(n+1)+1

, for � z > 0,

proving that Example 2.1.4 is consistent. ♦

Example 2.2.8 Similarly, if we consider f(t) = sin t ∈ E , where �(f) = σ(f) = 0, and f(t) is
continuous, then

g(t) =
∫ t

0

sin τ dτ = [− cos τ ]t0 = 1 − cos t,
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so

L{1 − cos t}(z) = L
{∫ t

0

sin τ dτ

}
(z) =

1
z
· L{sin t}(z) =

1
z (z2 + 1)

.

For comparison we also have

L{1 − cos t}(z) = L{1}(z) − L{cos t}(z) =
1
z
− z

z2 + 1
=

z2 + 1 − z2

z (z2 + 1)
=

1
z (z2 + 1)

. ♦

Theorem 2.2.7 Multiplication by tn. Let f ∈ F . Then for every n ∈ N,

L{tnf} (z) = (−1)n dn

dzn
L{f}(z) for � z > σ(f).

Proof. This follows immediately from (19). �.

Example 2.2.9 It was shown in Example 2.1.2 that L{1}(z) =
1
z
, and furthermore in Example 14

that L{tn} (z) =
n!

zn+1
. This is consistent with the above, because

L{tn} (z) = L{tn · 1} (z) = (−1)n dn

dzn

{
1
z

}
=

n!
zn+1

for � z > 0. ♦

Theorem 2.2.8 Division by t. Assume that f ∈ F and that limt→0+
f(t)

t
exists and is finite. Then

also
f(t)

t
∈ F , and if x > σ(f) is real, then

L
{

f(t)
t

}
(x) =

∫ +∞

x

L{f}(ξ) dξ.

More generally, if z is complex and � z > σ(f), then

L
{

f(t)
t

}
=

∫

Γz

L{f}(ζ) dζ,

where Γz is any continuous and piecewise differential curve in the half plane � z > σ(f) from the
initial point z to the real +∞ as its end point, e.g. along the curve consisting of the line segment from
z to � z, joined with the (real) interval [� z, +∞[.

Proof. We shall first prove that
f(t)

t
∈ F . It follows from the existence and finiteness of limt→0+

f(t)
t

,

where f ∈ F that
∫ 1

0

∣∣∣∣
f(t)

t

∣∣∣∣ dt < +∞. If σ > σ(f), then

∫ +∞

0

∣∣∣∣
f(t)

t

∣∣∣∣ e−σt dt ≤
∫ 1

0

∣∣∣∣
f(t)

t

∣∣∣∣ e−σt dt +
∫ +∞

1

∣∣∣∣
f(t)

t

∣∣∣∣ e−σt dt < +∞,
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proving that
f(t)

t
∈ F .

Put g(t) =
f(t)

t
. Then f(t) = t · g(t), and it follows from Theorem 2.2.7 that

L{f}(z) = L{t · g(t)}(z) = − d

dz
L{g}(z),

thus L{f}(z) is an integral of −L{f}(z). It follows from

L{f}(z) → 0 and L{g}(z) = L
{

f(t)
t

}
(z) → 0 for � z → +∞,

that

L
{

f(t)
t

}
(z) =

∫

Γz

L{f}(z) dz. �

Example 2.2.10 We know that

L{sin t}(z) =
1

z2 + 1
and lim

t→0+

sin t

t
= 1 < +∞.

Hence, it follows for real positive x > 0 from Theorem 2.2.8 that

L
{

sin t

t

}
(x) =

∫ +∞

0

sin t

t
e−xt dt =

∫ +∞

x

dξ

1 + ξ2
= [Arctan ξ]+∞

x

=
π

2
− Arctan x = Arccot x, for x > 0.

If x = 1, then in particular,
∫ +∞

0

sin t

t
e−t dt = Arccot 1 =

π

4
,

which is a result which is not possible to derive by only using plain elementary calculus.

Notice also that we by an unjustified limit process x → 0+ under the integral sign obtain the result,
which by other methods can be proved to be correct,

(24)
∫ +∞

0

sin t

t
dt = lim

x→0+

∫ +∞

0

sin t

t
e−xt e−xt dt = lim

x→0+
Arccot x =

π

2
.

We emphasize that (24) is not a strict proof, because
sin t

t
/∈ L1, so we do not know if it is legal to

interchange the integration and the limit process to get the left hand side of (24).

Since
sin t

t
is bounded and continuous, we see that

sin t

t
∈ E . Define g(t) :=

∫ t

0

sin τ

τ
dτ . Then we

conclude for x > 0 from Theorem 2.2.6 that

L
{∫ t

0

sin τ

τ
dτ

}
(x) =

1
x
L

{
sin t

t

}
=

1
x

Arccot x.
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The function Si(t) :=
∫ t

0

sin τ

τ
dτ is a new transcendental function, not known from elementary cal-

culus. However, its Laplace transform
1
x

Arccot x is fairly simple. Its natural extension
1
z

Arccot z

has a simple pole at z = 0 and branch points at ±i. Putting the branch cuts along the imaginary

axis we see that
1
z

Arccot z is well-defined as an analytic function in the right half plane � z > 0.
This example shows that we need some other special functions which are not known from elementary
calculus. The most important of these more advanced transcendental functions will be introduced in
Ventus: Complex Functions Theory a-5, Laplace Transformation II. ♦
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Theorem 2.2.9 Periodic functions. Assume that f ∈ F is a periodic function of period T > 0 for
t ≥ 0, thus f(t + T ) = f(t) for every t ≥ 0. Then

L{f}(z) =
1

1 − e−zT

∫ T

0

e−ztf(t) dt for � z > 0.

Proof. Notice that e−znT =
(
e−zT

)n and
∣∣e−zT

∣∣ = e−� z·T < 1 for � z > 0. Then we have the
following simple computation

L{f}(z) =
∫ +∞

0

e−ztf(t) dt =
+∞∑
n=0

∫ (n+1)T

nT

e−ztf(t) dt =
+∞∑
n=0

∫ T

0

e−z(t+nT )f(t + nT ) dt

=
+∞∑
n=0

e−znT

∫ T

0

e−ztf(t) dt =
1

1 − e−zT

∫ T

0

e−ztf(t) dt for � z > 0. �

The proof of Theorem 2.2.9 relies heavily on the assumption that � z > 0. However, by the usual
analytic extension we conclude that the result of Theorem 2.2.9 holds if e−zT �= 1, thus for

z ∈ C \
{

i · 2pπ

T

∣∣∣∣ p ∈ Z
}

,

because it is almost trivial that the integral
∫ T

0
e−ztf(t) dt over the bounded interval [0, T ] is defined

for every f ∈ F and every z ∈ C.

Example 2.2.11 In this example we show that even if we obtain the structure

F (z) =
1

1 − e−zT
ϕ(z) = L{f}(z)

of the Laplace transform, this does not necessarily imply that the function f(t) is periodic.

For t ∈ R, let [t] ∈ Z denote the largest integer ≤ t,

[t] := max{p ∈ Zp ≤ t}, t ∈ R,

and put f(t) = 1 + [t], where the constant 1 has only been added in order to simplify the following
computation. Then we get

L{f}(z) =
∫ 1

0

e−zt dt + 2
∫ 2

1

e−zt dt + · · · + n

∫ n

n−1

e−zt dt + · · ·

=
+∞∑
n=1

∫ n

n−1

n e−zt dt =
+∞∑
n=1

n

[
−1

z
e−zt

]n

n−1

=
1
z

+∞∑
n=1

{
e−(n−1)z − e−nz

}

=
ez − 1

z

+∞∑
n=1

n e−nz =
ez − 1

z

+∞∑
n=1

n
(
e−z

)n
.

The series is clearly convergent for � z > 0.
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Write for short w = e−z for � z > 0. Then |w| < 1, and
1

1 − w
=

∑+∞
n=0 wn, hence by a differentiation,

1
(1 − w)2

=
+∞∑
n=1

n wn−1, thus
+∞∑
n=1

w

(1 − w)2
for |w| < 1.

Returning to w = e−z for � z > 0 we get by insertion,

L{f}(z) =
ez − 1

z
· w

(1 − w)2
=

ez − 1
z

· e−z

(1 − e−z)2
=

1
1 − e−z

· 1
z
.

Obviously, f ∈ E . The question is now:

Does there exist a periodic function g ∈ E, such that
∫ T

0
e−ztg(t) dt =

1
z
?

The answer is “no”, because if g(t) were periodic, then L{f}(z) = L{g}(z), thus L{f −g}(z) = 0. We
shall later prove the uniqueness theorem which states that 0 (almost everywhere) is the only function
which has the Laplace transform 0. Hence, f(t) = g(t) a.e. and it is obvious that the step function
f(t) is not periodic.

Another point is that even if f(t) is periodic, its Laplace transform in its simplest form does not have
the structure of Theorem 2.2.9. We showed in Example 2.1.4 that

L{sin t}(z) =
1

z2 + 1
for � z > 0.

The function sin t has the period 2π, so in order to obtain the same structure as in Theorem 2.2.9 we
should write

L{sin t}(z) =
1

1 − e−2πz
· 1 − e−2πz

z2 + 1
=

1
1 − e−2πz

∫ 2π

0

e−zt sin tdt,

which is a little farfetched, although we by identification get the unexpected result
∫ 2π

0

e−zt sin t dt =
1 − e−2πz

z2 + 1
for � z > 0. ♦

Theorem 2.2.10 Initial value theorem. Let f ∈ F , and assume that limt→0+ f(t) = f(0) exists and
is finite. Then the real limit limx→+∞ xL{f}(x} exists, and

lim
t→0+

f(t) = lim
x→+∞

xL{f}(x).

If f ∈ C1 and f , f ′ ∈ E, then even

lim
t→0+

f(t) = lim
� z→+∞

zL{f}(z).

Proof. Using that f ∈ F , choose x0 > 0, such that

M :=
∫ +∞

0

|f(t)|e−x0t dt < +∞.
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Let x ≥ x > 0 and change variable ξ = xt to get

xL{f}(x) = x

∫ +∞

0

f(t)e−xt dt =
∫ +∞

0

f

(
ξ

x

)
e−ξ dξ,

where the improper integrals clearly are convergent.

Now, f(t) → f(0) for t → 0+, so to every ε > 0 we can find a δ > 0, such that

|f(t) − f(0)| <
ε

3
for t ∈ [0, δ].

Corresponding to this δ > 0, choose an x1 ≥ x0, such that for all x ≥ x1,

x · e−δx · eδx0 · M <
ε

3
and |f(0)| · e−δz <

ε

3
.

Then we get the following estimate for all x ≥ x1,

|xL{f}(x) − f(0)| =
∣∣∣∣
∫ +∞

0

{
f

(
ξ

x

)
− f(0)

}
e−ξ dξ

∣∣∣∣

≤
∣∣∣∣∣
∫ xδ

0

{
f

(
ξ

x

)
− f(0)

}
e−ξ dξ

∣∣∣∣∣ +
∫ +∞

xδ

∣∣∣∣f
(

ξ

x

)∣∣∣∣ e−ξ dξ + |f(0)|
∫ +∞

xδ

e−ξ dξ

≤ ε

3

∫ xδ

0

e−ξ dξ + x

∫ +∞

δ

|f(t)|e−xt dt + |f(0)| · e−δx

≤ ε

3
+ x · e−δx · eδx0

∫ +∞

δ

|f(t)|e−x0t dt +
ε

3

≤ ε

3
+ x · e−δxeδx0 · M +

ε

3
=

ε

3
+

ε

3
+

ε

3
= ε.

We conclude that |x · L{f}(x) − f(0)| < ε, whenever x ≥ x1 = x1 (ε, x0), from which follows that

lim
x→+∞

x · L{f}(x) = f(0).

Then assume that f ∈ C1 and that f and f ′ ∈ E . It follows from Theorem 2.2.5 that

L{f ′}(z) = z · L{f}(z) − f(0).

Using that f ′ ∈ E it follows from Theorem 2.1.3 that L{f ′}(z) → 0 for � z → +∞, and the theorem
is proved. �

Example 2.2.12 Choose f(t) = cos t. Then f(0) = 1, and

lim
� z→+∞

zL{f}(z) = lim
� z→+∞

z · z

z2 + 1
= lim

� z→+∞

{
1 − 1

z2 + 1

}
= 1 = cos 0.

Choose f(t) = et. Then f(0) = 1 and L{et} (z) =
1

z − 1
for � z > 1, hence

lim
� z→+∞

z · 1
z − 1

= lim
� z→+∞

{
1 +

1
z − 1

}
= 1. ♦
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Theorem 2.2.11 Final value theorem. Let f ∈ F , where σ(f) ≤ 0. If limt→+∞ f(t) = c ∈ C exists,
then the real limit limx→0+ xL{f}(x) also exists, and

lim
t→+∞

f(t) = lim
x→0+

xL{f}(x).

If f ∈ E ∩ C1 and |f ′(t)| ≤ A for all t ≥ 0, then

lim
t→+∞

f(t) = lim
z→0

� z>0

zL{f}(z).

Proof. Since limt→+∞ f(t) = c ∈ C we can to every ε > 0 find a T = T (ε) > 0, such that

|f(t) − c| <
ε

3
for every t ≥ T.

The improper integral
∫ +∞
0

|f(t)|e−xt dt is convergent for every x > 0, hence

MT :=
∫ T

0

|f(t)|dt ≤ exT

∫ T

0

|f(t)|e−xtdt < +∞, where x > 0 is small.

Choose x0 > 0, such that for all x ∈ ]0, x0],

x · MT <
ε

3
and |c| · (1 − e−xT

)
<

ε

3
.
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Then we get the following estimate for 0 < x ≤ x0,

|xL{f}(x) − c| =
∣∣∣∣x

∫ +∞

0

{f(t) − c}e−xt dt

∣∣∣∣

≤ x

∫ T

0

|f(t) − c|e−xt dt + x

∫ +∞

T

|f(t) − c|e−xt dt

< x

∫ T

0

|f(t)|e−xt dt + |c| · x
∫ T

0

e−xt dt +
ε

3

∫ +∞

T

x e−xt dt

< x

∫ T

0

|f(t)|dt + |c| · (1 − e−xT
)

+
ε

3

< x · MT +
ε

3
<

ε

3
+

ε

3
+

ε

3
= ε.

This is true for every ε > 0, so we conclude that

lim
t→+∞

f(t) = c = lim
x→0+

xL{f}(x).

Then assume that also f ∈ E ∩ C1 and |f ′| ≤ A. It follows from Theorem 2.2.5 that

L{f ′}(z) = zL{f}(z) − f(0),

because the additional assumptions above imply that f(0) exists.

Finally, by interchanging limit and integration,

lim
z→0

� z>0

zL{f}(z) = f(0) + lim
z→0

� z>0

L{f ′}(z)

= f(0) + lim
z→0

� z>0

∫ +∞

0

e−ztf ′(t) dt = f(0) +
∫ +∞

0

f ′(t) dt

= f(0) + lim
T→+∞

∫ T

0

f ′(t) dt = lim
T→+∞

f(T ) = c,

and the theorem is proved. �

Example 2.2.13 In case of f(t) = e−t we get

lim
t→+∞

e−t = 0 and lim
z→0

� z>0

zL{
e−t

}
(z) = lim

z→0
� z>0

z

z + 1
= 0,

so the conclusion of Theorem 2.2.11 holds in this case.

Note, however, that e.g. cos t does not have a limit for t → ∞, while of course

lim
z→0

� z>0

zL{cos t}(z) = lim
z→0

� z>0

z · z

z2 + 1
= 0.

This shows that limx→0+ xL{f}(x) may exist, while the limit of f(t) for t → +∞ does not. ♦
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We shall later return to the Initial value theorem and the Final value theorem, when we have become
able to handle more complicated examples.

2.3 The complex inversion formula I

In practical applications one typically uses the theorems of Section 2.2 in order to compute the
Laplace transform F ∈ A of the unknown function f(t). It is therefore important also to establish
some methods by which one can reconstruct f(t), t > 0, from the analytic function F (z).

In this section we prove the simplest versions of the Laplace inversion formula. They are very easy to
apply, because they rely on the well known residuum calculus, cf. Ventus: Complex Functions Theory
a-2. Furthermore, in many technical sciences, like e.g. in Cybernetics and Elementary Circuit Theory
the functions F ∈ A will be of a type where the methods of this section suffice.

We shall later in Section 3.5 give a more general inversion formula where we only require that F ∈ A
some very reasonable growth conditions in a right half plane. We shall in this general case even allow
that F (z) is a branch of a many valued function.

We mention without proof

Theorem 2.3.1 Weierstraß’s approximation theorem. Let f : [a, b] → R be a continuous real function
on the closed and bounded (i.e. compact) interval [a, b], a < b.
There exists a sequence of polynomials (Pn) which converges uniformly towards f on [a, b].
This means that to every ε > 0 we can find n0 ∈ N, such that for every n ≥ n0 and every x ∈ [a, b]
we have the estimate

|f(x) − Pn(x)| < ε,

(
or more compactly, max

x∈[a,b]
|f(x) − Pn(x)| < ε

)
.

It is possible to give an elementary proof using only calculus in one variable, but it is very long. There
is also a much shorter proof, but it requires knowledge of Chebyshev’s inequality.

We use Theorem 2.3.1 to prove the following lemma.

Lemma 2.3.1 Assume that f : [a, b] → C is continuous.
If

∫ b

a
tnf(t) dt = 0 for every n ∈ N0, then f ≡ 0 on [a, b],

Proof. We can always consider the real and the imaginary parts separately, so it suffices to prove
the lemma for f : [a, b] → R real and continuous.

Choose by Theorem 2.3.1 a sequence (Pn) of polynomials converging uniformly towards f . Since every
Pn(t) is a polynomial, it follows from the assumption that also

∫ b

a

Pn(t)f(t) dt = 0 for every n ∈ N0,

For given ε > 0 choose n0 ∈ N, such that

max
x∈[a,b]

|f(x) − Pn(x)| ·
∫ b

a

|f(t)|dt < ε for all n ≥ n0.

38

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

42 

The Laplace transformation

Then for n ≥ n0,
∫ b

a

{f(t)}2 dt =

∣∣∣∣∣
∫ b

a

{f(t)}2 dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

Pn(t)f(t) dt +
∫ b

a

{f(t) − Pn(t)} f(t) dt

∣∣∣∣∣

≤ 0 +
∫ b

a

|f(t) − Pn(t)| · |f(t)|dt ≤ max
x∈[a,b]

|f(x) − Pn(x)| ·
∫ b

a

|f(t)|dt < ε.

This holds for every ε > 0, hence
∫ b

a
{f(t)}2 dt = 0. Since the integrand {f(t)}2 ≥ 0 is continuous,

this is only possible if f(t) = 0 for all t ∈ [a, b]. �

Theorem 2.3.2 Assume that f ∈ E is continuous. If there is a τ , such that

L{f}(z) = 0 for � z > τ,

then f(t) = 0 for every t ∈ [0,+∞[.

Proof. It follows from the assumption that

L{f}(z) =
∫ +∞

0

e−ztf(t) dt = 0 for � z > τ.

Choose a fixed x0 > τ + 1. Then x0 − 1 > τ and

L{f} (x0 − 1) =
∫ +∞

0

e−x0t+tf(t) dt = 0.

In particular, e−x0t+tf(t) → 0 for t → +∞, because f ∈ E . If we put s = e−t, s ∈ ]0, 1], and

h(s) = e−x0t+tf(t), t = ln
1
s
,

we see that h(s) can be extended continuously to [0, 1] by adding the value

h(0) = lim
t→+∞

e−x0t+tf(t) = 0.

Now x0 + n > τ for every n ∈ N0, so for every n ∈ N0 we get by the assumption,
∫ 1

0

snh(s) ds = −
∫ 0

+∞
e−nt ex0t+t f(t) dt =

∫ +∞

0

e−(x0+n)tf(t) dt = L{f} (x0 + n) = 0.

Finally, Lemma 2.3.1 implies that h(s) = e−x0t+tf(t) = 0, hence also f(t) = 0. �

Remark 2.3.1 The assumption of Theorem 2.3.2 can be relaxed to the following: There is a z0 ∈ C
and a λ > 0, such that

L{f} (z0 + λn) = 0 for every n ∈ N0.

The proof is only a modification of the proof of Theorem 2.3.2. From this follows that if F ∈ A is not
identically 0, then F (z) sin z can never be the Laplace transform of any continuous function. The proof
is very simple: By choosing zn = nπ for n ≥ n0 we trivially get F (nπ) sin nπ = 0, so the only possible
continuous function is f(t) ≡ 0. However, F (z) �= 0 by assumption, so F (z) sin z �= 0 = L{0}(z). ♦
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We shall next get rid of the assumption that f ∈ E is continuous.

Theorem 2.3.3 Let f ∈ E, and assume that there is a τ , such that L{f}(z) = 0 for � z > τ . Then
f(t) = 0 for almost every t ∈ [0, +∞[.

Proof. It follows from f ∈ E that g(t) :=
∫ t

0
f(τ) dτ ∈ E is continuous. Then we conclude from

Theorem 2.2.6 that

L{g}(z) = L
{∫ t

0

f(τ) dτ

}
(z) =

1
z
L{f}(z) = 0 for z > max{0, τ}.

Finally, by Theorem 2.3.2,

g(t) =
∫ t

0

f(τ) dτ ≡ 0,

which is only possible if f(τ) = 0 almost everywhere. �

Remark 2.3.2 If we knew more about of the Lebesgue integral than just what is given in Chapter 1,
we could prove that it suffices in Theorem 2.3.3 to assume that f ∈ F . It cannot be done in the
present book, so we just mention that such a result exists. ♦
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Corollary 2.3.1 If f and g ∈ E, and

L{f}(z) = L{g}(z) for � z > τ,

then f = g almost everywhere in [0, +∞[.

Proof. The assumption implies by linearity that L{f − g}(z) = 0 for � z > τ , where f − g ∈ E , so
the corollary follows immediately from Theorem 2.3.3. �

Remark 2.3.3 Combining Corollary 2.3.1 and Remark 2.3.2 it follows that the conclusion of Corol-
lary 2.3.1 also holds, if f , g ∈ F . As mentioned above we cannot here give the correct proof, so this
information is just for reference. ♦

We shall use Corollary 2.3.1 in the investigation of the following problem:

Given an analytic function F ∈ A defined in an open domain Ω which contains a right half
plane � z > τ . Does there exist a function f ∈ F , such that L{f}(z) = F (z)?

According to Remark 2.3.3 there is – apart from addition of a null function – at most one such function
f ∈ F .

If there exists a function f ∈ F , such that L{f}(z) = F (z), then we call f the inverse Laplace
transform of the analytic function F ∈ A, and we write

f(t) := L−1{F}(t), t ≥ 0.

In practice it will cause no problem that f(t) is “only” determined almost everywhere, because we are
always allowed to change f(t) on a null set with no consequences for the concrete physical or technical
situation we are trying to model.

Our first result of finding L−1{F}(t) is the following theorem.

Theorem 2.3.4 Residuum inversion formula. Let F (z) be analytic in C\{z1, . . . , zn}, i.e. in the whole
complex plane except for a finite number of singularities. Assume that there are positive constants M ,
R, α > 0, such that we have the estimate

|F (z)| ≤ M

|z|α for |z| ≥ R.

Then F (z) has a (uniquely determined) inverse Laplace transform. It is given by the residuum formula

(25) f(t) := L−1{F}(t) =
n∑

j=1

res
(
ezt F (z); zj

)
, for t > 0.
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Remark 2.3.4 Theorem 2.3.4 is in particular useful in Cybernetics and in Circuit Theory,, because
in these sciences one shall typically find the inverse Laplace transform of a fraction between two
polynomials, where the denominator has higher degree than the numerator. Furthermore, formula
(25) is easy to use, once one knows the simple rules of finding a residuum, cf. also Ventus: Complex
Functions Theory a-2. This is advantageous, when the use of tables becomes too complicated. On
the other hand, tables are of course useful, when the assumptions of Theorem 2.3.4 are not met, so
we cannot rely on formula (25). We mention that residuum formulæ usually give a wrong result when
not all of the assumptions are fulfilled. It is therefore of paramount importance always to check the
assumptions of a residuum formula, because otherwise the error may be very dramatic indeed, without
any element at all of an “approximation” of the right result. ♦

Proof. Fix z, such that � z = β > σ := max {� zj | j = 1, . . . , n}. Then choose γ, such that
σ < γ < β. Finally, consider any r > R and define the closed path of integration Cr,γ , which is given
on Figure 5, i.e. Cr,γ is composed of a circular arc of centre 0 and radius r, and a segment of the
vertical line � ζ = γ.

Figure 5: The closed path of integration Cr,γ , where σ ≥ 0. The case σ < 0 is similar.

Due to the estimate |F (z)| ≤ M · |z|−α < +∞ for |z| ≥ r > R, all singularities of F (z) lie inside
Cr,γ . Using (25) as a definition of f(t), it follows from the Residuum Theorem, cf. Ventus, Complex
Functions Theory a-2, that

(26)
∮

Cr,γ

eζtF (ζ) dζ = 2πi

n∑

j=1

res
(
eζtF (ζ); zj

)
= 2πi · f(t).

On the other hand, it follows for every � > 0, when � z > γ > σ that the finite integral
∫ �

0
e−ztf(t) dt
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is computed in the following way
∫ �

0

e−ztf(t) dt =
1

2πi

∫ �

0

e−zt

{∮

Cr,γ

eζtF (ζ) dζ

}
dt =

1
2πi

∮

Cr,γ

{∫ �

0

e(ζ−z)tF (ζ) dt

}
dζ

=
1

2πi

∮

Cr,γ

e(ζ−z)� − 1
ζ − z

F (ζ) dζ = − 1
2πi

∮

Cr,γ

F (ζ)
ζ − z

dz +
1

2πi

∮

Cr,γ

e(ζ−z)�

ζ − z
F (ζ) dζ,(27)

where the change of order of integration in the first line of (27) is legal because the integrand is
continuous, and the two integration paths Cr,γ and [0, �] are both closed and bounded sets (i.e.
compact).

Concerning the last line of (27) we notice that there exists a constant M1, which only depends on R,
α, β = � z and γ, such that

∣∣∣∣
F (ζ)
ζ − z

∣∣∣∣ ≤ M for ζ ∈ Cr,γ and t ∈ [0, �].

Since � ζ ≤ γ < β = � z for every ζ ∈ Cr,γ , we get the estimate
∣∣∣∣∣

1
2πi

∮

Cr,γ

e(ζ−z)� · F (ζ)
ζ − z

dζ

∣∣∣∣∣ ≤
1
2π

e−(β−γ)� · M1 · 2πi → 0 for � → +∞.

It therefore follows from (27) that
∫ +∞

0

e−ztf(t) dt = lim
�→+∞

∫ �

0

e−ztf(t) dt

= lim
�→+∞

{
− 1

2πi

∮

Cr,γ

F (ζ)
ζ − z

dζ +
1

2πi

∮

Cr,γ

e(ζ−z)� F (ζ)
ζ − z

dζ

}

= − 1
2πi

∮

Cr,γ

F (ζ)
ζ − z

dζ + 0 =
∮

−Cr,γ

F (ζ)
ζ − z

dζ

= res
(

F (ζ)
ζ − z

; z
)

+ res
(

F (ζ)
ζ − z

;∞
)

= F (z) + 0 = F (z),

where we have used, cf. Ventus, Complex Functions Theory a-2, that ζ = z (a simple pole) is the only

singularity of
F (ζ)
ζ − z

outside Cr,γ , and that

res
(

F (ζ)
ζ − z

;∞
)

= − lim
ζ→∞

ζ · F (ζ)
ζ − z

= 0,

because
∣∣∣∣ζ · F (ζ)

ζ − z

∣∣∣∣ ≤
|ζ|

|ζ| − |z| ·
M

|ζ|α → 0 for ζ → ∞.

This holds for every fixed z ∈ C, such that � z > σ, so we have proved that

L{f}(z) =
∫ +∞

0

e−ztf(t) dt = F (z) for � z > σ.
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Finally, we get L{f}(z) = F (z) for z ∈ C \ {z1, . . . , zn} by the unique analytic continuation. Then of
course the integral representation is no longer convergent, when � z < σ. �

Example 2.3.1 We shall give some warning examples of what happens if the assumptions of Theo-
rem 2.3.4 are not all fulfilled, and we in spite of this apply formula (25).

1) First consider F (z) ≡ 1, in which case we do not have an estimate of the form

|F (z)| ≤ M

|z|α for |z| > R,

so (25) is not valid. In fact, using (25) we get

f(t) =
n∑

j=1

res
(
eztF (z); zj

) ≡ 0,

because F (z) does not have any singularity at all. It is obvious that

L{f}(z) = L{0}(z) = 0 �= 1 = F (z).
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2) One may add that F (z) ≡ 1 /∈ A, because it does not satisfy the necessary condition of F (z) → 0
for � z → ∞ of being a Laplace transform of a function from F , cf. Theorem 2.1.3, so one may
believe that this is the reason why (25) does not hold. This is, however, not the case, which we
shall prove now by choosing f(t) = χ[0,1](t), where clearly f ∈ F . We get immediately by a small
computation,

L{f}(z) =
∫ 1

0

e−zt dt =
1 − e−z

z
= F (z) for z ∈ C,

because the singularity at z = 0 is removable, F (0) = 1. Hence, σ = −∞, and F (z) is analytic in
all of C, and an application of (25) gives

f1(t) = L−1{F}(t) =
n∑

j=1

res
(
eztF (z); zj

) ≡ 0 �= f(t) = χ[0,1](t).

We therefore conclude that at least one of the assumptions of Theorem 2.3.4 is not fulfilled.

In this case the villain is the exponential, because

1 − e−z

z
=

1 − e−x

x
=

e|x| − 1
|x| → +∞ for z = x → −∞,

when z = x is chosen real and negative. It is again the growth condition

|F (z)| ≤ M

|z|α for |z| > R,

which is not fulfilled. ♦

It was mentioned above that Theorem 2.3.4 is in particular useful when F (z) =
P (z)
Q(z)

is a rational

function, where P (z) and Q(z) are polynomials, and deg Q > deg P . If z0 is a zero of multiplicity
n of Q, then it follows from one of the residuum theorems in Ventus, Complex Functions Theory a-2
that

res
(

ezt · P (z)
Q(z)

; z0

)
=

1
(n − 1)!

lim
z→z0

dn−1

dzn−1

{
(z − z0)

n · P (z)
Q(z)

· etz

}
,

from which we conclude that there exist n complex constants a0, a1, . . . , an−1, such that

res
(

ezt · P (z)
Q(z)

; z0

)
=

{
a0 + a1t + · · · + an−1t

n−1
}

ez0t.

Since z0 may also be complex, we conclude that the inverse Laplace transform of a rational function
F (z), which satisfies F (z) → 0 for z → ∞, is a linear sum of terms of the form

tkeat, tkeat cos bt and tkeat sin bt,

corresponding to the complete solution of some linear homogeneous ordinary differential equation of
constant coefficients. Therefore, if the Laplace transform F (z) of some unknown function proves to
be a rational function satisfying F (z) → 0 for z → ∞, then it is theoretically possible to reformulate
the original problem to a linear ordinary differential equation of constant coefficients, where one
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already knows the complete solution from Elementary Calculus, cf. e.g. Ventus, Calculus 1. For such
problems we may therefore apply the simple old solution method known from Elementary Calculus
without involving the theory of Laplace transformation, so also excluding the residuum calculus in
the form of Theorem 2.3.4. The two methods certainly give the same result. The former is easy
to understand, while the latter requires some more advanced knowledge of mathematics. It can,
however, be proved that both methods rely on the problem of finding the roots of the same so-called
characteristic polynomial of the problem.

From the discussion above the reader should therefore conclude that in the simple case of a rational
function F (z), where F (z) → 0 for z → ∞ one might alternatively just as well solve a linear ordinary
differential equation by elementary calculus instead of using the Laplace transformation, where the
elementary calculus sometimes may even be easier to use. However, when engineers nevertheless prefer
to use the Laplace transformation instead of elementary calculus, the reason is that one intrinsically
build the given boundary conditions f(0), f ′(0), etc. into F (z) by repeating the rule

L{f ′}(z) = z · L{f}(z) − f(0).

A trivial, though important consequence of Theorem 2.3.4 is the following

Corollary 2.3.2 Heaviside’s expansion theorem. Let P (z) and Q(z) be polynomials, where
deg Q > deg P , and assume that the denominator Q(z) has only simple roots, z1, . . . , zn. Then the

inverse Laplace transform of the rational function F (z) =
P (z)
Q(z)

is given by

f(t) =
n∑

j=1

P (zj)
Q′ (zj)

· ezjt for t > 0,

and σ(f) = max {� zj | j = 1, . . . n}.

Example 2.3.2 We shall here show that Theorem 2.3.4 can be applied to other analytic functions
than just the rational functions, so Theorem 2.3.4 is therefore more general than one would expect
from the discussion above of the rational functions.

We choose

F (z) =
1
z

exp
(

1
z

)
for z ∈ C \ {0}.

It is obvious that z = 0 is the only singularity and that it is an essential singularity. Concerning the
necessary estimate we get for |z| ≥ R ≥ 1,

|F (z)| =
1
|z| ·

∣∣∣∣exp
(

1
z

)∣∣∣∣ ≤
1
R

· exp
(

1
R

)
≤ e

R
,

so the assumption of Theorem 2.3.4 is fulfilled for M = e and α = 1 and R ≥ 1.

Using (25) we get the inverse Laplace transform of F (z),

f(t) = res
(
eziF (z); 0

)
= res

(
1
z

ezt exp
(

1
z

)
; 0

)
for t > 0.
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The residuum is equal to the coefficient a−1(t) of the Laurent series in z (and fixed t) of the func-

tion
1
z

exp(zt) exp
(

1
z

)
. Using that the summations in the Cauchy multiplication below can be

interchanged, we get the Laurent series

1
z

ezt exp
1
z

=
1
z

+∞∑
n=0

1
n!

tnzn ·
+∞∑

k=0

1
k!

zk =
+∞∑
n=0

+∞∑

k=0

tn

n!k!
zn−k−1, z ∈ C \ {0},

and it follows that we get the coefficient a−1(t) by collecting all terms for which k = n, hence

f(t) = res
(

1
z

ezt exp
(

1
z

)
; 0

)
= a−1(t) =

+∞∑
nm=0

1
{n!}2

tn for t > 0.

This series can be expressed by means of the modified Bessel function of order 0 I0(t) as the function
f(t) = I0(2

√
t) for t > 0. Here I0(t) is explicitly defined by

I0(t) :=
+∞∑
n=0

1
(n!)2

{
t

2

}2n

for t ∈ R or t ∈ C.

Thus we have proved that

L
{

I0(2
√

2)
}

(z) =
1
z

exp
(

1
z

)
for z ∈ C \ {0}. ♦

Example 2.3.3 If F (z) =
1

z + a
, then it follows from Corollary 2.3.2 that σ(f) = −� a and

f(t) = res
(

ezt

z + a
;−a

)
= e−at for t > 0.

This result is in line with Example 2.1.4, because

L{
e−at

}
(z) =

1
z + a

for � z > −� a. ♦

Example 2.3.4 Let F (z) =
1

(z + a)n
. Then the growth condition at ∞ of Theorem 2.3.4 is trivially

fulfilled and σ(f) = −� a, so formula (25) can be applied,

f(t) = res
(

ezt

(z + a)n
;−a

)
=

1
(n − 1)!

lim
z→−a

dn−1

dzn−1
ezt =

tn−1

(n − 1)!
e−at for t ≥ 0.

If we put a = 0 and replace n by n + 1, we get

F (z) =
1

zn+1
and f(t) =

tn

n!
and σ(f) = 0.

This shows that

L{tn} (z) =
n!

zn+1
for n ∈ N0 and � z > 0,

which is the same result as in Example 2.1.3. ♦
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Example 2.3.5 Let F (z) =
z

z2 + a2
, a ∈ C \ {0} a constant. Then σ(f) = |�a|, and

f(t) = res
(

zezt

z2 + a2
; ia

)
+ res

(
zezt

z2 + a2
;−ia

)
=

iaeiat

2ia
+

−iae−iat

−2ia
=

1
2

{
eiat + e−iat

}
= cos at,

cf. Example 2.1.4.

If in particular a = ib is purely imaginary, i.e. F (z) =
z

z2 − b2
, b ∈ R \ {0}, then σ(f) = |b| and

f(t) = cos(ibt) = cosh(bt). ♦

Example 2.3.6 If F (z) =
a

z2 + a2
for a ∈ C \ {0} constant (cf. Example 2.1.4), then σ(f) = |� a|,

and

f(t) = res
(

aezt

z2 + z2
; ia

)
+ res

(
aezt

z2 + z2
; ia

)
=

aeiat

2ia
+

ae−iat

−2ia
=

1
2i

{
eiat − e−iat

}
= sin at. ♦
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Example 2.3.7 Let F (z) =
z

(z2 + 1)2
. Then σ(f) = 0, and

f(t) = res

(
zezt

(z2 + 1)2
; i

)
+ res

(
zezt

(z2 + 1)2
;−i

)
= lim

z→i

d

dz

{
zezt

(z + i)2

}
+ lim

z→−i

d

dz

{
zezt

(z − i)2

}

= lim
z→i

{
ezt + tzezt

(z + i)2
− 2

zezt

(z + i)3

}
+ lim

z→−i

{
ezt + tzezt

(z − i)2
− 2

zezt

(z − i)3

}

=
{

(1 + it)eit

(2i)2
− 2ieit

(2i)3

}
+

{
(1 − it)e−it

(−2i)2
− (−2i)e−it

(−2i)3

}

=
iteit

−4
− ite−it

−4
=

1
2

t

{
eit − e−it

2i

}
=

1
2

t sin t.

It is easy to check this result, because L{sin t}(z) =
1

z2 + 1
, so

L
{

1
2

t sin t

}
=

1
2
· (−1) · d

dz

{
1

z2 + 1

}
= −1

2
· (−1) · 2z

(z2 + 1)2
=

z

(z2 + 1)2
. ♦

2.4 Convolutions

Convolutions were originally introduced in Number Theory, but it was soon proved that it was also
useful in Mathematical Analysis, because the discrete and the continuous formula were of the same
structure, and the continuous formula also occurred naturally in solution formulæ. For that reason
one kept the vocabulary from Number Theory, although it is difficult to see in the continuous case
without this historical background why we call this new operation a convolution.

Definition 2.4.1 Let f and g be two functions, both 0 for t < 0 negative. The convolution f � g of
the two functions is defined by the integral

(f � g)(t) =
∫ +∞

−∞
f(t − τ)g(τ) dτ, t ∈ R,

where we also allow infinite values of the integral.

In general, the requirement that the functions are 0 for t < 0 negative, is not at all necessary. It is
only added here, because we are dealing with the Laplace transformation, so unless specified otherwise
we only consider in the following functions which are 0 on the negative half axis.

Given the assumptions of Definition 2.4.1, it follows that the integrand

f(t − τ)g(τ) = 0 for τ /∈ [0, 1] for t > 0 fixed,

and of cause for every τ ∈ R, if t ≤ 0, because then either f(t− τ) = 0 or g(τ) = 0. This implies that
Definition 2.4.1 can be reduced to

(f � g)(t) =





∫ t

0
f(t − τ)g(τ) dτ for t > 0,

0 for t ≤ 0.
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Notice in particular that if both f and g are 0 for t < 0, then the convolution f � g is also 0 for t < 0.
We have an even better result.

Theorem 2.4.1 If f , g ∈ F are both 0 for t < 0, then also f � g ∈ F , and the convolution f � g is 0
for t < 0.

Proof. From f , g ∈ F follow the existence of σ > 0 such that
∫ +∞

0

|f(t)|e−σt| dt < +∞ and
∫ +∞

0

|g(t)|e−σt| dt < +∞,

where we of course can use the same σ > 0 in both integrals.

Using this σ > 0 we shall prove that also
∫ +∞

0

|(f � g)(t)|e−σt| dt < +∞.

This is done in the following way, where we use Fubini’s theorem from Chapter 1, when we below
interchange the order of integration. Notice that 0 ≤ τ ≤ t < +∞, when this interchange takes place:

∫ +∞

0

|(f � g)(t)|e−σt| dt =
∫ +∞

0

∣∣∣∣
∫ t

0

f(t − τ)g(τ) dτ

∣∣∣∣ e−σt dt

≤
∫ +∞

0

{∫ +∞

τ

|f(t − τ)| · e−σ(t−τ) dt

}
· |g(τ)| · e−στ dτ

=
∫ +∞

0

|f(u)|e−σu du ·
∫ +∞

0

|g(τ)| e−στ dτ < +∞,

where we also have used the substitution u = t − τ . �

Remark 2.4.1 It is easy to prove (cf. e.g. Ventus, Complex Functions Theory c-11 ) that if f , g ∈ E ,
then also f � g ∈ E . Notice also that f � g ∈ F implies that (f � g)(t) is finite almost everywhere. ♦

The importance of the convolution in connection with the Laplace transformation is described by the
following theorem, which also shows that � behaves like some sort of multiplication between functions
in F .

Theorem 2.4.2 Laplace transformation of a convolution.

1) Convolution is commutative on F . Thus, if f , g ∈ F , then

(f � g)(t) = (g � f)(t) almost everywhere.

2) If f , g ∈ F , then

L{f � g}(z) = L{f}(z) · L{g}(z) for � z > max{σ(f), σ(g)}.
Thus, the Laplace transformation of a convolution of functions from F is the pointwise product
of their Laplace transforms L{f} and L{g}. An analytic extension shows that this rule holds,
whenever the product L{f}(z) · L{g}(z) is defined.
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Therefore, Theorem 2.4.2 implies that a complicated operation like convolution (which often occurs in
solution formulæ) by the Laplace transformation is transformed into a simple pointwise multiplication,
where one knows the rules of computation from elementary calculus.

Proof. It follows from the proof of Theorem 2.4.1 that it is allowed to interchange the order of
integration, provided that � z > max{σ(f), σ(g)}. Then just copy the computation of the proof of
Theorem 2.4.1 with trivial modifications to get

L{f � g}(z) =
∫ ∞

0

(f � g)(t)e−zt dt =
∫ +∞

0

{∫ t

0

f(t − τ)g(τ)
}
· e−ztdt

=
∫ +∞

0

{∫ +∞

τ

f(t − τ)e−z(t−τ)dt

}
· g(τ)e−zτ dτ

=
∫ +∞

0

f(u)e−zu du ·
∫ +∞

0

g(τ)e−zτ dτ = L{f}(z) · L{g}(z).

When f and g are interchanged in the computation above we also get

L{g � f}(z) = L{g}(z) · L{f}(z) = L{f}(z) · L{g}(z) = L{f � g}(z),

because pointwise multiplication is commutative. Using that the Laplace transformation on F is
injective (apart from values of the functions on a null set, a result still to be proved), we finally
conclude that

(g � f)(t) = (f � g)(t) almost everywhere,

so the convolution is commutative. �

Example 2.4.1 It was proved in Example 2.3.7 that the inverse Laplace transform of F (z) =
z

(z2 + 1)2
was given by

1
2

t sin t. From Example 2.3.6 follows that the inverse Laplace transform

of
1

z2 + 1
is sin t, and from Example 2.3.5 follows that the inverse Laplace transform of

z

z2 + 1
is cos t.

Hence,

L{sin � cos}(z) = L{sin}(z) · L{cos}(z) =
z

(z2 + 1)2
= L

{
1
2

t sin t

}
(z).

We therefore conclude that

(sin � cos)(t) =
1
2

t sin t for t > 0,

where we have written sin t and cos t instead of the more correct χR+(t) · sin t and χR+(t) · cos t. In
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this simple case it is not hard to prove that this result is indeed correct. In fact,

(sin � cos)(t) :=
∫ t

0

sin(t − τ) cos τ dτ =
∫ t

0

{sin t · cos τ − cos t · sin τ} cos τ dτ

= sin t ·
∫ t

0

cos2 τ dτ − cos t

∫ t

0

sin τ · cos τ dτ = sin t

∫ t

0

1 + cos 2τ

2
dτ − cos · [sin2 τ

]t

0

=
1
2

t sin t + sin t ·
[
sin 2τ

4

]t

0

− 1
2

cos t · sin2 t

=
1
2

t sin t +
1
4

sin t · sin 2t − 1
4

sin t · sin 2t =
1
2

t sin t. ♦
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Example 2.4.2 The Bessel function J0(t) of order 0 is defined by the following series which is
convergent everywhere in C,

(28) J0(t) :=
+∞∑
n=0

(−1)n t2n

22n(n!)2
=

+∞∑
n=0

(−1)n 1
n!n!

{
t

2

}2n

, t ∈ C.

It follows by termwise differentiation that

(29) J ′
0(t) =

+∞∑
n=0

(−1)n 2n
22n(n!)2

t2n−1 and J ′′
0 (t) =

+∞∑
n=0

(−1)n 2n(2n − 1)
22n(n!)2

t2n−2.

1) We shall prove that J0(t) is a power series solution of the Bessel differential equation of order 0,

(30) t · J ′′
0 (t) + J ′

0(t) + t · J0(t) = 0.

This follows from the computation

t · J ′′
0 (t) + J ′

0(t) + t · J0(t)

=
+∞∑
n=1

(−1)n 2n(2n−1)
22n(n!)2

t2n−1 +
+∞∑
n=1

(−1)n 2n

22n(n!)2
t2n−1 +

+∞∑
n=0

(−1)n 1
22n(n!)2

t2n+1

=
+∞∑
n=1

(−1)n 2n·2n

22n(n!)2
t2n−1 +

+∞∑
n=0

(−1)n 1
22n(n!)2

t2n+1

=
+∞∑
n=1

(−1)n 1
22(n−1)((n − 1)!)2

t2(n−1)+1 +
+∞∑
n=0

(−1)n 1
22n(n!)2

t2n+1

=
+∞∑
n=0

(−1)n+1 1
22n(n!)2

t2n+1 +
+∞∑
n=0

(−1)n 1
22n(n!)2

t2n+1 = 0,

and (30) is proved.

It follows from (28) and (29) that J0(0) = 1 and J ′
0(0) = 0.

2) We shall then prove that |J0(t)| ≤ 1 for every t ∈ R. This is done by proving below the integral
representation

(31) J0(t) =
1
π

∫ π

0

cos(t · sinΘ) dΘ for t ∈ R,

because (31) would imply the following trivial estimate

|J0(t)| ≤ 1
π

∫ π

0

| cos(t · sinΘ)| dΘ ≤ 1
π

∫ π

0

1 dΘ = 1 for all t ∈ R.

Define

ϕ(t) :=
1
π

∫ π

0

cos(t · sin Θ) dΘ for t ∈ R.
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We shall prove that ϕ(t) fulfils the Bessel equation (30) and the initial conditions ϕ(0) = 1 and
ϕ′(0) = 0, because then it follows from the Existence and Uniqueness Theorem of Linear Ordinary
Differential Equations of Second Order that ϕ(t) = J0(t).

First we get by differentiating under the integral sign that

ϕ′(t) = − 1
π

∫ π

0

sin(t · sinΘ) sin ΘdΘ,

ϕ′′(t) = − 1
π

∫ π

0

cos(t · sin Θ) sin2 ΘdΘ.

In particular,

ϕ(0) =
1
π

∫ π

0

cos 0 dΘ = 1 and ϕ′(0) = − 1
π

∫ π

0

sin 0 dΘ = 0,

and ϕ(t) fulfils the two boundary conditions.

Then by insertion into the Bessel equation (30),

t ϕ′′(t) + ϕ′(t) + t ϕ(t)

= − t

π

∫ π

0

cos(t · sinΘ) sin2 ΘdΘ − 1
π

∫ π

0

sin(t · sinΘ) dΘ +
t

π

∫ π

0

cos(t sinΘ) dΘ

=
t

π

∫ π

0

cos(t · Θ) cos2 Θ dΘ +
1
π

∫ π

Θ=0

sin(t · sinΘ) d cosΘ

=
1
π

∫ π

Θ=0

(cos d{sin(t · sinΘ)} + sin(t · sin Θ) d cos Θ)

=
1
π

∫ π

Θ=0

d{cosΘ · sin(t · sinΘ)} =
1
π

[cosΘ · sin(t · sin Θ)]πΘ=0 = 0.

We have proved that ϕ(t) is a solution of the Bessel equation of order 0 satisfying the same
boundary conditions as J0(t). Hence, ϕ(t) = J0(t) by the Existence and Uniqueness Theorem of
Ordinary Differential Equations, and we have proved (31), from which follows, as already shown
above, that |J0(t)| ≤ 1 for t ∈ R.

3) Finally, the Laplace transform L{J0} (z) of J0(t) is found by applying the Laplace transformation
on the Bessel equation (30) and then use the various rules of computation derived in Section 2.2,
i.e. “multiplication by t”, “differentiation”, linearity and formula (23), which we repeat here,

L{f ′′}(z) = z2L{f}(z) − z · f(0) − f ′(0).
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The computation goes as follows,

0 = L{t J ′′
0 (t) + J ′

0(t) + t J0(t)} = L{t J ′′
0 (t)} + L{J ′

0(t)} + L{J0(t)}

= − d

dz
L{J ′′

0 } + L{J ′
0} −

d

dz
L{J0}

= − d

dz

{
z2L{J0} (z) − z · J0(0) − J ′

0(0)
}

+ {z · L {J0} (z) − J0(0)} − d

dz
L{J0} (z)

= − d

dz

{
z2L{J0} (z) + L{J0} (z)

}
+ 1 + zL{J0} (z) − 1

= −2z · L {J0} (z) − (
z2 + 1

) d

dz
L{J0} (z) + z · L {J0} (z)

= − (
z2 + 1

) d

dz
L{J0} (z) − z · L {J0} (z).

Choose
√· as the branch of the square root, which has its branch cut lying along the negative real

half axis, and for which
√

1 = +1, cf. Figure 6, and Ventus, Complex Functions Theory a-3.

Figure 6: Domain of the chosen branch of the square root.

If � z > 0, then
√

z2 + 1 is uniquely determined, and
√

z2 + 1 �= 0 in this right half plane. Thus,
by dividing the equation above by −√

z2 + 1 we get for � z > 0,

0 =
√

z2 + 1dz L{J0} +
1√

z2 + 1
L{J0} =

d

dz

{√
z2 + 1 · L {J0} (z)

}
,

hence by integration,
√

z2 + 1 · L {J0} (z) = c, i.e.

L{J0} (z) =
c√

z2 + 1
, � z > 0.
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The constant c is found by an application of the initial value theorem. Choosing z = x > 0 real
and positive, we get

1 = lim
t→0+

J0(t) = lim
x→+∞

xL{J0} (x) = lim
x→+∞

cx√
x2 + 1

= c,

thus c = 1, and we conclude that

L{J0} (z) =
1√

z2 + 1
, � z > 0.

The argument above is a typical application of the initial value theorem. In general, the Laplace
transformation transforms some linear differential equation in t into another linear differential
equation in z, which hopefully is simpler, so it can easily be solved. The complete solution of
the transformed equation will of course contain arbitrary constants, which usually are determined,
either by the initial value theorem or the final value theorem, depending on the conditions on the
original function f(t).
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4) As an application of the result above we see that it then follows immediately from Theorem 2.4.2
that

L{J0 � J0} (z) =
1√

z2 + 1
· 1√

z2 + 1
=

1
z2 + 1

= L{sin}(z), � z > 0.

Then it follows from the injectivity of the Laplace transformation that

(32) (J0 � J0) (t) = sin t for almost every t ≥ 0,

and since both J0(t) and sin t are continuous, (32) must hold for every t ≥ 0. In other words,

∫ t

0

J0(t − τ)J0(τ) dτ = sin t for t ≥ 0. ♦

2.5 Linear ordinary differential equations

In many cases linear ordinary differential equations are easily solved by using the Laplace transfor-
mation. The reader should, however, be aware of that the more primitive methods from Elementary
Calculus must not be forgotten, because they sometimes give the solution in an even easier way.

We shall here describe the solution method by means of the Laplace transformation.

We shall without any justification assume that there exist solutions from F , and we shall aim at finding
a solution formula, in which the Laplace transformation enters. Once we have found a candidate of the
solution, we check it by insertion into the differential equation and the boundary conditions, because
this check will justify our computations.

From time to time we may obtain “solutions” which are not differentiable, so they do not fulfil the
differential equation in the usual sense. We shall consider these as generalized solutions. A further
investigation of these will lead to the Theory of Distributions, from which we shall only consider
Dirac’s δ “function” in a few cases.

The method is based on the result

(33) L{f ′}(z) = z L{f}(z) − f(0), for f ∈ F ,

proved in Section 2.2. We mention in this connection that if f ∈ F is only continuous for t → 0+,
then f ′(t) does not exist, but . . . The right hand side of (33) makes sense! Therefore, (33) can
in such cases be considered as the definition of L{f ′}(z), where f ′ here means differentiation in a
generalized sense, fixed by equation (33). In scientific applications this extension of the differentiability
is very convenient, as long as one does not speculate too much about the difference between the usual
differentiation and differentiation in this generalized sense.

Example 2.5.1 We shall solve the differential equation with boundary value conditions,

(34)





ϕ′′(t) + 4ϕ′(t) + 3ϕ(t) = 0 for t ≥ 0

ϕ(0) = 0 and ϕ′(0) = 1.
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1) The sophisticated method. Rewrite the equation in the following way:

ϕ′′(t) + 4ϕ′(t) + 3ϕ(t) = {ϕ′′(t) + 3ϕ′(t)} + {ϕ′(t) + 3ϕ(t)}

= e−t d

dt

{
et(ϕ′(t) + 3ϕ(t))

}
= e−t d

dt

{
e−2t d

dt

(
e3tϕ(t)

)}
,

so by reduction and two succeeding integrations,

d

dt

{
e−2t d

dt

(
e3tϕ(t)

)}
= 0,

e−2t d

dt

(
e3tϕ(t)

)
= 2C1, thus

d

dt

(
e3tϕ(t)

)
= 2C1e

2t,

e3tϕ(t) = C2 + C1e
2t, thus ϕ(t) = C1e

−t + C2e
−3t,

where C1 and C2 are arbitrary constants. Then it follows from the initial conditions that

ϕ(0) = C1 + C2 = 0 and ϕ′(t) = −C1 − 3C2 = 1,

so C2 = −1
2

and C1 =
1
2
, and the solution of (34) becomes

ϕ(t) =
1
2

{
e−t − e−3t

}
= e−2t sinh t.

2) The classical method. The differential equation of (34) is linear and homogeneous of constant coef-
ficients. It therefore has a characteristic polynomial, which is obtained by replacing the derivative
ϕ(j)(t) by λj , where λ ∈ C. We get

P (λ) = λ2 + 4λ + 3 = (λ + 1)(λ + 3).

The characteristic polynomial P (λ) has the roots λ = −1 and λ = −3, so the complete solution of
the differential equation is given by

ϕ(t) = C1e
−t + C2e

3t, C1, C2 arbitrary constants.

Then it follows from the initial conditions that

ϕ(0) = C1 + C2 = 0 and ϕ′(t) = −C1 − 3C2 = 1,

so C2 = −1
2

and C1 =
1
2
, and the solution of (34) becomes

ϕ(t) =
1
2

{
e−t − e−3t

}
= e−2t sinh t.

3) The method of Laplace transformation. Since ϕ(0) = 0 and ϕ′(0) = 1, we get

L{ϕ′}(z) = z L{ϕ}(z) − ϕ(0) = z L{ϕ}(z),

and

L{ϕ′′}(z) = z L{ϕ′}(z) − ϕ′(0) = z2L{ϕ}(z) − 1.
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Thus an application of the Laplace transformation on (34) gives
(
z2L{ϕ}(z) − 1

)
+ 4zL{ϕ}(z) + 3L{ϕ} = 0,

or, by a rearrangement of this equation,
(
z2 + 4z + 3

)L{ϕ}(z) = 1.

We notice that the factor z2 +4z +3 is precisely the characteristic polynomial found by the second
method, so the characteristic polynomial seems inevitable.

Then we get for z �= −1 and z �= −3,

L{ϕ}(z) =
1

z2 + 4z + 3
=

1
(z + 1)(z + 3)

.

The poles z = −1 and z = −3 are simple, so we get by Corollary 2.3.2 that

ϕ(t) = res
(

ezt

(z + 1)(z + 3)
;−1

)
+ res

(
ezt

(z + 1)(z + 3)
;−3

)
=

e−1

2
− e−3t

2
= e−2t sinh t.

It is up to the reader to decide which method is the easiest one to apply. ♦

Example 2.5.2 We define the Heaviside function H(t) by

H(t) =





1 for t ≥ 0,

� for t = 0,

0 for t ≤ 0,

where � can be any real number. Since {0} is a null set, the choice of the value of � will not influence
the rest of the example.

We shall solve the equation

ϕ′(t) − ϕ(t) = H(t − 1) for t ≥ 0 and ϕ(0) = 0.

Notice that H(t − 1) has a discontinuity at t = 1, so one should be careful using elementary calculus
methods, although the method as shown below is possible.

1) One solution method is to multiply by e−t > 0, because then

e−tH(t − 1) = e−tϕ′(t) − e−tϕ(t) =
d

dt

{
e−tϕ(t)

}
,

or

d

dt

{
e−tϕ(t)

}
=





e−t for t ≥ 1,

0 for t < 1.
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We get by integration,

e−tϕ(t) =





c1 − e−t for t ≥ 1,

c2 for t < 1.

It follows from ϕ(0) = 0 that c2 = 0. Then by continuity,

e−1ϕ(1) = 0 = c1 − e−1, hence c1 = e−1,

and

e−tϕ(t) =





e−1 − e−t for t ≥ 1,

0 for t < 1,

from which

ϕ(t) =





et−1 − 1 for t ≥ 1,

0 for t < 1.
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2) We shall now see what happens, if we instead apply the Laplace transformation, where we define
f ′ by the equation

L{ϕ′}(z) := zL{ϕ}(z) − ϕ(0) = zL{ϕ}(z).

We get

zL{ϕ}(z) − L{ϕ}(z) = (z − 1)L{ϕ}(z) = L{H(t − 1)ϕ(t)}(z)

=
∫ +∞

1

e−tz dz =
e−z

z
for � z > 0,

so

L{ϕ}(z) =
e−z

z(z − 1)
.

The inverse Laplace transform of
1

z(z − 1)
=

1
z − 1

− 1
z

is e−t − 1, and the factor e−z implies

according to Theorem 2.2.3, Second translation or shifting property, that the variable t is here
replaced by t − 1, so we get the solution

ϕ(t) =





et−1 − 1 for t ≥ 1,

0 for t < 1.
♦

Example 2.5.3 We shall by the Laplace transformation find a solution formula for the linear inho-
mogeneous initial value problem





ϕ′′(t) + 2ϕ′(t)0 + 2ϕ(t) = f(t),

ϕ(0) = ϕ′(0) = 0,

for general f ∈ F .

By the Laplace transformation,

z2L{ϕ}(z) + 2zL{ϕ}(z) + 2L{ϕ}(z) = L{f}(z),

so

L{ϕ}(z) =
L{f}(z)

z2 + 2z + 2
.

The inverse Laplace transform of

1
z2 + 2z + 2

=
1

(z + 1)2 + 1

is g(t) = e−t sin t, hence

L{ϕ}(z) = L{g}(z) · L{f}(z),

61

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

65 

The Laplace transformation

so we get from Theorem 2.4.2 concerning convolutions that

ϕ(t) = (g � g)(t) =
∫ t

0

g(t − τ)f(τ) dτ =
∫ t

0

e−t+τ sin(t − τ)f(τ) dτ

(35)

= e−t sin t

∫ t

0

eτ cos τ · f(τ) dτ − e−t cos t

∫ t

0

eτ sin τ · f(τ) dτ.

We see that the structure of the solution is that of a convolution. It can be proved that this is always
the case for linear ordinary inhomogeneous differential equations.

Notice that (35) is the usual solution formula in this specific example, when we use the Wroński
method. ♦

If the linear ordinary differential equation has variable constants, one can only hope for a successful
application of the Laplace transformation, when the coefficients are at most polynomials of degree at
most 2. This was actually the case in Example 2.4.2, where we found the Laplace transform L{J0} (z)
by transforming the Bessel function (30), i.e.

t J ′′
0 (t) + J ′

0(t) + t J0(t) = 0,

and then derive the differential equation

(
z2 + 1

) d

dz
L{J0} (z) + z L{J0} (z) = 0.

The order of the differential equation of L{J0} (z) is the same as the highest degree of the polynomial
coefficients of the original equation.

At the same time it becomes obvious that if the coefficients of the governing equation are not polyno-
mials or constants, then there is almost no hope of solving it by means of the Laplace transformation.
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3 Other transformations and the general inversion formula

3.1 The two-sided Laplace transformation

We proved in Chapter 2 some computational rules for the Laplace transformation. Among these the
Laplace transformation of a derivative, i.e.

(36) L{f ′}(z) = z L{f}(z) − f(0) for f ∈ E ,

where we assume that f is piecewise of class C1, and f(0) = limt→0+ f(t) exists, has a strange
mathematical structure. In particular, two facts are indeed odd.

1) If f ∈ F , then z L{f}(z) is well-defined, while the classical definition of the derivative,

(37) f ′ (t0) = lim
t→t0

f(t) − f (t0)
t − t0

is not sufficient general in all cases to specify f ′ as a well-defined element. It is, however, possible
to give a convenient definition of f ′ as a so-called generalized function such that (36) makes sense,
while (37) may not be defined. It is unfortunately not possible here to go through the necessary
arguments from Distribution Theory, so we shall only use heuristic considerations, when we are
dealing with e.g. the δ “function”, which is the simplest such element which is not an ordinary
function.

2) The second problem of (36) is of course the constant −f(0), where f is not transformed, and 0 is
a t-value. Thus, (36) contains both the function f itself and its Laplace transform L{f} as well
as the variables z and t, so in this sense formula (36) is rather messy. The reason is of course the
contribution from the lower bound t = 0, when

∫ +∞
0

e−ztf ′(t) dt is integrated partially.

The easiest way to avoid the second problem pointed out above is to extend the integration to all of
R, because then the lower bound becomes −∞. We shall in this section consider this possibility, so
we introduce

Definition 3.1.1 Let f(t), t ∈ R, be a (measurable) function. Assume that there is a non-empty
open domain Ω in CC, such that

∫ +∞

−∞
e−ztf(t) dt is convergent for all z ∈ Ω.

Then we say that f(t) has a two-sided Laplace transform L2{f}(z) in Ω, and it is defined by

L2{f}(z) :=
∫ +∞

−∞
e−ztf(t) dt for z ∈ Ω.

If f has a two-sided Laplace transform, then

(38) L2{f}(z) =
∫ +∞

−∞
e−ztf(t) dt =

∫ 0

−∞
e−ztf(t) dt +

∫ +∞

0

e−ztf(t) dt,

where the two improper integrals are both convergent. The latter integral on the right hand side of
(38) is the usual Laplace transform of f(t)H(t), where

H(t) :=





1 for t ≥ 0,

0 for t < 0,
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denotes the Heaviside function. Hence, the domain of convergence of the latter integral is the usual
half plane of convergence � z > a, possibly all of C, and the integral representation is an analytic
function for � z > a.

The former integral is treated similarly, only t is negative in the domain of integration, hence the half
plane of convergence must be given by � z < b, possibly all of C.

If z fulfils a < � z < b, then both improper integrals on the right hand side of (38) are convergent.
Hence, if a < b, then f(t) has a two-sided Laplace transform given by

(39) L2{f}(z) =
∫ +∞

−∞
e−ztf(t) dt for � z ∈ ]a, b[,

and the domain of convergence is usually a vertical parallel strip in C with a = −∞ or b = +∞ as
trivial exceptions.

When z belongs to the strip of convergence, then L2{f}(z) is an analytic function of z so we may
again have the possibility of an analytic extension of L2{f}(z) to larger subsets of C.
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Remark 3.1.1 In some sense the extension above of the laplace transformation to the two-sided
Laplace transformation resembles the extension of Taylor series to Laurent series. We know e.g. that
an analytic function have different Laurent expansions in different annuli. Concerning the two-sided
Laplace transformation, the same analytic function F (z) may be the two-sided Laplace transform
of two different functions when restricted to two different strips. Therefore, if we want an inversion
formula of the two-sided Laplace transformation, we must always specify the strip of convergence. ♦

Example 3.1.1 Let a > 0, and put f(t) = e−a|t|. We shall find the two.sided Laplace transform of
f . Assuming the convergence of the improper integrals we get

L2{f}(z) =
∫ 0

−∞
e−zteat dt +

∫ +∞

0

e−zte−at dt =
[

1
a − z

e(a−z)t

]0

−∞
+

[
− 1

a + z
e−(a+z)t

]+∞

0

.

It follows that the conditions of convergence is � (a−z) > 0 and � (−(a+z)) < 0, hence � z ∈ ]−a, a[,
and when this is fulfilled, then

L2{f}(z) =
1

a − z
+

1
a + z

=
2a

a2 − z2
for |� z| < a.

Choose instead g(t) = −2 sinh(at) · H(t). Then

L2{g}(z) = −2L{sinh(at)}(z) =
2a

a2 − z2
for � z > a,

because g(t) = 0 for t < 0, and where we have used Example 2.1.4.

Finally, if h(t) = 2 sinh(at) · H(−t), then

L2{h}(z) = 2
∫ 0

−∞
sinh(at)e−zt dt =

2a

a2 − z2
for � z < −a.

The three totally different functions f(t), g(t) and h(t) have formally the same two-sided Laplace

transform
2a

a2 − z2
, where the only difference is the specification of their disjoint strips of convergence.

The danger here is that if each of the three two-sided Laplace transforms is extended analytically to
its largest possible domain C \ {−a, a}, then they are identical. Fortunately, it can be shown that if
one is given the analytic function

F (z) =
2a

a2 − z2
for z ∈ Ω = C \ {−a, a},

and then restrict it to one of the three possible vertical strips

� z < −a, −a < � z < a, � z > a,

contained in Ω, then we get the right function

h(t), f(t), g(t) resp.

as inverse two-sided Laplace transform.

There is, however, no need here to derive a theory of the inverse two-sided Laplace transformation L−1
2 ,

because it can be derived from the general inverse Laplace transformation, presented in Section 3.5.
♦
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Figure 7: Three possible functions having formally the same two-sided Laplace transform

F (z) =
2a

a2 − z2
.

Remark 3.1.2 We computed in Example 3.1.1 directly the two-sided Laplace transform of a given
function. In general, it is more standard to use the change of variable τ = −t in one of the integrals,
because then

L2{f}(z) =
∫ 0

−∞
e−ztf(t) dt +

∫ +∞

0

e−ztf(t) dt =
∫ +∞

0

ezτf(−τ) dτ +
∫ +∞

0

e−ztf(t) dt

=
∫ +∞

0

e−ztf(t) dt +
∫ +∞

0

e−(−z)tf(−t) dt = L{f(t)}(z) + L{f(−t)}(−z),

where L{f} denotes the usual one-sided Laplace transform computed as an integral over [0,+∞[.
This formula is often used, when one explicitly computes L2{f}(z). ♦

3.2 The Fourier transformation

If a = b in (39), page 64 in Section 3.1, then the strip of convergence is obviously empty. Nevertheless,
the improper integral

∫ +∞

−∞
e−ztf(t) dt =

∫ +∞

−∞
e−ate−iξtf(t) dt =

∫ +∞

−∞
e−iξt

{
e−atf(t)

}
dt

may still be convergent for z = a+ iξ, ξ ∈ R. This integral cannot in general be extended analytically
in the variable ξ. Now, the real part a of z is fixed, so by writing f(t) instead of e−atf(t) it follows
that we may assume that a = 0. This heuristic analysis shows that it may also be of interest to
consider another transformation of the form

F{f}(ξ) :=
∫ +∞

−∞
e−iξtf(t) dt, for ξ ∈ R.
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This is the definition of the Fourier transformation, which we in general shall consider in this section.

Definition 3.2.1 Let f(x) be a (measurable) function. If the improper integral
∫ +∞
−∞ e−ixξf(x) dx is

convergent for almost every ξ ∈ R, then f has a Fourier transform, denoted by either F{f}(ξ) or by
f̂(ξ), and it is given by

(40) f̂(i) = F{f}(ξ) =
∫ +∞

−∞
e−ixξf(x) dx for almost every ξ ∈ R.

Remark 3.2.1 We have in (40) used the most common definition of the Fourier transformation. The
reader should, however, be aware of that other definitions may also be met, like e.g.

∫ +∞

−∞
eixξf(x) dx,

1√
2π

∫ +∞

−∞
e−ixξf(x) dx,

∫ +∞

−∞
e−2πtxξf(x) dx.

No matter which definitions is used, the qualitative results will always be the same, but we may have
different constants involved. In case of using another definition the reader should start with identifying
the necessary constants. ♦

Most of the rules of computations of the Laplace transformation have an analogue for the Fourier
transformation. It is, however, obvious that the Fourier transform of a periodic function is only
defined in the trivial case, when f is a null function.

Theorem 3.2.1 Linearity. Assume that f and g both have a Fourier transform. Let λ, µ ∈ C be
complex constants. Then λf + µg have a Fourier transform, which is given by

F{λf + µg}(ξ) = λF{f}(ξ) + µF{g}(ξ) for almost every ξ ∈ R.

Proof. Let F{f}(ξ) be defined for ξ ∈ R \N1, and let F{f}(ξ) be defined for ξ ∈ R \N2, where N1

and N2 are null sets. Then N1 ∪ N2 is a null set, and when ξ ∈ R \ {N1 ∪ N2}, then
∫ +∞

−∞
{λf(x) + µg(x)}e−ixξ] dx = λ

∫ +∞

−∞
e−ixξf(x) dx + µ

∫ +∞

−∞
e−ixξg(x) dx

= λF{f}(ξ) + µF{g}(ξ).
Hence, the integral on the left hand side is convergent in (at least) R \ (N1 ∪ N2), where N1 ∪ N2 is
a null set, so it is equal to F{λf + µg}(ξ), and the theorem is proved. �

Theorem 3.2.2 First Shifting property. Assume that f has a Fourier transform. Then

F {
eiaxf(x)

}
(ξ) = F{f}(ξ − a) = f̂(ξ − a) for all a ∈ R.

Proof. In order to make the proofs easier we shall no longer bother with the null sets. It follows by
computing from the right to the left that

f̂(ξ − a) :=
∫ +∞

−∞
e−i(ξ−a)xf(x) dx =

∫ +∞

.∞
e−ixξ

{
eiaxf(x)

}
dx = F {

eiaxf(x)
}

(ξ). �
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Theorem 3.2.3 Change of scale property. If k ∈ R \ {0}, then

F
{

f
(x

k

)}
(ξ) = |k| f̂(kξ).

Proof. We shall use the change of variable x = kt.

1) If k > 0, then

F
{

f
(x

k

)}
(ξ) =

∫ +∞

−∞
f

(x

k

)
e−ixξ dx = k

∫ +∞

−∞
f(t)e−it·kξ dt = k f̂(kξ) = |k| f̂(kξ).

2) If k < 0, then

F
{

f
(x

k

)}
(ξ) =

∫ +∞

−∞
f

(x

k

)
e−ixξ dx = k

∫ −∞

+∞
f(t)e−it·kξ dt = −k f̂(kξ) = |k| f̂(kξ). �
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Theorem 3.2.4 Second shifting property. For all a ∈ R,

F{f(x + a)}(ξ) = eiaξ f̂(xi).

Proof. This follows from the change of variable t = x + a and the computation

F{f(x + a)}(ξ) =
∫ +∞

−∞
e−ixξf(x + a) dx =

∫ +∞

−∞
e−i(t−a)ξf(t) dt

= eiaξ

∫ +∞

−∞
e−itξf(t) dt = eiaξ f̂(ξ). �

If both f and f ′ have a Fourier transform, then it can be proved (the proof is not given here) that
f(x) → 0 for x → +∞ as well as for x → −∞. Using this result it is easy to prove

Theorem 3.2.5 Fourier transformation of derivatives. If f ∈ C1 and f ′ ∈ C0 both have a Fourier
transform, then

F{f ′}(ξ) = iξ f̂(ξ).

Proof. since f(x) → 0 for x → ±∞, this follows by a partial integration,

F{f ′}(ξ) =
∫ +∞

−∞
f ′(x)e−ixξ dx =

[
f(x)eixξ

]+∞
x=−∞ −

∫ +∞

−∞
(−iξ)f(x)e−ixξ dx

= 0 + iξ

∫ +∞

−∞
e−ixξf(x) dx = iξ f̂(ξ). �

Theorem 3.2.6 Fourier transformation of integrals. If f ∈ C0 and
∫ x

−∞ f(t) dt both have a Fourier
transform, then

F
{∫ x

−∞
f(t) dt

}
(ξ) =

1
iξ

f̂(ξ).

Sketch of proof. Replace f(x) by
∫ x

−∞ f(t) dt, and f ′(x) by f(x) in Theorem 3.2.5. The ob-
vious exceptional point ξ = 0 is a null set. Furthermore, it is possible though hard to prove that∫ x

−∞ f(t) dt → 0 for x → +∞, while this claim is trivial for x → −∞. Then the theorem follows from
Theorem 3.2.5. �

Theorem 3.2.7 Multiplication by xn. Assume for a given n ∈ N that both f(x) and xnf(x) have a
Fourier transform. Then the n-th derivative f̂ (n)(ξ) exists and is given by

dn

dξn
f̂(ξ) =

1
in

F {xnf(x)} (ξ).
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Sketch of proof. Notice that

|x|j ≤ 1 + |x|n for all x ∈ R and all j = 0, 1, . . . , n.

Since both
∫ +∞
−∞ e−ixξf(x) dx and

∫ +∞
−∞ e−ixξxnf(x) dx are convergent (except possibly in a null set),

one can use the estimate above to prove that
∫ +∞

−∞
e−ixξxjf(x) dx is convergent for every j = 0, 1, . . . , n.

The proof is tricky, so it is not given here.

Then differentiate under the integral sign to get

d

dξ
f̂(ξ) =

d

dξ

∫ +∞

−∞
e−ixξf(x) dx =

1
i

∫ +∞

−∞
xe−ixξf(x) dx =

1
i
F{xf(x)}(ξ),

from which the claim follows by induction. �

Remark 3.2.2 We emphasize once more that the proof above is not strictly correct, though the main
ingredients are mentioned. Also, when j = n is considered, the derivative f̂ (n)(ξ) may only exist in a
generalized sense, because the ordinary derivative of f̂ (n−1)(ξ) probably does not exist. ♦

Theorem 3.2.8 Division by x. Assume that f̂(ξ) → 0 for ξ → −∞ and that limx→0
f(x)

x
exists and

is finite. Then

F
{

f(x)
x

}
(ξ) =

1
i

∫ ξ

−∞
f̂(τ) dτ.

Sketch of proof. Using multiplication by x we get

d

dξ
F

{
f(x)

x

}
(ξ) =

1
i
F{f(x)}(ξ) =

1
i

f̂(ξ),

and the result follows by an integration. �

Remark 3.2.3 The proof above relies on Theorem 3.2.7. Since the proof of Theorem 3.2.7 was not
correct, so is the proof above of Theorem 3.2.8 not correct.

On the other hand, the assumption that limx→0
f(x)

x
exists and is finite, can be relaxed to the

assumption that
f(x)

x
is bounded in a deleted neighbourhood of 0. ♦

In case of the Fourier transform, the convolution is defined by integrating over all of R, thus

(f � g)(x) :=
∫ +∞

−∞
f(x − t)g(t) dt,

whenever the right hand side is defined almost everywhere. Then
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Theorem 3.2.9 Fourier transformation of a convolution. Assume that f � g exists and that f , g and
f � g all have a Fourier transform. Then

F{f � g}(ξ) = F{f}(ξ) · F{g}(ξ).

The proof of Theorem 3.2.9 is far more difficult than any other of the proofs above, so we shall not
produce it here.

We give some Fourier transforms in Table 4 in Section 4, page 102. Although we have not defined
Dirac’s δ “function”, we shall include some of the results concerning this element, because it is so
frequently used in the technical sciences. Concerning the notation, δ(n) means the n-th derivative of δ,
and δ(h) means δ translated to x = h, i.e. in the usual (incorrect, though understandable) engineering
notation, “δ(h)(x) = δ(x − h)”.

3.3 The Fourier transformation on L1(R).

We start by proving a simple lemma.

Lemma 3.3.1
∫ +∞

−∞
exp

(
−1

2
x2

)
dx =

√
2π.

Proof. Consider the improper plane integral

∫ ∫

R2
exp

(
−1

2
(
x2 + y2

))
dxdy =

∫ ∫

R2
exp

(
−1

2
x2

)
exp

(
−1

2
y2

)
dxdy =

{∫

R
exp

(
−1

2
t2

)
dt

}2

,

which clearly is convergent. Using instead polar coordinates, we also get
∫ ∫

R2
exp

(
−1

2
(
x2 + y2

))
dxdy =

∫ 2π

0

{∫ +∞

0

exp
(
−1

2
r2

)
· r dr

}
dΘ = 2π,

thus
{∫ +∞

−∞
exp

(
−1

2
t2

)
dt

}2

= 2π,

and the lemma follows. �

Let f(x), x ∈ R, be any (measurable) function of real or complex values. We say that f belongs to
the class of functions L1 = L1(R), if

(41)
∫ +∞

−∞
|f(x)|dx < +∞.

If (41) holds, then we define a norm ‖ · ‖1 on L1(R) by

(42) ‖f‖1 :=
∫ +∞

−∞
|f(x)|dx for f ∈ L1(R).

71

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

75 

Other transformations and the general inversion formula

All the rules of computation given in Section 3.2 assumed vaguely that the functions involved all
allowed Fourier transforms. We shall in the following show that every f ∈ L1(= L1(R)) indeed has a
Fourier transform F{f}(ξ). In fact, whenever ξ ∈ R, then

(43)
∣∣∣f̂(ξ)

∣∣∣ =
∣∣∣∣
∫ +∞

−∞
e−ixξf(x) dx

∣∣∣∣ ≤
∫ +∞

−∞
|f(x)|dx = ‖f‖1,

hence the improper integral (40) is convergent for every ξ ∈ R, and f̂(ξ) is bounded.

We shall prove that f̂(ξ) is also continuous. In fact, for every ε > 0 we can find A > 0, such that

∫ −A

−∞
|f(x)|dx +

∫ +∞

A

|f(x)|dx <
ε

3
,

and δ > 0, such that for all |x| < A and |ξ − η| < δ,

∣∣e−ixξ − e−ixη
∣∣ =

∣∣∣eixη
{

e−i(ξ−η) − 1
}∣∣∣ =

∣∣∣e−ix(ξ−η) − 1
∣∣∣ <

ε

3
· 1
‖f‖1
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for ‖f‖1 > 0. Notice that if ‖f‖1 = 0, then f̂(ξ) ≡ 0, and there is nothing to prove, so we assume
that ‖f‖1 > 0 in the following. Then for |ξ − η| < δ,

∣∣∣f̂(ξ) − f̂(η)
∣∣∣ =

∣∣∣∣
∫ +∞

−∞
e−ixξf(x) dx −

∫ +∞

−∞
e−ixηf(x) dx

∣∣∣∣

≤ 2
∫ −A

−∞
|f(x)|dx + 2

∫ +∞

A

|f(x)|dx +
∫ A

−A

∣∣eixξ − e−ixξ
∣∣ · |f(x)|dx

≤ 2
3

ε +
ε

3
· 1
‖f‖1

∫ A

−A

|f(x)|dx ≤ 2
3

ε +
1
3

ε = ε,

and it follows that f̂(ξ) is continuous. Hence we have proved above,

Lemma 3.3.2 If f ∈ L1, then f̂(ξ) is a bounded and continuous function in ξ ∈ R.

We shall now prove that if f ∈ L1, then we also have f̂(ξ) → 0 for ξ → ±∞. We start by proving the
following simple lemma.

Lemma 3.3.3 Assume that f(x) is piecewise constant in the interval [−a, a] with a finite number of
discontinuities. The

lim
ξ→±∞

∫ a

−a

f(x)e−ixξ dξ = 0.

Proof. First assume that f(x) ≡ 1 on [−a, a]. Then we get for ξ �= 0,
∫ a

−a

f(x)e−ixξ dx =
∫ a

−a

e−ixξ dx =
[
− 1

iξ
e−ixξ

]a

−a

=
2 sin(aξ)

ξ
,

and since |2 sin(aξ)| ≤ 2 for all ξ ∈ R, the claim follows.

Then consider the function

f(x) =





α for x ∈ [−a, b[,

β for x ∈ ]b, a].

We notice that since {b} is a null set, there is no need to specify f(b).

In the same way as above we get
∫ a

−a

f(x)e−ixξ dx =
[
− α

iξ
e−ixξ

]b

−a

+
[
− β

iξ
e−ixξ

]a

b

=
1
ξ
· Ca,b,α,β ,

where we have the estimate |Ca,b,α,β | ≤ 4 max{|α|, |β|}.
It now follows by induction that if the piecewise constant function f(x) has n different values, then

∣∣∣∣
∫ a

−a

f(x)e−ixξ dx

∣∣∣∣ ≤
2n

|ξ| max
x∈[−a,a]

|f(x)|,
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and the lemma is proved. ♦

We mention without proof the following simple approximation theorem.

Theorem 3.3.1 Given f ∈ L1([−a, a]). To every ε > 0 there exists a piecewise constant function g
with only finite many different values, such that

‖f − g‖1 =
∫ a

−a

|f(t) − g(t)| dt < ε.

This approximation theorem is used in the proof of the following

Theorem 3.3.2 If f ∈ L1(R), then its Fourier transform f̂(ξ) is continuous and bounded,
∣∣∣f̂(ξ)

∣∣∣ ≤ ‖f‖1 for all ξ ∈ R,

and

lim
ξ→−∞

f̂(ξ) = 0, lim
ξ→+∞

f̂(ξ) = 0.

Proof. The first two claims were proved in Lemma 3.3.2, so we shall only prove that

f̂(ξ) → 0 for ξ → −∞ or ξ → +∞.

From f ∈ L1(R) follows that to every given ε > 0 we can find a > 0, such that
∫ −a

−∞
|f(x)|dx +

∫ +∞

a

|f(x)|dx <
ε

3
.

Then apply Theorem 3.3.1 using the truncated function

f(x) · χ[−a,a](x) ∈ L1([−a, a]),

from which follows that there exists a piecewise constant function g(x) of finitely many values on
[−a, a], such that

∫ a

−a

|f(x) − g(x)| dx <
ε

3
.

Finally, apply Lemma 3.3.3 on g(x). Thus, there exists a Ξ > 0, such that
∣∣∣∣
∫ a

−a

g(x)e−ixξ dx

∣∣∣∣ <
ε

3
for ξ ∈ R and |ξ| > Ξ.

Then for ξ real and |ξ| > Ξ,
∣∣∣f̂(ξ)

∣∣∣ =
∣∣∣∣
∫ +∞

−∞
e−ixξf(x) dx

∣∣∣∣

≤
∣∣∣∣
∫ −a

−∞
e−ixξf(x) dx

∣∣∣∣ +
∣∣∣∣
∫ +∞

a

e−ixξf(x) dx

∣∣∣∣ +
∣∣∣∣
∫ a

−a

e−ixξf(x) dx

∣∣∣∣

≤
∫ −a

−∞
|f(x)|dx +

∫ +∞

a

|f(x)|dx +
∣∣∣∣
∫ a

−a

e−ixξ{f(x) − g(x)}dx

∣∣∣∣ +
∣∣∣∣
∫ a

−a

e−ixξg(x) dx

∣∣∣∣

<
ε

3
+

∫ a

−a

|f(x) − g(x)|dx +
ε

3
<

ε

3
+

ε

3
+

ε

3
= ε,
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and since ε > 0 was arbitrary, the claim is proved. �

Lemma 3.3.4 Assume that f , g ∈ L1. Then f̂(ξ) · g(ξ) ∈ L1, and

F
{

f̂ · g
}

(−x) :=
∫ +∞

−∞
f̂(ξ)g(ξ) eixξ dξ =

∫ +∞

−∞
ĝ(t)f(x + t) dt.

Proof. From f ∈ L1 follows that
∣∣∣f̂(ξ)

∣∣∣ ≤ ‖f‖1 for every ξ ∈ R, so we get the estimate

∫ +∞

−∞

∣∣∣f̂(ξ)g(ξ)
∣∣∣ dξ ≤ ‖f‖1 ·

∫ +∞

−∞
|g(ξ)| dξ = ‖f‖1 · ‖g‖1 < +∞,
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and we have proved that f̂ · g ∈ L1, so it has also a Fourier transform. In the computation of this we
use Fubini’s theorem from Chapter 1 to interchange the order of integration,

∫ +∞

−∞
f̂(ξ)g(ξ)eixξ dξ =

∫ +∞

−∞

{∫ +∞

−∞
f(t)e−itξ dt

}
g(ξ)eixξ dξ

=
∫ +∞

−∞
f(t)

{∫ +∞

−∞
g(ξ)e−i(t−x)ξ dξ

}
dt

=
∫ +∞

−∞
f(t) ĝ(t − x) dt =

∫ +∞

−∞
ĝ(t)f(x + t) dt,

and the lemma is proved. �

Lemma 3.3.5 If g(x) = exp
(
−1

2
x2

)
, then ĝ(ξ) =

√
2π · g(ξ), thus

∫ +∞

−∞
exp

(
−1

2
x2 − ixξ

)
dx =

√
2π · exp

(
−1

2
ξ2

)
.

Proof. Obviously, g ∈ L1, so ĝ exists and is bounded. Then by a direct computation,

ĝ(ξ) =
∫ +∞

−∞
exp

(
−1

2
x2 − ixξ

)
dx =

∫ +∞

−∞
exp

(
−1

2
(x + iξ)2

)
· exp

(
−1

2
ξ2

)
dx

= exp
(
−1

2
ξ2

) ∫ +∞

−∞
exp

(
−1

2
(x + iξ)2

)
dx,

so the lemma follows if we can prove that

(44)
∫ +∞

−∞
exp

(
−1

2
(x + iξ)2

)
dx =

√
2π for every ξ ∈ R.

We proved in Lemma 3.3.1 that (44) holds for ξ = 0. When ξ �= 0, we choose the path of integration
CR in the complex plane as shown in Figure 8, where we assume that ξ > 0. The proof for ξ < 0 is
similar, and it alternatively also follows from the change og variable t = −x in the integral.

Using Cauchy’s integral theorem, cf. Ventus, Complex Functions Theory a-1, that
∮

CR

exp
(
−1

2
z2

)
dz = 0,

or, written in all details,

(45)
∫ R

−R

exp
(
−1

2
x2

)
dx−

∫ R

−R

exp
(
−1

2
(x + iξ)2

)
dx+

∫

Γ1

exp
(
−1

2
z2

)
dz+

∫

Γ2

exp
(
−1

2
z2

)
dz = 0.

In order to prove that
∫ +∞

−∞
exp

(
−1

2
(x + iξ)2

)
dx =

∫ +∞

−∞
exp

(
−1

2
x2

)
dx =

√
2π,
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Figure 8: Path of integration CR in the proof of Lemma 3.3.5.

we shall only prove that the latter two integrals of (45) tend to 0 for R → +∞. It suffices to estimate
the integral along Γ1, given by its parametric description z = R + it, t ∈ [0, ξ], because the estimate
of the integral along Γ2 is similar. Using the parametric description above we get

∣∣∣∣
∫

Γ1

exp
(
−1

2
z2

)
dz

∣∣∣∣ =

∣∣∣∣∣
∫ ξ

0

exp
(
−1

2
(R + it)2

)
i dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ ξ

0

exp
(
−1

2
{
R2 − t2 + 2iRt

})
i dt

∣∣∣∣∣

≤
∫ ξ

0

exp
(
−1

2
{
R2 − t2

})
dt.

Here ξ > 0 is fixed, so when R ≥ 2ξ, i.e. t ≤ ξ ≤ 1
2

R, we get the trivial estimate

∣∣∣∣
∫

Γ1

exp
(
−1

2
z2

)
dz

∣∣∣∣ ≤
∫ ξ

0

exp
(
−1

2
R2 +

1
2

t2
)

dt ≤
∫ ξ

0

exp
(
−1

2
R2 +

1
8

R2

)
dt

= ξ · exp
(
−3

8
R2

)
→ 0 for R → +∞,

and the claim is proved.

Notice in particular that

(46)
∫ +∞

−∞
ĝ(ξ) dξ =

√
2π

∫ +∞

−∞
exp

(
−1

2
ξ2

)
dξ = 2π. �

After the preparations above we are finally able to prove the main result of this section.

Theorem 3.3.3 Fourier’s inversion formula. If f ∈ L1, then

f(x) =
1
2π

∫ +∞

−∞
eixξ f̂(ξ) dξ for almost every x ∈ R.
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Remark 3.3.1 The inversion formula is also written

f(x) = F−1
{

f̂
}

(x) =
1
2π

F{F{f}}(−x).

The inversion formula implies that if f and g have the same Fourier transform, then they are equal
almost everywhere. ♦

Proof. Since we have not developed the full Lebesgue Theory of Integration, we can only give a
correct proof of the inversion formula under the additional assumption that f is continuous. The
general proof will, however, follow the same pattern as the proof when f is continuous.

The next obstacle is that it is not possible here to give a straightforward proof of the inversion formula.
The reason is that if we compute the right hand side of the formula, then

1
2π

∫ +∞

−∞
eixξ f̂(ξ) dξ =

1
2π

∫ +∞

−∞
eixξ

{∫ +∞

−∞
f(t) e−itξ dt

}
dξ =

1
2π

∫ +∞

−∞

{∫ +∞

−∞
f(t) ei(x−t)ξ dt

}
dξ,

where it is obvious that we cannot interchange the order of integration, because the indefinite integral∫
ei(x−t)ξ dξ does not have limits for ξ → ±∞.

Instead we use the old trick of choosing an auxiliary function g ∈ L1, which we later shall choose as
the explicit function g(x) in Lemma 3.3.5. For the time being g is just any function from L1(R).

Choose any g ∈ L1, and let ε > 0 be a parameter. Defining gε(ξ) := g(εξ), it follows from the Theorem
of change of scale that

ĝε(x) =
1
ε

ĝ
(x

ε

)
and gε ∈ L1.

Then it follows from Lemma 3.3.4 that
∫ +∞

−∞
gε(ξ) f̂(ξ) eixξ dξ =

∫ +∞

−∞
g(εξ) f̂(ξ) eixξ dξ =

1
ε

∫ +∞

−∞
ĝ

(
t

ε

)
f(x + t) dt

=
∫ +∞

−∞
ĝ(y)f(x + εy) dy.

For fixed x, both functions gε(ξ)·f̂(ξ) and ĝ(y)f(x+εy) belong to L1, so both integrands are absolutely
integrable for every ε > 0.

At this step we choose g(ξ) = exp
(
−1

2
ξ2

)
with g(0) = 1, and then let ε → 0+ under the integral

signs. When we also apply (46) we get
∫ +∞

−∞
f̂(ξ) eixξ dξ =

∫ +∞

−∞
g(0) f̂(ξ) eixξ dξ =

∫ +∞

−∞
ĝ(y)f(x + 0) dy

= f(x)
∫ +∞

−∞
ĝ(y) dy = 2π f(x),

and we have proved the inversion formula for continuous f ∈ L1.

In general, we use the following approximation theorem, which is not proved here.
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Theorem 3.3.4 To every f ∈ L1(R) and every ε > 0 there exists a continuous function g ∈ L1(R),
such that

‖f − g‖1 =
∫ +∞

−∞
|f(t) − g(t)| dt < ε.

One may even choose g continuous and 0 outside a bounded (compact) interval.

We continue by proving the following residuum inversion formula of the Fourier transform.
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Theorem 3.3.5 Fourier’s residuum inversion formula I. Assume that F (ζ) is analytic in an open
domain Ω, which contains the closed upper half plane � ζ ≥ 0, except for a finite number of singularities
{ζ1, . . . , ζn}, where all � ζj > 0.
Furthermore, assume that there exist positive constants R, α, c > 0, such that we have the estimate

|F (ζ)| ≤ c

|ζ|α for � ζ ≥ 0 and |ζ| ≥ R.

Then the improper integral
∫ +∞
−∞ F (ξ) eiξx dξ is convergent for every x > 0, and its value is given by

the residuum formula

(47)
∫ +∞

−∞
F (ξ) eixξ dξ = 2πi

n∑

j=1

res
(
F (ζ) eixζ ; ζj

)
.

Proof. We shall prove that the limit

lim
R1→+∞

lim
R2→+∞

∫ R2

−R1

f(ξ) eixξ dξ

exists and is finite. Choose the path of integration CR1,R2 as shown in Figure 9, where R1, R2 > R.
Then all singularities ζ1, . . . , ζn in the upper half plane lie inside CR1,R2 , because they all lie in the
set {ζ ∈ C | � ζ > 0, |ζ| < R}.

Figure 9: Path of integration CR1,R2 in the proof of Theorem 3.3.5.

Then it follows from Cauchy’s residuum theorem that

(48)
∮

CR1,R2

F (ζ) eixζ dζ = 2πi

n∑

j=1

res
(
F (ζ)eixζ ; ζj

)
,

where the right hand side is a constant which is independent of R1 and R2, as long as they fulfil
R1, R2 > R.
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On the other hand, the left hand side of (48) can also be written
∮

CR1,R2

F (ζ) eixζ dζ =
∫ R2

−R1

F (ξ) eixξ dξ +
∫ R1+R2

0

F (R2 + it) eix(R2+it)i dt

(49)

−
∫ R2

R1

F (ξ + i (R;1 +R2)) eix(ξ+i{R1+R2}) −
∫ R1+R2

0

F (−R1 + it) eix(R1+it) dt,

When x > 0 is kept fixed, and R1, R2 > R, we get the estimates
∣∣∣∣∣
∫ R1+R2

0

F (R2 + it) eix(R2+it)i dt

∣∣∣∣∣ ≤
∫ R1+R2

0

|F (R2 + it)| e−xt dt

≤ c

Rα
2

∫ R1+R2

0

e−xt dt ≤ c

xRα
2

→ 0 for R2 → +∞.

Similarly,
∣∣∣∣∣
∫ R2

−R1

F (ξ + i {R1 + R2}) eix(ξ+i{R1+R2}) dξ

∣∣∣∣∣ ≤
∫ R2

−R1

|F (ξ + i {R1 + R2})| e−x(R1+R2) dξ

≤ e−x(R1+R2)

∫ R2

−R1

c

(R1 + R2)
α dξ = c · (R1 + R2)

1−α · e−x(R1+R2).

Since the exponential dominates the power function, this expression tends towards 0 for either
R1 → +∞ or R2 → +∞.

Also∣∣∣∣∣
∫ R1+R2

0

F (−R1 + it) eix(−R1+it)i dt

∣∣∣∣∣ ≤
∫ R1+R2

0

|F (−R1 + it)| e−xt dt

≤ c

Rα
1

∫ R1+R2

0

e−xt dt ≤ c

xRα
1

→ 0 for R1 → +∞.

Finally, when (49) is inserted into (48), we get by the two mutually independent limits that the
improper integral

∫ +∞
−∞ F (ξ) eixξ dξ makes sense and that its value is indeed given by (47). �

Corollary 3.3.1 Fourier’s residuum inversion formula II. Assume that F (ζ) is analytic in C\{ζ1, . . . , ζn},
where none of the singularities ζj lies on the real axis. Furthermore, assume that there are constants
R, α, c > 0, such that

|F (ζ)| ≤ c

|ζ|α for |ζ| ≥ R.

Then

(50) f(x) :=
1
2π

∫ +∞

−∞
F (ξ) eixξ dξ =





i
∑

� ζj>0 res
(
F (ζ)eixζ ; ζj

)
for x > 0,

−i
∑

� ζj<0 res
(
F (ζ)eixζ ; ζj

)
, for x < 0.

Finally, if f ∈ L1, then f̂(ξ) = F (ξ).
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Proof. If x > 0, then the first result of (50) was proved in Theorem 3.3.5. If x < 0, we modify
the proof of Theorem 3.3.5 in the following way. The curve CR1,R2 is reflected in the ξ-axis, and the
orientation of the curve is reversed, such that the segment on the ξ-axis is traversed from R2 to −R1,
explaining the change of sign in (50). The final claim of Corollary 3.3.1 follows from the firstFourier’s
inversion formula. �

Example 3.3.1 Choose F (ζ) =
1

1 + ζ2
. Then F (ζ) is analytic in C\{−i, i}, and we have the estimate

|F (ζ)| =
1

|1 + ζ2| ≤
2

|ζ|2 for |ζ| ≥ 2.

Furthermore, F (ξ) lies in L1(R) for ξ ∈ R.

It follows from Corollary 3.3.1 that

f(x) =





+i res
(

eixζ

1 + ζ2
; i

)
= i

e−x

2i
=

1
2

e−x for x > 0,

−i res
(

eixζ

1 + ζ2
;−i

)
= −i

e+x

−2i
=

1
2

e+x for x < 0,

hence

f(x) =
1
2

e−|x| for x ∈ R.

Obviously, f ∈ L1, so f̂(ξ) = F (ξ), and we have in particular proved that

(51)
1
2

∫ +∞

−∞
e−|x|−iξx dx =

1
1 + ξ2

, ξ ∈ R,

and

1
π

∫ +∞

−∞

eixξ

1 + ξ2
dξ = e−|x|, x ∈ R.

From f ∈ L1 follows that the integral in (51) is convergent. It is possible to compute it by elementary
calculus. In fact,

1
2

∫ +∞

−∞
e−|x|−iξx dx =

1
2

∫ +∞

−∞
e−|x| cos(ξx) dx − i

2

∫ +∞

−∞
e−|x| sin(ξx) dx

=
1
2

∫ +∞

−∞
e−|x| cos(ξx) dx + i · 0 =

∫ +∞

0

e−x cos(ξx) dx

= �
∫ +∞

0

e−xeiξx dx = �
∫ +∞

0

e(−1+iξ)x dx = �
[
e(−1+iξ)x

−1 + iξ

]+∞

x=0

= �
{
− 1
−1 + iξ

}
=

1
1 + ξ2

. ♦
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Example 3.3.2 Let F (ζ) = − i

ζ − i
. Then F (ζ) is analytic in C \ {i} and we can choose α = 1.

Thus, to every R > 1 there is a cR > 0, such that

|F (ζ)| ≤ cR

|ζ| for |ζ| ≥ R.

Since F (ζ) does not have singularities in the lower half plane, f(x) given by (50) is equal to 0 for
x < 0.

We get for x > 0,

f(x) = i · res
(
−i

eixζ

ζ − i
; i

)
= i(−i)eixi = e−x,

so

f(x) =





e−x for x > 0,

0 for x < 0.
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Since

F (ξ) = − i

ξ − i
=

1
ξ2 + 1

− iξ

ξ2 + 1
,

it follows that

1
2π

∫ +∞

−∞

eixξ

ξ2 + 1
dξ − i

2π

∫ +∞

−∞

ξeixξ

ξ2 + 1
dξ =





e−x for x > 0

0 for x < 0.

We note that the latter integral is divergent for x = 0, so we get in particular that F /∈ L1(R). A
check shows that

f̂(ξ) =
∫ +∞

−∞
e−ixξ f(x) dx =

∫ +∞

0

e−(1+iξ)x dx =
[
− 1

1 + iξ
e−(1+iξ)x

]+∞

0

=
1

1 + iξ
= F (ξ).

This is an example which shows that if f ∈ L1 is not continuous, then F (ξ) = f̂(ξ) can never belong
to L1. The general proof goes as follows. If f̂ ∈ L1, then it would follow from the inversion formula

and Theorem 3.3.2 that f(x) =
1
2π

F
{

f̂
}

(−x) is continuous, which it is not. ♦

Example 3.3.3 Let F (ζ) =
1

(ζ − i)2
. Then F (ζ) is analytic in C \ {i}. We get the estimate

|F (ζ)| =
1

|ζ − i|2 ≤ 2
|ζ|2 for |ζ| > 2,

so F (ξ) ∈ L1(R). It then follows from Theorem 3.3.2 that f(x) =
1
2π

F{F (ξ)}(−x) is continuous.

Since F (ζ) does not have singularities in the lower half plane, the function f(x) given by (50) must
be 0 for x < 0, and by the continuity, also for x = 0. When x > 0, then

f(x) = i · res
(

eixξ

(ζ − i)2
; i

)
= i · lim

ζ→i

d

dζ

{
eixζ

}
= i · lim

ζ→i

{
i x eixζ

}
= −x e−x,

hence

f(x) =





−x e−x for x > 0,

0 for x > 0.

It is easy to check that if we add f(0) = 0, then f(x) becomes continuous, and also f ∈ L1. ♦

Example 3.3.4 We shall here consider the more complicated example of the analytic function

F (ζ) =
1

(ζ − i)2
exp

(
1

ζ − i

)
for ζ ∈ C \ {i},

where the only singularity ζ = i is essential.

84

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

88 

Other transformations and the general inversion formula

Since

exp
(

1
ζ − i

)
→ e0 = 1 for ζ → +∞,

we get the estimate

|F (ζ)| =
1

|ζ − i|2
∣∣∣∣exp

(
1

ζ − i

)∣∣∣∣ ≤
CR

|ζ|2 for |ζ| > R > 1.

Hence, F (ξ) ∈ L1(R), and f(x) given by (50) is continuous in R. Since F (ζ) does not have singularities
in the lower half plane, we get f(x) = 0 for x < 0, and also f(0) = 0 by the continuity.

When x > 0, it follows from (50) that

f(x) = i · res
(

eixζ

(ζ − i)2
exp

(
1

ζ − i

)
; i

)
= i · res

(
e−x · eix(ζ−i)

(ζ − i)2
· exp

(
1

ζ − i

)
; i

)

= i · e−x · res
(

eixζ

ζ2
· exp

(
1
ζ

)
; 0

)
= i · e−x · a−1(x),

where a−1(x) is the coefficient of
1
ζ

in the Laurent series expansion of
1
ζ2

· eixζ · exp
(

1
ζ

)
.

This Laurent series expansion is computed in the following way,

1
ζ2

· eixζ · exp
(

1
ζ

)
=

1
ζ2

+∞∑
n=0

1
n!

(ix)n ζn
∑
p=0

+∞ 1
p!

· 1
ζp

=
+∞∑
n=0

+∞∑
p=0

(ix)n

n! p!
ζn−p−2,

from which we get a−1(x) by collecting all terms for which n = p + 1 ≥ 1, hence

a−1(x) =
+∞∑
p=0

ip+1xp+1

(p + 1)! p!
for x > 0.

We conclude that

(52) f(x) =
1
2π

∫ +∞

−∞
F (ξ) eixξ dξ =





∑+∞
n=0

in+2xn+1

n!(n + 1)!
e−x for x > 0,

0 for x ≤ 0.

Since also F (ξ) ∈ L1(R), we get by replacing ξ by x, and x by −ξ in (50) that

F̂ (ξ) =
∫ +∞

−∞
F (x) e−ixξ dx = 2π f(−ξ) =





0 for ξ > 0,

2πi
∑+∞

n=0

(−iξ)n+1

n!(n + 1)!
· eξ for ξ < 0.

This example shows that the Fourier transform of an L1 function does not have to be an analytic
function, since F̂ (ξ) obviously is not analytic at ξ = 0.

It is possible to prove that the series in (52) can be expressed by some Bessel function. We shall
briefly return to the family of Bessel functions in Ventus, Complex Functions Theory a-5, The Laplace
Transform II, where we also introduce other functions which somehow are connected with the Laplace
transformation. ♦
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3.4 The Mellin transformation

For completeness we shall also consider the so-called Mellin transformation, which is defined as an
operator on the set of functions f by the following

(53) M{f}(a) :=
∫ +∞

0

f(x)xa dx

x
,

which is a function of the variable a, provided that the improper integral is convergent.

If the integral of (53) is absolutely convergent, we change variable, x = e−t, to get

(54) M{f}(a) :=
∫ +∞

0

f(x)xa dx

x
=

∫ +∞

−∞
f

(
e−t

)
e−at dt,

where the right hand side is the two-sided Laplace transform of the function g(t) := f (e−t) at the
point a. This shows the connection between the Mellin transformation and the two-sided Laplace
transformation.

In order not to get into trouble of defining the right branch of xa for a complex we shall always assume
that the exponent a ∈ R is real. We shall furthermore assume that f(z) is analytic in C except for a
finite number of singularities, none of these lying on the positive real axis R. Usually one also assumes
that all singularities are poles. However, the proof below will show that we only require that a possible
singularity at z = 0 is at most a pole. Any other singularity may be a pole or an essential singularity.

Then we turn to the factor xa of the integrand. If a ∈ Z, then za is defined in the usual way for z �= 0
(and also for z = 0, if a ∈ N0). Assume that a ∈ R \Z, and fix the following branch of the logarithm,

Log0 z := ln |z| + i Arg0 z, where Arg0 z ∈ ]0, 2π[,

for z ∈ C \ (R+ ∪ {0}). The branch cut is along the positive real axis, and the argument is the angle
of the vector −→z �= −→

0 , measured from R+ in the positive sense of the plane. We define

(55) za := exp (a · Log0 z) for z ∈ C \ (R+ ∪ {0}) .

It should be obvious, why we cannot use the principal logarithm.

Since za is composed of analytic functions, it is also analytic in the open domain Ω := C\(R+ ∪ {0}),
and it is easy to prove from (55) that

d

dz
za = a za−1 for z ∈ Ω,

which is what we also would hope for.

Put z = r eiΘ, where r > 0 and 0 < Θ < 2π. Then we get from (55) that

(56) |za| = | exp(a{ln r + iΘ})| = ra,

because a ∈ R was chosen real.

Remark 3.4.1 It is possible to allow a ∈ C, but then (56) should be modified. The details are left
to the interested reader. ♦
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Theorem 3.4.1 Assume that f is analytic in Ω = C \ {z1, . . . , zn}, where none of the isolated sin-
gularities z1, . . . , zn lies in R+. We assume that there exist constants α, β ∈ R, where α < β, and
constants C, R0, r0 > 0, such that

(57) |zα f(z)| ≤ C for |z| ≤ r0 and z ∈ Ω,

and

(58)
∣∣zβ f(z)

∣∣ ≤ C for |z| ≥ R0 and z ∈ Ω.

If α < a < β, then the improper integral
∫ +∞
0

f(x) xa dx

x
is convergent, and its value is for a /∈ Z

given by

(59)
∫ +∞

0

f(x) xa dx

x
= −π e−πia

sin πa

∑

zj �=0

res
(
f(z)za−1; zj

)
for α < a < β and a /∈ Z.

Remark 3.4.2 In the literature one often requires that α, β > 0. The proof below shows that this
requirement is not necessary. ♦

Proof. As usual it is only a matter of choosing the right path of integration CR,r,ϕ in
Ω′ := Ω \ (R+ ∪ {0}). We choose this path as the one given in Figure 10, where we also assume that
R ≥ R0 and r ≤ r0 and 0 < ϕ <

π

2
are chosen, such that all singularities �= 0 of f(z) za−1 lie inside

CR,r,ϕ.
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It follows from Cauchy’s residuum formula that

(60) 2πi
∑

zj �=0

res
(
f(z)za−1; zj

)
=

∮

CR,r,ϕ

f(z)za−1 dz =
∫

ΓR

+
∫

−γ−ϕ

+
∫

−Γr

+
∫

γϕ

f(z)za−1 dz,

where Γ is a symbol of circular arcs oriented in the positive sense of the plane, and γ is a symbol of
line segments on lines through 0 oriented away from 0.

Figure 10: Path of integration CR,r,ϕ in the proof of Theorem 3.4.1.

We first notice that
∫

γϕ

f(z)za−1 dz =
∫ R

r

f
(
t eiϕ

)
e(a−1)(ln t+iϕ) eiϕ dt =

∫ R

r

f
(
t eiϕ

)
e(a−1)iϕ eiϕ · ta−1 dt

→
∫ R

r

f(x)xa−1 dx for ϕ → 0+,

because the integrand is continuous in the closed and bounded (i.e. compact) interval [r,R], so we are
allowed to interchange the limit and the integral.

Since the line segment γ−ϕ has the parametric description

z(t) = t ei(2π−ϕ), for t ∈ [r,R],

we get Log0 z(t) = ln t + i(2π − ϕ), so
∫

−γ−ϕ

f(z)za−1 dz = −
∫

γ−ϕ

f(z)za−1 dz = +
∫ R

r

f
(
t e−iϕ

)
ta−1 e(a−1)(2πi−iϕ) ei(2π−ϕ) dt

=
∫ R

r

f
(
t e−iϕ

) · ta−1 · eai(2π−ϕ) dt →
∫ R

r

f(x)xa−1 e2πia dx for ϕ → 0 + .
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Hence, we get for fixed r and R,

lim
ϕ→0+

{∫

γϕ

+
∫

−γ−ϕ

f(z)za−1 dz

}
=

∫ R

r

f(x) xa−1
{
1 − e2πia

}
dx

= −2i eiπa · eiπa − e−iπa

2i

∫ R

r

f(x) xa−1 dx = −2i eiπa sin πa

∫ R

r

f(x) xa−1 dx.

Then we consider the estimates of the integrals along ΓR and Γr. Using (56–58) we get
∣∣∣∣
∫

ΓR

f(z)za−1 dz

∣∣∣∣ =
∣∣∣∣
∫

ΓR

zβ f(z)za−β−1 dz

∣∣∣∣ ≤ 2πR · C · Ra−β−1

= 2πC · R−(β−a) → 0 for R → +∞,

and
∣∣∣∣
∫

Γr

f(z)za−1 dz

∣∣∣∣ =
∣∣∣∣
∫

γr

zα f(z)za−α−1 dz

∣∣∣∣ ≤ 2πr · C · ra−α−1

= 2πC · ra−α → 0 for r → 0+,

where both estimates are independent of the angle 0 < ϕ <
π

2
.

When we carry out the three limits ϕ → 0+ and r → 0+ and R → +∞, combined with (60), it follows
that the improper integral

∫ +∞
0

f(x)xa−1 dx exists and that

2πi
∑

zj �=0

res
(
f(z)za−1; zj

)
= −2i eiπa sin πa

∫ +∞

0

f(x)xa−1 dx,

so (59) follows from a rearrangement, when a /∈ Z.

If a ∈ Z, and α < a < β, we first compute
∫ +∞
0

f(x)xb dx

x
for α < b < β and b /∈ Z, and then let

b → a, or, alternatively we may use the more direct methods developed in Ventus, Complex Functions
Theory a-2. �

Example 3.4.1 Let f(z) =
1

z2 + 1
for z ∈ C \ {−i, i}. Then none of the poles ±i lies in R+, and we

have the estimates

∣∣z0f(z)
∣∣ ≤ 2 for |z| ≤ r0 =

1√
2

and
∣∣z2f(z)

∣∣ ≤ 2 for |z| ≥ R0 =
√

2.
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Let a ∈ ]α, β[ = ]0, 2[, and a �= 1 ∈ Z. Then it follows from Theorem 3.4.1 that
∫ +∞

0

xa

x2 + 1
dx

x
= −π e−iπa

sin πa

{
res

(
za−1

z2 + 1
; i

)
+ res

(
za−1

z2 + 1
;−i

)}

= −π e−iπa

sin πa





exp
(
(a − 1)i

π

2

)

2i
+

exp
(

(a − 1)i
3π

2

)

−2i





= −π e−iπa

sin πa
· 1
2

{
exp

(
−ia

π

2

)
+ exp

(
ia

π

2

)}

=
π cos

(
a

π

2

)

sin πa
=

π

2 sin
(
a

π

2

) .

A check shows for a = 1 that
∫ +∞

0

x1

x2 + 1
dx

x
=

∫ +∞

0

dx

x2 + 1
= [Arctan x]+∞

0 =
π

2
,

which is in agreement with the formula above, when we let a → 1. Thus we have proved that
∫ +∞

0

xa−1

x2 + 1
dx =

π

2 sin
(
a

π

2

) for all 0 < a < 2.

We notice that if a ∈ Q∩ ]0, 2[, then this integral can in principle, though usually with some huge
difficulties be computed by elementary calculus by using the change of variable t = q

√
x for x ≥ 0,

where a =
p

q
and p, q ∈ N, followed by a decomposition. In practice, this method is both difficult

and tedious, and even for q = 2 we may encounter some mathematical problems. It is obvious that if
a /∈ Q, e.g. if a =

√
2, then there is no hope of using elementary calculus when we shall find the exact

value (and not an approximate) of the integral
∫ +∞

0

x
√

x−1

x2 + 1
dx =

π

2 sin
(

π√
2

) . ♦

3.5 The complex inversion formula II

We proved in Section 2.3 a residuum formula of the inverse Laplace transform of an analytic function
F (z), defined in a domain of the form C \ {z1, . . . , zn}, and which fulfilled an estimate of the form

|F (z)| ≤ c

|z|α for |z| ≥ R,

where c, α, R > 0 are fixed constants.

We shall in this section prove a more general inversion formula, where we only require that F (z)
is defined in some domain Ω, which contains a right half plane. The proof is unexpectedly using
Fourier’s inversion formula.
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Theorem 3.5.1 We make the following assumptions:

1) Assume that F (z) is analytic in an open domain Ω which contains a right half plane � z > σ0.

2) Assume that there exists a σ1 ≥ σ0, such that for every δ > 0 one can find A > 0, such that for
every x > σ1 and every y ∈ R, for which |y| ≥ A, we have

|F (x + iy)| < δ.

3) Finally, we assume that there is an x0 > σ0, such that the integral

(61)
1

2πi

∫ x0+i∞

x0−i∞
F (z) ezt dz, for t > 0,

represents a function from the class of functions F in the variable t. In particular, the improper
integral (61) is convergent for almost every t > 0.

Then the function

(62) f(t) :=
1

2πi

∫ x+i∞

x−i∞
F (z) ezt dz, for t > 0,

is convergent for almost every t > 0 and all x > σ1.
Furthermore, except for a null set, the function f(t) is independent of the choice of x > σ1, and f ∈ F ,
and

L{f}(z) = F (z).

Thus, the inverse Laplace transform of F (z) is, apart from a null set, given by (62).
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Proof. Let x0 be given as above, and choose any x > σ1. Finally, choose t > 0, such that the
improper line integral along the vertical line through x0 is convergent.

Figure 11: Path of integration CA in the proof of Theorem 3.5.1.

Given δ > 0, choose A > 0 as in the condition above and consider the simple, closed curve CA as
given in Figure 11. It follows from Cauchy’s integral theorem that

1
2πi

∮

CA

F (z) ezt dz = 0,

hence by a rearrangement.

1
2πi

∫ x+iA

x−iA

F (z) ezt dt − 1
2πi

∫ x0+iA

x0−iA

F (z) ezt dz

=
1

2πi

∫ x−iA

x0−iA

F (z) ezt dt − 1
2πi

∫ x+iA

x0+iA

F (z) ezt dz.

If we can prove that the right hand side of this equation tends towards zero for A → +∞, when x > σ1

is kept fixed, then it follows that (62) is independent of the choice of x > σ1. This follows easily from
the estimate

∣∣∣∣∣
1

2πi

∫ x+iA

x0+iA

F (z) ezt dt

∣∣∣∣∣ =
1

2πi

∣∣∣∣
∫ x

x0

F (ξ + iA) eξt eiAt dz

∣∣∣∣

≤ 1
2π

· exp (max {x0t, xt}) · |x − x0| · δ.

Since x0, x and t are fixed, and δ > 0 arbitrary, and the choice of A only depends on δ > 0, and since
we also have

∣∣∣∣∣
1

2πi

∫ x−iA

x0−iA

F (z) ezt dz

∣∣∣∣∣ ≤
1
2π

exp (max {x0t, xt}) · |x − x0| · δ,
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the claim follows by letting δ → 0+, and we have proved that (62) is independent of x > σ1. In
particular, f ∈ F , and there exists a σ2 ∈ R, such that

(63)
∫ +∞

0

e−σt |f(t)|dt < +∞ for every σ > σ2.

We define for every fixed x > max {σ1, σ2} an auxiliary function ϕx by

ϕx(t) =





e−xt f(t) for t > 0,

0 for t ≤ 0.

It follows from 63) that ϕx ∈ L1(R).

If z = x + iy, where x > max {σ1, σ2}, then

L{f}(z) =
∫ ∞

0

e−zt f(t) dt =
∫ +∞

0

e−(x+iy)t f(t) dt =
∫ +∞

0

e−iyt ϕx(t) dt = ϕ̂x(y),

which shows that the Laplace transform of f at the point z = x+ iy, where x > max {σ1, σ2}, is equal
to the Fourier transform of ϕx at the point y ∈ R.

Since ϕx ∈ L1 for x > σ2, Fourier’s inversion formula holds for ϕ̂x, hence

ϕx(t) =
1
2π

∫ +∞

−∞
ϕ̂x(y) eity dy =

1
2π

∫ +∞

−∞
L{f}(x + iy) eity dy.

Multiply this equation by ext. Then we get for t > 0 that

f(t) = extϕx(t) =
1
2π

∫ +∞

−∞
L{f}(x + iy) e(x+iy)t dy =

1
2πi

∫ x+i∞

x−i∞
L{f}(z) ezt dz,

where the line integral is taken along the straight vertical line which goes through x > max {σ1, σ2}
on the x-axis.

On the other hand, f(t) is given by (62), and since both improper integrals are convergent for
x > max {σ1, σ2}, it follows that

∫ x+i∞

x−i∞
{F (z) − L{f}(z)} ezt dz = 0 for almost every t > 0,

and we conclude that

(64) F (z) = L{f}(z) for almost every z, for which � z > max {σ1, σ2} .

Finally, both F (z) and L{f}(z) are analytic functions, in particular continuous, so (64) holds for every
z, for which � z > max {σ1, σ2}, and the theorem is proved. �

Remark 3.5.1 Theorem 3.5.1 is more general than Theorem 43, because it also covers cases, where
we consider branches of many-valued functions where the branch cuts lie in a left half plane. The
integral (62) is called a Bromwich integral. ♦
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Example 3.5.1 Consider the function

F (z) =
1

z
√

z2 + 1
, for � z > 0,

where we have chosen the branch of the square root which has its branch cut lying along the real
negative axis, and where we put

√
1 = +1. Then F (x + it) ∈ L1(R) as a function in t ∈ R for every

fixed x > 0, and

|F (z)| ≤ 2
|z|2 for � z > 0 and |z| ≥ 2.

It follows that the assumptions of Theorem 3.5.1 are trivially fulfilled. Hence

f(t) =
1

2πi

∫ x+i∞

x−i∞

ezt

z
√

z2 + 1
dz.

We proved in Example 2.4.2 that

L{J0} (z) =
1√

z2 + 1
for � z > 0,

where J0 is the Bessel function of order 0. Therefore,
∫ t

0

J0(τ) dτ =
1

2πi

∫ x+i∞

x−i∞

ezt

z
√

z2 + 1
dz, t > 0 and x > 0,

where the integral on the left hand side is computed by termwise integration of the series expansion
of J0(τ), thus

∫ t

0

J0(τ) dτ =
∫ t

0

+∞∑

k=0

(−1)k

(k!)2
(τ

2

)2k

dτ =
+∞∑

k=0

2(−1)k

(k!)2(2k + 1)

(
t

2

)2k+1

=
1

2πi

∫ x+i∞

x−i∞

ezt

z
√

z2 + 1
dz.

Obviously, the branch cut along R− causes that Theorem 2.3.4 cannot be applied. At the same time
we also notice that the elementary functions known from Calculus are far from sufficient, when we
shall find the inverse Laplace transform of F (z). ♦

3.6 Laplace transformation of series

If the real function f(t) has a power series expansion which is convergent in all of R, then it is tempting
to compute its Laplace transform by termwise integration. The precise result is the following.

Theorem 3.6.1 Assume that we have the power series expansion

f(t) =
+∞∑
n=0

an tn, for t > 0,

and that

g(w) :=
+∞∑
n=0

n! an wn is convergent for |w| < R.
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Then the Laplace transform of f(t) is given by

(65) L{f}(z) =
1
z

g

(
1
z

)
=

+∞∑
n=0

n! an

zn+1
for |z| >

1
R

.

Proof. Choose a z ∈ C, such that � z >
1
R

. The series of f(t) is absolutely and uniformly convergent

for t ∈ [0, r]. Hence, for every r > 0,

∫ r

0

e−zt f(t) dt =
+∞∑
n=0

an

∫ r

0

e−zt tn dt.

Then by taking the limit r → +∞,

L{f}(z) = lim
r→+∞

∫ r

0

e−zt f(t) dt =
+∞∑
n=0

an

∫ +∞

0

e−zt tn dt =
+∞∑
n=0

an n! · 1
zn+1

.
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To every 0 < ε < R there exists an n0, such that

|n! an(R − ε)n| ≤ 1 for every n ≥ n0,

thus

|an| ≤ 1
n!

· 1
(R − ε)n

for n ≥ n0.

Then for t > 0 we get the estimate

|f(t)| =

∣∣∣∣∣
+∞∑
n=0

an tn

∣∣∣∣∣ ≤
+∞∑
n=0

1
n!

tn

(R − ε)n
+ An0(t) = exp

(
t

R − ε

)
+ An0(t),

where

An0(t) =
n0∑

n=0

|an| tn

is a finite sum. It follows that f ∈ E , so the Laplace transform exists, and the theorem follows by an
analytic extension. �

Theorem 3.6.2 If F (z) has the Laurent series expansion

F (z) =
+∞∑
n=0

bn · 1
zn+1

for |z| >
1
R

,

then the inverse Laplace transform of F (z) is given by

f(t) =
+∞∑
n=0

1
n!

bn tn, for t > 0.

Proof. If we write an =
1
n!

bn, then Theorem 3.6.2 is an immediate consequence of Theorem 3.6.1.
�

The factor n! of the transition formulæ bn = n! an, or an =
1
n!

bn, indicates once more that if we shall
get an optimum benefit of the theory of the Laplace transformation, then we need some new functions,
which are not included in the usual courses of elementary Calculus. These “new” transcendental
functions are for historical reasons called Special Functions. A better word, however, would be Useful
Functions, because they almost certainly always pop up in more advanced applications of the Laplace
transformation in the technical sciences. We see here that these special functions are necessary, if
we want to apply the theory of Laplace transformation on other cases than just when F (z) is a
quotient between two polynomials. The introduction of the most necessary special functions is given
in Chapter 1 of Ventus, Complex Functions Theory a-5, The Laplace Transformation II.

Example 3.6.1 We shall here give an example of what we may encounter in general. We choose

arbitrarily F (z) = sin
1
z
, thus by a Laurent series expansion,

F (z) =
+∞∑
n=0

(−1)n

(2n + 1)!
· 1
z2n+1

=
+∞∑

k=0

bk · 1
zk+1

for z ∈ C \ {0}.
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Hence,

b2n =
(−1)n

(2n + 1)!
and b2n+1 = 0 for all n ∈ N0.

An application of Theorem 3.6.2 shows that the inverse Laplace transform f(t) of F (z) is given by

f(t) =
+∞∑
n=0

(−1)n

(2n)!(2n + 1)!
t2n for t > 0,

which cannot be described explicitly by any function known from Elementary Calculus. ♦

Example 3.6.2 Let
√

w denote the branch of the square root which has its branch cut lying along
the real negative axis, and for which

√
r > 0 for r > 0. Then

F (z) =
1

z

√
1 +

1
z2

for |z| > 1,

is an analytic function with no branch cut at all in the domain |z| > 1. Its Laurent series expansion
is found by an application of the generalized binomial series,

F (z) =
1

z

√
1 +

1
z2

=
1
z

+∞∑
n=0

( − 1
2
n

)
1

z2n
=

1
z

+∞∑

k=0

bk
1
zk

for |z| > 1,

where b2n+1 = 0 and

b2n =
( − 1

2
n

)
=

(− 1
2

) (− 3
2

) (− 5
2

) · · · ( 1
2 − n

)

n!
=

(−1)n

2n
· 1 · 3 · 5 · · · (2n − 1)

n!

=
(−1)n

2n
· 1 · 2 · 3 · 4 · 5 · · · (2n − 1)(2n)

n! · 2 · 4 · 6 · · · 2n
=

(−1)n

22n
· (2n)!

n!n!
=

(−1)n

22n

(
2n
n

)
.

It follows from Theorem 3.6.2 that

a2n =
(−1)n

22n
· 1
(n!)2

and a2n+1 = 0,

hence

f(t) =
+∞∑
n=0

(−1)n

(n!)2

(
t

2

)2n

= J0(t) for t > 0,

where we recognize the series expansion of J0(t), the Bessel function of order 0.

The right half plane � z > 1 is contained in the set of all z for which |z| > 1, hence

L{J0} (z) =
1

z

√
1 +

1
z2

for � z > 1,
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where the square root has it branch cut along R−, and where
√

1 = +1.

It follows by an analytic extension that this also holds for � z > 0 and that
√

z2 = z for � z > 0 for
the chosen branch of the square root. (Notice that this is not true in the set |z| > 1.) We therefore
conclude that

L{J0} (z) =
1

z

√
1 +

1
z2

=
1

√
z2

√
1 +

1
z2

=
1√

z2

(
1 +

1
z2

) =
1√

z2 + 1
for � z > 0,

so by quite a different method we fortunately obtained the same result as in Example 3.6.1.

The present example also shows that we in general only obtain uniqueness of the Laplace transform
in some right half plane, because the analytic extension depends on where the possible branch cuts
are lying. Her we see that both

1

z

√
1 +

1
z2

for |z| > 1, and
1√

z2 + 1
for � z > 0,

are indeed Laplace transforms of J0(t), and they agree on the right half plane � z > 1. However,

no matter how we extend
1√

z2 + 1
analytically to a part of the closed left half plane � z ≤ 0, this

extension will not match the Laplace transform of J0(t) for |z| > 1. ♦
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3.7 A catalogue of methods of finding the Laplace transform and the in-
verse Laplace transform

In this final section we shall sketch a catalogue of possible methods when we want to compute either the
Laplace transform or the inverse Laplace transform of a given function. We also list some methods,
where the corresponding examples are postponed to Ventus, Complex Functions Theory a-5, The
Laplace Transformation II.

3.7.1 Methods of finding Laplace transforms

1) Direct application of the definition

L{f}(z) :=
∫ +∞

0

e−zt f(t) dt.

The simplest examples of Laplace transforms were computed by using the definition alone. It is
possible in some more complicated cases, though in far from all of them, to use this primitive
approach which only requires some knowledge of practical integration.

2) The method of series expansion.
If

f(t) =
+∞∑
n=0

an tn is convergent for all t > 0,

then formally,

L{f}
+∞∑
n=0

n! an · 1
zn+1

.

If this Laurent series expansion is convergent for |z| > R, where R < +∞ is finite, then it is indeed
the Laplace transform of f(t), defined in the set, where |z| > R. This is the result of Theorem 3.6.1
in Section 3.6.
The method requires at least that f(t) is the restriction of an analytic function f(z) defined in
all of C. Another requirement is of course that the indicated Laurent series of L{f}(z) is indeed
convergent for |z| > R for some finite R.

3) The method of Laplace transforming a differential equation.
This method was applied in Example 2.4.2, where we found the Laplace transform of the Bessel
function J0(t) of order 0. We apply the Laplace transformation on the Bessel equation of order
0, and then use the rules of computation to get a (hopefully) simpler differential equation in the
complex variable z. If it really is simpler, then we solve it by elementary methods. Finally, the
constants are found either by the initial value theorem or the final value theorem.

4) Differentiation with respect to a parameter.
An example of this method is postponed to Ventus, Complex Functions Theory a-5, The Laplace
Transformation II, where we shall find the Laplace transform of the function f(t) = ln t, t > 0.

5) Application of tables.
This method requires that one owns a sufficiently large table to cover all the functions needed.
So far we have only systematically found the Laplace transforms of Table 1 on page 17. A larger
table is given by Table 2 on page 102.
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3.7.2 Computation of inverse Laplace transforms

1) Decomposition.
This method is used, when

F (z) =
P (z)
Q(z)

e−az,

where P (z) and Q(z) are polynomials, for which deg Q > deg P . One decomposes the fraction
P (z)
Q(z)

. The exponential e−az is handled by using the Second Translation Property.

2) Method of series expansion.
If

L{f}(z) =
+∞∑
n=0

bn · 1
zn+1

for |z| > R,

then

f(t) =
+∞∑
n=0

1
n!

bn tn for t > 0.

This method was used in Example 3.6.1 and in Example 3.6.2. It requires that the given function
L{f}(z) can be written as a convergent Laurent series for |z| > R, and that an = 0 for every
n ∈ N0.

3) The method of applying a differential equation.
First establish a differential equation of the given function L{f}(z) = F (z). Then use the rules
of computation, given in Section 2.2, to obtain a differential equation of f(t), which hopefully is
simple enough to be solved.

4) Differentiation with respect to a parameter.
An example of this method is postponed to Ventus, Complex Functions Theory a-5, The Laplace
transformation II.

5) Applications of tables.
The comments are the same as above. We shall of course use either Table 1 on page 17, or Table 2
on page 102.

6) The complex inversion formula.
This is given in two versions. The simpler one in Section 2.3 is a residuum formula, so one shall
always be extremely careful of checking all the assumptions, because residuum formulæ usually
give very wrong “results”, when these are not satisfied.
The general formula of Section 3.5 is a line integral (a Bromwich integral) along a vertical line.
This method is in particular used when F (z) is a branch of a many-valued function. We shall
postpone the more difficult applications of this formula to Ventus, Complex Functions Theory a-5,
The Laplace Transformation II.
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4 Tables

f(t), t ≥ 0 L{f}(z) = F (z)

1 1
1
z

2 eat 1
z − a

3
1
T

exp
(
− t

T

)
1

1 + Tz

4
1

(n − 1)!
tn−1, n ∈ N

1
zn

, n ∈ N

5
1

(n − 1)!
tn−1 eat, n ∈ N

1
(z − a)n

, n ∈ N

6
eat − ebt

a − b

1
(z − a)(z − b)

, a �= b

7 sin ωt
ω

z2 + ω2

8 sinhωt
ω

z2 − ω2

9 cos ωt
z

z2 + ω2

10 cosh ωt
z

z2 − ω2

11
ebt − eat

t
Log

(
z − a

z − b

)

12 (−1)n−1 for t ∈ ](n − 1)a, na[, n ∈ N
1
z

tanh
az

2

Table 2: Some Laplace transforms,

L{f}(ξ) = F (z) =
∫ +∞

0

e−zt f(t) dt.
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f(x) F{f}(ξ) = F (ξ)

1 χ[−T,T ](x), T > 0 2
sinTξ

ξ

2
(

1 − |x|
T

)
χ[−T,T ], T > 0

4
Tξ2

sin2

(
Tξ

2

)

3
a

x2 + a2
, � a > 0 π e−a|ξ|

4
sin Tx

x
, T > 0 π χ[−T,T ](ξ)

5 cos(ωx) · χ[−T,T ](x), T > 0
sin(T (ξ − ω))

ξ − ω
+

sin(T (ξ + ω))
ξ + ω

6 sin(ωx) · χ[−T,T ](x), T > 0
1
i

{
sin(T (ξ − ω))

ξ − ω
− sin(T (ξ + ω))

ξ + ω

}

7 e−a|x|, �a > 0
2a

ξ2 + a2

8 e−axH(x), � a > 0
1

a + iξ

9 eaxH(−x), � a > 0
1

a − iξ

10 exp
(−ax2

)
, a > 0

√
π

2
· exp

(
− ξ2

4a

)

11 1 2π δ

12 x2, n ∈ N0 2π in δ(n)

13 eihx, h ∈ R 2π δ(h)

14 cos(hx), h ∈ R π
{
δ(h) + δ(−h)

}

15 sin(hx), h ∈ R −iπ
{
δ(h) − δ(−h)

}

16 δ 1

17 δ(h), h ∈ R e−ihξ

18 δ(n), n ∈ N0 (iξ)n

Table 3: Some Fourier transforms,

F{f}(ξ) = F (ξ) =
∫ +∞

−∞
e−ixξ f(x) dx. 102

Download free eBooks at bookboon.com



The Laplace Transformation I – General Theory

106 

Index

Index
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convolution, 49, 70
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differential equation, 57
differentiation in generalized sense, 57
Dirac’s δ “function”, 9, 23, 71
Dirichlet problem, 3

E , 12
ess.sup., 10
essential singularity, 46

final value theorem, 36
Fourier transform, 67
Fourier transformation, 66
Fourier’s inversion formula, 77, 88, 90
Fourier’s residuum inversion formula, 78, 80
fractal, 7
Fubini’s theorem, 11, 50, 75

generalized binomial series, 93
generalized function, 63
Geometry, 3

half plane of convergence, 20
harmonic functions, 3

Heaviside function, 59, 64
Heaviside’s expansion theorem, 46

improper integrals, 3
impulse “function”, 23
indicator function, 7
initial value theorem, 34
inverse Laplace transform, 41
inverse Laplace transformation, 26, 27

Laplace transform, 14, 22
Laplace transformation, 12, 23
Laplace transformation of derivatives, 26
Laplace transformation of integrals, 29
Laurent series, 3
Lebesgue integral, 4, 9, 10
Lebesque integration theory, 77
linearity property, 23

measurable function, 9
measure theory, 4
Mellin transformation, 84
modified Bessel function of order 0, 47
Morera’s theorem, 19
multi-valued functions, 3

null function, 4, 7, 41
null set, 4

order of integration, 11

p-norm, 10
periodic function, 33, 67
point measure, 9
power series solution, 53

rational function, 45
residuum calculus, 3, 4, 38
residuum inversion formula, 41
residuum theorem, 42
Riemann surfaces, 3

shifting property, 24, 25
special function, 92
stability, 3

theorem of majoring convergence, 11
translation property, 24, 25
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a.e., 12
abscissa of convergence, 22
area, 8

Bessel differential equation of order 0, 56
Bessel function of order 0, 56, 94, 97
Bromwich integral, 93, 99

Cauchy Integral formula, 6
Cauchy Integral Theorem, 6, 79, 91
Cauchy’s residuum formula, 88
Cauchy’s residuum theorem, 82
Cauchy-Riemann equations, 6
change of scale property, 28
characteristic function, 10
characteristic polynomial, 49, 61
Circuit Theory, 45
closed interval, 7
complex inversion formula, 41
conformal map, 6
convolution, 52, 73
Cybernetics, 6, 45

δ “function”, 66
differential equation, 60
differentiation in generalized sense, 60
Dirac’s δ “function”, 12, 26, 74
Dirichlet problem, 6

ε, 15
ess.sup., 13
essential singularity, 49

final value theorem, 39
Fourier transform, 70
Fourier transformation, 69
Fourier’s inversion formula, 80, 91, 93
Fourier’s residuum inversion formula, 81, 83
fractal, 10
Fubini’s theorem, 14, 53, 78

generalized binomial series, 96
generalized function, 66
Geometry, 6

half plane of convergence, 23
harmonic functions, 6
Heaviside function, 62, 65
Heaviside’s expansion theorem, 49

improper integrals, 6
impulse “function”, 26
indicator function, 10
initial value theorem, 37
inverse Laplace transform, 44
inverse Laplace transformation, 29, 30

Laplace transform, 17, 25
Laplace transformation, 15, 26
Laplace transformation of derivatives, 29
Laplace transformation of integrals, 32
Laurent series, 6
Lebesgue integral, 7, 12, 13
Lebesque integration theory, 80
linearity property, 26

measurable function, 12
measure theory, 7
Mellin transformation, 87
modified Bessel function of order 0, 50
Morera’s theorem, 22
multi-valued functions, 6

null function, 7, 10, 44
null set, 7

order of integration, 14

p-norm, 13
periodic function, 36, 70
point measure, 12
power series solution, 56

rational function, 48
residuum calculus, 6, 7, 41
residuum inversion formula, 44
residuum theorem, 45
Riemann surfaces, 6
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shifting property, 27, 28
special function, 95
stability, 6

theorem of majoring convergence, 14
translation property, 27, 28
trigonometric integrals, 6
two-sided Laplace transform, 66, 87
two-sided Laplace transformation, 66

uniform convergence, 22
uniqueness theorem, 37

volume, 8

Weierstraβ’s approximation theorem, 41
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