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Preface

Here follow some guidelines for solution of problems concerning sequences and power series. It should
be emphasized that my purpose has never been to write an alternative textbook on these matters. If
I would have done so, I would have arranged the subject differently. Nevertheless, it is my hope that
the present text can be a useful supplement to the ordinary textbooks, in which one can find all the
necessary proofs which are skipped here.

The text presupposes some knowledge of Calculus 1a, Functions in One Variable, and it will itself be
the basis for the following Calculus 4b: Fourier Series, Differential Equations and Eigenvalue Problems.
The previous text, Calculus 2b, Functions in Several Variables will only be necessary occasionally.

Chapter 1 is a repetition of useful formulæ – some of them already known from high school – which will
be used over and over again. The reader should read this chapter carefully together with Appendix A,
which is a short collection of formulæ known previously. These will be assumed in the text without
further reference, so it would be a good idea to learn these formulæ by heart, since they can be
considered as the tools of Calculus which should be mastered before one can proceed.

The text itself falls into two main parts, 1) Sequences of numbers and functions, and 2) Series of
numbers and power series. The more general series of functions occur only rarely in this text. I felt
that the main case of Fourier series should be put into a later text, because the natural concept of
convergence is not the same as the convergence dealt with here. I have seen too many students being
confused by the different types of convergence to let these two main cases clash in the same volume.

Comments, remarks and examples will always be ended by the symbol ♦, so the reader can see when
the main text starts again.

In general, every text in the Calculus series is given a number – here 3 – and a letter – here b – where

a means “compendium”,

b means “guidelines for solutions of standard problems”,

c means “examples”.

Since this is the first edition of this text, there may still be some errors, which the reader hopefully
will forgive me.

21st June 2008
Leif Mejlbro
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1 Repetition of important formulæ

1.1 Decomposition

Today this technique is less practised than earlier because it has become easier to use the command
expand or similarly on a pocket calculator. Unfortunately this method is not always successful, and
even MAPLE may sometimes give some very strange results concerning decomposition. Now, decom-
position occurs in the most unexpected places in Calculus (and in the technical sciences), so in order
to amend the shortcomings of the pocket calculators, the reader should at least know how in principle
one can decompose a fraction of two polynomials so that one is able to modify the method when e.g.
an application of expand fails.

The practical performance of decomposition is best illustrated by an example with a list of the standard
steps needed. This will in several ways differ from the method given in Calculus 1a, Functions in One
Variable, because the reader must be considered as been at a higher level when reading the present
text than earlier.

Example 1.1 Decompose the fractional function, i.e. the quotient between two polynomials

f(x) =
x4

(x − 1)2(x2 + 1)
= polynomial + basic fractions

= polynomial +
a

(x − 1)2 +
b

x − 1 +
c+ d · x

x2 + 1
.

We see that the task is to find the polynomial and the constants a, b, c and d, where the theory from
Calculus 1a, Functions in One Variable assures that this representation is unique.

1) Factorize the denominator.

This has already been done.

2) If the degree of the numerator is ≥ the degree of the denominator, we separate a polynomial by
division. This polynomial is the first part of the result, cf. the description of the task. We shall
first use this polynomial again in the last step.

In the actual case we see that

f(x) =
x4

(x − 1)2(x2 + 1)
= 1 +

2x3 − 2x2 + 2x − 1
(x − 1)2(x2 + 1)

.

The polynomial (here the constant 1) is saved for the final result.

3) (Deviation from Calculus 1a, Functions in One Variable). A trick here is in the next step to choose
the simplest of the two fractional functions describing f(x), i.e. before and after the separation of
the polynomial. The following method will give the same result, no matter which representation of
the fractional part is chosen.

In the actual case we shall make a choice between

x4

(x − 1)2(x2 + 1)
og

2x3 − 2x2 + 2x − 1
(x − 1)2(x2 + 1)

.

The first fraction looks “nicest”, even though the degree of the numerator is 4. We shall therefore
choose this one in the following.

5
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4) The crux of the procedure: Choose any root in the denominator. (This is the reason why we start
by factorizing the denominator, so the roots can easily be found). Hold your hand or finger over
this root and insert the root in the rest of the fraction.

In this case the denominator has the real double root x = 1. Remove (x−1)2 from the denominator
(done in practice by holding a hand or finger over it) and insert x = 1 in the rest of the fraction.

Then we automatically get the coefficient a of
1

(x − 1)2 , i.e.

a =
�

x4

x2 + 1

�

x=1

=
14

12 + 1
=
1
2

.

Then reduce f(x) to

f(x) =
x4

(x − 1)2(x2 + 1)
=
1
2
· 1
(x − 1)2 + f1(x),

where f1(x) denotes the rest, which should not yet be calculated.

Remark 1.1 This method can in principle also be applied for the complex roots x = ± i. One
should here always think about if the complex calculations will become simple or not by applying
this method. ♦

5) Continue in this way with all the different real roots in the denominator. Think it over if it would
be profitable also to use it on some of the complex roots.

Returning to the example under consideration we see that 1 is the only real root. The method
applied to the complex roots will give some heavy calculations, although they will lead us directly
to the result. Since we here are more interested in giving some standard guidelines in the real case,
I shall decline from giving the complex variant, leaving this task to the reader as an exercise.

6) Find by reduction explicitly the simpler function f1(x), which is obtained by removing all the basic
fractions in 4) and 5).

Since we have not chosen the complex variant, we have already given f1(x) as a part of the example
belonging to 4). By a rearrangement and a reduction we get

f1(x) =
x4

(x − 1)2(x2 + 1)
− 1
2
· 1
(x − 1)2 · x2 + 1

x2 + 1
=
1
2
· 2x4 − x2 − 1
(x − 1)2(x2 + 1)

.

If we have not introduced some error, then x − 1 must necessarily be a divisor in the numerator:

2x4 − x2 − 1 = 2(x2)2 − x2 − 1 = (2x2 + 1)(x2 − 1) = (x − 1)(x+ 1)(2x2 + 1).

By insertion we finally get by a reduction,

f1(x) =
1
2
· (x − 1)(x+ 1)(2x2 + 1)

(x − 1)2(x2 + 1)
=
1
2
· (x+ 1)(2x

2 + 1)
(x − 1)(x2 + 1)

.

6
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7) Repeat the procedures 4), 5) and 6) on f1(x).

In the present case we shall hold our hand over x − 1 in the denominator and insert x = 1 in the

rest. This will give us the constant b of
1

x − 1 , i.e.

b =
�
1
2
· (x+ 1)(2x

2 + 1)
x2 + 1

�

x=1

=
1
2
· (1 + 1)(2 + 1)

1 + 1
=
3
2

.

Another insertion gives

f1(x) =
1
2
· (x+ 1)(2x

2 + 1)
(x − 1)(x2 + 1)

=
3
2
· 1

x − 1 + f2(x),

hence by a rearrangement and a reduction,

f2(x) =
1
2
· (x+ 1)(2x

2 + 1)
(x − 1)(x2 + 1)

− 3
2
· 1

x − 1 · x2 + 1
x2 + 1

= (some longer calculations, which are not given here)

= 1 +
1
2
· x

x2 + 1
.

8) Repeat 7), as long as possible.

In the considered case we have finished the task.

9) Finally, collect all the results found previously in order to get the final decomposition.

In the chosen example we get

x4

(x − 1)2(x2 + 1)
=

1
2
· 1
(x − 1)2 + f1(x)

=
1
2
· 1
(x − 1)2 +

3
2
· 1

x − 1 + f2(x)

= 1 +
1
2
· x

x2 + 1
+
1
2
· 1
(x − 1)2 +

3
2
· 1

x − 1 . ♦

An important special case is

Theorem 1.1 Heaviside’s expansion theorem. Let f(x) =
P (x)
Q(x)

be a fraction of two polynomials

where the degree of the numerator is strictly smaller than the degree of the denominator.

Assume that the denominator only has simple roots, e.g.

Q(x) = (x − a1)(x − a2) · · · (x − an).

Define Qj(x), j = 1, . . . , n, by deleting x − aj in Q(x), i.e.

Qj(x) =
Q(x)

x − aj
= (x − a1) · · · (x − aj−1) · (x − aj+1) · · · (x − an).

7
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Then we get the decomposition

f(x) =
P (x)
Q(x)

=
P (a1)
Q1(a1)

· 1
x − a1

+ · · ·+ P (an)
Qn(an)

· 1
x − an

.

Proof. This follows immediately by using the method of holding your hand over the simple roots. ♦

A variant is the following:

Theorem 1.2 Let f(x) =
P (x)
Q(x)

be a quotient between two polynomials where the degree of the nu-

merator is smaller than the degree of the denominator.

Assume that the denominator has only simple roots, a1, · · · , an. Then the decomposition can be written

f(x) =
P (x)
Q(x)

=
P (a1)
Q�(a1)

· 1
x − a1

+ · · ·+ P (an)
Q�(an)

· 1
x − an

.

The two theorems above can also be applied for simple complex roots in the denominator.

8
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Example 1.2 Decompose

x

x4 − 1 =
x

(x − 1)(x − i)(x+ 1)(x+ i)
.

An application of Theorem 1.1 gives a lot of calculations,

Q1(x) = (x+ 1)(x2 + 1), Q2(x) = (x2 − 1)(x+ i),

Q3(x) = (x − 1)(x2 + 1), Q4(x) = (x2 − 1)(x − i),

where

Q1(1) = 4, Q2(i) = −4 i, Q3(−1) = −4, Q4(− i) = 4 i.

By insertion we get

x

x4 − 1 =
1
4

�
1

x − 1 − 1
x − i

+
1

x+ 1
− 1

x+ i

�

.

Here, Theorem 1.2 is much easier to apply, because

P (x)
Q�(x)

=
x

4x3
=
1
4
· x2

x4
.

Since all the roots satisfy the equation a4
j = 1, it follows that

P (aj)
Q�(aj)

=
1
4
· a2

j ,

where a2
j = 1 for the real roots and a2

j = −1 for the imaginary roots, from which we get

x

x4 − 1 =
1
4

�
1

x − 1 − 1
x − i

+
1

x+ 1
− 1

x+ i

�

. ♦

1.2 Trigonometric formulæ

We get from e.g. Calculus 1a, Functions of one Variable, the addition formulæ

(1) cos(x+ y) = cosx · cos y − sinx · sin y,

(2) cos(x − y) = cosx · cos y + sinx · sin y,

(3) sin(x+ y) = sinx · cos y + cosx · sin y,

(4) sin(x − y) = sinx · cos y − cosx · sin y.

Mnemonic rule: cosx is even, and sinx is odd. Since cos(x ± y) is even, the reduction can only
contain the terms cosx · cos y (even times even) and sinx · sin y (odd times odd). Notice the change of
sign in front of sinx · sin y. ♦

Analogously sin(x ± y) is odd, hence the reduction can only contain the terms sinx · cos y (odd times
even) and cosx · sin y (even times odd). Notice that we here have no change of sign. ♦

9
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From time to time we need to simplify products of the type

sinx · sin y, cosx · cos y, sinx · cos y.

even even odd

We derive the simplifications of the addition formulæ above:

2 sinx · sin y = cos(x − y)− cos(x+ y), (2)− (1),

2 cosx · cos y = cos(x − y) + cos(x+ y), (2) + (1),

2 sinx · cos y = sin(x − y) + sin(x+ y), (3) + (4).

The searched formulæ are then obtained by division by 2. They are called the antilogarithmic formulæ:

sinx · sin y =
1
2
{cos(x − y)− cos(x+ y)}, even,

cosx · cos y =
1
2
{cos(x − y) + cos(x+ y)}, even,

sinx · cos y =
1
2
{sin(x − y) + sin(x+ y)}, odd.

1.3 Notations and conventions

One of the main subjects in this text is concerned with power series. Some of these have already been
given in Calculus 1a, Functions of one Variable.

It is of paramount importance that the student is able to recognize the structure of the elementary
standard series. We shall here based on Calculus 1a, Functions in one Variable, once again go through
them. We shall also add a couple of new concepts which only will give sense later, but which are most
conveniently put here.

1) The faculty function n!

This is defined by

n! := 1 · 2 · · ·n for n ∈ N, and 0! := 1,

i.e. the product of the first n natural numbers with the convention 0! = 1 (the product of no
natural number is put equal to 1).

Warning. The notation is a little treacherous. In order to warn again later misunderstandings we
here calculate explicitly

(2n+ 1)! = 1 · 2 · · · (2n − 1) · (2n)(2n+ 1) = (2n − 1)!(2n) · (2n+ 1),

(2n)! = 1 · 2 · · · (2n − 2) · (2n − 1) · (2n)
= (2n − 2)!(2n − 1) · (2n) = (2(n − 1))! · (2n − 1) · (2n).

When one later applies the method of power series in the solution of differential equations, one
often makes errors in these formulæ, where there is a factor 2 (or in general �= 1) in front of n. ♦

10
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2) The binomial coefficients
�

α
n

�

.

These were introduced in e.g. Calculus 1a, Functions of one Variable, by
�

α
n

�

=
α · (α − 1) · · · (α − n+ 1)

1 · 2 · · ·n for α ∈ R, n ∈ N,

i.e. we have n factors in both the numerator and the denominator. Notice that the sum of a
“column” from the numerator and the denominator is a constant.

(α − j + 1) + j = α+ 1, j-th factor,

numerator denominator

and that one subtracts nothing in the first factor of the numerator. Due to this displacement of
the indices we only subtract n − 1 in the n-th factor of the denominator, because 0, 1, . . . , n − 1
are the n consecutive numbers, starting with 0.

11
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Note also the recursion formula
�

α
n+ 1

�

=
α − n

n+ 1

�
α
n

�

,

which is often preferred in numerical computations.

A practical convention is the extension to n = 0,
�

α
0

�

:= 1.

If α = p ∈ N and n ∈ N, then

�
p
n

�

=
p · (p − 1) · · · (p − n+ 1)

1 · 2 · · ·n =







p!
n!(p − n)!

for n ≤ p,

0 for n > p.

In fact, if n > p, and they are both natural numbers, then j = n − p ∈ N, and 0 must occur as a
factor in the numerator.

We emphasize
�

p
n

�

=
p!

n!(p − n)!
for n ≤ p and p ∈ N, and 0 otherwise.

3) The notation 00.

According to Calculus 1a, Functions of one Variable, 00 does not make sense. However, when we
restrain ourselves to power series, we have a latent limit x → 0 for x0. Therefore, when power
series are considered, we shall always use the practical convention

00 := 1,

even if this does not make sense in general!

The introduced conventions

0! := 1,
�

α
0

�

:= 1, 00 := 1,

correctly applied, will mean a huge relaxation in the theory of power series.

1.4 Standard power series

It is of paramount importance that one can recognize the most elementary standard power series.
These have already been given in Calculus 1a, Functions of One Variable.

It will here be convenient to split them into two different groups:

a) power like series, i.e. the radius of convergence is finite (for standard series usually 1),

b) exponential like series, i.e. the radius of convergence is always ∞.
The notion of radius of convergence will formally be defined later. Here it is just mentioned to explain
why we split the standard power series into to different classes.

12
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1.5 Power like standard series

These are again in a natural way divided into three subgroups:

i)







1
1− x

=
�∞

n=0 xn for |x| < 1,

1
1 + x

=
�∞

n=0(−1)nxn for |x| < 1,

ii)







(1 + x)p =
�p

n=0

�
p
n

�

xn for p ∈ N and x ∈ R (a polynomial),

(1 + x)α =
�∞

n=0

�
α
n

�

xn for |x| < 1 and α ∈ R,

iii)







ln(1 + x) =
�∞

n=1

(−1)n−1

n
xn, for |x| < 1,

Arctan x =
�∞

n=0

(−1)n
2n+ 1

x2n+1, for |x| < 1.

Remark 1.2 It is not possible here in the calculus of real functions to explain why ln(1 + x) and
Arctan x are naturally put into the same subgroup. This can only be seen clearly if one also has
Complex Function Theory at hand. Therefore, the reader just has to accept that this is a convenient
fact which still cannot be explained with the means we so far have at hand. ♦

In general, a power series is notated

∞�

n=0

anxn,

where the index n in an is in accordance with the exponent n in xn. The idea is to recognize the
structure of an in the three cases above.

Group i) is characterized by an is equal to either 1 or (−1)n, i.e. by a constant, and possibly with a
changing sign.

Group ii) is characterized by an being a binomial coefficient.

Group iii) is more tricky:

• ln(1 + x) is characterized by

an =
(−1)n−1

n
,

i.e. the index occurs only in the denominator supplied by a changing sign.

• Arctan x is characterized by

a2n = 0 and a2n+1 =
(−1)n
2n+ 1

,

where only odd exponents occur. As with ln(1+x) the index is only occurring in the denominator.

13

Repitition of important formulæ

Download free eBooks at bookboon.com



Calculus 3b

  

16  

Remark 1.3 One may wonder why

∞�

n=1

(−1)n−1

2n
x2n

cannot be found on the list. The reason is the following formal calculations, which later will be proved
to be true for |x| < 1,

∞�

n=1

(−1)n−1

2n
x2n =

1
2

∞�

n=1

(−1)n−1

n
(x2)n =

1
2
ln(1 + x2),

where one in the last equality substitute y = x2, then use the series for ln(1+y) and finally substitute
back again. ♦

1.6 Recognition of power like series

Since we still do not have a sufficient pool of examples, we can only set up a general procedure.

a) Given a power like series
�∞

n=0 anxn, i.e. the radius of convergence is finite (check the radius of
convergence).

b) Strip the coefficient an of its sign, |an|. If |an| is a fraction of polynomials in n, we decompose
after n, cf. section 1.1. Then each basic fraction, named bn in the following, is treated separately.

c) If

bn is: think of:

constant,
1

1± y
, |y| < 1,

binomial coefficient, (1± y)α, |y| < 1,

1
n

, ln(1± y), |y| < 1,

1
2n+ 1

, Arctan y, |y| < 1.

d) In c) we get a hint of the type of the series. Substitute y in a suitable way, expressed by x, and
add, if necessary suitable powers of x [remember to divide by this outside the sum, and remember
to add the additional assumption that x �= 0, because one is never allowed to divide by 0.] With
some luck this procedure will succeed in many cases – and in courses of Calculus in almost every
case.

Remark 1.4 It should be mentioned that one cannot reduce every power like series in this way. The
advantage of the theory of power series is that one by using it one can define new functions which
lie beyond the elementary theory of functions from e.g. Calculus 1a, Functions of one Variable . In
practical applications in engineering problems one can in this way design one’s own functions which
are convenient for the solution of a given technical problem. ♦
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1.7 Exponential like standard series

These are also in a natural way divided into three subgroups:

i) exp(x) =
∞�

n=0

1
n!

xn, exp(−x) =
∞�

n=0

(−1)n
n!

xn, x ∈ R,

ii) sinx =
∞�

n=0

(−1)n
(2n+ 1)!

x2n+1, sinh(x) =
∞�

n=0

1
(2n+ 1)!

x2n+1, x ∈ R,

iii) cosx =
∞�

n=0

(−1)n
(2n)!

x2n, cosh(x) =
∞�

n=0

1
(2n)!

x2n, x ∈ R.

They are all characterized by having a faculty function in the denominator.

Group i) has an given by
1
n!
, possibly supplied by a change of sign.

Group ii) contains only odd exponents, and a2n+1 is
1

(2n+ 1)!
, possibly supplied by a change of sign

(−1)n.

Group iii) contains only even exponents, and a2n is
1

(2n)!
, possibly supplied by a change of sign.
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Remark 1.5 The exponential like standard series are in some sense easier to treat than the power
like ones. There is, however, a small pitfall in the case of trigonometric and hyperbolic functions,
where the leap in the indices is 2. When we e.g. identify an in

sinx =
∞�

n=0

(−1)n
(2n+ 1)!

x2n+1 =
∞�

n=0

anxn

one is wrongly inclined to identify an by (−1)n/(2n+ 1)!. This is of course wrong, because the index
must follow the exponent, thus

a2n+1 =
(−1)n
(2n+ 1)!

og a2n = 0. ♦

1.8 Recognition of exponential like series

a) Given an exponential like series
�∞

n=0 anxn, i.e. the radius of convergence is infinite (check), and
the faculty function occurs only in the denominator.

b) Reduce an in a convenient way to a sum of terms, the numerators of which are constants – possibly
supplied by a factor (−1)n – and the denominators are pure faculty functions. Any such term is
denoted bn in the following.

c) If the denominator in bn is:

n! think of exp(y) or exp(−y),
(2n+ 1)! think of sin y or sinh y,

(2n)! think of cos y or cosh y.

d) In c) we get a hint of the type of the series. Choose a convenient substitution of y, expressed by x.
In particular be very careful by writing the correct exponent for the trigonometric and hyperbolic
functions. By some small pottering this procedure is usual successful – at least in courses of
Calculus.

Example 1.3 In order to illustrate the technique of introducing the auxiliary variable y, we shall
here show how we can find the function which is described by the series

f(x) =
∞�

n=0

1
(2n)!

xn.

a) Since (2n)! occurs in the denominator, the series is of exponential-type.

b) It is seen by an identification that an =
1

(2n)!
, and we are apparently ended in the pitfall mentioned

in the remark on page 16.

c) According to the list
�∞

n=0
1

(2n)!x
n must be written on either of the two ways

cos y =
∞�

n=0

(−1)n
(2n)!

y2n or cosh y =
∞�

n=0

1
(2n)!

y2n.
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d) It is again seen by an identification that we have the two possibilities

(−1)ny2n = xn i.e. y2n = (−1)nxn = (−x)n ≥ 0, n ∈ N,

or

y2n = xn ≥ 0, n ∈ N.

The former possibility can only occur, when x ≤ 0, and the latter possibility can only be satisfied,
when x ≥ 0. We therefore have the two cases:

i) If x ≤ 0, we can use y =
√
−x =

�

|x|, so

f(x) = cos y = cos(
√
−x) for x ≤ 0.

ii) If x ≥ 0, we use instead y =
√

x, so

f(x) = cosh y = cosh(
√

x) for x ≥ 0.

Summarizing we get

f(x) =
∞�

n=0

1
(2n)!

xn =
�
cos(

√
−x) for x ≤ 0,

cosh(
√

x) for x ≥ 0,

which could not be expected, if one has never seen applications of this time before. ♦

1.9 Integration of trigonometric polynomials

Problem: Find
�

sinm x · cosn x dx, m, n ∈ N0.

We shall in the following only consider one single term of the type sinm x · cosn x, of a trigonometric
polynomial, where m and n ∈ N0.

We define the degree of sinm x · cosn x as the sum m+ n.

There are here two main cases what integration is concerned: Is the term of odd or even degree?
These two cases are then again divided into two subcases, giving us a total of four different variants
by integration of a trigonometric function of the type above:

1) The degree m+ n is odd.

a) m = 2p even and n = 2q + 1 odd.

b) m = 2p+ 1 odd and n = 2q even.

2) The degree m+ n is even.

a) m = 2p+ 1 and n = 2q + 1 are both odd.

b) m = 2p and n = 2q are both even.
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1a) m = 2p even and n = 2q + 1 odd.

Apply the substitution u = sinx (corresponding to m = 2p even), and write

cos2q+1 x dx = (1− sin2 x)q cosx dx = (1− sin2 x)q d sinx,

so
�

sin2p x · cos2q+1 x dx =
�

sin2p x(1− sin2 x)q d sinx =
�

u=sin x

u2p · (1− u2)q du,

i.e. the problem is reduced to integration of a polynomial, followed by a substitution.

1b) m = 2p+ 1 odd and n = 2q even.

Apply the substitution u = cosx (corresponding to n = 2q even), and write

sin2p+1 x dx = (1− cos2 x)p cosx dx = −(1− cos2)p d cosx,

so
�

sin2p+1 x · cos2q x dx = −
�

(1− cos2 x)p · cos2q x d cosx = −
�

u=cos x

(1− u2)p · u2q du,

i.e. the problem is again reduced to integration of a polynomial followed by a substitution.
2) When the degree m+n is even, the trick is to use the double angle instead as integration variable.
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Here we use the formulæ

sin2 x =
1
2
(1− cos 2x), cos2 x =

1
2
(1 + cos 2x), sinx · cosx =

1
2
sin 2x.

2a) m = 2p+ 1 and n = 2q + 1 are both odd.

Rewrite the integrand in the following way:

sin2p+1 x · cos2q+1 x =
�
1
2
(1− cos 2x)

�p �
1
2
(1 + cos 2x)

�q

· 1
2
sin 2x.

The problem is now reduced to the case 1b), so by the substitution u = cos 2x we get
�

sin2p+1 x · cos2q+1 x dx = − 1
2p+q+1

· 1
2

�

u=cos 2x

(1− u)p(1 + u)q du.

We see that the problem is again reduced to integration of a polynomial followed by a substitution.

2b) m = 2p and n = 2q are both even.

This is the most difficult case. First rewrite the integrand in the following way:

sin2p x · cos2q x =
�
1
2
(1− cos 2x)

�p �
1
2
(1 + cos 2x)

�q

.

We see that on the left hand side the degree is 2p+ 2q in (cosx, sinx), while the degree is halved on
the right hand side to p + q in (cos 2x, sin 2x), i.e. we now use the double angle. On the other hand
we are forced to replace one single term by many terms, which now must be treated separately.

Since we halve the degree, whenever 2b) is applied and since the other cases can be calculated imme-
diately, the problem can be solved in a finite number of steps.

Example 1.4 Let us calculate the integral
�

cos6 x dx.

The degree 0 + 6 = 6 is even, and both m = 0 and n = 6 are even. Hence, we are in case 2b). When
we switch to the double angle we get the following calculation of the integrand

cos6 x =
�
1
2
(1 + cos 2x)

�3

=
1
8
(1 + 3 cos 2x+ 3 cos2 2x+ cos3 2x).

Integrations of the first two terms are straightforward:

1
8

�

(1 + 3 cos 2x) dx =
1
8

x+
3
16
sin 2x.

The third term is again of type 2b), so we have to double the angle again,

1
8

�

3 cos2 2x dx =
3
8

�
1
2
(1 + cos 4x) dx =

3
16

x+
3
64
sin 4x.
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The last term is of the type 1a), so

1
8

�

cos3 2x dx =
1
8

�

(1− sin2 2x) · 1
2

d sin 2x =
1
16
sin 2x − 1

48
sin3 2x.

Summarizing we get after a reduction
�

cos6 x dx =
5
16

x+
1
4
sin 2x − 1

48
sin3 2x+

3
64
sin 4x. ♦

1.10 Use of pocket calculators

The use of pocket calculators will usually be admitted; but they may be dangerous to use on series.
The reason is that there are still lacking a lot of recognizable series in the memory of the pocket
calculator (the known series are typically the standard series in the previous section, and no more).
If one e.g. type in

�

(· · · , n, 1,∞)

on a TI-92 or TI-89 or HP-48, one of the following three events will occur:

1) We are so lucky that the pocket calculator actually recognizes the series. Then we get the right
answer, but since the pocket calculator typically only knows the standard series above we might
as well have used tables instead. This is, however, a minor point.

2) The pocket calculator does not recognize the series and it chooses to stop. The pocket calculator
is rescued, but we have not obtained the desired solution.

3) (Worst case!) The pocket calculator does not recognize the series, but continues its calculations! I
have once myself in a test experienced this phenomenon, where the calculations did not stop, until
I had removed all the batteries (including the backup battery). All my information was lost, but
I rescued the pocket calculator. This test was provoked by one of my students who did not know
how to stop the calculations. The guarantee had to give him a new pocket calculator, and he was
an experience richer!

It is always one’s own responsibility if one relies on results from pocket calculators. These also contains
errors. For instance the older versions of TI-92 and TI-89 will give wrong results by calculating

� x

−2

1√
t2 − 1

dt for x < −1,

because they were simply missing some numerical signs in their catalogues of standard functions. This
has been reported back to Texas Instruments, so I guess that at least this error does not exist any
more
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Finally, I have also found wrong results in earlier versions of MAPLE in integrals like e.g.

� π/2

0

1
1 + tanα x

dx =
π

4
, α ∈ R,

when α = 1/2, 3/2, 5/2, etc., and there are continuously found new examples. In some cases I have
found some other more advanced examples where even MAPLE cannot give the right answer without
a very active help of the applier. Hence,

Never trust blindly a result found by a pocket calculator or by MAPLE or Mathematica. These
utilities also contain errors.

On the other hand, since they exist, they should also be used, but do not forget to use your
brain as well!
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2 Real sequences, folklore

In this short chapter we present some “dirty tricks” which may be useful when solving problems with
simple sequences.

2.1 Rules of magnitude

From Calculus 1a, Functions of one Variable we already know that

lnx

xα
→ 0 for x → ∞, when α > 0;

x · lnx → 0 for x → 0+,

(a power function “dominates” any logarithm).

xα

ax
→ 0 for x → ∞, when α > 0 and a > 1,

(an exponential “dominates” any power function).

We here add
an

n!
→ 0 for n → ∞, when a > 0,

(a faculty function “dominates” any exponential),

Proof. By choosing N ≥ 2a, it is easily seen that for p ∈ N and p → ∞ we have

|aN+p − 0| = aN+p =
a · a · · · a · a · · · a

1 · 2 · · ·N · (N + 1) · · · (N + p)
≤ aN ·

�
1
2

�p

→ 0.

Furthermore,

n!
nn

→ 0 for n → ∞.

Just modify the proof above,

2.2 Square roots etc.

Problem: Assume that an → ∞. How can we estimate expressions like
√

an+1 −
√

an,

where the type of convergence is “∞−∞”? Cf. page 26.

Rewrite the difference in the following way:

√
an+1 −

√
an =

(√an+1 −
√

an) · (
√

an+1 +
√

an)√
an+1 +

√
an

=
an+1 − an√
an+1 +

√
an

,

and proceed with the right hand side (rules of calculation etc.).

This method can be extended. We have for instance

3
√

an+1 − 3
√

an =
an+1 − an

�
3
√

an+1

�2 + 3
√

an+1 · 3
√

an +
�

3
√

an

�2 ,

which follows immediately by a multiplication by the denominator.
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2.3 Taylor’s formula

We let ε(x) → 0 for x → 0 denote some unspecified function, which tends towards 0 for x tending
towards 0. From Calculus 1a, Functions of one Variable, we retrieve the following important expansions
of first order:

1
1−x = 1 + x+ x · ε(x), 1

1+x = 1− x+ x · ε(x),

(1 + x)α = 1 + αx+ x · ε(x),
√
1 + x = 1 + 1

2x+ x · ε(x),

ln(1 + x) = x+ x · ε(x), Arctan x = x+ x2ε(x),

exp(x) = 1 + x+ x · ε(x), exp(−x) = 1− x+ x · ε(x),

sinx = x+ x2ε(x), cosx = 1 + x · ε(x),

sinhx = x+ x2ε(x), coshx = 1 + x · ε(x).

These are the most common cases, but some expansions of higher order may occur, cf. the following
examples. They are typically applied by a first approximation.

Example 2.1 a) We get from sinx = x+ x2ε(x) that

sinx

x
=

x+ x2ε(x)
x

= 1 + x · ε(x)→ 1 for x → 0.

A variant for sequences is obtained by replacing x by 1
n for n → ∞:

n · sin 1
n
= 1 +

1
n

ε

�
1
n

�

→ 1 for n → ∞.

b) When the same first order approximation is used on (sinx − x)/x3, we get

sinx − x

x3
=

x+ x2ε(x)− x

x3
=

ε(x)
x

,

which is of the type “0/0” for x → 0. The solution here is to expand sinx to a higher order

sinx = x − 1
3!

x3 + x4ε(x) = x − 1
6

x3 + x4ε(x).

Let us try again,

sinx − x

x3
=

x − 1
6x3 + x4ε(x)− x

x3
= −1

6
+ x · ε(x)→ −1

6
for x → 0,

and this time we succeed.

c) In order to find the order of expansion in general, always start by finding the order of the roots of
the denominator. This is 1 in a), because x = x1, and it is 3 in b). We shall now consider

cosx − 1 + 1
2x2

cos(x2)− 1 for x → 0.
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If we put y = x2, we get the denominator

cos(x2)− 1 = cos y − 1 = 1− 1
2

y2 + y2ε(y)− 1 = −1
2

y2 + y2ε(y) = −1
2

x4 + x4ε(x),

because both ε(y) and ε(x) tend towards 0 for x → 0, since y = x2.

The reduction shows that the denominator has a root of order 4 in x = 0. Consequently, the
numerator shall also be expanded up to the fourth order. Since

cosx = 1− 1
2!

x2 +
1
4!

x4 + x5ε(x) = 1− 1
2

x2 +
1
24

x4 + x5ε(x),

we get for the numerator

cosx − 1 + 1
2

x2 = 1− 1
2

x2 +
1
24

x4 + x5ε(x)− 1 + 1
2

x2 =
1
24

x4 + x5ε(x),

hence by insertion

cosx+ 1
2x2

cos(x2)− 1 =
1
24x4 + x5ε(x)
− 1

2x4 + x4ε(x)
=

1
24 + xε(x)
− 1

2 + ε(x)
→

1
24

− 1
2

= − 1
12
for x → 0.

A variant for sequences is obtained, when x is replaced by 1
n for n → ∞:

cos
�

1
n

�
− 1 + 1

2
1

n2

cos
�

1
n2

�
− 1 → − 1

12
for n → ∞. ♦

In the applications we have more typically a quotient like
f(n)
g(n)

for n → ∞. This type of problem is

transformed back to Taylor’s formula by the substitution n = 1/x, i.e. x = 1/n → 0 for n → ∞.

2.4 Standard sequences

It should in general be allowed to refer to the following standard sequences without any proof:

1
n
→ 0 for n → ∞,

1
nα

→ 0 for n → ∞ og α > 0,

n
√

n → 1 for n → ∞,
�

1 +
1
n

�n

→ e for n → ∞,
�

1 +
a

n

�n

→ ea for n → ∞, a ∈ R,

(−1)n+1 is divergent, though bounded,

1 +
1
2
+
1
3
+ · · ·+ 1

n
is divergent, and unbounded.
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3 Real sequences; description of procedures for different types
of problems

In this chapter we suggest some methods for solving problems containing sequences. The list of methods
is of course far from complete, if such a list does exist at all.

3.1 Sequences

1) Given a sequence (an) and a possible limit a ∈ R. Show that an → a for n → ∞.

a) Show directly that |a − an| → 0 for n → ∞.

Example 3.1 Show that an =
n

n+ 1
converges towards a = 1:

|a − an| =
�
�
�
�
1− n

n+ 1

�
�
�
�
=

�
�
�
�

(n+ 1)− n

n+ 1

�
�
�
�
=

1
n+ 1

→ 0 for n → ∞. ♦
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b) Split the sequence (an) by using the rules of calculations into subsequences and exploit the
convergence of each of these.

Example 3.2 Show that an =
n

n+ 1
+ (−1)n · 2−n converges towards a = 1.

We write the sequence in the form an = bn + cn, where bn =
n

n+ 1
→ 1 for n → ∞ due to the

example above, and cn = (−1)n · 2−n → 0 for n → ∞, because

|0− cn| =
1
2n

→ 0 for n → ∞. ♦

2) Given a sequence (an) with no hint of a prescribed limit. Examine whether (an) is convergent or
divergent.

a) Check if there is some obvious candidate for a limit. If so, go back to 1) above.
b) Split (an) by means of the rules of calculations into subsequences like e.g.

bn ± cn, bn · cn,
bn

cn
,

and combinations of these possibilities. We treat separately each of the subsequences. If they
are all convergent, and no denominator is 0, then the convergence follows by the rules of
calculations.

Example 3.3 For

an =
cos

�
1
n

�

cosh
�
1
n

�

we put

bn = cos
�
1
n

�

→ cos 0 = 1, cn = cosh
�
1
n

�

→ cosh 0 = 1 for n → ∞,

hence,

an =
bn

cn
→ b

c
=
1
1
= 1 for n → ∞. ♦

By the splitting in b) there will often occur some illegal types of convergence like

∞−∞, 0 · ∞,
∞
∞ , eller

0
0

.

We shall deal with these types in the following.
c) c) Type ∞−∞, i.e. an = bn − cn, where bn → ∞ and cn → ∞ for n → ∞.

Rewrite the sequence by e.g. putting everything on the same fraction line or by using that

bn − cn =
b2
n − c2

n

bn + cn
, or similarly.

There are of course here many variants.
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Example 3.4 Let an =
√

n2 + n+ 1 − n. Put bn =
√

n2 + n+ 1 and cn = n. Then bn → ∞
and cn → ∞ for n → ∞. Rewrite the expression like above,

an = bn − cn =
b2
n − c2

n

bn + cn
=
(n2 + n+ 1)− n2

√
n2 + n+ 1 + n

=
n+ 1

n

��

1 +
1
n
+
1
n2
+ 1

�

=
1 +

1
n

�

1 +
1
n
+
1
n2

→ 1
1 + 1

=
1
2

for n → ∞,

because
�

1 +
1
n
+
1
n2

→
√
1 + 0 + 0 = 1 for n → ∞. ♦

d) Type 0 · ∞, i.e. an = bn · cn, where bn → 0 and cn → ∞ for n → ∞.

Here we have several variants:
i) Introduce some dn → ∞ for n → ∞, where cn/dn is convergent, and where dn is simpler
than cn. Then consider

an = (bn · dn) ·
�

cn

dn

�

.

Example 3.5 Let an = sin
�
1
n

�

·
√

n2 + 1. Then bn = sin
�
1
n

�

→ 0 and cn =
√

n2 + 1→
∞ for n → ∞. Choose the simpler sequence dn = n → ∞. Then

an = (dn · bn) ·
�

cn

dn

�

=
�

n · sin
�
1
n

��

·
√

n2 + 1
n

=
sin

�
1
n

�

1
n

·
�

1 +
1
n2

→ 1 · 1 = 1

for n → ∞, because sinx

x
→ 1 for x =

1
n
→ 0 and

�

1 +
1
n2

→ 1 for n → ∞. ♦

ii) If bn → 0+, then
1
bn

→ ∞. In this case we rewrite the expression in the following way,

an = bn · cn =
cn

�
1
bn

� ,

which is of the type
∞
∞ . Then contain like in med e).

e) Type
∞
∞ , i.e. an = bn/cn, where bn → ∞ and cn → ∞ [or −∞].

Isolate the dominating terms in both the numerator and the denominator, and divide by the
dominating term of the denominator.
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Example 3.6 Let

an =
n3 + 2n2 − 7n − 20
n4 + 173n3 + 1135

.

If we put bn = n3+2n2 −7n−20 and cn = n4+173n3+1135 (> 0 for all n, so we never divide
by 0), we see that bn → ∞ and cn → ∞ for n → ∞. The dominating term in bn is n3, and the
dominating term in cn is n4. Rewrite in the following way,

an =
n3 + 2n2 − 7n − 20
n4 + 173n3 + 1135

=
n3

�

1 +
2
n
− 7

n2
− 20

n3

�

n4

�

1 +
173
n
+
1135
n4

�

=
1
n
·
1 +

2
n
− 7

n2
− 20

n3

1 +
173
n
+
1135
n4

→ 0 · 1 + 0− 0− 0
1 + 0 + 0

= 0 for n → ∞. ♦

f) Type
0
0
, i.e. an = bn/cn, where bn → 0 and cn → 0 for n → ∞.

In this case one will usually apply Taylor’s formula.

Example 3.7 Let

an =
Arctan

1
n

tan
1
n

= cos
�
1
n

�

·
Arctan

1
n

sin
1
n

.

Here cos
1
n
→ 1 for n → ∞, so this factor does no harm. When we write x =

1
n
→ 0 for n → ∞,

we get by Taylor’s formula, that

Arctan
1
n

sin
1
n

=
Arctan x

sinx
=

x+ x2ε(x)
x+ x2ε(x)

=
1 + xε(x)
1 + xε(x)

→ 1 for n → ∞.

Using the rules of calculations we get that an → 1 · 1 = 1 for n → ∞. ♦

g) In some malicious cases it is not possible to find the exact value of the limit. In such cases it
is extremely important first to prove the convergence, by e.g. monotonous convergence.

i) Show that the sequence is weakly increasing (decreasing).
ii) Show that the sequence is bounded from above (from below).

It is first after this analysis that one can trust a limit found on e.g. a pocket calculator. (Be
careful here, because experience has shown that in some cases the pocket calculator cannot be
stopped again!)
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Example 3.8 It is easily proved that

an = 1 +
1
2
+
1
3
+ · · ·+ 1

n

is increasing and unbounded i.e. divergent. If one dares to risk one’s pocket calculator (check
the guarantee in advance!) and type in an, and then let the pocket calculator perform the limit
n → ∞, we can expect one of the following three things to happen:
i) The pocket calculator recognizes the sequence, which nevertheless may be considered to be
very unlikely.

ii) The most likely situation is that the pocket calculator just cannot be stopped. If e.g. the
rounding off is 10−14, then the pocket calculator must add 1014 numbers in even the most
reasonable setup. We have had some bad experiences, where the command could not be
stopped.

iii) Finally, if the pocket calculator is able to give a finite number as the result, we may also
have the problem that due to the rounding off, an will be considered as a constant for
n ≥ N , and every element in the sequence, hence also aN , is finite. But due to the rounding
off this cannot be the true answer. ♦
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h) Sequences of the structure of segments like e.g.

an =
1

n+ 1
+

1
n+ 2

+ · · ·+ 1
2n

(sum of n terms following following some pattern) can in some cases be considered as means
for some integral. The limit of an is then the value of this integral. However, students of today
will probably not use this method by their first encounter with the theory of convergent series.

3.2 Iterative sequences

When we are concerned with practical solutions of mathematical models, sequences of this type are
very important because the nature in general does not behave in such a way that calculus taught in
high schools or in the first years at universities will suffice. In the applications there are especially
three types of problems which are of interest:

1) Solution of a transcendent equation like

f1(x) = 0 or f2(x) = x,

where f1(x) and f2(x) are given continuous functions.

2) Solutions of linear difference equations like e.g.

xn+2 + an+1xn+1 + bnxn = 0, n ∈ N0,

where (an) and (bn) are given sequences.

3) Solution of linear differential equations with variable coefficients.

The linear difference equations can in particular be found in connection with solution of linear dif-
ferential equations of second order by the method of power series, a section which we refer to in
this short description. They may also occur in other technical applications, like e.g. in theoretical
telecommunications.

Remark 3.1 When some linear differential equation with variable coefficients cannot be solved by the
method of power series it may still be solved by iteration. The idea is very simple, though no longer
in the usual examination requirements at the universities: A hint is to take an outdated textbook
in mathematics, in which the proof of the existence and uniqueness theorem for linear differential
equations still can be found. Rewrite this proof for e.g. MAPLE. It is remarkable that an old proof
which a long time ago sunk into oblivion now again can be used with the new advanced computer
programs at hand. ♦

The proofs of the first and third case above rely on the important fix point theorem. This theorem will
be treated more thoroughly in the next chapter. It remains the solution of a transcendent equation
like e.g.

f1(x) = 0 or f2(x) = x,

where we assume that f1 and f2 are continuous. In the former equation we shall find the real zeros
of f(x), and in the latter equation we shall find fix points of the function f , if zeros or fix points do
exist. The two problems are obviously equivalent,

g1(x) := f1(x) + x = x or g2(x) := f2(x)− x = 0.
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The fix point version is rewritten as an iterative sequence by

an+1 = f(an), n ∈ N0,

where a0 is some prescribed initial value which we to some extent can choose ourselves.

Analysis. Draw the graphs of y = f(x) and y = x, respectively. The fix points are the intersection
points. Use the figure to find a suitable initial value a0 for the iterative process.

We get a variant if the iterative sequence is given by the equation an+1 = f(an), where f(x) is a
continuous function. In that case we argue in the following way:

If (an) is convergent with the limit a, then we get by taking the limit in the recursion formula, that

lim an+1 = f(lim an), i.e. a = f(a),

where the continuity of f assures that one can interchange the function and the limiting process. Then
we solve the equation f(a) = a in order to find the possible limits a. (We may get more possibilities,
where some of them do not have to be the correct limit).

Check of convergence. When we have found the possible limits a, we must not forget also to prove
that the sequence is convergent. We shall typically show that

|a − an| → 0 for n → ∞.

Here we can use the methods, which have been sketched in the previous section in this chapter.

3.3 Sequences of functions

The concept of a sequence of functions is derived from the concept of sequence of numbers, so it is
quite reasonable to treat problems of sequences of functions right after the treatment of sequences of
numbers. It will be shown later in the text why the sequences of functions are so important. The first
problem follows quite naturally:

Problem. Given a sequence of functions (fn(x)), fn : I → R, n ∈ N.

Examine whether (fn(x)) is pointwise convergent or not.

Choose any fixed x ∈ I. Check whether the sequence of numbers (fn(x)) is convergent or divergent,
cf. 1) and 2) in section 3.1..

Since x ∈ I usually is considered as a variable, it may be helpful in the beginning of the learning
process temporarily to put x = a and then examine the sequence of numbers (fn(a)) instead, because
a traditionally is considered as a constant. By the end of such a course in calculus this trick should
no longer be necessary.

Problem. Given a sequence of functions (fn(x)), fn : I → R, n ∈ N.

Examine whether (fn) is uniformly convergent or not.

a) First check if all the functions fn(x) are continuous. They usually are, but in principal they do not

have to be continuous. When this is not the case one has to start from the very beginning only
using the definition, and one cannot proceed with b) etc. below.
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b) Check if (fn(x)) is pointwise convergent.

1) If ‘no’, then the sequence is neither pointwisely nor uniformly convergent.

2) If ‘yes’, find the pointwise limit function f(x), and proceed with c) below.

c) If the pointwise limit function f(x) is not continuous, it follows from a) and a theorem in the next
chapter that (fn(x)) is not uniformly convergent.

If instead f(x) is continuous proceed with d) below.

d) Remove the variable x by an estimate like

|fn(x)− f(x)| ≤ sup
x∈I

|fn(x)− f(x)| ≤ an, n ∈ N,

where an is not depnding of x.

If an → 0 for n → ∞, then (fn) is uniformly convergent with the limit function f(x).

The method of examination of uniform convergence may be expressed in a flow diagram. See the next
page.

Remark 3.2 In the real life one may obtain the last possibility. However, exercises in calculus courses
are always constructed in such a way that if one does not make errors in one’s calculations, then one
will always end up in one of the three boxes to the right, and the question of uniform convergence will
at the same time have been answered. ♦

Interchange of the limit process and the integration.

a) Show that (fn)→ f uniformly, cf. the above.

b) Refer to some suitable theorem.

c) Interchange the limit process and the integration,

lim
n→∞

�

I

fn(x) dx =
�

I

lim
n→∞

fn(x) dx =
�

I

f(x) dx.

Remark 3.3 Point c) must not be applied, if we only have got pointwise (and not uniform) conver-
gence, fn(x) → f(x) for n → ∞. Instead one has to calculate an =

�

I
fn(x) dx and check if (an) is

convergent or not, cf. 2), because (an) is a sequence of numbers and not a sequence of functions. ♦

Interchange of the limit process and the differentiation.

Let (fn), fn : I → R, be a sequence of differentiable functions with continuous derivatives f �
n. (Check!)

a) Check if fn(x)→ f(x) pointwisely for n → ∞, cf. above.
If ‘no’, we cannot interchange the two processes.

If ‘yes’, then f(x) exists, so we can proceed with b).
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Find a better estimate of an,

or try to show that (fn) is not uniformly convergent.

One can always ask someone who knows more about the subject.

�
no

Estimate |fn(x)− f(x)| ≤ an

for all x ∈ I.

Does an → 0 for n → ∞?

�
yes (fn) is both pointwisely

and uniformly convergent.

�
yes

Is the limit function

f(x) continuous?
�

no (fn) is pointwisely,

but not uniformly convergent.

�
yes

Does fn(x)→ f(x) converge

pointwisely for n → ∞?
�

no (fn) is neither pointwisely

nor uniformly convergent.

Figur 1: Flow diagram for uniform convergency, assuming that all fn(x) are continuous.
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b) Check if the derivatives f �
n(x)→ g(x) converge uniformly for n → ∞, cf. above.

If ‘yes’, it follows from some theorem in the text book (quote it!) that

f �(x) = g(x) = lim
n→∞

f �
n(x).

If ‘no’, we have got a problem, which needs some rethinking.

Remark 3.4 One should in elementary courses on sequences never get the answer ‘no’ in b). If one
does (still in elementary courses), one must have made an error. (Find it!) In real life one can easily
get ‘no’ in b), because the nature is here dictating the mathematics, and not the other way round.
Fortunately there exist some more advanced mathematical disciplines, which can solve the problem.
♦
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4 General series; tricks and methods in solutions of problems

4.1 Definition

The concept of a series is derived from the concept of sequences (cf. the previous chapters) and they
must not be confused. One should therefore notice the difference between the definition below and the
definition of a sequence.

By a series we shall understand a symbol like
�∞

n=1 an or
�∞

n=N an or similarly, where one imagine
that all the numbers an have been added for n in the index set {1, 2, . . . } or {N, N + 1, . . . }, or
similarly, given by the summation sign in the prescribed order.

In order to be able to use series in our calculations we need a new concept, namely convergence.

Definition 4.1 We say that a series
�∞

n=1 an is convergent (divergent), if and only if the correspond-
ing sequence of segments

sn := a1 + a2 + · · ·+ an =
n�

k=1

ak

is convergent (divergent).

In case of convergence the series is given the sum

s =
∞�

n=1

an := lim
n→∞

sn = lim
n→∞

n�

k=1

ak.

Remark 4.1 In words, this means that the meaningless concept of an infinite sum is traced back to
finite sums where one adds more and more terms, until the index set has been exhausted. We are in
this interpretation closely bound to the fact that the index set should be set up in a sequence – one
says that the index set is ordered. ♦

Contrary to so many other mathematical definitions it is actually possible from time to time to use
definition 4.1 in practical problems. More of this later.

4.2 Rules of calculus

We have only got rules of calculus for convergent series, and even these may be very treacherous. One
should in particular be very careful when one applies the following one:

Theorem 4.1 Assume that both
�∞

n=1 an and
�∞

n=1 bn are convergent series (check!) with the same
summation index set (check!), and α and β are two real numbers. Then

α
∞�

n=1

an + β

∞�

n=1

bn =
∞�

n=1

(αan + βbn).

Remark 4.2 (Important). This equality sign is not symmetric! The right hand side may be conver-
gent, while neither of the two series on the left hand side is convergent!

If e.g. an = (−1)n and bn = (−1)n+1, and α = β = 1, then both
�∞

n=1 an and
�∞

n=1 bn are divergent,
while

∞�

n=1

(αan + βbn) =
∞�

n=1

0 = 0 is convergent! ♦
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Later in the applications we shall often use this rule from the right towards the left, i.e. the illegal way!
In that case one shall always check afterwards if the two subseries

�∞
n=1 an and

�∞
n=1 bn indeed are

convergent. ♦

Remark 4.3 There is no similar rule for the product:
∞�

n=1

anbn is not equal to
∞�

n=1

an ·
∞�

n=1

bn,

a statement which unfortunately is often seen at examinations. Of course one cannot just plug in
summation signs at pleasure in front of factors of a product! ♦

4.3 Change of index

If the domains of summation for two convergent series
�∞

n=0 an and
�∞

n=p bn are not the same, then
we cannot directly apply the rules of calculus. We must first perform a change of indices on one of
the two index sets. In the example above it will be quite natural to change the index of

�∞
n=p bn,

such that the summation starts by n = 0. Notice, however, that one can easily get into that situation
where it would be more convenient to change the summation domain in

�∞
n=0 an to start from n = p.

There is here no general rule.

The procedure is the following:

a) Introduce a new variable m by n = m+ p. Then m = 0 for n = p, and m = 1 for n = p + 1, etc.
Hence we get by the substitution

∞�

n=p

bn =
∞�

m=0

bm+p.

As a check one examines the first term in the two series: The first term on the left hand side is bp,
and the first term on the right hand side is b0+p = bp, so the two series contain the same terms as
previously, this time arranged in the same order.

b) Delete one of the arcs in the letter “m”, so that one again writes “n”,
∞�

n=p

bn =
∞�

m=0

bm+p =
∞�

n=0

bn+p.

In the example in the beginning we therefore get
∞�

n=0

an +
∞�

n=p

bn

� �� �

different
summation sets

=
∞�

n=0

an +
∞�

n=0

bn+p

� �� �

same summa-
tion set

=
∞�

n=0

{an + bn+p},

assuming that both series are convergent.

Warnings of the transformation: If an index is multiplied by a constant, which often occurs in
connection with a power series, then one must be very careful with step a) above. We have for instance

∞�

n=1

a 2n
����

even

=
∞�

m=0

a2(m+1) =
∞�

m=0

a2m+2 =
∞�

n=0

a2n+2 �=
∞�

n=0

a2n + 1
� �� �

odd

,
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where the following wrong variant is often seen at examinations
∞�

n=1

1
(2n)!

a2n =
∞�

n=0

1
(2n+ 2)!

a2n+2 �=
∞�

n=0

1
(2n+ 1)!

a2n+1. ♦

4.4 A general advice

Never use the General Principle of Convergency in practical problems! The General Principle of Con-
vergency for series is very important in theoretical considerations, but not at all in practice. And even
if one should be so lucky to use it correctly, there will later be shown some other criteria which will
give the same result in a much easier way with much more information.

4.5 Elementary standard series

We collect here some standard series for later reference.

1) A quotient series

If −1 < k < 1, then
∞�

n=0

kn = 1 + k + k2 + · · ·+ kn + · · · = 1
1− k

where we have the variant
∞�

n=1

kn = k
∞�

n=0

kn =
k

1− k
.

The quotient series is coarsely divergent for |k| ≥ 1.
Notice that the sequence of segments sn for every k ∈ C is given by

sn =
n�

j=0

kj = 1 + k + · · ·+ kn =







kn+1 − 1
k − 1 for k �= 1,

n+ 1 for k = 1.

This sequence of segments occur fairly often in problems. When k �= 1, we get the result by
multiplying by k − 1.

2) The harmonic series

∞�

n=1

1
n

is divergent!

Remark 4.4 The traditional wrong argument here is the following: “Since an = 1/n → 0 for
n → ∞, the series must be convergent, because it satisfies the necessary condition of convergence.”
The necessary condition of convergence is unfortunately not sufficient in this case. ♦

3) The alternating harmonic series is convergent with the sum

∞�

n=1

(−1)n−1 · 1
n
= ln 2.
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4) slowly convergent/divergent series.

The series
∞�

n=1

1
nα

,

∞�

n=2

1
n
· 1
(lnn)α

,

∞�

n=3

1
n · lnn

· 1
(ln lnn)α

, etc.

are (slowly) convergent for α > 1 and (slowly) divergent for α ≤ 1.
We here say that the convergence/divergence is slow, in order to express that we have absolutely no
chance in calculating the value of the series by using pocket calculators or MAPLE. For instance,
if we let a pocket calculator add the first 106 terms of the (divergent) harmonic series above, it
is easy by applying the integral test that the sum has barely passed 21, so one would be tempted
wrongly to conclude that the series is convergent. (Intuitively 21 lies “very far away” from infinity).
The importance of these slowly convergent series does not lie in their explicit sums, but in the fact
that they can be used in the comparison test in order to decide if another series is convergent or
divergent.

5) Important special cases.

∞�

n=1

1
n2
=

π2

6
and

∞�

n=1

1
n4
=

π4

90
.
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4.6 Types of Convergence

1) Coarse divergence.

We say that the series is coarsely divergent if the necessary condition for convergence is not
satisfied, i.e. if

an � 0 for n → ∞.

Although this terminology is very practical, it is not commonly used, so one may not find the term
“coarse divergence” in the textbooks. The reason for its introduction here will be made clear in
the following.

2) Absolute convergence.

The series
�∞

n=1 an is said to be absolutely convergent, if

∞�

n=1

|an| is convergent.

Notice that we have
�
�
�
�
�

∞�

n=1

an

�
�
�
�
�
≤

∞�

n=1

|an|.

3) Conditional convergence.

The series
�∞

n=1 an is said to be conditionally convergent, if it is convergent, but not absolutely
convergent.

4) If a series is not of any of the types above, it is called divergent (though not coarsely divergent).

The type of convergence for a series can be found by going through the following flow diagram.

In any course of Calculus the problems will always be of a type such that all five results can only
occur in connection with Fourier series, where one often can make use of other results. The Fourier
series are treated in the following Calculus 4b, Fourier Series, Systems of Differential Equations and
Eigenvalue Problems.

Whenever one is only considering power series and one has made no error in the calculations one
will usually only end in one of the three upper boxes on the right hand side in the flow diagram.
We therefore have a weak test saying that if we do not end here in this particular case, then we
have probably made an error in our calculations. In that case one should start again from the very
beginning.

In the real life where the nature is governing we can of course get any of the five boxes of results.

No matter how a problem is formulated, experience shows that this flow diagram is optimal and the
closest one can get to some standard procedure.
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D. Ask an expert or give up.
�
cannot be decided

�
�

�
�

���

no

The series
�∞

n=1 an is

divergent

C. Is the series cond. conv.?

Can Leibniz’s cond. be applied? �
yes The series

�∞
n=1 an is

conditionally convergent.

�
ja

B. Is the series absolutely conv.?

Is
�∞

n=1 |an| < ∞ ?
�

yes
The series

�∞
n=1 an is

absolutely convergent.

�
yes

A. Is the series coarsely divergent?

Will an � 0 for n → ∞?
�

yes
The series

�∞
n=1 an is

coarsely divergent.

Figur 2: Flow diagram for types of convergence.

4.7 An elaboration on the flow diagram.

A) Always start by checking the condition an � 0 for n → ∞.

B) If one has reached this box, then the necessary condition an → 0 for n → ∞ for convergence is
fulfilled, so we shall no longer bother with that condition in the following.

Write
�∞

n=1 |an| (reduce it if possible) and apply one of the criteria of convergence (see the
following) in order to check whether

�∞
n=1 |an| is convergent or divergent.

C) If one has come to this box, then the only method known within the elementary Calculus is Leib-
niz’s criterion. Since Leibniz’s criterion is considered as difficult by the students, it is recommended
not to use it, unless it is absolutely necessary!

D) If one in an elementary course of Calculus ends in this box, one has most probably made an error
in the calculations. When we end here in real life, we shall later in the section on Leibniz’s criterion
give a more general test.

4.8 Convergence tests

The common convergence tests are in a natural way divided into five groups. Notice that no conver-
gence test is universal in the sense that it can be applied in all cases, so it is recommended that one
always starts by searching that particular group of tests which is best suited for a given situation.

Furthermore, there exist some overlaps, so more tests can often be applied on the same problem.
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If one has the access to the literature from about 1900, one sees that the tests in each group can be
supplied by more of the same kind.

I Divergence test.

1) Test for coarse divergence, an � 0 for n → ∞.

II General criteria of convergence.

2) Comparison test.

5) Equivalence test.

III Comparison with a quotient series.

3) Quotient test (remember to check |an| �= 0 for n ≥ N).

4) Root test (remember the numerical sign).

IV More advanced tests (check the assumptions!)

6) Integral test.

7) Leibniz’s criterion.

V Other methods.

8) Telescopic series by decomposition and convergence of a sequence of segments of a series.

Elaborating comments to the convergence tests:

Warning. We introduce in some of these tests an auxiliary sequence. The limit of this auxiliary
sequence must not be confused with the sum of the series (which is often postulated by students
at their examination). They are only introduced in order to decide whether we have convergence or
divergence.

1) Test of coarse divergence.

If an � 0 for n → ∞, then the necessary condition for convergence is not fulfilled, and the series
�∞

n=1 an is coarsely divergent.

If some series is coarsely divergent, then we have obtained our answer, and we can save ourselves
for any other investigation of convergence. It is therefore highly recommended that one always
start with this test.

2) Test of comparison (two variants).

Let 0 ≤ an ≤ bn for every n ∈ N, i.e. every terme is ≥ 0. (Check!) Then we have formally,

0 ≤
∞�

n=1

an ≤
∞�

n=1

bn ≤ ∞.

A) If the larger series
�∞

n=1 bn is convergent, then the smaller series
�∞

n=1 an is also convergent,

0 ≤
∞�

n=1

an ≤
∞�

n=1

bn < ∞.
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B) If the smaller series
�∞

n=1 an is divergent, then the larger series
�∞

n=1 bn is also divergent,

∞�

n=1

bn ≥
∞�

n=1

an =∞.

3) The ratio test.

An important assumption: It is (still) not allowed to divide by 0, so one should always check that
an �= 0 for n ≥ N for some constant N .

Assume that the numerical sequence of quotients is convergent,
�
�
�
�

an+1

an

�
�
�
�
→ c for n → ∞ (og n ≥ N).

Check that c ≥ 0. If this is not true one has forgotten the numerical sign!

A) If c < 1, Then the series
�∞

n=1 an is convergent (but its sum is not c).

B) If c = 1, then neither the ratio test nor the root test can be applied. Try some other test
outside group III, since comparison with a series of quotients cannot be applied.

C) If c > 1, then the series
�∞

n=1 an is coarsely divergent.
The latter case can also be found by test 1).
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Remark 4.5 The ratio test is in particular applied, when an contains faculty functions like n!,
(2n)! or (2n+ 1)! or similarly. ♦

Remark 4.6 The ratio test can never be applied, when an is a rational function in n, i.e. a
quotient of two polynomials in n. If one tries, one will always end up in case B, where nothing can
be decided). ♦

Remark 4.7 Never forget the numerical sign! For instance, the series
�∞

n=1(−1)n−1n is coarsely
divergent, because an = (−1)n−1n � 0 for n → ∞. Nevertheless one may occasionally come across
the following “proof” of “convergence” made by students:

an+1

an
= −n+ 1

n
= −

�

1 +
1
n

�

→ −1 < 1 for n → ∞,

from which one erroneously conclude that the series is “convergent”. ♦

Remark 4.8 We notice that one can find convergent series, where
��

�
�
�

an+1

an

�
�
�
�

�

is not convergent. In

this case one will often – though not always – be able to solve the problem by using the extension
of the root test. In this respect the root test is slightly stronger than the ratio test. ♦

4) The root test.

Assume that the sequence of n-th roots is convergent,

n
�

|an| = |an|1/n → c for m → ∞.

A) If c < 1, then the series
�∞

n=1 an is convergent (but its sum is not c).

B) If c = 1, then neither the root test nor the ratio test can be applied. Try some of the other
tests outside group III.

C) If c > 1, then the series
�∞

n=1 an is coarsely divergent.
The latter case can also be obtained by test 1).

Remark 4.9 Contrary to the quotient test we here do not have to assume that an �= 0; remember
the numerical sign. ♦

Remark 4.10 Neither the ratio test nor the root test can be applied, when an is a rational
function in n. One should instead try some other test. (One does not give up, or does one?) ♦

Remark 4.11 It is difficult to apply the root test, when the faculty function n! occurs, because
the student cannot be expected to be able to calculate n

√
n!.

In order to give some help we here add Stirling’s formula

n! ∼
√
2πn ·

�n

e

�n

for large n, i.e. n
√

n! ∼ 2n
√
2πn · n

e
.

A more accurate version is

n! ∼
√
2πn ·

�n

e

�n

exp
�
1
12n

�

for large n,
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where the den relative error decreases when n increases.

To demonstrate the accuracy of e.g. the latter approximation formula we calculate for n = 10,

10! = 3 628 800

and

√
2πn ·

�n

e

�n

exp
�
1
12n

�

≈ 3 628 810, 05 for n = 10,

so this (classical) approximation is very accurate, indeed.

Stirling’s formula is also applied in Probability and Statistics. ♦

Remark 4.12 Since both the ratio test and the root test are proved by a comparison with a series
of quotients k

�∞
n=1 cn with the same c > 0, we get the following very strange result:

If both
��

�
�
�

an+1

an

�
�
�
�

�

and
�

n
�

|an|
�

are convergent, then they have the same limit,

lim
n→∞

�
�
�
�

an+1

an

�
�
�
�
= c = lim

n→∞

n
�

|an|.

This observation has been used to find the limit of some “exotic” sequences, but it will not occur
here further. ♦

Remark 4.13 Contrary to the ratio test the root test can be generalized to

lim sup
n→∞

n
�

|an| = c

with the same classification A), B) and C). Since lim supn→∞
n
�

|an| [which always exists] is not
commonly defined in most textbooks on Calculus of today, we shall not elaborate on this aspect.
♦

5) The equivalence test.

Consider to series
�∞

n=1 an and
�∞

n1
bn, where all an > 0 and all bn > 0 for n ≥ N (check!).

Assume that

an

bn
→ 1 for n → ∞

�

possibly
an

bn
→ c > 0 for n → ∞

�

.

Then
�∞

n=1 an is convergent, if and only if
�∞

n=1 bn is convergent.

Remark 4.14 Any person has his own favorites. I personally only apply the equivalence test very
rarely, because an/bn → 1 for n → ∞ implies that

1
2

bn < an < 2bn for n ≥ N,

and then the comparison test will give the same resultat. ♦
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The two tests in the next group IV Advanced tests, are somewhat more sophisticated, and they
demand great care in their applications. (Never forget to check the assumptions etc.)

6) The integral test.

Let f : [1,∞[→ R+ be a decreasing function. (Check!) Then
∞�

n=1

f(n) is convergent, if and only if
� ∞

1

f(t) dt is convergent.

When we have convergence we have the following useful estimates
� ∞

1

f(t) dt <

∞�

n=1

f(n) < f(1) +
� ∞

1

f(t) dt,

or more generally for p ∈ N,

(5)
p

�

n=1

f(n) +
� ∞

p+1

f(t) dt <
∞�

n=1

f(n) <

p+1
�

n=1

f(n) +
� ∞

p+1

f(t) dt.

Remark 4.15 If one is only interested in the question of convergence/divergence, then it suffices
that f is decreasing for t ≥ t0 ≥ 1 for some fixed t0 (the same conclusion). It is still possible to
apply the general estimate (5), if only p+ 1 ≥ t0. ♦

Remark 4.16 The estimate (5) shows that if f(t) is decreasing for t ≥ p+1, then we can find an
α ∈ ]0, 1[, such that

∞�

n=1

f(n) =
p

�

n=1

f(n) +
� ∞

p+1

f(t) dt+ α · f(p+ 1).

If we delete α · f(p + 1), we get an approximation of the series by a finite sum and an integral,
where the error is smaller than f(p+ 1). ♦

Remark 4.17 The integral test gives a long list if incredibly slowly convergent series. The stan-
dard examples are for a > 1,

1)
�∞

n=1

1
na

, f(t) =
1
ta

og
� ∞
1

1
ta

dt =
1

a − 1 ,

2)
�∞

n=2

1
n(lnn)a

, f(t) =
1

t(ln t)a
og

� ∞
2

dt

t(ln t)a
=

� ∞
ln 2

du

ua
=
(ln 2)1−a

a − 1 ,

3)
�∞

n=3

1
n lnn(ln lnn)a

, analogt til 2),

etc., where the reader should check that the chosen functions f(t) are decreasing for t > t0. ♦

The same series are (“slowly”) divergent, if a ≤ 1 (with a special exception for a = 1, and where
we for a ≤ 0 obtain coarse divergence). It is absolutely not a good idea to type any of these series
in a pocket calculator or in MAPLE.

The series above can conveniently be applied in connection with the comparison test, in case of
the ratio test or the root test give c = 1, i.e. case B, where these tests cannot be applied.
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7) Leibniz’s criterion (“the problem child”).

If

a) bn → 0 for n → ∞,
b) (bn) is decreasing, for n bigger than some N ,

0 ≤ bn+1 < bn for all n ≥ N,

then the alternating series

∞�

n=1

(−1)n−1bn = s

is convergent, and we have the error estimate

|s − sn| =
�
�
�
�
�
s −

n�

k=1

(−1)k−1bk

�
�
�
�
�

< bn+1 for all n ≥ N,

i.e. the error is always smaller than the numerical value |(−1)nbn+1| = bn+1 of the first deleted
term (interval narrowing).

46

General series; tricks and methods in solutions of problems

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Calculus 3b

  

49  

Remark 4.18 Whenever Leiniz’s criterion is applied, always remember to check the assumptions
a) and b). At exams, this is the first thing which the teacher will check. ♦

Remark 4.19 Error estimates are extremely important by numerical calculations – even in tech-
nical disciplins. ♦

Remark 4.20 (Outside the usual syllabus.) An important extension of Leibniz’s criterion is the
following complicated monstrosity:

Let (an) and (bn) be two sequences which satisfy

a) bn → 0 for n → ∞.
b) (bn) is decreasing for n ≥ N for some N .

c) The sequence
�∞

n=1 an does not have to be convergent, but there must exist a constant c > 0,
such that

|sn| =
�
�
�
�
�

n�

k=1

ak

�
�
�
�
�
≤ c for all n ∈ N,

i.e. the sequence of segments sn =
�n

k=1 ak is bounded (though not necessarily convergent).

Then
�∞

n=1 anbn is convergent.

For completion we show two applications of this extended criterion (only for special interested
readers).

1) Leibniz’s criterion is obtained when an = (−1)n−1. In fact, in this case we get from condition
c) that

|sn| =
�
�
�
�
�

n�

k=1

ak

�
�
�
�
�
=

�
�
�
�
�

n�

k=1

(−1)k−1

�
�
�
�
�
=

�
1 for n odd,
0 for n even,

hence the sequence of segments is bounded, which is sufficient. The sequence of segments is of
course not convergent.

2) The Fourier series
�∞

n=1

1
n
sinnx is pointwise convergent.

For x = pπ, p ∈ Z, there is nothing to prove, because the zero series is convergent. Choose a
fixed x0 �= pπ, p ∈ Z. Then eix = cosx + i sinx �= 1, hence we get by complex calculations on
ak = sin kx0 = Im eikx0 ,

sn =
n�

k=1

ak =
n�

k=1

sin kx0 = Im
n�

k=1

�
eix0

�k
= Im

��
eix0

�n+1 − 1
eix0 − 1

�

.
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Since sinx0/2 = 1
2i{exp(ix0/2)− exp(−ix0/2)}, we get

sn = Im
�
(eix0)n+1 − 1

eix0 − 1 · exp(−x0/2)
exp(−x0/2)

�

= Im
�

(eix0)n+1/2

eix0/2 − e−ix0/2

�

= Im
�

2i
sinx0/2

�

exp
�

i

�

n+
1
2

�

x0

���

=
1

sinx0/2
Re

�

exp
�

i

�

n+
1
2

�

x0

��

=
2

sinx0/2

�

cos
�

n+
1
2

�

x0 − cos
x0

2

�

.

Then we remove n by an estimation (notice that sinx0/2 �= 0 for x0 �= pπ, p ∈ Z)

|sn| ≤
2

| sinx0/2| {1 + 1} =
4

| sinx0/2| for all n ∈ N,

and we have proved c).

Since bn = 1/n trivially fulfils a) and b), it follows from the extended criterion that the series is
pointwise convergent for every x �= pπ, p ∈ Z, i.e. for every x ∈ R, because we have already proved
the pointwise convergence for x ∈ pπ, p ∈ Z. This result is of course at this stage far from obvious.
♦

8) Telescopy.
If each term an is a quotient of two polynomials in n, and

an =
P (n)
Q(n)

→ 0 for n → ∞

(i.e. the numerator is of lower degree than the denominator), then it is possible in some (but not
in all) cases to find the sum s =

�∞
n=1 an directly by means of telescopy.

The procedure is the following:

a) Decompose an =
P (n)
Q(n)

, cf. Calculus 1a, Functions in one Variable.

b) Calculate and reduce the sequence of segments sn = a1 + · · ·+ an.
c) Finally, take the limit n → ∞. If

lim
n→∞

sn = s,

then the sum s of the series is according to definition 3.1,
∞�

k=1

ak = lim
n→∞

sn = s.

We illustrate the method by an example. Considering the series
∞�

n=1

1
n(n+ 1)

=
∞�

n=1

an,

it is seen that an =
1

n(n+ 1)
.
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a) We get by a decomposition

an =
1

n(n+ 1)
=
1
n
− 1

n+ 1
.

b) The sequence of segments sn is written down and reduced,

sn = a1 + a2 + · · ·+ an

=
�

1− 1
2

�

+
�
1
2
− 1
3

�

+
�
1
2
− 1
4

�

+ · · ·+
�
1
n
− 1

n+ 1

�

= 1− 1
n+ 1

.

It is seen that the series is reduced like an old-fashioned telescope, therefore the name.
c) Finally, we get by taking the limit

∞�

n=1

1
n(n+ 1)

= lim
n→∞

sn = lim
n→∞

�

1− 1
n+ 1

�

= 1.

The principle of telescopy can also be applied in other cases where an is not a quotient between
two polynomials. The main case is, however, what has been described above.

4.9 Series of functions

Just as for sequences we have here several types of convergence.

Let
�∞

n=1 fn(x) be a series with functions as terms. We say that the series is pointwise convergent,
whenever the corresponding sequence of segments

sn(x0) =
n�

k=1

fk(x0), n ∈ N,

is pointwise convergent as a sequence of numbers for any fixed x = x0 ∈ I.

If a series is pointwise convergent, then its sum function s(x) is given by

s(x) =
∞�

n=1

fn(x) = lim
n→∞

n�

k=1

fk(x) = lim
n→∞

sn(x) for x ∈ I.

If we only remember to keep x ∈ I fixed, there is no real difference between pointwise convergence of
a series of functions and convergence of series of numbers.

Since the pointwise convergence of series is derived from the pointwise convergence of sequences, we
have analogously a lack of good mathematical properties.

Let s(x) =
�∞

n=1 fn(x) be pointwise convergent.

1) Even if every fn(x) is continuous, we cannot conclude that s(x) is continuous.

2) We cannot expect integration and summation to be interchangeable. Both
� b

a

∞�

n=1

fn(x) dx and
∞�

n=1

� b

a

fn(x) dx

may be convergent without being equal.

49

General series; tricks and methods in solutions of problems

Download free eBooks at bookboon.com



Calculus 3b

  

52  

3) Differentiation and summation cannot be interchanged either. Both

d

dx

∞�

n=1

fn(x) and
∞�

n=1

f �
n(x)

may be convergent without being equal.

In order to in some cases to obtain these desirable properties we introduce the concept uniform
convergence. Formally we have:

The series
�∞

n=1 fn(x), x ∈ I, is called uniformly convergent with the sum function s(x), if
�∞

n=1 fn(x) = s(x) pointwisely for x ∈ I.

To any ε > 0 we can find a N , such that for any n ≥ N and any x ∈ I we have

|sn(x)− s(x)| =
�
�
�
�
�

n�

k=1

fk(x)− s(x)

�
�
�
�
�
=

�
�
�
�
�

∞�

k=n+1

fk(x)

�
�
�
�
�

< ε.

The definition of uniform convergence above is fairly complicated and it is rarely used in practice.
Instead we apply the important
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Test by a majoring series. Let
�∞

n=1 fn(x), x ∈ I, be a series of functions. If

a) one can estimate

|fn(x)| ≤ an for every x ∈ I and every n ∈ N,

where the an do not depend on x ∈ I, and

b) the auxiliary series
�∞

n=1 an is convergent (as a series of numbers),

then
�∞

n=1 fn(x) is uniformly convergent.

The series of numbers
�∞

n=1 an is here called a majoring series for
�∞

n=1 fn(x).

Notice that the test by a majoring series does not give us the true sum function (here we shall instead
use the usual methods from pointwise convergence). We only obtain the estimate

|s(x)| =
�
�
�
�
�

∞�

n=1

fn(x)

�
�
�
�
�
≤

∞�

n=1

|fn(x)| ≤
∞�

n=1

an, for x ∈ I,

where it is obvious that it in general is not a good idea to approximate s(x) by a constant.

Strategy by investigation of uniform convergence of series.

The two most commonly used possibilities are the following.

1) If every term fn(x) in the series is continuous, while the pointwise sum function s(x) =
�∞

n=1 fn(x)
is not continuous (or does not exist), then the convergence cannot be uniform.

This principle is in particular used in the theory of Fourier series, where one typically in problems
in calculus starts with e.g. a discontinuous function (the pointwise sum function) and then use it
to construct the corresponding Fourier series, the terms of which all are continuous.

2) Assuming instead that “the series is probably uniformly convergent”, we may use the following
procedure:

a) Remove x ∈ I by an estimation in the numerical value of |fn(x)|, e.g.

|fn(x)| ≤ sup
x∈I

|fn(x)| ≤ an for n ∈ N.

One may often be able to choose an = supx∈I |fn(x)|, but in some cases this expression may be
rather complicated. If so, then give an upper estimate by a simpler expression for an (convenient
for the following calculations in the next point b)).

b) Prove that
�∞

n=1 an is convergent. If this is the case, we have solved our problem. If not, we
have got a problem. Something may be rescued by giving a better estimate in a), which means
that one in one’s first try has given a too crude estimate. This is illustrated by

Example 4.1 The series
�∞

n=1

1
n2

sinnx has the two majoring series
�∞

n=1

1
n
and

�∞
n=1

1
n2
,

because
�
�
�
�

1
n2

sinnx

�
�
�
�

<
1
n

, and even
�
�
�
�

1
n2

sinnx

�
�
�
�
≤ 1

n2
.
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The first majoring series is divergent (hence no conclusion, because the estimate is too crude),
and the second one is convergent, hence the trigonometric series is uniformly convergent. (The
first majoring series is actually taken from an examination, where the conclusion unfortunately
became wrong). ♦

The importance of uniform konvergence is illustrated by the following results:

Theorem 4.2 Let every function fn(x), x ∈ I, be continuous. (Check!) If f(x) =
�∞

n=1 fn(x) is
uniformly convergent, then the sum function f(x) is continuous.

It happens that the theorem is used in precisely this form, but one more commonly applies it in the
following equivalent version, cf. the previous mentioned strategy, pkt. 1.

Theorem 4.3 Let every function fn(x), x ∈ I, be continuous. if

a) The series is pointwise convergent with the sum function f(x) =
�∞

n=1 fn(x),

b) The sum function f(x) is not continuous in the whole of I,

Then
�∞

n=1 fn(x) is not uniformly convergent in the whole of I.

The next result is concerned with the interchanging of summation and integration. We hereby obtain
some very important relaxations of the calculations.

Theorem 4.4 If f(x) =
�∞

n=1 fn(x) is uniformly convergent, then we can interchange summation
and integration (over a finite interval):

� b

a

∞�

n=1

fn(x) dx =
∞�

n=1

� b

a

fn(x) dx.

The consequence of this theorem is of paramount importance, in particular for the theory of power
series.

Finally we have the usual complications concerning differentiation.

Theorem 4.5 Let (fn), fn : I → R, be a sequence of functions for which the derivatives f �
n : I → R

all exist and are continuous. If

a) The series f(x) =
�∞

n=1 fn(x) is pointwise convergent for x ∈ I,

b) The series g(x) =
�∞

n=1 f �
n(x) is uniformly convergent over I,

then f is differentiable in I with f �(x) = g(x), i.e.

f �(x) =
d

dx

∞�

n=1

fn(x) =
∞�

n=1

dfn

dx
(x) = g(x).

By the general applications in this chapter one should therefore always check that every f �
n(x) is

continuous and check a) and b).

Notice, however, that when one is considering power series, then everything is simpler and more
streamlined, if only one stays inside the open interval of convergence. We shall deal with this in the
next chapter.
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Finally, it should be mentioned that there also exist other meaningful concepts of convergence. The
most important of these is the convergence in squared mean, also called convergence in L2. This concept
is closely connected with energy in Physics, and in this sense it is more important for an engineer
than pointwise convergence. In fact, it is never possible to measure exactly a physical function at every
point, while considerations concerning energy are far more robust.

At this stage I admit that the formal mathematical definition is impossible to explain, so I shall only
give a sketch. A series

�∞
n=1 fn(x), x ∈ I, converges in L2(I) towards a function f(x) [which does not

have to be equal to e.g. some existing pointwise limit function], if

�

I

�
�
�
�
�
f(x)−

n�

k=1

fk(x)

�
�
�
�
�

2

dx → 0 for n → ∞.

This squaring does not look nice at this early step of the student’s education! It is nevertheless the
right concept of convergence in e.g. the theory of Fourier series, where one in some presentations for
some obscure reason denotes convergence in L2(I) by the symbol ∼, i.e.

f ∼ 1
2

a0 +
∞�

n=1

{an cosnx+ bn sinnx}, I = [−π, π[.

In many important cases, which will be explained in Calculus 4b, the series on the right hand side is
actually pointwise convergent with the adjusted function f ∗ as its sum function. We can then write

f∗(x) =
1
2

a0 +
∞�

n=1

{an cosnx+ bn sinnx}, x ∈ [−π, π[,

and we have reduced the task to investigating where f ∗(x) = f(x).

Here we have only used the example in order to explain that the difference in the notations ∼ and =
in the theory of Fourier series relies on the difference in the applied concept of convergence.
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5 Power series; methods in solution of problems

This chapter of survey assumes that the reader can handle the concepts from chapter 4. It contains

• Standard power series.

• Recognition of the structure of the standard power series.

• Convergence of power series.

• Review of important theorems.

• Solution of differential equations by means of power series.

• Solution of recursion formulæ (simple difference equations).

• Second order differential equations (straight tips).

• Second order differential equations (solution formula).

5.1 Standard power series

These are the building stones in the theory of power series and the reader is therefore encouraged to
learn these by heart! They are all known from the usual textbooks in Calculus. We shall here subdivide
them into two groups:

a) Quotient like series.

All these series are variations of the power series
�∞

n=0 xn. With only one obvious exception, they
have all the radius of convergence � = 1.

b) Exponential like series.

These are all variations of the exponential series
�∞

n=0

xn

n!
. They are all convergent in the whole

of R, hence the radius of convergence is � =∞.

a) Quotient like series, � = 1. (Learn both columns by heart!)

1
1− x

=
�∞

n=0 xn,
�∞

n=0 xn =
1

1− x
, |x| < 1,

1
1 + x

=
�∞

n=0(−1)nxn,
�∞

n=0(−1)nxn =
1

1 + x
, |x| < 1,

(1 + x)α =
�∞

n=0

�
α
n

�

xn,
�∞

n=0

�
α
n

�

xn = (1 + x)α, |x| < 1, α ∈ R

ln(1 + x) =
�∞

n=1

(−1)n−1

n
xn,

�∞
n=1

(−1)n−1

n
xn = ln(1 + x), |x| < 1,

arctanx =
�∞

n=0

(−1)n
2n+ 1

x2n+1,
�∞

n=0

(−1)n
2n+ 1

x2n+1 = arctanx, |x| < 1.

If in the third line α = n ∈ N0, then (1 + x)n is a polynomial. The series only contains a finite
number of terms, hence the radius of convergence is � =∞.
In some languages one may use the notation “Arctan” instead of “arctan��.
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b) Exponential like series, � =∞. (Learn both columns by heart!)

exp(x) =
�∞

n=0

1
n!

xn,
�∞

n=0

1
n!

xn = exp(x), x ∈ R,

sinx =
�∞

n=0

(−1)n
(2n+ 1)!

x2n+1,
�∞

n=0

(−1)n
(2n+ 1)!

x2n+1 = sinx, x ∈ R,

cosx =
�∞

n=0

(−1)n
(2n)!

x2n,
�∞

n=0

(−1)n
(2n)!

x2n = cosx, x ∈ R,

sinhx =
�∞

n=0

1
(2n+ 1)!

x2n+1,
�∞

n=0

1
(2n+ 1)!

x2n+1 = sinhx, x ∈ R,

coshx =
�∞

n=0

1
(2n)!

x2n,
�∞

n=0

1
(2n)!

x2n = coshx, x ∈ R.
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5.2 Recognition of the structure of standard power series

Problem: Given a power series
�∞

n=0 anxn. Is it possible to make a shortcut and directly identify
the structure of one of the standard power series above and thereby obtain a) the sum function, and
b) the radius of convergence and the interval of convergence?

Answer: This is actually possible in many cases (whereby one saves a lot of time). We here sketch
one procedure:

First rewrite the coefficient an, in such a way that it consists of a finite sum (or difference) of terms
of the structure

(6)







1
1
n

1
2n+ 1

1
n!

1
(2n+ 1)!

1
(2n)!

�
α
n

�

const. all odd all odd even rare

possibly supplied by an alternating sign (−1)n.

The series is then formally split into the corresponding subseries, i.e. here disregarding any discussion
of the convergence (we shall take care of this later). Here we can encounter variants like

1
n+ 1

,
1

2n − 1 ,
1

(n+ 1)!
,

1
(2n − 1)! ,

1
(2n+ 2)!

, etc.

By some change of the summation variable,

m = n+ 1, 2m+ 1 = 2n − 1, m = n+ 1, 2m+ 1 = 2n − 1, 2m = 2n+ 2, etc.

where the summation index set is changed correspondingly (always check the first term before and
after the transform) we arrive to (6).

Constants in the power n, like e.g. an, where a > 0, are built into xn, because anxn = (ax)n.

The rest is only some pottering: Let bn be one of the possibilities.

a) bn = 1 or bn = (−1)n.

Set up

1
1− y

=
∞�

n=0

yn or
1

1 + y
=

∞�

n=0

(−1)nyn, |y| < 1.

Compare with the actual subseries and find y expressed by x. Adjust the lower bound of summation
by

1) either removing additional terms,

2) or by adding missing terms and subtract them again.

Hereby we the the sum function and the interval of convergence, where the condition |y| < 1 is
translated into a condition on x, when one solves the equation y = y(x) in x.
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b) bn =
1
n
or bn =

(−1)n−1

n
.

We rewrite the first case to

bn = − (−1)
n−1

n
· (−1)n.

The last alternating sign (−1)n is then combined with xn, to (−1)nxn = (−x)n. Then set up

ln(1 + y) =
∞�

n=1

(−1)n−1

n
yn, |y| < 1.

Repeat the procedure from a).

c) bn =
1

2n+ 1
or bn =

(−1)n
2n+ 1

.

In the first case rewrite to

bn =
(−1)n
2n+ 1

· (−1)n,

where the last alternating sign (−1)n is built into the x-term. Set up

arctan y =
∞�

n=0

(−1)n
2n+ 1

y2n+1, |y| < 1.

Adjust the x-series such that only odd exponents occur, e.g.

x2n+2 = x · x2n+1, put x outside the sum.

x2n =
1
x
· x2n+1 for x �= 0.

Check especially x = 0 afterwards,

xn = (
√

x)2n =
1√
x

�√
x
�2n+1 for x > 0,

etc. Repeat the procedure from a).

d) bn =
1
n!
.

Set up the exponential series exp(y) =
�∞

n=0

yn

n!
and proceed as in a).

e) bn =
(−1)n
(2n+ 1)!

or bn =
1

(2n+ 1)!
(odd 2n+ 1)

Write the series for sin(h) x. Adjust the exponents like in c), and proceed like in a).

f) bn =
(−1)n
(2n)!

or bn =
1

(2n)!
(even 2n).

Write the series for cos(h) x. Adjust the exponents like in c) in a way, such they are all even! Then
proceed like in a).

There calculations are correct in the intersection set of all the the intervals of convergence, from which
one also directly can find the radius of convergence.
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5.3 Convergence of power series

The convergence of power series
�∞

n=0 anxn is very simple to describe, because there are only three
possibilities.

A) The series is only convergent for x = 0, the radius of convergence is � = 0.
This case is of no interest, because the series cannot be used in practical calculations.

B) The series is absolutely convergent for every x ∈ R, and uniformly convergent in every bounded
interval; the radius of convergence is � =∞.

C) The radius of convergence � ∈ R+ is positive and finite.

The series is absolutely convergent for every x ∈ ]− �, �[, and uniformly convergent in every closed
subinterval [a, b] ⊂ ]− �, �[.

It should be noted that one can find examples where the series is both absolutely and uniformly

convergent in the whole of [−�, �]. A simple example is er
�∞

n=0

1
n2

xn, x ∈ [−1, 1], where � = 1,
However, this is not the general rule.

The series is divergent for |x| > �.

For |x| = � a special investigation is needed, in which one may possibly apply Abel’s theorem
(see below). In general, convergence at the end points is only of limited interest, even though this
problem can often be met with at examinations.

The radius of convergence � is formally defined by

� =
�

�

|x|
�
�
�
�
�

∞�

n=0

anxn is convergent

�

.

However, one rarely applies this definition. Instead one typically derive the radius of convergence from
the root test or the ratio test:

1) Preparations (in order to avoid errors). One will often see the so-called lacunar series, i.e. series

with “gaps” in the index set, like e.g.
�∞

n=0 anx2n or
�∞

n=0 anx2n+1, where one has made an abuse
on the notation, because the index n should follow the exponent n, which is not the case here. In
principle this can always be amended.

In order to avoid fallacies one may introduce bn as the numerical value of the n-th term different
from zero.

Example 5.1 a) For
�∞

n=0 anxn we put bn = |an| · |x|n. (Nothing new).
b) For

�∞
n=0 anx2n we put bn = |an| · x2n. (Lacunar series; the terms x2n+1 are missing),

etc. ♦

2) We choose the ratio test , if the faculty function enters bn.

Assuming that x �= 0, (never divide by zero, however, we have a trivial convergence for x = 0),
then bn > 0 and

bn+1

bn
=

|an+1|
|an|

· |x|
p

|x|q = |x|p−q · |an+1|
|an|

,
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where we in each case must find p and q.

Main case: If bn = |an| · |x|n, then p = n+ 1 and q = n, hence p − q = 1.

The lacunar case: If the series is
�∞

n=0 anx2n, then p = 2n+ 2 and q = 2n, hence p − q = 2.

When
|an+1|
|an|

→ c, then the condition for convergence is

|x|p−q · c < 1, i.e. |x| <

�
1
c

�1/(p−q)

= � for c > 0,

and � =∞, for c = 0.

3) The root test cannot be applied if the faculty function enters bn, unless one will use Stirling’s
formula,

n! ∼
√
2πn ·

�n

e

�n

.

If

n
�

bn = n
�

|an| · |x|p(n)/n → |x|α · c for n → ∞
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is convergent, i.e. n
�

|an| → c for n → ∞, we obtain the radius of convergence by

|x| <

�
1
c

�1/α

= � for c > 0,

where � =∞, if c = 0.

Main case: If bn = |an| · |x|n, then p(n) = n, hence
p(n)

n
= 1 = α.

Lacunar case: If e.g. (with odd exponents) bn = |an| · |x|2n+1, then p(n) = 2n + 1, hence
p(n)

n
=

2n+ 1
n

= 2 +
1
n
→ 2 = α for n → ∞.

We see that we have many variants. However, in the main case, where we do not have “gaps” in
the series, we have

� =
1
c

, where either
�
�
�
�

an+1

an

�
�
�
�
→ c or n

�

|an| → c for n → ∞.

5.4 Review of some important theorems

The following results are the most common ones used in the theory of power series.

If
�∞

n=0 anxn has the radius of convergence � > 0 (incl. � =∞), then

a) the series is absolutely convergent for every |x| < �,

b) the series is uniformly convergent in every closed and bounded interval [a, b] ⊂ ]− �, �[ (though it
is not necessarily equal to ]− �, �[.

The consequences of these results are immense:

1) The sum function f(x) =
�∞

n=0 anxn is continuous for |x| < �.

2) Summation and integration can be interchanged (termwise integration),

� x

0

�
∞�

n=0

antn

�

dt =
∞�

n=0

an

� x

0

tn dt =
∞�

n=0

an

n+ 1
xn+1 for |x| < �,

and the termwise integrated series has the same radius of convergence �.

3) Summation and differentiation are also interchangeable (termwise differentiation), and the differ-
entiated series has the same radius of convergence �.

On grounds of the method of solution of differential equations by using power series we here mention
the important formulæ

f(x) =
�∞

n=0 anxn, |x| < �,

f �(x) =
�∞

n=1 nanxn−1 =
�∞

n=0(n+ 1)an+1xn, |x| < �,

f ��(x) =
�∞

n=2 n(n − 1)anxn−2 =
�∞

n=1(n+ 2)(n+ 1)an+2xn, |x| < �,
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etc. We note that since differentiation of a constant is 0, the lower bound of summation increases by
each differentiation.

However, be aware of the lacunar series, where we have to apply a different rule.

For f(x) =
�∞

n=0 anx2n we get

f �(x) =
∞�

n=1

2n · anx2n−1 =
∞�

n=0

(2n+ 2) an+1x2n+1,

because the constant vanishes by differentiation. Now, the first term in the series of f �(x) is no longer
a constant, 2a1x, so the lower bound of summation does not change by the next differentiation,

f ��(x) =
∞�

n=1

2n(2n − 1)anx2n−2 =
∞�

n=0

(2n+ 2)(2n+ 1)an+1x2n.

Abel’s theorem can be difficult to handle (there often appear fallacies here). Check always the following
assumptions:

a) The series
�∞

n=0 anxn is convergent for |x| < � with the sum function f(x).

b) The series
�∞

n=0 an�n (or
�∞

n=0 an(−�)n, if we instead consider the end point x = �) is convergent!

The student is often inclined to forget the last condition.

It is only when both these conditions are fulfilled that we can conclude that
∞�

n=0

an�n = lim
x→�−

f(x), resp.
∞�

n=0

an(−�)n = lim
x→−�+

f(x).

The problem is that limx→�− f(x) = f(�) may exist by a continuous extension, while the series
�∞

n=0 an�n is not convergent.

For x = −� we apply a similar method.

Splitting of series. If f(x) =
�∞

n=0 anxn for |x| < �, and g(x) =
�∞

n=0 bnxn for |x| < λ, and α and β
are constants, then

∞�

n=0

(αan + βbn)xn = αf(x) + βg(x)

at least for |x| < min{�, λ}.

When λ = � we may in some cases obtain that the left hand side has a larger interval of convergence.
Usually it is the indicated one above.

Cauchy-multiplication is not presented here! Avoid it like the plague! I have seen too many errors here
in the students’ calculations to recommend it. Notice also that one does not multiply two series by
removing one of the sum signs (a frequent error by examinations). In general we have

∞�

n=0

anxn ·
∞�

n=0

bnxn �=
∞�

n=0

anbnxn

�

and �=
∞�

n=0

anbnx2n

�

.
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Theorem 5.1 (The identity theorem for power series). (Important!)
If two power series

�∞
n=0 anxn and

�∞
n=0 bnxn have the same sum function f(x) in a neighbourhood

of 0, then they are identical and

an = bn =
1
n!

f (n)(0) for every n ∈ N0.

A typical and frequent application in the following is:

If
�∞

n=0 anxn = 0 =
�∞

n=0 0 · xn,then an = 0 for every n ∈ N0.

5.5 Determination of the sum function by termwise differentiation or
integration

It is possible in some cases (though one shall not always do it) determine the sum function of a series

f(x) =
∞�

n=0

anxn, |x| < �,

by first differentiating (integrating) it termwise, then find the sum function of the differentiated (in-
tegrated) series, and then finally find f(x) by the inverse operation, i.e. integration (differentiation).

Unfortunately the process is rarely so easy as described above. There are usually some “noise” which
confuses the student. We therefore here sketch a possible procedure.

1) Choice of method. Where is the unwanted factor n, n+ 1, etc., situated?

a) If the factor is found in the denominator, we choose differentiation.

b) If the factor is found in the numerator, we choose integration.

2) Adjustment of the series. Calculate f(0) separately and then assume that x �= 0.

a) If the factor is in the denominator, then the exponent must be equal to (a factor in) the
denominator. Multiply or divide by a convenient factor, and put the new series equal to g(x),
which then is found by a differentiation.

Example 5.2 Let f(x) =
�∞

n=0

1
n+ 1

xn, |x| < 1. Then f(0) = 1, and for x �= 0 we have

f(x) =
∞�

n=0

1
n+ 1

xn =
1
x

∞�

n=0

1
n+ 1

xn+1 =
1
x

g(x), hvor g(x) =
∞�

n=0

xn+1

n+ 1
.

It follows that g(0) = 0 and

g�(x) =
d

dx

�
∞�

n=0

xn+1

n+ 1

�

=
∞�

n=0

xn =
1

1− x
,

so by an integration,

g(x) = g(0) +
� x

0

g�(t) dt = 0 +
� x

0

dt

1− t
= − ln(1− x) for |x| < 1.
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By insertion we get

f(x) =
∞�

n=0

1
n+ 1

xn =
1
x

g(x) = − ln(1− x)
x

for 0 < |x| < 1,

(never divide by 0), supplied with

f(0) = 1 for x = 0. ♦

b) If instead the factor is in the numerator (the case of integration), then the exponent must be
the numerator minus 1. Multiply or divide by a convenient factor and put the new series equal
to g(x), which then is determined by integration.

Example 5.3 Let f(x) =
�∞

n=1 nxn, |x| < 1. Then f(0) = 0, and we get for x �= 0

f(x) =
∞�

n=1

nxn = x

∞�

n=1

nxn−1 = x · g(x), where g(x) =
∞�

n=1

nxn−1.

It follows that g(0) = 1, and by an integration,
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G(x) = g(0) +
� x

0

g(t) dt = 1 +
� x

0

�
∞�

n=1

ntn−1

�

dt

= 1 +
∞�

n=1

� x

0

ntn−1 dt = 1 +
∞�

n=1

xn

=
∞�

n=0

xn =
1

1− x
, |x| < 1.

From this we get by a differentiation that

g(x) = G�(x) =
1

(1− x)2
,

hence by insertion

f(x) =
∞�

n=1

nxn = x · g(x) =
x

(1− x)2
for |x| < 1.

Notice that in this case we do not need the assumption x �= 0, because the function f(x) also
satisfies f(0) = 0. Nevertheless it is a good idea always to calculate f(0) separately and then
calculate f(x), because one then avoids inadvertently a division by 0. ♦

Before the method is applied one should always first try other method, e.g. decomposition of an after
n. The reason is that one often makes errors in the calculations described above. Note also that we
shall perform an integration in both cases, where the result cannot always be expressed by elementary
functions, known by the students.

Outside the usual syllabus we mention the important

Theorem 5.2 Weierstraß’s approximation theorem.
Every continuous function f(x) defined on a closed and bounded interval I can be uniformly approxi-
mated by a sequence of polynomials.

In the literature one can find some explicit constructions, e.g. by means of the so-called Bernstein-
polynomials. It will go beyond the purpose of this text to go further into them here.

5.6 The method of power series by solution of linear differential equations
with polynomial coefficients

This is a very important technique, and at the same time it looks fairly complicated when the student
first encounters it. For that reason we here sketch a possible standard procedure, where we have lots
of possible variants. The method is illustrated by an attendant example.

1) Notice that the coefficients of the equation are polynomials in x.

This is the case for the attendant example defined by

x
d2y

dx2
+ 2

dy

dx
+ xy = 0, x ∈ R, y(0) = 1, y�(0) = 0.
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2) Assume that the equation has a solution which can be described by a power series y =
�∞

n=0 anxn

with the interval of convergence ]− �, �[ .

Notice that this is an assumption, so we shall later test it when we have found a candidate. In the
following the unknowns are the infinitely many coefficients an, n ∈ N0, and last but not least the
radius of convergence �. The latter is often forgotten, which means that the calculations become
without any value. This is also the case when � = 0, because then the series only “lives” in ]−�, �[,
which is the empty set when � = 0.

3) Write the equation from the right to the left and insert mechanically the series

y =
∞�

n=0

anxn,
dy

dx
=

∞�

n=1

nanxn−1,
d2y

dx2
=

∞�

n=2

n(n − 1)anxn−2,

into the equation.

Notice the changes in the lower summation limits by the differentiations.

In the example under consideration we get

0 = x
d2y

dx2
+ 2

dy

dx
+ xy

= x
∞�

n=2

n(n − 1)anxn−2 + 2
∞�

n=1

nanxn−1 + x
∞�

n=0

anxn.

In this setup we see that we are able to continue the calculations in the next step without repeating
“= 0”.

4) All factors outside the sums are put inside.

When the factors contain more terms (like e.g. in1 + x) we introduce a new summation for each
of the terms.

0 =
∞�

n=2

n(n − 1)anxn−1 +
∞�

n=1

2nanxn−1 +
∞�

n=0

anxn+1.

5) Is it possible to add convenient zero terms?

In the given example we see that n(n − 1)anxn−1 is defined when n − 1 ≥ 0, i.e. n ≥ 1. The
corresponding sum starts by n = 2, but if we insert n = 1, we see that n(n − 1)anxn−1 = 0 for
n = 1. Therefore, we can change n = 2 in the lower summation bound to n = 1 by adding 0,

0 =
∞�

n=1

n(n − 1)anxn−1 +
∞�

n=1

2nanxn−1 +
∞�

n=0

anxn+1.

6) The various series are collected in groups according to their type, i.e. according to anxn+j , or
similarly.

By “type” we here mean the difference between the index of an and the corresponding exponent.
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In the attendant example we get

0 =

�
∞�

n=1

n(n − 1)anxn−1 +
∞�

n=1

2nanxn−1

�

+
∞�

n=0

anxn+1.

The series in the brackets are all of the type

index − exponent = n − (n − 1) = 1,

and analogously the type of the last series is n − (n+ 1) = −1, i.e. of a different type.
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7) Inside each group we adjust the lower summation bound, either by removing terms or by adding
terms, which then must be subtracted outside the sums.

Here the lower bound is n = 1 for every sum in the group of type 1, and the lower bound is n = 0
for the group of type −1.

If we had neglected point 5) for the attendant example, then we would have got different lower
limits in the group of type 1

∞�

n=2

n(n − 1)anxn−1 +
∞�

n=1

2nanxn−1 =

�
∞�

n=2

n(n − 1)anxn−1 +
∞�

n=2

2nanxn−1

�

+ 2a1.

We see that we here get some technical problems because the series cannot be added as long they
do not have the same lower bound. I therefore highly recommend the student to the troubles of
adding zero terms in 5).

8) Inside each group the series are now of the same kind, i.e. with the same summation set and the
same cluster anxn+j under the summation sign (supplied by polynomial coefficients in n). We can
therefore put them under the same sum.

Reduce the expression in the example and factorize the n-polynomial

0 =
∞�

n=1

{n(n − 1) + 2n}anxn−1 +
∞�

n=0

anxn+1

=
∞�

n=1

n(n+ 1)anxn−1 +
∞�

n=0

anxn+1.

The factorization is here n(n − 1) + 2n = n2 − n+ 2n = n2 + n = n(n+ 1).

9) Every type is now represented by exactly one sum. They still cannot be added because they have
different exponents. Choose a common exponent, and transform the series, such that they all have
the same exponent.

In the example we choose the exponent n+1. The first series is not of this type, so putm+1 = n−1,
i.e. n = m+2. Then the lower bound n = 1 corresponds to the new lower bound m = 1− 2 = −1,
so we have the calculation

∞�

n=1

n(n+ 1)anxn−1 =
∞�

m=−1

(m+ 2)(m+ 3)am+2xm+1 =
∞�

n=−1

(n+ 2)(n+ 3)an+2xn+1,

where we in the latter equality just write “n” instead of “m”. Then we get by insertion

0 =
∞�

n=−1

(n+ 2)(n+ 3)an+2xn+1 +
∞�

n=0

anxn+1.

10) Every series has now the same exponent, though not necessarily the same lower bound. Adjust
the lower bound by removing the unwanted terms. The removed terms may now be reduced to a
polynomial with increasing exponents.
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By a continuation of the example we here get

0 = 1 · 2 · a1 +
∞�

n=0

(n+ 2)(n+ 3)an+2xn+1 +
∞�

n=0

anxn+1

= 2a1 +
∞�

n=0

(n+ 2)(n+ 3)an+2xn+1 +
∞�

n=0

anxn+1.

11) The series have now the same exponent and the same lower bound. They can therefore be collected
in one single sum.

In the specific example we get

0 = 2a1 +
∞�

n=0

{(n+ 2)(n+ 3)an+2 + an}xn+1.

We note that xn+1 now stands alone as a factor and that the coefficients do not contain x.

12) Check that the polynomial outside the sum does not contain terms with an exponent which also
occurs in the series.

If the polynomial contains some terms with exponents which are interfering with exponents in the
series, this is an indication of a miscalculation during the process. Since this error can have been
made anywhere, the only advice is to start from the very beginning!

In the given example, 2a1 is a constant, i.e. of degree 0. The smallest degree in the series is obtained
for the lower bound, i.e. for n = 0, where the corresponding exponent is n+ 1 = 1 > 0. Therefore,
we have no interference here, and we may proceed.

13) Set up the recursion formula by means of the identity theorem. The recursion formula is valid
in precisely the summation index set of the series. Therefore, indicate this summation index set
explicitly!

Since

0 =
∞�

n=0

0 · xn = 2a1 +
∞�

n=0

{(n+ 2)(n+ 3)an+2 + an}xn+1,

and since there is no interference between the series and the polynomial outside the sum, we
conclude from the identity theorem (quote it!) that

2a1 = 0, from the polynomisl

and

(7) (n+ 2)(n+ 3)an+2 + an = 0 for n = 0, 1, 2, · · · from the series.

We conclude that

a1 = 0,
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and that we get the recursion formula (note that (n+ 2)(n+ 3) �= 0 for n ∈ N0)

an+2 = − 1
(n+ 2)(n+ 3)

an for n ∈ N0.

Here we have specified where the recursion formula holds, namely for n ∈ N0. This detail is often
forgotten by the student.

In general, do not forget to check that we never unintendedly divide by 0 in the set where the
recursion formula holds. If the denominator becomes 0 for some n0, we have to consider this value
separately by directly checking (7).

Always remember that we get an extra minus sign when we rewrite (7). This is also a very frequent
error in practice.

14) Check if there are “leaps” in the recursion formula.

When the leap is 1, i.e. when an+1 is expressed by an, proceed with point 15).

If the leap is 2, then divide into the two cases of n = 2p even and n = 2p+ 1 odd and set up new
recursion formulæ in each of the two cases, before one proceeds with 15).

Analogously when the leap is > 2.

In our chosen example we express an+2 by an, hence the leap is 2. Therefore we must consider the
two cases of n = 2p even and n = 2n+ 1 odd separately.

The original recursion formula is

an+2 = − 1
(n+ 2)(n+ 3)

an for n ∈ N0.

a) For n = 2p even it is seen that we stay inside n ∈ N0, when p ∈ N0. The we get by insertion

a2p+2 = − 1
(2p+ 2)(2p+ 3)

a2p, p ∈ N0,

i.e. when we put bp = a2p (the calculations become easier in the following)

bp+1 = − 1
(2p+ 2)(2p+ 3)

bp, p ∈ N0.

b) For n = 2p+ 1 odd we see that we stay inside n ∈ N0, when r p ∈ N0. We get by insertion

a2p+3 = − 1
(2p+ 3)(2p+ 4)

a2p+1, p ∈ N0.

The following calculations also become easier to perform, if we introduce cp = a2p+1. If we do
this, we get

cp+1 = − 1
(2p+ 3)(2p+ 4)

cp, p ∈ N0.
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In the real life we may see that an+2 is expressed by a combination of both an+1 and an. These
difference equations are in general too difficult to solve in a first course of calculus, so one will
avoid them. If the student therefore at this stage has derived such an equation, this will most likely
be an indication of some earlier miscalculation. (Check!)

15) Solve the recursion formula.

There are here so many variants that we instead refer to the next section concerned with solution
of difference equations.

We can proceed with the example. It is given in 1) that

y(0) = a0 = 1 and y�(0) = 1 · a1 = 0.

We also proved the latter in 13), which means that we formally has an over-determined problem,
i.e. too much information: If we demand a power series solution, then we are forced to put a1 = 0.
Fortunately the given data is also giving a1 = 0.
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a) For n = 2p even we have found the recursion formula

bp+1 = − 1
(2p+ 2)(2p+ 3)

bp, p ∈ N0, bp = a2p.

Thus a0 = b0 = 1. If we replace p by p − 1, we instead get

bp = − 1
(2p+ 1)(2p)

bp−1, p ∈ N.

By recursion (the indices decreases, i.e. bp−1 is expressed by bp−2, etc.) we get

bp =
−1

(2p+ 1)(2p)
· −1
(2p − 1)(2p − 2) · · ·

−1
(2 · 1 + 1) · (2 · 1) b1−1,

by successively calculating the factor in front of bp−1, in front of bp−2, etc. until we have found
the factor in front of b0, corresponding to p = 1.

A counting gives p factors, hence the numerator must be (−1)p. The denominator becomes

(2p+ 1)(2p)(2p − 1) · · · 3 · 2 · 1 = (2p+ 1)!,

Hence

a2p = bp =
(−1)p
(2p+ 1)!

b0 =
(−1)p
(2p+ 1)!

, because b0 = a0 = 1.

b) For n = 2p+ 1 odd we found the recursion formula

cp+1 = − 1
(2p+ 3)(2p+ 4)

cp, p ∈ N0, cp = a2p+1.

Here we already have c0 = a1 = 0. Therefore, we conclude by induction that cp = 0 for every
p ∈ N0. In fact,

i) c0 = 0.
ii) If some cp = 0, then also the successor cp+1 = 0, i.e. c1 = 0, c2 = 0, c3 = 0, etc.

16) Set up the formal series (i.e. the candidate).

Remember here that we have bp = a2p and cp = a2p+1, and that an is the coefficient of xn.

We found in the illustrating example that

a2p =
(−1)p
(2p+ 1)!

, p ∈ N0, and a2p+1 = cp = 0, p ∈ N0.

We therefore have the formal power series (write n instead of p)

∞�

n=0

(−1)n
(2n+ 1)!

x2n

�

=
∞�

n=0

a2nx2n

�

.

Note that the exponent 2n belongs to a2n and not to xn.
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17) Find the radius of convergence �.

This is a very important part of the solution. In fact, if � = 0, then the series is divergent for
x �= 0, and the equation has no power series as a solution.

There are three methods.

a) We recognize the series as a variant of one of the standard series.

b) The radius of convergence is determined from the recursion formula in 13).

c) The radius of convergence is determined directly from the series in 16).

Let us consider the obtained formal power series
�∞

n=0

(−1)n
(2n+ 1)!

x2n.

a) When we insert x = 0 and use the convention x0 = 0, we get the sum

f(0) =
(−1)0

(2 · 0 + 1)! · 1 = 1.

When x �= 0, the coefficient (−1)n
(2n+ 1)!

resembles “something like sin y”, cf. the list of standard

series. When we write down the series for sin y, we get

sin y =
∞�

n=0

(−1)n
(2n+ 1)!

y2n+1 for y ∈ R.

This expression is equal to the formal x-series when we choose y = x, apart from a missing
factor x. Since

x

x
= 1 for x �= 0, this is easily repaired for x �= 0,

∞�

n=0

x2n =
1
x

∞�

n=0

(−1)n
(2n+ 1)!

x2n+1 =
sinx

x
for x �= 0.

By this recognition method we found i) the interval of convergence R, i.e. � =∞, and also ii)
the sum function

sinx

x
for x �= 0, and f(0) = 1 for x = 0.

b) From 13) we have the recursion formula

an+2 = − 1
(n+ 2)(n+ 3)

an for n ∈ N0.

Since an = 0 for n odd, we are only interested in

a2n+2 = − 1
(2n+ 2)(2n+ 3)

a2n,

so the series is written
�∞

n=0 a2nx2n, Where all a2n �= 0. Then put dn = |a2nx2n| > 0 for x �= 0.
We get by the ratio test that

�
�
�
�

dn+1

dn

�
�
�
�
=

�
�
�
�

a2n+2

a2n

�
�
�
�
· x2n+2

x2n
=

x2

(2n+ 2)(2n+ 3)
→ 0 < 1 for n → ∞

for every fixed x �= 0. Therefore, the series is convergent in R and � = ∞, where we combine
the two cases x = 0 and x �= 0.
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c) If instead we apply the ratio test directly on
�∞

n=0

(−1)n
(2n+ 1)!

x2n, and use that

kn :=
�
�
�
�

(−1)n
(2n+ 1)!

x2n

�
�
�
�
=

x2n

(2n+ 1)!
> 0 for x �= 0,

then we get
�
�
�
�

kn+1

kn

�
�
�
�
=

x2n+2

(2n+ 3)!
· (2n+ 1)!

x2n
=

x2

(2n+ 3)(2n+ 2)
→ 0 < 1 for n → ∞

for every fixed x �= 0. Then proceed as above.

18) A typical demand is an explicit expression of the sum function. This can be found by means of
the earlier described methods concerning the recognition of the structure as well as use of tables
of standard power series.

We have already shown the method in the example in 17). We shall only collect all the results,

y = f(x) =
∞�

n=0

(−1)n
(2n+ 1)!

x2n =







sinx

x
for x �= 0,

1 for x = 0.

Although it is not necessary it is always a good idea to test the result, i.e. we insert y =
sinx

x
x �= 0, into the original differential equation, and we check the initial conditions. Notice that

lim
x→0

sinx

x
= lim

x→0

1
x
{x+ x ε(x)} = lim

x→0
{1 + ε(x)} = 1,

hence the function y = f(x) is continuous, what it should be for theoretical reasons.

It “only” remains to elaborate on 15), i.e. describe how one solves recursion formulæ of the given type.
This will be done in the next section.

5.7 Solution of recursion formulæ (difference equations)

The simple recursion formulæ occurring in courses in Calculus will for pedagogical reasons all be of
the following two types:

I Of first order, i.e. the leap is 1 in the indices,

p(n)an+1 = q(n)an.

II Of second order, i.e. the leap is 2 in the indices

p(n)an+2 = q(n)an.

A weak test is that if one in a problem from a course i Calculus does not get one of these structures,
then one has probably made a miscalculation.

Here, p(n) and q(n) are polynomials in n, when the corresponding differential equation has polynomial
coefficients in x.
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1) If we have not already factorized p(n) and q(n) this should be done now!

2) Determine whether p(n) and q(n) have common factors.

If p(n) = (n − α)p1(n) and q(n) = (n − α)q1(n), it is tempting to reduce the expressions by
removing n − α in e.g. (we shall only treat case I here, since case II is treated analogously)

(n − α)p1(n)an+1 = (n − α)q1(n)an, n = n0, n0 + 1, n0 + 2, . . . .

However, one must not do this without first checking whether it can be done or not.

a) If α does not belong to the domain of the recursion formula, {n0, n0+1, . . . }, this can be done
immediately, i.e. the recursion formula is reduced to the simpler

p1(n)an+1 = q1(n)an, n = n0, n0 + 1, . . . ,

because p1(n) and q1(n) have a lower degree.

b) If on the other hand there is some j ∈ N0, such that α = n0 + j, we reduce the recursion
formula for n = n0 + j = α to the triviality

0 · an0+j+1 = 0 · an0+j .
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We see that there is no connection between an0+j and an0+j+1, so concerning formal calcula-
tions they can be chosen independently of each other.
(We may get some explicit values later by using other conditions, but it is not possible to see
this at this stage).
In this case we must divide the domain of the recursion formula into to subdomains,

{n0, n0 + 1, . . . , n0 + j − 1} and {n0 + j + 1, n0 + j + 2, . . . },

much each must be treated separately! Notice that we here now miss the index n = n0 + j!.
(This phenomenon occurs actually from time to time).
We can remove n−n0− j by reduction of the recursion formula in each of the two subdomains.

3) When we have got rid of common factors (and possibly divided the domain into subdomains and
exceptional points) we continue by investigating whether p1(n) = 0 or q1(n) = 0 for some n in a
subdomain.

a) If p1(n1) = 0, then q1(n1) �= 0, because we have removed common factors in point 2). Therefore
we conclude from

0 = p1(n1) · an1+1 = q1(n1) · an1 ,

that an1 = 0. This value is then applied recursively and decreasingly in order to get an1−1 (= 0,
if we also have q1(n1−1) �= 0, etc.; if q1(n1−1) = 0, or possibly q1(n1−j) = 0, we here proceed
to the next point).

b) If q1(n2) = 0, then p1(n2) �= 0, because we have already removed common factors in 2). It then
follows from

0 = p1(n2)an2+1 = q1(n2)an2 ,

that an2+1 = 0. We use this value inductively and increasingly in order to determine an2+2 = 0,
if also p1(n2 + 1) �= 0, etc.; if p1(n2 + 1) = 0, or possibly p1(n2 + j) = 0, we return to the first
point.nkt.

After these general remarks which can be applied in both cases I and II, we turn to the solution
itself. Here we have three possibilities,

• induction (we let the indices increase),
• recursion (we let the indices decrease),
• the “Deus ex machina” solution, or the so-called “divine inspiration”. The first time one sees
this method it looks like magic, but with some training it often becomes very easy to apply
and it leads straight to the solution.

We shall demonstrate all three methods on two examples

I an+1 =
1

n+ 1
an, n ∈ N0, and a0 = 1, (first order)

II an+2 =
−1

(n+ 2)(n+ 3)
an, n ∈ N0, and a0 = 1, a1 = 0, (second order)

where we have treated II recursively previously in 15).
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4) Inductive solution.
Calculate the first 3–4 elements of the sequence. Try to find some pattern which can be derived
from these elements, i.e. set up an hypothesis. Assume that this pattern holds for some n. Then
show that this implies that the pattern is also valid for the successive step n + 1. Conclude by
induction that this pattern is true for every n.

I When a0 = 1 and an+1 =
1

n+ 1
an, n ∈ N0, we get successively

a1 =
1

0 + 1
a0 = 1, a2 =

1
1 + 1

a1 =
1
2

,

a3 =
1

2 + 1
a2 =

1
6
=

1
3 · 3 · 1 =

1
3!

.

This gives us the hint that the general pattern is an =
1
n!
. At least this holds for n = 0, 1, 2,

3.

Then assume that we have an =
1
n!
for some n. Then we get for its successor that

an+1 =
1

n+ 1
· an =

1
n+ 1

· 1
n!
=

1
(n+ 1)!

.

This is of the same form as the assumption, only with n replaced by n+ 1, hence the pattern
is the same for n+ 1. Since the hypothesis holds for n = 0, 1, 2, 3, it follows from above that
it holds for n = 4, n = 5, n = 6, etc., i.e. for every n ∈ N0.

II When a0 = 1 and a1 = 0, and an+2 =
−1

(n+ 2)(n+ 3)
an, n ∈ N0, the leap of 2 in the indices

indicates that we must divide into the cases of n even or odd. We see immediately that since
a1 = 0, we must necessarily have a3 = 0, and then a5 = 0, etc., hence it follows by induction
that a2p+1 = 0. (The reader should try to prove this based on the argument in I).

Now a0 = 1, hence we get for first terms with even index that

a2 =
−1

(0 + 2)(0 + 3)
a0 = − 1

3 · 2 , a4 =
−1

(2 + 2)(2 + 3)
a3 =

+1
5 · 4 · 3 · 2 ,

a6 =
−1
6 · 7 a4 =

−1
7 · 6 · 5 · 4 · 3 · 1 =

(−1)3
7!

.

These all fit in the pattern

a2p =
(−1)p
(2p+ 1)!

for p = 0, 1, 2, 3.

Assume that this holds for some n = 2p. For the successor n+ 2 = 2(p+ 1) (notice the leap of
2) we then get

a2p+2 =
−1

(2p+ 2)(2p+ 3)
a2p =

−1
(2p+ 3)(2p+ 2)

· (−1)
p+1

(2p+ 1)!

=
(−1)p+1

(2p+ 3)!
=

(−1)p+1

((2p+ 2) + 1)!
,
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hence the same pattern as in the assumption, only with 2p replaced by 2p + 2. Then the
assumption follows in general by induction.

By induction we let the indices increase, i.e. we derive the successor.

5) Recursive solution.
Write the recursion formula, such that n (in case I) or 2p (2p+1) (in case II) is the largest index.
Repeat this iteration on an−1 (case I) or on a2p−2 (a2p−1) (case II) etc., as far as we can inside
the domain and reduce. (Here we can get a counting problem, i.e. how many factors do we have?)

I The recursion formula an+1 =
1

n+ 1
an, n ∈ N0, is equivalent to

an =
1
n

an−1 for n ∈ N.

Check the first term: For n = 0 we have a0+1 = a1 =
1

0 + 1
a0 in the first formula, and for

n = 1 we have a1 =
1
1

a1−1 = a0 in the second formula; hence they are equivalent. When we
repeat the formula for n − 1, etc., we get

an =
1
n

an−1 =
1
n

�
1

n − 1 an−2

�

= · · ·

=
1
n
· 1

n − 1 · 1
n − 2 · · ·

1
1
· a1−1 =

1
n!

a0 =
1
n!

,

because a0 = 1 was given. This holds for every n ∈ N, and trivially for n = 0, thus an =
1
n!
for

n ∈ N0.
II When a1 = 0, we always apply the inductive method to conclude that a2p+1 = 0 for every odd

indices 2p+ 1 ∈ N0, i.e. for p ∈ N0.

For the even indices n = 2p, we write the recursion formula

a2p+2 =
−1

(2p+ 2)(2p+ 3)
a2p for p ∈ N0.

When p is replaced by p − 1 (be very careful with the factor 2 in the formula; here one often
sees miscalculations), we get

a2p =
−1

(2p+ 1)(2p)
a2p−2 for p ∈ N (check the first term).

This gives by recursion (i.e. a repetition of the pattern on a2p−2 etc.)

a2p =
−1

(2p+ 1)(2p)
a2p−2 =

−1
(2p+ 1)(2p)

· −1
(2p − 1)(2p − 2) · a2p−4 = · · ·

=
−1

(2p+ 1)(2p)
· −1
(2p − 1)(2p − 2) · · ·

−1
3 · 2 a22

(p factors, e.g. 2p, 2(p − 1), . . . , 2 · 1)

=
(−1)p
(2p+ 1)!

a0 =
(−1)p
(2p+ 1)!

,

because a0 = 1. Therefore, a2p =
(−1)p
(2p+ 1)!

for p ∈ N, and since this is trivially true for p = 0,

we have proved the formula for every p ∈ N0.
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6) The “divine inspiration”.
Multiply the recursion formula by some factor �= 0, such that the two sides of the equation obtain
the same structure, only for different indices. Introduce if necessary an auxiliary sequence bn, and
reduce.

I The formula an+1 =
1

n+ 1
an, n ∈ N0, is multiplied by (n+ 1)! �= 0. We get

(n+ 1)! an+1 = n! an, n ∈ N0,

where the left hand side can be derived from the right hand side by writing n+1 instead of n.
Writing bn = n! an, we obtain the very simple recursion formula

bn+1 = bn = bn−1 = · · · = b0 = 0! a0 = 1.

Thus

bn = n!an = 1, i.e. an =
1
n!

for n ∈ N0.
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II First we inspect the formula

a2p+2 =
−1

(2p+ 3)(2p+ 2)
a2p, p ∈ N0.

We see that there is a leap of 2 in the indices, as well as two successive factors in the denomina-
tor, so we may expect a multiplication by (2p+3)! �= 0. There is furthermore a change of sign.
We compensate for this by a multiplication by (−1)p+1. All things considered we multiply by
(−1)p+1(2p+ 3)! �= 0. Then we get the equivalent recursion formula

(−1)p+1((2p+ 3)!)a2p+2 = (−1)p+1(2(p+ 1) + 1)!a2(p+1)

= (−1)p(2p+ 1)!a2p, p ∈ N0.

We see that the left hand side can be derived from the right hand side by writing p+1 instead
of p. If we put bp = (−1)p(2p+ 1)! a2p, we get the trivial recursion formula

bp+1 = bp = bp−1 = · · · = b0 = (−1)0 · (2 · 0 + 1)! a0 = 1 · 1 · 1 = 1.

But then

bp = (−1)p(2p+ 1)! a2p = 1, i.e. a2p =
(−1)p
(2p+ 1)!

, for p ∈ N0.

In general we investigate the recursion formula for odd indices in the same way, but since we
already know that a1 = 0, it is here easier to conclude inductively that a2p+1 = 0 for every
p ∈ N0, cf. point 4).

The argument is not at all “divine” although it may look like magic the first time one sees it. In
fact, we have a true argument in the beginning of II. But the method demands a lot of training,
and one should not in general choose this as one’s favorite standard method. I have here ordered
the three methods according to what I believe that the student will consider the easiest one [point
4)], the middle one [point 5)] and the most difficult one [point 6)]. There may, however, be students
whose priorities are different from this order.

5.8 Second order differential equations (straight tips)

There exist some non-authorized straight tips which are only rarely described in usual textbooks in
Calculus. I shall here present some of them.

Given a differential equation

(8) p0(x)
d2y

dx2
+ p1(x)

dx

dx
+ p2(x) y = g(x), x ∈ R,

where p0(x), p1(x), p2(x) are polynomials in x without any common zero, and where g(x) has a
convergent power series expansion valid in all of R.

Find all complex zeros to p0(x) (the coefficient of the term of highest order
d2y

dx2
). If p0(x) is a

polynomial of degree m, then we have at most m different zeros {x1, x2, . . . , xq}, q ≤ m, and xj ∈ C.

The radius of convergence � for any power series solution of (8) is then one of the numbers |x1|, |x2|,
. . . , |xq| or ∞.
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We note that if p0(0) �= 0, then there will always exist a power series solution.

If p0(0) = 0, there does not necessarily exist a power series solution.

We call the zeros of p0(x) for the singular points of the equation. It is seen that they determine the
radius of convergence � of a power series solution.

The numerical values of the singular points indicate the possible value of the radius of convergence.
One shall still find � by one of the earlier methods, e.g. by an application of the ratio test. The straight
tip above, however, gives us a possibility of a weak control. If one by e.g. the ration test finds a �,
which is not either ∞ or the numerical value of some singular point, then we can conclude that we
have made a miscalculation of �.

Example 5.4 In the differential equation

x
d2y

dx2
+ 2

dy

dx
+ xy = 0, x ∈ R,

we see that p0(x) = x. The only singular point is x = 0. The possible values of � are either 0 or ∞. It
can be shown that the power series solution in fact has � =∞. ♦

Example 5.5 (A Bessel equation; not usually in the syllabus, although it is extremely relevant in
some engineering courses). We see that the differential equation

x2 d2y

dx2
+

�

x2 +
1
4

�

y = 0, x ∈ R,

has p0(x) = x2. The only zero is x = 0 (of multiplicity 2), hence we must have � ∈ {0,∞} for a power
series solution. It is here possible to find a power series solution where � =∞. ♦

Example 5.6 (Outside the usual syllabus). For the differential equation

d4y

dx4
+ (λ − x)

d2y

dx2
− dy

dx
= 0

we have p0(x) = 1. This is a constant �= 0, hence it has no zeros. Therefore, i) there exist power series
solutions, and ii) they all have radius of convergence � =∞. ♦

Example 5.7 If p0(x) = 1 + x2, then p0(x) �= 0 for every x ∈ R. One could then be misled to the
wrong conclusion that � can only be ∞. This is not true. The equation p0(x) = 1 + x2 = 0 has the
two complex roots ±i. Since | ± i| = 1 �= 0, we conclude that i) such an equation has power series
solutions, and ii) every one of these has a radius of convergence � ∈ {1,∞}, i.e. either � = 1 or � =∞.
♦

The next trick demands a lot of training. In principle integration is the inverse operation of differen-
tiation. Therefore, if we can rewrite the equation

p0(x)
d2y

dx2
+ p1(x)

dy

dx
+ p2(x) y = g(x)

in the form

d

dx

�

F2(x)
d

dx
{F1(x) y}

�

= G(x)
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by possibly adding a factor a(x), such that G(x) = a(x)g(x), then we get by integration that

F2(x)
d

dx
{F1(x)y} = c2 +

� x

x0

G(t) dt, c2 arbitrær konstant,

i.e.

d

dx
{F1(x)y} =

c2

F2(x)
+

1
F2(x)

� x

x0

G(t) dt.

Another integration gives

F1(x)y = c1 + c2

� x

x0

dt

F2(t)
+

� x

x0

1
F2(t)

�� t

x0

G(u) du

�

dt,

where c1 and c2 are arbitrary constants. Thus, if we neglect possible zeros of F1(t) and F2(t) etc., the
complete solution becomes

y =
c1

F1(x)
+

c2

F1(x)

� x

x0

dt

F2(t)
+

1
F1(x)

� x

x0

1
F2(t)

�� t

x0

G(u) du

�

dt,

where c1 and c2 are arbitrary constants.

The solution of the corresponding homogeneous equation is obtained by putting G(x) = 0, i.e.

y = c1ϕ1(x) + c2ϕ2(x) =
c1

F1(x)
+

c2

F1(x)

� x

x0

dt

F2(t)
,

from which it is seen that the linearly independent solutions of the homogeneous equation are given
by

ϕ1(x) =
1

F1(x)
and ϕ2(x) =

1
F1(x)

� x

x0

dt

F2(t)
.

By recalling the well-known rules of differentiation

f
dg

dx
+ g

df

dx
=

d

dx
(f · g),

and

f
dg

dx
− g

df

dx
= f2 d

dx

�
g

f

�

, provided that f(x) �= 0,

we shall now demonstrate how we often can guess the structure

d

dx

�

F2(x)
d

dx
{F1(x)y}

�

= G(x),

or possibly

(9)
d

dx

�

F2(x)
d

dx

�
y

ϕ1(x)

��

= G(x),
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if only we have given a solution ϕ(x) of the homogeneous equation. In the case of (9) we can even
calculate the expression and compare it with the given equation in order to find explicitly the functions
F2(x) and G(x) = a(x)g(x), i.e. find a(x).

All this is theoretically very easy; but the procedure is actually difficult in practice, even though most
of the equations in simple courses of Calculus can be solved in this way by inspection. Of the known
equations so far it is only the Bessel equation in the example above which cannot be solved in this
way.

On the other hand, the student should not only rely on this method, but only consider it as a valuable
alternative.

Example 5.8 The example above can now be solved in the following way:

0 = x
d2y

dx2
+ 2

dy

dx
+ xy The trick is to write 2 = 1 + 1

=
�

x
d2y

dx2
+ 1 · dy

dx

�

+
dy

dx
+ xy Write 1 =

dx

dx
and

d2y

dx2
=

d

dx

�
dy

dx

�

=
�

x
d

dx

�
dy

dx

�

+
dx

dx
· dy

dx

�

+
dy

dx
+ xy Differentiation of a product

=
d

dx

�

x
dy

dx

�

+
dy

dx
+ xy Differentiation is linear

=
d

dx

�

x · dy

dx
+ 1 · y

�

+ xy Differentiation of a product

=
d

dx

�
d

dx
(xy)

�

+ xy.

Put z = xy. The equation is then reduced to

d2z

dx2
+ z = 0,

with the complete solution

z = xy = c1 sinx+ c2 cosx, c1, c2 arbitrar constants.

For x �= 0 we get the complete solution

y = c1
sinx

x
+ c2

cosx

x
, c1, c2 arbitrar constants,

and we see that the calculations are somewhat easier to perform than by inserting a power series.
Unfortunately, the method relies heavily on that on immediately sees the right way of putting the
equation by writing

2
dy

dx
=

dy

dx
+

dy

dx
,

and then treat the to terms on the right hand side differently. ♦
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Example 5.9 (Outside the usual syllabus). We shall here in a more difficult example add the argu-
ments which are indicated at the end of the example above. We rewrite the equation in the following
way:

0 =
d4y

dx4
+ (λ − x)

d2y

dx2
− dy

dx
Write − 1 = d

dx
(λ − x)

=
d4x

dx4
+

�

(λ − x)
d

dx

�
dy

dx

�

+
d

dx
(λ − x)

dy

dx

�

Differentiation of a product

=
d4y

dx4
+

d

dx

�

(λ − x)
dy

dx

�

Differentiation is linear

=
d

dx

�
d3y

dx3
+ (λ − x)

dy

dx

�

,

hence by an integration

d3y

dx3
+ (λ − x)

dy

dx
= c.

83

Power series; methods in solution of problems

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Calculus 3b

  

86  

Putting x = λ we get c = 0 from the given boundary conditions. Hence

d3y

dx3
+ (λ − x)

dy

dx
= 0.

Putting z =
dy

dx
we see that this equation with the corresponding boundary values is equivalent to

the system






d2z

dx2
+ (λ − x)z = 0, z(0) = z�(λ) = z��(λ) = 0,

dy

dx
= z, y(0) = 0.

The next trick is to put z(x) = ϕ(λ − x) and then perform the change of variable t = λ − x. Then we
get by the chain rule that

dz

dx
=

dt

dx
· dϕ

dt
= −dϕ

dt
,

d2z

dx2
=

dt

dx
· d

dx

�
dz

dx

�

= − d

dt

�

−dϕ

dt

�

=
d2ϕ

dt2
,

and we have transformed the first equation into

d2ϕ

dt2
+ t · ϕ(t) = 0, ϕ(λ) = ϕ�(0) = ϕ��(0) = 0.

Now, it can be proved that this equation does not have an elementary function as a solution ϕ(t), so
at this stage we have somehow to use the method of inserting power series.

Replace the boundary problem with the following initial value problem:

d2ϕ

dt2
+ t · ϕ(t) = 0, ϕ(0) = 1 and ϕ�(0) = 0.

When t = 0 we see that we must have ϕ��(0) = 0.
Since p0(t) = 1 there are no singular points, hence i) the equation has a (unique) power series solution,
and ii) the radius of convergence is � =∞.

By insertion of the power series solution

ϕ(t) =
∞�

n=0

antn and ϕ��(t) =
∞�

n=2

n(n − 1)antn−2,

we get a0 = ϕ(0) = 1 and a1 = 1 · ϕ�(0) = 0, and

0 =
∞�

n=2

n(n − 1)antn−2 +
∞�

n=0

antn+1

=
∞�

n=−1

(n+ 3)(n+ 2)an+3tn+1 +
∞�

n=0

antn+1 (n − 2 = m+ 1 etc.)

= 2 · 1 · a2 +
∞�

n=0

{(n+ 3)(n+ 2)an+3 + an} tn+1.
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It follows from the identity theorem that a2 = 0 and that we have the recursion formula

(n+ 3)(n+ 2)an+3 + an = 0 for n ∈ N0 (the summation domain).

Since a0 = 1 and a1 = 0 and a2 = 0, and since there is a leap of 3 in the indices, we get by induction
(because (n+ 3)(n+ 2) �= 0 for n ∈ N0) that

a3p+1 = 0 and a3p+2 = 0, for every p ∈ N0,

hence the power series solution is of the form

ϕ(t) =
∞�

p=0

a3pt3p,

and bp = a3p satisfies the recursion formula (n = 3p)

(3p+ 3)(3p+ 2)bp+1 = −bp for p ∈ N0, and b0 = 1.

This is not a “nice” formula. We find the first coefficients

b0 = 1, b1 = − 1
2 · 3 , b2 =

1
2 · 3 · 5 · 6 , b3 = − 1

2 · 3 · 5 · 6 · 8 · 9 , . . . ,

so

ϕ(t) =
∞�

p=0

bpt3p = 1− 1
6

t3 +
1
180

t6 − 1
12960

t9 + · · · .

The ratio test applied on the recursion formula confirms that we indeed have � =∞.
When we have found ϕ(t) we shall still find λ such that ϕ(λ) = 0, λ > 0. The primitive method –
which works – consists of successively to determine possible positive zeros in

ϕ1(λ) = 1−
1
6

λ3, λ1,1 = 1, 81712,

ϕ2(λ) = 1−
1
6

λ3 +
1
180

λ6, λ2,1 = 2, 02403,

ϕ3(λ) = 1−
1
6

λ3 +
1
180

λ6 − 1
12960

λ9, λ3,1 = 1, 98444,

etc. etc.,

and then arrange these according to size. In the example I have calculated the smallest positive zero
on a pocket calculator. It is seen that the convergence is very fast. It can be shown that if the j-th
zero λn,j exists as a real positive number for n ≥ N , then the true j-th eigenvalue will always lie
between two successive terms in the sequence for n ≥ N (and closest to the term of highest index).
In the given example we get

1, 98444 < λ1 < 2, 02403,

where the first eigenvalue λ1 lies closest to the lower bound.
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The convergence of the second eigenvalue λ2 is somewhat slower, For instance we see that λ3,2 is
complex because ϕ4(λ) has only one real root. However, after a couple of extra iterations we obtain
a reasonable approximation (and at the same time we see that the approximations of the previous
eigenvalue also is enhanced).

The interested reader may as an exercise on the pocket calculator of this method find the first positive
zero π of

sinx

x
=

∞�

n=0

(−1)n
(2n+ 1)!

x2n,

by solving successively

ϕ1(x) = 1−
1
6

x2, ϕ2(x) = 1−
1
6

x2 +
1
120

x4, etc..

It is seen that when the complex roots disappear, then the convergence towards the true value λ1 = π
is in fact fairly fast. ♦

5.9 Differential equations of second order, a general solution formula

It is convenient here to mention a solution formula for a general differential equation of second order

(10) f2(t)
d2y

dt2
+ f1(t)

dy

dt
+ f0(t) y = u(t), t ∈ I,

because it is closely connected to the method of power series.

There does not exist a general solution formula of (10), but if one knows just one solution y1(t) �= 0
of the corresponding homogeneous equation

f2(t)
d2y1

dt2
+ f1(t)

dy1

dt
+ f0(t) y1 = 0,

then equation (10) can be completely solved!

The simplest method is to apply a theorem which should be included in every textbook on this matter,
and which I shall recommend as the standard method. The procedure is the following:

1) First find a nontrivial solution y1(t) of the homogeneous equation.

This may be i) either given, ii) or found by a lucky guess (possibly by using a given hint), iii) or
it can be found by the method of power series (when f2(t) and f1(t) and f0(t) are polynomials).

2) Normalize the equation (10), i.e. divide by f2(t),

d2y

dt2
+

f1(t)
f2(t)

dy

dt
+

f0(t)
f2(t)

y =
u(t)
f2(t)

.

(If one forgets to perform this part of the process, we shall later obtain very wrong formulæ).
The zeros of the denominator f2(t) divide I into subintervals. The method of solution can only be
applied on these open subintervals, so one should always afterwards also test whether the found
solution also is valid in these points. The same can be said of the zeros for y1(t).
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3) Calculate the function

Ω(t) = exp
�

f1(t)
f2(t)

dt

�

.

Any antiderivative of f1(t)/f2(t) may be used. Choose that one which after a reduction gives the
simplest Ω(t).

4) Calculate
�

y1(t)Ω(t) ·
u(t)
f2(t)

dt = F (t).

Again we may use any antiderivative. Do not forget the normalizing factor f2(t) in the denominator
(a frequent error).

5) Calculate
�

F (t)
Ω(t)

· 1
y1(t)2

dt = G1(t) and
�

1
Ω(t)

· 1
y1(t)2

dt = G2(t).

Here we can also apply any antiderivative.

6) The solution of (10) in then in every of the open subintervals of I, where f2(t) �= 0, given by

y(t) = y1(t) · G1(t) + c1y1(t) + c2y1(t)G2(t),

where c1 and c2 are arbitrary constants.

Notice that y2(t) = y1(t)G2(t) is a solution of the homogeneous equation, and that y1(t) and y2(t)
are linearly independent.

7) Test the result, i.e. check if the complete solution can be extended to the zeros of f2(t) and y1(t).

A compact form of 4)–6) is

y(t) = y1(t)
�

1
Ω(t)y1(t)2

��

Ω(t)y1(t) ·
u(t)
f2(t)

dt

�

dt,

where f2(t) is the coefficient of
d2y

dt2
in (10) and y1(t) is introduced in 1), and Ω(t) is introduced in 3).

By each inside integration we add an arbitrary constant (c2 by the innermost integral, and c1 by the
outermost integral). Notice that Ω(t) occurs once in the “numerator” and once in the “denominator”,
and that y1(t) occurs twice in the “numerator” and also twice in the “denominator”.

We see that it is only the normalizing factor f2(t) in the denominator which is not put in this
“symmetric way”.

Remark 5.1 The method of Wrońskians, which is described in every textbook of Calculus, is of course
correct. However, it is also unnecessarily complicated. It is an unhappy historical relict, originally
aiming at quite another object. The theory of determinants were introduced in Linear Algebra in the
beginning of the 1800s. Like any other new inventions there was a large opposition among scientists
in those days against this theory. In order to show that determinants actually were useful Liouville
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developed in 1829 this theory for differential equations of second order. For that reason the formulæ
became really “contaminated” by determinants.

This example convinced the established mathematical world, and Liouville’s solution was from then
on called the method, and it was further developed by many mathematicians in the rest of the 19th
century, and then the theory fossilized. It looks like that only Belmann (in the 20th century) had
realized that the determinants were not at all necessary, but no one listened to him, because he was
notorious for his hot temper and his very egocentric appearance.

It is also a mystery why Wroński got his name attached to this formula. He has apparently had nothing
to do with the development on the determinant, which now is named after him. The point is of course
that it is very difficult to find a formula years before one is even born! It is possibly a misquote from
some one in the 19th century, and then his name got stuck to it.

Finally it should be mentioned that the Wrońskian W (t) is connected with the theory here by the
formula

W (t)Ω(t) = c,

where the constant c �= 0 depends on the chosen system y1(t), y2(t) of linear independent solution of
the homogeneous equation.

W (t) =
�
�
�
�

y1(t) y2(t)
y�
1(t) y�

2(t)

�
�
�
�
, (often very difficult to calculate).

Note that the calculation of Ω(t) only applies two of the coefficient functions of the equation, so Ω(t)
should be easy to find. ♦
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A Formulæ

Some of the following formulæ can be assumed to be known from high school. Others are introduced
in Calculus 1a. It is highly recommended that one learns most of these formulæ in this appendix by
heart.

A.1 Squares etc.

The following simple formulæ occurs very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a − b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a − b)2,
(a+ b)(a − b) = a2 − b2, a2 − b2 = (a+ b)(a − b),
(a+ b)2 = (a − b)2 + 4ab, (a − b)2 = (a+ b)2 − 4ab.

A.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln
�
�
�
�

x

y

�
�
�
�
= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

�
x

y

�r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1
ax

, a > 0, (extensions for some x),

n
√

a = a1/n, a ≥ 0, n ∈ N.

Square root:
√

x2 = |x|, x ∈ R.

Remark A.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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A.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}� = f �(x)± g�(x),

{f(x)g(x)}� = f �(x)g(x) + f(x)g�(x) = f(x)g(x)
�

f �(x)
f(x)

+
g�(x)
g(x)

�

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

�
f(x)
g(x)

��

=
f �(x)g(x)− f(x)g�(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:
�

f(x)
g(x)

�

=
d

dx

�

f(x) · 1
g(x)

�

=
f �(x)
g(x)

− f(x)g�(x)
g(x)2

=
f(x)
g(x)

�
f �(x)
f(x)

− g�(x)
g(x)

�

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}�
f(x)g(x)

=
f �(x)
f(x)

+
g�(x)
g(x)

,

{f(x)/g(x)}�
f(x)/g(x)

=
f �(x)
f(x)

− g�(x)
g(x)

.

Since

d

dx
ln |f(x)| = f �(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}� = f �(ϕ(x)) · ϕ�(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

A.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R og a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1 + tan2 x =

1
cos2 x

, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1
cosh2 x

, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1
1 + x2

, for x ∈ R,

d

dx
Arccot x =

1
1 + x2

, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1
1− x2

, for |x| < 1,

d

dx
Arcoth x =

1
1− x2

, for |x| > 1.

Remark A.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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A.5 Integration

The most obvious rules are about linearity
�

{f(x) + λg(x)} dx =
�

f(x) dx+ λ

�

g(x) dx, where λ ∈ R is a constant,

and about that differentiation and integration are “inverses to each other”, i.e. modulo some arbitrary
constant c ∈ R, which often tacitly is missing,

�

f �(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =
�

{f(x)g(x)}� dx =
�

f �(x)g(x) dx+
�

f(x)g�(x) dx.

Hence, by a rearrangement
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The rule of partial integration:
�

f �(x)g(x) dx = f(x)g(x)−
�

f(x)g�(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark A.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark A.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. See also Chapter 4. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ�(x), then one can change the variable to y = ϕ(x):
�

f(ϕ(x)) · ϕ�(x) dx = “
�

f(ϕ(x)) dϕ(x)�� =
�

y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then
�

f(x) dx =
�

y=ϕ−1(x)

f(ϕ(y))ϕ�(y) dy.

Remark A.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√

x, hence x = ϕ(y) = y2 og ϕ�(y) = 2y. ♦

A.6 Special antiderivatives

Power like:
�
1
x

dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

�

xα dx =
1

α+ 1
xα+1, for α �= −1,

�
1

1 + x2
dx = Arctan x, for x ∈ R,

�
1

1− x2
dx =

1
2
ln

�
�
�
�

1 + x

1− x

�
�
�
�
, for x �= ±1,

�
1

1− x2
dx = Artanh x, for |x| < 1,

�
1

1− x2
dx = Arcoth x, for |x| > 1,

�
1√
1− x2

dx = Arcsin x, for |x| < 1,

�
1√
1− x2

dx = − Arccos x, for |x| < 1,

�
1√

x2 + 1
dx = Arsinh x, for x ∈ R,

�
1√

x2 + 1
dx = ln(x+

�

x2 + 1), for x ∈ R,

�
x√

x2 − 1
dx =

�

x2 − 1, for x ∈ R,

�
1√

x2 − 1
dx = Arcosh x, for x > 1,

�
1√

x2 − 1
dx = ln |x+

�

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:
�

expx dx = expx, for x ∈ R,

�

ax dx =
1
ln a

· ax, for x ∈ R, og a > 0, a �= 1.

Trigonometric:
�

sinx dx = − cosx, for x ∈ R,

�

cosx dx = sinx, for x ∈ R,

�

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

�

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

�
1

cosx
dx =

1
2
ln

�
1 + sinx

1− sinx

�

, for x �= π

2
+ pπ, p ∈ Z,

�
1
sinx

dx =
1
2
ln

�
1− cosx

1 + cosx

�

, for x �= pπ, p ∈ Z,

�
1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

�
1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:
�

sinhx dx = coshx, for x ∈ R,

�

coshx dx = sinhx, for x ∈ R,

�

tanhx dx = ln coshx, for x ∈ R,

�

cothx dx = ln | sinhx|, for x �= 0,

�
1

coshx
dx = Arctan(sinhx), for x ∈ R,

�
1

coshx
dx = 2 Arctan(ex), for x ∈ R,

�
1

sinhx
dx =

1
2
ln

�
coshx − 1
coshx+ 1

�

, for x �= 0,
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�
1

sinhx
dx = ln

�
�
�
�

ex − 1
ex + 1

�
�
�
�
, for x �= 0,

�
1

cosh2 x
dx = tanhx, for x ∈ R,

�
1

sinh2 x
dx = − cothx, for x �= 0.

A.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are the
coordinates of a piont P on the unit circle corresponding to the angle u, cf. figure A.1. This geometrical
interpretation is used from time to time.

��
��

�

�

��
(cosu, sinu)
u
1

Figur 3: The unit circle and the trigonometric functions.
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The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1
2
(exp(iu) + exp(− iu)),

sinu =
1
2i
(exp(iu)− exp(− iu)),

.
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Moivre’s formula: By expressing exp(inu) in two different ways we get:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example A.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical appliction,

cos(3u) + i sin(3u) = (cosu+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u − 3 cosu · sin2 u}+ i{3 cos2 u · sinu − sin3 u}
= {4 cos3 u − 3 cosu}+ i{3 sinu − 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u − 3 cosu, sin 3u = 3 sinu − 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u − v) = sinu cos v − cosu sin v,

cos(u+ v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1
2
sin(u+ v) +

1
2
sin(u − v),

cosu sin v =
1
2
sin(u+ v)− 1

2
sin(u − v),

sinu sin v =
1
2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1
2
cos(u − v) +

1
2
cos(u+ v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin
�

u+ v

2

�

cos
�

u − v

2

�

,

sinu − sin v = 2 cos
�

u+ v

2

�

sin
�

u − v

2

�

,

cosu+ cos v = 2 cos
�

u+ v

2

�

cos
�

u − v

2

�

,

cosu − cos v = −2 sin
�

u+ v

2

�

sin
�

u − v

2

�

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u − sin2 u = 2 cos2 u − 1 = 1− 2 sin2 u,

sin
u

2
= ±

�

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

�

1 + cosu

2
followed by a discussion of the sign,

98

Formulæ

Download free eBooks at bookboon.com



Calculus 3b

  

101  

A.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x − sinh2 x = 1.

Definitions:

coshx =
1
2
(exp(x) + exp(−x)) , sinhx =

1
2
(exp(x)− exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.
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Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x − y) = sinh(x) cosh(y)− cosh(x) sinh(y),
cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).
Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
�x

2

�

= ±
�

cosh(x)− 1
2

followed by a discussion of the sign,

cosh
�x

2

�

=

�

cosh(x) + 1
2

.

Inverse hyperbolic functions:

Arsinh(x) = ln
�

x+
�

x2 + 1
�

, x ∈ R,

Arcosh(x) = ln
�

x+
�

x2 − 1
�

, x ≥ 1,

Artanh(x) =
1
2
ln

�
1 + x

1− x

�

, |x| < 1,

Arcoth(x) =
1
2
ln

�
x+ 1
x − 1

�

, |x| > 1.

A.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

A.10 Taylor expansions

The generalized binomial coefficients are defined by
�

α
n

�

:=
α(α − 1) · · · (α − n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with
�

α
0

�

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
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Power like:

1
1− x

=
∞�

n=0

xn, |x| < 1,

1
1 + x

=
∞�

n=0

(−1)nxn, |x| < 1,

(1 + x)n =
n�

j=0

�
n
j

�

xj , n ∈ N, x ∈ R,

(1 + x)α =
∞�

n=0

�
α
n

�

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =
∞�

n=1

(−1)n−1 xn

n
, |x| < 1,

Arctan(x) =
∞�

n=0

(−1)n x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =
∞�

n=0

1
n!

xn, x ∈ R

exp(−x) =
∞�

n=0

(−1)n 1
n!

xn, x ∈ R

sin(x) =
∞�

n=0

(−1)n 1
(2n+ 1)!

x2n+1, x ∈ R,

sinh(x) =
∞�

n=0

1
(2n+ 1)!

x2n+1, x ∈ R,

cos(x) =
∞�

n=0

(−1)n 1
(2n)!

x2n, x ∈ R,

cosh(x) =
∞�

n=0

1
(2n)!

x2n, x ∈ R.

A.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:
xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:
an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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