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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R? to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R® alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R?, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use R™ as our abstract model, and then restrict ourselves in examples mainly to R? and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R? the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space E™ by R™. There is a subtle difference between E™ and R™, although we often
identify these two spaces. In E™ we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space R™ we can use ordinary calculus,
which in principle is not possible in E™. In order to stress this point, we call E™ the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..

Download free eBooks at bookboon.com



Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in R™.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauf3’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:
A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume X,
Vector Fields I; Gauf3’s Theorem

This is the tenth volume in the series of books on Real Functions in Several Variables.

It is the first volume on Vector Fields. It was necessary to split the material into three volumes
because the material is very big. In this first volume we deal with the tangential line integral, which
e.g. can be used to describe the work of a particle when it is forced along a given curve by some force.
It is here natural to introduce the gradient fields, where the tangential line integral only depends on
the initial and the terminal points of the curve and not of the curve itself. Such gradients fields are
describing conservative forces in Physics.

Tangential line integrals are one-dimensional in nature. In case of two dimensions we consider the
fluz of a flow through a surface. When the surface 0f) is surrounding a three dimensional body £2,
this leads to Gauf’s theorem, by which we can express the flux of a vector field V through 0f2, which
is a surface integral, by a space integral over 2 of the divergence of the vector field V. This theorem
works both ways. Sometimes, and most frequently, the surface integral is expressed as space integral,
other times we express a space integral as a flux, i.e. a surface integral. Applications are obvious in
Electro-Magnetic Field Theory, though other applications can also be found.

The present volume should be followed by reading Volume XI, Vector Fields II, in which we define
the rotation of a vector field V in the ordinary three dimensional space R? and then describe Stokes’s
theorem. We shall also consider the so-called nabla calculus, which more or less shows that the theorems
mentioned above follow the same abstract structure.

Gauf’s and Stokes’s theorems have always been considered as extremely difficult to understand for
the reader. Therefore we have given lots of examples of worked out problems.
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32 Tangential line integrals

32.1 Introduction

We shall in this book introduce the analogues of the differential and integral calculus for functions in
one variable, extending the theory to vector fields. Since we are dealing with fields, we give ordinary
functions the name scalar fields.

The main issue will be to extend the following equivalent rules for a function F : [a,b] — R, where
we assume that its derivative F” : [a,b] — R exists and is continuous (of course half tangents at the
endpoints). The first one is

/ F'(z)dz = F(b) — F(a).

In this one-dimensional version this well-known formula can also be interpreted in the following way.
To the left the interval of integration [a,b] C R has the boundary J[a,b] = {a, b} consisting of the
two endpoints, a and b. Therefore, when we move from left to right, the ordinary integration of the
derivative F’(x) over the interval [a,b] is replaced by the right hand side, where we in some sense
(to be defined later on) “integrate” the function F'(z) itself (without being differentiated) over the
two boundary points d[a,b] = {a,b}. This is a geometrical/topological idea combined with measure
theory. We shall deal with the problem of how to generalize the above to all the various forms of
integrals, which we have already met, i.e. to line, plane, space and surface integrals.

The second rule, which we want to generalize to functions or vector fields in several variables, is, given
F' as above,

F(z) = F(a) + /w F'(¢) de.

In this case we may expect some reconstruction formule of a scalar or vector field, given its derivatives.
We may of course also expect some difficulties in this process, because for the time being it is not
obvious how the partial derivatives of F(x) (a function in several variables) should enter the right
hand side of the generalization of the equation above.

To ease matters, we shall only specify the domains and the order of differentiability needed of the
scalar or vector fields under consideration in important definitions and theorems. Otherwise, when
these properties are not explicitly described, we shall tacitly assume that F(x), or F(x), is of class
C°, so it is always allowed to interchange the order of differentiation. Also, in these cases, the domain
will always be a nice one.

Since this chapter in particular is supporting physical theories, we shall in most cases only consider
domains which lie in either R? or R?.

32.2 The tangential line integral. Gradient fields.

The tangential line integral is introduced in Physics, when we shall calculate e.g the work, which a
force executes on a particle bound to a fixed curve. Let V denote the force (given as a field in the
space), and let F be a given curve in space of a given parametric description, so we can determine
its tangent vector field t. If ds denotes the infinitesimal length element on IC, then the infinitesimal
work done by V on a unit particle at x € K must be V - tds, cf. Figure 32.1.
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Figure 32.1: Geometrical analysis of the tangential line integral. Here t is the unit tangent vector
field to the curve I, and V is a vector field, where we are going to integrate the dot product V -t
along IC.

We get the total work done of V on this unit particle by integrating along the curve IC, a process we
denote by anyone of the symbols

/ V - tds, or / V- dx, or / V(x) - dx,
K K K

depending on the context. Note the appearance of the dot product.

If V instead denotes an electrical field, then the tangential line integral along K is equal to the
difference in potential between the end point and the initial point, provided that we can neglect the
contribution from inductance.

Assume that the curve K has the parametric description x = r(7), where r : [o, 5] — R" is a C!
vector field. If furthermore, r'(7) # 0, then the unit tangent vector field is given by

r'()
[/ (I

Since ||r'(7)|| is cancelled by this process, we may allow that we in some points have r'(7) = 0, as
long as this set is small. We quote without proof,

t =

and ds = ||t'(7)|| d, hence dx = r'(7)dr.

Theorem 32.1 Reduction of a tangential line integral. Assume that K is an oriented continuous and
piecewise C' curve in the domain A C R™, given by the parametric description r : |a, 8] — R™, where
r is injective almost everywhere, and where v’ # 0 also almost everywhere.

Let V : A — R"™ be a C° vector field. Then we have the following reduction of the tangential line
integral of V along K,

/KV-tds—/jV(r(T))-r’(r)dr.
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The abstract integral in blue is to the left, and the ordinary 1-dimensional integral (in black), which
can be calculated, is to the right. We note that we introduce a compensating factor to the integrand
in the dot product to the right.

Clearly, the value of the integral changes its sign, when the orientation of the curve is reversed, or, if
the particle is moved in the opposite direction.

The tangential line integral is also called the current of the vector field along the curve.

Example 32.1 The following simple example is only illustrating the methods. It will probably never
be met in practice.
Given the vector field

V(%y,z) = (2(Eaeia + Z,yZ) s for (iC,y,Z) c RB,

We shall show how we find its current along the curve K of the parametric description
1
K: (zy,2)=r(r)= <1n7',7'3,—> ) for 7 € [1,2].
T
We first calculate
/ 1 2 2 2
r'(r)y=-,37",—= and V(r(r)) = (2Int,—,t* ).
T T
Then the current C' of V along K is given by

2
C = / V- tds = / V(r(r)) -r'(r)dr
K 1
2
1
= / {2 =L 67— 1} dr = [(In7)? +3r% —7)°_ = (W2’ +8. ¢
1 T =
When we use rectangular coordinates in R? we also write
V-tds=V(x)- dx = (V,,V,, V,) - (dz, dy, dz) = V, dz + V,, dy + V. dz,

where we have put V = (V,,V,,V,) and (dz, dy, dz) in rectangular coordinates. In this case the
result of Theorem 32.1 is written

dz dy dz

B
Vedoe +V,dy +V,dz = Vo —+V,—=+V, — » dr,
/IC T Yy eyt : /a { dT+ ydT+ dT} 4

and similarly for rectangular coordinates in the general space R™.

An important special case, is when K is a closed curve, i.e. its endpoints coincide. In this case the
tangential line integral is called the circulation of the vector field V alont K, and it is denoted

f V(x) - dx, or e.g. f Vedx + V,dy + V. dz.
K K

The shall below consider the important vector fields V (the gradient fields), for which the circulation
is 0, no matter the choice of an admissible curve K in the definition of the circulation. But first we
include a small exercise,
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Example 32.2 Consider again the vector field
V(z,y,2z) = (22, %+ 2,yz), for (z,y,2) € R3,

from Example 32.1, and let K be the circle given by the parametric description
K: (z,y,2)=r(r) = (1,cosT,sin7), T € [0, 27].

Then
/ . . .
r'(1) = (0, —sinT,cos ), and  V(r(r)) = (2, . +sinT,cosTsinT |,

and the circulation becomes

2 2 :
C = V(r(r)) - r'(7) dT:/ {0— SH;T —sin27'+cos27'} dr=-7 ¢
0 0

~
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We then introduce the gradient fields, i.e. vector fields V, for which there exists a C'! function F, such
that

F OF OF
V:vF:(a 0 a>.

dx’ By’ 9z
We get by the chain rule (cf. Section 9.2) that

d
7 M)} = () -r'(7),
so by the reduction theorem and then by inserting this equation from the right to the left,
B

B , d
/}C VF(x) - dx = /a VF(r(r) v (r) dr = /a L (x(r))} dr
[F(x(1)))f—a = F(r(8)) — F(r(a)).

In other words, for gradient fields the value of the tangential line integral along K only depends on
the endpoints and not on the permitted curve joining the endpoints. Thus, if X1 and Ks are two
permitted curves between the same endpoints, then

VF(x) dx= v F(x) - dx = F(final point) — F(initial point).
Fi Fa

This result is coined in the following theorem (as usual without its full proof)

Theorem 32.2 The gradient integral theorem. Given a C' function F : A — R, where A C R?, and
leta, b € A. then

/KvF(x) - dx = F(b) — F(a)

for every continuous and piecewise C! curve K lying in A with initial point a € A and final point
b e A.

The reader who is familiar with the Theory of Complexr Functions will in case of n = 2 recognize this
as connected with analytic functions. In Physics, the gradient field 7F in R? and R? is interpreted
as a conservative vector field.

We shall now prove the important circulation theorem.

If we choose K as any permitted curve in A from a point a € A to another point x € A, and the
gradient field \/F is given in A, then we get by a rearrangement of the result of Theorem 32.2,

F(x) = F(a) +/va(u) - du,

so we can reconstruct F'(x), using our knowledge of V(u) = \7F'(u). Note that we are strictly speaking
only given that V(u) is a gradient field, so to begin with we only know the existence of the function
F, so the right formulation of the above would be that

F(x) :F(a)—i—/xV(u) - du,
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where it is given that V is a gradient field.

We note that if furthermore the endpoints coincide, a = b, the curve K is closed, so the circulation is
for gradient fields,

C':j{vF(x)-dx:O,
K

and we have proved that the circulation of a gradient field along any closed curve is always 0.

Then we prove the opposite, namely that if the circulation of V along every closed curve in the open
domain A of V is zero, then V is a gradient field. The idea is of course to construct the function F'
and then prove that it is indeed a primitive of V.

We choose a fixed point a € A, i.e. the open domain of V, and we let x € A be any other (variable)
point in A. Since by assumption

7{ V(u)-du=0

K

for every closed (permitted) curve I in A, it follows that the tangential line integral from a to x is
independent of the integration path from a to x.

In fact, let ; and Ko be any two paths from a to x, and let —/Cy denote the path from x to a of Iy
in the reversed direction. Then the concatenated curve K := Ky — Ks is closed, so by splitting the
integral,

0= 74 V(u)- du= V(u) - du— V(u) - du,
K K1 Ko

and it follows by a rearrangement, that the value of the integral of the differential form V(u) - du
does not depend on the path from a to x.

We can therefore unambiguously define the function

X
F(x) ::/ V(u) - du,
a
where we can choose any (permitted) integration path from a to x.

The increase of this function is the difference
x+h
AF =F(x+h)- F(x) = / V(u) - du.

Since A was assumed to be an open domain, and x € A, we can choose r > 0, such that x +h € A,
whenever ||h|| < r. Then the whole line segment [x;x + h] lies in A, whenever 0 < ||x|| < r, which we
assume in the following. When we integrate along this line segment, it follows from the mean value
theorem, cf. e.g. Section 9.5 or Section 20.2, that there exist numbers 6, ...,6, €]0, 1], such that

1 n 1 n
AF:/ V(x+rh)-th:Zhi/ Vi(x+7h)dr = Y " hiVi (x + 6;h) .
0 i1 0

i=1

When we add and subtract the right term, h - V(x), then

AF =h- V(x) = Xn:hm (x+ 6;h) — Zn:hm(x) =h-V(x) + Zn:hi (Vi (x + 6;h) — Vi(x)} .

i=1 =1
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Since V is continuous, and all §; €]0, 1], it follows that

> hi{Vi (x+6;h) — Vi(x)} = ||h]| Z Hlll:” i (x +0ih) = Vi(x)} = ||h[le(h),

=1

where

;h) —Vi(x)} — 0 for h — 0,

Z ||h||

because |h;/||x||| < 1 is bounded, and because V is continuous. We therefore conclude that the
constructed function F is differentiable of the gradient 7 F' = V.

Hence, we have proved

Theorem 32.3 The circulation theorem. A C© vector field V on A is a gradient field, if and only if
the circulation is 0 for every closed permitted curve K contained in A,

j{V-dXZO.
K

In practice it is only possible to use Theorem 32.3 to prove that a given vector field is not a gradient
field. The vector field in Example 32.2 is therefore not a gradient field, because we have found a closed
curve, along which the circulation is —7 # 0.

The circulation does not always have to be zero in important applications. If e.g. H denotes a magnetic
field, an K is a closed curve, then Ampére’s law says that the circulation of H along K is given by

j{H-tdSZI,
K

where [ is the current, which is linked by the closed curve K. Since in general, I # 0, this means that
the magnetic field is not a gradient field.

We shall then derive some other criteria which assure that a given C! vector field V is a gradient
field. Assume to begin with that V is a gradient field. Then there exists a scalar field F’, such that
V = F. We then call the scalar field F' a primitive of the vector field V, or of the differential form
V(x) - x.

Clearly, if V has the primitive F, then all primitives o V are given by F + ¢, where ¢ € R is an
arbitrary constant.

Let us furthermore assume that V is a C! gradient field (and not just C°) with the C? primitive F.
Then we have in coordinates

oF oF  or\ o
Ox1 Oxs T 0xpn )’ " Oz’

1=1,...,n,

(‘/1;‘/27~~~;Vn):(

so interchanging the order of differentiation, which we may, because F € C?,

ov, 0 <8F> ’F  *F D (ar*)_av;-

N d; oz, ) ~ on;

9r, ~ 91,

- 8%8337 n 83378% n 8_33‘1
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So whenever V is a C! vector field, a necessary condition for V being a gradient field is that

av, oV,

2.1 =

for all ¢, j € {1,...,n}.

Whenever (32.1) holds, we call
V.dx=Vidz; +---+V,dx,

a closed differential form. Thus the differential of a C? gradient field is always a closed differential
form.

Unfortunately, this necessary condition is not sufficient. We need an extra condition on the domain
A of V|, namely that A is simply connected, cf. Section 5.9.

Simply connected domains are easy to describe in R%. Let A C R? be a connected plane set. Every
closed bounded curve K in R? divides the plane into three mutually disjoint sets, the curve K itself, the
outer and unbounded open set Bj, and the inner and bounded open set Bs. We say that A is simply
connected, if for every closed curve K in A, the inner bounded set Bs by this division is contained in
A, thus By C A. This is very easy to visualize on a figure. The typical example of a connected plane
set, which is not simply connected, is R?\ {0, because if we as K choose the unit circle, then the point
0 lies inside K and not in A = R?\ {0}.
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In higher dimensions simply connected sets are more difficult to visualize. For instant the set R®\ {0}
is simply connected. The problem is of cause that we, opposite to the plane case, cannot define
precisely what lies inside a closed curve. However, at broad class of connected sets is consisting of
simply connected sets, and the members are also easy to visualize, namely the star-shaped domains.
The open domain A is called star-shaped, if there is a point a € A, such that for every other x € A
the straight line segment from a to x lies entirely in A, i.e.

[ax]:={(1—-XNa+ x| Ae[0,1]} C A
We shall only formulate the following theorem for star-shaped sets, because the proof here is fairly
simple, and we note that it is also true in general for simply connected sets,
Theorem 32.4 The primitive of a gradient field. Let A C R"™ be a star-shaped open domain, and
assume that V. : A — R" is a C! vector field, which fulfils the condition

ov, oV

for allx € A and for all i, j € {1,...,n}.

Then V is a gradient field, and a C? scalar primitive is defined by
F(x):= / V(u) - du, forallx € A,

where a € A is fized, and where we integrate along any continuous and piecewise C* curve lying in A
and going from a to x.
FEvery primitive of V is of the form F + ¢, where ¢ € R is a constant.

PRrROOF. Given the assumptions of Theorem 32.4. Since A is star-shaped, we choose the point a € A,
such that any other point x € A can be “seen from a by a straight line segment lying totally in A.
Using, if necessary, a translation, we may assume that a = 0. We then define

1
F(x):=x- / V(rx)dr, x €A,
0

where the path integral here is another way to write the line integral from a = 0 to x alont the straight
line segment [0;x] C A. Then

Plx) = ixj /01 Vi(rx) dr = zj:/ol Ui(x, 7) dr,

where we for technical reasons later on have put
U(x,7) :=V(rx).
It follows from the chain rule that

6U¢ an -
oz, =1D;Vi(rx) and 5 = ;(EijV;‘(TX),
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where D;V; denotes the derivative of the function V; with respect to the j-th variable (y; = 7x;).
Finally,

OF = {axi /1 /1 oU; } /1 - /1
= o [ Uidr+ua dre= [ Ujdr+ > a; | 7D;Vi(rx)dr
5%() ; 9zj Jo 0 O, o Z: 0 Vi)

1 1
/Ujd7+/ {szlDVTx } /UdT+ T—Jd /a {rU;} dr
0 0

= [Vi(rx)], = Vi(x),
and we have proved that 7 F' = V, so V is indeed a gradient field. ¢

Example 32.3 The proof of Theorem 32.4 gives a concrete solution formula, once the assumptions
have been checked. Namely, calculate the line integral of the differential form V(x) - dx along the
straight line segment [a;x]. We shall demonstrate this method on the vector field

V(z,y,z) = (y2 + 2z, 2xy + 2y22, 2y%2 + a:) , for (z,y,2) € R3,
where we have the coordinate functions
Ve(z,y,2) =" + 2, Vy(2,y,2) = 2zy + 2y2°, Va(z,y,2) = 2y°2 + .

We first check

ov, . v, V. V. 9V, av,

Ay Y= 0z ddz Oz’ 0z Yz oy’

so V - dx is a closed differential form. Since A = R? is trivially star-shaped, it follows from Theo-
rem 32.4 that V(x) is a gradient field.

According to the theorem, one possible solution formula is

1
(x)=x- /0 V(rx)dr, x €A,

where
1
/V(Tl‘,Ty,TZ)dT = /(7'23/2—|—Tz,27'23:y—|—273y22,273y2z+7x) dr
0 0
1 2+1 2 +1 1, +1
= —z,-x 22 z+ -2z
2V Tamyt TR E g ET T

so a primitive is given by

1
Fows) = (np2): [ Vi ryradr
0
1 1 2 1 1 1
= gwa"'5“"’§$y2+§y222+§y222+5x2:x2+xy2+y222.
CHECK;
%:ZerQZVm, a—y=2xy+2y22:Vy, E=x+2y2z:Vz’

so F(z,y,2) = xz + 2y? + y*2? is indeed a primitive of V. We then get all primitives by adding an
arbitrary constant ¢ € R.
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The method of radial integration, as in Example 32.3, often requires some hard calculations. We
note, however, that we may choose other and more reasonable integration paths. A commonly used
method is integration along a continuous step line, where each of the steps is parallel to one of the
coordinate axes. When we describe this method we assume for convenience that we integrate from 0.
If a — b designates that we integrate along the straight line segment between a and b, then the idea
is — whenever possible — to use the following paths of integration,

1) In R%: (0,0) = (x,0) = (z,y).
2) In R: (0,0,0) = (,0,0) = (2,9,0) = (z,y, 2),
We see that each arrow represents an integration along an axiparallel line segment. More explicitly,
1) In R?, the vector field is V(z,y) = (Vi (z,y), Vy(z,y)), and the line integration from (0, 0) can be

written

@ y
F(z,y) z/ Va(7,0) dT+/ Vy(z,7)dr,
0 0
because V(z,y)-(dz, dy) = Vz(x,0) dz on the line segment from (0, 0) to (z,0), since here dy = 0,
and V(z,y) - (dz, dy) = Vy(z, y) dy on the line segment from (z,0) to (x,y), because here dz = 0.

2) In R? the vector field is V(z,y,2) = (Va(x,y, 2), Vy(2,9, 2), Va(2,9, 2)), so the analogue solution
formula becomes

T y z
F(x,y,z):/ VI(T,O,O)dT—&—/ %(33,T,0)d7'+/ V.(x,y,7)dr.
0 0 0

In some cases this step line does not lie in A, but one may modify this construction to obtain this
property by choosing another axiparallel step line. It should be easy for the reader to carry out the
necessary modification in such cases.

The advantage of this method is that all usual variables, except for one, are constants in each of the
subintegrals. If we in particular integrate from 0, then we get lots of zeros in the integrands, so some
of the terms may even disappear. We shall see this phenomenon in Example 32.4 below.

It may occur in some cases that we cannot find F'(x) everywhere in A by only using a simple step line
as above, though we may get a result in a nonempty subset B C A. Then it is legal just to check by
differentiation, if we indeed have \7F =V in all of A, and that solves the problem.

Example 32.4 We consider again the gradient field from Example 32.3 above, (no need to check
once more that it is a gradient field),
Vi(z,y,z) = (y2 + 2z, 2xy + 2922, 2y%2 + a:) , for (z,y,2) € R3,
where we have the coordinate functions
Velz,y,2) =y + 2, Vy(z,y,2) = 2zy + 2y22, Vi(z,y,2) = 2y*z + .
Then by the method of step lines,

T Yy z
F(z,y,2) = /OVz(T,O,O)dT+/O %(x,7’,0)d7'+/0 V.(x,y,7)dr

T Y z
/ 0dr + / 2zTdT + / (2y27' + a:) dr
0 0 0

= 0+ [xT2]‘Z + [y27'2 + xT]; = ay? + 22 + 2z,
which is calculated with less effort than in the method of Example 32.3.
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A third method is to manipulate with the differential form V(x)- dx by using the rules of computation
of differentials in the “unusual direction” finally getting dF'(x), where F'(x) is the wanted primitive.
This method requires some skill, though it is also the most elegant one, because if one succeeds, then
there is no need to check the assumptions of Theorem 32.4.

Example 32.5 Consider again from the two previous examples

V(z,y,z) = (y2 + 2z, 2xy + 2922, 2y%2 + x) , for (x,y,2) € R3,
where we have the coordinate functions

Velz,y,2) =y + 2, Vy(z,y, z) = 2zy + 222, Vi(z,y,2) = 2y%2 + .
Then the corresponding closed differential form is

V(z,y,z) - (dz, dy, dz) = (y2 + z) dz + (Qxy + 2y22) dy + (2y* + ) d=.

The strategy is to split all the terms and then pair them, so that they can stepwise be included as the
differential of some function. When we deal with polynomials we may also collect terms of the same
(general) degree. In general, if e.g. we have a function ¢(y) in y alone as a factor of dy, then use that
o(y)dy = d®(y), where ®'(y) = ¢(y). Similarly for the other variables.
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In the present case we get, using these methods,
V(z,y,2) - (dz, dy, dz) = y* dz + zdz + 2zy dy + 2y2° dy + 29?2 dz + zdz
=y?de+ zdr +2d (yQ) +2%d (yQ) +y%d (2’2) +zdz
{y?de+2d(y*)} +{zdz+adz} + {Z*d (v*) + y*d (z*)}
= d (2y®) +d(zz) +d (y*2*) = d (xy2 +xz +y°2%),

from which we conclude that V has a primitive, so it is a gradient field, and that modulo a constant
this primitive is given by

F(z,y,2) = zy* + x2 4+ 3222

We note again that this method has the advantage that if it succeeds, then it is not necessary to check
the assumptions of Theorem 32.4. {

Example 32.6 Consider the vector field

V<x7y>=<vm<a:,y>,vy<x,y>>=< \/xfwz, Wﬂyz), for (z,y) # (0,0),

where the domain A = R?\ {(0,0)} is not simply connected.

However, using the differential form we immediately get

2 .2
Ve(z,y)de + Vy(z,,y)dy = x dx + 4 dy = 01(xi—ky):d<\/a:2+yQ),

1

so V is a gradient field in A, and all its primitives are given by

F(z,y) = vVz2+ 32+, where ¢ € R is an arbitrary constant.

ALTERNATIVELY, we first note that

Ve 0= J__ 1 = vy _9(_y \_%

dy oy \aP+y?) 222 4y? P2 Ox\ 21 ,2)  Ox
so V(z,y) - (dz, dy) is closed, and V(z,y) is a gradient field in every star-shaped domain contained
in A.

One may choose the right half plane = > 0 as our subdomain. Here we can use the step line,
(1,0) = (2,0) = (z,9), >0,

so by the solution formula,

z y
/ Vo (7,0)d7r + / Vy(x, 1) dr
1 0

x Y T Y

= dT-l-/idT:iC—l-f—[ 962+T2}
/1 o Va2 4+ 72 \/70

r—14+a2+y2—z=+a2+y2—1 for z > 0.

F(x,y)
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However, F(z,y) = /22 +y2 — 1is C* in R?\ {(0,0)}, and
oF x OF Y

.\, :7:VII7 ) - & Y
5 (&Y) e (z,y) @<m e

so we have checked that the result, which was only derived for z > 0 also holds in all of R?\ {(0,0)}.

= Vy(za y)7

Note alse that we get all primitives by adding an arbitrary constant, so it is no error above that we
get /22 + 42 in the first method, and /2 + %2 — 1 in the second one. ¢

32.3 Tangential line integrals in Physics

Consider a unit particle which moves along a curve K under the action of a force F(x). Then the
work done by this force is given by the tangential line integral

W:LN@dx

If F =— </ E, is a gradient field, then the work is independent of the path, so

[ 60 = 5, (4) - 1,(5)

where A is the initial point of K and B is the final point, The function E, with the conventional minus
sign in front of it, is the potential energy.

A force F', which is also a gradient field, is in Physics called a conservative force.

The tangential line integrals are especially used in Electro-magnetic Field Theory. An electric field
& = £(x,1), where t is the time variable, describes the force per unit charge, so when one unit of charge
is moved along the curve K, then the work done by £(x,t) is equal to the tangential line integral

W = /}CE(XJ)- dx.

If KC is closed, we get the circulation of the electric field along K. This is also called the electromotive
force (emf) applied to the closed path K,

emf:jg E(x,t) - dx,
K

although this is not a force, but an energy.

If £(x) is time-independent, we call it a static electric field. In this case the circulation along a closed
curve K is always zero,

emf:]{ E(x)- dx =0,
K

so £(x) is in this case a gradient field.

We have previously also mentioned Ampére’s law, where the magnetic field H in general is not a
gradient field.
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The physical examples above are just the simplest ones of the applications of the tangential line
integrals in Physics. We shall later introduce the more powerful Gauf’s and Stokes’s theorems and
see some applications of them.

32.4 Overview of the theorems and methods concerning tangential line
integrals and gradient fields

The current of a vector field V along a curve K of parametric representation r(t) is defined by:

B
_ / V. dx = / V() -F (1) dt,
K e’
where we have identified
x=r(t) and dx=r'(t)ta.

It can in some cases be identified as an electric current along wire, represented by the curve.

[

0.8
0.6
0.4

0.2

Figure 32.2: Example of a plane curve K with initial point (0, 0).

There are here two important special cases:

1) The gradient integral theorem:

/K VF(x) - dx = F(b) — F(a),

no matter how the curve K from a to b is chosen.

2) Circulation, i.e. K is a closed curve.

Whenever the word “circulation” occurs in an example, always think of Stokes’s theorem,
= / n-rot VdS,
f

and see if it applies, cf. Chapter 35.
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Figure 32.3: The half sphere F gives a typical example, when we shall apply Stokes’s theorem.

We shall here only consider the gradient integral theorem, because the circulation will be treated
separately later.
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A trap: Even if the necessary conditions are all fulfilled, the field V is not always a gradient field,
although many readers believe it.

A sufficient condition (which is not necessary). The “cross derivatives” agree:

v, 9V
6$j o afi

foralle, j=1,...,k,

and

the domain A is star shaped.

Remark 32.1 Even when V is a gradient field, the corresponding domain A does not have to be star
shaped. ¢

Concerning the calculations in practice we refer to Section 32.2:

1) Indefinite integration,

2) Method of inspection,

3) Integration along a curve consisting of lines parallel with one of the axes,
4) Radial integration.

The radial integration cannot be recommended as a standard procedure.

In some cases a differential form can be simplified by removing a gradient field:
V=vF+1,

or more conveniently,
V.-dx=V,dz+V,dy+V.dz = dF + U, dx + U, dy + U. dz,

where U ought to be simpler than V.
If so, then

:NM—NQ+Ame

This method is e.g. used in Thermodynamics, where the vector field usually is not a gradient field.
In these reductions one can take advantage of the well-known rules of calculus for differentials:

adf + dg= d(af+9), a constant

fdg+gdf = d(fg),
fdg—gdf:ﬁd(%), f#0,

F/(f)df = d(F o f).
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32.5 Examples of tangential line integrals

Example 32.7 Calculate in each of the following cases the tangential line integral

/ICV(X)~ dx

of the vector field V along the plane curve IC. This curve will either be given by a parametric description
or by an equation. First sketch the curve.

1) The vector field V(x,y) = (2?+y?, 2% —y?) along the curve K given by y = 1—|1—z| for z € [0,2].

2) The vector field V(z,y) = (22 — 2zy, y? — 22y) along the curve K given by y = 2% for x € [—-1,1].

3) The vector field V(x,y) = (2a — y,z) along the curve K given by r(t) = a(t — sint, 1 — cost) for
t € [0,27].

4) The wvector field V(z,y) = Ty Y- ) along the curve K given by z2 + y? = a® and run

x2 + y27 22 + y2
through in the positive orientation of the plane.

5) The vector field V(z,y) = (22 — y*, —(x +y)) along the curve K given by r(t) = (a cost,b sint)
forte [O, g] .

6) The vector field V(z,y) = (2% — y?, —(z +y)) along the curve K given by r(t) = (a(1 —t),bt) for
te0,1].

7) T#e vector field V(z,y) = (—y3,2%) along the curve K given by r(t) = (1 + cost,sint) for t €
57

8) The vector field V(z,y) = (—y2, a® sinh g) along the curve KC given by y = a coshg forx € [a, 2al.

A Tangential line integrals.

D First sketch the curve. Then compute the tangential line integral.

0.8

0.6

0.4

0.2

Figure 32.4: The curve K of Example 32.7.1.
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Figure 32.5: The curve K of Example 32.7.2.

I 1) Here the parametric description of the curve can also be written

B x for z € [0, 1],
Y= 2-2 for z € [1,2].

This gives the following calculation of the tangential line integral
/' V(x)-dx = / {(z®+¢?) dz+ (2 — %) dy}
JK K
1
/ {(wQ + x2) dx + (wQ — x2) dx}
0

+/12 {(#+e-27) d+ (a2~ 2-2)) (~a0)}

= /12x2dx+/22(2—x)2 dng[x3]1+g[(x—2)3]2
- o 1 3 0 3 1
_2,2 4
33 3
2) Here
‘V(\x‘)-(lx = /{(x2—2xy) dx+(y2—2xy) dy}
JK K

1
{(ac2 — 2x3) dx + (x4 — 2x3) -2z dx}
-1
1
(ac2 — 223 4+ 22° — 4x4) dx
-1
1

Il
— — —

=

2 4 L 4 451
(x —4x)dx—|—0=2 gx —5x

1 4 2 14
(5‘5)—1—5<5‘12>—‘1—5'

|
NS
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Figure 32.6: The curve K of Example 32.7.3 for a = 1.

0.5

Figure 32.7: The curve K of Example 32.7.4 for a = 1.

3) Similarly we get

V(x)- dx = / {(2a — y)dx + zdy}
JK K
2m
= {(2a—a(1—cost))a(l—cost)+a(t—sint)asint} dt

0

27
a® {(1+cost)(1—cost)+(t—sint)sint} dt

0

27 2
a2/ {1—cos®t+tsint—sin® t}dt = a2/ tsintdt
0 0

a’[~tcost +sint]2™ = —2ma®.

4) We split the curve K into two pieces, K = K1 4+ Ka, where K; lies in the upper half plane, and
ICo lies in the lower half plane, i.e. y > 0 inside K1, and y < 0 inside K. Then we get the

1504
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tangential line integral

' T +y y—x
‘/\jV(X)‘ dx = /;<(332+y2 dz + 21y dy)

oy, ()
= o+/,ql+g$>zd<z>+/,m(:)zd<z>

Yy Yy
= dArctan (;v) dArctan (E>
Yy Yy
= [Arctan t| [ + [Arctan t], 0 = —7m — 7 = —2.
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0Tz 04 06 08 1

Figure 32.8: The curve K of Example 32.7.5 for a =1 and b = 2.

ALTERNATIVELY we get by using the parametric description
(z,y) = a(cost,sint), t € [0, 2],

that

B Tr+y Yy—x
V(x) - dx = d d
// e /;c(w2+y2 T y)

27 2
= / a—z{(cost—i—sint)(—sint)+(sint—cost) cost}dt
0 @

2
{—cost - sint—sin® t+cost - sint—cos? t} dt

0

2m
= —/ dt = —2m.
0

5) Here

. V() dx= /K{(x2 — ) dz — (z +y) dy}

JIC

= /2{(a2 cos? t—b%sin? t)(—asint)— (acost+bsint)bcost} dt
0

z
:/ {—a[(a®+b?) cos® t—b?] sint —ab cos® t—bsint cost} dt
0

™

1 b 1 1
= |4a(a®+b%)= cos® t—ab? cost — a—(t—i— —sin2t)— =b%sin’ ¢
3 22 2 o

ab ™ b a(a®+b?) 9 4,9 o
=g gy g Tt =3 —d)

b
— Z(Zb + ar).
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0Tz 04 06 08 1

Figure 32.9: The curve K of Example 32.7.6 for a =1 and b = 2.

6) Here
'/VV(X)‘ dx:/}c{(x —y9)dr — (x + y)dy}
_ / ([2(1 = )2 — 2% (—a) — [a — at + bt] - b} dlt
0

1
= / {—a®(t — 1)* + ab*t* + b(a — b)t — ab} dt
0

1

3 b2 1
:[—%(t—1)3+%t3+§b(a—b)t2—abt
0
ab? 1 a®
_ G o0 b
—3(b a”) 2(a+b).

REMARK. The vector field V(x) is the same as that in Example 32.7.5 and in Exam-
ple 32.7.6. Furthermore, the curves of these two examples have the same initial point and
end point. Nevertheless the two tangential line integrals give different results. We shall later
be interested in those vector fields V(x), for which the tangential line integral only depends
on the initial and end points of the curve K. (In Physics such vector fields correspond to the
so-called conservative forces.) We have here an example in which this ideal property is not
satisfied. ¢
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Figure 32.10: The curve K of Example 32.7.7.

) We get
/ V(x -<1x:/{—y3dx—|—x3dy}
K

:/ {—sin®t- (—sint) + (1 + cost)® cost} dt
z

/ {sin*t + cost + 3cos®t + 3 cos’ t + cos* ¢} dt
3

T 1 3 3
:/ {sin4t+cos4t+ <2cos2t-sin2t— 3 sin22t) + cost + 3 + 3 c082t+30083y} dt

el

2

T 1 1 3
:/ {(Sin2t+C082t)2 1 + 1 cos4t + cost + 3 cos 2t + 3cost — 3sin®t cost} dt

t 3. 3 T
_Z — sm4t—|—smt—|— §t—|—1 sin 2t 4+ 3sint — sin® ¢
El
1 97
— =+ = —44+1=—-3.
( 4 ) v1= 3

8) We get
V(x)- dx = / {—y2 dz + a?sinh © dy}
JK K a

2a
= / {—a2 cosh? de+a2 sinhE -sinhgdx}
o a a a

= —a? /a?a {cosh2 (%) sinh? (a)} dz = —a®.
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Figure 32.12: The curves y = v3z, y = V32 and y = V322

Example 32.8 Compute the tangential line integral of the vector field

V(z,y) = 2wy, 2%7)

along the curve K given by y = ax®, z € [0,1]. Then find a such that the line integral becomes
independent of b.

A Tangential line integral.
D Just use the standard method.

I We calculate the line integral

: 1
V(z,y) - dx = / 2zy dx + 2%y dy = / {2xamb + 25a%2% . abxb_l} dz
JK K 0
~ /1 {anbJrl +a3bx3b+5} de — 2a . b a(a®b+6)
) S b+2 30b+2)  3(0b+2)

Assume that this result is independent of b. Then b+ 2 must be proportional to a?b+ 6, so a® = 3.

1509
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According to the convention a > 0, hence a = v/3. By choosing this a we get

B _ V3Bb+6)
./A-V““’”*‘X—W—*/i

which is independent of b.
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Example 32.9 Calculate in each of the following cases the tangential line integral

/}CV(X)~ dx

of the vector field V along the space curve IC, which is given by the parametric description
K={xeR®|x=r(t),tel}.

1) The vector field is V(z,y, z) = (y* — 2%,2yz, —2?), and the curve K is given by r(t) = (¢,t,t3) for
tel.

1
x+z’

and the curve K is given by r(t) =

2) The wvector field is V(z,y,z) = ( y+z,

(t,t2,13) for t € [1,2].

3) The vector field is V(x,y,z) = (32 — 6yz,2y + 3xz,1 — 4xyz?), and the curve K is given by
r(t) = (t,12,£%) for t € [0,1].

4) The vector field is V(z,y,2) = (322 — 6yz,2y + 3x2z,1 — 4ayz?), and the curve K is given by
r(t) = (t,t,t) fort €[0,1].

5) The vector field is V(z,y, z) = (322 — 6yz, 2y + 322, 1 — dxyz?), and the curve K is given by

(0,0,1), fort e 0,1],
r(t) =< (0,t—1,1), fortell, 2],
(t—2,1,1), forte|[2,3].

6) The wvector field is V(z,y,2) = (z,y,xz — y), and the curve K is given by r(t) = (t,2t,4t) for
te0,1].

7) The vector field is V(x,y,2) = 2z + yz,2y + x2,22z + xy), and the curve K is given by
r(t) = (a(cosht) cost,a(cosht)sint, at) for t € [0,2m7].
8) The vector field is V(z,y,z) = (y* — 2%,2yz, —2?%), and the curve K is given by r(t) = (¢,t,t) for
te[0,1].
A Tangential line integrals in space.

D Insert the parametric descriptions and calculate the tangential line integral. Note that Exam-
ple 32.9.7 is a gradient field, so it is in this case possible to find the integral directly.

I 1) We get

/ {(y* = 2*)dz + 2yzdy — 2* dz}
K

1
/ {(t" = %) + 262 - ¢ 2t — ¢ 3¢%} dt
0

1

35

2_
- -

=~ w

1
/ {3t5 — 2t*}at =
0
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2) Here

JAm

2
/1 {t+t3

[

t2 472
[h”— Lt )3+ 1)
1

ln2—fln5—|—3ln6—fln2 B3+ o+ -

2
da+ (y+2)dy + ————d
T4 y+2)dy Tyt Z}

612
3 dt
b+t + 2t + 3 }

6t )
1+t2+2+t2+t+t }dt
4
4 16 1

4 2
21 21 1. 512

91n2—|-715—|— + = In

3) First note that for any curve,

4 4 T2 50

V( ) (/x—/{ (322 —6yz) dz+ (2y+3x2) dy+ (1 —4ay2?) dz}

(32.2)

/ d(z®+y*+2) /z{6yda:—3a:dy+4a:yzdz}.

Tangential line integrals

1
4

Such a rearrangement can also be used with success in Example 32.9.3, Example 32.9.4

and Example 32.9.5.
When we apply (32.2), we get

V(x

JK

) -

d(x)

(1,1,1)

1
[2°+57+2] (500 — /0 t3{6t* — 3t - 2t +1° - 3t} dt

1
3—/ 12t dt=3-1=2.
0

ALTERNATIVELY, it follows by a direct insertion that

V(x

JK

) .

dx

4) The vector field is

V(x

JK

) .

dx

/ {(32” — 6y2)dx + (2y + 3z2) dy + (1 — day2?) dz}
K

1
/ {(3t2—6t% - 3)+ (2623t - t3)2t 4+ (1 —4t - t2 - 10)3t2 1 dt
0

1
/{3t2—6t5+4t3+6t5+3t2—12t“}dt
0

0

1
2 3 11\ 70 _ [943 4 44 41271 _
/(Gt +4t% —12t")dt = [26° + 1 — 2] = 2.

the same as in Example 32.9.3. We get by (32.2),

1
[+ +2] o) —/ (612 —3t2+4t") dt

1
3—/
0

0

4 6
32+ 4N dt=3-1— = = —.
(3t~ +4t7) E= %

1512
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ALTERNATIVELY, it follows by a direct insertion that

. 1
V(x) - dx = /{(3t2—6t2)+(2t+3t2)+1—4t4}dt
JK 0
1
4
= /(1+2t—4t4)dt:1+1——:§.
0 5 5

5) The vector field is the same as in Example 32.9.3. When we apply (32.2) and just check that
r(t) is a continuous curve, we get

V() -dx = [m3+y2+z}§é’é’é;—[/ 2{6ydz—3x dy+4zyzdz}
w K

JK o
1 3
= 3—/ Odt—/+20dt—/ 1-6dt=3—-6=-3.
0 1 2

ALTERNATIVELY, it follows by direct insertion that

V() -dx = /{(3x2—6yz)dx+(2y+3x2) dy+(1—4zyz?) dz}
Jx K
\ 1 2 3
= / (1-4-0) dt+/ {2(t—1)+0} dt+/ {3(t—2)2—6} dt
0 1 2
1 ? 1 3
= [tlg+2 [(t—l)Q] +3 [(t—2)3—2t}
2 1 3 2
= 1+41+41-3-2.343-2.2=3(1-6+4)=—3.
6) Here we get by insertion,
V(x)-dx = /{a:da: +ydy+ (vz —y)dz}
K

JK

1
- / b+ 2624 (t- 4t —20) -4} dt
0

1 1

= /(t+4t+16t2—8t)dt:/ (16t* — 3t) dt
0 0

16 3 32-9 23

3 2 6 6
7) It follows immediately that

V() -dx = /{(2x+yz)d;v+(2y—|—xz)dy+(2z:cy)dz}
K

JK o
= /{d(x2+y2—|—22)+(yzdw+xzdy+xydz)}
K

a(cosh 27,0,27
B / d(@®+y*+2" 4 ayz) = [27+y"+2" +ay2] (a(: yz)i(f(?O;
I(: ER- I

= a%cosh? 27 + 4a*7% — a® = a® (472 + sinh? 27).
ALTERNATIVELY, we get by the parametric description
r(t) = a(cosht - cost,cosht - sint,t), t¢€ [0,2n],
that

r'(t) = a(sinht - cost—cosht - sint, sinht - sint+cosht - cost, 1),

1513
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thus

/l V(x) - dx
JK

/}C{(2x +yz)de + 2y + zz)dy + (22 + zy) dz}

27
/ (2a cosht cost-+a’t cosht sint)a(sinht cost—cosht sint) dt
0
27
+/ (2a cosht sint+a” cosht cost)a(sinht sint+cosht cost)dt
0

2
+/ (2at+a® cosh® t - cost - sint)a dt
0
= a2 (- )+d® ().

Then the easiest method is to reduce and use that

_1 it —it . _l it —it
cost—2(e +e ), smt—%(e e ),

and similarly for cosht and sinht¢. We finally obtain the result by a partial integration.
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The variants above are somewhat sophisticated, so we proceed here by first calculating the
coefficient of a?:

2m
/ 2cosht - t(sinht - cost — cosht - sint)dt
0
2 2
—|—/ 2cosht - sint(sinht - sint + cosht - cost) dt + / 2t dt
0 0

27 27
=2 / cosht -sinhtdt + / 2tdt = [sinh2 t+ tz} zﬂ = 472 + sinh? 2.
0 0
Then we find the coefficient of a3:

2
/ t{cosht sinht sint cost—cosh®t sin?} dt
0
2m 2m
+ / t{cosht sinht sint cost+cosh®t cos®t} dt + / cosh®t cost sint dt
0 0

2T 2T
1
= / t(cosht sinht sin 2t+cosh? ¢ cos 2t) dt + 3 / cosh? ¢ sin 2t dt.
0 0

Note that

d (1
T {5 cosh? ¢ - sin 2t} = cosht - sinht - sin 2t+cosh? ¢ - cos 2t,

so the whole expression can then be written

27
d /1 dt 1
/0 {t O (5 cosh?t sin 2t> +E . (5 cosh? ¢ sin 2t> } dt
27 [2m
= / i E cosh?t sin2t | dt = E cosh? ¢ - sin 2t =0.
0 dy 2 2 0
As a conclusion we get

V(x) - dx = a?(4n? + sinh? 27) 4 0 - a® = a?(47? 4 sinh? 27).

JK

8) Here we get [cf. also Example 32.9.1, where the vector field is the same]

V() -dx = /{(yQ—zz)dx—FZyzdy—xde}
JK K
1 1 1
= /{(t2—t2)+2t2—t2}dt:/ t2dt = .
0 0 3
1515
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Example 32.10 Calculate in each of the following cases the tangential line integral of the given vector
field V along the given curve .

1)

2)

3)

4)

5)

6)

7)

8)

A
D

The vector field is V(z,y) = (x +y,x — y), and the curve K is the ellipse of centrum (0,0) and
half azes a, b, run through in the positive orientation of the plane.

1 1
|z + [yl |=[ + Iy

The vector field is V(x,y) = ( ), and the curve K is the square defined by its

vertices
(170)5 (071)5 (_150)7 (0,—1),
in the positive orientation of the plane.

The vector field is V(z,y) = (22 — y,y? + ), and the curve K is the line segment from (0,1) to
(1,2).

The vector field is V(z,y) = (22 —y?,y? + z), and the curve K is the broken line from (0,1) over
(1,1) to (1,2).

The vector field is V(z,y) = (2% — y,y?> + x), and the curve K is that part of the parabola of
equation y = 1 + 2%, which has the initial point (0,1) and the final point (1,2).

The vector field is V(x,y,z) = (yz, xz, z(y + 1)), and the curve K is the triangle given by its
vertices

(0,0,0), (1,1,1), (-1,1,-1),
and run through as defined by the given sequence.

The vector field is V(x,y, z) = (siny, sin z,sinx), and the curve K is the line segment from (0,0, 0)
to (mw,m, ).

The vector field is V(x,y,2z) = (z, x, —y), and the curve K is the quarter circle from (a,0,0) to
(0,0,a) followed by another quarter circle from (0,0, a) to (0.a.0), both of centrum (0,0,0).

Tangential line integrals in the 2-dimensional and the 3-dimensional space.

Sketch in the 2-dimensional case the curve . Then check if any part of V(x) - dx can be sorted
out as a total differential. Finally, insert the parametric description and calculate.

I 1) As K is a closed curve, we get

:/K{(:v—ky)dx—&-(x—y)dy} :/’C d (%xQ—&-wy— %yQ) =0,
because V - dx is a total differential.
ALTERNATIVELY, I has e.g. the parametric description
(z,y) =r(t) = (a cost,b sint), t € [0, 2],
hence

r'(t) = (—a sint, b cost).
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Figure 32.13: A possible curve K in Example 32.10.1.

15 - 05 0 05 1 15

Figure 32.14: The curve of Example 32.10.2.

Then by insertion,

'/\:V- (1X:/C{($+y)d$+(x_y)dy}

2w

= {(acost+bsint)(—asint)+(acost—bsint)bcost} dt
0

2
:/ {—a®cost sint—absin® t4+abcos® t—v?sint cost} dt
0

27
1
= / {abcoth - E(a2 + bz)sith} dt = 0.
0
2) Since |z| + |y| =1 on K, we have

: 1
V-(lxz/i dz + dy :/1dx—|—y =0.
T+l ¢ )= J ety

JK

1517
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ALTERNATIVELY, and more difficult we can use the parametric description of K given by

(1—t,1),
B (1-t2—1),
r(t) (t—3,2—1),
(t—3,t—4),

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"'

o

-

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Figure 32.15: The curve K of Example 32.10.3

Then
(-1,1), t €]0,1],
/(t) . (—1,—1), t 6]1,2[,
Uy -, tel2.3]
(1,1), t €13,4]

Since |z| + |y| = 1 on K, we get

V.dx = /(dx+dy)
K

JIC

Tangential line integrals

_ /01(—1+1)dt+/12(—1—1)dt+/23(1—1)dt+/34(1+1)dt

= 0-2+0+2=0.

First note that

. - AdAX = .’132 — X 2 xr = 1 1‘3 3 — X X
[veae = [t —nder 0 radn = 5 [ a6 +00) + [ (cydeady)
= %(8+1—1)+/’C(—ydm+xdy),
' 8
(32.3) | /\,V' dx = 3 + /K(—ydm + xdy)
(32.4) - /’C ((2® — y)da + (5° + ) dy}.

Then we calculate Example 32.10.3, Example 32.10.4 and Example 32.10.5 in the two

variants corresponding to (32.3) and (32.4), respectively.

A parametric description of K is e.g.
)= (61410, te o1,

and accordingly, r'(t) = (1, 1).

1519
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Figure 32.16: The curve K of Example 32.10.4.

Then by (32.3),

' 8 . 8 5
V.dx=- —A+t)+ttdt=- —1= .
JVdx 3+/0{(+)+} 3 3

ALTERNATIVELY, we get by (32.4) that

V.dx = /O{tQ—(1+t)+(1+t)2+t}dt=/o{(1+t)2+t2—1}dt

JK

1 1 bogt1-1 5
= |[s(1+t)P+<P—t] =———1="_.
{3(+)+3 ]0 3 3

4) Tt follows from (32.3) that
' 8 ! 2 8 8
V.dx = = ~1)d ldy=>—-14+1=-.
Jo X 3+./0( )“/1 T3S

ALTERNATIVELY, we get by (32.4),

g 1 2 1 1 1 2
Vedx = /(xz—l)dx+/(y2+1)dy={x3—x} +[y3+y]
Jr 0 1 3 o L3 1
1 8 1 8
- -—1 - 2—=—1=-.
3 +3+ 3 3
5) By (32.3),
. 8 1 2
V.dx = §+ {(-1=2°)+z-2z}dx
JK 0

8 [, 8 1., 1" 8
- —Ddz=-+ |-’ —a| ==
3+/0(:r ) dx 3+{3x x} 3+

1520
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Figure 32.17: The curve K of Example 32.10.5.

ALTERNATIVELY, by (32.4),

V-dx = /{xQ—m2—1+[(m2+1)2+x]-Zm}dm
K

JIC

= /{2x5+4x3+2x2+2x—1}dx
K

1 2 b 2
[§x6+x3+§x3+x2—x 0:§+1+§+1—1:2.

6) Here a parametric description is e.g. given by

(t,t,1), t €10,1],
r(t) = 3—2t,1,3-2t), tell,2],
(t—3,,-t+3,t—3), te€]2,3],
hence
(LL1), teo,1],
r(t) =< (-2,0,-2), te]l,2|,
(1,-1,1), te€]2,3].

FIRST VARIANT. We get by direct insertion,

V.dx = /{yzdx+xzdy+x(y+ 1)dz}
K

JIC

= /1(t2+t2+t2+t) dt+/2{-(3—2t) (2)+(3-2t)-2-(-2)} dt
0 1
+/3{(—t+3)(t—3) A+ (t—=3)% (1) +(t=3)(—+3) - 1+t -3} dt
2

1 2 3
_ 2 _ _ _ 92 (4
_/0 (362 + )t 6/1 (3 — 20)dt /2{3@ 3)2 _ (t—3)}dt
1 3
_ {t3 +1t2] +6[2 -3t - [(t—3)3 - ;(t—:’))?]

2 0 2

1 1
:1+2+6(4—6—1+3)+<—1—2>=0.
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2. variant. Reduction by removing a total differential.
As
V. dx=yzdr +xzdy + 2ydz + xdz = d(ayz) + xdz,

and as K is a closed curve, we have [, © d(zyz) = 0, so the calculations are simplified by removing

d(zyz):
/KV dx /}Cd(xyz)+/)cxdz:0+/)cxdz
/Oltdt+/12(3—2t)~(—2)dt+/23(t—3)dt

Btz}:—l—/lz(zlt—b‘)dt—i— [% (t—3)2]z

1 2 1
= —+[22—6t], —==8-12-2+6=0.
5+ 1 6t], — 5 =8 +6=0

REMARK. The expressions would have been even simpler, if we did not insist on that the
parametric intervals [0, 1], [1,2], [2, 3] should follow each other. Instead one can split K into
three subcurves

Ki: ri(t) = (¢, ¢,1), t€0,1],
Ko: ro(t)=(1-2¢1,1-2t), +¢€]0,1],
’Cg: rg(t):(t—l,].—t,t—l), tG[O,I],

/
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where
Ki: ri(®)=(1,1,1), t €]0,1[;
Ko r4(t) =(-2,0,2), t€]0,1];
Ks: ri(t)=(1,-1,1). t€]0,1]

Tangential line integrals

We obtain that the three line integrals can be joined like in the second variant above:

V.-dx = ---:/xdz:/ gcdz—i—/ ;vdz—i—/ rdz
JK Ko K3

) K . K1
/0 tdt+/0 (1—2)-(

1 ) 1
3/0(2t—1)dt:3[t —t],=0. 0

—2)dt+/1(t—1)dt
0

7) The most obvious parametric description is here

r(t) =t(1,1,1), withr'(¢t) = (1,1,1),

t €0,

Thus we can put x = y = z =t everywhere. Then

JIC

\'E (lx:/{sinydx—l—sinzdy—i—sinxdz}:/ 3sintdt = [-3 cost]] = 6.
K 0

8) If we call the two curve segments Ky and Ky, then the most obvious parametric description is

Ki: af(cost,0,sint), te€ [07 g] ,
Ko: a(0,sint,cost), te€ [07 g] .

Then by insertion,

V. .dx = /(zdx+a:dy—ydz)
K

JK

™

a/o (sint-(—sint))dt+a/ (—sint) - (—sint) dt

0

™

3 Fl
= —az/ sin ¢t dt + a2/ sin? tdt = 0.
0 0

1523
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Example 32.11 Find in each of the following cases a function

o) = [ V&)

to the given vector field V : A — R2, where K is the broken line which runs from (0,0) over (z,0) to
(z,y). Check if ® is defined in all of A, and calculate finally the gradient 7.

1) The vector field V(z,y) = (y? — 2zy, —x2 + 2xy) is defined in A = R2.

1

2) The vector field V(z,y) = | ———
y? —a? +1

, ;v) is defined in

A={(z,y) | —V1+y2 <z <1492}

3) The vector field V(x,y) = ( , is defined in the disc A given by
V1—a2 —y2 Ja—a2 -2

22 +y? < 1.

4) The vector field V(z,y) = vl 4 in the set A given by (z,y) #

Y T S given by (z,y

(1,0).

5) The vector field V(x,y) = (cosy,cosz) is defined in A = R?.

6) The vector field V(x,y) = (cos(x ) 0) is defined in A = R2.

7) The vector field V(x,y) = (2 + 4%, xy) is defined in A = R?.

8) The vector field V(z,y) = (2 + y2 2zy) is defined in A = R2.

A Tangential line integrals.

D Remove, whenever possible, total differentials. Integrate along a broken line. Finally, compute the
gradient \7®.

I 1) We get by inspection,
B(z,y) = = [ 1@ 20 di + (<% + 235 43}
=[G e -y (= aly— o),
ALTERNATIVELY,
®(z,y) = /’C {(§° — 229) dZ + (—2° + 22§) dj} = /Ox 0dt+/0y(—x2 + 2zt) dt = xy* — 2y.
Finally,

V‘I) = (y2 - 2xy7 2xy - x2) = V(x7y)a
and ® is defined in all of 4 = R2.
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Figure 32.18: The domains of V(z,y) and ®(z,y).

The domain A for V(x,y) lies between the two hyperbolic branches given by 22 — y? = 1. The
domain A of ®(x,y) is smaller, in fact only the points lying between the two vertical lines
x = +£1, because we can only reach these by curves of the type K. (The curve K must never
leave A, because we require that V is defined).

We get for (z,y) € A,

32.5) ®(x, :/ 7dt+/ xdt = Arcsin z + xy.

The function ® is only defined in A. In this subset of A we get

v = ( +uon) Vi),

1
V1— 12?2
In particular, V(z,y) is not a gradient field.

REMARK. Formula (32.5) is a mindless insertion into one of the solution formulae for this type
of problems. It cannot be applied here because the assumptions of it are not fulfilled. ¢

Here we get

€z Y
®(r,y) = / e+ —Y gy
() K{\/l—:ﬁ—y? V1—a2 —y? }
= / d(—\/l—xQ—gﬁ) =1-—+1—-22—y%
K
ALTERNATIVELY we get for 22 + y? < 1 by an integration along the broken line that

_ [t Tt g [ovite s [vice ]
®(z,y) = /omdt+/o mdt—[ 1 t}o—k{ l1—z t]o

= 1-V1-224V1-a22—/1-22 -2 =1-/1—-22 — 2.

It follows immediately that

_ z y V(s
v@(x7y)_<\/1_x2_y27 \/1—$2—y2>_V( ay)7
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05

-05

Figure 32.19: The domain A of ® lies to the left of the dotted line x = 1.

and that ® is defined in all of A.
4) In this case we have for any curve K from (0,0) in A that

_ r—1 . Y
B /{md Wmdy}

N /fcd(\/(x—1)2+y2) =V -12+y2 -1

> Apply now
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If we only integrate along curves IC of this type, then we can only reach points in
A={(z,y) |z <1,y R}

By integration along a broken line in this domain,
t—1

‘I’(:E,y) = /O Wdt—'_ ; Wdt

T v
_12 2
/O |t_1|dt+[ -1 +e)

/Ox(—l)dt-&- [\/($—1)2+y2—\/(x—1)2} (because t < x < 1)
o= 1|+ VET P AP = a = (1 —a) - I
= (x—-1)2+y2—-1.

It follows that s7® = V and that ® can be extended to all of A.
5) When we integrate along the broken line

(0,0) — (2,0) — (z,y)

we get
z y
‘I’(%y):/V-dXZ/ cosOdt+/ coszdt =x 4y cosz,
K 0 0

which is defined in all of R2. Here,
v®(z,y) = (1 —ysinz,cosx) # V.

It is seen that V is not a gradient field.
6) When we integrate along the broken line

(0,0) — (2,0) — (z,y)

we get in all of R?,

‘I>(JU,y)=/KV-dX=/Icos(t-O)dt—&—O:x7
0

where 7® = (1,0) # V, so V is not a gradient field.
7) When we integrate along the broken line
(070) — (.’13,0) — (.’I,',y)

we get in all of R?,

Y

T 1 1
@(x,y)z/V-dx=/ (t2+02)dt+/ wtdt = 2° + = xy?,
K 0 0 2
where
1
Ve = <3fﬂ2 +5 yz,xy) # V(z,y).

It follows that V is not a gradient field.
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8) When we integrate along the broken line
(070) — (1’70) — (1’7y)

we get in R?

T y 3
§>(%y)=/V-dx=/ (t2+02)dt+/ 2atdt = L 4 2,
K 0 0 3
where

v = (22 + %, 2zy) = V(z,y).

In this case V(z,y) is a gradient field.

Example 32.12 Calculate in each of the following cases the tangential line integral of the given vector
field V : R? — R? along the described curve K.

1 1
1) The vector field V(z,y) = (2 22 +ay — 3 y2> along the ellipse K of centrum (0,0) and half

azes a, b, in the positive orientation of the plane.

2) The vector field V(z,y) = (334 + In(1 —|—y)) along the arc of the parabola K given by y = 22,

xz € [-1,3].

3) The vector field V(x,y) = v (x + 2y — exp(xy)) along the broken line K, which goes from (2,0)
over (1,2) to (0,1).

A Line integral of a gradient field.

D As V(z,y) = vF, the tangential line integral is only depending on the initial point and the end
point,

/ V. dx = F(xs) — F(xp).
K
I 1) The ellipse is a closed curve, so

/V-dx:O.
K

2) The initial point is (—1,1), and the end point is (3,9), hence
/ Vodx= o' + (1 +9)] 7, =81+ 10— 1~ In2 =80+ In5.
. :
3) The initial point is (2,0), and the end point is (0,1), hence

/V- dx=[x+2y—exp(xy)]§g’3§:0+2—1—2—0+1=0.
. ,
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Tangential line integrals

Example 32.13 Calculate in each of the following cases the tangential line integral of the given vector

field V : R? — R3 along the described curve K.

1) The vector field 7(x% + yz) along the curve K, given by

r(t) = (cost,sint,sin(2t)), t € [0,2n].

1 1
2) The vector field <7(cos(xyz)) along the line segment K from <7r, 2’ 0) to (2, T, —1).

3) The vector field s7(expx + In(1 + |yz|) along the broken line IC, which goes from (0,1,1), via

(m,—3,2) to (1,v/3,—V3).
A Tangential line integrals of gradient fields.
D Use that

/ v F - dx = F(end point) — F(initial point),
K

is independent of the path of integration.

Since the absolute value occurs in Example 32.13.3, we shall here be very careful.

I 1) As K is a closed curve (i.e. the initial point (1,0,0) is equal to the end point), it follows that

/V-dx:O.
K

Iy
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2) Since F(z,y, z) = cos(zyz), and the initial point and the end point are given, we have

[Vt (L) = on( o) <

3) First note that

expx + In(l 4+ yz) for yz >0,
expx + In(l —yz) for yz <0,

P = {

so we must be very careful, whenever the curve K intersects one of the planes y = 0 or z = 0.
In case of the first curves this can occur, because the parametric description is

t(0,1,1) + (1 — t)(m,—-3,2) = (1 — t)m, 4t — 3,2 —¢), t€[0,1],
and the same is true for the second curve, because it has the parametric description
t(m,—3,2) + (1 —t)(1,V3,—V3) = (1 + t(r — 1),V3 — t(3+V3), =3 + t(2+ V/3)),
for ¢ € [0, 1].

3
The former curve intersects the plane y = 0 for ¢ = —, and the latter curve intersects both the

plane y = 0 and the plane z = 0. The point is, however, that in everyone of these intersection
points the dubious term In(1+ |zy|) = 0, so they are of no importance. Hence we can conclude
that

/ V.dx = J[expz+In(l+ |yz|]E(1)1/§)7‘/§)
K

= e+nd—1—-In2=e—1+1n2.

REMARK. Always be very careful when either the absolute value or the square root occur. One
should at least give a note on them. ¢
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Example 32.14 Given the vector field

2y Yy
\% = In(2 .
(z,y) <2x+y,2m+y+ n(x+y)>

1. Sketch the domain of V, and explain why V is a gradient field.

2. Find every integral of V.
Let IC be the curve given by

(z,y) = (2t%,1), 1<t<2.

3. Compute the value of the tangential line integral

/V-tds.
K

Let F be the integral of V, for which F(1,1) = 0.

4. Find an equation of the tangent at the en point (1,1) of that level curve for F, which goes through
the point (1,1).

A Gradient field, integrals, tangential line integral, level curve.

D Follow the guidelines.

-1 06 UR6120-

Figure 32.20: The domain is the open half plane above the oblique line.

I 1) Clearly, V(x,y) is defined in the domain where 2z + y > 0, cf. the figure.

As
oy 2 2y
Oy 2wty (u+y)?
and
Vs 2y 2 ovy
dx (2w +y)? +2x+y T oy’

it follows that V4 dz 4 V5 dy is a closed differential form. Since the domain is simply connected,
the differential form is even exact, and V is a gradient field.

1531

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X
Vector Fields |

2) Since
2y 2dx
F = dz = =y In(2 2 0
o) = [ Gt de=y [ 25 —yh@aty). 204y >0
where
2y
F = In(2 \%
R = (G2 s e )) = Vie),

all integrals are given by

F(z,y) =y In(2z + y) + C, CeR.

Figure 32.21: The curve K.

3) We get by the reduction theorem for tangential line integrals that
. 2
V-tds = / V(r(t)) -r'(t)dt
1

JK
2
2 t
In(4t2 +¢) | - (4¢,1) d¢
/1 (4t2+t e +)> (4, 1)

Tangential line integrals

_ 2
= { —4t+1+1n(4t +t)} de
1
= 2-— Z[1m(4t+1)] +[tInt—t]3+[t In(4t+1))3 / 4t+1d

= 2In2+4In3—In5=1In %4

4) It follows from F(1,1) =In3+ C =0 that C = —1n3, so

F(z,y) =y In(2z +y) — In3.

1532
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However, we shall not need the exact value of C'= —1n3 in the following.

The normal of the level curve is sy F = V, hence
21
V(,1)={=,-+1In3
1= (5.5 +m3).
and the direction of the tangent is e.g.

1 2
=(-+In3,-=
v (3—|—n,3>,

and we get a parametric description of the tangent,

@O =0 =t (G +m3-2),  rem

Tangential line integrals

If we instead want an equation of the tangent, then one possibility is given by

2 1
0=V~(az—1,y—1):§x+<§+ln3>y—1—ln3.
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33 Flux and divergence of a vector field. Gauf}’s theorem

33.1 Flux

Let V be a C? vector field in a domain in R3, and let F be a C! surface in this domain. Then we can
define a continuous unit vector field n of unit normal vectors to F.

The fluz of V through F with respect to this vector field of normals (there are locally two possibilities
of the orientation of n) is defined as the surface integral of V(x) - n(x) over F, also denoted

/ V -ndS, or / V(x) - n(x) dS, or / V- dS,
F F F

where we have put dS :=ndS for the vectorial element of area.

Figure 33.1: Tllustration of the flux. We integrate the dot product V - n over the surface F.

The flux describes the flow of the vector field V through the surface F in the direction of the normal
vector field n. It is obvious that if we replace n by the opposite normal vector field —n, then the flux
changes its sign.

We mention a couple of examples from Physics. If e.g. V = J is the density of an electric current,
then f #J-ndS is the electric current passing through (measured in the direction of n). If instead
V = B is a magnetic field, then [ FB-ndS is the magnetic flux through the surface F (also measured
in the direction of n).

Then we shall see how the flux in practice is calculated, when we introduce coordinates. Letr : E — R?
be a (rectangular) C! parametric description of the surface F in the parameters (u,v) € E C R2. We
have previously shown that

N(u,v) := 1} (u,v) x v (u,v)
is a normal to F, provided that N(u,v) # 0. Hence, the unit normal field n is for N # 0 given by

N
n:=_——, and dS = ||N|| dudw.
[IN]|
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It follows immediately that the vectorial area element is
ndS = Ndudw.

We note that as usual that we may allow N(u,v) = 0 in the applications as long as this only takes
place in a null set, i.e. we only require that N(u,v) # 0 almost everywhere. Then we have (again, the
proof is omitted),

Theorem 33.1 Reduction of a flux of a vector field. Let A C R3? be an open domain, and let
V: A — R beaC® vector field. Finally let F C A be a continuous and piecewise C surface of
the parametric description r : E — R3, where we assume that E is a closed and bounded domain in
the (u,v)-plane, that r is injective almost everywhere, and where the normal vector field N(u,v) # 0
almost everywhere.

Then the flux of V through F in the direction of the normal vector field N can be calculated by the
following plane integral over E,

'/'Fv.ll(lAs = /EV(r(u,U)) N (u, v) dudv.

This is very important, so we include a couple of examples to exercise the method.

Example 33.1 We shall find the flux & of the vector field
V(x7yﬂz): (yz,—:rz,x2+y2), for (x7yﬂz) e]R37
through the surface F, given by the parametric description

r(u,v) = (u sinv, u cosv, uv), for0<u<land0<v<u.

i

ol 08
R '0'3 0.4 0.5
vz 020304

Figure 33.2: The surface F of Example 33.1

Since

r),(u,v) = (sinv, cos v, v), and 1) (u,v) = (u cosv, —u sinv,u),

1536
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we get
sin v Ccos v v
N(u,v) =| ucosv —usinv v |=wu(cosv+ v sinv,v,cosv — sinv, —1),
(S3] €9 €3

so N(0,0) = 0 and N(u, v) # 0 elsewhere in F.
The vector field V restricted to F is described in the parameters (u,v) as

V(r(u,v)) = (u*vcosv, —u’

vsinv,u2) = u?(vcosv, —vsinw, 1),
S0
V(r(u,v)) - N(u,v) = u® (vcos® v + v?sinvcosv — v sinvcosv + v’ sin®v — 1) = u® (v - 1),

and the flux of V through F is given by

o

/ V(r(u,v)) - N(u,v)dudv = / u? (v* — 1) dudv
E

E

Lou el 11 7
— /d 3 = — 5— 4 = — = = = ——
/0{/0 (v—a) 7)}u du /0{2u u}du 25 60’ O

Figure 33.3: The flux of the Coulomb field through F in Example 33.2
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Example 33.2 The Coulomb field or Newton field is defined by

z,Y,z
Vk(xvyaz) = kl (:EQ _:y2 + 2);2)3/2 fOI' (:Z:,y,z) 7é (anvo)a

where k #£ 0 is some given constant. Its direction is always directed away from 0, and

i
EE

We choose k =1 in the following and write V instead of V. We shall find the flux of V through the
surface F, which is the following square at height a > 0, and given by

VIl =

F: [—a,a] X [—a,a] x {a}, with the unit normal n = (0,0, 1).

The flux is
. . 1
(2.9,2) - (0,0, )] dx}dy

¢ = [veas= [0
F a{ —a (.7:2+y2+22)3/2
a a a
- /_a {/—a (22 + 9?2 + a2)3/2 d.r} .

(]
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It follows from the symmetry that this plane integral is 8 times the plane integral restricted to the
triangle T on Figure 33.4. Since the two variables (z,y) only occur in the integrand in the form of
22 4 42, it is natural to change to polar coordinates, ¢?> = z? + y2. This means that we should use
polar coordinates on the triangle T. This is given in polar coordinates by

a

and 0<o<

T: 0<p< .
== " T cosp

I

Then the flux becomes, where we remember the weight function p,

-a a

Figure 33.4: The restricted domain 7" of Example 33.2

= 8/ a drdy = 8/2 /CO:VJ % __d de
® : o372 4l
T (22 4 y2 + a2)*/? 0 0 (a2 + ¢2)%/?

P 0
:8/Z a

i | cos ¢
S :8/ o esel Ly,
Vat+ 02| . v 0 { \/1+cos2go}
e

% %
= 8 (f b g d¢> =278 P d.
0

4 0 V2—sin?yp V2 —sin? ¢

1
If we change variable from ¢ to ¢ by putting sin ¢ = v/2sin), then we get for ¢ = % that sinvy = 3

(=)

S0 Y = % The t-interval becomes i € {0, %}, and the flux is

3 cos dp=2m—8 T \/2dsiny
0 V2—sin?yp =0 \/2 — 2sin% 1)

© G 2
= 2738 L ap—rm-s [T a0
0

p=0 \/1 — sin? 1) cos 1) 6 3

¢ = 27—
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33.2 Divergence and Gauf}’s theorem

We shall in this section consider a closed continuous and piecewise C'! surface F, which we also assume
to be the boundary of a bounded domain Q C R? in space. Furthermore, we assume that the unit
normal vector field n on F is defined almost everywhere. We shall for a bounded surface which is the
boundary of some domain €2, i.e. F = 0f), always assume that n is oriented away from €.

Let V be a C! vector field defined on an open domain containing the closure Q. Then the fluz of V
through F = 09, i.e.

@::/V-ndS,
f

is interpreted as the flow of something, which flows out of 2 through the boundary surface F = 0f2.
Clearly, this is of interest in Physics, so we shall here analyze this situation more closely in order to
obtain an alternative way of calculating the flux. It is obvious that we in some sense must take into
account what is created inside {2, so we can expect that the result is a space integral of some integrand
derived by a mathematical process from V.

We shall start the analysis with a very simple case, where we assume that €) is an axiparallel paral-
lelepipedum. Using if necessary a translation we may assume that €2 is described by

w = 1[0,a] x [0,b] x [0, c], for some a, b, ¢ > 0.

Figure 33.5: The flux of V through the two parallel surfaces of height z = 0 and z = ¢ of the
parallelepipedum w. Note that the field n is pointing in opposite directions on the two surfaces.

We shall first consider the flux through the surfaces of w of height z = 0 and z = ¢. We clearly have
n = (0,0,—1) on the surface, for which z = 0, and n = (0,0, 1) on the plane surface, for which z = ¢,
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cf. Figure 33.5. Hence, the combined contribution to the flux from these two opposite surfaces is

o, = /Oa{/obvz(a:,y,c)dy} +/Oa{/0b(1)vz(x,y,0) dy}
_ /Oa{/:[vz(x,y,z)];g dy} dx:/oa{/ob{/oc %V;(w,z)} dy} dz
= / (f)‘ (z,y,z) .
Similarly,

o, = / dfracoV,0y(z.y, z)dQ and &, = / dfracoV,0z(x,y, z) d§2,

so the total flux ® of V through the boundary surface of w is

Figure 33.6: The flux of V through the surface of the union of two axiparallel parallelepipeda. The
contribution to the total flux is cancelled on the common surface, because the only change in the
integrand is the unit normal, which changes its sign.

When we calculate the total flux of two adjacent axiparallel parallelepipeda, we see that on a common
surface the total contribution to the flux is zero, because the only change in the integrand is the sign
of the unit normal vector field, which is + on the surface of w; and - on the surface of ws.

By iterating this result we see in general, that if €2 is a union of finitely many axiparallel parallelepipeda,
then the total contribution from every “inner surface” must be zero, i.e. when there are two smaller
parallelepipeda w; and w; with a common surface. These “inner surfaces” also disappear in 0€2, so we

can replace Ule Ow; with 3U§:1 wj = ON.
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The argument above makes it plausible that when we approximate {2 from the inside with finite unions

U?:l wj of such parallelepipeda, and let n — 400, then we may expect that the flux of V through a
general 02 is given by

<I>_/Vnds /{ y+K}dQ,
o0 13}

and although the above is far from a correct proof, this is true under the assumptions we shall state
below in Theorem 33.2. However, since the integrand on the right hand side keeps occurring in many
cases, we first shorten the notation by giving it a name, which in the general R™ is coined by the
following definition.

Definition 33.1 Let V = (V1,...,V,) be a C* vector field in an open domain Q C R™. We define
the divergence of V by

. o oV,
div V := 81‘1 + -+ 9z,

It is not possible here to give the proof of the following important theorem, because the closed surface
F = 02 may not be nice, and even if it is, the approximation of € from the inside by Qf = Ule wj
as described above in general gives a boundary 00 which is difficult to handle in comparison with
the surface integral over 2. We therefore just quote the following very important theorem.

Vowo Touexs | Rewant Tovcks | Macx Toucks I'Ilou.lolll.m I Fumﬂmmﬁu.—ur I Wowwro Pesm | Vowo Aeno | Wowo IT
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Theorem 33.2 GauB’s theorem in R3. Given a C! vector field V. on a domain A CR3. Let Q C A
be closed and bounded, where we assume that the boundary 02 is the union of closed continuous and
piecewise C' surfaces, each with a unit normal vector field pointing away from € almost everywhere.
Then the flux of V through 02 out of 2 is given by

<I>::/ V-ndS:/dideQ.
a0 Q

Consider again the axiparallel parallelepipedum w, which was used to make this theorem plausible.
Then clearly the normal field does not exist on the edges, but these edges are just nullsets. This is
what we mean by the formulation of the theorem above.

It is important to note that the formula

/ V~ndS:/dideQ
a0 Q

can be read and applied in both directions. At first it may seem strange that we reformulate a two
dimensional surface integral to the left as a three dimensional space integral on the right hand side of
the equation. However, the examples later on will show that the calculations often become easier in
the space integral than in the surface integral.

The other situation may of course also occur. We shall give some examples in Section 33.5.

Note also, that the geometrical analysis is important. One should e.g. always check that the unit
vector field n is pointing away from 2.

Theorem 33.2 is formulated for sets and vector fields in R?. There exists a similar result in R?, which
is given in the next theorem.

Theorem 33.3 GauB’s theorem in R?. Consider a plane C' wvector field V on a plane domain
A CR2 Let E C A be a closed and bounded plane domain, where the boundary OF is the union of
closed continuous and piecewise C1 curves, each with a unit normal vector field pointing away from
E almost everywhere. Then the fluxz of V through E is given by

A% oV,
@ = N = z 7@/ s
/BE(V,n,—FVyny)ds /E<8m+8y)ds

where V = (V,.V,)) and n = (ng,ny) in rectangular coordinates.

If div V = 0, then we say that the vector field V is divergence free. Divergence free vector fields are
important in the applications in e.g. Physics, though not all relevant vector fields are divergence free.

Example 33.3 Area and volume formule. Let us first consider R?. If we consider thee vector field
V(z,y) = (x,y), then the divergence is given by

. oxr Oy
leV—% @—2

When we apply GauB’s theorem in two dimensions we get the area formula,

1 1
f/ x-nds=f/diVdedy:/ dz dy = area(FE).
2 Jop 2 /e E
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In R3 the vector field V(z,y, z) = (z,y, z) has the divergence

. dr Oy 0z
divv=2E W, %%
v Oz + Oy + 0z 3

so it follows from Gauf’s theorem in three dimensions that we have the following volume formula,

1 1
—/1x1m5:—/dedQ:mMD. o
3 Joo 3 Ja

Example 33.4 If a is a constant vector field, then trivially div a = 0, so the flux through any closed
boundary surface F = 01 is zero, because we get from Gaufl’s theorem that

<I>::/ a~ndS:/divadQ:0. O
o0 Q

Example 33.5 Let a, b, ¢ be positive constants. We shall find the flux of ® of the vector field
V(z,y,2) = (y,2,2+¢)  for (z,y,2) € R’

through the surface of the upper half of the massive ellipsoid, given by
a:_+_+z_§1 and z > 0.

It follows immediately that

) dy 0Ox  9I(z+c¢)
= — —_ _— = 1
WV=sctay ™ o ’

so the flux is
47

1 2
3 3 abc 5 abe. O

<I>:/ V-ndS:/dideszol(V):
o9 Q

33.3 Applications in Physics

We shall in this section give some applications of Gauf’s theorem in Physics, demonstrating that this
theory is indeed important in Physics.

33.3.1 Magnetic flux
The density of the C! magnetic flur B satisfies for every domain €,

/ B -ndS =0,
dds

which is the integral formulation of one of Mazwell’s equations. By an application of Gauf}’s theorem
we get

/ div BdQ2 =0 for every (measurable) set Q C R,
Q
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Since div B is continuous (in fact, B € C'), this implies that
div B =0,
which is the differential formulation of the same of Maxwell’s equations as above.

In fact, if div B (x0) > 0, then due to the continuity also div B(x) > 0, whenever ||x — xg|| < ¢ for
0 > 0 sufficiently small. This would imply that an div BdQ > 0, where Q5 = {x | ||x — x0|| < ¢},
which is a contradiction, so we conclude that div B = 0.

Figure 33.7: For divergence free vector fields the flux inwards through F; is equal to the flux outwards
through F».

Then let V be a divergence free C* vector field. Consider a domain €2, such that the surface boundary
0f) is cut into two subsurfaces F; and F» as indicated on Figure 33.7 by a closed curve K.

Let ®; the the flux into 2 through F7, and ®5 the flux out of € through F5. It follows fromGaufl’s
theorem that the flux out of {2 through the whole of 0Q = F; U Fs is given by

Fa Fi1 Q

In other words, the flux of a divergence free vector field through a surface of fixed boundary curve K
only depends on this closed curve K and not of the shape of the surface, which has K as boundary
curve.

We have already derived that the density of the magnetic flux is divergence free. Therefore, according
to the result above we can now talk of the magnetic flux being surrounded by a closed curve.

33.3.2 Coulomb vector field

Then we return to the Coulomb vector field, already considered in Example 33.2. We shall for conve-
nience choose k = 1, so the Coulomb field is here

(z,y,2)
(2 + 1y + 22)3/2 ’

V(z,y,z) = for (z,y,2) # (0,0,0).
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We shall first prove that V is divergence free, div V = 0. It follows from straight forward differentiation
that

8Vm_£
dr Oz

_5
2

{x (22 + o +z2)_%} = (P22 -3 (a2 P4 22)

and similarly, due to the symmetry,

%Z%{x(x2+y2+z2)_%}=(x2+y2+z2)_ _
88‘3 :%{x(fﬂ2+y2+22)_%}:(x2+y2+z2)_%—3z2(x2+y2+z2)_%,

hence, by adding these three equations,

V, Vv, OV s s
div V= 5o+ 5, + g, =3 +yt ) P34+ T =

Using Gaufl’s theorem we conclude that the flux through any closed boundary surface 02 of the
Coulomb field is zero, provided that 0 ¢ Q!

EXPERIENCE THE POW
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Then assume that 0 € 2° (an interior point of Q). We put
Ba:B[O,a]z{(x,y,z)e]Rg|x2+y2+22§&2}, a >0,

where a > 0 is chosen so small that B, C Q°. When we apply Gauf}’s theorem on the set Q \ B,

where 0 ¢ 2\ B,, then we get by the previous result that the flux through 9 (2 \ B,) = 02 U 9B, is

V.ndS+ [ V-(-n)dS= div VdQ =0,
N OB, Q\ B,

cf. Figure 33.8.

Figure 33.8: Analysis of Gaufl’s theorem applied to the set Q\ B,.

We note that —n on B, is the unit normal vector field pointing away from the solid set Q\ B,. Also,
22+ y? + 22 = a® on 0B,, so the Coulomb field is on 0B, given by

an n

Vos, = T3 = 3
a a3 a27

for z2 4+ 9% + 2% = o>
Combining the results and comments above we conclude that when 0 € , then the flux of the
Coulomb field through 952 is given by

V- -ndS = V- -ndS + V. (-n)dS+ V-ndS:O—i—/aBaV-ndS
o0 o0 0B, 0B,
n 1

1
/Z)Ba 2 -ndS = ﬁ/BBa ds = Earea(@Ba) = 4.

In other words, we have proved that for any solid body 2 with a reasonable ssurface ddf2, the flux of
the Coulomb vector field V through 912 is given by

0 if0¢Q,

V- -ndS =
o9 4 if 0 € Q°.

We do not consider the case, when 0 € 9f).

Download free eBooks at bookboon.com



33.3.3 Continuity equation

Consider a fluid or gas of density g and velocity field v. Then the mass in a domain 2 is given by

M:/QdQ,
Q

and the flow of mass through the surface 92 away from (2 is given by the flux

q ::/ ov-ndS.
0

The law of conservation of mass is then infintesimally expressed in the following way,
qgdt = —dM.
Then we get by an application of Gauf’s theorem,

daM d . do
q+ i mgv n S+dt/QQ /Q{lv(gv)—i—at}

0
Assuming that g and v are of class C!, we see that the integrand div(pv) + go is continuous, and we

ot

have previously seen that if f is a continuous function satisfying
/ fdQ=0 for all subsets of €2,
Q
then f = 0. We have therefore proved the continuity equation
do
di — =0.
iv(ov) + T

This equation can also be found in other physical disciplines — the mathematical proof above is the
same and only the physical interpretations are different. If for instance u denotes the energy density,
and q the density of the energy flow, then the conservation of the energy is expressed by the similar
equation

gu _

ot =0

div q +
Similarly, if J denotes the density of a current and ¢ the density of the charge, then the law of

conservation of the electric charge is written

0o
divJ + 22 —o.
AP

All these results stem from an application of Gauf’s theorem.
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33.4 Procedures for flux and divergence of a vector field; Gauf3’s theorem
33.4.1 Procedure for calculation of a flux

The flux ® of a vector field V through a surface F is given by a surface integral (cf. Chapter 27) in
the following way:

If x = r(u,v), (u,v) € E is a parametric representation of the surface F with a given continuous unit
normal vector field n, then the flux is given by

(V)= = = /EV(I‘(U,U)) - N(u,v)dudo.

It is the amount of the vector field which “flows through the surface in the direction of the normal
vector” (e.g. per time unit).

Typically there are two different ways in which the flux can be calculated.
Standard procedure.

In principle this can always be applied, but it is often very cumbersome.

1) Divide if necessary F into convenient sub-surfaces Fi, ..., Fi each having its own unit normal
vector field ny, ..., ng.
2) Check, whether F (or F;) is “flat”, and if it is not too difficult to calculate as an

ordinary plane integral, because F is lying in a plane set.

3) If F is not flat, we calculate the normal vector corresponding to the specific parametric represen-
tation in the variables (u,v),

e, e, e,
or 0y 02
N(u,v) =] 54 8u 0u
or 0y 0z
ov Ov Ov

Note that N(u,v) no longer is a unit normal vector field. Stated roughly, we build the weight
function into the new normal vector field N(u,v).

4) Calculate the plane integral over the parametric domain E,

Or(V) = /EV(r(u.,v)) - N(u,v) du dv.

33.4.2 Application of Gauf3’s theorem

The method can in principle always be applied when the surface is “closed”, i.e. one adds a surface
with two numerically equal normal vector fields, which are pointing in the opposite directions, n and
—n, such that one surrounds a 3-dimensional domain {2 with outgoing normal, and an additional
surface integral, which hopefully should be easy to calculate.
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Figure 33.9: The surface of the unit half sphere is closed by adding the unit disc in the (z,y)-plane
with a normal vector pointing downwards (this gives us the closed upper unit half sphere with normal
vectors pointing outwards) and the unit disc in the (z,y)-plane with the normal vector pointing
upwards.

1) Check that F = 99 is closed, i.e. this surface surrounds a 3-dimensional body €.

2) Quote Gauf’s theorem and reduce the surface integral to a space integral,

/ n~VdS:/diVVdQ.
Joq Q

3) Calculate the space integral fﬂ div V d§2 by applying one of the methods from Chapter 24.

Remark 33.1 Usually one would not call it a reduction to go from 2 dimensions to 3 dimensions; but
note that the surface F of dimension 2 may have a fairly complicated geometry, while we in principle
always end up with rectangular coordinates i 3 dimensions, which here may be considered as a simpler
situation. ¢
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33.5 Examples of flux and divergence of a vector field; Gauf}’s theorem
33.5.1 Examples of calculation of the flux
Example 33.6

A. Find the flur o of the vector field
V(z,y,2) = («* +9°,2%¢%),  (2,y,2) € R,
through the surface F defined by

r(u,v) = (u+v,u—v,u+ 20), u? +0v? < 4.

Figure 33.10: The surface F and its projection onto the (z,y)-plane.

D. We see that the surface F lies in a plane, but because this plane is oblique, it is very difficult to
exploit its flat structure. Instead we analyze the reduction formula

/V ‘nds = /EV@(uw)) N(u, v) du dv,

where the abstract surface integral is rewritten as an abstract plane integral. By inspecting the
right hand side it is seen that we shall

1) identify the parametric domain E,
2) find the normal vector N(u, v) for the surface F, corresponding to the parameters (u,v),
3) express V(r(u,v)) on the surface F as a function in the parameters (u,v).
1. 1) The parametric domain is the disc of centre (0,0) and radius 2,
E = {(u,v) | u® +v? <4=2%}
2) The normal vector. It follows from the parametric representation of the surface that

or or
5g = LLD and oo =(1,-1.2).
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Figure 33.11: The parametric domain E is a disc of centre (0,0) and radius 2.

Hence, the normal vector is

€ ey e3
Nwo) = Ex |1 1 1 |=@-1,-2)
ou Ov 1 -1 9
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3) The restriction of the vector field to the surface is given by
Vi(z,y,z) = (xQ,yQ, zQ)
((u+v)? + (u—)?, (y +2v)%, (u — v)?)
= (2 (u2 + 02) (w4 20)2, (u — U)2) .
4) The integrand is according to 2 and 3,
V-N = (3,-1,-2) (2 («*+v?), (u+20)? (u—10)?)
6 (u* 4+ v%) — (u+2v)> — 2(u—v)?
6u® + 6v* — (u2 + duv + 41)2) — (2u2 — 4duv + 21)2)
= 3u’

5) By insertion of 4 into the reduction formula we get by also using 1,

Dy = / V.-ndS = / V(r(u,v))  N(u,v)dudv = 3/ u? du dv.
JF E E

Since the parametric domain FE is a disc, it is easiest to reduce it in polar coordinates,
u=pcosp, v=psing, 0<o<2, 0<p<2m

Hence we get the result

27 2
P, = 3/ uzdudv:?)/ {/ g2coszga~gdg} dep
E 0 0

o 2 1 2
= 3/ cos2<pdg0~/ QBdQ=3'7T'|:Q4:|
0 0 47 ]

= 127. O

Example 33.7
A. Leta, b, c >0, be constants, and let
V(z,y,2) = (y, 2,2 +¢),  (2,y,2) €R’.

Find the flux ®3 of V through the half ellipsoidal surface

A {2+ () () =1 s20)

where the normal is directed v upwards, n-e, > 0, and the flux ®4 of V through the projection F;
of F1 onto the (z,y)-plane,

f2={(w,y72) ‘ (§)2+(%)2<1}, n=(0,0,1).

D. Summing up we see that F; and F3 surround a spatial domain 2. The flux ®3 represents e.g. the
energy which flows out of Q through F7, and ®4 represents the energy which flows into Q through
Fo. Hence, the difference &35 — &4 represents the energy which is created by V in Q.
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Figure 33.12: The half ellipsoidal surface F; for a = 1, b = 2 and ¢ = 3. The surface F5 is hidden
below F; in the (z,y)-plane.

I 1. Consider first
Fi={ans | (G (@) + () =1ez0) nwzo

The easiest method, which can be found in some textbooks, is to use spherical coordinates (left to
the reader). We shall here as an alternative apply rectangular coordinates instead. Then we can

consider F; as the graph of the function
2 2
(2) + () =t
a b

=t =eyi- (2)"- ()

Then the hidden parametric representation is given by

o= (oG- () @)=

This parametric representation is differentiable when

()

i.e. when z > 0. If so, we get

or c T Az
a_. = ]-707__ = ]-707__'_ P
Ox a 2 ( a? )

and analogously

Or c Y 2y
—=10,1,—— =(0,1,——=-=
ay b} (77 b2 9
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2 2
where we have used that z = ¢ \/ 1-— (E) — (%) in order not to be overburdened with a square
a

root in the following. (It is always possible to substitute back again, if necessary). Then

e €9 €3
or Or 1 0 _éf 2z c? oy
N@y) =g, %5, = @z |=\@ e 2t
2y
o 1 -2¥
b2 z

Now N -e3 =1> 0, so N(z,y) is pointing in the right direction.

The integrand is then calculated,
A oz 2oy 9 1 1\ zy
VN=wrer (5oL )= (meg) Teere

The domain of integration is the ellipse in the (x,y)-plane

7 2 Y\ 2
e={en | (24 () 1}
{(fr v (3) T(G) <
Hence, the flux is equal to the improper plane integral
P; = V -ndS
J Fq

= / (1+1)~ =Y e 1= () = (9) + b dzay.
e \a2 v 1_(2)2_%)2 ¢ (a) (b) o
Then note that we have e.g.

N 2 Y\ 2 N2 Y\ 2
G (e GG
/:,3 \/ a b dz “ a b
i.e. if we integrate over an interval of the form [0, k] (where the integrand is > 0) or over [—k, 0]

(where the integrand is < 0), then we get finite values in both cases, i.e. the improper integral is
convergent.

2
If we put k =ay/1— (%) , it follows of symmetric reasons that

/' 1 1 > Ty .

C - + 5 ; (IS

JE a’?  b? l T\ 2 U\ 2
Vi-() -G)

bC(%eriQ)y /—a\/lwﬁ‘ 1—(52—

a
, o1\ °
251_1>I(1;1+c(;+b—2>/_by~0dy—0.

= lim
e—0+ _b

1555

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

The expression of the flux is therefore reduced to

o3 = O—i—/(z—i—c)dxdy
E

/EC\/]. - (2)2 - (%)dedy—i-aarea(E)
[ - () (1) away s coman

The purpose of the following elaborated variant is to straighten up the ellipse by the change of
variables

u=—-, v=<=, ie. xz=au, y=>bu.

The corresponding Jacobian is

x,y) _|a 0] _
8(u,v)_ b '—ab>0.
360°
thinking.
u
Deloitte.
DiSCOVCI‘ the truth at WWW.dClOittC.Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.
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By the transformation formula the parametric domain E is mapped into the unit disc B in the
(u, v)-plane, hence

B N 2 Y\ 2
o, — ﬂabc—i—c/E\/l—(E) —(5) Az dy
— 7rabc—|—c/ V1—u2—? 8($’Z)
B )

9(u,v)

= 7mbc+ab-c/ V1—u?2—v2dudv
B

= abc{ﬂ+/02ﬁ {/Olﬂ~gdg} d<p}

1
= abc{n’—!—%'/ \/l—t-;dt}
0

= mbc{l + [—g (1 —t)i’I}

2 5
wabe - <1 + 5) = 3 wabe.

} dudv

No matter whether one is using spherical or rectangular coordinates, it is very difficult to find
®3, and there are lots of pit falls (as seen above we get e.g. an improper surface integral in the
rectangular version).

I 2. Next look at

fngz{(x,y,z) ) (z)2+<z)2§1,220}, n = (0,0,1).

The restriction of V to E is obtained by putting z = 0, i.e.
V(z,y,0) = (y,x,c¢).

The unit normal vector is n = (0,0, 1), so the integrand becomes
V(z,y,0) -n=(y,z,¢)-(0,0,1) =c.

We conclude by using the reduction theorem on the simple calculation

<I>4:/V-nd5’:c/ dS = ¢ area(E) = ¢ mab = wabe.
E E

I 3. Finally we have (cf. Figure 33.13),
The flux out of 9 of V is according to I 1. and I 2. given by

5 2
b3 — Oy = gwabc—ﬂ'abc: gwabc,

where we use —®4, because @4 indicates the flux into 2 through Fo.
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Figure 33.13: The domain 2.

Let us then alternatively show the same result by means of Gauf$’s theorem.

We first realize that F; and F» surround a spatial domain

o= {ewa | @)+ () + () <1520}

From V(z,y, 2) = (y,z, 2 + ¢) we then get
divV=0+0+1=1.

The flux out through 99 (the normal of direction away from the domain) is then according to
Gauf$’s theorem,

‘ , 1/4 2
o= v-nds:/ dideQ:/ dQ = vol(Q) = - [ “Fabe) = =" abe.
Jog Q Q 2\ 3 3

By comparison we see that this is exactly &3 — @3 as we claimed.

Summarizing, ®3 in I 1. was difficult to compute, while &4 in I 2. and ® in I 3. were easy. Since
®3 — &y = O, we might have calculated ®3 by computing the easy right hand side of

D3 =04 + P,

i.e. expressed in integrals,
(33.1) / V- -ndS = / V -ndS —|—/ div V dQ,
J 7y JFy Q

or put in other words: an ugly surface integral (the left hand side) is expressed as the sum of a simple
surface integral (here even a plane integral) and a simple spatial integral (the right hand side).

1558

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

This technique can often be applied when one shall calculate the flux through a more or less compli-
cated surface Fj.

1) First draw a figure, thereby realizing where F; is placed in the space.

2) Then add a nice surface F2, such that F3 U Fa becomes the boundary of a spatial body Q. Check
in particular that the normal vector on F3 is always pointing away from the domain 2).

3) Calculate the right hand side of (33.1), thereby finding the flux through F;.

Remark 33.2 We shall later in Example 33.9 give some comments which will give us an even more
easy version of calculation. ¢

Example 33.8
A. Let the surface F be the square
F=A{(,y,2) ||z <a, |yl <a,z=0a},  a>0,
at the height a with the unit normal vector n = (0,0, 1) pointing upwards.

Find the flux through F of the Coulomb field

(z,y,2)
V(z,y,2) = , z,y,z) # (0,0,0).
( ) ERIEEREIE ( ) # ( )

(Concerning the Coulomb field see also Example 33.9).

SRR
SESBTES
0’0‘0’0‘0"0‘0’0‘0’0
< 0’0 0‘0’0‘0"0‘0’0‘0’0‘0’0
’0’0:0’0‘0’0‘0 RIS
<5 0’0 o3 0’0‘0’0‘0"0‘0’0‘0’0‘0 53 0’0 >
,0,0:0:0:0’0’0’0‘0’0‘01,0:0:0:0:0:0:0:0:0:0:0
S5 SIS >
’0’0’0’0’0’0’0’0‘0’000000 5
RRSIIIRIRIRIREIIIRL:
0000\0,0,0,0,0000,0 00
SIS

Figure 33.14: The surface F for a = 1.

D. Using rectangular coordinates we get from the reduction theorem that
/V nds = / /a 2.9,0)-(0,0.1) 4 Ly,
—a |/-a (22 + 92 + a2)5/2
//a ! dd4/a/a ! dz p d
y =4a z o dy,
—a |Jo (a2 +y2+a2)3/2 0 0 (22 +y? +a2)5/2

@5
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where we have used that the integrand is even in both x and y, and that the domain is symmetric.

So far, so good, but from now on the calculations become really tough. The reason is that the
integrand invites to the application of polar coordinates, while the domain is better described

in rectangular coordinates. The mixture of these two coordinate systems will always cause some
difficulties.

For pedagogical reasons we shall here show both variants, first the rectangular version, which is
extremely difficult, and afterwards the polar version, which is “only” difficult. This exercise will
show that one cannot just restrict oneself to rely on the rectangular method alone!
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I 1. Rectangular variant. Calculate directly

a a a
5 = 4/ / —dx p dy.
0 { 0 (22 +y?+a2)*” }

First we note by a partial integration of an auxiliary function that

/ - (2 +cH)° dt:[t-(t2+c2)a}:—/ toa(+) " 2tdt
0 0

_ a(a2+c2)“_2a/ (e =) (2 + ) ar
0

a(a2+02)a —2a/ (t2+02)a dt—|—2ac2/ (t2—|—02)a_1 dt.
0 0
When « # 0 and ¢ > 0, we get by a rearrangement

Yoo ava-l o 1420 [T 5 s« _a(aQ—l—cQ)a
(33.2)/0 P+ dt= S /0 (+c)" dt —saz

1
Choosing t = z and a = —5 and ¢ = y% + a? in (33.2) and multiplying by a, we get the inner
integral in ®5: Since 1 + 2a = 0 we have

/a a . a2 (a2 + 2+ CL2)71/2 a2
xr = — = N
0 (22 +y?+a2)*? 2 <_1> (a2 +y2) (y% +a?) Vy? + 2a°
2
which gives by insertion

CL2

<1>5:4/ d
o (y2+a?) y? + 2a?

So far we can still use the pocket calculator TT-89, but from now on it denies to calculate the exact
value! Therefore, we must from now on continue by using the old-fashioned, though well tested
methods from the time before the pocket calculators.

When we consider the dimensions we see that y ~ a, hence a convenient substitution must be
y = au. Then

a?

a CL2 1
4/ d =4/ .
o (¥2+a?)\/y?+ 2a? Y o (a?u®+ a?) Va?u? + 2a?
1 1
1 1
4/ du:4/
0o (W+1)vVuZ+2 0o (u24+1)y/(w+1)+1

d; = adu

du,

where it should be surprising that ®5 is independent of a.

The following circumscription is governed by the following general principle:

e Whenever the square of two terms is involved then it should be rewritten as 1 plus/minus
something which has “something to do” with the other terms in the integrand.
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The circumscription indicates that we should try the monotonous substitution

1 1
t=u?+1, u=+t—-1, du:5 - 1dt, tell,2].
By this substitution we get
1 2 2
1 1 1 1 dt
<I>5:4/ du=4 - = dt:2/ —_—.
o (u2+1)/(W+1)+1 VD 2 V-1 1 tViE—1

The structure vt2 — 1 looks like

Veosh?w — 1 = Vsinh? w = | sinh w|,
which is a means to get rid of the square root. We therefore try another substitution,
t=coshw, w=In(t+t2—1), dt=sinhwdw, w € [0,In(2+V3)].

Since we have sinhw > 0 in this interval, we get

2 In(2++v/3) :
dt h
O — 2 / 5 / _ siohw
1 0

vtz —1 - coshw - sinh w
In(2+v3) In(2++/3)
. / dw__, / 2 g
0 coshw 0 ev e~ W

In(2++/3) w
4/ 672 dw = 4 [Arctan (e“’)]g](zh/g)
0 1+ (e®)

4 {Arctan(2 +/3)) - %} =4 Arctan(2 + V/3) — 7.

Our troubles in the rectangular case are not over. How can we find Arctan(2 + v/3) without using
a pocket calculator?

0T 02014056058 112

Figure 33.15: The rectangular triangle with the opposite side = 2+ /3, so ¢ = Arctan(2 4 v/3) is the
nearby angle.
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Georr;retrically © = Arctan(2 + +/3) is that angle in the rectangular triangle on the figure, which
is > 1
The hypothenuse can be found by Pythagoras’ theorem,

= (24V3)2+12 =4+43+4V3+1=8+4V3 =42+ V3),

ie. 7 =2v2++/3. From ¢ > %, follows that ¢ = g —p< %, and

cos¢:%(2+\/§):%\/2+\/§.

We shall get rid of the square root by squaring, so we try

1 1 3
C082¢=2C082w—122-1(24—\/5)—1:1—}—5\/3—1:%.

Since we have been so careful to show that 0 < ¢ < %, it follows that 0 < 29 < g, hence

V3 T ) T
2¢p = Arccos (7 =5 ie ¢ = 13"

Then
m T T o7
Arctan(2+V3) =p=— —tp = = — — = —
a2+ V8 =g =g~ =5 - 5= 3y
By a final insertion we get that the flux is
5 5 2
(1)5:4Arctan(2+\/§)—7r:4-1—;r—7r:%—ﬂz%.

Remark 33.3 It is obvious why this variant is never seen in ordinary textbooks. The morale is
that even if something can be done, it does not always have to, and we should of course have
avoided this variant. It should, however, be added that the pocket calculator finally will find that

b

Arctan(2 + v/3) 12

¢

I 2. Polar variant. We shall start from the very beginning by

a a a
P5 = 4/ / — dx » dy.
0 { 0 (172+y2+a2)5/2 }

The domain [0, n]? is not fit for a polar description, but if we note that the integrand is symmetrical
about the line y = z, then this symmetry gives that

Ps=2-4 =8 ,

where the triangle T is bounded by y = 0 in the right half-plane (corresponding in polar coordinates

to ¢ = 0), the line y = z (corresponding to ¢ = %) and x = g cosp = a, i.e.

a

cos
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02 0 02 04 056 038 12

0.2

Figure 33.16: The domain T is the lower triangle and a = 1.

Therefore, a polar description of T is

i a
T = o< < —0< o< .
{(9#)) ' Ses _Q_COW}
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Then the rest follows from the usual reduction theorems,

a % co:cp a
<I>5:8/ dSzS/ / L odo de.
T (22 + y? + a2)*/? 0 0 (0% + a2)*/?

The inner integral is calculated by using the substitution

1
t=p, dt=2pdp, i.e.ng:§dt,

hence
4
8/c0§<p a ngz4/cos2qy a df
0 (o Jra)‘g/2 0 (f+a)5/2
a
cosZ o

a?

cos? p
- al cos | _sdq | cos |
ay/1+ cos? ¢ V1+cos?p |
Since |cos | = cosp for 0 < p < < T we get by an insertion and an application of the substitution

4’

u=sing, du=cospdyp, cos>p=1—sin?p=1—1u?

that

jus

1 1
o5 = 8/ 11— —————=-cosp,d
° 0 { V14 cos?y w} 4
f du f du
i el
VIt (1 —u?) 1—u2 N
v I > dv

/ / ( )2 /0 V1—o?

1
= 27 —8[Arcsinv|g =27 -8 — = —.

Remark 33.4 It should be admitted that the polar version also contains some difficulties, though
they are not as bad as in the rectangular version. ¢
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Example 33.9
The Coulomb vector field (cf. Example 33.8),

(z,y,2)
(22 + y? + 2?)

V(z,y,2) = s/zr  for (z,y,2) #(0,0,0),

satisfies (where one absolutely should not put everything in the same fraction with the same denom-
inator, unless one wants to obscure everything)

ov, 0 x B 1 B 322
dr Oz | (224924222 (@224 22)¥? (22 4y 4 22)Y?
oy, _ 9 y _ 1 _ 3y*
dy W@+ +22)"" ] @+ +22)"7 @242+
ov, 0 z B 1 B 322
9z 0z | (a2 492+ 22 (@242 422 (@242 +22)%?

from which we get by adding these expressions,

oV, oV, V. 3 3(z* +y*+2%)

dr | dy = 9z (22 + 42 +22)%2 (22 492+ 22)%%

div'V =
i.e. V is divergence free so we can use the results of Section 33.3.2 for domains 2, which do not contain
the point (0,0, 0).

A. Let Q be any spatial domain with (0,0,0) as an inner point. Find the flur of the Coulomb field
through 082, i.e. find

D. Since div V is not defined in (0,0, 0), we cannot apply Gauf}’s theorem directly. But since (0, 0, 0)
is an inner point, there exists a ball

K =K(0;r) C Q,

totally contained in Q. If we cut K out of 2, we get a domain Q = Q \ K, in which div V is
defined everywhere and equal to 0. According to Section 33.3.2 the surface 92 can be deformed
into 0K, and then the flux through 0K can be calculated as an ordinary surface integral. (The
singular point (0,0, 0) lies in K, so we cannot apply Gauf’s theorem in the latter calculation).

I. We are just missing one thing. Since both 02 and 0K are closed surfaces, neither of them has a
boundary curve, so we get formally

5(09) = ) = 6(OK).

Alternatively there is flowing just as much into € through K as out of € through 99, because
the flow is balanced.

Thus we have proved by using Gaufl’s theorem that

The right hand side is calculated as a usual surface integral, where it this time is worthwhile to
keep the abstract formulation as long as possible.
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/2

1) On 0K we have r? = 2% + y? + 2% ie. r = (;vz +y?+ 22)1 , and
1
l'l(;E, Y, Z) = ; ((E, Y, Z)
2) The vector field is then rewritten in the following way
(2,9, 2) 1 1 1 1
V(zayvz): 3/2:ﬁ(zayvz):ﬁ';(zayvz):ﬁnv

(22 +y* +2?)

where we have used 1).

3) Since n-n = ||n||? =1, we get by an insertion of 2) that the flux is given by

V. -ndS = / V- -ndS = in-ndS
OK OK

Joq 72

1 1 1
= = dS = — area(9K) = — Anr? = 4,
T Jok T T

because the area of a sphere of radius r is given by 4mr2.

The result can be applied in an improved version of the horrible Example 33.8. Let Q = K(0;r),
where 7 > v/3a, and let T be the cube of centre 0 and edge length 2a. Then the flux through oT
is equal to the flux through the sphere 012, i.e. according to the above,

/ V. -ndS = V -ndS =4n.

ar oQ

On the other hand, 0T is disintegrated in a natural way into six squares of the same congruent form:
They appear from each other by a convenient revolution around one of the axis. The Coulomb
field is due to its symmetry invariant (apart from a change of letters) by these revolutions, so the
flux is the same through every one of the six squares. If we choose one of these. e.g.

F={(z,y,2) | —a<r<a,-a<y<a, z=a}=[-a,a] x [~a,a] x {a},
then
4 = V-ndS:6/ V -ndS,
oT nF
from which
/V-ndS:l-47r:2—7T.
F 6 3

Obviously this method is far easier in its calculations than the method applied in Example 33.8.

O
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Figure 33.17: In most calculus courses 2 is typically a ball.

Example 33.10 Assume that € e.g. represents a subsoil water reservoir, which is polluted by some
fluid or gas of density o = o(z,y, z,t) and velocity vector v = v(z,y, z,t).
The mass of the polluting agent in 2 at time ¢ is given by

M= M(t) = =

The change of mass in time is then obviously equal to

aM  d

(833) - =

~

EUROPEAN
BUSINESS
SCHOOL

FINANCIAL TIMES
2013

; EHHERNS

. _.m == |

- Y7 s 8 #oobevond
2 '; ; _— 7o g

= 1 MmO i ST
MASTER IN MANAGEMENT @ |75 SEEH

.v ‘-, ‘

- -
[

. Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu W in VouTibe i3

0

Download free eBooks at bookboon.com


http://s.bookboon.com/IE

Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

This change must be equal to the flow of mass into 2 by the vector field
ov = oz, y,z,t)v(z,y, 2,t).

Since —n points into €, this amount is according to Gaufl’s theorem equal to

—q=— / ov-ndS = —/ div(pv)dQ.
J O Q

When this expression is equated to (33.3), we get after a rearrangement that

d do

M , , 90
O—q—|—w—/Q div(pv)dQ + QEdQ—/ﬂ{dlv(gv)—Fa} d.

This is true for every domain Q. Assuming that the integrand is continuous (what it always is in
practical applications), it must be 0 everywhere. In fact, if the integrand e.g was positive in a point,
then it had due to the continuity also to be positive in an open domain 21, and then the integral over
Q1 becomes positive too, contradicting the assumption.

Thus we have once more derived the continuity equation

div(ev) + % =0,

which the density and the velocity vector field of the pollution vector field must satisfy.

Remark 33.5 Here the divergence is referring to the spatial variables and not to the time variable
t. Hence, the continuity equation is written in all details in the following way

do

0 0 0
o (ovz) + oy (va)‘F& (ovz) +

d
Furthermore it should be noted that there is a big difference here between the application of P and

0
a0
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Example 33.11 Find in each of the following cases the flux of the given vector field through the
described oriented surface F.

1) The flux of V(x,y, z) = (2,2, —3y*2) through the surface F given by x> +y? =16 for x >0,y > 0
and z € [0, 5], where the normal vector n is pointing away from the Z-axis.

2) The flur of V(z,y,z) = (cosz, 0, cos x+cosy) through the surface F given by (x,y) € [0, 7] X [O, g]
and z =0, and where n = e,.

3) The flux of V(x,y,2) = (xy, 22, 2yz) through the surface F given by x? +y? + 22 = a2, and x > 0,
y >0, z >0, and where n is pointing away from origo.

4) The flur of V(z,y,2) = (v +y,x — y,y*> + 2) through the surface F given by 2% + 3> < 1 and
z =ay, and where n-e, > 0.
5) The flux of
1
through the surface F given by 0 < a and z = h, and where n = e,.
[Cf. Example 33.14].

6) The flux of

V(z,y,z) = (z,y,2),

1
(22 + 2 + 22)2
through the surface F given by 0 = a and z € [—h,h], and where n is pointing away from the
Z-axis.
[Cf. Example 33.14].

V(z,y,z) = (z,y,2),

7) The fluz of V(x,y,z) = (y,x,x +y + z) through the surface F given by the parametric description
r(u,v) = (u cosv,u sinv, hv), uwel0,1], wvelo,2n].
8) The flux of V(x,y,2) = (y, —x, 2%) through the surface F given by the parametric description

. 3
r(u,v):<\/ﬂcosu7 usmvm?), 1<u<2, 0<v<u.

9) The flux of V(x,y,z) = (yz, —xz, hz) through the surface F given by the parametric description
r(u,v) = (u cosv,u sinv, hv), uel0,1], wvelo,2n].
A Flux of a vector field through a surface.

D Sketch whenever possible the surface. If the surface is only described in words, set up a parametric
description. Compute the normal vector N (possibly the normed normal vector n) and check the
orientation. Finally, find the flux.

I 1) The surface is in semi polar coordinates described by

o=a, ¢c [og} 2 e[0,5],

and the surface is a cylinder with the parameter domain

E:{(gmz) ’ g {0,%},26[0,5]}.
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Figure 33.18: The surface F of Example 33.11.1.
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Figure 33.19: The surface F of Example 33.11.2.

The unit normal vector is

(cos g, sin p, 0),

n—=—

and the area element is

dS = dsdz =4 dedz.

Hence we get the flux

/{z cosp+4cosp-sinp} -4 dpdz
E

:4/0
o

/ V- -ndS
JF

5
{/ (zcosp+4 sincp~cos<p)dz} dy
0

{

Elo

cos ¢ + 20 sinp cosap} dp=4-

™
2

1
2

+4-20-

25
2

25
2

90.
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Figure 33.20: The surface F of Example 33.11.3 for a = 1.

2) In this case the flux is
. - T
/ V- -ndS / / (cosx + cosy)dy p dz
JF 0 0
Tmw
= / {§COSJJ+1}d(E:0+1'7T:7T.
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3) The surface is a subset of the sphere of centrum (0,0,0) and radius a, lying in the first octant.

Choosing rectangular coordinates we find the area element on F,

a “9 ”

and the unit normal vector is

1 1
nzi(zayvz)zi(xvya\/a’2_x2_y2)7 (537y)€E7
a a
where the parameter domain is
Ez{(x,y)|0§x§a,0§y§\/az—x2}.
Then the flux of the vector field V(z,y, z) = (zy, 22, 2yz) through F is
' ! o 2 L1 L
/ V- -ndS = / (xy, 27, 2yz) - — (x,y,2)dS
JF JF a
1 1

= - / {.1'2// +yz? + 2//;2} dsS = —/ y(z? + 32%)dsS
F F

a /
1 2

:—/a L—F?)y a? —x? —y? 3 dedy
alp [a? — 22 — 2

o ( Vai=a? 2
2/ / — +3Va?— 22 —y? yydy p dx
o /o a? —x? —y?

1 a a?—x? 1‘2
zf/ / +3\/a2—x2—t> dt » dz
2 Jo 0 JaZ — 12 _ 2
1 a 2 3 a27:132
25/ |:—25L‘2 a2—x2—t2—3-§<\/a2—x2t)] dz
0 t=0

ALTERNATIVELY, the area element on F is given in polar coordinates by
T ™
dS = a?sinfdodp, 0 e @,5}, o @,5},
thus the parameter domain is

E:{ww)‘ogaggm

I
AS)
IN

|5

——

I
=

dl

="

dl

As

(x,y,2) = a(sinf cos p,sin b sin p, cos ),
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Figure 33.21: The parameter domain of Example 33.11.3 for a = 1.

the unit normal vector is

n=— (z,y,2) = (sinf cosp,sinf sin g, cos ).
The flux of the vector field

V(z,y,2) = (zy,2°,2y2)
through the surface F is

' ) ’ 5 1 ]
/ V -ndS = / (zy,27,2yz) - — (x,y,2)dS
JF JF

a

1/ . , . 1/, .
= 5/ {:1‘2,11 +yz© + 2,1/;’2} ds = 5/ y(;z‘Z + 3;’2) ds
JF JF

1
—/ asinf sin ¢ - a?{sin? @ cos® +3 cos? O} - a*sinh dh dyp
aJE

™

a4/2 {/2 sin? @ (sin2 6 cos? o+ 3cos’ 0) singodgo} dé
0 0

jus just

2 1 1 2
at / sin? | — = sin? f cos® p— = cos? B cos ¢ de
0 3 3 =0

™

2 1
= a4/ sin® 6 <§ sin? 6 + 3 cos 20) deé.
0
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We compute the integrand by introducing the double angle,
0
1
/ (3cos® 0 + 3 sin? ) d

(1 —cos26) {; (14 cos20) + é (1 —00829)}

DN | =

(1 — cos20){9(1 4 cos 20) + (1 — cos 20)}

—
"“w"“

1
= —(1—cos26)(10 + 8 cos 260) = 6 (1 —cos260)(5 + 4 cos20)

[\]

D= O ==

1
(5 — cos 20 — 4cos? 20) = 6{5 —c0s20 —2(1 + cos40)}

1
= — (3 —c0s20 —2cos46) = cos 26 — 3 s 46.

N | =
[ NN

The flux is obtained by insertion,

™

/ V -ndS = a4/2 sin® 6 (1 sin?6 + 3 cos20> dé
Jr 0 3

ma’

2 4
4) Let E = {(z,y) | 2% + y* < 1} be the unit disc. Then a parametric description of the surface
F is given by

{(@,y,2y) | (,y) € E},

where the normal vector is

il 1 ™
= a" - - —a = =[sin20]¢ —0L4-13-1[sin49]02 =

e, €, e,
N(I’,y) = 1 0 Yy = (_y7 _:Eal)a
0 1 =z

and clearly, N-e, =1 > 0.

Then the flux of the vector field
V(z,y,2) = (x+y,2—y,y° +2)

through F is given by

/VAn(lS = /V-ngcdy:/(x—i—y,x—y,yQ—i—xy)-(—y,—x,l)dxdy
JF E E

= /{—xy—yQ—x2+acy+y2+xy} dxdy:/(xy—xQ)dxdy
E E

2 1
= / {/ 92(coscp-sin<p—cos2cp)gdg} dy
0 0

2m
= - / (cos - sinp — cos? ) dyp
0

1
1 1 T

= 0—-.927.-=_—"_,
0=y 2™ 5=y
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Figure 33.22: The surface F of Example 33.11.6 for a =1 og h = 1.

5) The surface F is a disc parallel to the XY -plane at the height h. We choose
E={(zy)|2*+y* =0’ <a’}.

as the parameter domain. Then the flux through F is

S 2 a
) 1
/ V- -ndS = / %dxdyzh/ {/ ‘ggdg} de
JF B (22 +y? + h?)2 0 o (0% +h?):

h
= 2 1—7 .
W( \/a2+h2>

6) In this case F is a cylindric surface which is given in semi polar coordinates by the parametric
description

{(a,9,2) | ¢ €[0,27], 2z € [=h, h]},
and the parameter domain becomes

E={(p,2) | ¢ €0,2n], z € [-h,h]} = [0, 27] x [—h, h].
The unit normal vector pointing away from the Z-axis is

n = (cos @, sin ¢, 0),
and the area element on F is

dS = dsdz = adpdz,

thus the flux through F is

/V-nd,S' = /%(0052<p+sin2<p+0)adcpdz
Jr E (a? +22)2

h 1 h 1
= a2-2ﬂ'/ 73dz:47m2/ ——d=.
—n (a? + 2%)2 o (a?+22%)2
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It is natural here to introduce the substitution

z=a sinht, dz=a coshtdt, t= Arsinh (E) .
a

Then we get the flux through the surface

. Arsinh(2) Arsinh(%)
/ V.nds = 47ra2/ &Sh;dt:zm/ _dr
JF 0 a® cosh® t 0 cosh” ¢
nh Arsinh(2) @
inh(h
= 47r[tanht]£‘rsmh(a) =4 7sml > =4 4 >
1+sinh™t ], 1+ %
a
B 4dmh
NoEa

REMARK. The field of Example 33.11.5 and Example 33.11.6 is the so-called Coulomb
field, cf. Section 33.3.2. It is tempting to combine the results of Example 33.11.5 and
Example 33.11.6 to find the flux of the Coulomb field through the surface of the whole
cylinder. Since n = —e,, when we consider the surface of Example 33.11.5 at height —h, it
follows that

h dArh h (—h)
HUX:2W<1—W>+7 27T< >:47T <>

Vea+nr \VR Ja+ir?
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7) Here
e, ey e,
N(u,v) =] cosv sinv 0 |=(hsinv,—h cosv,u),

—u sinv wcosv h

so the flux of the vector field (y,z,z + y + z) through F is
/ V.-ndS = / V - N(u,v)dudv
JF E
= / (usinv, u cosv, u(cosv+sinv)+hv) - (hsinv, —h cos v, u) du dv
E
= / (husin? —hu cos® v + u?(cosv + sinv) + huwv) du dv
E

:/ hu(—cos?v)dudv—i—/ u2(cosu+sinv)dudu+h/ uv du dv
E E E

1 27 1 1
:O+0+h/ udu/ vdv=h-=-=. 47? = hr?.
0 2 92

8) The normal vector of the surface F of the parametric description

r(u,v)(\/ﬂcosv, usinv,f3/2), 1<u<2, 0<v<u,
is
ew ey ez
or Or — — 0
N(u,v) = %x%: 2\/_cosv 2\/asmv

3
Vusinv  /u cosv 3 NG

i <[W_ [ L).

The flux of V(x,y, 2 (y, —z,2%) through F is

N(u,v)dudv

\
<
\
<
:
@

:/(\/asinv,—\/ﬂcosvv ( \/7s1nv \/7cosv ) du dw
E
3 2 3 2 3
= —/vsin® v + =1/v cos v+—v du dv
54 4 2
3 1 2 rvrs 1
Z/E{Zﬁ—i—§ug} dudU:/1 {/0 (Zvé—&-ivg) dv} du
2 u 2
3 2 1 1 1
:/1 [1'5“3+§“4]0d“:/1 (5“g+§“4> a
125 1 .07 1, .. 1 . 1 1
= — . = — = — 2 —_ = — —
{2 5“”40”]1 5 (V' + g 5 40
i(s 4/2+32-8-1)= (32\f2+23)—ﬂ+§
40 40 5 40°
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9) Here we have [cf. Example 33.11.7]

e, ey e,
N(u,v) =| cosv sinv 0
—u sinv wcosv h

= (h sinv, —h cosv,u),

and the flux of the vector field (yz, —zz, hz) through the surface F becomes

/ V.-ndS = / V - N(u,v)dudv
Jr E
= / (uhwv sinv, —uhv cos v, h?v) - (hsinwv, —cos v, u) du dv
E

—h/ (uh sin? v + uh cos? v+huv)dudv—h2/ u(l 4 v)dudv
E

27 27 2
—h2/ wdu - / (v+1)dv=h*- { ] %'{27724—277}:}1277(774—1).
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33.5.2 Examples of application of Gauf3’s theorem

Example 33.12 Find in each of the following cases the flux of the given vector field V through the
surface of the given set S in the space.

1) The vector field V(x,y, z) = (5xz,y? — 2yz, 2yz), defined in the domain Q by 2% +y* < a?, y > 0,
0<2z<b.

2) The vector field V(z,y, z) = (2o — V1 + 22, 2%y, —x2?), defined in the cube Q = [0,1]x [0, 1] x[0, 1].

3) The vector field V(z,y, z) = (22 + y2,y? + 22, 22 + 22) given in the domain Q defined by
x2+y2+22 <a? and z > 0.

4) The vector field V(z,y,z) = (23@ + /Y2 + 22,y — cosh(wz),y? + 22), defined in the solid ball
Q= K((3,-1,2):3).

5) The vector field V(z,y, z) = (—x+cos z, —zy, 3z +€Y), defined in the domain Q given by x € [0, 3],
y €10,2], z € [0,?].

6) The vector field 7T, where T(x,y,2) = 22 +y?+22 is defined in the domain Q given by x?+y? < 2
and z € [0, 2].

7) The vector field V(x,y,2) = (z3 + xy?, 4yz? — 22%y, —23), defined in the solid ball given by

1:2—|—y2—|—z2 §a2.
8) The vector field V(x,y, z) = (2z,3y, —=z), defined in the ellipsoid Q, given by

2 2 2
() +G) + Q) =
a b c

A Flux out of a body in space.
D Apply Gaufi’s theorem of divergence.
I According to Gaufl’s theorem the flux is given by

V. -ndS = / div V dQ.
JOQ Q

1) Since
div V =52+42y — 22+ 2y = 3z + 4y,

the flux is

b b T “a
1
/dideQ:/3zdz~7wa2+4// /Qsinwedg dpdz = 2 ma®? + 5 ¥,
Q 0 2 o Jo 0 4 3

2) Since
div' V=24 22 — 222,
the flux is

/ dideQ:2+/x2dQ—/295de:2+1—1:£.
Q Q Q 3 2 6
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3) Here
div' V =22 4 2y + 2z.

It follows by the symmetry that

/2mdﬂ:/2yd§2:0.
Q Q

We obtain the flux by an application of Gaufl’s theorem, the argument of symmetry above and

semi polar coordinate,

/ divvdQ = /2de+/2de+/2de:/2de
Q Q Q Q Q
27 a v a2—p?
= / / / 2zdz p pdo p dp
0 0 0

2 4

a Ta

2 4 2

‘9 2 a9 01"
= 271'/(& —0)odo=2m|—0*"—=| =27 —=—.
0 4]y

4) Since
divV=2+1+2=5,
the flux is
/Q div VdQ = 5vol(K((3,-1,2);3)) =5 4?” -3% = 1807.
5) Since
divV=-1-2+3=2-z,

the flux is given by

[ van - A(g_x>dﬂz/o3<2_x>{/o2{/f dz} dy} "
S AR CHR

divV=A@?+y*+2%)=2+2+2=6,

=4.

—_
o V)
|
ROV
wl oo

6) Since

the flux is given by
/ div VdQ =6vol(Q) =6 -7 - (\@)2 .9 — 24r.
Q
7) Here,
div V =322 + 2 + 422 — 222 — 322 = 22 + ¢ + 22

The flux is easiest computed in spherical coordinates,

. 27 T a 571
/ div VdSZ:/ {/ {/ r2-rsin9dr} da} dp =27 {T] [~ cosf]F = nd
JQ 0 0 0 5 0 5
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8) From
divV=2+3—1=4,

follows that the flux is
47

1
/ div VdAQ =4vol(Q) =4 - — abe = —67rabc.
o 3 3

Example 33.13 Find in each of the following cases the flux of the given vector field V through the
surface of the described body of revolution 2.

1) The vector field is V(z,y,2) = (y> + 2%, (x — a)? + 2%, 2% + y?), and the meridian cut of  is given
by 0o <a and 0 < z < {/a? — o2.
2) The vector field is
V(z,y,2) = (2% — 2xy, 2y° + 62222, 22 — 202 — 2y2),

and the meridian cut of Q is given by 0 < z <1 and o < e™*.

3) The vector field is V(x,vy, 2))(x? — xz,y* —yz, 22), and the meridian cut of Q is given by o < VInz
and z € e, €].

4) The vector field is V(z,y, z) = (2z + 2y, 2y + 2,z + 2x), and the meridian cut of Q is given by

2
—a
Qéa’a e SZS\/G?-Q.

a

A Flux through the surface of a body of revolution.
D Sketch if possible the meridian cut. Calculate div V and apply Gauf}’s theorem.
I 1) From div V = 0, follows trivially that the flux is

/ div VdQ =0,
Q

and we do not have to think about the body of revolution at all.

2) We conclude from
divV =2x—2y+4y+2— 2z — 2y = 2,

that the flux is

1
/dideQ:2vol(Q):2/ Te Pdz=m(l—e?).
Q 0

3) Here,
divV =2z —2+2y—2z+42z=2x+2y.
If we put
B(z) ={(x,y) |2* +y* <Inz},  z€[ee?,
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Figure 33.23: The meridian cut of i Example 33.13.2.

Figure 33.24: The meridian cut of Example 33.13.3.
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Figure 33.25: The meridian cut of Example 33.13.4.

then the flux is

/ dideQ:/(2x+2y)dQ:/ {/ (2x+2y)dxdy}dz:0,
Q Q e B(z)

because it follows from the symmetry that

/ xdxdyz/ ydrdy = 0.
B(z) B(z)
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4) Tt follows from the equations of the meridian cut that when z > 0 we have the quarter of
a circle, and when z < 0 we get an arc of a parabola. It is natural to split the cut of
correspondingly in £ (for z > 0) and Q9 (for z < 0).

Since
divV=2+2+1=35,
we get by GauBl’s theorem that the flux is
flux = = /Q div V.dQ2 = 5vol(2) = 5vol(€21) + 5 vol(Q2)

1 4 0 10 0
— -§-§a3+5/ Wg(z)de:Tﬁa3+57r/ (az+a2)dz

3

10 2 10
= Tﬂa3+57r [%—&—a%]_a:?ﬂag—&—fm(—%—i—ag)

2 1 7 35
= 5mad® ( + > = 5ma’® - 5 = Eﬂag.

Example 33.14 Let Q2 denote the cylinder given by z € [—h, h], ¢ € [0,al], ¢ € [0,2n]. Find the flux
through the surface 92 of the Coulomb vector field

1
Vig,y,2) = 5 (@y2),  (29,2)#0,00), 7=va?+y>+2%
[Cf. Example 33.11.5, Example 33.11.6 and Example 35.8|.

A Flux through the surface of a body.

D Think of how to treat the singularity at (0,0,0) before we can apply Gauf}’s theorem. Find the
flux.

I When (z,y,z) # (0,0,0), we get [cf. Example 35.8]

ovi 1 3 , OV, 1 3 , 9V 1 3 ,

Br i Y ay 3 ;Y Ty Tt
hence

. 3 3 3 3

leV:T—g—g(ﬂf2+y2+zz):T—g—r—5r2:0.

One could therefore be misled to “conclude” that the flux is 0, “because (0,0, 0) is a null set”; but
this is not true.

Let R €]0,min{a, h}[. An application of Gaui’s theorem shows that the flux through the surface
of O\ K(0; R) is

/ div VdQ =0,
Q\K(0;R)

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

because (0,0,0) ¢ Q\ K(0; R). Hence, the flux is

V . ndS = V - ndS - / V. ndS; + / V  -ndS
J O J O JOK(O;R) JOK(O;R)

= / div V.dQ + / V. .ndS = / V -ndS.
Q\K(0;R) JOK(O;R) JOK(O;R)

On the boundary 9K (0; R) the outer unit normal vector is given in rectangular coordinates by

1
n= = (2,9, 2), thus

1

1 1
V:.n= 7(7"’;1/72’)'7(3:79)2): ?

R3 R
The area element is given in polar coordinates by

dS = R*sinfdf d.

Then the flux through 0f2 is given by

. . 2m ™
1
V-ndS = / V-n<lS:/ {/ -5 ~RQSin0d9} dy = 27[— cosb]f = 4,
Joo Jok (0:R) 0 o R

Example 33.15 We shall find the flur ® of the vector field
V(z,y,2z) = (e¥ + cosh z, €* + sinh z, 2°2?), (z,y,2) € R®,
through the oriented half sphere F given by
22 49?2 + 2% — 2a2 =0, z<a, n-e, >0.

It turns up that the integration over F is rather difficult, while on the other hand the expression of
div V is fairly simple. One will therefore try to arrange the calculations such that it becomes possible
to apply Gaufl’s theorem.

1) Construct a closed surface by adding an oriented dist F1 to F. Sketch the meridian half plane.
2) Find the flur ®1 of the vector field V through Fi.
3) Apply Gaufi’s theorem on the body Q) of the boundary 02 = F U F1, and then find ®.

A Computation of the flux of a vector field through a surface where a direct calculation becomes very
difficult.

D Apply the guidelines, i.e. add a surface Fi, such that F U F; surrounds a body, on which Gauf}’s
theorem can be applied. Hence, something is added and then subtracted again, and then one uses
Gauf}’s theorem.

1586

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem
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Figure 33.26: The surface of Example 33.15 for a = 1.
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Figure 33.27: The meridian curve of Example 33.15 for a = 1.
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I 1) When we add a? to both sides of the equation of the half sphere, we obtain

a* =2 +y* + 2% —2az+a® = 0* + (2 — a)*.

It follows from the condition n - e, > 0 that the curve in the meridian half plane of F is the
quarter of a circle of centrum (0, a) and radius a,

O +(z—a)P=d  z<a, 0>0

Note that the normal vector has an upwards pointing component.

The disc (“the 1id”), which shall be added is of course the disc in the plane z = a of centrum
(0,0, a) and radius a.

2) The flux of V through F; of normal e, is

. . o 27 a 94 a T
V-ndS = / z2a?dS = a2/ cos? @ {/ 0’ - ng} dp =da’n - [—} = —daS.
JF Jr 0 0 4], 4

3) Let © be the domain which is surrounded by Fi U (—F), where —F indicates that we have
reversed the orientation, such that the normal is pointing away from Q) on both F; and —F.

Then

div V. =0+ 042222 = 227 = 22%(2 — a) + 2az?,
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so it follows from Gauf}’s theorem that

—/ V -ndS + V-ndﬁ':—/ V-ndﬁ'—i—zcﬁ:/ div V d€,
JF JF 4 Q

JF

hence by a rearrangement,

o = /V n<lS—Za6—/ d1VVdQ—Za —/2ax dQ — /295 (z —a)d2
Q

= a —a/ dQ—i—/x + %) (a — 2)dQ,

where we have used the symmetry in z and y in the domain of integration in the latter equality.

By the transformation z ~ a — z the solid half ball €2 is mapped into the solid half ball
0 ={(z,y,2) | ® + 9> +2° < a? 2 >0},

S0
o="g5_ a/ (22 + 5%)0Q +/ (22 + y?)z dS2.
4 Ql Q1
When we use the slicing method, we see that € at height z € [0, a] is cut into the circle

B(z) = {(z,y,2) | 2® +y* < a® — 2%} = {(x,y,2) | 0 < Va2 — 22}, z € [0, a] fixed,

hence

a/ (2 + ) dQ = a/ {/ (? +y2)d8} dz

J 0 B(z)
a 2m Va2—z2 a 94

a/ / / 0? - pdo| dpp dz = 27ra/ [—} dz
0 0 0 o L4

:Ia/ (a2—z2)2dz:za/ (z* — 2a*2% + a*) dz
2 Jo 2 Jo
5 942 a 5
:ga{%— g z3+a4z}0:ga{%—3a5+a5}
T ¢ (1 2 dm
=g (2241 =22
2 “ (5 3+ ) 154

and by some reuse of previous results,

/Ql(a?+y2)de:/Oaz{/g(z)(x2+y2)ds} dz

_ T a2_22' _[12_23[1_16
= 2/0(z a’) zdz—4[3(z a)}— a’.

Finally, we get by insertion that

o = Eaﬁ—a/ (x2+y2)dﬂ+/ (2 +y?)zdQ
4 Ql Ql
T e A4m o oo b ma® mab
= T T T =T 151
1T T T g B =
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Example 33.16 Let a set Q C R? and a vector field V : R? — R? be given in the following way,

2 2 2
Q:{(x,w) ’ ery-at oo W‘”Cg_?ﬂ}’

a

V(z,y,2) = (22 + 2y, 2y + 2, 2 + 2).

The boundary OS) is oriented such that the normal vector is always pointing away from the body. By
F1 and Fa we denote the subsets of OS2, for which z > 0, and z < 0, respectively. Find the fluxes of
V through F1 and Fs, respectively.

A Flux through surfaces.

D Apply both rectangular and polar coordinates. Check Gaufi’s theorem. This cannot be applied
directly. It can, however, come into play by a small extra argument.

Finally, calculate the fluxes.

o

02 04 06 08 /1 12

Figure 33.28: The cut of the meridian half plane for a = 1.

I By using semi polar coordinates we obtain that

2

CLZZQQ—CL og 22+Q2§a2,

and the meridian half plane becomes like shown on the figure.

As
4T 4 0 2 4 0
vol(f2) = wvol() + vol(Q2) = 5 g + 71'@ =5 +7 a(a+ z)dz
2 4 27r 7r od = T ]
= — 2tdt = =
39 +50 /0 FI R

and div V =242+ 1 =5, it follows from Gauf’s theorem that

flux(F) = flux(F1) + flux(Fa) = / V -ndS —/ div V.dQ = 5vol(Q) = 327r 3
Q
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The parametric description of Fj is chosen as
r(u,v) = (u,v, a? —u? — 1)2) , u? + 0% < d?,
and then

@: 1,0,—* and @: 0,1,—; ,
ou 22 — u2 — o2 Ov 22 — u2 — o2

from which we get the normal vector

e, € e,
u
1 0 —— 1
N(u,v) = 22 — u2 — 02 :—<u,v, a2—u2—v2>,
2 — w2 — 2
v
0o 1 -
2 — w2 — 02

which is clearly pointing away from the body, because the Z-coordinate is +1.

If we put B = {(u,v) | u? + v* < a*}, it follows from (z,y, z) = (u,v, Va? — u? — v?) that

flux(Fy1) = / V-ndS = / V(u,v) - N(u,v)dudv
JF B

= / (2u—|—2v,2v—|—\/a2—u2—v2, \/a2—u2—v2+2u)
B

1

a?

—(u,v,Va?—u?2—v?)dudv
)
u—v

22 4 2uv+20% + v/ a2 —u2 —v?
/ va —u2—v Ve }
+(a® —u? —v?) +2uv/a? —u? — v2} dudv

2 2 2 21 a 2 a? 2
t
S dudv+0:/ i - 0dp dg0:7r/ LR
B Vaz—u? —v? 0 va2—p? 0 a?—t

:”/f{ 207 _M}dtzw{—4a2M+§(M)3]

a? —t

:W{4a2\/¥— ga‘o’} = mTwa‘g.

IIeIlCe
— a4 — —Qa 3

flux(Fz) = flux(F) — flux(Fi) = 5 3 =5 ma’,
and thus

1
flux(Fr) = % a® and flux(Fp) = %T a’.
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ALTERNATIVELY, F3 is given by the parametric description

1
r= (o) = (wo @4t @), o eB
a
hence
or 2u or 2v
= = (1,0= a —==(01=
ou < 0, a) an v <0’ ’ a)
and hence

or Or 2_” 2u 2o
ST N
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Then

flux(F2) = / V ndS = / V(u,v) - N(u,v)dudv
J 7, B

1 1 2u 2
:/ <2u+2u72u+ (u2+v2—a2) , — (u2+v2—a2)> . <u7 —U, —1) du dv
B a a

a a

4u? 4 4% 2 1
:/ {u+w+v+v(u2+02_a2)_(
B a a a

1
— {4u2—|—4u2—u2—v2—|—a2} dudv+0
aJp

2

a

in accordance with the previous found result.

3 3 ‘
:a—area(B)+*/(u2+v2)dudv=a-7ra2+f-277/ 0* - odo
2 B a 0

Example 33.17 Let K be the solid ball (xo;a), and let V be a C' vector field on A, where A D K.
Prove the following claims by using partial integration, Gaufl’s divergence theorem and the formula

v (x-x).

X =

N | =

1) If the divergence of V is a constant p, then
4 5
(x —x0) - V(x)dQ2 = — a’p.
K 15
2) If the rotation of V is a constant vector P, then
4 5
(x —%0) X V(x)dQ2 = —a’ P.
K 15
A Generalized partial integration.
D Follow the guidelines.
I 1) It follows from

x=xp =5 V((x=x%0) (x=x0)) =

DN | =

1593
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and f(x) = ||x — xo/|? that

/ (x —x0) - V(x)dQ = 5/ 7 ([lx — X()HZ> -V(x)dQ
JK '

JK
1

1/ 2
:—/ n-V(x) ||x—x0||2dS——/ Ix — x0]|* v -V dQ
2 Jok 2Jo

1 1 / .
:—a2/ n-V(x)dS——p/ [|x — xol|? dQ
2 Jox 27 Jo

. a 2w T
= 1az/ v - V(x)dQ — 1p/ {/ (/ r2-1"281119(19> dap} dr
2 Jo 2% Jo 0 0

1 a ™
zlpaz-vol(Q)——p/ err-27r-/ sin 6 d6

1 , 4r 5 1 a° pa®m 4 5
I, B I, W) WY (NS 1) DY s W Sy
QP4 g @ TPy e 5t b=

2) We can then replace - by X, hence
' o 1/ , 9
/ (x —x0) x V(x)dQ = 5/ V(HX—XUH‘) x V(x)dQ
JK JK
1 ) 1/ ,
== nxV(x)|x—xol|*dS— < | ||x—x¢|" v =xVdQ
2 )oK 2Ja

. a 2m s
:1a2/ va(x)dSZ—lP/ {/ (/ rz-rzsin9d9> dgp} dr
2 Jo 2 Jo 0 0

1 1 a s
:*@2P-vol(9)—fp/ r4dr~27r~/ sin 6 df
2 27 Jo 0

2 3 2 15

........................................................... sesssssssssssAlCcatel-Lucent @
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Example 33.18 Let a be a positive constant. We let T denote the subset of
T = {(ac,y,z) ER3|2>0, 22 +92 +22 < 9a2},

which also lies outside the set
Ty ={(z,y,2) €R® | 2* +y* + ( —a)' < a’},

hence T =Ty \ Ts.

1) Ezplain why T is given in spherical coordinates by

0e [07 g} , p€el0,2x], r € [2acosb,3al.

2) Find the mass of T when the density of mass on T is u(z,y,2) = —.
a

3) Find the flux of the vector field
V(m,y,z) = ($Z+4Iy,y2—2y2,1'2y2) ) (mvyaz) € Rgv
through OT .

4) Find the volume of the subset T* of T, which is given by the inequalities
x>0, y>0,2> 22+ 92

A Spherical coordinates, mass, flux, volume.

D Sketch the meridian half plane; compute a space integral; apply Gaufl’s theorem; once again,
consider the meridian half plane.

Figure 33.29: The meridian half plane for T, when a = 1. The angle between the Z-axis and the
dotted radius is . The two dotted lines are perpendicular to each other.

I 1) When we consider the meridian half plane, it follows immediately that

(RS [0, g] and ¢ € [0,2n].
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It only remains to prove that the meridian cut of 075 has the equation
r = 2a cos .

Draw a radius and the perpendicular line on this as shown by the dotted lines on the figure.
Together with the line segment [0,2a] on the Y-axis these form a rectangular triangle. The
angle between the Z-axis and the dotted radius is 6, and the hypothenuse (the line segment on
the Z-axis) is 2a. Hence, the closest of the smaller sides (i.e. placed up to 9T%) must have the
length 2a cosf. This proves that the equation of 97T is

r = 2a cosf.
It then follows that r € [2a cos @, 3a] in T

2) We have in spherical coordinates

z r
,Y,2) = — = — cosb,
way,2) = 5=

hence the mass is given by

. 3 21 3a 1
M = / /tdQ:/ {/ {/ =T cosﬁ-r2sin9dr} dgp} dé
JT 0 2a cos @

0
o [2 rd] T (% 4
= —4/ cosf -sinf [] dﬁzf/ (81—16cos 9) cosf sinf df
a” Jo 4 2a cos 6 2 Jo
[ 81 ,. 16 1% w(81 16\ =« 1177
= - |-= = = (-2 )= (243-16)= — .
5 [ 5 Cos 9+6008 QL 2<2 6) 12( 3—16) 1

/
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Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

3) From
divV=z+4y+2—-4y+0 =2z,

follows by Gaufi’s theorem and 2) that the flux is

‘ 227
/ V. ndS—/ div VdQ = /2de—2a/udQ— 67T a’.
Jor T

Figure 33.30: The meridian cut of 7™ is the domain between the two circular arcs lying above the line
z=o.

4) By analyzing the meridian half plane once more we see that T* is given by
0 e {0, %} , pE [—i—,g} , T € [2a cosh,3al,

hence the volume is

s s 3a s 3a
4 2 4 1
VO]‘(T*) = T sin 6 dr ng do = z sinf - | — 7-3 dé
2 3
0 2a cosf 0 2a cos O
a3/4 (27 — 8 cos® §) sinf df = %a?’ [—27cos€—|—2cos40}0%
0

Y
V2

cn|>\ ENE

+ = +27 2) 2(51—27\/§)a3
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Example 33.19 Let a be a positive constant and consider the function
f(z,y,2) = a*a® + a®y + 2*, (z,y,2) € R®.

1) Find the gradient V. =<7 f and the tangential line integral

/V-tds,
K

where K is the line segment from (0,0, a) to (2a,3a,0).
2) Find the fluz of V through the surface of the half sphere given by

x2+y2—|—z2§a2 and z>0.

A Gradient; tangential line integral; flux.
D Apply GauB’s theorem in 2).
I 1) The gradient is

V = vf = (2d%z,a3,42°).
Since V is a gradient field, V = 7/ f, we get
/ V -tds = f(2a,3a,0) — £(0,0,a) = (a® - 4a*> + a® - 3a) — a* = 6a".
K
2) Then by Gaufi’s theorem,
flux(0L) = V-ndS = / div VdQ = /(Za2 +122%)dQ
Jor L L

1 4 4 @
= 2a2-7~—ﬂ-a3—|—12/22d§2=1a5—|—12/ 2% m(a® — 2%)dz
23 . 3 o

A o 9 3 1 5 “ 4r 5 24 o 44w
3 a” + 127 [a, z 52’ . 3 + 1571' 5
1598
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Example 33.20 Given the tetrahedron
T={(r,y,2) €R?|0<2,0<y, 4—x—2y<2<8— 22— 4y}

and the vector field
2 : L 5 2 2 3
V(z,y,z) = | zcosx+3yz, z°y+xsinh z, 3 z?sinx+3z°—5y° |, (z,y,2) € R”.

Find the flux of V through OT.

A Flux of a vector field through a closed surface.
D Apply Gaufi’s theorem.

I It follows from

oV; \% \% 1
diVV=—1+8 2+3 3:—zsinx+x3+§-2zsinx:x

dr Oy = 9z

2

)

by Gauf}’s theorem that the flux of V through 0T is given by

(33.4) / V -ndS :/ div Vdazdydz = / ?dzdydz.
JoT T T

The bounds of the tetrahedron give the estimates
4—0—-2y<z2<8—-2zx—4y=2(4—x—2y),

hence 4 —x — 2y > 0, and thus 0 <z <4 —2y and 0 < y < 2. By a reduction of (33.4) we then get

_ 2 4—2y
V- -ndS = / 2?dxdydz = / {/ (/ 8 — 2o—4yx? dz) da:} dy
JOT T 0 0 4—x—2y
2 4—2y 2 4—2y
= / {/ 22 (4—x—2y) da:} dy = / {/ (4a? — 2 — 2ya?) d:c} dy
0 0 0 0

ol
8
|
I

229 - @2 uh - Sz abP) 4y

16

R AR SR T

6 16\ [? 16 [? 471 1% 128
— (=2 2 ytdy=— [ #dt== |24 ==,
(3 4)/0( y)"dy 12/0 3{5 L 15

Il
%ﬁ%
— =

[SSIN

vl
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Example 33.21 Given the vector field

V(z,y,2) = (4o + 3y°, 92y + 2,y), (z,y,2) € R3.
1) Find div V' and rot V.
2) Show that V is a gradient field and find all its integrals.
3) Compute the tangential line integral

/V-tdsz/(4x+3y3)adm—|—(9xy2+z)dy+yd2,
K K

where KC denotes the line segment from the point (0,0,0) to the point (1,1,1).

4) Find the flur of V through the unit sphere x® + y? + 2% = 1 with a normal vector pointing away
from the ball.

A Vector analysis.
D Follow the guidelines
I 1) We get by direct computations
div V =4 + 18xy?,
and

€1 €2 €3

0 0 9 | 9 o
o oy s | = (17 1,0-0.95—95%) =(0,0,0),

4r+3y3 9ry’+z oy
and we note that V is rotation free.

2) Since the field is rotation free and the domain is simply connected, we conclude that V is a
gradient field. Then by calculating the differential form,

V - (dz, dy, dz) (42 4 3y*) dx + (92y® + 2) dy + ydz
= 4xdx+3 (y3dx+x . 3y2dy) + (2dy + ydz2)
d (22* + 32y° + yz),
and it follows once more that V is a gradient field with all its integrals given by

F(x,y,2) = 22° + 3zy® + yz + C, C eR.

3) We have proved that V is a gradient field with an integral F. Then it follows that

V-tds = /(4x—|—3y3)dx+(9xy2+z)dy+ydz
i

JK

(1,1,1)

= [F(w,y,z)](mo)o) - [2x2 +3$y3—|—yz](1’1’1)

(0)070):2—1—34—1:6.

4) An application of Gauf}’s theorem gives

' ] 4 1
V-ndﬁ':/div VdQ:/(4—|—183:y2)dQ=4vol(Q)—|—0:4~g:%,
Joa Q Q

because fQ 182y% d) = 0 of symmetric reasons. The integrand is odd in x, and the body is
symmetric with respect to the (Y, Z)-plane.
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Example 33.22 A body of revolution L with the Z-axis as axis of rotation is given in semi polar
coordinates (o, , z) given by the inequalities

0<p<2m, —a<z<a, OSQSQ—%7
where a € Ry is some given constant.
1. Calculate the space integral
1= / 22 dQ.
L
Given the vector field
V(z,y,z) = (cos T,y sinz, z?’) , (z,y,2) € R3.

2. Find the fluz

V -ndS,
AL

where the unit normal vector n is pointing away from the body.
A Space integral and flux in semi polar coordinates.

D Slice up the body; apply Gaufl’s theorem.

01702 04 06 08

Figure 33.31: The meridian curve when a = 1.

I 1) Tt follows from the rearrangement

e )

that the meridian curve is an arc of a parabola.
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The space integral is computed by the method of slicing,

a 22 2 a 24
/zde:W/ (a——) zzdz=27r/ <a2—2z2+—2> 22dz
L a 0 a

—a

a 6 2 7T
- 2,2 4 % _ a® 5 2 5 oz

1 2 1 27a® 167a®
— 5 —_ — — —_ =
= 2ma <3 + 7) 108 (35 — 42+ 15) TR

1

2) The flux is according to Gauf’s theorem given by

V.-ndS = / dideQ:/ {—sinx+sinx+sz2} dQ
JoL Q Q
_ 167a®

35 7

= 3/z2dQ=3I
Q

where we have used the result of 1).
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Example 33.23 Given the vector field

V(z,y,2) = (3z2% — 2%, 3y2% — %, 32(2% + 9?)), (z,y,2) € R3,
and the constant a € R
1. Show that V is a gradient field and find all its integrals.

Let KC be the curve which is composed of the quarter circle of centrum at (0,0,0) and runs from (a,0,0)
to (0,a,0), and the line segment from (0, a,0) to (0,a,2a).

2. Find the tangential line integral

/V-tds.
K

3. Find the flux of V through the surface of the ball of centrum (0,0,0) and radius a.
A Vector analysis.

D Each question can be answered in several ways. We shall here demonstrate some of the variants.

I 1) First note that V is of class C*.

First variant. Prove directly by some manipulation that the differential form V - dx can be
written as dF’ where F' then by the definition is an integral. Do this by pairing terms which
are similar to each other.

V.dx = (3zz? —2%)de + (3yz® — v®)dy + 32(2? + y?) dz
3 1 3 1 3
= 3 22 d(z?) — 1 d(a?) + 3 22 d(y®) - 1 d(y*) + 5@2 +y?)d(z?)
1
= d( (562—|—y2)z2—1:c4— 1 4)
It follows immediately from this result that V is a gradient field and that all integrals are

given by
3 1 1
F(zayvz) = 5 ('T’2 +y2)22 - Z'T’4 - Zy4+ca

where C' is an arbitrary constant.
Second variant. Clearly, R? is simply connected. Furthermore,

oL oM oL O0M
a—y—O7 %—0, hencea—y_%,
oL ddN oL ON
E = 6&72’7 W = 6&72’7 hence 02 = %,
oM 6 ON 6 he CeaM ON
—_— = —_ = 11 = QA .
0z vz oy vz 0z Oy

Since all the “mixed derivatives” are equal, it follows that V - dx is closed and hence exact.
This means that V is a gradient field and the integrals of V exist.

In this variant we shall find the integrals by using line integrals. There are two sub-varants:
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a) Integration along the broken line

(0,0,0) — (z,0,0) — (x,y,0) — (x,y, 2).

In this case,
T y z
Fo(z,y,2) = /(—t3)dt+/ (—t3)dt+/ 3t(z® 4+ y?) dt
0 0 0

3 1
= 3 (2 +y%)2* - 1 (@* +y*).
The integrals are

3 1
F(z,y,2) =5 (@* +y%)" = 1" +4") + C,

where C' is an arbitrary constant.
b) Radial integration along (0,0,0) — (z,y, 2).
The coordinates of V are homogeneous of degree 3. Hence,

1 1 1
Fo(z,y,2) = (x,y,2)- ((szz—x3)/ t3 dt, (3yz2—y3)/ t3 dt,32(m2—|—y2)/ t3 dt)
0 0 0

1
= Z ($7y7 Z) : (31’22 - xsv 3y22 - y37 3Z($2 + y2>)

1
= 1 {32222 — 2 4+ 3y?2* — y* + 322 (2% + v?)}

3 1
= 5 ((Ez + y2)22 — Z ($4 + y4)
The integrals are

3 1
F(r,y,z) = 3 (2% + %)% — 1 (' +y") +C,

where C' is an arbitrary constant.

Third variant. Start by one of the variants 2a) and 2b) above without proving in advance
that V is a gradient field. The possible candidates of the integrals are

3 1
F(z,y,z) = 3 (22 4+ 9%)2% — 1 (z* 4+ 9y + C.
Check these!:
VF(x,y,2) = (3vz% — 2®,3yz* — y*,32(2” + ¢?)) = V(2,y, 2).

This shows that V is a gradient field and its integrals are given by
3. 2 n.2 Lo o4

where C' is an arbitrary constant.

Fourth variant. Improper integration.
First put

w=V-dx=(3zz? — %) dz + (3yz® — v*) dy + 32(2* + y?) dz.
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By an improper integration of the first term on the right hand side we get

’ 1
Fi(z,y,2) = / (3t — %) dt = gx2zz _ Z$4‘

The differential is

dFy = (3z2% — 2%) do + 3222 dz,
hence

w— dFy = (3yz? — y®) dy + 3zy? dz,
which neither contains x nor dx.

When we repeat this procedure on w — dF; we get

with the differential

dFy = (3y2® — y*)dy + 32zy*dz = w — dFy.
Then by a rearrangement,

1 1

w=V.dx=dF + dF} = d@xzz?—zxugyzzz—zy“),

proving that V is a gradient field with the integrals
3 1
F(I‘,y,Z) = 5 (xQ =+ yQ)ZQ - (.’174 =+ y4) =+ 07

4

C being an arbitrary constant.

Figure 33.32: The curve K for a = 1.

2) Here we have two variants.

1605

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X

Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

First variant. Since V is a gradient field with the integral

1

2 2y 2 1
(@ +y7)2" = 4

FO(mvy’Z) =

and K is a connected curve, we have

/ V- tds Fy(0,a,2a) — Fy(a,0,0)
K

3 02 2 o L o4 4 1
+a%)-4 +a*) +
2(0 a®) - 4a (0% +a%) 1

(a4 + 04) = 6a’.

Second variant. The definition of a tangential line integral.

The curve K is composed of the two sub-curves

Ki:  (2(t),y(t), 2(t)) = a(cost,sint, 0), te[O

Ko (z(t),y(t),2(t)) = a(0,1,1), te€[0,2].
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First calculate

x
/ V-tds = / a® (— cos®t, —sin®t,0) - a(—sint, cost, 0) dt
K1 0

z
= a4/ {cos3t-sint—sin3t-cost} dt
0

jus
2

a 4 .4 a4
= [—cost —sin*t] :Z{_1+1}:0’

and

V -tds
K2

2
/ a® (0,3t* — 1,3t (0 +1%)) - a(0,0,1) dt
0

2 3
= a4/ 3tdt = = a*-4 = 6a*.
O 2

Summarizing we get

/V-tds: V- tds+ V- tds =0+ 6a* = 6a’.
IC Ky Ko

3) This problem can also be solved in various ways.

First variant. According to Gauf}’s theorem,

flux = / div VdQ = / 622 dQ,
K (0;a) K (0sa)

because
div V = 322 — 322 4 322 — 3y% + 3(2? + y?) = 622

The calculation of this integral is most probably performed in one of the following sub-
variants, although there exist some other (and more difficult) ways of calculation.
a) Partition of K(0;a) into slices parallel to the XY -plane.

By using this slicing method we get

flux = / (i,:2<1£2:/ / 622 drdy p dz
JK(0;a) —a K((0,0);v/a%—22)

a

= / 622 area(K(0,0); Va2 — 22)dz = / 62%1(a? — 2%)dz

@ 1 1 ¢ 2 8
= 1271'/0 (a®2% — 2*)dz = 127 [§ a’z® — R 25]0 = 12ma® - = %T a’.
b) Calculation in spherical coordinates:

. 27 T a
flux = /7 622d0 = / {/ (/ 6r2cos? 6 - 7'28in9d7'> dG} de
J K(0;a) 0 0 0

T a 5
= 277/ 6cos29-sin6d0'/ r4dr:27r[2(—cos30)]g-%
0 0

4
§a5(1+1):8§a5

1607

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

Second variant. Direct application of the definition.
Put 7 = 0K (0;a). Then the unit normal vector field on F is given by

n=-(z,y,2).
L (@9,2)
By insertion into the definition,

1
flux = /V-ndSz 5/ {3:8222—x4+3y222—y4+322(9€2+y2)} ds
F K

1
= 7/ {62%(2? +¢?) — 2 —y*}1dS.
aJF
We shall in the following calculate this surface integral in two different ways. Notice that
there are many other possibilities. In both of these two sub-variants we shall need the
following:
Calculations:

(33.5) / (cos® ¢ +sin? ) dy
0

2
(COS4 @o—+sin? p+2sin? p cos? p—2sin? ¢ cos? ga) dep

J
J

2m
1
= {(cos2<p+sin2<p)2—2sin22tp} de

0
2m

11 3 3m

= 1— = (1—cosdp) b dp="2 .27 ="",

/0 { 5 2( cos (p)} p=2m=

Figure 33.33: The meridian curve M.

a) Consider the surface F as a surface of revolution with the meridian curve

M: o(z) =Va? - 22 z € [—a,al,
x(z) =Va? — 22 cosp, y=+va%—2%sing, z=z,

and the weight function

2

22 a a

a? — 22 a2 — 22
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By insertion into a suitable formula we get

1/ o N )
flux = a/ {(i:‘ (.r‘) + _1/‘) — gzt _1/1} ds
JF

1 a 27
== / {/0 {62%([a® — 2% cos® p + [a® — 2?]sin” @)}
vaZz —z2.qa
a®—22)2(cos* p+sint o) dpt Y——=_—dz
n ) (cos p)dp} N/

= /a {/(;Qﬂ{ﬁz2(a2—22)—(a2—22)2(0054<p+sin4 c,o)}dgo} dz

—a

_ /a {27p6,22(a2—22)— 37” (a2—z2)2} dz (by (33.5))

—a

a 3 a
= 127r/ (agzg—z‘l)dz—g/ (a*—2a%2%+2%) dz

—a —a

2 I 3 2 1 ]
=92.127 [éz3—5z5}0—2~2ﬂ [a4z—3a2z3+5z5}

0

2 2 1 16 3 8mra®

= 24ma’® - — — M-+ )=md® - (——1-2) = .
Tt o 37ra< 3+5> Ta (5 5) 5

b) ALTERNATIVELY it follows by the symmetry that the flux through
f+:{($ayvz)€f|220}

is equal to the flux through F\ F,, thus

2 ) 2, 9 92
flux = — / {62°(x* +y°) — zt — }dS.
Fy

a J; ‘

The surface Fy is the graph of

c=Va—a? =y (wy)e B={(a,y) |*+y’ <a?},

and the normal vector is

0z 0z x Yy
N =\—5—5,1)= 1
(z,9) ( oz’ Oy’ ) <\/a2—x2—y2’\/a2—x2—y2, )7

hence
a
N(z, =
Then by

i) reduction of the surface integral to a plane integral,
ii) reduction in polar coordinates,

iii) application of the calculation (33.5),

iv) the change of variable t = VaZ =12, ie.

r
r2=a>—-t> and dt = ————dr,
a2 _ 2

1609

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X

Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

we finally get

2 [ ., ‘ ,
flux = / {6(a®—2® —y)(a® +y*) —a’ —y"}
J B

27 a
2 6(a’—r?)r?> —r*(cos* o+sint " dr} d
[ oot psint o) arf ag

_y /0 a{127r(a2—r2)r2—3—7rr4} a4 (by (335)

2 a2—r

= 7r/ {248%(a*—1?)—3(a®—1?)*} dt
0

= / {24a°t* —24¢" 30" +6a*¢* -3t} dt
0

24 3 27
_ 5 _ _ _ 20 5 _ =
= ma {8 5 342 5} Ta {7 5}

S 35 —27  8ma®
N 5 5
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Example 33.24 Let a be a positive constant. Consider the set
A={(z,y,2) R’ |2® +y* <a®, 0 <y, —y <z <y, |2 < 2a}.
1) Describe A in semi polar coordinates (o, p, z).

2) Compute the space integrals

Iz/:rdQ, J:/de, K:/szQ.
A A A

3) Find the flux of the vector field
V(z,y,z) = (?>aczz—|—coshy7 z2em,z3—3axz+sinhy) . (2,9, 2) €R3,
through the surface OA with its normal vector pointing outwards.
A Space integrals; flux.

D The first two problems are solved by the reduction theorems. In 3) we apply Gauf’s theorem.

Figure 33.34: The domain B for a = 1 lies inside the upper angular space and inside the half circle.

I 1) Clearly, A is a cylinder with a quarter disc B in the (X,Y)-plane as generating surface. Hence
A is described in semi polar coordinates by

3
Az{(g,gp,z) ‘ OSQSCL,ZS@SI,—ZLLS,ZSZ&}.

2) By an argument of symmetry (first integrate with respect to x) we get

I:/dezO.
A

ALTERNATIVELY,

- 2a a ‘%
/ xdQ = / / / pcosp-ody | dop dz
JA —2a 0 T

a3

= 4a/ QQdQ-/ cosgadcp:4a-§[sin<p]
0 il

4

1

=
alg

=0.

jus
4
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Furthermore,
. 2a a ‘STW
J = / y dQ :/ / / osing - ody | deop dz
JA —2a | Jo =
a® sz 4at 1 1 4v/2a*
= da-—[- A=yt = = .

Finally, by the slicing method,

. 2a 3 3 5
‘ 1 1 4
K:/:“)dQ:/ 2?area(B)dz = ~ - ma® z :—7ra2-2-gi: L
J 4 ~2a 4 3 4

3) By an application of Gauf}’s theorem,
flux = / div VdQ = / {32 + 04 32% — 3az} dQ = 6K — 3al = 8ma’,
A A

where we have inserted the values of K and I found in 2).

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic

tion. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!
Tr)_af Power of Knowledge Engineering

'-’:-‘i-.i

e
Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/know1ed"_#
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Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

Example 33.25 Consider the function
F(x,y,2) = 2* + xe¥ sinz, (z,y,2) € R?,
and the vector field V. =/ F.
1) Find the divergence 7 -V and the rotation 57 X V.
2) Check if V has a vector potential.
3) Find the flur of V through OA, where A is the half ball given by the inequalities
:z:2+y2+z2§9, z <0.
4) Find the flux of V through the surface F given by
$2+y2—|—z2:9, z <0.

Show the orientation of F on a figure. (Hint: Use that the surface F is a subset of the surface 0A
of 8).

A Divergence, rotation, flux.
D Find V. Use the rules of calculations and finally also Gauf8’s theorem.

I 1) First calculate
V = F = (42° 4 €Y sin 2, ze¥ sin 2, we? cos 2) .
Then
V-V=v-vF=AF =12z + ze¥sin z — ze¥sinz = 1222
and
VXV=yxyF=0,

which is obvious because V is a gradient field and thence rotation free.
2) Since V is not divergence free in any open domain, V does not have a vector potential.

3) We get by Gaufl’s theorem, an argument of symmetry and using spherical coordinates,

flux(04) = HV~11<I,S':/Av-VdQ:12/{4952d§2:12/Ay2dQ

2m ™ -3
6/ (22 +y*) dQ = 6/ {/ </ r?sin? @ - 7'28in9d7'> dQ} de
A 0 z \Jo

s 3
6-277/ (1—cos20)sin9do-/ rtdr
0

1 12 2 1944
= -35-{—c0s9+3c0s30] :?ﬁ-35-§: 57T.

jus
2
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Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

Figure 33.35: The body A.

4) Let G denote the disc in the (X,Y)-plane with the unit normal vector field pointing upwards,

and let F denote the half sphere with the unit normal vector field pointing downward. Then
according to 3),

flux(9A) = fux(F) + fux(G) = 19?)47’.
Since n = (0,0, 1) on G, it follows by a rearrangement that
1944 1944 1944
flux(F) = 95 T flux(G) = 95 z —/ [ze¥ cosz],_, dS = 95 T / re¥ dS
g g

19447 3 Vo-y? 19447 19447
= — eY rdr p dy = -0= ,
5 -3 — /9_y2 5 5

where we for symmetric reasons calculate the plane integral over the disc in rectangular coor-
dinates.

1614
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Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

Example 33.26 The set 0 C R? is given in semi polar coordinates (o, ¢, 2) by the inequalities

<< 5, 0<z<h, Oggga(l_%)’

N
e

where a and h are positive constants.
Also given the vector field

Uz, y,z2) = (m3z +2ycosx,y3z + y’sinz, x2y2) , (z,y,2) € R,
1) Find the divergence 57 - U.
2) Find the flur ® of the vector field U through the surface Of).

A Vector field, flux.
D Sketch a figure. Apply GauBl’s theorem.

Figure 33.36: The body  for a = 2 and h = 1.

0.8

0.4

0.2

0.2 x

Figure 33.37: The meridian cut of €2 for ¢ € {—g, g} anda=2h=1.

1615
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Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

I We see that Q is (half of) a cone (of revolution) with the top point (0,0, k) and a half disc in the
(X,Y)-plane as its basis.

1) The divergence is
div U = v - U = (32?2 — 2ysinz) + (3y*z + 2ysinx) + 0 = 3z(2* + 3?).

2) By applying Gauf}’s theorem and reducing in semi polar coordinates we conclude that the flux

is
h z a(l—%)
o = /div U(l&2:/3z(;l:2+y2)d£2:/ / / 320° - odo | dp § dz
Q Q 0 - 0

h a(1=3) 1 % 7
= 37r/0 z</0 gdg> dz = 3rm- 1—20a4h2:4—0a4h2.
An ALTERNATIVE calculation is
o = [ da(-) e (- -2 e
_ %&h/j{(p%f—@—%)s}dz:%a‘*h?/ol{g‘*—gf’}dg

3m 4., (1 1 T 4.9
= ZDaAn2 (2 —2) = Zatn2
1 <5 6) 10"

)

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT

Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie
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Real Functions in Several Variables: Volume X
Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

Example 33.27 Find the divergence and the rotation of the vector field
1
V(zay7z) = (2[E+l‘y,7f£— 2?42,32) ) (zayvz) eRgv

and find the fluz of V through the unit sphere 22 4+ y? + 22 = 1, where the normal vector is pointing
outwards.

A Divergence, rotation and flux).

D Apply Gaufl’s theorem.

I The divergence is
divV=24+y—-—y+3=5.

The rotation is

€z €y €z e €, e,
0 0 0
il il el o o0 0
rot V.= 9z Ay 0: || oz 3y 92| (0,0,7 — ).
1
2v+zy Tx— B y? 3z zy Tz 0

By Gauf}’s theorem the flux through the surface F of the unit sphere is given by

/V-ndﬁ’:/ dideQ:/5dQ:5vol(Q):5-4—ﬂ--13:20—7T.
JF Q Q 4 3

Example 33.28 .

1) Find the volume of the body of revolution

1 1
A:{(x,y,z)6R3 ‘ 2x2+2y2—1§z§1}.

2) Find the flux of the vector field
Vi(z,y,z) = (y2 +z,x2% — ya?, xzz) , (z,y,2) € R3,
through 0A, where the unit normal vector is always pointing away from the body.
A Volume and flux.

D Sketch a section of A in the meridian half plane. Apply the method of slicing by finding the volume.
The flux is found by means of Gauf}’s theorem.

I 1) It follows from the sketch of the meridian half plane that the domain is described in semi polar
coordinates by

0< o< V2242, -1<2z2<1,

1617
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Vector Fields | Flux and divergence of a vector field. Gauf}’s theorem

-05

1
Figure 33.38: The meridian cut for A. The boundary curve has the equation z = 3 0> —1.

and that the body of revolution is a subset of a paraboloid of revolution.

THE SLICING METHOD. The paraboloid of revolution is intersected by a plane at the height
z €] — 1,1] (the dotted line on the figure) in a circle of area

m-0(2)* =2n(z +1).

Thus the volume of the body of revolution is

! 1
vol(A) = /_1 21(z +1)dz = [r(z + 1)?] =

2) According to Gauss’s theorem, the flux of V through 9A is given by

V.nds:/divvcm:/ {1—2%+2%} dQ = vol(A) = 4r.
JOA A A

1618
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34 Formulae

Some of the following formule can be assumed to be known from high school. It is highly recommended
that one learns most of these formule in this appendiz by heart.

34.1 Squares etc.

The following simple formulae occur very frequently in the most different situations.

(a+b)?* = a® + b + 2ab, a® + b + 2ab = (a + b)?,
(a—b)* = a® + b — 2ab, a® +b? — 2ab = (a — b)?,
(a+b)(a —b) = a® — b, a?—b* = (a+b)(a—b),
(a+b)? = (a — b)? + 4ab, (a —b)? = (a + b)? — 4ab.

34.2 Powers etc.

Logarithm:
In|zy| = In|z|+1n|y|, x,y #0,
In|Z|= In|z| —Inly|, x,y#0,
In|z"| = rin|z|, x #0.

Power function, fixed exponent:

(zy)" =a" -y",z,y >0 (extensions for some r),

AN
<—) =—,z,y>0 (extensions for some 7).
) )

Exponential, fixed base:

a®-a¥ =a*"¥, a>0 (extensions for some z, y),

(@®)! =a*¥,a >0 (extensions for some z, y),
e 1 :
a”t=-—,a>0, (extensions for some ),
a

Ya=a'"a>0, n € N.
Square root:
Va2 = |z, zeR.

Remark 34.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value!
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34.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(@) £g(x)} = f'(x) £ ¢'(2),

{f(@)g(@)} = f'(@)g() + f(2)g'(x) = f(2)9() {J}é@) i gg<($>) }

where the latter rearrangement presupposes that f(x) # 0 and g(z) # 0.
If g(z) # 0, we get the usual formula known from high school

{f(m) }/ _ [(@)g(x) = f(z)g'(x)
g(x) g9(x)? '

It is often more convenient to compute this expression in the following way:

Vo) = dn U6 ) = 5 ot~ 30 o) ~ ko) )

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) # 0 and g(x) # 0. Under these
assumptions we see that the formulae above can be written

{f(2)g(x)} _ f'(x) ¢ (=)
f(@)g(x) — flz)  g(x)

f(x)/g(x) ()  g(@)
Since

LTV 4 C) .

Fhlf@l=58. @ o,

we also name these the logarithmic derivatives.
Finally, we mention the rule of differentiation of a composite function
{f(e(@)} = f(e(@)) - ¢ (2).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

34.4 Special derivatives.

Power like:

. (%) = - 271, for x > 0, (extensions for some a).
d 1
%1n|x|=5, for z # 0.
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Exponential like:

—expx = expcz,

dx

d

In (®)=Ina-a”,
Trigonometric:

— sinx = cosx,

dzr
— cosx = —sinux,
e T inx
d 1
—tanz =1+ tan’z = 7
dz cos? x
d 1
L ot = —(1+eot?a) = ———
Hyperbolic:
— sinhz = cosh z,
dx
— coshx = sinh z,
dx
d 1
—tanhz = 1 — tanh®x = 5
dx cosh® x
d 1
7 cothz =1 — coth?z = R
z sinh? z
Inverse trigonometric:

d 1
— Arcsin x =

dx V1—22’

1
e Arccos x = —7*1 —
d
% Arctan xXr = m,
d 1
e Arccot x = 522
Inverse hyperbolic:
d 1
— Arsinh z = ——,
dx A /x2 + 1
d 1
— Arcosh x = ——,
dx 552 -1
d 1
% Artanh x = 1——332’
d
% Arcoth z = m,

Remark 34.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are

for z € R,

forx € R and a > 0.

for z € R,
for x € R,

T
for;v;«é§+p7r,p€Z,

for x # pm,p € Z.

for z € R,

for z € R,
for x € R,

for = # 0.

forze]-1,1],
forze]—-1,1],
for z € R,

for x € R.

for x € R,
for x €]1,400],
for |z| < 1,

for |x| > 1.

power like, because we include the logarithm in this class. ¢
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34.5 Integration

The most obvious rules are dealing with linearity

/{f(x) + Ag(x)} dx = /f(x) dx + )\/g(x) dx, where A € R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant ¢ € R, which often tacitly is missing,

[ F@ s = fa).

If we in the latter formula replace f(x) by the product f(z)g(z), we get by reading from the right to
the left and then differentiating the product,

f@g@) = [(@g@)} do= [ f@gle)ds+ [ s ) da.

Hence, by a rearrangement

The rule of partial integration:

/fumuwzzﬂmmw—/fwmuwm

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(z)g(x).

Remark 34.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ¢

Remark 34.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ¢

Integration by substitution:

If the integrand has the special structure f(¢(z))-¢’(z), then one can change the variable to y = ¢(z):

[ #tet@n ¢ @ae =< [ re@nacar = [ swa
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Integration by a monotonous substitution:

If p(y) is a monotonous function, which maps the y-interval one-to-one onto the z-interval, then

[r@a= [ sewew

Remark 34.5 This rule is usually used when we have some “ugly” term in the integrand f(z). The
idea is to put this ugly term equal to y = ¢ ~!(z). When e.g. 2 occurs in f(z) in the form /z, we put

y = o Y(x) = \/z, hence = = ¢(y) = y? and ¢'(y) = 2y. O

34.6 Special antiderivatives

Power like:

1
/—dx = In x|,
x

/xo‘ dr = L 2o+l
a+1

1
/ 1522 dx = Arctan x,

1 1 1+
= dr =1
/1—x2 v 2n‘1—x"

1
/ dr = Artanh z,

1— 22

1
/ dr = Arcoth z,

1— 22

dx = Arcsin x,

=

1
———— dx = — Arccos z,
/ V1—22
1
———— dx = Arsinh z,
/ VaZ 41

1
/\/Tﬁd"ﬁ:ln(ﬂf—F 332—|—1),

T
———dx =122 -1,
/\/3:2—1
1
———dx = Arcosh z,
/\/:Jc2—1

1
/ﬁdlenm—kvﬁ—ﬂ,
22 —

for x # 0. (Do not forget the numerical value!)
for o # —1,
for z € R,
for x # +£1,
for |z| < 1,
for |z| > 1,
for |z| < 1,
for |x| < 1,
for x € R,
for x € R,
for z € R,
for x > 1,

for x > 1 eller x < —1.

There is an error in the programs of the pocket calculators TI-92 and TT-89. The numerical signs are
missing. It is obvious that Va2 — 1 < |z| so if x < —1, then z + V22 — 1 < 0. Since you cannot take
the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

/expxdx:expx, for z € R,
1
a®dr =— -a", for x € R, and a > 0,a # 1.
Ina
Trigonometric:
/sinxdx:—cosx, for z € R,
/cosxdx:sinx, for z € R,
/tanxdx:—ln|cosx\, forx;ég—i—pﬂ, p € Z,
/cotxdx:1n|sinx|, for z # pmr, p€Z,
1 1 1 i
/ dr==In ﬂ , forx;éz—i—pﬂ, p € Z,
cos x 2 1 —sinz 2
1 1 1—cosz
dr==In|{ —— f Z
/sinx T3 n(1+cosx)’ orx#pm peL
1 us
>— dxr = tanz, forz # - +pm, pe€EZ,
cos® x 2
1
—5— dx = —cotuw, for x # pmw, p€Z.
sin” z
Hyperbolic:
/sinhxdx = coshz, for x € R,
/coshxdx = sinhz, for x € R,
/tanhxdx = Incoshz, for x € R,
/cothxalx:1n|sinhx|7 for x # 0,
1 .
dx = Arctan(sinh z), for x € R,
coshz
1
/ dx = 2 Arctan(e”), for z € R,
coshz
1 1 coshx — 1
dr=—-In| ——— f 0
/sinhx YT n(coshx—i—l)’ orz #0,

Download free eBooks at bookboon.com



1 e’ —1
dr=In|—— f 0
/sinh:c e em—|—1" or & 70,
1
/ﬁdz:tanhz, for z € R,
cosh” z
1
/. 5— dr = — coth, for z # 0.
sinh” x

34.7 Trigonometric formula

The trigonometric formulae are closely connected with circular movements. Thus (cosw,sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

(cosu, sinu)

Figure 34.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:
cos?u +sinu =1, for u € R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu,sinu) always has distance 1 from the origo (0,0), i.e. it is lying
on the boundary of the circle of centre (0,0) and radius v/1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by
exp(iu) :=cosu+1 sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(—iu) it is easily seen that

1
cosu = i(exp(iu) + exp(—iu)),

1
sinu = %(exp(i u) —exp(—iu)),
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Moivre’s formula: We get by expressing exp(inu) in two different ways:
exp(inu) = cosnu + i sinnu = (cosu + 1 sinw)".

Example 34.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,
cos(3u) + i sin(3u) = (cosu + i sinu)?

= cos® u + 3i cos?

= {cos® u — 3cosu - sin® u} + i{3 cos® u - sinu — sin® u}

= {4cos®u — 3cosu} + i{3sinu — 4sin®u}

w-sinu + 3i% cosu - sin?u + ¥ sin®u

When this is split into the real- and imaginary parts we obtain
cos3u:4c053u—3cosu, sin3u = 3sinu — 4sin®u. ¢
Addition formulae:
sin(u + v) = sinwu cosv + cosu sin v,
sin(u — v) = sinu cosv — cosu sinv,
cos(u + v) = cosu cosv — sinu sinv,
cos(u — v) = cosu cosv + sinu sinv.

Products of trigonometric functions to a sum:
. 1. 1,
sinu cosv = sin(u + v) + 5 sin(u — v),
. 1. 1.
cosu sinv = o sin(u +v) — 5 sin(u — v),
. . 1
sinv sinv = 5 cos(u —v) — 5 cos(u + v),

1 1
cosU COSY = cos(u —v) + 3 cos(u + v).

Sums of trigonometric functions to a product:

sinu 4+ sinv = 2sin <u—2|—v> cos (U;U) ,

. . 9 u+v\ . uU—v
sinu — sinv = 2 cos sin
2 2 ’
cosu + cosv = 2 cos utv cos S ,
2 2
. u+uvy\ . U —v
cosu—cosv:—Zsm( )sm( 5 )

Formula of halving and doubling the angle:

sin 2u = 2sinw cosu,

2 2

cos 2u = cos” u — sin u:2cosgu—1:1—2sin2u,

1 —cosu

sin 5= + — followed by a discussion of the sign,

/1
cos g =+ $ followed by a discussion of the sign,
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34.8 Hyperbolic formulae

These are very much like the trigonometric formulae, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulze. The reader should compare the two sections concerning similarities

and differences.
The fundamental relation:
cosh? z — sinh? z = 1.
Definitions:

coshz = % (exp(z) + exp(—x)), sinhx = % (exp(z) — exp(—x)) .

“Moivre’s formula”:

exp(x) = coshz + sinh z.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulae:
sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y),
sinh(z — y) = sinh(z) cosh(y) — cosh(z) sinh(y),
cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y),
cosh(z — y) = cosh(z) cosh(y) — sinh(z) sinh(y).
Formula of halving and doubling the argument:
sinh(2z) = 2sinh(z) cosh(z),
cosh(2z) = cosh?(z) + sinh?(x) = 2 cosh®(z) — 1 = 2sinh®(z) + 1,

cosh(z) — 1

5 followed by a discussion of the sign,

x
inh (—) -+
sinh { 5
x cosh(z) +1
‘h (7) - ’
cosh { 2 >
Inverse hyperbolic functions:

Arsinh(z) = In (1: + Va2 + 1) , z €R,

Arcosh(z) = In (a: +Vaz?— 1) , x> 1,

1 1+

Artanh(x) = 5111 <1 — a:) ) |z <1,
1 1

Arcoth(x) =  In (zfl) 2| > 1.
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34.9 Complex transformation formulse
cos(iz) = cosh(z), cosh(iz) = cos(x),

sin(iz) = i sinh(x), sinh(iz) = isinz.

34.10 Taylor expansions

The generalized binomial coefficients are defined by

<a) ala—=1)-(a—n+1)

with n factors in the numerator and the denominator, supplied with

(5) -

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexzponential like (the radius of convergency is infinite).
Power like:

1 o0
—:Zx", |z < 1,
x

1_
n=0
1 - n_n
=Y, ol <1,
n=0
(1+9€)":Z(@>wj, neNzeR,
=\
(1+x)o‘:z<3):c", acR\N,|z| <1,
n=0
o0 xn
In(1 = —nte <1
i) = 3o el <1,
o z2n+1
Arct D N | <1.
retan(a) = 3 (1" 3 o
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Exponential like:

— 1
exp(z) = Z ﬁx", zeR
n=0
- 1
exp(—x) = Z(—l)"ﬁw", reR
n=0 ’
- 1
sin(z) = Z(—l)"il;v%*l, z €R,
= (2n+1)!
sinh(z) = i #x%*l zeR
' ) )
= (2n+1)!
= n 1 2n
cos(z) = Z(—l) (2n)'w , z €R,
n=0 ’
cosh(z) = i L:52” reR
| ’ ’
= (2n)!

34.11 Magnitudes of functions

We often have to compare functions for x — 0+, or for x — co. The simplest type of functions are

therefore arranged in an hierarchy:
1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When z — oo, a function from a higher class will always dominate a function form a lower class
precisely:

A) A power function dominates a logarithm for x — oo:

(Inz)?

pors -0 forx — 00, «, B >0.

B) An ezponential dominates a power function for x — oo:

xOL

— =0 forz — o0, a,a>1.
a[l)
C) The faculty function dominates an exponential for n — oo:

an

—'—>O, n—o00, neN, a>0.
n!

D) When = — 0+ we also have that a power function dominates the logarithm:

z%Inx — 0—, for x — 0+, a>0.
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Index

absolute value 162

acceleration 490

addition 22

affinity factor 173

Ampere-Laplace law 1671

Ampere-Maxwell’s law 1678

Ampere’s law 1491, 1498, 1677, 1678, 1833

Ampere’s law for the magnetic field 1674

angle 19

angular momentum 886

angular set 84

annulus 176, 243

anticommutative product 26

antiderivative 301, 847

approximating polynomial 304, 322, 326, 336, 404,
488, 632, 662

approximation in energy 734

Archimedes’s spiral 976, 1196

Archimedes’s theorem 1818

area 887, 1227, 1229, 1543

area element 1227

area of a graph 1230

asteroid 1215

asymptote 51

axial moment 1910

axis of revolution 181

axis of rotation 34, 886

axis of symmetry 49, 50, 53

barycentre 885, 1910

basis 22

bend 486

bijective map 153

body of revolution 43, 1582, 1601
boundary 37-39

boundary curve 182

boundary curve of a surface 182
boundary point 920

boundary set 21

bounded map 153

bounded set 41

branch 184

branch of a curve 492

Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26

centre of gravity 1108

centre of mass 885

centrum 66

chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,
1493, 1808

change of parameter 174

circle 49

circular motion 19

circulation 1487

circulation theorem 1489, 1491

circumference 86

closed ball 38

closed differential form 1492

closed disc 86

closed domain 176

closed set 21

closed surface 182, 184

closure 39

clothoid 1219

colour code 890

compact set 186, 580, 1813

compact support 1813

complex decomposition 69

composite function 305

conductivity of heat 1818

cone 19, 35, 59, 251

conic section 19, 47, 54, 239, 536

conic sectional conic surface 59, 66

connected set 175, 241

conservation of electric charge 1548, 1817

conservation of energy 1548, 1817

conservation of mass 1548, 1816

conservative force 1498, 1507

conservative vector field 1489

continuity equation 1548, 1569, 1767, 1817

continuity 162, 186

continuous curve 170, 483

continuous extension 213

continuous function 168

continuous surfaces 177

contraction 167

convective term 492

convex set 21, 22, 41, 89, 91, 175, 244

coordinate function 157, 169

coordinate space 19, 21
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Cornu’s spiral 1219

Coulomb field 1538, 1545, 1559, 1566, 1577

Coulomb vector field 1585, 1670

cross product 19, 163, 169, 1750

cube 42, 82

current density 1678, 1681

current 1487, 1499

curvature 1219

curve 227

curve length 1165

curved space integral 1021

cusp 486, 487, 489

cycloid 233, 1215

cylinder 34, 42, 43, 252

cylinder of revolution 500

cylindric coordinates 15, 21, 34, 147, 181, 182,
289, 477,573,841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885

density of charge 1548

density of current 1548

derivative 296

derivative of inverse function 494
Descartes’a leaf 974

dielectric constant 1669, 1670
difference quotient 295
differentiability 295

differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171

differential equation 369, 370, 398
differential form 848

differential of order p 325

differential of vector function 303
diffusion equation 1818

dimension 1016

direction 334

direction vector 172

directional derivative 317, 334, 375
directrix 53

Dirichlet/Neumann problem 1901
displacement field 1670

distribution of current 886

divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51

eccentricity of ellipse 49

eigenvalue 1906

elasticity 885, 1398

electric field 1486, 1498, 1679

electrical dipole moment 885

electromagnetic field 1679

electromagnetic potentials 1819

electromotive force 1498

electrostatic field 1669

element of area 887

elementary chain rule 305

elementary fraction 69

ellipse 48-50, 92, 113, 173, 199, 227

ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,
1107

ellipsoid of revolution 111

ellipsoidal disc 79, 199

ellipsoidal surface 180

elliptic cylindric surface 60, 63, 66, 106

elliptic paraboloid 60, 62, 66, 112, 247

elliptic paraboloid of revolution 624

energy 1498

energy density 1548, 1818

energy theorem 1921

entropy 301

Euclidean norm 162

Euclidean space 19, 21, 22

Euler’s spiral 1219

exact differential form 848

exceptional point 594, 677, 920

expansion point 327

explicit given function 161

extension map 153

exterior 37-39

exterior point 38

extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676
Fick’s first law of diffusion 297
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Fick’s law 1818 Helmholtz’s theorem 1815

field line 160 homogeneous function 1908

final point 170 homogeneous polynomial 339, 372

fluid mechanics 491 Hopf’s maximum principle 1905

flux 1535, 1540, 1549 hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290

focus 49, 51, 53 hyperbolic cylindric surface 60, 63, 66, 105, 110

force 1485 hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

Fourier’s law 297, 1817 1445

function in several variables 154 hyperboloid 232, 1291

functional matrix 303 hyperboloid of revolution 104

fundamental theorem of vector analysis 1815 hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

Gaussian integral 938 255

Gauly’s law 1670 hyperboloid with two sheets 59, 66, 104, 110, 111,

Gaufl’s law for magnetism 1671 255, 527

Gauf}’s theorem 1499, 1535, 1540, 1549, 1580, 1718, hysteresis 1669
1724, 1737, 1746, 1747, 1749, 1751, 1817,

1818, 1889, 1890, 1913 identity map 303
Gauf’s theorem in R? 1543 implicit given function 21, 161
Gauf’s theorem in R? 1543 implicit function theorem 492, 503
general chain rule 314 improper integral 1411
general coordinates 1016 improper surface integral 1421
general space integral 1020 increment 611
general Taylor’s formula 325 induced electric field 1675
generalized spherical coordinates 21 induction field 1671
generating curve 499 infinitesimal vector 1740
generator 66, 180 infinity, signed 162
geometrical analysis 1015 infinity, unspecified 162
global minimum 613 initial point 170
gradient 295, 296, 298, 339, 847, 1739, 1741 injective map 153
gradient field 631, 847, 1485, 1487, 1489, 1491, inner product 23, 29, 33, 163, 168, 1750
1916 inspection 861
gradient integral theorem 1489, 1499 integral 847
graph 158, 179, 499, 1229 integral over cylindric surface 1230
Green’s first identity 1890 integral over surface of revolution 1232
Green’s second identity 1891, 1895 interior 37-40
Green’s theorem in the plane 1661, 1669, 1909 interior point 38
Green’s third identity 1896 intrinsic boundary 1227
Green’s third identity in the plane 1898 isolated point 39

Jacobian 1353, 1355
half-plane 41, 42

half-strip 41, 42 Kronecker symbol 23

half disc 85

harmonic function 426, 427, 1889 Laplace equation 1889

heat conductivity 297 Laplace force 1819

heat equation 1818 Laplace operator 1743

heat flow 297 latitude 35

height 42 length 23

helix 1169, 1235 level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219

line integral 1018, 1163
line segment 41

Linear Algebra 627
linear space 22

local extremum 611
logarithm 189
longitude 35

Lorentz condition 1824

Maclaurin’s trisectrix 973, 975

magnetic circulation 1674

magnetic dipole moment 886, 1821

magnetic field 1491, 1498, 1679

magnetic flux 1544, 1671, 1819

magnetic force 1674

magnetic induction 1671

magnetic permeability of vacuum 1673

magnostatic field 1671

main theorems 185

major semi-axis 49

map 153

MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,
352-354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384-387, 391-393, 395—
397, 401, 631, 899, 905-912, 914, 915,
917, 919, 922-924, 926, 934, 935, 949,
951, 954, 957-966, 968, 971-973, 975,
1032-1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066—-1068, 1070—
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303

maximal domain 154, 157

maximum 382, 579, 612, 1916

maximum value 922

maximum-minimum principle for harmonic func-
tions 1895

Maxwell relation 302

Maxwell’s equations 1544, 1669, 1670, 1679, 1819

mean value theorem 321, 884, 1276, 1490

mean value theorem for harmonic functions 1892

measure theory 1015

Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,
1347, 1479, 1651, 1801, 1921

meridian curve 181, 251, 499, 1232

meridian half-plane 34, 35, 43, 181, 1055, 1057,
1081

method of indefinite integration 859

method of inspection 861

method of radial integration 862

minimum 186, 178, 579, 612, 1916

minimum value 922

minor semi-axis 49

mmf 1674

Mobius strip 185, 497

Moivre’s formula 122, 264, 452, 548, 818, 984,
1132, 1322, 1454, 1626, 1776, 1930

monopole 1671

multiple point 171

nabla 296, 1739

nabla calculus 1750

nabla notation 1680

natural equation 1215

natural parametric description 1166, 1170
negative definite matrix 627

negative half-tangent 485
neighbourhood 39

neutral element 22

Newton field 1538

Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185

norm 19, 23

normal 1227

normal derivative 1890

normal plane 487

normal vector 496, 1229

octant 83

Ohm’s law 297

open ball 38

open domain 176

open set 21, 39

order of expansion 322
order relation 579

ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172

oriented line segment 172
orthonormal system 23

parabola 52, 53, 89-92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66

paraboloid of revolution 207, 613, 1435

parallelepipedum 27, 42

parameter curve 178, 496, 1227

parameter domain 1227

parameter of a parabola 53

parametric description 170, 171, 178

parfrac 71

partial derivative 298

partial derivative of second order 318

partial derivatives of higher order 382

partial differential equation 398, 402

partial fraction 71

Peano 483

permeability 1671

piecewise C*-curve 484

piecewise C"-surface 495

plane 179

plane integral 21, 887

point of contact 487

point of expansion 304, 322

point set 37

Poisson’s equation 1814, 1889, 1891, 1901

polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,
172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018

polynomial 297

positive definite matrix 627

positive half-tangent 485

positive orientation 173

potential energy 1498

pressure 1818

primitive 1491

primitive of gradient field 1493

prism 42

Probability Theory 15, 147, 289, 477, 573, 841,
1009, 1157, 1347, 1479, 1651, 1801

product set 41

projection 23, 157

proper maximum 612, 618, 627

proper minimum 612, 613, 618, 627

pseudo-sphere 1434

Pythagoras’s theorem 23, 25, 30, 121, 451, 547,
817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153

rectangle 41, 87

rectangular coordinate system 29

rectangular coordinates 15, 21, 22, 147, 289, 477,
573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018

rectangular space integral 1019

rectilinear motion 19

reduction of a surface integral 1229

reduction of an integral over cylindric surface 1231

reduction of surface integral over graph 1230

reduction theorem of line integral 1164

reduction theorem of plane integral 937

reduction theorem of space integral 1021, 1056

restriction map 153

Ricatti equation 369

Riesz transformation 1275

Rolle’s theorem 321

rotation 1739, 1741, 1742

rotational body 1055

rotational domain 1057

rotational free vector field 1662

rules of computation 296

saddle point 612

scalar field 1485

scalar multiplication 22, 1750

scalar potential 1807

scalar product 169

scalar quotient 169

second differential 325

semi-axis 49, 50

semi-definite matrix 627

semi-polar coordinates 15, 19, 21, 33, 147, 181,
182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019

separation of the variables 853

signed curve length 1166

signed infinity 162

simply connected domain 849, 1492

simply connected set 176, 243

singular point 487, 489

space filling curve 171

space integral 21, 1015
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specific capacity of heat 1818 triangle inequality 23,24
sphere 35, 179 triple integral 1022, 1053
spherical coordinates 15, 19, 21, 34, 147, 179, 181,
289, 372, 477, 573, 782, 841, 1009, 1016, uniform continuity 186
1078, 1080, 1081, 1157, 1232, 1347, 1479, unit circle 32

1581, 1651, 1801 unit disc 192
spherical space integral 1020 unit normal vector 497
square 41 unit tangent vector 486
star-shaped domain 1493, 1807 unit vector 23
star shaped set 21, 41, 89, 90, 175 unspecified infinity 162

static electric field 1498

stationary magnetic field 1821
stationary motion 492 vector field 158, 296, 1485

stationary point 533, 920 vector function 21, 157, 189

Statistics 15, 147, 289, 477, 573, 841, 1009, 1157, Vector product 19, 26, 30, 163, 169. 1227, 1750
1347, 1479, 1651, 1801 vector space 21, 22

step line 172 Vector}al area 1748

Stokes’s theorem 1499, 1661, 1676, 1679, 1746, vectorial element of area 1535
1747, 1750, 1751, 1811, 1819, 1820, 1913  Vectorial potential 1809, 1810

straight line (segment) 172 velocity 490

strip 41, 42 volume 1015, 1543

substantial derivative 491 volumen element 1015

surface 159, 245

surface area 1296

surface integral 1018, 1227

surface of revolution 110, 111, 181, 251, 499

surjective map 153

vector 22

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

tangent 486 (r, s, t)-method 616, 619, 633, 634, 638, 645647,
tangent plane 495, 496 652, 655

tangent vector 178 Ck_curve 4837

tangent vector field 1485 C"-functions 318

tangential line integral 861, 1485, 1598, 1600, 1603 1-1 map 153

Taylor expansion 336

Taylor expansion of order 2, 323

Taylor’s formula 321, 325, 404, 616, 626, 732

Taylor’s formula in one dimension 322

temperature 297

temperature field 1817

tetrahedron 93, 99, 197, 1052

Thermodynamics 301, 504

top point 49, 50, 53, 66

topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,
1157, 1347, 1479, 1651, 1801

torus 43, 182-184

transformation formulael353

transformation of space integral 1355, 1357

transformation theorem 1354

trapeze 99
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