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Preface

The topic of this series of books on “Real Functions in Several Variables” is very important in the
description in e.g. Mechanics of the real 3-dimensional world that we live in. Therefore, we start from
the very beginning, modelling this world by using the coordinates of R3 to describe e.g. a motion in
space. There is, however, absolutely no reason to restrict ourselves to R3 alone. Some motions may
be rectilinear, so only R is needed to describe their movements on a line segment. This opens up for
also dealing with R2, when we consider plane motions. In more elaborate problems we need higher
dimensional spaces. This may be the case in Probability Theory and Statistics. Therefore, we shall in
general use Rn as our abstract model, and then restrict ourselves in examples mainly to R2 and R3.

For rectilinear motions the familiar rectangular coordinate system is the most convenient one to apply.
However, as known from e.g. Mechanics, circular motions are also very important in the applications
in engineering. It becomes natural alternatively to apply in R2 the so-called polar coordinates in the
plane. They are convenient to describe a circle, where the rectangular coordinates usually give some
nasty square roots, which are difficult to handle in practice.

Rectangular coordinates and polar coordinates are designed to model each their problems. They
supplement each other, so difficult computations in one of these coordinate systems may be easy, and
even trivial, in the other one. It is therefore important always in advance carefully to analyze the
geometry of e.g. a domain, so we ask the question: Is this domain best described in rectangular or in
polar coordinates?

Sometimes one may split a problem into two subproblems, where we apply rectangular coordinates in
one of them and polar coordinates in the other one.

It should be mentioned that in real life (though not in these books) one cannot always split a problem
into two subproblems as above. Then one is really in trouble, and more advanced mathematical
methods should be applied instead. This is, however, outside the scope of the present series of books.

The idea of polar coordinates can be extended in two ways to R3. Either to semi-polar or cylindric
coordinates, which are designed to describe a cylinder, or to spherical coordinates, which are excellent
for describing spheres, where rectangular coordinates usually are doomed to fail. We use them already
in daily life, when we specify a place on Earth by its longitude and latitude! It would be very awkward
in this case to use rectangular coordinates instead, even if it is possible.

Concerning the contents, we begin this investigation by modelling point sets in an n-dimensional
Euclidean space En by Rn. There is a subtle difference between En and Rn, although we often
identify these two spaces. In En we use geometrical methods without a coordinate system, so the
objects are independent of such a choice. In the coordinate space Rn we can use ordinary calculus,
which in principle is not possible in En. In order to stress this point, we call En the “abstract space”
(in the sense of calculus; not in the sense of geometry) as a warning to the reader. Also, whenever
necessary, we use the colour black in the “abstract space”, in order to stress that this expression is
theoretical, while variables given in a chosen coordinate system and their related concepts are given
the colours blue, red and green.

We also include the most basic of what mathematicians call Topology, which will be necessary in the
following. We describe what we need by a function.

Then we proceed with limits and continuity of functions and define continuous curves and surfaces,
with parameters from subsets of R and R2, resp..
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Continue with (partial) differentiable functions, curves and surfaces, the chain rule and Taylor’s for-
mula for functions in several variables.

We deal with maxima and minima and extrema of functions in several variables over a domain in Rn.
This is a very important subject, so there are given many worked examples to illustrate the theory.

Then we turn to the problems of integration, where we specify four different types with increasing
complexity, plane integral, space integral, curve (or line) integral and surface integral.

Finally, we consider vector analysis, where we deal with vector fields, Gauß’s theorem and Stokes’s
theorem. All these subjects are very important in theoretical Physics.

The structure of this series of books is that each subject is usually (but not always) described by three
successive chapters. In the first chapter a brief theoretical theory is given. The next chapter gives
some practical guidelines of how to solve problems connected with the subject under consideration.
Finally, some worked out examples are given, in many cases in several variants, because the standard
solution method is seldom the only way, and it may even be clumsy compared with other possibilities.

I have as far as possible structured the examples according to the following scheme:

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

From high school one is used to immediately to proceed to I. Implementation. However, examples
and problems at university level, let alone situations in real life, are often so complicated that it in
general will be a good investment also to spend some time on the first two points above in order to
be absolutely certain of what to do in a particular case. Note that the first three points, ADI, can
always be executed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. They are not telegram short hands,
and from a logical point of view they usually do not make sense at all! Instead, write in a plain
language what you mean or want to do. This is difficult in the beginning, but after some practice it
becomes routine, and it will give more precise information.

When we deal with multiple integrals, one of the possible pedagogical ways of solving problems has
been to colour variables, integrals and upper and lower bounds in blue, red and green, so the reader
by the colour code can see in each integral what is the variable, and what are the parameters, which
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do not enter the integration under consideration. We shall of course build up a hierarchy of these
colours, so the order of integration will always be defined. As already mentioned above we reserve
the colour black for the theoretical expressions, where we cannot use ordinary calculus, because the
symbols are only shorthand for a concept.

The author has been very grateful to his old friend and colleague, the late Per Wennerberg Karlsson,
for many discussions of how to present these difficult topics on real functions in several variables, and
for his permission to use his textbook as a template of this present series. Nevertheless, the author
has felt it necessary to make quite a few changes compared with the old textbook, because we did not
always agree, and some of the topics could also be explained in another way, and then of course the
results of our discussions have here been put in writing for the first time.

The author also adds some calculations in MAPLE, which interact nicely with the theoretic text.
Note, however, that when one applies MAPLE, one is forced first to make a geometrical analysis of
the domain of integration, i.e. apply some of the techniques developed in the present books.

The theory and methods of these volumes on “Real Functions in Several Variables” are applied
constantly in higher Mathematics, Mechanics and Engineering Sciences. It is of paramount importance
for the calculations in Probability Theory, where one constantly integrate over some point set in space.

It is my hope that this text, these guidelines and these examples, of which many are treated in more
ways to show that the solutions procedures are not unique, may be of some inspiration for the students
who have just started their studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
March 21, 2015
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Introduction to volume X,

Vector Fields I; Gauß’s Theorem

This is the tenth volume in the series of books on Real Functions in Several Variables.

It is the first volume on Vector Fields. It was necessary to split the material into three volumes
because the material is very big. In this first volume we deal with the tangential line integral, which
e.g. can be used to describe the work of a particle when it is forced along a given curve by some force.
It is here natural to introduce the gradient fields, where the tangential line integral only depends on
the initial and the terminal points of the curve and not of the curve itself. Such gradients fields are
describing conservative forces in Physics.

Tangential line integrals are one-dimensional in nature. In case of two dimensions we consider the
flux of a flow through a surface. When the surface ∂Ω is surrounding a three dimensional body Ω,
this leads to Gauß’s theorem, by which we can express the flux of a vector field V through ∂Ω, which
is a surface integral, by a space integral over Ω of the divergence of the vector field V. This theorem
works both ways. Sometimes, and most frequently, the surface integral is expressed as space integral,
other times we express a space integral as a flux, i.e. a surface integral. Applications are obvious in
Electro-Magnetic Field Theory, though other applications can also be found.

The present volume should be followed by reading Volume XI, Vector Fields II, in which we define
the rotation of a vector field V in the ordinary three dimensional space R3 and then describe Stokes’s
theorem. We shall also consider the so-called nabla calculus, which more or less shows that the theorems
mentioned above follow the same abstract structure.

Gauß’s and Stokes’s theorems have always been considered as extremely difficult to understand for
the reader. Therefore we have given lots of examples of worked out problems.
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32 Tangential line integrals

32.1 Introduction

We shall in this book introduce the analogues of the differential and integral calculus for functions in
one variable, extending the theory to vector fields. Since we are dealing with fields, we give ordinary
functions the name scalar fields.

The main issue will be to extend the following equivalent rules for a function F : [a, b] → R, where
we assume that its derivative F ′ : [a, b] → R exists and is continuous (of course half tangents at the
endpoints). The first one is

∫ b

a

F ′(x) dx = F (b)− F (a).

In this one-dimensional version this well-known formula can also be interpreted in the following way.
To the left the interval of integration [a, b] ⊂ R has the boundary ∂[a, b] = {a, b} consisting of the
two endpoints, a and b. Therefore, when we move from left to right, the ordinary integration of the
derivative F ′(x) over the interval [a, b] is replaced by the right hand side, where we in some sense
(to be defined later on) “integrate” the function F (x) itself (without being differentiated) over the
two boundary points ∂[a, b] = {a, b}. This is a geometrical/topological idea combined with measure
theory. We shall deal with the problem of how to generalize the above to all the various forms of
integrals, which we have already met, i.e. to line, plane, space and surface integrals.

The second rule, which we want to generalize to functions or vector fields in several variables, is, given
F as above,

F (x) = F (a) +

∫ x

a

F ′(ξ) dξ.

In this case we may expect some reconstruction formulæ of a scalar or vector field, given its derivatives.
We may of course also expect some difficulties in this process, because for the time being it is not
obvious how the partial derivatives of F (x) (a function in several variables) should enter the right
hand side of the generalization of the equation above.

To ease matters, we shall only specify the domains and the order of differentiability needed of the
scalar or vector fields under consideration in important definitions and theorems. Otherwise, when
these properties are not explicitly described, we shall tacitly assume that F (x), or F(x), is of class
C∞, so it is always allowed to interchange the order of differentiation. Also, in these cases, the domain
will always be a nice one.

Since this chapter in particular is supporting physical theories, we shall in most cases only consider
domains which lie in either R3 or R2.

32.2 The tangential line integral. Gradient fields.

The tangential line integral is introduced in Physics, when we shall calculate e.g the work, which a
force executes on a particle bound to a fixed curve. Let V denote the force (given as a field in the
space), and let F be a given curve in space of a given parametric description, so we can determine
its tangent vector field t. If ds denotes the infinitesimal length element on K, then the infinitesimal
work done by V on a unit particle at x ∈ K must be V · t ds, cf. Figure 32.1.
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Figure 32.1: Geometrical analysis of the tangential line integral. Here t is the unit tangent vector
field to the curve K, and V is a vector field, where we are going to integrate the dot product V · t
along K.

We get the total work done of V on this unit particle by integrating along the curve K, a process we
denote by anyone of the symbols

∫

K
V · t ds, or

∫

K
V · dx, or

∫

K
V(x) · dx,

depending on the context. Note the appearance of the dot product.

If V instead denotes an electrical field, then the tangential line integral along K is equal to the
difference in potential between the end point and the initial point, provided that we can neglect the
contribution from inductance.

Assume that the curve K has the parametric description x = r(τ), where r : [α, β] → Rn is a C1

vector field. If furthermore, r′(τ) �= 0, then the unit tangent vector field is given by

t =
r′(τ)

�r′(τ)� , and ds = �r′(τ)� dτ, hence dx = r′(τ) dτ.

Since �r′(τ)� is cancelled by this process, we may allow that we in some points have r′(τ) = 0, as
long as this set is small. We quote without proof,

Theorem 32.1 Reduction of a tangential line integral. Assume that K is an oriented continuous and
piecewise C1 curve in the domain A ⊆ Rn, given by the parametric description r : [α, β] → Rn, where
r is injective almost everywhere, and where r′ �= 0 also almost everywhere.
Let V : A → Rn be a C0 vector field. Then we have the following reduction of the tangential line
integral of V along K,

∫

K
V · t ds =

∫ β

α

V(r(τ)) · r′(τ) dτ.
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The abstract integral in blue is to the left, and the ordinary 1-dimensional integral (in black), which
can be calculated, is to the right. We note that we introduce a compensating factor to the integrand
in the dot product to the right.

Clearly, the value of the integral changes its sign, when the orientation of the curve is reversed, or, if
the particle is moved in the opposite direction.

The tangential line integral is also called the current of the vector field along the curve.

Example 32.1 The following simple example is only illustrating the methods. It will probably never
be met in practice.
Given the vector field

V(x, y, z) =
(

2x, e−a + z, yz
)

, for (x, y, z) ∈ R3.

We shall show how we find its current along the curve K of the parametric description

K : (x, y, z) = r(τ) =

(

ln τ, τ3,
1

τ

)

, for τ ∈ [1, 2].

We first calculate

r′(τ) =

(

1

τ
, 3τ2,− 1

τ2

)

and V(r(τ)) =

(

2 ln t,
2

τ
, t2

)

.

Then the current C of V along K is given by

C :=

∫

K
V · t ds =

∫ 2

1

V(r(τ)) · r′(τ) dτ

=

∫ 2

1

{

2
ln τ

τ
+ 6τ − 1

}

dτ =
[

(ln τ)2 + 3τ2 − τ
]2

τ=1
= (ln 2)2 + 8. ♦

When we use rectangular coordinates in R3 we also write

V · t ds = V(x) · dx = (Vx, Vy , Vz) · ( dx, dy, dz) = Vx dx+ Vy dy + Vz dz,

where we have put V = (Vx, Vy, Vz) and ( dx, dy, dz) in rectangular coordinates. In this case the
result of Theorem 32.1 is written

∫

K
Vx dx+ Vy dy + Vz dz =

∫ β

α

{

Vx
dx

dτ
+ Vy

dy

dτ
+ Vz

dz

dτ

}

dτ,

and similarly for rectangular coordinates in the general space Rn.

An important special case, is when K is a closed curve, i.e. its endpoints coincide. In this case the
tangential line integral is called the circulation of the vector field V alont K, and it is denoted

∮

K
V(x) · dx, or e.g.

∮

K
Vx dx+ Vy dy + Vz dz.

The shall below consider the important vector fields V (the gradient fields), for which the circulation
is 0, no matter the choice of an admissible curve K in the definition of the circulation. But first we
include a small exercise,
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Example 32.2 Consider again the vector field

V(x, y, z) =
(

2x, e−a + z, yz
)

, for (x, y, z) ∈ R3,

from Example 32.1, and let K be the circle given by the parametric description

K : (x, y, z) = r(τ) = (1, cos τ, sin τ), τ ∈ [0, 2π[.

Then

r′(τ) = (0,− sin τ, cos τ), and V(r(τ)) =

(

2,
1

e
+ sin τ, cos τ sin τ

)

,

and the circulation becomes

C :=

∫ 2π

0

V(r(τ)) · r′(τ) dτ =

∫ 2π

0

{

0− sin τ

e
− sin2 τ + cos2 τ

}

dτ = −π ♦
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We then introduce the gradient fields, i.e. vector fields V, for which there exists a C1 function F , such
that

V = ▽F =

(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

.

We get by the chain rule (cf. Section 9.2) that

d

dτ
{F (r(τ))} = ▽F (r(τ)) · r′(τ),

so by the reduction theorem and then by inserting this equation from the right to the left,

∫

K
▽F (x) · dx =

∫ β

α

▽F (r(τ)) · r′(τ) dτ =

∫ β

α

d

dτ
{F (r(τ))} dτ

= [F (r(τ))]βτ=α = F (r(β)) − F (r(α)).

In other words, for gradient fields the value of the tangential line integral along K only depends on
the endpoints and not on the permitted curve joining the endpoints. Thus, if K1 and K2 are two
permitted curves between the same endpoints, then

∫

F1

▽F (x) · dx =

∫

F2

▽F (x) · dx = F (final point)− F (initial point).

This result is coined in the following theorem (as usual without its full proof)

Theorem 32.2 The gradient integral theorem. Given a C1 function F : A → R, where A ⊆ R2, and
let a, b ∈ A. then

∫

K
▽F (x) · dx = F (b)− F (a)

for every continuous and piecewise C1 curve K lying in A with initial point a ∈ A and final point
b ∈ A.

The reader who is familiar with the Theory of Complex Functions will in case of n = 2 recognize this
as connected with analytic functions. In Physics, the gradient field ▽F in R2 and R3 is interpreted
as a conservative vector field.

We shall now prove the important circulation theorem.

If we choose K as any permitted curve in A from a point a ∈ A to another point x ∈ A, and the
gradient field ▽F is given in A, then we get by a rearrangement of the result of Theorem 32.2,

F (x) = F (a) +

∫ x

a

▽F (u) · du,

so we can reconstruct F (x), using our knowledge ofV(u) = ▽F (u). Note that we are strictly speaking
only given that V(u) is a gradient field, so to begin with we only know the existence of the function
F , so the right formulation of the above would be that

F (x) = F (a) +

∫ x

a

V(u) · du,
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where it is given that V is a gradient field.

We note that if furthermore the endpoints coincide, a = b, the curve K is closed, so the circulation is
for gradient fields,

C =

∮

K
▽F (x) · dx = 0,

and we have proved that the circulation of a gradient field along any closed curve is always 0.

Then we prove the opposite, namely that if the circulation of V along every closed curve in the open
domain A of V is zero, then V is a gradient field. The idea is of course to construct the function F
and then prove that it is indeed a primitive of V.

We choose a fixed point a ∈ A, i.e. the open domain of V, and we let x ∈ A be any other (variable)
point in A. Since by assumption

∮

K
V(u) · du = 0

for every closed (permitted) curve K in A, it follows that the tangential line integral from a to x is
independent of the integration path from a to x.

In fact, let K1 and K2 be any two paths from a to x, and let −K2 denote the path from x to a of K2

in the reversed direction. Then the concatenated curve K := K1 − K2 is closed, so by splitting the
integral,

0 =

∮

K
V(u) · du =

∫

K1

V(u) · du−
∫

K2

V(u) · du,

and it follows by a rearrangement, that the value of the integral of the differential form V(u) · du
does not depend on the path from a to x.

We can therefore unambiguously define the function

F (x) :=

∫

x

a

V(u) · du,

where we can choose any (permitted) integration path from a to x.

The increase of this function is the difference

∆F = F (x+ h)− F (x) =

∫

x+h

x

V(u) · du.

Since A was assumed to be an open domain, and x ∈ A, we can choose r > 0, such that x + h ∈ A,
whenever �h� < r. Then the whole line segment [x;x+h] lies in A, whenever 0 < �x� < r, which we
assume in the following. When we integrate along this line segment, it follows from the mean value
theorem, cf. e.g. Section 9.5 or Section 20.2, that there exist numbers θ1, . . . , θn ∈ ]0, 1[, such that

∆F =

∫ 1

0

V(x + τh) · h dτ =

n
∑

i=1

hi

∫ 1

0

Vi(x+ τh) dτ −
n
∑

i=1

hiVi (x+ θih) .

When we add and subtract the right term, h ·V(x), then

∆F = h ·V(x) =

n
∑

i=1

hiVi (x+ θih)−
n
∑

i=1

hiVi(x) = h ·V(x) +

n
∑

i=1

hi {Vi (x+ θih)− Vi(x)} .
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Since V is continuous, and all θi ∈ ]0, 1[, it follows that

n
∑

i=1

hi {Vi (x+ θih)− Vi(x)} = �h�
n
∑

i=1

hi

�h� {Vi (x+ θih)− Vi(x)} = �h�ε(h),

where

ε(h) =

n
∑

i=1

hi

�h� {Vi (x+ θih)− Vi(x)} → 0 for h → 0,

because |hi/�x�| ≤ 1 is bounded, and because V is continuous. We therefore conclude that the
constructed function F is differentiable of the gradient ▽F = V.

Hence, we have proved

Theorem 32.3 The circulation theorem. A C0 vector field V on A is a gradient field, if and only if
the circulation is 0 for every closed permitted curve K contained in A,

∮

K
V · dx = 0.

In practice it is only possible to use Theorem 32.3 to prove that a given vector field is not a gradient
field. The vector field in Example 32.2 is therefore not a gradient field, because we have found a closed
curve, along which the circulation is −π �= 0.

The circulation does not always have to be zero in important applications. If e.g.H denotes a magnetic
field, an K is a closed curve, then Ampère’s law says that the circulation of H along K is given by

∮

K
H · t ds = I,

where I is the current, which is linked by the closed curve K. Since in general, I �= 0, this means that
the magnetic field is not a gradient field.

We shall then derive some other criteria which assure that a given C1 vector field V is a gradient
field. Assume to begin with that V is a gradient field. Then there exists a scalar field F , such that
V = ▽F . We then call the scalar field F a primitive of the vector field V, or of the differential form
V(x) · x.

Clearly, if V has the primitive F , then all primitives o V are given by F + c, where c ∈ R is an
arbitrary constant.

Let us furthermore assume that V is a C1 gradient field (and not just C0) with the C2 primitive F .
Then we have in coordinates

(V1, V2, . . . , Vn) =

(

∂F

∂x1
,
∂F

∂x2
, . . . ,

∂F

∂xn

)

, or Vi =
∂F

∂xi
, i = 1, . . . , n,

so interchanging the order of differentiation, which we may, because F ∈ C2,

∂Vi

∂xj
=

∂

∂xj

(

∂F

∂xi

)

=
∂2F

∂xj∂xi
=

∂2F

∂xi∂xj
=

∂

∂xi

(

∂F

∂xj

)

=
∂Vj

∂xi
.
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So whenever V is a C1 vector field, a necessary condition for V being a gradient field is that

(32.1)
∂Vi

∂xj
=

∂Vj

∂xi
for all i, j ∈ {1, . . . , n}.

Whenever (32.1) holds, we call

V · dx = V1 dx1 + · · ·+ Vn dxn

a closed differential form. Thus the differential of a C2 gradient field is always a closed differential
form.

Unfortunately, this necessary condition is not sufficient. We need an extra condition on the domain
A of V, namely that A is simply connected, cf. Section 5.9.

Simply connected domains are easy to describe in R2. Let A ⊆ R2 be a connected plane set. Every
closed bounded curve K in R2 divides the plane into three mutually disjoint sets, the curve K itself, the
outer and unbounded open set B1, and the inner and bounded open set B2. We say that A is simply
connected, if for every closed curve K in A, the inner bounded set B2 by this division is contained in
A, thus B2 ⊂ A. This is very easy to visualize on a figure. The typical example of a connected plane
set, which is not simply connected, is R2 \{0, because if we as K choose the unit circle, then the point
0 lies inside K and not in A = R2 \ {0}.

1492

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED 
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics, 
in one of the most innovative cities in the world. The School 
is ranked by the Financial Times as the number one business 
school in the Nordic and Baltic countries. 

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years 
in a row

http://s.bookboon.com/hhs2016


Real Functions in Several Variables: Volume X 
Vector Fields I

1493 

Tangential line integrals

In higher dimensions simply connected sets are more difficult to visualize. For instant the set R3 \{0}
is simply connected. The problem is of cause that we, opposite to the plane case, cannot define
precisely what lies inside a closed curve. However, at broad class of connected sets is consisting of
simply connected sets, and the members are also easy to visualize, namely the star-shaped domains.
The open domain A is called star-shaped, if there is a point a ∈ A, such that for every other x ∈ A
the straight line segment from a to x lies entirely in A, i.e.

[a;x] := {(1− λ)a+ λ� | λ ∈ [0, 1]} ⊆ A.

We shall only formulate the following theorem for star-shaped sets, because the proof here is fairly
simple, and we note that it is also true in general for simply connected sets,

Theorem 32.4 The primitive of a gradient field. Let A ⊆ Rn be a star-shaped open domain, and
assume that V : A → Rn is a C1 vector field, which fulfils the condition

∂Vi

∂xj
(x) =

∂Vj

∂xi
(x) for all x ∈ A and for all i, j ∈ {1, . . . , n}.

Then V is a gradient field, and a C2 scalar primitive is defined by

F (x) :=

∫

x

a

V(u) · du, for all x ∈ A,

where a ∈ A is fixed, and where we integrate along any continuous and piecewise C1 curve lying in A
and going from a to x.
Every primitive of V is of the form F + c, where c ∈ R is a constant.

Proof. Given the assumptions of Theorem 32.4. Since A is star-shaped, we choose the point a ∈ A,
such that any other point x ∈ A can be “seen from a by a straight line segment lying totally in A.
Using, if necessary, a translation, we may assume that a = 0. We then define

F (x) := x ·
∫ 1

0

V(τx) dτ, x ∈ A,

where the path integral here is another way to write the line integral from a = 0 to x alont the straight
line segment [0;x] ⊆ A. Then

F (x) =

n
∑

i=1

xj

∫ 1

0

Vi(τx) dτ =

n
∑

i=1

∫ 1

0

Ui(x, τ) dτ,

where we for technical reasons later on have put

U(x, τ) := V(τx).

It follows from the chain rule that

∂Ui

∂xj
= τDjVi(τx) and

∂Ui

∂τ
=

n
∑

i=1

xjDjVi(τx),
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where DjVi denotes the derivative of the function Vi with respect to the j-th variable (yj = τxj).
Finally,

∂F

∂xj
(x) =

n
∑

i=1

{

∂xi

∂xj

∫ 1

0

Ui dτ + xi

∫ 1

0

∂Ui

∂xj
dτ

}

=

∫ 1

0

Uj dτ +

n
∑

i=1

xi

∫ 1

0

τDjVi(τx) dτ

=

∫ 1

0

Uj dτ +

∫ 1

0

{

τ

n
∑

i=1

xiDiVj(τx) dτ

}

=

∫ 1

0

Uj dτ +

∫ 1

0

τ
∂Uj

∂τ
dτ =

∫ 1

0

∂

∂τ
{τUj} dτ

= [τVj(τx)]
1
0 = Vj(x),

and we have proved that ▽F = V, so V is indeed a gradient field. ♦

Example 32.3 The proof of Theorem 32.4 gives a concrete solution formula, once the assumptions
have been checked. Namely, calculate the line integral of the differential form V(x) · dx along the
straight line segment [a;x]. We shall demonstrate this method on the vector field

V(x, y, z) =
(

y2 + z, 2xy + 2yz2, 2y2z + x
)

, for (x, y, z) ∈ R3,

where we have the coordinate functions

Vx(x, y, z) = y2 + z, Vy(x, y, z) = 2xy + 2yz2, Vz(x, y, z) = 2y2z + x.

We first check

∂Vx

∂y
= 2y =

∂Vy

∂x
,

∂Vx

ddz
= 1 =

∂Vz

∂x
,

∂Vy

∂z
= 4yz =

∂Vz

∂y
,

so V · dx is a closed differential form. Since A = R3 is trivially star-shaped, it follows from Theo-
rem 32.4 that V(x) is a gradient field.

According to the theorem, one possible solution formula is

F (x) = x ·
∫ 1

0

V(τx) dτ, x ∈ A,

where
∫ 1

0

V(τx, τy, τz) dτ =

∫ 1

0

(

τ2y2 + τz, 2τ2xy + 2τ3yz2, 2τ3y2z + τx
)

dτ

=

(

1

2
y2 +

1

2
z,

2

3
xy +

1

2
yz2,

1

2
y2z +

1

2
x

)

,

so a primitive is given by

F (x, y, z) = (x, y, z) ·
∫ 1

0

V(τx, τy, τz) dτ

=
1

3
xy2 +

1

2
xz +

2

3
xy2 +

1

2
y2z2 +

1

2
y2z2 +

1

2
xz = xz + xy2 + y2z2.

Check;

∂F

∂x
= z + y2 = Vx,

∂F

∂y
= 2xy + 2yz2 = Vy,

∂F

∂z
= x+ 2y2z = Vz,

so F (x, y, z) = xz + xy2 + y2z2 is indeed a primitive of V. We then get all primitives by adding an
arbitrary constant c ∈ R. ♦
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The method of radial integration, as in Example 32.3, often requires some hard calculations. We
note, however, that we may choose other and more reasonable integration paths. A commonly used
method is integration along a continuous step line, where each of the steps is parallel to one of the
coordinate axes. When we describe this method we assume for convenience that we integrate from 0.
If a → b designates that we integrate along the straight line segment between a and b, then the idea
is – whenever possible – to use the following paths of integration,

1) In R2: (0, 0) → (x, 0) → (x, y).

2) In R3: (0, 0, 0) → (x, 0, 0) → (x, y, 0) → (x, y, z),

We see that each arrow represents an integration along an axiparallel line segment. More explicitly,

1) In R2, the vector field is V(x, y) = (Vx(x, y), Vy(x, y)), and the line integration from (0, 0) can be
written

F (x, y) =

∫ x

0

Vx(τ, 0) dτ +

∫ y

0

Vy(x, τ) dτ,

because V(x, y) ·( dx, dy) = Vx(x, 0) dx on the line segment from (0, 0) to (x, 0), since here dy = 0,
and V(x, y) · ( dx, dy) = Vy(x, y) dy on the line segment from (x, 0) to (x, y), because here dx = 0.

2) In R3 the vector field is V(x, y, z) = (Vx(x, y, z), Vy(x, y, z), Vz(x, y, z)), so the analogue solution
formula becomes

F (x, y, z) =

∫ x

0

Vx(τ, 0, 0) dτ +

∫ y

0

Vy(x, τ, 0) dτ +

∫ z

0

Vz(x, y, τ) dτ.

In some cases this step line does not lie in A, but one may modify this construction to obtain this
property by choosing another axiparallel step line. It should be easy for the reader to carry out the
necessary modification in such cases.

The advantage of this method is that all usual variables, except for one, are constants in each of the
subintegrals. If we in particular integrate from 0, then we get lots of zeros in the integrands, so some
of the terms may even disappear. We shall see this phenomenon in Example 32.4 below.

It may occur in some cases that we cannot find F (x) everywhere in A by only using a simple step line
as above, though we may get a result in a nonempty subset B ⊂ A. Then it is legal just to check by
differentiation, if we indeed have ▽F = V in all of A, and that solves the problem.

Example 32.4 We consider again the gradient field from Example 32.3 above, (no need to check
once more that it is a gradient field),

V(x, y, z) =
(

y2 + z, 2xy + 2yz2, 2y2z + x
)

, for (x, y, z) ∈ R3,

where we have the coordinate functions

Vx(x, y, z) = y2 + z, Vy(x, y, z) = 2xy + 2yz2, Vz(x, y, z) = 2y2z + x.

Then by the method of step lines,

F (x, y, z) =

∫ x

0

Vx(τ, 0, 0) dτ +

∫ y

0

Vy(x, τ, 0) dτ +

∫ z

0

Vz(x, y, τ) dτ

=

∫ x

0

0 dτ +

∫ y

0

2xτ dτ +

∫ z

0

(

2y2τ + x
)

dτ

= 0 +
[

xτ2
]y

0
+
[

y2τ2 + xτ
]z

0
= xy2 + y2z2 + xz,

which is calculated with less effort than in the method of Example 32.3. ♦
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A third method is to manipulate with the differential form V(x)· dx by using the rules of computation
of differentials in the “unusual direction” finally getting dF (x), where F (x) is the wanted primitive.
This method requires some skill, though it is also the most elegant one, because if one succeeds, then
there is no need to check the assumptions of Theorem 32.4.

Example 32.5 Consider again from the two previous examples

V(x, y, z) =
(

y2 + z, 2xy + 2yz2, 2y2z + x
)

, for (x, y, z) ∈ R3,

where we have the coordinate functions

Vx(x, y, z) = y2 + z, Vy(x, y, z) = 2xy + 2yz2, Vz(x, y, z) = 2y2z + x.

Then the corresponding closed differential form is

V(x, y, z) · ( dx, dy, dx) =
(

y2 + z
)

dx+
(

2xy + 2yz2
)

dy + (2yz + x) dz.

The strategy is to split all the terms and then pair them, so that they can stepwise be included as the
differential of some function. When we deal with polynomials we may also collect terms of the same
(general) degree. In general, if e.g. we have a function ϕ(y) in y alone as a factor of dy, then use that
ϕ(y) dy = dΦ(y), where Φ′(y) = ϕ(y). Similarly for the other variables.
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In the present case we get, using these methods,

V(x, y, z) · ( dx, dy, dz) = y2 dx+ z dx+ 2xy dy + 2yz2 dy + 2y2z dz + xdz

= y2 dx+ z dx+ xd
(

y2
)

+ z2 d
(

y2
)

+ y2 d
(

z2
)

+ xdz

=
{

y2 dx+ xd
(

y2
)}

+ {z dx+ xdz}+
{

z2 d
(

y2
)

+ y2 d
(

z2
)}

= d
(

xy2
)

+ d(xz) + d
(

y2z2
)

= d
(

xy2 + xz + y2z2
)

,

from which we conclude that V has a primitive, so it is a gradient field, and that modulo a constant
this primitive is given by

F (x, y, z) = xy2 + xz + y2z2.

We note again that this method has the advantage that if it succeeds, then it is not necessary to check
the assumptions of Theorem 32.4. ♦

Example 32.6 Consider the vector field

V(x, y) = (Vx(x, y), Vy(x, y)) =

(

x
√

x2 + y2
,

y
√

x2 + y2

)

, for (x, y) �= (0, 0),

where the domain A = R2 \ {(0, 0)} is not simply connected.

However, using the differential form we immediately get

Vx(x, y) dx+ Vy(x, , y) dy =
x

√

x2 + y2
dx+

y
√

x2 + y2
dy =

1

2

d
(

x2 + y2
)

√

x2 + y2
= d

(

√

x2 + y2
)

,

so V is a gradient field in A, and all its primitives are given by

F (x, y) =
√

x2 + y2 + c, where c ∈ R is an arbitrary constant.

Alternatively, we first note that

∂Vx

∂y
=

∂

∂y

(

x
√

x2 + y2

)

= −1

2

x

x2 + y2
y

√

x2 + y2
=

∂

∂x

(

y
√

x2 + y2

)

=
∂Vy

∂x
,

so V(x, y) · ( dx, dy) is closed, and V(x, y) is a gradient field in every star-shaped domain contained
in A.

One may choose the right half plane x > 0 as our subdomain. Here we can use the step line,

(1, 0) → (x, 0) → (x, y), x > 0,

so by the solution formula,

F (x, y) =

∫ x

1

Vx(τ, 0) dτ +

∫ y

0

Vy(x, τ) dτ

=

∫ x

1

dτ +

∫ y

0

τ√
x2 + τ2

dτ = x− 1 +
[
√

x2 + τ2
]y

0

= x− 1 +
√

x2 + y2 − x =
√

x2 + y2 − 1 for x > 0.
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However, F (x, y) =
√

x2 + y2 − 1 is C1 in R2 \ {(0, 0)}, and

∂F

∂x
(x, y) =

x
√

x2 + y2
= Vx(x, y),

∂F

∂y
(x, y) =

y
√

x2 + y2
= Vy(x, y),

so we have checked that the result, which was only derived for x > 0 also holds in all of R2 \ {(0, 0)}.

Note alse that we get all primitives by adding an arbitrary constant, so it is no error above that we
get

√

x2 + y2 in the first method, and
√

x2 + y2 − 1 in the second one. ♦

32.3 Tangential line integrals in Physics

Consider a unit particle which moves along a curve K under the action of a force F(x). Then the
work done by this force is given by the tangential line integral

W =

∫

K
F(x) · dx.

If F = −▽ Ep is a gradient field, then the work is independent of the path, so

∫

K
F(x) · dx = Ep(A)− Ep(B),

where A is the initial point of K and B is the final point, The function Ep with the conventional minus
sign in front of it, is the potential energy.

A force F, which is also a gradient field, is in Physics called a conservative force.

The tangential line integrals are especially used in Electro-magnetic Field Theory. An electric field
E = E(x, t), where t is the time variable, describes the force per unit charge, so when one unit of charge
is moved along the curve K, then the work done by E(x, t) is equal to the tangential line integral

W =

∫

K
E(x, t) · dx.

If K is closed, we get the circulation of the electric field along K. This is also called the electromotive
force (emf) applied to the closed path K,

emf =

∮

K
E(x, t) · dx,

although this is not a force, but an energy.

If E(x) is time-independent, we call it a static electric field. In this case the circulation along a closed
curve K is always zero,

emf =

∮

K
E(x) · dx = 0,

so E(x) is in this case a gradient field.

We have previously also mentioned Ampère’s law, where the magnetic field H in general is not a
gradient field.
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The physical examples above are just the simplest ones of the applications of the tangential line
integrals in Physics. We shall later introduce the more powerful Gauß’s and Stokes’s theorems and
see some applications of them.

32.4 Overview of the theorems and methods concerning tangential line
integrals and gradient fields

The current of a vector field V along a curve K of parametric representation r(t) is defined by:

∫

K
V · t ds =

∫

K
V · dx =

∫ β

α

V(r(t)) · r′(t) dt,

where we have identified

x = r(t) and dx = r′(t) ta.

It can in some cases be identified as an electric current along wire, represented by the curve.

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4

Figure 32.2: Example of a plane curve K with initial point (0, 0).

There are here two important special cases:

1) The gradient integral theorem:

∫

K
▽F (x) · dx = F (b)− F (a),

no matter how the curve K from a to b is chosen.

2) Circulation, i.e. K is a closed curve.

Whenever the word “circulation” occurs in an example, always think of Stokes’s theorem,
∮

δF
V · t ds =

∫

F
n · rot V dS,

and see if it applies, cf. Chapter 35.
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1

Figure 32.3: The half sphere F gives a typical example, when we shall apply Stokes’s theorem.

We shall here only consider the gradient integral theorem, because the circulation will be treated
separately later.

A necessary condition (which is not sufficient). The “cross derivatives” agree,

∂Vi

∂xj
=

∂Vj

∂xi
for all i, j = 1, . . . , k.
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A trap: Even if the necessary conditions are all fulfilled, the field V is not always a gradient field,
although many readers believe it.

A sufficient condition (which is not necessary). The “cross derivatives” agree:

∂Vi

∂xj
=

∂Vj

∂xi
for all i, j = 1, . . . , k,

and

the domain A is star shaped.

Remark 32.1 Even when V is a gradient field, the corresponding domain A does not have to be star
shaped. ♦

Concerning the calculations in practice we refer to Section 32.2:

1) Indefinite integration,

2) Method of inspection,

3) Integration along a curve consisting of lines parallel with one of the axes,

4) Radial integration.

The radial integration cannot be recommended as a standard procedure.

In some cases a differential form can be simplified by removing a gradient field:

V = ▽F +U,

or more conveniently,

V · dx = Vx dx+ Vy dy + Vz dz = dF + Ux dx+ Uy dy + Uz dz,

where U ought to be simpler than V.
If so, then

∫

K
V · dx = F (b)− F (a) +

∫

K
U · dx.

This method is e.g. used in Thermodynamics, where the vector field usually is not a gradient field.

In these reductions one can take advantage of the well-known rules of calculus for differentials:

α df + dg = d(α f + g), α constant

f dg + g df = d(fg),

f dg − g df = f2 d

(

g

f

)

, f �= 0,

F ′(f) df = d(F ◦ f).
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32.5 Examples of tangential line integrals

Example 32.7 Calculate in each of the following cases the tangential line integral

∫

K
V(x) · dx

of the vector field V along the plane curve K. This curve will either be given by a parametric description
or by an equation. First sketch the curve.

1) The vector field V(x, y) = (x2+y2, x2−y2) along the curve K given by y = 1−|1−x| for x ∈ [0, 2].

2) The vector field V(x, y) = (x2 − 2xy, y2 − 2xy) along the curve K given by y = x2 for x ∈ [−1, 1].

3) The vector field V(x, y) = (2a − y, x) along the curve K given by r(t) = a(t − sin t, 1 − cos t) for
t ∈ [0, 2π].

4) The vector field V(x, y) =

(

x+ y

x2 + y2
,

y − x

x2 + y2

)

along the curve K given by x2 + y2 = a2 and run

through in the positive orientation of the plane.

5) The vector field V(x, y) = (x2 − y2,−(x + y)) along the curve K given by r(t) = (a cos t, b sin t)

for t ∈
[

0,
π

2

]

.

6) The vector field V(x, y) = (x2 − y2,−(x+ y)) along the curve K given by r(t) = (a(1 − t), b t) for
t ∈ [0, 1].

7) The vector field V(x, y) = (−y3, x3) along the curve K given by r(t) = (1 + cos t, sin t) for t ∈
[π

2
, π

]

.

8) The vector field V(x, y) =
(

−y2, a2 sinh
x

a

)

along the curve K given by y = a cosh
x

a
for x ∈ [a, 2a].

A Tangential line integrals.

D First sketch the curve. Then compute the tangential line integral.

0

0.2

0.4

0.6

0.8

1

y

0.5 1 1.5 2

x

Figure 32.4: The curve K of Example 32.7.1.
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x

Figure 32.5: The curve K of Example 32.7.2.

I 1) Here the parametric description of the curve can also be written

y =

{

x for x ∈ [0, 1],
2− x for x ∈ [1, 2].

This gives the following calculation of the tangential line integral
∫

K
V(x) · dx =

∫

K

{(

x2 + y2
)

dx+
(

x2 − y2
)

dy
}

=

∫ 1

0

{(

x2 + x2
)

dx+
(

x2 − x2
)

dx
}

+

∫ 2

1

{(

x2 + (2− x)2
)

dx+
(

x2 − (2− x)2
)

(− dx)
}

=

∫ 1

0

2x2 dx+

∫ 2

1

2 (2− x)
2
dx =

2

3

[

x3
]1

0
+

2

3

[

(x− 2)3
]2

1

=
2

3
+

2

3
=

4

3
.

2) Here
∫

K
V(x) · dx =

∫

K

{(

x2 − 2xy
)

dx+
(

y2 − 2xy
)

dy
}

=

∫ 1

−1

{(

x2 − 2x3
)

dx+
(

x4 − 2x3
)

· 2xdx
}

=

∫ 1

−1

(

x2 − 2x3 + 2x5 − 4x4
)

dx

=

∫ 1

−1

(

x2 − 4x4
)

dx+ 0 = 2

[

1

3
x3 − 4

5
x5

]1

0

= 2

(

1

3
− 4

5

)

=
2

15
(5− 12) = −14

15
.
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0

0.5

1

1.5

2

1 2 3 4 5 6

Figure 32.6: The curve K of Example 32.7.3 for a = 1.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 32.7: The curve K of Example 32.7.4 for a = 1.

3) Similarly we get
∫

K
V(x) · dx =

∫

K
{(2a− y) dx+ xdy}

=

∫ 2π

0

{(2a−a(1−cos t))a(1−cos t)+a(t−sin t)a sin t} dt

= a2
∫ 2π

0

{(1+cos t)(1−cos t)+(t−sin t) sin t} dt

= a2
∫ 2π

0

{1−cos2 t+t sin t−sin2 t}dt = a2
∫ 2π

0

t sin t dt

= a2[−t cos t+ sin t]2π0 = −2πa2.

4) We split the curve K into two pieces, K = K1 +K2, where K1 lies in the upper half plane, and
K2 lies in the lower half plane, i.e. y > 0 inside K1, and y < 0 inside K2. Then we get the
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tangential line integral
∫

K
V(x) · dx =

∫

K

(

x+ y

x2 + y2
dx+

y − x

x2 + y2
dy

)

=

∫

K

1

x2 + y2
1

2
d
(

x2 + y2
)

+

∫

K

1

x2 + y2
(y dx− xdy)

=

∫

K

1

2
d ln

(

x2 + y2
)

+

∫

K1

1

1 +

(

x

y

)2

(

1

y
dx+ x

(

− 1

y2

)

dy

)

+

∫

K2

1

1 +

(

x

y

)2

(

1

y
dx+ x

(

− 1

y2

)

dy

)

= 0+

∫

K1

1

1 +

(

x

y

)2 d

(

x

y

)

+

∫

K2

1

1 +

(

x

y

)2 d

(

x

y

)

=

∫

K1

dArctan

(

x

y

)

+

∫

K2

dArctan

(

x

y

)

= [Arctan t]−∞
+∞ + [Arctan t]−∞

+∞ = −π − π = −2π.
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0
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0.2 0.4 0.6 0.8 1

Figure 32.8: The curve K of Example 32.7.5 for a = 1 and b = 2.

Alternatively we get by using the parametric description

(x, y) = a (cos t, sin t), t ∈ [0, 2π],

that
∫

K
V(x) · dx =

∫

K

(

x+ y

x2 + y2
dx+

y − x

x2 + y2
dy

)

=

∫ 2π

0

a2

a2
{(cos t+sin t)(−sin t)+(sin t−cos t) cos t} dt

=

∫ 2π

0

{−cos t · sin t−sin2 t+cos t · sin t−cos2 t} dt

= −
∫ 2π

0

dt = −2π.

5) Here
∫

K
V(x) · dx =

∫

K
{(x2 − y2) dx− (x+ y) dy}

=

∫ π
2

0

{(a2 cos2 t−b2 sin2 t)(−a sin t)−(a cos t+b sin t)b cos t} dt

=

∫ π
2

0

{−a[(a2+b2) cos2 t−b2] sin t−ab cos2 t−b sin t cos t} dt

=

[

+a(a2+b2)
1

3
cos3 t−ab2 cos t− ab

2
(t+

1

2
sin 2t)− 1

2
b2 sin2 t

]
π
2

0

= −ab

2
· π
2
− b2

2
− a(a2 + b2)

3
+ ab2 =

a

3
(2b2 − a2)− b

4
(2b+ aπ).
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Figure 32.9: The curve K of Example 32.7.6 for a = 1 and b = 2.

6) Here
∫

V
V(x) · dx =

∫

K
{(x2 − y2) dx− (x+ y) dy}

=

∫ 1

0

{[a2(1− t)2 − b2t2](−a)− [a− at+ bt] · b} dt

=

∫ 1

0

{−a3(t− 1)2 + ab2t2 + b(a− b)t− ab} dt

=

[

−a3

3
(t− 1)3 +

ab2

3
t3 +

1

2
b(a− b)t2 − abt

]1

0

=
ab2

3
+

1

2
(a− b)b− ab− a3

3

=
a

3
(b2 − a2)− b

2
(a+ b).

Remark. The vector field V(x) is the same as that in Example 32.7.5 and in Exam-
ple 32.7.6. Furthermore, the curves of these two examples have the same initial point and
end point. Nevertheless the two tangential line integrals give different results. We shall later
be interested in those vector fields V(x), for which the tangential line integral only depends
on the initial and end points of the curve K. (In Physics such vector fields correspond to the
so-called conservative forces.) We have here an example in which this ideal property is not
satisfied. ♦
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Figure 32.10: The curve K of Example 32.7.7.

7) We get
∫

K
V(x) · dx =

∫

K
{−y3 dx+ x3 dy}

=

∫ π

π
2

{− sin3 t · (− sin t) + (1 + cos t)3 cos t} dt

=

∫ π

π
2

{sin4 t+ cos t+ 3 cos2 t+ 3 cos3 t+ cos4 t} dt

=

∫ π

π
2

{

sin4 t+ cos4 t+

(

2 cos2 t · sin2 t− 1

2
sin2 2t

)

+ cos t+
3

2
+

3

2
cos 2t+ 3 cos3 y

}

dt

=

∫ π

π
2

{

(sin2 t+ cos2 t)2 − 1

4
+

1

4
cos 4t+ cos t+

3

2
cos 2t+ 3 cos t− 3 sin2 t cos t

}

dt

=

[

t− t

4
+

1

16
sin 4t+ sin t+

3

2
t+

3

4
sin 2t+ 3 sin t− sin3 t

]π

π
2

=

(

1− 1

4
+

3

2

)

π

2
− 4 + 1 =

9π

8
− 3.

8) We get
∫

K
V(x) · dx =

∫

K

{

−y2 dx+ a2 sinh
x

a
dy

}

=

∫ 2a

a

{

−a2 cosh2
x

a
dx+ a2 sinh

x

a
· sinh x

a
dx

}

= −a2
∫ 2a

a

{

cosh2
(x

a

)

− sinh2
(x

a

)}

dx = −a3.
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Figure 32.11: The curve K of Example 32.7.8 for a = 1.
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Figure 32.12: The curves y =
√
3x, y =

√
3x and y =

√
3x2.

Example 32.8 Compute the tangential line integral of the vector field

V(x, y) = (2xy, x6y2)

along the curve K given by y = a xb, x ∈ [0, 1]. Then find a such that the line integral becomes
independent of b.

A Tangential line integral.

D Just use the standard method.

I We calculate the line integral

∫

K
V(x, y) · dx =

∫

K
2xy dx+ x6y2 dy =

∫ 1

0

{

2xa xb + x6a2x2b · ab xb−1
}

dx

=

∫ 1

0

{

2a xb+1 + a3b x3b+5
}

dx =
2a

b+ 2
+

a3b

3(b+ 2)
=

a(a2b+ 6)

3(b+ 2)
.

Assume that this result is independent of b. Then b+2 must be proportional to a2b+6, so a2 = 3.
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According to the convention a > 0, hence a =
√
3. By choosing this a we get

∫

K
V(x, y) · dx =

√
3(3b+ 6)

3(b+ 2)
=

√
3,

which is independent of b.
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Example 32.9 Calculate in each of the following cases the tangential line integral

�

K
V(x) · dx

of the vector field V along the space curve K, which is given by the parametric description

K =
�

x ∈ R3 | x = r(t), t ∈ I
�

.

1) The vector field is V(x, y, z) = (y2− z2, 2yz,−x2), and the curve K is given by r(t) = (t, t2, t3) for
t ∈ I.

2) The vector field is V(x, y, z) =

�

1

x+ z
, y + z ,

2

x+ y + z

�

, and the curve K is given by r(t) =

(t, t2, t3) for t ∈ [1, 2].

3) The vector field is V(x, y, z) = (3x2 − 6yz, 2y + 3xz, 1 − 4xyz2), and the curve K is given by
r(t) = (t, t2, t3) for t ∈ [0, 1].

4) The vector field is V(x, y, z) = (3x2 − 6yz, 2y + 3xz, 1 − 4xyz2), and the curve K is given by
r(t) = (t, t, t) for t ∈ [0, 1].

5) The vector field is V(x, y, z) = (3x2 − 6yz, 2y+ 3xz, 1− 4xyz2), and the curve K is given by

r(t) =







(0, 0, t), for t ∈ [0, 1],
(0, t− 1, 1), for t ∈ [1, 2],
(t− 2, 1, 1), for t ∈ [2, 3].

6) The vector field is V(x, y, z) = (x, y, xz − y), and the curve K is given by r(t) = (t, 2t, 4t) for
t ∈ [0, 1].

7) The vector field is V(x, y, z) = (2x+ yz, 2y+ xz, 2z + xy), and the curve K is given by

r(t) = (a(cosh t) cos t, a(cosh t) sin t, at) for t ∈ [0, 2π].

8) The vector field is V(x, y, z) = (y2 − z2, 2yz,−x2), and the curve K is given by r(t) = (t, t, t) for
t ∈ [0, 1].

A Tangential line integrals in space.

D Insert the parametric descriptions and calculate the tangential line integral. Note that Exam-
ple 32.9.7 is a gradient field, so it is in this case possible to find the integral directly.

I 1) We get
�

K
V(x) · dx =

�

K

�

(y2 − z2) dx+ 2yz dy − x2 dz
�

=

� 1

0

�

(t4 − t6) + 2t2 · t3 · 2t− t3 · 3t2
�

dt

=

� 1

0

{3t6 − 2t4}dt = 3

7
− 2

5
=

1

35
.
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2) Here
∫

K
V(x) · dx =

∫

K

{

1

x+ z
dx+ (y + z) dy +

2

x+ y + z
dz

}

=

∫ 2

1

{

1

t+ t3
+ (t+ t3) +

6t2

2t+ t3

}

dt

=

∫ 2

1

{

1

t
− t

1 + t2
+

6t

2 + t2
+ t+ t3

}

dt

=

[

ln t− 1

2
ln(1 + t2) + 3 ln(2 + t2) +

t2

2
+

t4

4

]2

1

= ln 2− 1

2
ln 5 + 3 ln 6− 1

2
ln 2− 3 ln 3 +

4

2
+

16

4
− 1

2
− 1

4

=
9

2
ln 2 +

1

2
ln 5 +

21

4
=

21

4
+

1

2
ln

512

5
.

3) First note that for any curve,
∫

K
V(x) · dx =

∫

K
{(3x2−6yz) dx+(2y+3xz) dy+(1−4xyz2) dz}

=

∫

K
d(x3+y2+z)−

∫

K
z{6y dx−3xdy+4xyz dz}.(32.2)

Such a rearrangement can also be used with success in Example 32.9.3, Example 32.9.4
and Example 32.9.5.

When we apply (32.2), we get
∫

K
V(x) · d(x) =

[

x3+y2+z
](1,1,1)

(0,0,0)
−
∫ 1

0

t3{6t2 − 3t · 2t+ t6 · 3t2}dt

= 3−
∫ 1

0

12 t11dt = 3− 1 = 2.

Alternatively, it follows by a direct insertion that
∫

K
V(x) · dx =

∫

K
{(3x2 − 6yz) dx+ (2y + 3xz) dy + (1− 4xyz2) dz}

=

∫ 1

0

{(3t2−6t2 · t3)+(2t2+3t · t3)2t+(1−4t · t2 · t6)3t2} dt

=

∫ 1

0

{3t2−6t5+4t3+6t5+3t2−12t11} dt

=

∫ 1

0

(6t2 + 4t3 − 12t11)dt =
[

2t3 + t4 − t12
]1

0
= 2.

4) The vector field is the same as in Example 32.9.3. We get by (32.2),
∫

K
V(x) · dx =

[

x3+y2+z
](1,1,1)

(0,0,0)
−
∫ 1

0

(6t2−3t2+4t4) dt

= 3−
∫ 1

0

(3t2 + 4t4) dt = 3− 1− 4

5
=

6

5
.
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Alternatively, it follows by a direct insertion that
∫

K
V(x) · dx =

∫ 1

0

{(3t2−6t2)+(2t+3t2)+1−4t4} dt

=

∫ 1

0

(1 + 2t− 4t4)dt = 1 + 1− 4

5
=

6

5
.

5) The vector field is the same as in Example 32.9.3. When we apply (32.2) and just check that
r(t) is a continuous curve, we get

∫

K
V(x) · dx =

[

x3+y2+z
](1,1,1)

(0,0,0)
−[

∫

K
z{6y dx−3xdy+4xyz dz}

= 3−
∫ 1

0

0 dt−
∫

1

+20 dt−
∫ 3

2

1 · 6 dt = 3− 6 = −3.

Alternatively, it follows by direct insertion that
∫

K
V(x) · dx =

∫

K
{(3x2−6yz) dx+(2y+3xz) dy+(1−4xyz2) dz}

=

∫ 1

0

(1−4 · 0) dt+
∫ 2

1

{2(t−1)+0} dt+
∫ 3

2

{3(t−2)2−6} dt

= [t]10 + 2

[

1

2
(t− 1)2

]2

1

+ 3

[

1

3
(t− 2)3 − 2t

]3

2

= 1+ 1 + 1− 3 · 2 · 3 + 3 · 2 · 2 = 3(1− 6 + 4) = −3.

6) Here we get by insertion,
∫

K
V(x) · dx =

∫

K
{xdx+ y dy + (xz − y) dz}

=

∫ 1

0

{t+ 2t · 2 + (t · 4t− 2t) · 4} dt

=

∫ 1

0

(t+ 4t+ 16t2 − 8t)dt =

∫ 1

0

(16t2 − 3t) dt

=
16

3
− 3

2
=

32− 9

6
=

23

6
.

7) It follows immediately that
∫

K
V(x) · dx =

∫

K
{(2x+yz) dx+(2y+xz) dy+(2zxy) dz}

=

∫

K
{ d(x2+y2+ z2)+(yz dx+xz dy+xy dz)}

=

∫

K
d(x2+y2+z2+xyz) =

[

x2+y2+z2+xyz
]a(cosh 2π,0,2π)

(x,y,z)=(a,0,0)

= a2 cosh2 2π + 4a2π2 − a2 = a2(4π2 + sinh2 2π).

Alternatively, we get by the parametric description

r(t) = a(cosh t · cos t, cosh t · sin t, t), t ∈ [0, 2π],

that

r′(t) = a(sinh t · cos t−cosh t · sin t, sinh t · sin t+cosh t · cos t, 1),
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thus
∫

K
V(x) · dx =

∫

K
{(2x+ yz) dx+ (2y + xz) dy + (2z + xy) dz}

=

∫ 2π

0

(2a cosh t cos t+a2t cosh t sin t)a(sinh t cos t−cosh t sin t) dt

+

∫ 2π

0

(2a cosh t sin t+a2 cosh t cos t)a(sinh t sin t+cosh t cos t) dt

+

∫ 2π

0

(2at+a2 cosh2 t · cos t · sin t)a dt

= a2 · (· · · ) + a3 · (· · · ).
Then the easiest method is to reduce and use that

cos t =
1

2

(

eit + e−it
)

, sin t =
1

2i

(

eit − e−it
)

,

and similarly for cosh t and sinh t. We finally obtain the result by a partial integration.
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The variants above are somewhat sophisticated, so we proceed here by first calculating the
coefficient of a2:

∫ 2π

0

2 cosh t · t(sinh t · cos t− cosh t · sin t) dt

+

∫ 2π

0

2 cosh t · sin t(sinh t · sin t+ cosh t · cos t) dt+
∫ 2π

0

2t dt

= 2

∫ 2π

0

cosh t · sinh t dt+
∫ 2π

0

2t dt =
[

sinh2 t+ t2
]2π

0
= 4π2 + sinh2 2π.

Then we find the coefficient of a3:
∫ 2π

0

t{cosh t sinh t sin t cos t−cosh2 t sin2} dt

+

∫ 2π

0

t{cosh t sinh t sin t cos t+cosh2 t cos2 t} dt+
∫ 2π

0

cosh2 t cos t sin t dt

=

∫ 2π

0

t(cosh t sinh t sin 2t+cosh2 t cos 2t) dt+
1

2

∫ 2π

0

cosh2 t sin 2t dt.

Note that

d

dt

{

1

2
cosh2 t · sin 2t

}

= cosh t · sinh t · sin 2t+cosh2 t · cos 2t,

so the whole expression can then be written
∫ 2π

0

{

t
d

dt

(

1

2
cosh2 t sin 2t

)

+
dt

dt
·
(

1

2
cosh2 t sin 2t

)}

dt

=

∫ 2π

0

d

dy

(

t

2
cosh2 t sin 2t

)

dt =

[

t

2
cosh2 t · sin 2t

][2π

0

= 0.

As a conclusion we get

∫

K
V(x) · dx = a2(4π2 + sinh2 2π) + 0 · a3 = a2(4π2 + sinh2 2π).

8) Here we get [cf. also Example 32.9.1, where the vector field is the same]
∫

K
V(x) · dx =

∫

K
{(y2 − z2) dx+ 2yz dy − x2 dz}

=

∫ 1

0

{(t2 − t2) + 2t2 − t2} dt =
∫ 1

0

t2 dt =
1

3
.
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Example 32.10 Calculate in each of the following cases the tangential line integral of the given vector
field V along the given curve K.

1) The vector field is V(x, y) = (x + y, x − y), and the curve K is the ellipse of centrum (0, 0) and
half axes a, b, run through in the positive orientation of the plane.

2) The vector field is V(x, y) =

(

1

|x|+ |y| ,
1

|x|+ |y|

)

, and the curve K is the square defined by its

vertices

(1, 0), (0, 1), (−1, 0), (0,−1),

in the positive orientation of the plane.

3) The vector field is V(x, y) = (x2 − y, y2 + x), and the curve K is the line segment from (0, 1) to
(1, 2).

4) The vector field is V(x, y) = (x2 − y2, y2 + x), and the curve K is the broken line from (0, 1) over
(1, 1) to (1, 2).

5) The vector field is V(x, y) = (x2 − y, y2 + x), and the curve K is that part of the parabola of
equation y = 1 + x2, which has the initial point (0, 1) and the final point (1, 2).

6) The vector field is V(x, y, z) = (yz , xz , x(y + 1)), and the curve K is the triangle given by its
vertices

(0, 0, 0), (1, 1, 1), (−1, 1,−1),

and run through as defined by the given sequence.

7) The vector field is V(x, y, z) = (sin y, sin z, sinx), and the curve K is the line segment from (0, 0, 0)
to (π, π, π).

8) The vector field is V(x, y, z) = (z , x , −y), and the curve K is the quarter circle from (a, 0, 0) to
(0, 0, a) followed by another quarter circle from (0, 0, a) to (0.a.0), both of centrum (0, 0, 0).

A Tangential line integrals in the 2-dimensional and the 3-dimensional space.

D Sketch in the 2-dimensional case the curve K. Then check if any part of V(x) · dx can be sorted
out as a total differential. Finally, insert the parametric description and calculate.

I 1) As K is a closed curve, we get

∫

K
V(x) · dx =

∫

K
{(x+ y) dx+ (x− y) dy} =

∫

K
d

(

1

2
x2 + xy − 1

2
y2
)

= 0,

because V · dx is a total differential.

Alternatively, K has e.g. the parametric description

(x, y) = r(t) = (a cos t, b sin t), t ∈ [0, 2π],

hence

r′(t) = (−a sin t, b cos t).
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Figure 32.13: A possible curve K in Example 32.10.1.
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Figure 32.14: The curve of Example 32.10.2.

Then by insertion,
∫

K
V · dx =

∫

K
{(x+ y) dx+ (x− y) dy}

=

∫ 2π

0

{(a cos t+b sin t)(−a sin t)+(a cos t−b sin t)b cos t} dt

=

∫ 2π

0

{−a2 cos t sin t−ab sin2 t+ab cos2 t−v2 sin t cos t} dt

=

∫ 2π

0

{

ab cos 2t− 1

2
(a2 + b2) sin 2t

}

dt = 0.

2) Since |x|+ |y| = 1 on K, we have

∫

K
V · dx =

∫

K

1

|x|+ |y| ( dx+ dy) =

∫

K
1 d(x+ y) = 0.
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Alternatively, and more difficult we can use the parametric description of K given by

r(t) =















(1− t, t), t ∈ [0, 1],
(1− t, 2− t), t ∈ [1, 2],
(t− 3, 2− t), t ∈ [2, 3],
(t− 3, t− 4), t ∈ [3, 4].

1518
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Figure 32.15: The curve K of Example 32.10.3

Then

r′(t) =















(−1, 1), t ∈ ]0, 1[,
(−1,−1), t ∈ ]1, 2[,
(1,−1), t ∈ ]2, 3[,
(1, 1), t ∈ ]3, 4[.

Since |x|+ |y| = 1 on K, we get
�

K
V · dx =

�

K
( dx+ dy)

=

� 1

0

(−1 + 1) dt+

� 2

1

(−1− 1) dt+

� 3

2

(1 − 1) dt+

� 4

3

(1 + 1) dt

= 0− 2 + 0 + 2 = 0.

3) First note that
�

K
V · dx =

�

K
{(x2 − y) dx+ (y2 + x) dy} =

1

3

�

K
d(x3 + y3) +

�

K
(−y dx+ xdy)

=
1

3
(8 + 1− 1) +

�

K
(−y dx+ xdy),

so
�

K
V · dx =

8

3
+

�

K
(−y dx+ xdy)(32.3)

=

�

K
{(x2 − y) dx+ (y2 + x) dy}.(32.4)

Then we calculate Example 32.10.3, Example 32.10.4 and Example 32.10.5 in the two
variants corresponding to (32.3) and (32.4), respectively.

A parametric description of K is e.g.

r(t) = (t, 1 + t), t ∈ [0, 1],

and accordingly, r′(t) = (1, 1).
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Figure 32.16: The curve K of Example 32.10.4.

Then by (32.3),

∫

K
V · dx =

8

3
+

∫ 1

0

{−(1 + t) + t} dt = 8

3
− 1 =

5

3
.

Alternatively, we get by (32.4) that
∫

K
V · dx =

∫ 1

0

{t2 − (1 + t) + (1 + t)2 + t} dt =
∫ 1

0

{(1 + t)2 + t2 − 1} dt

=

[

1

3
(1 + t)3 +

1

3
t3 − t

]1

0

=
8 + 1− 1

3
− 1 =

5

3
.

4) It follows from (32.3) that
∫

K
V · dx =

8

3
+

∫ 1

0

(−1) dx+

∫ 2

1

1 dy =
8

3
− 1 + 1 =

8

3
.

Alternatively, we get by (32.4),

∫

K
V · dx =

∫ 1

0

(x2 − 1) dx+

∫ 2

1

(y2 + 1) dy =

[

1

3
x3 − x

]1

0

+

[

1

3
y3 + y

]2

1

=
1

3
− 1 +

8

3
+ 2− 1

3
− 1 =

8

3
.

5) By (32.3),
∫

K
V · dx =

8

3
+

∫ 1

0

{(−1− x2) + x · 2x} dx

=
8

3
+

∫ 1

0

(x2 − 1) dx =
8

3
+

[

1

3
x3 − x

]1

0

=
8

3
+

1

3
− 1 = 2.
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Figure 32.17: The curve K of Example 32.10.5.

Alternatively, by (32.4),
�

K
V · dx =

�

K
{x2 − x2 − 1 + [(x2 + 1)2 + x] · 2x} dx

=

�

K
{2x5 + 4x3 + 2x2 + 2x− 1} dx

=

�

1

3
x6 + x3 +

2

3
x3 + x2 − x

�1

0

=
1

3
+ 1 +

2

3
+ 1− 1 = 2.

6) Here a parametric description is e.g. given by

r(t) =







(t, t, t), t ∈ [0, 1],
(3− 2t , 1 , 3− 2t), t ∈ [1, 2],

(t− 3, ,−t+ 3 , t− 3), t ∈ [2, 3],

hence

r′(t) =







(1, 1, 1), t ∈ ]0, 1[,
(−2, 0,−2), t ∈ ]1, 2[,
(1,−1, 1), t ∈ ]2, 3[.

First variant. We get by direct insertion,
�

K
V · dx =

�

K
{yz dx+ xz dy + x(y + 1) dz}

=

� 1

0

(t2+t2+t2+t) dt+

� 2

1

{·(3−2t) · (−2)+(3−2t) · 2 · (−2)} dt

+

� 3

2

{(−t+3)(t−3) · 1+(t−3)2 · (−1)+(t−3)(−t+3) · 1+t−3} dt

=

� 1

0

(3t2 + t)dt− 6

� 2

1

(3− 2t)dt−
� 3

2

{3(t− 3)2 − (t− 3)} dt

=

�

t3 +
1

2
t2
�1

0

+ 6
�

t2 − 3t
�2

1
−
�

(t− 3)3 − 1

2
(t− 3)2

�3

2

= 1 +
1

2
+ 6(4− 6− 1 + 3) +

�

−1− 1

2

�

= 0.
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2. variant. Reduction by removing a total differential.
As

V · dx = yz dx+ xz dy + xy dz + xdz = d(xyz) + xdz,

and as K is a closed curve, we have
∫

K d(xyz) = 0, so the calculations are simplified by removing
d(xyz):

∫

K
V · dx =

∫

K
d(xyz) +

∫

K
xdz = 0 +

∫

K
xdz

=

∫ 1

0

t dt+

∫ 2

1

(3 − 2t) · (−2) dt+

∫ 3

2

(t− 3) dt

=

[

1

2
t2
]1

0

+

∫ 2

1

(4t− 6) dt+

[

1

2
(t− 3)2

]3

2

=
1

2
+
[

2t2 − 6t
]2

1
− 1

2
= 8− 12− 2 + 6 = 0.

Remark. The expressions would have been even simpler, if we did not insist on that the
parametric intervals [0, 1], [1, 2], [2, 3] should follow each other. Instead one can split K into
three subcurves

K1 : r1(t) = (t, t, t), t ∈ [0, 1],
K2 : r2(t) = (1− 2t, 1, 1− 2t), t ∈ [0, 1],
K3 : r3(t) = (t− 1, 1− t, t− 1), t ∈ [0, 1],

1522

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc 
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and 
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Real Functions in Several Variables: Volume X 
Vector Fields I

1523 

Tangential line integrals

where

K1 : r′1(t) = (1, 1, 1), t ∈ ]0, 1[;
K2 : r′2(t) = (−2, 0, 2), t ∈ ]0, 1[;
K3 : r′3(t) = (1,−1, 1). t ∈ ]0, 1[.

We obtain that the three line integrals can be joined like in the second variant above:
∫

K
V · dx = · · · =

∫

K
xdz =

∫

K1

xdz +

∫

K2

xdz +

∫

K3

xdz

=

∫ 1

0

t dt+

∫ 1

0

(1 − 2t) · (−2) dt+

∫ 1

0

(t− 1) dt

= 3

∫ 1

0

(2t− 1)dt = 3
[

t2 − t
]1

0
= 0. ♦

7) The most obvious parametric description is here

r(t) = t (1, 1, 1), with r′(t) = (1, 1, 1), t ∈ [0, π].

Thus we can put x = y = z = t everywhere. Then

∫

K
V · dx =

∫

K
{sin y dx+ sin z dy + sinxdz} =

∫ π

0

3 sin t dt = [−3 cos t]π0 = 6.

8) If we call the two curve segments K1 and K2, then the most obvious parametric description is

K1 : a (cos t, 0, sin t), t ∈
[

0,
π

2

]

,

K2 : a (0, sin t, cos t), t ∈
[

0,
π

2

]

.

Then by insertion,
∫

K
V · dx =

∫

K
(z dx+ xdy − y dz)

= a2
∫ π

2

0

(sin t · (− sin t)) dt+ a2
∫ π

2

0

(− sin t) · (− sin t) dt

= −a2
∫ π

2

0

sin2 t dt+ a2
∫ π

2

0

sin2 t dt = 0.
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Example 32.11 Find in each of the following cases a function

Φ(x, y) =

∫

K
V(x̃) · dx̃,

to the given vector field V : A → R2, where K is the broken line which runs from (0, 0) over (x, 0) to
(x, y). Check if Φ is defined in all of A, and calculate finally the gradient ▽Φ.

1) The vector field V(x, y) = (y2 − 2xy,−x2 + 2xy) is defined in A = R2.

2) The vector field V(x, y) =

(

1
√

y2 − x2 + 1
, x

)

is defined in

A = {(x, y) | −
√

1 + y2 < x <
√

1 + y2}.

3) The vector field V(x, y) =

(

x
√

1− x2 − y2
,

y
√

a− x2 − y2

)

is defined in the disc A given by

x2 + y2 < 1.

4) The vector field V(x, y) =

(

x− 1
√

(x− 1)2 + y2
,

y
√

(x − 1)2 + y2

)

in the set A given by (x, y) �=

(1, 0).

5) The vector field V(x, y) = (cos y, cosx) is defined in A = R2.

6) The vector field V(x, y) = (cos(xy), 0) is defined in A = R2.

7) The vector field V(x, y) = (x2 + y2 , xy) is defined in A = R2.

8) The vector field V(x, y) = (x2 + y2 , 2xy) is defined in A = R2.

A Tangential line integrals.

D Remove, whenever possible, total differentials. Integrate along a broken line. Finally, compute the
gradient ▽Φ.

I 1) We get by inspection,

Φ(x, y) =

∫

K
V(x̃) · dx̃ =

∫

K

{

(ỹ2 − 2x̃ỹ) dx̃+ (−x̃2 + 2x̃ỹ) dỹ
}

=

∫

K
d(x̃ỹ2 − x̃2ỹ) = xy2 − x2y (= xy(y − x)).

Alternatively,

Φ(x, y) =

∫

K

{

(ỹ2 − 2x̃ỹ) dx̃+ (−x̃2 + 2x̃ỹ) dỹ
}

=

∫ x

0

0 dt+

∫ y

0

(−x2 +2xt) dt = xy2 − x2y.

Finally,

▽Φ = (y2 − 2xy, 2xy − x2) = V(x, y),

and Φ is defined in all of A = R2.
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Figure 32.18: The domains of V(x, y) and Φ(x, y).

2) The domain A for V(x, y) lies between the two hyperbolic branches given by x2 − y2 = 1. The
domain Ã of Φ(x, y) is smaller, in fact only the points lying between the two vertical lines
x = ±1, because we can only reach these by curves of the type K. (The curve K must never
leave A, because we require that V is defined).

We get for (x, y) ∈ Ã,

(32.5) Φ(x, y) =

∫ x

0

1√
1− t2

dt+

∫ y

0

xdt = Arcsin x+ xy.

The function Φ is only defined in Ã. In this subset of A we get

▽Φ(x, y) =

(

1√
1− x2

+ y , x

)

�= V(x, y).

In particular, V(x, y) is not a gradient field.

Remark. Formula (32.5) is a mindless insertion into one of the solution formulæ for this type
of problems. It cannot be applied here because the assumptions of it are not fulfilled. ♦

3) Here we get

Φ(x, y) =

∫

K

{

x
√

1− x2 − y2
dx+

y
√

1− x2 − y2
dy

}

=

∫

K
d
(

−
√

1− x2 − y2
)

= 1−
√

1− x2 − y2.

Alternatively we get for x2 + y2 < 1 by an integration along the broken line that

Φ(x, y) =

∫ x

0

t√
1− t2

dt+

∫ y

0

t√
1− x2 − t2

dt =
[

−
√

1− t2
]x

0
+
[

−
√

1− x2 − t2
]y

0

= 1−
√

1− x2 +
√

1− x2 −
√

1− x2 − y2 = 1−
√

1− x2 − y2.

It follows immediately that

▽Φ(x, y) =

(

x
√

1− x2 − y2
,

y
√

1− x2 − y2

)

= V(x, y),
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Figure 32.19: The domain Ã of Φ lies to the left of the dotted line x = 1.

and that Φ is defined in all of A.

4) In this case we have for any curve K from (0, 0) in A that

Φ(x, y) =

∫

K

{

x− 1
√

(x− 1)2 + y2
dx+

y
√

(x− 1)2 + y2
dy

}

=

∫

K
d
(

√

(x− 1)2 + y2
)

=
√

(x− 1)2 + y2 − 1.
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Tangential line integrals

If we only integrate along curves K of this type, then we can only reach points in

Ã = {(x, y) | x < 1, y ∈ R}.

By integration along a broken line in this domain,

Φ(x, y) =

∫ x

0

t− 1
√

(t− 1)2 + 02
dt+

∫ y

0

t
√

(x− 1)2 + t2
dt

=

∫ x

0

t− 1

|t− 1| dt+
[

√

(x− 1)2 + t2
]y

0

=

∫ x

0

(−1) dt+
[

√

(x− 1)2 + y2 −
√

(x− 1)2
]

(because t < x < 1)

= −x− |x− 1|+
√

(x− 1)2 + y2 = x− (1− x) +
√

(x− 1)2 + y2

=
√

(x − 1)2 + y2 − 1.

It follows that ▽Φ = V and that Φ can be extended to all of A.

5) When we integrate along the broken line

(0, 0) −→ (x, 0) −→ (x, y)

we get

Φ(x, y) =

∫

K
V · dx =

∫ x

0

cos 0 dt+

∫ y

0

cosxdt = x+ y cosx,

which is defined in all of R2. Here,

▽Φ(x, y) = (1 − y sinx, cosx) �= V.

It is seen that V is not a gradient field.

6) When we integrate along the broken line

(0, 0) −→ (x, 0) −→ (x, y)

we get in all of R2,

Φ(x, y) =

∫

K
V · dx =

∫ x

0

cos(t · 0) dt+ 0 = x,

where ▽Φ = (1, 0) �= V, so V is not a gradient field.

7) When we integrate along the broken line

(0, 0) −→ (x, 0) −→ (x, y)

we get in all of R2,

Φ(x, y) =

∫

K
V · dx =

∫ x

0

(t2 + 02)dt+

∫ y

0

xt dt = x3 +
1

2
xy2,

where

▽Φ =

(

3x2 +
1

2
y2, xy

)

�= V(x, y).

It follows that V is not a gradient field.
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8) When we integrate along the broken line

(0, 0) −→ (x, 0) −→ (x, y)

we get in R2

Φ(x, y) =

∫

K
V · dx =

∫ x

0

(t2 + 02) dt+

∫ y

0

2xt dt =
x3

3
+ xy2,

where

▽Φ = (x2 + y2, 2xy) = V(x, y).

In this case V(x, y) is a gradient field.

Example 32.12 Calculate in each of the following cases the tangential line integral of the given vector
field V : R2 → R2 along the described curve K.

1) The vector field V(x, y) = ▽
(

1

2
x2 + xy − 1

2
y2
)

along the ellipse K of centrum (0, 0) and half

axes a, b, in the positive orientation of the plane.

2) The vector field V(x, y) = ▽
(

x4 + ln(1 + y)
)

along the arc of the parabola K given by y = x2,
x ∈ [−1, 3].

3) The vector field V(x, y) = ▽(x + 2y − exp(xy)) along the broken line K, which goes from (2, 0)
over (1, 2) to (0, 1).

A Line integral of a gradient field.

D As V(x, y) = ▽F , the tangential line integral is only depending on the initial point and the end
point,

∫

K
V · dx = F (xs)− F (xb).

I 1) The ellipse is a closed curve, so

∫

K
V · dx = 0.

2) The initial point is (−1, 1), and the end point is (3, 9), hence

∫

K
V · dx =

[

x4 + ln(1 + y)
](3,9)

(−1,1)
= 81 + ln 10− 1− ln 2 = 80 + ln 5.

3) The initial point is (2, 0), and the end point is (0, 1), hence

∫

K
V · dx = [x+ 2y − exp(xy)]

(0,1)
(2,0) = 0+ 2− 1− 2− 0 + 1 = 0.
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Example 32.13 Calculate in each of the following cases the tangential line integral of the given vector
field V : R3 → R3 along the described curve K.

1) The vector field ▽(x2 + yz) along the curve K, given by

r(t) = (cos t, sin t, sin(2t)), t ∈ [0, 2π].

2) The vector field ▽(cos(xyz)) along the line segment K from

(

π,
1

2
, 0

)

to

(

1

2
, π,−1

)

.

3) The vector field ▽(expx + ln(1 + |yz|) along the broken line K, which goes from (0, 1, 1), via
(π,−3, 2) to (1,

√
3,−

√
3).

A Tangential line integrals of gradient fields.

D Use that
∫

K
▽F · dx = F (end point)− F (initial point),

is independent of the path of integration.

Since the absolute value occurs in Example 32.13.3, we shall here be very careful.

I 1) As K is a closed curve (i.e. the initial point (1, 0, 0) is equal to the end point), it follows that

∫

K
V · dx = 0.

1529
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2) Since F (x, y, z) = cos(xyz), and the initial point and the end point are given, we have

∫

K
V · dx = cos

(

1

2
· π · (−1)

)

= − cos

(

π · 1
2
· 0
)

= −1.

3) First note that

F (x, y, z) =

{

expx+ ln(1 + yz) for yz > 0,
expx+ ln(1− yz) for yz < 0,

so we must be very careful, whenever the curve K intersects one of the planes y = 0 or z = 0.
In case of the first curves this can occur, because the parametric description is

t(0, 1, 1) + (1− t)(π,−3, 2) = ((1 − t)π, 4t− 3, 2− t), t ∈ [0, 1],

and the same is true for the second curve, because it has the parametric description

t(π,−3, 2) + (1− t)(1,
√
3,−

√
3) = (1 + t(π − 1),

√
3− t(3 +

√
3),−

√
3 + t(2 +

√
3)),

for t ∈ [0, 1].

The former curve intersects the plane y = 0 for t =
3

4
, and the latter curve intersects both the

plane y = 0 and the plane z = 0. The point is, however, that in everyone of these intersection
points the dubious term ln(1+ |xy|) = 0, so they are of no importance. Hence we can conclude
that

∫

K
V · dx = [expx+ ln(1 + |yz|](1,

√
3,−

√
3)

(0,1,1)

= e+ ln 4− 1− ln 2 = e− 1 + ln 2.

Remark. Always be very careful when either the absolute value or the square root occur. One
should at least give a note on them. ♦
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Example 32.14 Given the vector field

V(x, y) =

(

2y

2x+ y
,

y

2x+ y
+ ln(2x+ y)

)

.

1. Sketch the domain of V, and explain why V is a gradient field.

2. Find every integral of V.

Let K be the curve given by

(x, y) = (2t2, t), 1 ≤ t ≤ 2.

3. Compute the value of the tangential line integral
∫

K
V · t ds.

Let F be the integral of V, for which F (1, 1) = 0.

4. Find an equation of the tangent at the en point (1, 1) of that level curve for F , which goes through
the point (1, 1).

A Gradient field, integrals, tangential line integral, level curve.

D Follow the guidelines.

–2

–1

0

1

2

y

–1 –0.6 0.20.40.60.8 1

x

Figure 32.20: The domain is the open half plane above the oblique line.

I 1) Clearly, V(x, y) is defined in the domain where 2x+ y > 0, cf. the figure.

As

∂V1

∂y
=

2

2x+ y
− 2y

(2x+ y)2
,

and

∂V2

∂x
= − 2y

(2x+ y)2
+

2

2x+ y
=

∂V1

∂y
,

it follows that V1 dx+V2 dy is a closed differential form. Since the domain is simply connected,
the differential form is even exact, and V is a gradient field.
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2) Since

F1(x, y) =

∫

2y

2x+ y
dx = y

∫

2 dx

2x+ y
= y ln(2x+ y), 2x+ y > 0,

where

▽F1 =

(

2y

2x+ y
,

y

2x+ y
+ ln(2x+ y)

)

= V(x, y),

all integrals are given by

F (x, y) = y ln(2x+ y) + C, C ∈ R.

0.5

1

1.5

2

y

2 4 6 8

x

Figure 32.21: The curve K.

3) We get by the reduction theorem for tangential line integrals that
∫

K
V · t ds =

∫ 2

1

V(r(t)) · r′(t) dt

=

∫ 2

1

(

2t

4t2 + t
,

t

4t2 + t
+ ln(4t2 + t)

)

· (4t, 1) dt

=

∫ 2

1

{

8t

4t+ 1
+

1

4t+ 1
+ ln(4t2 + t)

}

dt

=

∫ 2

1

{

2− 1

4t+ 1
+ ln t+ ln(4t+ 1)

}

dt

= 2− 1

4
[ln(4t+1)]21+[t ln t−t]21+[t ln(4t+1)]21−

∫ 2

1

4t

4t+ 1
dt

= 2− 1

4
[ln(4t+1)]21+2 ln 2−1+2 ln9−ln 5−1+

1

4
[ln(4t+1)]21

= 2 ln 2 + 4 ln 3− ln 5 = ln
324

5
.

4) It follows from F (1, 1) = ln 3 + C = 0 that C = − ln 3, so

F (x, y) = y ln(2x+ y)− ln 3.
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However, we shall not need the exact value of C = − ln 3 in the following.

The normal of the level curve is ▽F = V, hence

V(1, 1) =

(

2

3
,
1

3
+ ln 3

)

,

and the direction of the tangent is e.g.

v =

(

1

3
+ ln 3,−2

3

)

,

and we get a parametric description of the tangent,

(x(t), y(t)) = (1, 1) = t

(

1

3
+ ln 3,−2

3

)

, t ∈ R.

If we instead want an equation of the tangent, then one possibility is given by

0 = V · (x− 1, y − 1) =
2

3
x+

(

1

3
+ ln 3

)

y − 1− ln 3.
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33 Flux and divergence of a vector field. Gauß’s theorem

33.1 Flux

Let V be a C0 vector field in a domain in R3, and let F be a C1 surface in this domain. Then we can
define a continuous unit vector field n of unit normal vectors to F .

The flux of V through F with respect to this vector field of normals (there are locally two possibilities
of the orientation of n) is defined as the surface integral of V(x) · n(x) over F , also denoted

∫

F
V · n dS, or

∫

F
V(x) · n(x) dS, or

∫

F
V · dS,

where we have put dS := n dS for the vectorial element of area.

Figure 33.1: Illustration of the flux. We integrate the dot product V · n over the surface F .

The flux describes the flow of the vector field V through the surface F in the direction of the normal
vector field n. It is obvious that if we replace n by the opposite normal vector field −n, then the flux
changes its sign.

We mention a couple of examples from Physics. If e.g. V = J is the density of an electric current,
then

∫

F J · n dS is the electric current passing through F (measured in the direction of n). If instead
V = B is a magnetic field, then

∫

FB ·n dS is the magnetic flux through the surface F (also measured
in the direction of n).

Then we shall see how the flux in practice is calculated, when we introduce coordinates. Let r : E → R3

be a (rectangular) C1 parametric description of the surface F in the parameters (u, v) ∈ E ⊆ R2. We
have previously shown that

N(u, v) := r′u(u, v)× r′v(u, v)

is a normal to F , provided that N(u, v) �= 0. Hence, the unit normal field n is for N �= 0 given by

n :=
N

�N� , and dS = �N� du dv.
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It follows immediately that the vectorial area element is

n dS = N du dv.

We note that as usual that we may allow N(u, v) = 0 in the applications as long as this only takes
place in a null set, i.e. we only require that N(u, v) �= 0 almost everywhere. Then we have (again, the
proof is omitted),

Theorem 33.1 Reduction of a flux of a vector field. Let A ⊆ R3 be an open domain, and let
V : A → R3 be a C0 vector field. Finally let F ⊂ A be a continuous and piecewise C1 surface of
the parametric description r : E → R3, where we assume that E is a closed and bounded domain in
the (u, v)-plane, that r is injective almost everywhere, and where the normal vector field N(u, v) �= 0
almost everywhere.
Then the flux of V through F in the direction of the normal vector field N can be calculated by the
following plane integral over E,

∫

F
V · n dS =

∫

E

V(r(u, v)) ·N(u, v) du dv.

This is very important, so we include a couple of examples to exercise the method.

Example 33.1 We shall find the flux Φ of the vector field

V(x, y, z) =
(

yz,−xz, x2 + y2
)

, for (x, y, z) ∈ R3,

through the surface F , given by the parametric description

r(u, v) = (u sin v, u cos v, uv), for 0 ≤ u ≤ 1 and 0 ≤ v ≤ u.

Figure 33.2: The surface F of Example 33.1

Since

r′u(u, v) = (sin v, cos v, v), and r′v(u, v) = (u cos v,−u sin v, u),

1536
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we get

N(u, v) =

∣

∣

∣

∣

∣

∣

sin v cos v v
u cos v −u sinv v
e1 e2 e3

∣

∣

∣

∣

∣

∣

= u(cos v + v sin v, v, cos v − sin v,−1),

so N(0, 0) = 0 and N(u, v) �= 0 elsewhere in E.

The vector field V restricted to F is described in the parameters (u, v) as

V(r(u, v)) =
(

u2v cos v,−u2v sin v, u2
)

= u2(v cos v,−v sin v, 1),

so

V(r(u, v)) ·N(u, v) = u3
(

v cos2 v + v2 sin v cos v − v2 sin v cos v + v2 sin2 v − 1
)

= u3
(

v2 − 1
)

,

and the flux of V through F is given by

Φ =

∫

E

V(r(u, v)) ·N(u, v) du dv =

∫

E

u3
(

v2 − 1
)

du dv

=

∫ 1

0

{∫ u

0

(v − a) dv

}

u3 du =

∫ 1

0

{

1

2
u5 − u4

}

du =
1

12
− 1

5
= − 7

60
, ♦

Figure 33.3: The flux of the Coulomb field through F in Example 33.2
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Example 33.2 The Coulomb field or Newton field is defined by

Vk(x, y, z) := k
(x, y, z)

(x2 + y2 + z2)
3/2

for (x, y, z) �= (0, 0, 0),

where k �= 0 is some given constant. Its direction is always directed away from 0, and

�V� =
|k|
�x�2 .

We choose k = 1 in the following and write V instead of V1. We shall find the flux of V through the
surface F , which is the following square at height a > 0, and given by

F : [−a, a]× [−a, a]× {a}, with the unit normal n = (0, 0, 1).

The flux is

Φ :=

∫

F
V · n dS =

∫ a

−a

{

∫ a

−a

[

(x, y, z) · (0, 0, 1)
(x2 + y2 + z2)

3/2

]

z=a

dx

}

dy

=

∫ a

−a

{

∫ a

−a

a

(x2 + y2 + a2)
3/2

dx

}

dy.
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It follows from the symmetry that this plane integral is 8 times the plane integral restricted to the
triangle T on Figure 33.4. Since the two variables (x, y) only occur in the integrand in the form of
x2 + y2, it is natural to change to polar coordinates, ̺2 = x2 + y2. This means that we should use
polar coordinates on the triangle T . This is given in polar coordinates by

T : 0 ≤ ϕ ≤ π

4
, and 0 ≤ ̺ ≤ a

cosϕ
.

Then the flux becomes, where we remember the weight function ̺,

Figure 33.4: The restricted domain T of Example 33.2

ϕ = 8

∫

T

a

(x2 + y2 + a2)3/2
dxdy = 8

∫ π
4

0

{

∫ a
cos ϕ

0

a̺

(a2 + ̺2)3/2
d̺

}

dϕ

= 8

∫ π
4

0

[

a
√

a2 + ̺2

]0

a
cos ϕ

dϕ = 8

∫ π
4

0

{

1− | cosϕ|
√

1 + cos2 ϕ

}

dϕ

= 8

(

π

4
−
∫ π

4

0

cosϕ
√

2− sin2 ϕ
dϕ

)

= 2π − 8

∫ π
4

0

cosϕ
√

2− sin2 ϕ
dϕ.

If we change variable from ϕ to ψ by putting sinϕ =
√
2 sinψ, then we get for ϕ =

π

4
that sinψ =

1

2
,

so ψ =
π

6
. The ψ-interval becomes ψ ∈

[

0,
π

6

]

, and the flux is

Φ = 2π − 8

∫ π
4

0

cosϕ
√

2− sin2 ϕ
dϕ = 2π − 8

∫ π
4

ϕ=0

√
2 d sinψ

√

2− 2 sin2 ψ

= 2π − 8

∫ π
6

ψ=0

cosψ
√

1− sin2 ψ
dψ = 2π − 8

∫ π
6

0

cosψ

cosψ
dψ = 2π − 8π

6
=

2π

3
. ♦
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33.2 Divergence and Gauß’s theorem

We shall in this section consider a closed continuous and piecewise C1 surface F , which we also assume
to be the boundary of a bounded domain Ω ⊂ R3 in space. Furthermore, we assume that the unit
normal vector field n on F is defined almost everywhere. We shall for a bounded surface which is the
boundary of some domain Ω, i.e. F = ∂Ω, always assume that n is oriented away from Ω.

Let V be a C1 vector field defined on an open domain containing the closure Ω. Then the flux of V
through F = ∂Ω, i.e.

Φ :=

∫

F
V · n dS,

is interpreted as the flow of something, which flows out of Ω through the boundary surface F = ∂Ω.
Clearly, this is of interest in Physics, so we shall here analyze this situation more closely in order to
obtain an alternative way of calculating the flux. It is obvious that we in some sense must take into
account what is created inside Ω, so we can expect that the result is a space integral of some integrand
derived by a mathematical process from V.

We shall start the analysis with a very simple case, where we assume that Ω is an axiparallel paral-
lelepipedum. Using if necessary a translation we may assume that Ω is described by

ω = [0, a]× [0, b]× [0, c], for some a, b, c > 0.

Figure 33.5: The flux of V through the two parallel surfaces of height z = 0 and z = c of the
parallelepipedum ω. Note that the field n is pointing in opposite directions on the two surfaces.

We shall first consider the flux through the surfaces of ω of height z = 0 and z = c. We clearly have
n = (0, 0,−1) on the surface, for which z = 0, and n = (0, 0, 1) on the plane surface, for which z = c,
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cf. Figure 33.5. Hence, the combined contribution to the flux from these two opposite surfaces is

Φz =

∫ a

0

{

∫ b

0

Vz(x, y, c) dy

}

+

∫ a

0

{

∫ b

0

(−1)Vz(x, y, 0) dy

}

=

∫ a

0

{

∫ b

0

[Vz(x, y, z)]
z=c
z=0 dy

}

dx =

∫ a

0

{

∫ b

0

{
∫ c

0

∂Vz

∂z
(x, y, z)

}

dy

}

dx

=

∫

ω

∂Vz

∂z
(x, y, z) dΩ.

Similarly,

Φy =

∫

ω

dfrac∂Vy∂y(x, y, z) dΩ and Φz =

∫

ω

dfrac∂Vz∂z(x, y, z) dΩ,

so the total flux Φ of V through the boundary surface of ω is

Φ = Φx + ϕy +Φz =

∫

ω

{

Vx

∂x
+

Vy

∂y
+

Vz

∂z

}

daω.

This result is valid for every axiparallel parallelepipedum.

Figure 33.6: The flux of V through the surface of the union of two axiparallel parallelepipeda. The
contribution to the total flux is cancelled on the common surface, because the only change in the
integrand is the unit normal, which changes its sign.

When we calculate the total flux of two adjacent axiparallel parallelepipeda, we see that on a common
surface the total contribution to the flux is zero, because the only change in the integrand is the sign
of the unit normal vector field, which is + on the surface of ω1 and - on the surface of ω2.

By iterating this result we see in general, that if Ω is a union of finitely many axiparallel parallelepipeda,
then the total contribution from every “inner surface” must be zero, i.e. when there are two smaller
parallelepipeda ωi and ωj with a common surface. These “inner surfaces” also disappear in ∂Ω, so we

can replace
⋃k

j=1 ∂ωj with ∂
⋃k

j=1 ωj = ∂Ω.
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The argument above makes it plausible that when we approximate Ω from the inside with finite unions
⋃n

j=1 ωj of such parallelepipeda, and let n → +∞, then we may expect that the flux of V through a
general ∂Ω is given by

Φ :=

∫

∂Ω

V · n dS =

∫

Ω

{

Vx

∂x
+

Vy

∂y
+

Vz

∂z

}

dΩ,

and although the above is far from a correct proof, this is true under the assumptions we shall state
below in Theorem 33.2. However, since the integrand on the right hand side keeps occurring in many
cases, we first shorten the notation by giving it a name, which in the general Rn is coined by the
following definition.

Definition 33.1 Let V = (V1, . . . , Vn) be a C1 vector field in an open domain Ω ⊆ Rn. We define
the divergence of V by

div V :=
∂V1

∂x1
+ · · ·+ ∂Vn

∂xn
.

It is not possible here to give the proof of the following important theorem, because the closed surface
F = ∂Ω may not be nice, and even if it is, the approximation of Ω from the inside by Ωk =

⋃k
j=1 ωj

as described above in general gives a boundary ∂Ωk which is difficult to handle in comparison with
the surface integral over Ω. We therefore just quote the following very important theorem.
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Theorem 33.2 Gauß’s theorem in R3. Given a C1 vector field V on a domain A ⊆ R3. Let Ω ⊆ A
be closed and bounded, where we assume that the boundary ∂Ω is the union of closed continuous and
piecewise C1 surfaces, each with a unit normal vector field pointing away from Ω almost everywhere.
Then the flux of V through ∂Ω out of Ω is given by

Φ :=

∫

∂Ω

V · n dS =

∫

Ω

div V dΩ.

Consider again the axiparallel parallelepipedum ω, which was used to make this theorem plausible.
Then clearly the normal field does not exist on the edges, but these edges are just nullsets. This is
what we mean by the formulation of the theorem above.

It is important to note that the formula
∫

∂Ω

V · n dS =

∫

Ω

div V dΩ

can be read and applied in both directions. At first it may seem strange that we reformulate a two
dimensional surface integral to the left as a three dimensional space integral on the right hand side of
the equation. However, the examples later on will show that the calculations often become easier in
the space integral than in the surface integral.

The other situation may of course also occur. We shall give some examples in Section 33.5.

Note also, that the geometrical analysis is important. One should e.g. always check that the unit
vector field n is pointing away from Ω.

Theorem 33.2 is formulated for sets and vector fields in R3. There exists a similar result in R2, which
is given in the next theorem.

Theorem 33.3 Gauß’s theorem in R2. Consider a plane C1 vector field V on a plane domain
A ⊆ R2. Let E ⊂ A be a closed and bounded plane domain, where the boundary ∂E is the union of
closed continuous and piecewise C1 curves, each with a unit normal vector field pointing away from
E almost everywhere. Then the flux of V through E is given by

Φ :=

∫

∂E

(Vxnx + Vyny) ds =

∫

E

(

∂Vx

∂x
+

∂Vy

∂y

)

dS,

where V = (Vx.Vy) and n = (nx, ny) in rectangular coordinates.

If div V = 0, then we say that the vector field V is divergence free. Divergence free vector fields are
important in the applications in e.g. Physics, though not all relevant vector fields are divergence free.

Example 33.3 Area and volume formulæ. Let us first consider R2. If we consider thee vector field
V(x, y) = (x, y), then the divergence is given by

div V =
∂x

∂x
+

∂y

∂y
= 2.

When we apply Gauß’s theorem in two dimensions we get the area formula,

1

2

∫

∂E

x · n ds =
1

2

∫

E

div V dxdy =

∫

E

dxdy = area(E).
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In R3 the vector field V(x, y, z) = (x, y, z) has the divergence

div V =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 3,

so it follows from Gauß’s theorem in three dimensions that we have the following volume formula,

1

3

∫

∂Ω

x · n dS =
1

3

∫

Ω

div V dΩ = vol(Ω). ♦

Example 33.4 If a is a constant vector field, then trivially div a = 0, so the flux through any closed
boundary surface F = ∂Ω is zero, because we get from Gauß’s theorem that

Φ :=

∫

∂Ω

a · n dS =

∫

Ω

div adΩ = 0. ♦

Example 33.5 Let a, b, c be positive constants. We shall find the flux of Φ of the vector field

V(x, y, z) = (y, x, z + c) for (x, y, z) ∈ R3,

through the surface of the upper half of the massive ellipsoid, given by

x2

a2
+

y2

b2
+

z2

c2
≤ 1 and z ≥ 0.

It follows immediately that

div V =
∂y

∂x
+

∂x

∂y
+

∂(z + c)

∂z
= 1,

so the flux is

Φ =

∫

∂Ω

V · n dS =

∫

Ω

div V dΩ = vol(V) =
1

2
· 4π
3

abc =
2π

3
abc. ♦

33.3 Applications in Physics

We shall in this section give some applications of Gauß’s theorem in Physics, demonstrating that this
theory is indeed important in Physics.

33.3.1 Magnetic flux

The density of the C1 magnetic flux B satisfies for every domain Ω,
∫

ddΩ

B · n dS = 0,

which is the integral formulation of one of Maxwell’s equations. By an application of Gauß’s theorem
we get

∫

Ω

div B dΩ = 0 for every (measurable) set Ω ⊆ R3.
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Since div B is continuous (in fact, B ∈ C1), this implies that

div B = 0,

which is the differential formulation of the same of Maxwell’s equations as above.

In fact, if div B (x0) > 0, then due to the continuity also div B(x) > 0, whenever �x− x0� < δ for
δ > 0 sufficiently small. This would imply that

∫

Ωδ
div B dΩ > 0, where Ωδ = {x | �x− x0� < δ},

which is a contradiction, so we conclude that div B = 0.

Figure 33.7: For divergence free vector fields the flux inwards through F1 is equal to the flux outwards
through F2.

Then let V be a divergence free C1 vector field. Consider a domain Ω, such that the surface boundary
∂Ω is cut into two subsurfaces F1 and F2 as indicated on Figure 33.7 by a closed curve K.

Let Φ1 the the flux into Ω through F1, and Φ2 the flux out of Ω through F2. It follows fromGauß’s
theorem that the flux out of Ω through the whole of ∂Ω = F1 ∪ F2 is given by

Φ = Φ2 − Φ1 =

∫

F2

V · n dS +

∫

F1

V · (−n) dS =

∫

Ω

div V dΩ = 0.

In other words, the flux of a divergence free vector field through a surface of fixed boundary curve K
only depends on this closed curve K and not of the shape of the surface, which has K as boundary
curve.

We have already derived that the density of the magnetic flux is divergence free. Therefore, according
to the result above we can now talk of the magnetic flux being surrounded by a closed curve.

33.3.2 Coulomb vector field

Then we return to the Coulomb vector field, already considered in Example 33.2. We shall for conve-
nience choose k = 1, so the Coulomb field is here

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)
3/2

, for (x, y, z) �= (0, 0, 0).
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We shall first prove thatV is divergence free, divV = 0. It follows from straight forward differentiation
that

∂Vx

∂x
=

∂

∂x

{

x
(

x2 + y2 + z2
)− 3

2

}

=
(

x2 + y2 + z2
)− 3

2 − 3x2
(

x2 + y2 + z2
)− 5

2 ,

and similarly, due to the symmetry,

∂Vy

∂y
=

∂

∂y

{

x
(

x2 + y2 + z2
)− 3

2

}

=
(

x2 + y2 + z2
)− 3

2 − 3y2
(

x2 + y2 + z2
)− 5

2 ,

∂Vz

∂z
=

∂

∂z

{

x
(

x2 + y2 + z2
)− 3

2

}

=
(

x2 + y2 + z2
)− 3

2 − 3z2
(

x2 + y2 + z2
)− 5

2 ,

hence, by adding these three equations,

div V =
Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 3

(

x2 + y2 + z2
)− 3

2 − 3
(

x2 + y2 + z2
)1− 5

2 = 0.

Using Gauß’s theorem we conclude that the flux through any closed boundary surface ∂Ω of the
Coulomb field is zero, provided that 0 /∈ Ω!
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Then assume that 0 ∈ Ω◦ (an interior point of Ω). We put

Ba = B[0, a] =
�

(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ a2
�

, a > 0,

where a > 0 is chosen so small that Ba ⊂ Ω◦. When we apply Gauß’s theorem on the set Ω \ Ba,
where 0 /∈ Ω \Ba, then we get by the previous result that the flux through ∂ (Ω \Ba) = ∂Ω ∪ ∂Ba is

�

∂Ω

V · n dS +

�

∂Ba

V · (−n) dS =

�

Ω\Ba

div V dΩ = 0,

cf. Figure 33.8.

Figure 33.8: Analysis of Gauß’s theorem applied to the set Ω \Ba.

We note that −n on ∂Ba is the unit normal vector field pointing away from the solid set Ω\Ba. Also,
x2 + y2 + z2 = a2 on ∂Ba, so the Coulomb field is on ∂Ba given by

V∂Ba
=

an

a3
=

n

a2
, for x2 + y2 + z2 = a2.

Combining the results and comments above we conclude that when 0 ∈ Ω, then the flux of the
Coulomb field through ∂Ω is given by

�

∂Ω

V · n dS =

�

∂Ω

V · n dS +

�

∂Ba

V · (−n) dS +

�

∂Ba

V · n dS = 0+

�

∂BaV · n dS

=

�

∂Ba

n

a2
· n dS =

1

a2

�

∂Ba

dS =
1

a2
area (∂Ba) = 4π.

In other words, we have proved that for any solid body Ω with a reasonable ssurface ddΩ, the flux of
the Coulomb vector field V through ∂Ω is given by

�

∂Ω

V · n dS =







0 if 0 /∈ Ω,

4π if 0 ∈ Ω◦.

We do not consider the case, when 0 ∈ ∂Ω.
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33.3.3 Continuity equation

Consider a fluid or gas of density ̺ and velocity field v. Then the mass in a domain Ω is given by

M =

∫

Ω

̺ dΩ,

and the flow of mass through the surface ∂Ω away from Ω is given by the flux

q :=

∫

∂Ω

̺v · n dS.

The law of conservation of mass is then infintesimally expressed in the following way,

q dt = − dM.

Then we get by an application of Gauß’s theorem,

0 = q +
daM

dt
=

∫

∂Ω

̺v · n dS +
d

dt

∫

Ω

̺ dΩ =

∫

Ω

{

div(̺v) +
∂̺

∂t

}

dΩ.

Assuming that ̺ and v are of class C1, we see that the integrand div(̺v) +
∂̺

∂t
is continuous, and we

have previously seen that if f is a continuous function satisfying

∫

Ω

f dΩ = 0 for all subsets of Ω,

then f ≡ 0. We have therefore proved the continuity equation

div(̺v) +
∂̺

∂t
= 0.

This equation can also be found in other physical disciplines – the mathematical proof above is the
same and only the physical interpretations are different. If for instance u denotes the energy density,
and q the density of the energy flow, then the conservation of the energy is expressed by the similar
equation

div q+
∂u

∂t
= 0.

Similarly, if J denotes the density of a current and ̺ the density of the charge, then the law of
conservation of the electric charge is written

div J+
∂̺

∂t
= 0.

All these results stem from an application of Gauß’s theorem.

1548

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X 
Vector Fields I

1549 

Flux and divergence of a vector field. Gauß’s theorem

33.4 Procedures for flux and divergence of a vector field; Gauß’s theorem

33.4.1 Procedure for calculation of a flux

The flux Φ of a vector field V through a surface F is given by a surface integral (cf. Chapter 27) in
the following way:

If x = r(u, v), (u, v) ∈ E is a parametric representation of the surface F with a given continuous unit
normal vector field n, then the flux is given by

ΦF (V) =

∫

F
V · n dS =

∫

F
V(x) · n(x) dS =

∫

E

V(r(u, v)) ·N(u, v) du dv.

It is the amount of the vector field which “flows through the surface in the direction of the normal
vector” (e.g. per time unit).

Typically there are two different ways in which the flux can be calculated.

Standard procedure.

In principle this can always be applied, but it is often very cumbersome.

1) Divide if necessary F into convenient sub-surfaces F1, . . . , Fk each having its own unit normal
vector field n1, . . . , nk.

2) Check, whether F (or Fj) is “flat”, and if it is not too difficult to calculate
∫

F V · n dS as an
ordinary plane integral, because F is lying in a plane set.

3) If F is not flat, we calculate the normal vector corresponding to the specific parametric represen-
tation in the variables (u, v),

N(u, v) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez

∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that N(u, v) no longer is a unit normal vector field. Stated roughly, we build the weight
function into the new normal vector field N(u, v).

4) Calculate the plane integral over the parametric domain E,

ΦF(V) =

∫

E

V(r(u, v)) ·N(u, v) du dv.

33.4.2 Application of Gauß’s theorem

The method can in principle always be applied when the surface is “closed”, i.e. one adds a surface
with two numerically equal normal vector fields, which are pointing in the opposite directions, n and
−n, such that one surrounds a 3-dimensional domain Ω with outgoing normal, and an additional
surface integral, which hopefully should be easy to calculate.
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Figure 33.9: The surface of the unit half sphere is closed by adding the unit disc in the (x, y)-plane
with a normal vector pointing downwards (this gives us the closed upper unit half sphere with normal
vectors pointing outwards) and the unit disc in the (x, y)-plane with the normal vector pointing
upwards.

1) Check that F = ∂Ω is closed, i.e. this surface surrounds a 3-dimensional body Ω.

2) Quote Gauß’s theorem and reduce the surface integral to a space integral,

∫

∂Ω

n ·V dS =

∫

Ω

div V dΩ.

3) Calculate the space integral
∫

Ω
div V dΩ by applying one of the methods from Chapter 24.

Remark 33.1 Usually one would not call it a reduction to go from 2 dimensions to 3 dimensions; but
note that the surface F of dimension 2 may have a fairly complicated geometry, while we in principle
always end up with rectangular coordinates i 3 dimensions, which here may be considered as a simpler
situation. ♦
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33.5 Examples of flux and divergence of a vector field; Gauß’s theorem

33.5.1 Examples of calculation of the flux

Example 33.6

A. Find the flux Φ2 of the vector field

V(x, y, z) =
(

x2 + y2, z2, y2
)

, (x, y, z) ∈ R3,

through the surface F defined by

r(u, v) = (u+ v, u− v, u+ 2v), u2 + v2 ≤ 4.

–4

–2

2

4

–2
–1

1
2

–2
–1

1
2

Figure 33.10: The surface F and its projection onto the (x, y)-plane.

D. We see that the surface F lies in a plane, but because this plane is oblique, it is very difficult to
exploit its flat structure. Instead we analyze the reduction formula

∫

F
V · n dS =

∫

E

V(r(u, v)) ·N(u, v) du dv,

where the abstract surface integral is rewritten as an abstract plane integral. By inspecting the
right hand side it is seen that we shall

1) identify the parametric domain E,

2) find the normal vector N(u, v) for the surface F , corresponding to the parameters (u, v),

3) express V(r(u, v)) on the surface F as a function in the parameters (u, v).

I. 1) The parametric domain is the disc of centre (0, 0) and radius 2,

E = {(u, v) | u2 + v2 ≤ 4 = 22}.

2) The normal vector. It follows from the parametric representation of the surface that

∂r

∂u
= (1, 1, 1) and

∂r

∂v
= (1,−1, 2).
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–2

–1

0

1

2

–2 –1 1 2

Figure 33.11: The parametric domain E is a disc of centre (0, 0) and radius 2.

Hence, the normal vector is

N(u, v) =
∂r

∂u
× ∂r

∂v
=

∣

∣

∣

∣

∣

∣

e1 e2 e3
1 1 1
1 −1 2

∣

∣

∣

∣

∣

∣

= (3,−1,−2).
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3) The restriction of the vector field to the surface is given by

V(x, y, z) =
(

x2, y2, z2
)

=
(

(u+ v)2 + (u− v)2, (y + 2v)2, (u − v)2
)

=
(

2
(

u2 + v2
)

, (u+ 2v)2, (u− v)2
)

.

4) The integrand is according to 2 and 3,

V ·N = (3,−1,−2) ·
(

2
(

u2 + v2
)

, (u+ 2v)2, (u− v)2
)

= 6
(

u2 + v2
)

− (u+ 2v)2 − 2(u− v)2

= 6u2 + 6v2 −
(

u2 + 4uv + 4v2
)

−
(

2u2 − 4uv + 2v2
)

= 3u2.

5) By insertion of 4 into the reduction formula we get by also using 1,

Φ2 =

∫

F
V · n dS =

∫

E

V(r(u, v)) ·N(u, v) du dv = 3

∫

E

u2 du dv.

Since the parametric domain E is a disc, it is easiest to reduce it in polar coordinates,

u = ̺ cosϕ, v = ̺ sinϕ, 0 ≤ ̺ ≤ 2, 0 ≤ ϕ ≤ 2π.

Hence we get the result

Φ2 = 3

∫

E

u2 du dv = 3

∫ 2π

0

{∫ 2

0

̺2cos2 ϕ · ̺ d̺
}

dϕ

= 3

∫ 2π

0

cos2 ϕdϕ ·
∫ 2

0

̺3 d̺ = 3 · π ·
[

1

4
̺4
]2

0

= 12π. ♦

Example 33.7

A. Let a, b, c > 0, be constants, and let

V(x, y, z) = (y, x, z + c), (x, y, z) ∈ R3.

Find the flux Φ3 of V through the half ellipsoidal surface

F1 =

{

(x, y, z)

∣

∣

∣

∣

(x

a

)2

+
(y

b

)2

+
(z

c

)2

= 1, z ≥ 0

}

where the normal is directed u upwards, n · ez ≥ 0, and the flux Φ4 of V through the projection F2

of F1 onto the (x, y)-plane,

F2 =

{

(x, y, z)

∣

∣

∣

∣

(x

a

)2

+
(y

b

)2

≤ 1

}

, n = (0, 0, 1).

D. Summing up we see that F1 and F2 surround a spatial domain Ω. The flux Φ3 represents e.g. the
energy which flows out of Ω through F1, and Φ4 represents the energy which flows into Ω through
F2. Hence, the difference Φ3 − Φ4 represents the energy which is created by V in Ω.
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Figure 33.12: The half ellipsoidal surface F1 for a = 1, b = 2 and c = 3. The surface F2 is hidden
below F1 in the (x, y)-plane.

I 1. Consider first

F1 =

�

(x, y, z)

�

�

�

�

�x

a

�2

+
�y

b

�2

+
�z

c

�2

= 1, z ≥ 0

�

, n · e3 ≥ 0.

The easiest method, which can be found in some textbooks, is to use spherical coordinates (left to
the reader). We shall here as an alternative apply rectangular coordinates instead. Then we can
consider F1 as the graph of the function

z = f(x, y) = c

�

1−
�x

a

�2

−
�y

b

�2

,
�x

a

�2

+
�y

b

�2

≤ 1.

Then the hidden parametric representation is given by

r(x, y) =

�

x, y, c

�

1−
�x

a

�2

−
�y

b

�2
�

,
�x

a

�2

+
�y

b

�2

≤ 1.

This parametric representation is differentiable when

�x

a

�2

+
�y

b

�2

< 1,

i.e. when z > 0. If so, we get

∂r

∂x
=









1, 0,− c

a2
x

�

1−
�x

a

�2

−
�y

b

�2









=

�

1, 0,− c2

a2
· x
z

�

,

and analogously

∂r

∂y
=









0, 1,− c

b2
y

�

1−
�x

a

�2

−
�y

b

�2









=

�

0, 1,−c2

b2
· y
z

�

,
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where we have used that z = c

�

1−
�x

a

�2

−
�y

b

�2

in order not to be overburdened with a square

root in the following. (It is always possible to substitute back again, if necessary). Then

N(x, y) =
∂r

∂x
× ∂r

∂y
=

�

�

�

�

�

�

�

�

�

�

�

�

�

e1 e2 e3

1 0 − c2

a2
x

z

0 1 −c2

b2
y

z

�

�

�

�

�

�

�

�

�

�

�

�

�

=

�

c2

a2
· x
z
,
c2

b2
· y
z
, 1

�

.

Now N · e3 = 1 > 0, so N(x, y) is pointing in the right direction.

The integrand is then calculated,

V ·N = (y, x, z + c) ·
�

c2

a2
· x
z
,
c2

b2
· y
z
, 1

�

= c2
�

1

a2
+

1

b2

�

xy

z
+ z + c.

The domain of integration is the ellipse in the (x, y)-plane

E =

�

(x, y)

�

�

�

�

�x

a

�2

+
�y

b

�2

≤ 1

�

.

Hence, the flux is equal to the improper plane integral

Φ3 =

�

F1

V · n dS

=

�

E















c

�

1

a2
+

1

b2

�

· xy
�

1−
�x

a

�2

−
�y

b

�2
+ c

�

1−
�x

a

�2

−
�y

b

�2

+ c















dxdy.

Then note that we have e.g.
�

x

�

1−
�x

a

�2

−
�y

b

�2

dx = −a2
�

1−
�x

a

�2

−
�y

b

�2

,

i.e. if we integrate over an interval of the form [0, k] (where the integrand is ≥ 0) or over [−k, 0]
(where the integrand is ≤ 0), then we get finite values in both cases, i.e. the improper integral is
convergent.

If we put k = a

�

1−
�y

b

�2

, it follows of symmetric reasons that

�

E

c

�

1

a2
+

1

b2

�

xy
�

1−
�x

a

�2

−
�y

b

�2
dS

= lim
ε→0+

� b

−b

c

�

1

a2
+

1

b2

�

y















� a
√

1−( y
b )

2−ε

−a
√

1−( y
b )

2
+ε

xdx
�

1−
�x

a

�2

−
�y

b

�2















= lim
ε→0+

c

�

1

a2
+

1

b2

�� b

−b

y · 0 dy = 0.
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The expression of the flux is therefore reduced to

Φ3 = 0 +

∫

E

(z + c) dxdy

=

∫

E

c

√

1−
(x

a

)2

−
(y

b

)2

dxdy + c · area(E)

= c

∫

E

√

1−
(x

a

)2

−
(y

b

)2

dxdy + c · πab.

The purpose of the following elaborated variant is to straighten up the ellipse by the change of
variables

u =
x

a
, v =

y

b
, i.e. x = a u, y = b v.

The corresponding Jacobian is

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

a 0
0 b

∣

∣

∣

∣

= ab > 0.
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By the transformation formula the parametric domain E is mapped into the unit disc B in the
(u, v)-plane, hence

Φ3 = πabc+ c

∫

E

√

1−
(x

a

)2

−
(y

b

)2

dxdy

= πabc+ c

∫

B

√

1− u2 − v2
∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

= πabc+ ab · c
∫

B

√

1− u2 − v2 du dv

= abc

{

π +

∫ 2π

0

{∫ 1

0

√

1− ̺2 · ̺ d̺
}

dϕ

}

= abc

{

π + 2π

∫ 1

0

√
1− t · 1

2
dt

}

= πabc

{

1 +

[

−2

3
(1− t)

3
2

]1

0

}

= πabc ·
(

1 +
2

3

)

=
5

3
πabc.

No matter whether one is using spherical or rectangular coordinates, it is very difficult to find
Φ3, and there are lots of pit falls (as seen above we get e.g. an improper surface integral in the
rectangular version).

I 2. Next look at

F2 = E =

{

(x, y, z)

∣

∣

∣

∣

(x

a

)2

+
(y

b

)2

≤ 1, z = 0

}

, n = (0, 0, 1).

The restriction of V to E is obtained by putting z = 0, i.e.

V(x, y, 0) = (y, x, c).

The unit normal vector is n = (0, 0, 1), so the integrand becomes

V(x, y, 0) · n = (y, x, c) · (0, 0, 1) = c.

We conclude by using the reduction theorem on the simple calculation

Φ4 =

∫

E

V · n dS = c

∫

E

dS = c · area(E) = c · πab = πabc.

I 3. Finally we have (cf. Figure 33.13),

The flux out of ∂Ω of V is according to I 1. and I 2. given by

Φ3 − Φ4 =
5

3
π abc− π abc =

2

3
π abc,

where we use −Φ4, because Φ4 indicates the flux into Ω through F2.
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Figure 33.13: The domain Ω.

Let us then alternatively show the same result by means of Gauß’s theorem.

We first realize that F1 and F2 surround a spatial domain

Ω =

{

(x, y, z)

∣

∣

∣

∣

(x

a

)2

+
(y

b

)2

+
(z

c

)2

≤ 1, z ≥ 0

}

.

From V(x, y, z) = (y, x, z + c) we then get

div V = 0 + 0 + 1 = 1.

The flux out through ∂Ω (the normal of direction away from the domain) is then according to
Gauß’s theorem,

Φ =

∫

∂Ω

V · n dS =

∫

Ω

div V dΩ =

∫

Ω

dΩ = vol(Ω) =
1

2

(

4π

3
abc

)

=
2π

3
abc.

By comparison we see that this is exactly Φ3 − Φ3 as we claimed.

Summarizing, Φ3 in I 1. was difficult to compute, while Φ4 in I 2. and Φ in I 3. were easy. Since
Φ3 − Φ4 = Φ, we might have calculated Φ3 by computing the easy right hand side of

Φ3 = Φ4 +Φ,

i.e. expressed in integrals,

(33.1)

∫

F1

V · n dS =

∫

F2

V · n dS +

∫

Ω

div V dΩ,

or put in other words: an ugly surface integral (the left hand side) is expressed as the sum of a simple
surface integral (here even a plane integral) and a simple spatial integral (the right hand side).

1558

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X 
Vector Fields I

1559 

Flux and divergence of a vector field. Gauß’s theorem

This technique can often be applied when one shall calculate the flux through a more or less compli-
cated surface F1.

1) First draw a figure, thereby realizing where F1 is placed in the space.

2) Then add a nice surface F2, such that F1 ∪F2 becomes the boundary of a spatial body Ω. Check
in particular that the normal vector on F2 is always pointing away from the domain Ω).

3) Calculate the right hand side of (33.1), thereby finding the flux through F1.

Remark 33.2 We shall later in Example 33.9 give some comments which will give us an even more
easy version of calculation. ♦

Example 33.8

A. Let the surface F be the square

F = {(x, y, z) | |x| ≤ a, |y| ≤ a, z = a}, a > 0,

at the height a with the unit normal vector n = (0, 0, 1) pointing upwards.

Find the flux through F of the Coulomb field

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)
3/2

, (x, y, z) �= (0, 0, 0).

(Concerning the Coulomb field see also Example 33.9).

0

0.5
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1.5
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–0.5

0.5

1
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–0.5

0.5

1

Figure 33.14: The surface F for a = 1.

D. Using rectangular coordinates we get from the reduction theorem that

Φ5 =

∫

F
V · n dS =

∫ a

−a

{

∫ a

−a

(x, y, a) · (0, 0, 1)
(x2 + y2 + a2)

3/2
dx

}

dy

=

∫ a

−a

{

∫ a

0

a

(x2 + y2 + a2)
3/2

dx

}

dy = 4a

∫ a

0

{

∫ a

0

1

(x2 + y2 + a2)
3/2

dx

}

dy,
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where we have used that the integrand is even in both x and y, and that the domain is symmetric.

So far, so good, but from now on the calculations become really tough. The reason is that the
integrand invites to the application of polar coordinates, while the domain is better described
in rectangular coordinates. The mixture of these two coordinate systems will always cause some
difficulties.

For pedagogical reasons we shall here show both variants, first the rectangular version, which is
extremely difficult, and afterwards the polar version, which is “only” difficult. This exercise will
show that one cannot just restrict oneself to rely on the rectangular method alone!
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I 1. Rectangular variant. Calculate directly

Φ5 = 4

∫ a

0

{

∫ a

0

a

(x2 + y2 + a2)
3/2

dx

}

dy.

First we note by a partial integration of an auxiliary function that

∫ a

0

1 ·
(

t2 + c2
)α

dt =
[

t ·
(

t2 + c2
)α

]a

0
−
∫ a

0

t · α
(

t2 + c2
)α−1 · 2t dt

= a
(

a2 + c2
)α − 2α

∫ a

0

(

t2 + c2 − c2
) (

t2 + c2
)α−1

dt

= a
(

a2 + c2
)α − 2α

∫ a

0

(

t2 + c2
)α

dt+ 2αc2
∫ a

0

(

t2 + c2
)α−1

dt.

When α �= 0 and c > 0, we get by a rearrangement

(33.2)

∫ a

0

(

t2 + c2
)α−1

dt =
1 + 2α

2αc2

∫ a

0

(

t2 + c2
)α

dt− a
(

a2 + c2
)α

2αc2
.

Choosing t = x and α = −1

2
and c2 = y2 + a2 in (33.2) and multiplying by a, we get the inner

integral in Φ5: Since 1 + 2α = 0 we have

∫ a

0

a

(x2 + y2 + a2)
3/2

dx = −a2
(

a2 + y2 + a2
)−1/2

2

(

−1

2

)

(a2 + y2)

=
a2

(y2 + a2)
√

y2 + 2a2
,

which gives by insertion

Φ5 = 4

∫ a

0

a2

(y2 + a2)
√

y2 + 2a2
dy.

So far we can still use the pocket calculator TI-89, but from now on it denies to calculate the exact
value! Therefore, we must from now on continue by using the old-fashioned, though well tested
methods from the time before the pocket calculators.

When we consider the dimensions we see that y ∼ a, hence a convenient substitution must be
y = a u. Then

Φ5 = 4

∫ a

0

a2

(y2 + a2)
√

y2 + 2a2
dy = 4

∫ 1

0

a2

(a2u2 + a2)
√
a2u2 + 2a2

· a du

= 4

∫ 1

0

1

(u2 + 1)
√
u2 + 2

du = 4

∫ 1

0

1

(u2 + 1)
√

(u2 + 1) + 1
du,

where it should be surprising that Φ5 is independent of a.

The following circumscription is governed by the following general principle:

• Whenever the square of two terms is involved then it should be rewritten as 1 plus/minus
something which has “something to do” with the other terms in the integrand.
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The circumscription indicates that we should try the monotonous substitution

t = u2 + 1, u =
√
t− 1, du =

1

2

1√
t− 1

dt, t ∈ [1, 2].

By this substitution we get

Φ5 = 4

∫ 1

0

1

(u2 + 1)
√

(u2 + 1) + 1
du = 4

∫ 2

1

1

t
√
t+ 1

· 1
2

1√
t− 1

dt = 2

∫ 2

1

dt

t
√
t2 − 1

.

The structure
√
t2 − 1 looks like

√

cosh2 w − 1 =
√

sinh2 w = | sinhw|,

which is a means to get rid of the square root. We therefore try another substitution,

t = coshw, w = ln(t+
√

t2 − 1), dt = sinhw dw, w ∈ [0, ln(2 +
√
3)].

Since we have sinhw ≥ 0 in this interval, we get

Φ5 = 2

∫ 2

1

dt

t
√
t2 − 1

= 2

∫ ln(2+
√
3)

0

sinhw

coshw · sinhw dw

= 2

∫ ln(2+
√
3)

0

dw

coshw
= 2

∫ ln(2+
√
3)

0

2

ew + e−w
dw

= 4

∫ ln(2+
√
3)

0

ew

1 + (ew)
2 dw = 4 [Arctan (ew)]

ln(2+
√
3)

0

= 4
{

Arctan(2 +
√
3))− π

4

}

= 4Arctan(2 +
√
3)− π.

Our troubles in the rectangular case are not over. How can we find Arctan(2+
√
3) without using

a pocket calculator?

0

1

2

3

4

y

0.20.40.60.8 1 1.2

x

Figure 33.15: The rectangular triangle with the opposite side = 2+
√
3, so ϕ = Arctan(2+

√
3) is the

nearby angle.
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Geometrically ϕ = Arctan(2 +
√
3) is that angle in the rectangular triangle on the figure, which

is >
π

4
.

The hypothenuse can be found by Pythagoras’ theorem,

r2 = (2 +
√
3)2 + 12 = 4 + 3 + 4

√
3 + 1 = 8 + 4

√
3 = 4(2 +

√
3),

i.e. r = 2
√

2 +
√
3. From ϕ >

π

4
, follows that ψ =

π

2
− ϕ <

π

4
, and

cosψ =
1

r
(2 +

√
3) =

1

2

√

2 +
√
3.

We shall get rid of the square root by squaring, so we try

cos 2ψ = 2 cos2 ψ − 1 = 2 · 1
4
(2 +

√
3)− 1 = 1 +

1

2

√
3− 1 =

√
3

2
.

Since we have been so careful to show that 0 < ψ <
π

4
, it follows that 0 < 2ψ <

π

2
, hence

2ψ = Arccos

(√
3

2

)

=
π

6
, i.e. ψ =

π

12
.

Then

Arctan(2 +
√
3) = ϕ =

π

2
− ψ =

π

2
− π

12
=

5π

12
.

By a final insertion we get that the flux is

Φ5 = 4Arctan(2 +
√
3)− π = 4 · 5π

12
− π =

5π

3
− π =

2π

3
.

Remark 33.3 It is obvious why this variant is never seen in ordinary textbooks. The morale is
that even if something can be done, it does not always have to, and we should of course have
avoided this variant. It should, however, be added that the pocket calculator finally will find that

Arctan(2 +
√
3) =

5π

12
. ♦

I 2. Polar variant. We shall start from the very beginning by

Φ5 = 4

∫ a

0

{

∫ a

0

a

(x2 + y2 + a2)3/2
dx

}

dy.

The domain [0, n]2 is not fit for a polar description, but if we note that the integrand is symmetrical
about the line y = x, then this symmetry gives that

Φ5 = 2 · 4
∫

T

a

(x2 + y2 + a2)
3/2

dxdy = 8

∫

T

a

(x2 + y2 + a2)
3/2

dxdy,

where the triangle T is bounded by y = 0 in the right half-plane (corresponding in polar coordinates

to ϕ = 0), the line y = x (corresponding to ϕ =
π

4
) and x = ̺ cosϕ = a, i.e.

̺ =
a

cosϕ
.

1563

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X 
Vector Fields I

1564 

Flux and divergence of a vector field. Gauß’s theorem

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 33.16: The domain T is the lower triangle and a = 1.

Therefore, a polar description of T is

T =

{

(̺, ϕ)

∣

∣

∣

∣

0 ≤ ϕ ≤ π

4
, 0 ≤ ̺ ≤ a

cosϕ

}

.
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Then the rest follows from the usual reduction theorems,

Φ5 = 8

�

T

a

(x2 + y2 + a2)
3/2

dS = 8

� π
4

0

�

� a
cos ϕ

0

a

(̺2 + a2)
3/2

· ̺ d̺
�

dϕ.

The inner integral is calculated by using the substitution

t = ̺, dt = 2̺ d̺, i.e. ̺ d̺ =
1

2
dt,

hence

8

� a
cos ϕ

0

a

(̺2 + a2)3/2
̺ d̺ = 4

� 4
cos2 ϕ

0

a

(t+ a2)3/2
dt

= 4

�

− 2a

(t+ a2)1/2

�
a2

cos2 ϕ

= 8























1− a
�

a2

cos2 ϕ
+ a2























= 8

�

1− a| cosϕ|
a
�

1 + cos2 ϕ

�

= 8

�

1− | cosϕ|
�

1 + cos2 ϕ

�

.

Since | cosϕ| = cosϕ for 0 ≤ ϕ ≤ π

4
, we get by an insertion and an application of the substitution

u = sinϕ, du = cosϕdϕ, cos2 ϕ = 1− sin2 ϕ = 1− u2,

that

Φ5 = 8

� π
4

0

�

1− 1
�

1 + cos2 ϕ
· cosϕ

�

dϕ

= 8 · π
4
− 8

� 1√
2

0

du
�

1 + (1− u2)
= 2π − 8

� 1√
2

0

du√
2− u2

= 2π − 8

� 1√
2

0

1
�

1−
�

u√
2

�2
· 1√

2
du = 2π − 8

� 1
2

0

dv√
1− v2

= 2π − 8 [Arcsin v]
1
2
0 = 2π − 8 · π

6
=

2π

3
.

Remark 33.4 It should be admitted that the polar version also contains some difficulties, though
they are not as bad as in the rectangular version. ♦
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Example 33.9
The Coulomb vector field (cf. Example 33.8),

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)3/2
, for (x, y, z) �= (0, 0, 0),

satisfies (where one absolutely should not put everything in the same fraction with the same denom-
inator, unless one wants to obscure everything)

∂Vx

∂x
=

∂

∂x

{

x

(x2 + y2 + z2)
3/2

}

=
1

(x2 + y2 + z2)
3/2

− 3x2

(x2 + y2 + z2)
5/2

,

∂Vy

∂y
=

∂

∂y

{

y

(x2 + y2 + z2)3/2

}

=
1

(x2 + y2 + z2)3/2
− 3y2

(x2 + y2 + z2)5/2
,

∂Vz

∂z
=

∂

∂z

{

z

(x2 + y2 + z2)
3/2

}

=
1

(x2 + y2 + z2)
3/2

− 3z2

(x2 + y2 + z2)
5/2

,

from which we get by adding these expressions,

div V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
=

3

(x2 + y2 + z2)
3/2

− 3
(

x2 + y2 + z2
)

(x2 + y2 + z2)
5/2

= 0,

i.e. V is divergence free so we can use the results of Section 33.3.2 for domains Ω, which do not contain
the point (0, 0, 0).

A. Let Ω be any spatial domain with (0, 0, 0) as an inner point. Find the flux of the Coulomb field
through ∂Ω, i.e. find

∫

∂Ω
V · n dS.

D. Since div V is not defined in (0, 0, 0), we cannot apply Gauß’s theorem directly. But since (0, 0, 0)
is an inner point, there exists a ball

K = K(0; r) ⊂ Ω,

totally contained in Ω. If we cut K out of Ω, we get a domain Ω̃ = Ω \ K, in which div V is
defined everywhere and equal to 0. According to Section 33.3.2 the surface ∂Ω can be deformed
into ∂K, and then the flux through ∂K can be calculated as an ordinary surface integral. (The
singular point (0, 0, 0) lies in K, so we cannot apply Gauß’s theorem in the latter calculation).

I. We are just missing one thing. Since both ∂Ω and ∂K are closed surfaces, neither of them has a
boundary curve, so we get formally

δ(∂Ω) = ∅ = δ(∂K).

Alternatively there is flowing just as much into Ω̃ through ∂K as out of Ω̃ through ∂Ω, because
the flow is balanced.

Thus we have proved by using Gauß’s theorem that
∫

∂Ω

V · n dS =

∫

∂K

V · n dS.

The right hand side is calculated as a usual surface integral, where it this time is worthwhile to
keep the abstract formulation as long as possible.
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1) On ∂K we have r2 = x2 + y2 + z2, i.e. r =
(

x2 + y2 + z2
)1/2

, and

n(x, y, z) =
1

r
(x, y, z).

2) The vector field is then rewritten in the following way

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)
3/2

=
1

r3
(x, y, z) =

1

r2
· 1
r
(x, y, z) =

1

r2
n,

where we have used 1).

3) Since n · n = �n�2 = 1, we get by an insertion of 2) that the flux is given by
∫

∂Ω

V · n dS =

∫

∂K

V · n dS =

∫

∂K

1

r2
n · n dS

=
1

r2

∫

∂K

dS =
1

r2
area(∂K) =

1

r2
· 4πr2 = 4π,

because the area of a sphere of radius r is given by 4πr2.

The result can be applied in an improved version of the horrible Example 33.8. Let Ω = K(0; r),
where r >

√
3 a, and let T be the cube of centre 0 and edge length 2a. Then the flux through ∂T

is equal to the flux through the sphere ∂Ω, i.e. according to the above,

∫

∂T

V · n dS =

∫

∂Ω

V · n dS = 4π.

On the other hand, ∂T is disintegrated in a natural way into six squares of the same congruent form:
They appear from each other by a convenient revolution around one of the axis. The Coulomb
field is due to its symmetry invariant (apart from a change of letters) by these revolutions, so the
flux is the same through every one of the six squares. If we choose one of these. e.g.

F = {(x, y, z) | −a ≤ x ≤ a, −a ≤ y ≤ a, z = a} = [−a, a]× [−a, a]× {a},

then

4π =

∫

∂T

V · n dS = 6

∫

∩F

V · n dS,

from which
∫

F
V · n dS =

1

6
· 4π =

2π

3
.

Obviously this method is far easier in its calculations than the method applied in Example 33.8.
♦
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Figure 33.17: In most calculus courses Ω is typically a ball.

Example 33.10 Assume that Ω e.g. represents a subsoil water reservoir, which is polluted by some
fluid or gas of density ̺ = ̺(x, y, z, t) and velocity vector v = v(x, y, z, t).
The mass of the polluting agent in Ω at time t is given by

M = M(t) =

∫

Ω

̺(x, y, z, t) dΩ =

∫

Ω

̺ dΩ.

The change of mass in time is then obviously equal to

(33.3)
dM

dt
=

d

dt

∫

Ω

̺(x, y, z, t) dΩ =

∫

Ω

∂̺

∂t
dΩ.
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This change must be equal to the flow of mass into Ω by the vector field

̺v = ̺(x, y, z, t)v(x, y, z, t).

Since −n points into Ω, this amount is according to Gauß’s theorem equal to

−q = −
∫

∂Ω

̺v · n dS = −
∫

Ω

div(̺v) dΩ.

When this expression is equated to (33.3), we get after a rearrangement that

0 = q +
dM

dt
=

∫

Ω

div(̺v) dΩ +

∫

Ω

∂̺

∂t
dΩ =

∫

Ω

{

div(̺v) +
∂̺

∂t

}

dΩ.

This is true for every domain Ω. Assuming that the integrand is continuous (what it always is in
practical applications), it must be 0 everywhere. In fact, if the integrand e.g was positive in a point,
then it had due to the continuity also to be positive in an open domain Ω1, and then the integral over
Ω1 becomes positive too, contradicting the assumption.

Thus we have once more derived the continuity equation

div(̺v) +
∂̺

∂t
= 0,

which the density and the velocity vector field of the pollution vector field must satisfy.

Remark 33.5 Here the divergence is referring to the spatial variables and not to the time variable
t. Hence, the continuity equation is written in all details in the following way

∂

∂x
(̺ vx) +

∂

∂y
(̺ vy) +

∂

∂z
(̺ vz) +

∂̺

∂t
= 0.

Furthermore it should be noted that there is a big difference here between the application of
d

dt
and

∂

∂t
. ♦
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Example 33.11 Find in each of the following cases the flux of the given vector field through the
described oriented surface F .

1) The flux of V(x, y, z) = (z, x,−3y2z) through the surface F given by x2+ y2 = 16 for x ≥ 0, y ≥ 0
and z ∈ [0, 5], where the normal vector n is pointing away from the Z-axis.

2) The flux of V(x, y, z) = (cosx, 0, cosx+cos y) through the surface F given by (x, y) ∈ [0, π]×
[

0,
π

2

]

and z = 0, and where n = ez.

3) The flux of V(x, y, z) = (xy, z2, 2yz) through the surface F given by x2 + y2 + z2 = a2, and x ≥ 0,
y ≥ 0, z ≥ 0, and where n is pointing away from origo.

4) The flux of V(x, y, z) = (x + y, x − y, y2 + z) through the surface F given by x2 + y2 ≤ 1 and
z = xy, and where n · ez > 0.

5) The flux of

V(x, y, z) =
1

(x2 + y2 + z2)
3
2

(x, y, z),

through the surface F given by ̺ ≤ a and z = h, and where n = ez.

[Cf. Example 33.14].

6) The flux of

V(x, y, z) =
1

(x2 + y2 + z2)
3
2

(x, y, z),

through the surface F given by ̺ = a and z ∈ [−h, h], and where n is pointing away from the
Z-axis.

[Cf. Example 33.14].

7) The flux of V(x, y, z) = (y, x, x+ y+ z) through the surface F given by the parametric description

r(u, v) = (u cos v, u sin v, hv), u ∈ [0, 1], v ∈ [0, 2π].

8) The flux of V(x, y, z) = (y,−x, z2) through the surface F given by the parametric description

r(u, v) =
(√

u cos v,
√
u sin v, v

3
2

)

, 1 ≤ u ≤ 2, 0 ≤ v ≤ u.

9) The flux of V(x, y, z) = (yz,−xz, hz) through the surface F given by the parametric description

r(u, v) = (u cos v, u sin v, hv), u ∈ [0, 1], v ∈ [0, 2π].

A Flux of a vector field through a surface.

D Sketch whenever possible the surface. If the surface is only described in words, set up a parametric
description. Compute the normal vector N (possibly the normed normal vector n) and check the
orientation. Finally, find the flux.

I 1) The surface is in semi polar coordinates described by

̺ = a, ϕ ∈
[

0,
π

2

]

, z ∈ [0, 5],

and the surface is a cylinder with the parameter domain

E =
{

(ϕ, z)
∣

∣

∣ ϕ ∈
[

0,
π

2

]

, z ∈ [0, 5]
}

.
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Figure 33.18: The surface F of Example 33.11.1.
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Figure 33.19: The surface F of Example 33.11.2.

The unit normal vector is

n = (cosϕ, sinϕ, 0),

and the area element is

dS = ds dz = 4 dϕdz.

Hence we get the flux
∫

F
V · n dS =

∫

E

{z cosϕ+ 4 cosϕ · sinϕ} · 4 dϕdz

= 4

∫ π
2

0

{∫ 5

0

(z cosϕ+ 4 sinϕ · cosϕ) dz
}

dϕ

= 4

∫ π
2

0

{

25

2
cosϕ+ 20 sinϕ cosϕ

}

dϕ = 4 · 25
2

+ 4 · 20 · 1
2

= 90.
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Figure 33.20: The surface F of Example 33.11.3 for a = 1.

2) In this case the flux is

∫

F
V · n dS =

∫ π

0

{

∫ π
2

0

(cos x+ cos y) dy

}

dx

=

∫ π

0

{π

2
cosx+ 1

}

dx = 0 + 1 · π = π.
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3) The surface is a subset of the sphere of centrum (0, 0, 0) and radius a, lying in the first octant.

Choosing rectangular coordinates we find the area element on F ,

dS =
a

√

a2 − x2 − y2
dxdy

(

= “
a

z
dxdy”

)

,

and the unit normal vector is

n =
1

a
(x, y, z) =

1

a

(

x, y,
√

a2 − x2 − y2
)

, (x, y) ∈ E,

where the parameter domain is

E =
{

(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤
√

a2 − x2
}

.

Then the flux of the vector field V(x, y, z) = (xy, z2, 2yz) through F is
∫

F
V · n dS =

∫

F
(xy, z2, 2yz) · 1

a
(x, y, z) dS

=
1

a

∫

F

{

x2y + yz2 + 2yz2
}

dS =
1

a

∫

F
y(x2 + 3z2) dS

=
1

a

∫

E

a

{

yx2

√

a2 − x2 − y2
+ 3y

√

a2 − x2 − y2

}

dxdy

=

∫ a

0

{

∫

√
a2−x2

0

{

x2

√

a2 − x2 − y2
+ 3

√

a2 − x2 − y2

}

y dy

}

dx

=
1

2

∫ a

0

{

∫ a2−x2

0

(

x2

√
a2 − x2 − t2

+ 3
√

a2 − x2 − t

)

dt

}

dx

=
1

2

∫ a

0

[

−2x2
√

a2 − x2 − t2 − 3 · 2
3

(

√

a2 − x2t
)3

]a2−x2

t=0

dx

=

∫ a

0

{

x2
√

a2 − x2 + (a2 − x2)
√

a2 − x2
}

dx

= a2
∫ a

0

√

a2 − x2 dx = a2 · π
4
· a2 =

πa4

4
.

Alternatively, the area element on F is given in polar coordinates by

dS = a2 sin θ dθ dϕ, θ ∈
[

0,
π

2

]

, ϕ ∈
[

0,
π

2

]

,

thus the parameter domain is

E =
{

(θ, ϕ)
∣

∣

∣ 0 ≤ θ ≤ π

2
, 0 ≤ ϕ ≤ π

2

}

=
[

0,
π

2

]

×
[

0,
π

2

]

.

As

(x, y, z) = a (sin θ cosϕ, sin θ sinϕ, cos θ),
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Figure 33.21: The parameter domain of Example 33.11.3 for a = 1.

the unit normal vector is

n =
1

a
(x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ).

The flux of the vector field

V(x, y, z) = (xy, z2, 2yz)

through the surface F is
∫

F
V · n dS =

∫

F
(xy, z2, 2yz) · 1

a
(x, y, z) dS

=
1

2

∫

F
{x2y + yz2 + 2yz2} dS =

1

a

∫

F
y(x2 + 3z2) dS

=
1

a

∫

E

a sin θ sinϕ · a2{sin2 θ cos2 ϕ+3 cos2 θ} · a2 sin θ dθ dϕ

= a4
∫ π

2

0

{

∫ π
2

0

sin2 θ
(

sin2 θ cos2 ϕ+3cos2 θ
)

sinϕdϕ

}

dθ

= a4
∫ π

2

0

sin2 θ

[

−1

3
sin2 θ cos3 ϕ− 1

3
cos2 θ cosϕ

]
π
2

ϕ=0

dθ

= a4
∫ π

2

0

sin2 θ

(

1

3
sin2 θ + 3 cos 2θ

)

dθ.
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We compute the integrand by introducing the double angle,
∫ θ

(3 cos2 θ +
1

3
sin2 θ) dθ

=
1

2
(1− cos 2θ)

{

3

2
(1 + cos 2θ) +

1

6
(1− cos 2θ)

}

=
1

12
(1− cos 2θ){9(1 + cos 2θ) + (1− cos 2θ)}

=
1

12
(1− cos 2θ)(10 + 8 cos 2θ) =

1

6
(1− cos 2θ)(5 + 4 cos 2θ)

=
1

6
(5− cos 2θ − 4 cos2 2θ) =

1

6
{5− cos 2θ − 2(1 + cos 4θ)}

=
1

6
(3− cos 2θ − 2 cos 4θ) =

1

2
− 1

6
cos 2θ − 1

3
cos 4θ.

The flux is obtained by insertion,
∫

F
V · n dS = a4

∫ π
2

0

sin2 θ

(

1

3
sin2 θ + 3 cos2 θ

)

dθ

= a4
∫ π

2

0

{

1

2
− 1

6
cos 2θ − 1

3
cos 4θ

}

dθ

= a4 · 1
2
· π
2
− a4 · 1

6
· 1
2
[sin 2θ]

π
2
0 − a4 · 13 · 1

4
[sin 4θ]

π
2
0 =

πa4

4
.

4) Let E = {(x, y) | x2 + y2 ≤ 1} be the unit disc. Then a parametric description of the surface
F is given by

{(x, y, xy) | (x, y) ∈ E},
where the normal vector is

N(x, y) =

∣

∣

∣

∣

∣

∣

ex ey ez
1 0 y
0 1 x

∣

∣

∣

∣

∣

∣

= (−y,−x, 1),

and clearly, N · ez = 1 > 0.

Then the flux of the vector field

V(x, y, z) = (x+ y, x− y, y2 + z)

through F is given by
∫

F
V · n dS =

∫

E

V ·N dxdy =

∫

E

(x+ y, x− y, y2 + xy) · (−y,−x, 1) dxdy

=

∫

E

{

−xy − y2 − x2 + xy + y2 + xy
}

dxdy =

∫

E

(xy − x2) dxdy

=

∫ 2π

0

{∫ 1

0

̺2(cosϕ · sinϕ− cos2 ϕ)̺ d̺

}

dϕ

=
1

4

∫ 2π

0

(cosϕ · sinϕ− cos2 ϕ) dϕ

= 0− 1

4
· 2π · 1

2
= −π

4
.
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Figure 33.22: The surface F of Example 33.11.6 for a = 1 og h = 1.

5) The surface F is a disc parallel to the XY -plane at the height h. We choose

E = {(x, y) | x2 + y2 = ̺2 ≤ a2}.

as the parameter domain. Then the flux through F is
∫

F
V · n dS =

∫

E

h

(x2 + y2 + h2)
3
2

dxdy = h

∫ 2π

0

{∫ a

0

1

(̺2 + h2)
3
2

̺ d̺

}

dϕ

= h · 2π
[

1

2
(−2)

1
√

̺2 + h2

]a

̺=0

= 2πh

(

1√
h2

− 1√
a2 + h2

)

= 2π

(

1− h√
a2 + h2

)

.

6) In this case F is a cylindric surface which is given in semi polar coordinates by the parametric
description

{(a, ϕ, z) | ϕ ∈ [0, 2π], z ∈ [−h, h]},

and the parameter domain becomes

E = {(ϕ, z) | ϕ ∈ [0, 2π], z ∈ [−h, h]} = [0, 2π]× [−h, h].

The unit normal vector pointing away from the Z-axis is

n = (cosϕ, sinϕ, 0),

and the area element on F is

dS = ds dz = a dϕdz,

thus the flux through F is
∫

F
V · n dS =

∫

E

a

(a2 + z2)
3
2

(cos2 ϕ+ sin2 ϕ+ 0) a dϕdz

= a2 · 2π
∫ h

−h

1

(a2 + z2)
3
2

dz = 4πa2
∫ h

0

1

(a2 + z2)
3
2

dz.
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It is natural here to introduce the substitution

z = a sinh t, dz = a cosh t dt, t = Arsinh
(z

a

)

.

Then we get the flux through the surface

∫

F
V · n dS = 4πa2

∫ Arsinh(h
a
)

0

a cosh t

a3 cosh3 t
dt = 4π

∫ Arsinh(h
a
)

0

dt

cosh2 t

= 4π[tanh t]
Arsinh(h

a
)

0 = 4π

[

sinh t
√

1 + sinh2 t

]Arsinh(h
a
)

0

= 4π ·
h

a
√

1 +
h2

a2

=
4πh√
a2 + h2

.

Remark. The field of Example 33.11.5 and Example 33.11.6 is the so-called Coulomb
field, cf. Section 33.3.2. It is tempting to combine the results of Example 33.11.5 and
Example 33.11.6 to find the flux of the Coulomb field through the surface of the whole
cylinder. Since n = −ez, when we consider the surface of Example 33.11.5 at height −h, it
follows that

flux = 2π

(

1− h√
a2 + h2

)

+
4πh√
a2 + h2

− 2π

( −h√
h2

− (−h)√
a2 + h2

)

= 4π. ♦
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7) Here

N(u, v) =

∣

∣

∣

∣

∣

∣

ex ey ez
cos v sin v 0

−u sin v u cos v h

∣

∣

∣

∣

∣

∣

= (h sin v,−h cos v, u),

so the flux of the vector field (y, x, x+ y + z) through F is
∫

F
V · n dS =

∫

E

V ·N(u, v) du dv

=

∫

E

(u sin v, u cos v, u(cos v+sin v)+hv) · (h sin v,−h cos v, u) du dv

=

∫

E

(hu sin2 −hu cos2 v + u2(cos v + sin v) + huv) du dv

=

∫

E

hu(−cos 2v) du dv+

∫

E

u2(cos v+sin v) du dv+h

∫

E

uv du dv

= 0 + 0 + h

∫ 1

0

u du

∫ 2π

0

v dv = h · 1
2
· 1
2
· 4π2 = hπ2.

8) The normal vector of the surface F of the parametric description

r(u, v)
(√

u cos v,
√
u sin v, f3/2

)

, 1 ≤ u ≤ 2, 0 ≤ v ≤ u,

is

N(u, v) =
∂r

∂u
× ∂r

∂v
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez
1

2
√
u

cos v
1

2
√
u

sin v 0

−√
u sin v

√
u cos v

3

2

√
v

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

3

4

√

v

u
sin v,−3

4

√

v

u
cos v,

1

2

)

.

The flux of V(x, y, z) = (y,−x, z2) through F is
∫

F
V · n dS =

∫

E

V(u, v) ·N(u, v) du dv

=

∫

E

(√
u sin v,−√

u cos v, v3
)

·
(

3

4

√

v

u
sin v,−3

4

√

v

u
cos v,

1

2

)

du dv

=

∫

E

{

3

4

√
v sin2 v +

3

4

√
v cos2 v +

1

2
v3
}

du dv

=

∫

E

{

3

4

√
v +

1

2
v3
}

du dv =

∫ 2

1

{∫ u

0

(

3

4
v

1
2 +

1

2
v3
)

dv

}

du

=

∫ 2

1

[

3

4
· 2
3
v

3
2 +

1

8
v4
]u

0

du =

∫ 2

1

(

1

2
u

3
2 +

1

8
u4

)

du

=

[

1

2
· 2
5
u

5
2 +

1

40
u5

]2

1

=
1

5
(
√
2)5 +

1

40
· 25 − 1

5
− 1

40

=
1

40
(8 · 4

√
2 + 32− 8− 1) =

1

40
(32

√
2 + 23) =

4
√
2

5
+

23

40
.
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9) Here we have [cf. Example 33.11.7]

N(u, v) =

∣

∣

∣

∣

∣

∣

ex ey ez
cos v sin v 0

−u sin v u cos v h

∣

∣

∣

∣

∣

∣

= (h sin v,−h cos v, u),

and the flux of the vector field (yz,−xz, hz) through the surface F becomes
∫

F
V · n dS =

∫

E

V ·N(u, v) du dv

=

∫

E

(uhv sin v,−uhv cos v, h2v) · (h sin v,−cos v, u) du dv

= h

∫

E

(uh sin2 v + uh cos2 v + huv) du dv = h2

∫

E

u(1 + v) du dv

= h2

∫ 1

0

u du ·
∫ 2π

0

(v + 1) dv = h2 · 1
2

[

v2

2
+ v

]2π

0

=
h2

2
· {2π2 + 2π} = h2π(π + 1).
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33.5.2 Examples of application of Gauß’s theorem

Example 33.12 Find in each of the following cases the flux of the given vector field V through the
surface of the given set Ω in the space.

1) The vector field V(x, y, z) = (5xz, y2 − 2yz, 2yz), defined in the domain Ω by x2 + y2 ≤ a2, y ≥ 0,
0 ≤ z ≤ b.

2) The vector field V(x, y, z) =
(

2x−
√
1 + z2, x2y,−xz2

)

, defined in the cube Ω = [0, 1]×[0, 1]×[0, 1].

3) The vector field V(x, y, z) = (x2 + y2, y2 + z2, z2 + x2) given in the domain Ω defined by
x2 + y2 + z2 ≤ a2 and z ≥ 0.

4) The vector field V(x, y, z) =
(

2x+ 3
√

y2 + z2, y − cosh(xz), y2 + 2z
)

, defined in the solid ball

Ω = K((3,−1, 2); 3).

5) The vector field V(x, y, z) = (−x+cos z,−xy, 3z+ey), defined in the domain Ω given by x ∈ [0, 3],
y ∈ [0, 2], z ∈ [0, y2].

6) The vector field ▽T , where T (x, y, z) = x2+y2+z2 is defined in the domain Ω given by x2+y2 ≤ 2
and z ∈ [0, 2].

7) The vector field V(x, y, z) = (x3 + xy2, 4yz2 − 2x2y,−z3), defined in the solid ball given by

x2 + y2 + z2 ≤ a2.

8) The vector field V(x, y, z) = (2x, 3y,−z), defined in the ellipsoid Ω, given by

(x

a

)2

+
(y

b

)2

+
(z

c

)2

≤ 1.

A Flux out of a body in space.

D Apply Gauß’s theorem of divergence.

I According to Gauß’s theorem the flux is given by
∫

∂Ω

V · n dS =

∫

Ω

div V dΩ.

1) Since

div V = 5z + 2y − 2z + 2y = 3z + 4y,

the flux is
∫

Ω

div V dΩ =

∫ b

0

3z dz · 1
2
π a2 + 4

∫ b

0

∫ π

0

{∫ a

0

̺sinϕ · ̺ d̺
}

dϕdz =
3

4
π a2b2 +

8

3
a3b.

2) Since

div V = 2 + x2 − 2xz,

the flux is
∫

Ω

divV dΩ = 2 +

∫

Ω

x2 dΩ−
∫

Ω

2xz dΩ = 2 +
1

3
− 1

2
=

11

6
.
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3) Here

div V = 2x+ 2y + 2z.

It follows by the symmetry that
∫

Ω

2xdΩ =

∫

Ω

2y dΩ = 0.

We obtain the flux by an application of Gauß’s theorem, the argument of symmetry above and
semi polar coordinate,

∫

Ω

div V dΩ =

∫

Ω

2xdΩ +

∫

Ω

2y dΩ +

∫

Ω

2z dΩ =

∫

Ω

2z dΩ

=

∫ 2π

0

{

∫ a

0

{

∫

√
a2−̺2

0

2z dz

}

̺ d̺

}

dϕ

= 2π

∫ a

0

(a2 − ̺2)̺ d̺ = 2π

[

a2

2
̺2 − ̺4

4

]a

0

= 2π · a
4

4
=

πa4

2
.

4) Since

div V = 2 + 1 + 2 = 5,

the flux is
∫

Ω

div V dΩ = 5 vol(K((3,−1, 2); 3)) = 5 · 4π
3

· 33 = 180π.

5) Since

div V = −1− x+ 3 = 2− x,

the flux is given by
∫

Ω

div V dΩ =

∫

Ω

(2− x) dΩ =

∫ 3

0

(2− x)

{

∫ 2

0

{

∫ y2

0

dz

}

dy

}

dx

=

[

2x− x2

2

]3

0

·
∫ 2

0

y2 dy =

(

6− 9

2

)

·
[

y3

3

]2

0

=
3

2
· 8
3
= 4.

6) Since

div V = ∆(x2 + y2 + z2) = 2 + 2 + 2 = 6,

the flux is given by
∫

Ω

div V dΩ = 6 vol(Ω) = 6 · π · (
√
2)2 · 2 = 24π.

7) Here,

div V = 3x2 + y2 + 4z2 − 2x2 − 3z2 = x2 + y2 + z2.

The flux is easiest computed in spherical coordinates,

∫

Ω

div V dΩ =

∫ 2π

0

{∫ π

0

{∫ a

0

r2 · rsin θ dr
}

dθ

}

dϕ = 2π

[

r5

5

]1

0

· [− cos θ]π0 =
4

5
π a5.

1581

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X 
Vector Fields I

1582 

Flux and divergence of a vector field. Gauß’s theorem

8) From

div V = 2 + 3− 1 = 4,

follows that the flux is
∫

Ω

div V dΩ = 4 vol(Ω) = 4 · 4π
3

abc =
16

3
π abc.

Example 33.13 Find in each of the following cases the flux of the given vector field V through the
surface of the described body of revolution Ω.

1) The vector field is V(x, y, z) = (y2 + z4, (x− a)2 + z4, x2 + y2), and the meridian cut of Ω is given

by ̺ ≤ a and 0 ≤ z ≤ 4
√

a2 − ̺2.

2) The vector field is

V(x, y, z) = (x2 − 2xy, 2y2 + 6x2z2, 2z − 2xz − 2yz),

and the meridian cut of Ω is given by 0 ≤ z ≤ 1 and ̺ ≤ e−z.

3) The vector field is V(x, y, z))(x2−xz, y2−yz, z2), and the meridian cut of Ω is given by ̺ ≤
√
ln z

and z ∈ [e, e2].

4) The vector field is V(x, y, z) = (2x+ 2y, 2y + z, z + 2x), and the meridian cut of Ω is given by

̺ ≤ a,
̺2 − a2

a
≤ z ≤

√

a2 − ̺.

A Flux through the surface of a body of revolution.

D Sketch if possible the meridian cut. Calculate div V and apply Gauß’s theorem.

I 1) From div V = 0, follows trivially that the flux is
∫

Ω

div V dΩ = 0,

and we do not have to think about the body of revolution at all.

2) We conclude from

div V = 2x− 2y + 4y + 2− 2x− 2y = 2,

that the flux is
∫

Ω

div V dΩ = 2 vol(Ω) = 2

∫ 1

0

π e−2z dz = π
(

1− e−2
)

.

3) Here,

div V = 2x− z + 2y − z + 2z = 2x+ 2y.

If we put

B(z) = {(x, y) | x2 + y2 ≤ ln z}, z ∈ [e, e2],
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Figure 33.23: The meridian cut of i Example 33.13.2.
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Figure 33.24: The meridian cut of Example 33.13.3.
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Figure 33.25: The meridian cut of Example 33.13.4.

then the flux is

∫

Ω

div V dΩ =

∫

Ω

(2x+ 2y) dΩ =

∫ e2

e

{

∫

B(z)

(2x+ 2y) dxdy

}

dz = 0,

because it follows from the symmetry that

∫

B(z)

xdxdy =

∫

B(z)

y dxdy = 0.
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4) It follows from the equations of the meridian cut that when z > 0 we have the quarter of
a circle, and when z < 0 we get an arc of a parabola. It is natural to split the cut of Ω0

correspondingly in Ω1 (for z > 0) and Ω2 (for z < 0).

Since

div V = 2 + 2 + 1 = 5,

we get by Gauß’s theorem that the flux is

flux =

∫

∂Ω

V · n dS =

∫

Ω

div V dΩ = 5 vol(Ω) = 5 vol(Ω1) + 5 vol(Ω2)

= 5 · 1
2
· 4π
3

a3 + 5

∫ 0

−a

π̺(z)2 dz =
10π

3
a3 + 5π

∫ 0

−a

(az + a2) dz

=
10π

3
a3 + 5π

[

az2

2
+ a2z

]0

−a

=
10π

3
a3 + 5π

(

−a3

2
+ a3

)

= 5πa3
(

2

3
+

1

2

)

= 5πa3 · 7
6
=

35

6
πa3.

Example 33.14 Let Ω denote the cylinder given by z ∈ [−h, h], ̺ ∈ [0, a], ϕ ∈ [0, 2π]. Find the flux
through the surface ∂Ω of the Coulomb vector field

V(x, y, z) =
1

r3
(x, y, z), (x, y, z) �= (0, 0, 0), r =

√

x2 + y2 + z2.

[Cf. Example 33.11.5, Example 33.11.6 and Example 35.8].

A Flux through the surface of a body.

D Think of how to treat the singularity at (0, 0, 0) before we can apply Gauß’s theorem. Find the
flux.

I When (x, y, z) �= (0, 0, 0), we get [cf. Example 35.8]

∂V1

∂x
=

1

r3
− 3

r5
x2,

∂V2

∂y
=

1

r3
− 3

r5
y2,

∂V3

∂z
=

1

r3
− 3

r5
z2,

hence

div V =
3

r3
− 3

r5
(x2 + y2 + z2) =

3

r3
− 3

r5
r2 = 0.

One could therefore be misled to “conclude” that the flux is 0, “because (0, 0, 0) is a null set”; but
this is not true.

Let R ∈ ]0,min{a, h}[. An application of Gauß’s theorem shows that the flux through the surface
of Ω \K(0;R) is

∫

Ω\K(0;R)

div V dΩ = 0,
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because (0, 0, 0) /∈ Ω \K(0;R). Hence, the flux is

∫

∂Ω

V · n dS =

{

∫

∂Ω

V · n dS −
∫

∂K(0;R)

V · n dS

}

+

∫

∂K(0;R)

V · n dS

=

∫

Ω\K(0;R)

div V dΩ +

∫

∂K(0;R)

V · n dS =

∫

∂K(0;R)

V · n dS.

On the boundary ∂K(0;R) the outer unit normal vector is given in rectangular coordinates by

n =
1

R
(x, y, z), thus

V · n =
1

R3
(x, y, z) · 1

R
(x, y, z) =

1

R2
.

The area element is given in polar coordinates by

dS = R2 sin θ dθ dϕ.

Then the flux through ∂Ω is given by

∫

∂Ω

V · n dS =

∫

∂K(0;R)

V · n dS =

∫ 2π

0

{∫ π

0

1

R2
· R2 sin θ dθ

}

dϕ = 2π[− cos θ]π0 = 4π,

Example 33.15 We shall find the flux Φ of the vector field

V(x, y, z) = (ey + cosh z, ex + sinh z, x2z2), (x, y, z) ∈ R3,

through the oriented half sphere F given by

x2 + y2 + z2 − 2az = 0, z ≤ a, n · ez ≥ 0.

It turns up that the integration over F is rather difficult, while on the other hand the expression of
div V is fairly simple. One will therefore try to arrange the calculations such that it becomes possible
to apply Gauß’s theorem.

1) Construct a closed surface by adding an oriented dist F1 to F . Sketch the meridian half plane.

2) Find the flux Φ1 of the vector field V through F1.

3) Apply Gauß’s theorem on the body Ω of the boundary ∂Ω = F ∪ F1, and then find Φ.

A Computation of the flux of a vector field through a surface where a direct calculation becomes very
difficult.

D Apply the guidelines, i.e. add a surface F1, such that F ∪ F1 surrounds a body, on which Gauß’s
theorem can be applied. Hence, something is added and then subtracted again, and then one uses
Gauß’s theorem.
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Figure 33.26: The surface of Example 33.15 for a = 1.
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Figure 33.27: The meridian curve of Example 33.15 for a = 1.
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I 1) When we add a2 to both sides of the equation of the half sphere, we obtain

a2 = x2 + y2 + z2 − 2az + a2 = ̺2 + (z − a)2.

It follows from the condition n · ez ≥ 0 that the curve in the meridian half plane of F is the
quarter of a circle of centrum (0, a) and radius a,

̺2 + (z − a)2 = a2, z ≤ a, ̺ ≥ 0.

Note that the normal vector has an upwards pointing component.

The disc (“the lid”), which shall be added is of course the disc in the plane z = a of centrum
(0, 0, a) and radius a.

2) The flux of V through F1 of normal ez is

∫

F1

V · n dS =

∫

F1

x2a2 dS = a2
∫ 2π

0

cos2 ϕ

{∫ a

0

̺2 · ̺ d̺
}

dϕ = a2π ·
[

̺4

4

]a

0

=
π

4
a6.

3) Let Ω be the domain which is surrounded by F1 ∪ (−F), where −F indicates that we have
reversed the orientation, such that the normal is pointing away from Ω) on both F1 and −F .

Then

div V = 0 + 0 + 2x2z = 2xz = 2x2(z − a) + 2ax2,
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so it follows from Gauß’s theorem that

−
∫

F
V · n dS +

∫

F1

V · n dS = −
∫

F
V · n dS +

π

4
a6 =

∫

Ω

div V dΩ,

hence by a rearrangement,

Φ =

∫

F
V · n dS =

π

4
a6 −

∫

Ω

div V dΩ =
π

4
a6 −

∫

Ω

2ax2 dΩ−
∫

Ω

2x2(z − a) dΩ

=
π

4
a6 − a

∫

Ω

dΩ +

∫

Ω

(x2 + y2)(a− z) dΩ,

where we have used the symmetry in x and y in the domain of integration in the latter equality.

By the transformation z � a− z the solid half ball Ω is mapped into the solid half ball

Ω1 = {(x, y, z) | x2 + y2 + z2 ≤ a2, z ≥ 0},
so

Φ =
π

4
a6 − a

∫

Ω1

(x2 + y2)δΩ +

∫

Ω1

(x2 + y2)z dΩ.

When we use the slicing method, we see that Ω1 at height z ∈ [0, a] is cut into the circle

B(z) = {(x, y, z) | x2 + y2 ≤ a2 − z2} = {(x, y, z) | ̺ ≤
√

a2 − z2}, z ∈ [0, a] fixed,

hence

a

∫

Ω1

(x2 + y2) dΩ = a

∫ a

0

{

∫

B(z)

(x2 + y2) dS

}

dz

= a

∫ a

0

{

∫ 2π

0

[

∫

√
a2−z2

0

̺2 · ̺ d̺
]

dϕ

}

dz = 2πa

∫ a

0

[

̺4

4

]

√
a2−z2

0

dz

=
π

2
a

∫ a

0

(a2 − z2)2 dz =
π

2
a

∫ a

0

(z4 − 2a2z2 + a4) dz

=
π

2
a

[

z5

5
− 2a2

3
z3 + a4z

]a

0

=
π

2
a

{

a5

5
− 2

3
a5 + a5

}

=
π

2
a6 ·

(

1

5
− 2

3
+ 1

)

=
4π

15
a6,

and by some reuse of previous results,
∫

Ω1

(x2 + y2)z dΩ =

∫ a

0

z

{

∫

B(z)

(x2 + y2) dS

}

dz

=
π

2

∫ a

0

(z2 − a2)2 · z dz =
π

4

[

1

3
(z2 − a2)3

]a

0

=
π

12
a6.

Finally, we get by insertion that

Φ =
π

4
a6 − a

∫

Ω1

(x2 + y2) dΩ +

∫

Ω1

(x2 + y2)z dΩ

=
π

4
a6 − 4π

15
a6 +

π

12
a6 =

πa6

60
(15− 16 + 5) =

πa6

15
.
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Example 33.16 Let a set Ω ⊂ R3 and a vector field V : R3 → R3 be given in the following way,

Ω =

{

(x, y, z)

∣

∣

∣

∣

x2 + y2 − a2

a
≤ z ≤

√

a2 − x2 − y2
}

,

V(x, y, z) = (2x+ 2y, 2y + z, z + 2x).

The boundary ∂Ω is oriented such that the normal vector is always pointing away from the body. By
F1 and F2 we denote the subsets of ∂Ω, for which z ≥ 0, and z ≤ 0, respectively. Find the fluxes of
V through F1 and F2, respectively.

A Flux through surfaces.

D Apply both rectangular and polar coordinates. Check Gauß’s theorem. This cannot be applied
directly. It can, however, come into play by a small extra argument.

Finally, calculate the fluxes.

–1

–0.5

0

0.5

1

y

0.2 0.4 0.6 0.8 1 1.2

x

Figure 33.28: The cut of the meridian half plane for a = 1.

I By using semi polar coordinates we obtain that

az ≥ ̺2 − a2 og z2 + ̺2 ≤ a2,

and the meridian half plane becomes like shown on the figure.

As

vol(Ω) = vol(Ω1) + vol(Ω2) =
1

2
· 4π
3

a3 +

∫ 0

−a

π̺(z)2 dz =
2π

3
a3 + π

∫ 0

−a

a(a+ z) dz

=
2π

3
a3 +

π

2
a

∫ a

0

2t dt =
2π

3
a3 +

π

2
a3 =

7π

6
a3,

and div V = 2+ 2 + 1 = 5, it follows from Gauß’s theorem that

flux(F) = flux(F1) + flux(F2) =

∫

F
V · n dS =

∫

Ω

div V dΩ = 5 vol(Ω) =
35π

6
a3.
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The parametric description of F1 is chosen as

r(u, v) =
(

u, v,
√

a2 − u2 − v2
)

, u2 + v2 ≤ a2,

and then

∂r

∂u
=

(

1, 0,− u√
a2 − u2 − v2

)

and
∂r

∂v
=

(

0, 1,− v√
a2 − u2 − v2

)

,

from which we get the normal vector

N(u, v) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez

1 0 − u√
a2 − u2 − v2

0 1 − v√
a2 − u2 − v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1√

a2 − u2 − v2

(

u, v,
√

a2 − u2 − v2
)

,

which is clearly pointing away from the body, because the Z-coordinate is +1.

If we put B =
{

(u, v) | u2 + v2 < a2
}

, it follows from (x, y, z) =
(

u, v,
√
a2 − u2 − v2

)

that

flux(F1) =

∫

F1

V · n dS =

∫

B

V(u, v) ·N(u, v) du dv

=

∫

B

(2u+2v, 2v+
√

a2−u2−v2,
√

a2−u2−v2+2u)

· 1√
a2−u2−v2

(u, v,
√

a2−u2−v2) du dv

=

∫

B

1√
a2−u2−v2

{2u2+2uv+2v2+v
√

a2−u2−v2}

+(a2 − u2 − v2) + 2u
√

a2 − u2 − v2} du dv

=

∫

B

a2 + u2 + v2√
a2 − u2 − v2

du dv + 0 =

∫ 2π

0

{

∫ a

0

a2+̺2
√

a2−̺2
· ̺ d̺

}

dϕ = π

∫ a2

0

a2+t√
a2−t

dt

= π

∫ a2

0

{

2a2√
a2 − t

−
√

a2 − t

}

dt = π

[

−4a2
√

a2 − t+
2

3
(
√

a2 − t)3
]a2

0

= π

{

4a2
√
a2 − 2

3
a3
}

=
10π

3
a3.

Hence

flux(F2) = flux(F)− flux(F1) =
35π

6
a3 − 10π

3
a3 =

5

2
πa3,

and thus

flux(F1) =
10π

3
a3 and flux(F2) =

5π

2
a3.
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Alternatively, F2 is given by the parametric description

r = (x, y, z) =

(

u, v,
1

a
(u2 + v2 − a2)

)

, (u, v) ∈ B,

hence

∂r

∂u
=

(

1, 0,
2u

a

)

and
∂r

∂v
=

(

0, 1,
2v

a

)

and hence

N1(u, v) =
∂r

∂u
× ∂r

∂v
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez

1 0
2u

a

0 1
2v

a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

−2u

a
,−2v

a
, 1

)

.

This normal vector is pointing inwards, so we are forced to choose

N(u, v) = −N1(u, v) =

(

2u

a
,
2v

a
,−1

)

.
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Then

flux(F2) =

∫

F2

V · n dS =

∫

B

V(u, v) ·N(u, v) du dv

=

∫

B

(

2u+2v, 2v+
1

a

(

u2+v2−a2
)

,
1

a

(

u2+v2−a2
)

)

·
(

2u

a
,
2v

a
,−1

)

du dv

=

∫

B

{

4u2

a
+

4uv

a
+

4v2

a
+

2v

a
(u2 + v2 − a2)− 1

a

(

u2 + v2 − a2
)

}

du dv

=
1

a

∫

B

{

4u2 + 4v2 − u2 − v2 + a2
}

du dv + 0

=
a2

2
area(B) +

3

a

∫

B

(u2 + v2) du dv = a · πa2 + 3

a
· 2π

∫ a

0

̺2 · ̺ d̺

= πa3 +
6π

a
· a

4

4
=

5π

2
a3,

in accordance with the previous found result.

Example 33.17 Let K be the solid ball (x0; a), and let V be a C1 vector field on A, where A ⊃ K.
Prove the following claims by using partial integration, Gauß’s divergence theorem and the formula

x =
1

2
▽ (x · x).

1) If the divergence of V is a constant p, then

∫

K

(x− x0) ·V(x) dΩ =
4

15
a5p.

2) If the rotation of V is a constant vector P, then

∫

K

(x− x0)×V(x) dΩ =
4

15
a5 P.

A Generalized partial integration.

D Follow the guidelines.

I 1) It follows from

x− x0 =
1

2
▽ ((x− x0) · (x− x0)) =

1

2
▽

(

�x− x0�2
)

,
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and f(x) = �x− x0�2 that
∫

K

(x − x0) ·V(x) dΩ =
1

2

∫

K

▽
(

�x− x0�2
)

·V(x) dΩ

=
1

2

∫

∂K

n ·V(x) �x − x0�2 dS − 1

2

∫

Ω

�x− x0�2 ▽ ·V dΩ

=
1

2
a2
∫

∂K

n ·V(x) dS − 1

2
p

∫

Ω

�x− x0�2 dΩ

=
1

2
a2
∫

Ω

▽ ·V(x) dΩ− 1

2
p

∫ a

0

{∫ 2π

0

(∫ π

0

r2 · r2 sin θ dθ
)

dϕ

}

dr

=
1

2
pa2 · vol(Ω)− 1

2
p

∫ a

0

rr dr · 2π ·
∫ π

0

sin θ dθ

=
1

2
pa2 · 4π

3
a3 − 1

2
p · a

5

5
· 2π · 2 =

pa5π

15
· {10− 6} =

4

15
a5πp.

2) We can then replace · by ×, hence
∫

K

(x − x0)×V(x) dΩ =
1

2

∫

K

▽
(

�x− x0�2
)

×V(x) dΩ

=
1

2

∫

∂K

n×V(x) �x − x0�2 dS − 1

2

∫

Ω

�x− x0�2 ▽×V dΩ

=
1

2
a2
∫

Ω

▽×V(x) dΩ− 1

2
P

∫ a

0

{∫ 2π

0

(∫ π

0

r2 · r2 sin θ dθ
)

dϕ

}

dr

=
1

2
a2P · vol(Ω)− 1

2
P

∫ a

0

r4 dr · 2π ·
∫ π

0

sin θ dθ

=

{

1

2
a2 · 4π

3
a3 − 1

2
a5 · 2π · 2

}

P =
4

15
a5πP.
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Example 33.18 Let a be a positive constant. We let T denote the subset of

T1 =
{

(x, y, z) ∈ R3 | z ≥ 0, x2 + y2 + z2 ≤ 9a2
}

,

which also lies outside the set

T2 =
{

(x, y, z) ∈ R3 | x2 + y2 + (z − a)1 < a2
}

,

hence T = T1 \ T2.

1) Explain why T is given in spherical coordinates by

θ ∈
[

0,
π

2

]

, ϕ ∈ [0, 2π], r ∈ [2a cos θ, 3a].

2) Find the mass of T when the density of mass on T is µ(x, y, z) =
z

a4
.

3) Find the flux of the vector field

V(x, y, z) =
(

xz + 4xy, yz − 2y2, x2y2
)

, (x, y, z) ∈ R3,

through ∂T .

4) Find the volume of the subset T ⋆ of T , which is given by the inequalities

x ≥ 0, y ≥ 0, z ≥
√

x2 + y2.

A Spherical coordinates, mass, flux, volume.

D Sketch the meridian half plane; compute a space integral; apply Gauß’s theorem; once again,
consider the meridian half plane.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3

x

Figure 33.29: The meridian half plane for T , when a = 1. The angle between the Z-axis and the
dotted radius is θ. The two dotted lines are perpendicular to each other.

I 1) When we consider the meridian half plane, it follows immediately that

θ ∈
[

0,
π

2

]

and ϕ ∈ [0, 2π].
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It only remains to prove that the meridian cut of ∂T2 has the equation

r = 2a cos θ.

Draw a radius and the perpendicular line on this as shown by the dotted lines on the figure.
Together with the line segment [0, 2a] on the Y -axis these form a rectangular triangle. The
angle between the Z-axis and the dotted radius is θ, and the hypothenuse (the line segment on
the Z-axis) is 2a. Hence, the closest of the smaller sides (i.e. placed up to ∂T2) must have the
length 2a cos θ. This proves that the equation of ∂T2 is

r = 2a cos θ.

It then follows that r ∈ [2a cos θ, 3a] in T .

2) We have in spherical coordinates

µ(x, y, z) =
z

a4
=

r

a4
cos θ,

hence the mass is given by

M =

∫

T

µ dΩ =

∫ π
2

0

{∫ 2π

0

{∫ 3a

2a cos θ

1

a4
r cos θ · r2 sin θ dr

}

dϕ

}

dθ

=
2π

a4

∫ π
2

0

cos θ · sin θ
[

r4

4

]3a

2a cos θ

dθ =
π

2

∫ π
2

0

(

81− 16 cos4 θ
)

cos θ sin θ dθ

=
π

2

[

−81

2
cos2 θ +

16

6
cos6 θ

]
π
2

0

=
π

2

(

81

2
− 16

6

)

=
π

12
(243− 16) =

117π

12
.
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3) From

div V = z + 4y + z − 4y + 0 = 2z,

follows by Gauß’s theorem and 2) that the flux is

∫

∂T

V · n dS =

∫

T

div V dΩ =

∫

T

2z dΩ = 2a4
∫

T

µ dΩ =
227π

6
a4.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3

x

Figure 33.30: The meridian cut of T ⋆ is the domain between the two circular arcs lying above the line
z = ̺.

4) By analyzing the meridian half plane once more we see that T ⋆ is given by

θ ∈
[

0,
π

4

]

, ϕ ∈
[

+,
π

2

]

, r ∈ [2a cos θ, 3a],

hence the volume is

vol(T ⋆) =

∫ π
4

0

{

∫ π
2

0

{∫ 3a

2a cos θ

r2 sin θ dr

}

dϕ

}

dθ =
π

2

∫ π
4

0

sin θ ·
[

1

3
r3
]3a

2a cos θ

dθ

=
π

6
a3

∫ π
4

0

(

27− 8 cos3 θ
)

sin θ dθ =
π

6
a3

[

−27 cos θ + 2 cos4 θ
]

π
4

0

=
π

6
a3

(

− 27√
2
+

2

4
+ 27− 2

)

=
π

12
(51− 27

√
2) a3.
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Example 33.19 Let a be a positive constant and consider the function

f(x, y, z) = a2x2 + a3y + z4, (x, y, z) ∈ R3.

1) Find the gradient V = ▽f and the tangential line integral

∫

K
V · t ds,

where K is the line segment from (0, 0, a) to (2a, 3a, 0).

2) Find the flux of V through the surface of the half sphere given by

x2 + y2 + z2 ≤ a2 and z ≥ 0.

A Gradient; tangential line integral; flux.

D Apply Gauß’s theorem in 2).

I 1) The gradient is

V = ▽f = (2a2x, a3, 4z3).

Since V is a gradient field, V = ▽f , we get

∫

K
V · t ds = f(2a, 3a, 0)− f(0, 0, a) = (a2 · 4a2 + a3 · 3a)− a4 = 6a4.

2) Then by Gauß’s theorem,

flux(∂L) =

∫

∂L

V · n dS =

∫

L

div V dΩ =

∫

L

(2a2 + 12z2) dΩ

= 2a2 · 1
2
· 4π
3

a3 + 12

∫

L

z2 dΩ =
4π

3
a5 + 12

∫ a

0

z2 · π(a2 − z2) dz

=
4π

3
a5 + 12π

[

a2 · 1
3
z3 − 1

5
z5
]a

0

=
4π

3
a5 +

24

15
π a5 =

44π

15
a5.
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Example 33.20 Given the tetrahedron

T = {(x, y, z) ∈ R3 | 0 ≤ x, 0 ≤ y, 4− x− 2y ≤ z ≤ 8− 2x− 4y}.

and the vector field

V(x, y, z) =

(

z cosx+3yz, x2y+x sinh z,
1

2
z2 sinx+3x2−5y2

)

, (x, y, z) ∈ R3.

Find the flux of V through ∂T .

A Flux of a vector field through a closed surface.

D Apply Gauß’s theorem.

I It follows from

div V =
∂V1

∂x
+

∂V2

∂y
+

∂V3

∂z
= −z sinx+ x3 +

1

2
· 2z sinx = x2,

by Gauß’s theorem that the flux of V through ∂T is given by

(33.4)

∫

∂T

V · n dS =

∫

T

div V dxdy dz =

∫

T

x2 dxdy dz.

The bounds of the tetrahedron give the estimates

4− x− 2y ≤ z ≤ 8− 2x− 4y = 2(4− x− 2y),

hence 4−x− 2y ≥ 0, and thus 0 ≤ x ≤ 4−2y and 0 ≤ y ≤ 2. By a reduction of (33.4) we then get

∫

∂T

V · n dS =

∫

T

x2 dxdy dz =

∫ 2

0

{∫ 4−2y

0

(∫

4−x−2y

8− 2x−4yx2 dz

)

dx

}

dy

=

∫ 2

0

{∫ 4−2y

0

x2(4−x−2y) dx

}

dy =

∫ 2

0

{∫ 4−2y

0

(4x2 − x3 − 2yx2) dx

}

dy

=

∫ 2

0

[

4

3
x3 − 1

4
x4 − 2

3
yx3

]4−2y

x=0

dy

=

∫ 2

0

{

4

3
(2{2− y})3 − 1

4
(2{2− y})4 − 2

3
y (2{2− y})3

}

dy

=

∫ 2

0

{

32

3
(2− y)3 − 16

4
(2 − y)4 − 16

3
y (2− y)3

}

dy

=

(

16

3
− 16

4

)∫ 2

0

(2− y)4 dy =
16

12

∫ 2

0

t4 dt =
4

3

[

1

5
t5
]2

0

=
128

15
.
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Example 33.21 Given the vector field

V(x, y, z) =
(

4x+ 3y3, 9xy2 + z, y
)

, (x, y, z) ∈ R3.

1) Find div V and rot V.

2) Show that V is a gradient field and find all its integrals.

3) Compute the tangential line integral
∫

K
V · t ds =

∫

K
(4x+ 3y3) a dx+ (9xy2 + z) dy + y dz,

where K denotes the line segment from the point (0, 0, 0) to the point (1, 1, 1).

4) Find the flux of V through the unit sphere x2 + y2 + z2 = 1 with a normal vector pointing away
from the ball.

A Vector analysis.

D Follow the guidelines

I 1) We get by direct computations

div V = 4 + 18xy2,

and

rot V =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

4x+ 3y3 9xy2 + z y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

1− 1, 0− 0, 9y2 − 9y2
)

= (0, 0, 0),

and we note that V is rotation free.

2) Since the field is rotation free and the domain is simply connected, we conclude that V is a
gradient field. Then by calculating the differential form,

V · ( dx, dy, dz) = (4x+ 3y3) dx+ (9xy2 + z) dy + y dz

= 4xdx+ 3
(

y3 dx+ x · 3y2 dy
)

+ (z dy + y dz)

= d
(

2x2 + 3xy3 + yx
)

,

and it follows once more that V is a gradient field with all its integrals given by

F (x, y, z) = 2x2 + 3xy3 + yz + C, C ∈ R.

3) We have proved that V is a gradient field with an integral F . Then it follows that
∫

K
V · t ds =

∫

K
(4x+3y3) dx+(9xy2+z) dy+y dz

= [F (x, y, z)]
(1,1,1)
(0,0,0) =

[

2x2 + 3xy3 + yz
](1,1,1)

(0,0,0)
= 2 + 3 + 1 = 6.

4) An application of Gauß’s theorem gives
∫

∂Ω

V · n dS =

∫

Ω

div V dΩ =

∫

Ω

(4 + 18xy2) dΩ = 4 vol(Ω) + 0 = 4 · 4π
3

=
16π

3
,

because
∫

Ω
18xy2 dΩ = 0 of symmetric reasons. The integrand is odd in x, and the body is

symmetric with respect to the (Y, Z)-plane.
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Example 33.22 A body of revolution L with the Z-axis as axis of rotation is given in semi polar
coordinates (̺, ϕ, z) given by the inequalities

0 ≤ ϕ ≤ 2π, −a ≤ z ≤ a, 0 ≤ ̺ ≤ a− z2

a
,

where a ∈ R+ is some given constant.

1. Calculate the space integral

I =

∫

L

z2 dΩ.

Given the vector field

V(x, y, z) =
(

cosx, y sinx, z3
)

, (x, y, z) ∈ R3.

2. Find the flux

∫

∂L

V · n dS,

where the unit normal vector n is pointing away from the body.

A Space integral and flux in semi polar coordinates.

D Slice up the body; apply Gauß’s theorem.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 33.31: The meridian curve when a = 1.

I 1) It follows from the rearrangement

̺ = a

{

1−
(z

a

)2
}

that the meridian curve is an arc of a parabola.
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The space integral is computed by the method of slicing,

I =

∫

L

z2 dΩ = π

∫ a

−a

(

a− z2

a

)2

z2 dz = 2π

∫ a

0

(

a2 − 2z2 +
z4

a2

)

z2 dz

= 2π

∫ a

0

{

a2z2 − 2z4 +
z6

a2

}

dz = 2π

[

a2

3
z3 − 2

5
z5 +

z7

7a2

]a

0

= 2πa5
(

1

3
− 2

5
+

1

7

)

=
2πa5

105
(35− 42 + 15) =

16πa5

105
.

2) The flux is according to Gauß’s theorem given by
∫

∂L

V · n dS =

∫

Ω

div V dΩ =

∫

Ω

{

− sinx+ sinx+ sz2
}

dΩ

= 3

∫

Ω

z2 dΩ = 3I =
16πa5

35
,

where we have used the result of 1).

1602

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 - 
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future 

AxA globAl grAduAte 
progrAm 2015 

axa_ad_grad_prog_170x115.indd   1 19/12/13   16:36

http://s.bookboon.com/AXA


Real Functions in Several Variables: Volume X 
Vector Fields I

1603 

Flux and divergence of a vector field. Gauß’s theorem

Example 33.23 Given the vector field

V(x, y, z) = (3xz2 − x3, 3yz2 − y3, 3z(x2 + y2)), (x, y, z) ∈ R3,

and the constant a ∈ R+.

1. Show that V is a gradient field and find all its integrals.

Let K be the curve which is composed of the quarter circle of centrum at (0, 0, 0) and runs from (a, 0, 0)
to (0, a, 0), and the line segment from (0, a, 0) to (0, a, 2a).

2. Find the tangential line integral

∫

K
V · t ds.

3. Find the flux of V through the surface of the ball of centrum (0, 0, 0) and radius a.

A Vector analysis.

D Each question can be answered in several ways. We shall here demonstrate some of the variants.

I 1) First note that V is of class C∞.

First variant. Prove directly by some manipulation that the differential form V · dx can be
written as dF where F then by the definition is an integral. Do this by pairing terms which
are similar to each other.

V · dx = (3xz2 − x3) dx+ (3yz2 − y3) dy + 3z(x2 + y2) dz

=
3

2
z2 d(x2)− 1

4
d(x4) +

3

2
z2 d(y2)− 1

4
d(y4) +

3

2
(x2 + y2) d(z2)

= d

(

3

2
(x2 + y2)z2 − 1

4
x4 − 1

4
y4
)

.

It follows immediately from this result that V is a gradient field and that all integrals are
given by

F (x, y, z) =
3

2
(x2 + y2)z2 − 1

4
x4 − 1

4
y4 + C,

where C is an arbitrary constant.

Second variant. Clearly, R3 is simply connected. Furthermore,

∂L

∂y
= 0,

∂M

∂x
= 0, hence

∂L

∂y
=

∂M

∂x
,

∂L

∂z
= 6xz,

ddN

∂x
= 6xz, hence

∂L

∂z
=

∂N

∂x
,

∂M

∂z
= 6yz,

∂N

∂y
= 6yz, hence

∂M

∂z
=

∂N

∂y
.

Since all the “mixed derivatives” are equal, it follows that V · dx is closed and hence exact.
This means that V is a gradient field and the integrals of V exist.

In this variant we shall find the integrals by using line integrals. There are two sub-varants:

1603
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a) Integration along the broken line

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z).

In this case,

F0(x, y, z) =

∫ x

0

(−t3) dt+

∫ y

0

(−t3) dt+

∫ z

0

3t(x2 + y2) dt

=
3

2
(x2 + y2)z2 − 1

4
(x4 + y4).

The integrals are

F (x, y, z) =
3

2
(x2 + y2)z2 − 1

4
(x4 + y4) + C,

where C is an arbitrary constant.

b) Radial integration along (0, 0, 0) −→ (x, y, z).
The coordinates of V are homogeneous of degree 3. Hence,

F0(x, y, z) = (x, y, z) ·
(

(3xz2−x3)

∫ 1

0

t3 dt, (3yz2−y3)

∫ 1

0

t3 dt, 3z(x2+y2)

∫ 1

0

t3 dt

)

=
1

4
(x, y, z) · (3xz2 − x3, 3yz2 − y3, 3z(x2 + y2))

=
1

4

{

3x2z2 − x4 + 3y2z2 − y4 + 3z2(x2 + y2)
}

=
3

2
(x2 + y2)z2 − 1

4
(x4 + y4).

The integrals are

F (x, y, z) =
3

2
(x2 + y2)z2 − 1

4
(x4 + y4) + C,

where C is an arbitrary constant.

Third variant. Start by one of the variants 2a) and 2b) above without proving in advance
that V is a gradient field. The possible candidates of the integrals are

F (x, y, z) =
3

2
(x2 + y2)z2 − 1

4
(x4 + y4) + C.

Check these!:

▽F (x, y, z) = (3xz2 − x3, 3yz2 − y3, 3z(x2 + y2)) = V(x, y, z).

This shows that V is a gradient field and its integrals are given by

F (x, y, z) =
3

2
(x2 + y2)z2 − 1

4
(x4 + y4) + C,

where C is an arbitrary constant.

Fourth variant. Improper integration.
First put

ω = V · dx = (3xz2 − x3) dx+ (3yz2 − y3) dy + 3z(x2 + y2) dz.
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By an improper integration of the first term on the right hand side we get

F1(x, y, z) =

∫ x

(3tz2 − t3) dt =
3

2
x2z2 − 1

4
x4.

The differential is

dF1 = (3xz2 − x3) dx+ 3x2z dz,

hence

ω − dF1 = (3yz2 − y3) dy + 3zy2 dz,

which neither contains x nor dx.

When we repeat this procedure on ω − dF1 we get

F2(y, z) =

∫ y

(3tz2 − t3) dt =
3

2
y2z2 − 1

4
y4

with the differential

dF2 = (3yz2 − y3) dy + 3zy2 dz = ω − dF1.

Then by a rearrangement,

ω = V · dx = dF1 + dF2 = d

(

3

2
x2z2 − 1

4
x4 +

3

2
y2z2 − 1

4
y4
)

,

proving that V is a gradient field with the integrals

F (x, y, z) =
3

2
(x2 + y2)z2 − 1

4
(x4 + y4) + C,

C being an arbitrary constant.

0

0.5

1

1.5

2

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1

Figure 33.32: The curve K for a = 1.

2) Here we have two variants.
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First variant. Since V is a gradient field with the integral

F0(x, y, z) =
3

2
(x2 + y2)z2 − 1

4
(x4 + y4),

and K is a connected curve, we have
∫

K
V · t ds = F0(0, a, 2a)− F0(a, 0, 0)

=
3

2
(02 + a2) · 4a2 − 1

4
(04 + a4) +

1

4
(a4 + 04) = 6a4.

Second variant. The definition of a tangential line integral.
The curve K is composed of the two sub-curves

K1 : (x(t), y(t), z(t)) = a(cos t, sin t, 0), t ∈
[

0,
π

2

]

,

K2 : (x(t), y(t), z(t)) = a(0, 1, t), t ∈ [0, 2].
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First calculate
∫

K1

V · t ds =

∫ π
2

0

a3
(

− cos3 t,− sin3 t, 0
)

· a(− sin t, cos t, 0) dt

= a4
∫ π

2

0

{

cos3 t · sin t− sin3 t · cos t
}

dt

=
a4

4

[

− cos4 t− sin4 t
]

π
2

0
=

a4

4
{−1 + 1} = 0,

and
∫

K2

V · t ds =

∫ 2

0

a3
(

0, 3t2 − 1, 3t
(

02 + 12
))

· a(0, 0, 1) dt

= a4
∫ 2

0

3t dt =
3

2
a4 · 4 = 6a4.

Summarizing we get

∫

K
V · t ds =

∫

K1

V · t ds+
∫

K2

V · t ds = 0 + 6a4 = 6a4.

3) This problem can also be solved in various ways.

First variant. According to Gauß’s theorem,

flux =

∫

K(0;a)

div V dΩ =

∫

K(0;a)

6z2 dΩ,

because

div V = 3z2 − 3x2 + 3z2 − 3y2 + 3(x2 + y2) = 6z2.

The calculation of this integral is most probably performed in one of the following sub-
variants, although there exist some other (and more difficult) ways of calculation.

a) Partition of K(0; a) into slices parallel to the XY -plane.
By using this slicing method we get

flux =

∫

K(0;a)

6z2 dΩ =

∫ a

−a

{

∫

K((0,0);
√
a2−z2)

6z2 dxdy

}

dz

=

∫ a

−a

6z2 area(K(0, 0);
√

a2 − z2) dz =

∫ a

−a

6z2π(a2 − z2) dz

= 12π

∫ a

0

(a2z2 − z4) dz = 12π

[

1

3
a2z3 − 1

5
z5
]a

0

= 12πa5 · 2

15
=

8π

5
a5.

b) Calculation in spherical coordinates:

flux =

∫

K(0;a)

6z2 dΩ =

∫ 2π

0

{∫ π

0

(∫ a

0

6r2cos2 θ · r2sin θ dr
)

dθ

}

dϕ

= 2π

∫ π

0

6 cos2 θ · sin θ dθ ·
∫ a

0

r4 dr = 2π
[

2(− cos3 θ)
]π

0
· a

5

5

=
4π

5
a5(1 + 1) =

8π

5
a5.
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Second variant. Direct application of the definition.
Put F = ∂K(0; a). Then the unit normal vector field on F is given by

n =
1

a
(x, y, z).

By insertion into the definition,

flux =

∫

F
V · n dS =

1

a

∫

K

{

3x2z2 − x4 + 3y2z2 − y4 + 3z2(x2 + y2)
}

dS

=
1

a

∫

F
{6z2(x2 + y2)− x4 − y4} dS.

We shall in the following calculate this surface integral in two different ways. Notice that
there are many other possibilities. In both of these two sub-variants we shall need the
following:

Calculations:
∫ 2π

0

(

cos4 ϕ+ sin4 ϕ
)

dϕ(33.5)

=

∫ 2π

0

(

cos4 ϕ+sin4 ϕ+2 sin2 ϕ cos2 ϕ−2 sin2 ϕ cos2 ϕ
)

dϕ

=

∫ 2π

0

{

(

cos2 ϕ+ sin2 ϕ
)2 − 1

2
sin2 2ϕ

}

dϕ

=

∫ 2π

0

{

1− 1

2
· 1
2
(1− cos 4ϕ)

}

dϕ =
3

4
· 2π =

3π

2
.

–1

–0.5

0

0.5

1

y

0.2 0.4 0.6 0.8 1

x

Figure 33.33: The meridian curve M.

a) Consider the surface F as a surface of revolution with the meridian curve

M : ̺(z) =
√

a2 − z2, z ∈ [−a, a],

thus

x(z) =
√

a2 − z2 cosϕ, y =
√

a2 − z2 sinϕ, z = z,

and the weight function

√

{̺′(z)}2 + 1 =

√

1 +
z2

a2 − z2
=

√

a2

a2 − z2
=

a√
a2 − z2

.
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By insertion into a suitable formula we get

flux =
1

a

∫

F

{

6z2
(

x2 + y2
)

− x4 − y4
}

dS

=
1

a

∫ a

−a

{∫ 2π

0

{6z2([a2 − z2] cos2 ϕ+ [a2 − z2] sin2 ϕ)}

−(a2−z2)2(cos4 ϕ+sin4 ϕ) dϕ
}

√
a2 − z2 · a√
a2 − z2

dz

=

∫ a

−a

{∫ 2π

0

{6z2(a2−z2)−(a2−z2)2(cos4 ϕ+sin4 ϕ)} dϕ
}

dz

=

∫ a

−a

{

2π · 6z2(a2−z2)− 3π

2
(a2−z2)2

}

dz (by (33.5))

= 12π

∫ a

−a

(a2z2−z4) dz− 3π

2

∫ a

−a

(a4−2a2z2+z4) dz

= 2 · 12π
[

a2

3
z3− 1

5
z5
]a

0

−2 · 3π
2

[

a4z− 2

3
a2z3+

1

5
z5
]a

0

= 24πa5 · 2

15
− 3πa5

(

1− 2

3
+

1

5

)

= πa5 ·
(

16

5
− 1− 3

5

)

=
8πa5

5
.

b) Alternatively it follows by the symmetry that the flux through

F+ = {(x, y, z) ∈ F | z ≥ 0}

is equal to the flux through F \ F+, thus

flux =
2

a

∫

F+

{6z2(x2 + y2)− x4 − y4} dS.

The surface F+ is the graph of

z =
√

a2 − x2 − y2, (x, y) ∈ B = {(x, y) | x2 + y2 ≤ a2},

and the normal vector is

N(x, y) =

(

− ∂z

∂x
,−∂z

∂y
, 1

)

=

(

x
√

a2 − x2 − y2
,

y
√

a2 − x2 − y2
, 1

)

,

hence

�N(x, y)� =
a

√

a2 − x2 − y2
.

Then by

i) reduction of the surface integral to a plane integral,

ii) reduction in polar coordinates,

iii) application of the calculation (33.5),

iv) the change of variable t =
√
a2 − r2, i.e.

r2 = a2 − t2 and dt = − r√
a2 − r2

dr,
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we finally get

flux =
2

a

∫

B

{6(a2−x2−y2)(x2+y2)−x4−y4} a
√

a2−x2−y2
dxdy

= 2

∫ 2π

0

{∫ a

0

{6(a2−r2)r2−r4(cos4 ϕ+sin4 ϕ)} r√
a2−r2

dr

}

dϕ

= 2

∫ a

0

{

12π(a2−r2)r2− 3π

2
r4
}

r√
a2−r2

dr (by (33.5))

= π

∫ a

0

{

24t2(a2−t2)−3(a2−t2)2
}

dt

= π

∫ a

0

{

24a2t2−24t4−3a4+6a2t2−3t4
}

dt

= πa5
{

8− 24

5
− 3 + 2− 3

5

}

= πa5
{

7− 27

5

}

= πa5 · 35− 27

5
=

8πa5

5
.
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Example 33.24 Let a be a positive constant. Consider the set

A = {(x, y, z) ∈ R3 | x2 + y2 ≤ a2, 0 ≤ y, −y ≤ x ≤ y, |z| ≤ 2a}.

1) Describe A in semi polar coordinates (̺, ϕ, z).

2) Compute the space integrals

I =

∫

A

xdΩ, J =

∫

A

y dΩ, K =

∫

A

z2 dΩ.

3) Find the flux of the vector field

V(x, y, z) =
(

3xz2+coshy, z2ex, z3−3axz+sinhy
)

, (x, y, z) ∈ R3,

through the surface ∂A with its normal vector pointing outwards.

A Space integrals; flux.

D The first two problems are solved by the reduction theorems. In 3) we apply Gauß’s theorem.

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1

Figure 33.34: The domain B for a = 1 lies inside the upper angular space and inside the half circle.

I 1) Clearly, A is a cylinder with a quarter disc B in the (X,Y )-plane as generating surface. Hence
A is described in semi polar coordinates by

A =

{

(̺, ϕ, z)

∣

∣

∣

∣

0 ≤ ̺ ≤ a,
π

4
≤ ϕ ≤ 3π

4
, −2a ≤ z ≤ 2a

}

.

2) By an argument of symmetry (first integrate with respect to x) we get

I =

∫

A

xdΩ = 0.

Alternatively,

I =

∫

A

xdΩ =

∫ 2a

−2a

{

∫ a

0

(

∫ 3π
4

π
4

̺ cosϕ · ̺ dϕ
)

d̺

}

dz

= 4a

∫ a

0

̺2 d̺ ·
∫ 3π

4

π
4

cosϕdϕ = 4a · a
3

3
[sinϕ]

3π
4
π
4

= 0.
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Furthermore,

J =

∫

A

y dΩ =

∫ 2a

−2a

{

∫ a

0

(

∫ 3π
4

π
4

̺ sinϕ · ̺ dϕ
)

d̺

}

dz

= 4a · a
3

3
[− cosϕ]

3π
4
π
4

=
4a4

3
·
{

1√
2
+

1√
2

}

=
4
√
2a4

3
.

Finally, by the slicing method,

K =

∫

A

z2 dΩ =

∫ 2a

−2a

z2 area(B) dz =
1

4
· πa2

[

z3

3

]2a

−2a

=
1

4
πa2 · 2 · 8a

3

3
=

4πa5

3
.

3) By an application of Gauß’s theorem,

flux =

∫

A

div V dΩ =

∫

A

{

3z2 + 0 + 3z2 − 3az
}

dΩ = 6K − 3aI = 8πa5,

where we have inserted the values of K and I found in 2).
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Example 33.25 Consider the function

F (x, y, z) = x4 + x ey sin z, (x, y, z) ∈ R3,

and the vector field V = ▽F .

1) Find the divergence ▽ ·V and the rotation ▽×V.

2) Check if V has a vector potential.

3) Find the flux of V through ∂A, where A is the half ball given by the inequalities

x2 + y2 + z2 ≤ 9, z ≤ 0.

4) Find the flux of V through the surface F given by

x2 + y2 + z2 = 9, z ≤ 0.

Show the orientation of F on a figure. (Hint: Use that the surface F is a subset of the surface ∂A
of 3).

A Divergence, rotation, flux.

D Find V. Use the rules of calculations and finally also Gauß’s theorem.

I 1) First calculate

V = ▽F =
(

4x3 + ey sin z, xey sin z, xey cos z
)

.

Then

▽ ·V = ▽ · ▽F = ∆F = 12x2 + xey sin z − xey sin z = 12x2

and

▽×V = ▽×▽F = 0,

which is obvious because V is a gradient field and thence rotation free.

2) Since V is not divergence free in any open domain, V does not have a vector potential.

3) We get by Gauß’s theorem, an argument of symmetry and using spherical coordinates,

flux(∂A) =

∫

∂A

V · n dS =

∫

A

▽ ·V dΩ = 12

∫

A

x2 dΩ = 12

∫

A

y2 dΩ

= 6

∫

A

(x2 + y2) dΩ = 6

∫ 2π

0

{

∫ π

π
2

(∫ 3

0

r2sin2 θ · r2sin θ dr
)

dθ

}

dϕ

= 6 · 2π
∫ π

π
2

(

1− cos2 θ
)

sin θ dθ ·
∫ 3

0

r4 dr

=
12π

5
· 35 ·

[

− cos θ +
1

3
cos3 θ

]π

π
2

=
12π

5
· 35 · 2

3
=

1944π

5
.
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–3

–2

–1

0

–3

–2

–1

1

2

3

–3

–2

–1

1

2

3

Figure 33.35: The body A.

4) Let G denote the disc in the (X,Y )-plane with the unit normal vector field pointing upwards,
and let F denote the half sphere with the unit normal vector field pointing downward. Then
according to 3),

flux(∂A) = flux(F) + flux(G) = 1944π

5
.

Since n = (0, 0, 1) on G, it follows by a rearrangement that

flux(F) =
1944π

5
− flux(G) = 1944π

5
−
∫

G
[xey cos z]z=0 dS =

1944π

5
−
∫

G
xey dS

=
1944π

5
−
∫ 3

−3

ey

{

∫

√
9−y2

−
√

9−y2

xdx

}

dy =
1944π

5
− 0 =

1944π

5
,

where we for symmetric reasons calculate the plane integral over the disc in rectangular coor-
dinates.
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Example 33.26 The set Ω ⊂ R3 is given in semi polar coordinates (̺, ϕ, z) by the inequalities

−π

2
≤ ϕ ≤ π

2
, 0 ≤ z ≤ h, 0 ≤ ̺ ≤ a

(

1− z

h

)

,

where a and h are positive constants.
Also given the vector field

U(x, y, z) =
(

x3z + 2y cosx, y3z + y2 sinx, x2y2
)

, (x, y, z) ∈ R3.

1) Find the divergence ▽ ·U.

2) Find the flux Φ of the vector field U through the surface ∂Ω.

A Vector field, flux.

D Sketch a figure. Apply Gauß’s theorem.

0

0.5

1

–2

–1

1

2

0.5

1

1.5

2

Figure 33.36: The body Ω for a = 2 and h = 1.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 33.37: The meridian cut of Ω for ϕ ∈
[

−π

2
,
π

2

]

and a = 2, h = 1.
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I We see that Ω is (half of) a cone (of revolution) with the top point (0, 0, h) and a half disc in the
(X,Y )-plane as its basis.

1) The divergence is

div U = ▽ ·U = (3x2z − 2y sinx) + (3y2z + 2y sinx) + 0 = 3z(x2 + y2).

2) By applying Gauß’s theorem and reducing in semi polar coordinates we conclude that the flux
is

Φ =

∫

Ω

div UdΩ =

∫

Ω

3z(x2 + y2) dΩ =

∫ h

0

{

∫ π
2

−π
2

(

∫ a(1− z
h
)

0

3z̺2 · ̺ d̺
)

dϕ

}

dz

= 3π

∫ h

0

z

(

∫ a(1− z
h
)

0

̺3 d̺

)

dz = 3π · 1

120
a4 h2 =

π

40
a4 h2.

An alternative calculation is

Φ =

∫ h

0

π · 3z · 1
4
a4

(

1− z

h

)4

dz =
3π

4
a4 h

∫ h

0

{

1−
(

1− z

h

)}(

1− z

h

)4

dz

=
3π

4
a4 h

∫ h

0

{

(

1− z

h

)4

−
(

1− z

h

)5
}

dz =
3π

4
a4 h2

∫ 1

0

{

ζ4 − ζ5
}

dζ

=
3π

4
a4 h2 ·

(

1

5
− 1

6

)

=
π

40
a4 h2.
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Example 33.27 Find the divergence and the rotation of the vector field

V(x, y, z) =

(

2x+ xy, 7x− 1

2
y2, 3z

)

, (x, y, z) ∈ R3,

and find the flux of V through the unit sphere x2 + y2 + z2 = 1, where the normal vector is pointing
outwards.

A Divergence, rotation and flux).

D Apply Gauß’s theorem.

I The divergence is

div V = 2 + y − y + 3 = 5.

The rotation is

rot V =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

2x+ xy 7x− 1

2
y2 3z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xy 7x 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (0, 0, 7− x).

By Gauß’s theorem the flux through the surface F of the unit sphere is given by

∫

F
V · n dS =

∫

Ω

div V dΩ =

∫

Ω

5 dΩ = 5 vol(Ω) = 5 · 4π
4

· 13 = 20π

3
.

Example 33.28 .

1) Find the volume of the body of revolution

A =

{

(x, y, z) ∈ R3

∣

∣

∣

∣

1

2
x2 +

1

2
y2 − 1 ≤ z ≤ 1

}

.

2) Find the flux of the vector field

V(x, y, z) =
(

y2 + x, xz2 − yx2, x2z
)

, (x, y, z) ∈ R3,

through ∂A, where the unit normal vector is always pointing away from the body.

A Volume and flux.

D Sketch a section of A in the meridian half plane. Apply the method of slicing by finding the volume.
The flux is found by means of Gauß’s theorem.

I 1) It follows from the sketch of the meridian half plane that the domain is described in semi polar
coordinates by

0 ≤ ̺ ≤
√
2z + 2, −1 ≤ z ≤ 1,
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–1

–0.5

0

0.5

1

y

0.5 1 1.5 2

x

Figure 33.38: The meridian cut for A. The boundary curve has the equation z =
1

2
̺2 − 1.

and that the body of revolution is a subset of a paraboloid of revolution.

The slicing method. The paraboloid of revolution is intersected by a plane at the height
z ∈ ]− 1, 1] (the dotted line on the figure) in a circle of area

π · ̺(z)2 = 2π(z + 1).

Thus the volume of the body of revolution is

vol(A) =

∫ 1

−1

2π(z + 1) dz =
[

π(z + 1)2
]1

−1
= 4π.

2) According to Gauss’s theorem, the flux of V through ∂A is given by

∫

∂A

V · n dS =

∫

A

div V dΩ =

∫

A

{

1− x2 + x2
}

dΩ = vol(A) = 4π.

1618

Download free eBooks at bookboon.com



Real Functions in Several Variables: Volume X 
Vector Fields I

1619 

Formulæ

34 Formulæ

Some of the following formulæ can be assumed to be known from high school. It is highly recommended
that one learns most of these formulæ in this appendix by heart.

34.1 Squares etc.

The following simple formulæ occur very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

34.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln

∣

∣

∣

∣

x

y

∣

∣

∣

∣

= ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(

x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1

ax
, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:

√
x2 = |x|, x ∈ R.

Remark 34.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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34.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)

{

f ′(x)

f(x)
+

g′(x)

g(x)

}

,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{

f(x)

g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)

g(x)2
.

It is often more convenient to compute this expression in the following way:

{

f(x)

g(x)

}

=
d

dx

{

f(x) · 1

g(x)

}

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
=

f(x)

g(x)

{

f ′(x)

f(x)
− g′(x)

g(x)

}

,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)

f(x)
+

g′(x)

g(x)
,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)

f(x)
− g′(x)

g(x)
.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

34.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R and a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1+ tan2 x =

1

cos2 x
, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1

cosh2 x
, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1

1 + x2
, for x ∈ R,

d

dx
Arccot x =

1

1 + x2
, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1

1− x2
, for |x| < 1,

d

dx
Arcoth x =

1

1− x2
, for |x| > 1.

Remark 34.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦
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34.5 Integration

The most obvious rules are dealing with linearity

∫

{f(x) + λg(x)} dx =

∫

f(x) dx + λ

∫

g(x) dx, where λ ∈ R is a constant,

and with the fact that differentiation and integration are “inverses to each other”, i.e. modulo some
arbitrary constant c ∈ R, which often tacitly is missing,

∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =

∫

{f(x)g(x)}′ dx =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx.

Hence, by a rearrangement

The rule of partial integration:

∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark 34.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark 34.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):

∫

f(ϕ(x)) · ϕ′(x) dx = “

∫

f(ϕ(x)) dϕ(x)′′ =

∫

y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then

∫

f(x) dx =

∫

y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark 34.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 and ϕ′(y) = 2y. ♦

34.6 Special antiderivatives

Power like:
∫

1

x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫

xα dx =
1

α+ 1
xα+1, for α �= −1,

∫

1

1 + x2
dx = Arctan x, for x ∈ R,

∫

1

1− x2
dx =

1

2
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

, for x �= ±1,

∫

1

1− x2
dx = Artanh x, for |x| < 1,

∫

1

1− x2
dx = Arcoth x, for |x| > 1,

∫

1√
1− x2

dx = Arcsin x, for |x| < 1,

∫

1√
1− x2

dx = − Arccos x, for |x| < 1,

∫

1√
x2 + 1

dx = Arsinh x, for x ∈ R,

∫

1√
x2 + 1

dx = ln(x+
√

x2 + 1), for x ∈ R,

∫

x√
x2 − 1

dx =
√

x2 − 1, for x ∈ R,

∫

1√
x2 − 1

dx = Arcosh x, for x > 1,

∫

1√
x2 − 1

dx = ln |x+
√

x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

∫

expx dx = expx, for x ∈ R,

∫

ax dx =
1

ln a
· ax, for x ∈ R, and a > 0, a �= 1.

Trigonometric:

∫

sinx dx = − cosx, for x ∈ R,

∫

cosx dx = sinx, for x ∈ R,

∫

tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫

cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫

1

cosx
dx =

1

2
ln

(

1 + sinx

1− sinx

)

, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sinx
dx =

1

2
ln

(

1− cosx

1 + cosx

)

, for x �= pπ, p ∈ Z,

∫

1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫

1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:

∫

sinhx dx = coshx, for x ∈ R,

∫

coshx dx = sinhx, for x ∈ R,

∫

tanhx dx = ln coshx, for x ∈ R,

∫

cothx dx = ln | sinhx|, for x �= 0,

∫

1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫

1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫

1

sinhx
dx =

1

2
ln

(

coshx− 1

coshx+ 1

)

, for x �= 0,
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∫

1

sinhx
dx = ln

∣

∣

∣

∣

ex − 1

ex + 1

∣

∣

∣

∣

, for x �= 0,

∫

1

cosh2 x
dx = tanhx, for x ∈ R,

∫

1

sinh2 x
dx = − cothx, for x �= 0.

34.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a point P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

✫✪
✬✩

✲

✻

��
(cosu, sinu)

u
1

Figure 34.1: The unit circle and the trigonometric functions.

The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1

2
(exp(iu) + exp(− iu)),

sinu =
1

2i
(exp(i u)− exp(− iu)),

.
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Moivre’s formula: We get by expressing exp(inu) in two different ways:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example 34.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical application,

cos(3u) + i sin(3u) = (cos u+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u

= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦

Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1

2
sin(u + v) +

1

2
sin(u− v),

cosu sin v =
1

2
sin(u + v)− 1

2
sin(u− v),

sinu sin v =
1

2
cos(u − v)− 1

2
cos(u+ v),

cosu cos v =
1

2
cos(u− v) +

1

2
cos(u + v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin

(

u+ v

2

)

cos

(

u− v

2

)

,

sinu− sin v = 2 cos

(

u+ v

2

)

sin

(

u− v

2

)

,

cosu+ cos v = 2 cos

(

u+ v

2

)

cos

(

u− v

2

)

,

cosu− cos v = −2 sin

(

u+ v

2

)

sin

(

u− v

2

)

.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√

1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√

1 + cosu

2
followed by a discussion of the sign,
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34.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1

2
(exp(x) + exp(−x)) , sinhx =

1

2
(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x

2

)

= ±
√

cosh(x) − 1

2
followed by a discussion of the sign,

cosh
(x

2

)

=

√

cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(

x+
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(

x+
√

x2 − 1
)

, x ≥ 1,

Artanh(x) =
1

2
ln

(

1 + x

1− x

)

, |x| < 1,

Arcoth(x) =
1

2
ln

(

x+ 1

x− 1

)

, |x| > 1.
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34.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

34.10 Taylor expansions

The generalized binomial coefficients are defined by

(

α
n

)

:=
α(α− 1) · · · (α− n+ 1)

1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with

(

α
0

)

:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).
Power like:

1

1− x
=

∞
∑

n=0

xn, |x| < 1,

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =

n
∑

j=0

(

n
j

)

xj , n ∈ N, x ∈ R,

(1 + x)α =

∞
∑

n=0

(

α
n

)

xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1,

Arctan(x) =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =

∞
∑

n=0

1

n!
xn, x ∈ R

exp(−x) =

∞
∑

n=0

(−1)n
1

n!
xn, x ∈ R

sin(x) =

∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =

∞
∑

n=0

1

(2n+ 1)!
x2n+1, x ∈ R,

cos(x) =

∞
∑

n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n, x ∈ R.

34.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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Index

absolute value 162
acceleration 490
addition 22
affinity factor 173
Ampère-Laplace law 1671
Ampère-Maxwell’s law 1678
Ampère’s law 1491, 1498, 1677, 1678, 1833
Ampère’s law for the magnetic field 1674
angle 19
angular momentum 886
angular set 84
annulus 176, 243
anticommutative product 26
antiderivative 301, 847
approximating polynomial 304, 322, 326, 336, 404,

488, 632, 662
approximation in energy 734
Archimedes’s spiral 976, 1196
Archimedes’s theorem 1818
area 887, 1227, 1229, 1543
area element 1227
area of a graph 1230
asteroid 1215
asymptote 51
axial moment 1910
axis of revolution 181
axis of rotation 34, 886
axis of symmetry 49, 50, 53

barycentre 885, 1910
basis 22
bend 486
bijective map 153
body of revolution 43, 1582, 1601
boundary 37–39
boundary curve 182
boundary curve of a surface 182
boundary point 920
boundary set 21
bounded map 153
bounded set 41
branch 184
branch of a curve 492
Brownian motion 884

cardiod 972, 973, 1199, 1705

Cauchy-Schwarz’s inequality 23, 24, 26
centre of gravity 1108
centre of mass 885
centrum 66
chain rule 305, 333, 352, 491, 503, 581, 1215, 1489,

1493, 1808
change of parameter 174
circle 49
circular motion 19
circulation 1487
circulation theorem 1489, 1491
circumference 86
closed ball 38
closed differential form 1492
closed disc 86
closed domain 176
closed set 21
closed surface 182, 184
closure 39
clothoid 1219
colour code 890
compact set 186, 580, 1813
compact support 1813
complex decomposition 69
composite function 305
conductivity of heat 1818
cone 19, 35, 59, 251
conic section 19, 47, 54, 239, 536
conic sectional conic surface 59, 66
connected set 175, 241
conservation of electric charge 1548, 1817
conservation of energy 1548, 1817
conservation of mass 1548, 1816
conservative force 1498, 1507
conservative vector field 1489
continuity equation 1548, 1569, 1767, 1817
continuity 162, 186
continuous curve 170, 483
continuous extension 213
continuous function 168
continuous surfaces 177
contraction 167
convective term 492
convex set 21, 22, 41, 89, 91, 175, 244
coordinate function 157, 169
coordinate space 19, 21
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Cornu’s spiral 1219
Coulomb field 1538, 1545, 1559, 1566, 1577
Coulomb vector field 1585, 1670
cross product 19, 163, 169, 1750
cube 42, 82
current density 1678, 1681
current 1487, 1499
curvature 1219
curve 227
curve length 1165
curved space integral 1021
cusp 486, 487, 489
cycloid 233, 1215
cylinder 34, 42, 43, 252
cylinder of revolution 500
cylindric coordinates 15, 21, 34, 147, 181, 182,

289, 477,573, 841, 1009, 1157, 1347, 1479,
1651, 1801

cylindric surface 180, 245, 247, 248, 499, 1230

degree of trigonometric polynomial 67
density 885
density of charge 1548
density of current 1548
derivative 296
derivative of inverse function 494
Descartes’a leaf 974
dielectric constant 1669, 1670
difference quotient 295
differentiability 295
differentiable function 295
differentiable vector function 303
differential 295, 296, 325, 382, 1740, 1741
differential curves 171
differential equation 369, 370, 398
differential form 848
differential of order p 325
differential of vector function 303
diffusion equation 1818
dimension 1016
direction 334
direction vector 172
directional derivative 317, 334, 375
directrix 53
Dirichlet/Neumann problem 1901
displacement field 1670
distribution of current 886
divergence 1535, 1540, 1542, 1739, 1741, 1742
divergence free vector field 1543

dodecahedron 83
domain 153, 176
domain of a function 189
dot product 19, 350, 1750
double cone 252
double point 171
double vector product 27

eccentricity 51
eccentricity of ellipse 49
eigenvalue 1906
elasticity 885, 1398
electric field 1486, 1498, 1679
electrical dipole moment 885
electromagnetic field 1679
electromagnetic potentials 1819
electromotive force 1498
electrostatic field 1669
element of area 887
elementary chain rule 305
elementary fraction 69
ellipse 48–50, 92, 113, 173, 199, 227
ellipsoid 56, 66, 110, 197, 254, 430, 436, 501, 538,

1107
ellipsoid of revolution 111
ellipsoidal disc 79, 199
ellipsoidal surface 180
elliptic cylindric surface 60, 63, 66, 106
elliptic paraboloid 60, 62, 66, 112, 247
elliptic paraboloid of revolution 624
energy 1498
energy density 1548, 1818
energy theorem 1921
entropy 301
Euclidean norm 162
Euclidean space 19, 21, 22
Euler’s spiral 1219
exact differential form 848
exceptional point 594, 677, 920
expansion point 327
explicit given function 161
extension map 153
exterior 37–39
exterior point 38
extremum 580, 632

Faraday-Henry law of electromagnetic induction
1676

Fick’s first law of diffusion 297
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Fick’s law 1818
field line 160
final point 170
fluid mechanics 491
flux 1535, 1540, 1549
focus 49, 51, 53
force 1485
Fourier’s law 297, 1817
function in several variables 154
functional matrix 303
fundamental theorem of vector analysis 1815

Gaussian integral 938
Gauß’s law 1670
Gauß’s law for magnetism 1671
Gauß’s theorem 1499, 1535, 1540, 1549, 1580, 1718,

1724, 1737, 1746, 1747, 1749, 1751, 1817,
1818, 1889, 1890, 1913

Gauß’s theorem in R2 1543
Gauß’s theorem in R3 1543
general chain rule 314
general coordinates 1016
general space integral 1020
general Taylor’s formula 325
generalized spherical coordinates 21
generating curve 499
generator 66, 180
geometrical analysis 1015
global minimum 613
gradient 295, 296, 298, 339, 847, 1739, 1741
gradient field 631, 847, 1485, 1487, 1489, 1491,

1916
gradient integral theorem 1489, 1499
graph 158, 179, 499, 1229
Green’s first identity 1890
Green’s second identity 1891, 1895
Green’s theorem in the plane 1661, 1669, 1909
Green’s third identity 1896
Green’s third identity in the plane 1898

half-plane 41, 42
half-strip 41, 42
half disc 85
harmonic function 426, 427, 1889
heat conductivity 297
heat equation 1818
heat flow 297
height 42
helix 1169, 1235

Helmholtz’s theorem 1815
homogeneous function 1908
homogeneous polynomial 339, 372
Hopf’s maximum principle 1905
hyperbola 48, 50, 51, 88, 195, 217, 241, 255, 1290
hyperbolic cylindric surface 60, 63, 66, 105, 110
hyperbolic paraboloid 60, 62, 66, 246, 534, 614,

1445
hyperboloid 232, 1291
hyperboloid of revolution 104
hyperboloid of revolution with two sheets 111
hyperboloid with one sheet 56, 66, 104, 110, 247,

255
hyperboloid with two sheets 59, 66, 104, 110, 111,

255, 527
hysteresis 1669

identity map 303
implicit given function 21, 161
implicit function theorem 492, 503
improper integral 1411
improper surface integral 1421
increment 611
induced electric field 1675
induction field 1671
infinitesimal vector 1740
infinity, signed 162
infinity, unspecified 162
initial point 170
injective map 153
inner product 23, 29, 33, 163, 168, 1750
inspection 861
integral 847
integral over cylindric surface 1230
integral over surface of revolution 1232
interior 37–40
interior point 38
intrinsic boundary 1227
isolated point 39
Jacobian 1353, 1355

Kronecker symbol 23

Laplace equation 1889
Laplace force 1819
Laplace operator 1743
latitude 35
length 23
level curve 159, 166, 198, 492, 585, 600, 603
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level surface 198, 503
limit 162, 219
line integral 1018, 1163
line segment 41
Linear Algebra 627
linear space 22
local extremum 611
logarithm 189
longitude 35
Lorentz condition 1824

Maclaurin’s trisectrix 973, 975
magnetic circulation 1674
magnetic dipole moment 886, 1821
magnetic field 1491, 1498, 1679
magnetic flux 1544, 1671, 1819
magnetic force 1674
magnetic induction 1671
magnetic permeability of vacuum 1673
magnostatic field 1671
main theorems 185
major semi-axis 49
map 153
MAPLE 55, 68, 74, 156, 171, 173, 341, 345, 350,

352–354, 356, 357, 360, 361, 363, 364,
366, 368, 374, 384–387, 391–393, 395–
397, 401, 631, 899, 905–912, 914, 915,
917, 919, 922–924, 926, 934, 935, 949,
951, 954, 957–966, 968, 971–973, 975,
1032–1034, 1036, 1037, 1039, 1040, 1042,
1053, 1059, 1061, 1064, 1066–1068, 1070–
1072, 1074, 1087, 1089, 1091, 1092, 1094,
1095, 1102, 1199, 1200

matrix product 303
maximal domain 154, 157
maximum 382, 579, 612, 1916
maximum value 922
maximum-minimum principle for harmonic func-

tions 1895
Maxwell relation 302
Maxwell’s equations 1544, 1669, 1670, 1679, 1819
mean value theorem 321, 884, 1276, 1490
mean value theorem for harmonic functions 1892
measure theory 1015
Mechanics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801, 1921
meridian curve 181, 251, 499, 1232
meridian half-plane 34, 35, 43, 181, 1055, 1057,

1081

method of indefinite integration 859
method of inspection 861
method of radial integration 862
minimum 186, 178, 579, 612, 1916
minimum value 922
minor semi-axis 49
mmf 1674
Möbius strip 185, 497
Moivre’s formula 122, 264, 452, 548, 818, 984,

1132, 1322, 1454, 1626, 1776, 1930
monopole 1671
multiple point 171

nabla 296, 1739
nabla calculus 1750
nabla notation 1680
natural equation 1215
natural parametric description 1166, 1170
negative definite matrix 627
negative half-tangent 485
neighbourhood 39
neutral element 22
Newton field 1538
Newton-Raphson iteration formula 583
Newton’s second law 1921
non-oriented surface 185
norm 19, 23
normal 1227
normal derivative 1890
normal plane 487
normal vector 496, 1229

octant 83
Ohm’s law 297
open ball 38
open domain 176
open set 21, 39
order of expansion 322
order relation 579
ordinary integral 1017
orientation of a surface 182
orientation 170, 172, 184, 185, 497
oriented half line 172
oriented line 172
oriented line segment 172
orthonormal system 23

parabola 52, 53, 89–92, 195, 201, 229, 240, 241
parabolic cylinder 613
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parabolic cylindric surface 64, 66
paraboloid of revolution 207, 613, 1435
parallelepipedum 27, 42
parameter curve 178, 496, 1227
parameter domain 1227
parameter of a parabola 53
parametric description 170, 171, 178
parfrac 71
partial derivative 298
partial derivative of second order 318
partial derivatives of higher order 382
partial differential equation 398, 402
partial fraction 71
Peano 483
permeability 1671
piecewise Ck-curve 484
piecewise Cn-surface 495
plane 179
plane integral 21, 887
point of contact 487
point of expansion 304, 322
point set 37
Poisson’s equation 1814, 1889, 1891, 1901
polar coordinates 15, 19, 21, 30, 85, 88, 147, 163,

172, 213, 219, 221, 289, 347, 388, 390,
477, 573, 611, 646, 720, 740, 841, 936,
1009, 1016, 1157, 1165, 1347, 1479, 1651,
1801

polar plane integral 1018
polynomial 297
positive definite matrix 627
positive half-tangent 485
positive orientation 173
potential energy 1498
pressure 1818
primitive 1491
primitive of gradient field 1493
prism 42
Probability Theory 15, 147, 289, 477, 573, 841,

1009, 1157, 1347, 1479, 1651, 1801
product set 41
projection 23, 157
proper maximum 612, 618, 627
proper minimum 612, 613, 618, 627
pseudo-sphere 1434
Pythagoras’s theorem 23, 25, 30, 121, 451, 547,

817, 983, 1131, 1321, 1453, 1625, 1775,
1929

quadrant 41, 42, 84
quadratic equation 47

range 153
rectangle 41, 87
rectangular coordinate system 29
rectangular coordinates 15, 21, 22, 147, 289, 477,

573, 841, 1009, 1016, 1079, 1157, 1165,
1347, 1479, 1651, 1801

rectangular plane integral 1018
rectangular space integral 1019
rectilinear motion 19
reduction of a surface integral 1229
reduction of an integral over cylindric surface 1231
reduction of surface integral over graph 1230
reduction theorem of line integral 1164
reduction theorem of plane integral 937
reduction theorem of space integral 1021, 1056
restriction map 153
Ricatti equation 369
Riesz transformation 1275
Rolle’s theorem 321
rotation 1739, 1741, 1742
rotational body 1055
rotational domain 1057
rotational free vector field 1662
rules of computation 296

saddle point 612
scalar field 1485
scalar multiplication 22, 1750
scalar potential 1807
scalar product 169
scalar quotient 169
second differential 325
semi-axis 49, 50
semi-definite matrix 627
semi-polar coordinates 15, 19, 21, 33, 147, 181,

182, 289, 477, 573, 841, 1009, 1016, 1055,
1086, 1157, 1231, 1347, 1479, 1651, 1801

semi-polar space integral 1019
separation of the variables 853
signed curve length 1166
signed infinity 162
simply connected domain 849, 1492
simply connected set 176, 243
singular point 487, 489
space filling curve 171
space integral 21, 1015
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specific capacity of heat 1818
sphere 35, 179
spherical coordinates 15, 19, 21, 34, 147, 179, 181,

289, 372, 477, 573, 782, 841, 1009, 1016,
1078, 1080, 1081, 1157, 1232, 1347, 1479,
1581, 1651, 1801

spherical space integral 1020
square 41
star-shaped domain 1493, 1807
star shaped set 21, 41, 89, 90, 175
static electric field 1498
stationary magnetic field 1821
stationary motion 492
stationary point 583, 920
Statistics 15, 147, 289, 477, 573, 841, 1009, 1157,

1347, 1479, 1651, 1801
step line 172
Stokes’s theorem 1499, 1661, 1676, 1679, 1746,

1747, 1750, 1751, 1811, 1819, 1820, 1913
straight line (segment) 172
strip 41, 42
substantial derivative 491
surface 159, 245
surface area 1296
surface integral 1018, 1227
surface of revolution 110, 111, 181, 251, 499
surjective map 153

tangent 486
tangent plane 495, 496
tangent vector 178
tangent vector field 1485
tangential line integral 861, 1485, 1598, 1600, 1603
Taylor expansion 336
Taylor expansion of order 2, 323
Taylor’s formula 321, 325, 404, 616, 626, 732
Taylor’s formula in one dimension 322
temperature 297
temperature field 1817
tetrahedron 93, 99, 197, 1052
Thermodynamics 301, 504
top point 49, 50, 53, 66
topology 15, 19, 37, 147, 289. 477, 573, 841, 1009,

1157, 1347, 1479, 1651, 1801
torus 43, 182–184
transformation formulæ1353
transformation of space integral 1355, 1357
transformation theorem 1354
trapeze 99

triangle inequality 23,24
triple integral 1022, 1053

uniform continuity 186
unit circle 32
unit disc 192
unit normal vector 497
unit tangent vector 486
unit vector 23
unspecified infinity 162

vector 22
vector field 158, 296, 1485
vector function 21, 157, 189
vector product 19, 26, 30, 163, 169. 1227, 1750
vector space 21, 22
vectorial area 1748
vectorial element of area 1535
vectorial potential 1809, 1810
velocity 490
volume 1015, 1543
volumen element 1015

weight function 1081, 1229, 1906
work 1498

zero point 22
zero vector 22

(r, s, t)-method 616, 619, 633, 634, 638, 645–647,
652, 655

Ck-curve 483
Cn-functions 318
1-1 map 153
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