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Calculus Analyse 1c-6 Preface

Preface

In this volume I present some examples of Taylor’s formula and Limit Processes, cf. also Ventus:
Calculus 1a, Functions of One Variable. Since my aim also has been to demonstrate some solution
strategy I have as far as possible structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
5th August 2007
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Calculus Analyse 1c-6 Taylor's formula for simple functions

1 Taylor’s formula for simple functions

Example 1.1 Find the two first derivatives of the function
fx)=V1+az, x> —1.

A. Simple differentiations.

D. Just differentiate.

I. If f(z) =1+, x > —1, then

1 1 1 1
= and f"(z)=—-—-————+—, x>-1
2 V1i+z F@) 4 (14+2)V1+x

Example 1.2 Set up Taylor’s formula for n = 2 with the point of expansion xg = 0 for the function
f@)V1+ .
A. Taylor’s formula for n = 2.

D. Perform the differentiations, or use the results from Example 1.1.

I. From
f@) =TTz, f@) =3 e fa)= 7
B ’ 21+ A+ )Vt
we get for zo = 0,
O =1 FO)=5 0=
’ 2’ 4’
Then by insertion into Taylor’s formula for n = 2,
1
Lta = f(0)+f(0)(z—0)+5 (&) (& - 0)*
o, )

2T s areE
where ¢ lies somewhere between 0 and .

Example 1.3 Find the first two derivatives of the function
f(z) = Arctan 2z.

A. Simple differentiations.

D. Just differentiate.

I. When f(z) = Arctan 2z, then

16z

S S

T 1+ 422
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Calculus Analyse 1c-6 Taylor's formula for simple functions

Example 1.4 Set up Taylor’s formula for n = 2 with the point of expansion xoy = 0 for the function
f(z) = Arctan 2z.

A. Taylor’s formula for n = 2.
D. Differentiate or use the results from Example 1.3.

I. When

2 162

f(x) = Arctan 2z, f'(z)= T a2 f'(@) = T+ a2

we get at the point of expansion xy = 0,
f(0) =0, 1(0) =2, 7(0) = 0.
Then by Taylor’s formula,

1 166

- S L Sy
Arctan 2z = 0+2(z—0) 2 (1+4€7)? (z—0)
B 8¢ 2
= 2 (1 +4§2)2 x°,

where £ = &(z) lies somewhere between 0 and x.

360°
thinking.
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Calculus Analyse 1c-6 Taylor's formula for simple functions

Example 1.5 The mean value theorem (or Taylor’s formula for n = 1) states that for any continuous
function f(x) there exists a point & between x¢ and x such that

f(@) = f(zo) = (z — 20) f(€).
Find such a point & for
1) f(z) =sinz, ©o =0, z =7,
2) fl&)=a™ (n>1), xg =0, z =1.
A. Applications of the mean value theorem.

D. Set up the mean value theorem in the two given cases, and then find &.

0 05 1 15 2 25 3

Figure 1: The graph of f(z) = sinz, and the tangent parallel to the z-axis, corresponding to £ = g

Figure 2: The graph of f(x) = 22, and the tangent parallel to the line through the end point,

1
corresponding to £ = 3
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Calculus Analyse 1c-6 Taylor's formula for simple functions

I. 1) From f/(z) = cosx we get
sinz —sinzg = (x — xg) - cos&.
When g =0 or z = m we get the equation
0—0=0=m-cos&,

thus € =

|

2) From f’(z) = na""! we get
" —zh =n" - (x — o).
For zyg = 0 and x = 1 we get the equation
1-0=1=n""" (1-0)=n"",

thus

/1
& = "\/j (— 1 for n — 400).
n

Example 1.6 Assume that the function f(x) is three times continuously differentiable, which means
that the third derivative exists and is continuous, in a neighbourhood of the point o € R, and assume
that f'(zo) = 0.

1) Prove that if f"(xg) <0, then f(x) has a mazimum at the point x.

2) Now, we further assume that f”(xz¢) = 0 and f"'(x¢) # 0. Apply Taylor’s formula to decide
whether f(x) has a mazimum or a minimum or none of the kind at the point x.

A. Maximum/minimum.
D. Taylor expansion of order 2.

I. 1) It follows immediately from
1
@) = f(wo) + 5 f"(wo) - (w = 20)” + (@ = 20) (w = wp),
that if f”(xg) < 0, then f(z) < f(xo) in a neighbourhood of ¢ (excl. xq itself), such that f(x)
has a maximum at the point x.
2) If we assume that f”(xg) =0 and f"'(xg) # 0, then

f(@) = f(zo) + % " (w0) - (z — 20)® + (x — w0)® e(z — z0),

and f(z) — f(xo) is of the same sign as f"/(x¢) for & > 0 and of the opposite sign of f"'(x)
for x < 0. Hence f(z) has neither a maximum nor a minimum at z.

9
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Calculus Analyse 1c-6 Taylor's formula for simple functions

Example 1.7 Assume that the function f(x) is four times continuously differentiable, which means

that the fourth derivative exists and is continuous, in a neighbourhood of the point xy € R, and assume
that

f(x0) = f"(wo) = f"(20) = 0,
while @ (x0) # 0.

1) Prove by means of Taylor’s formula that if f(x¢) > 0, then f(x) has a minimum at the point
Zo-.

2) What is the conclusion, if instead f(zg) < 0%
A. Maximum/minimum.
D. Use Taylor’s formula.

I. 1) It follows from Taylor’s formula, that in a neighbourhood of z,

1
f(@) = f(zo) + Il B (@o) - (& — wo)* + (& — m0)* e — o),
because the first three derivatives of f(z) are 0 at z.

It follows immediately, when f*)(zq) > 0 that f(z) > f(xo) in a neighbourhood of zg,  # zq,
so f(z) must have a (local) minimum at zg.

2) If instead f®*) (o) < 0, then f(x) < f(xo) in a neighbourhood of xq, = # w0, hence f(z) has a
local maximum at xg.

Example 1.8 Assume that the function f(z) is of class C* in a neighbourhood of the point x¢ € R,

and that f'(z¢) = 0. Let p denote the first number of 2, 3, 4, ..., for which f® (x¢) # 0. This means
that

(o) = f'(xo) == f(p_l)(l‘o) =0, f(p)(q:o) £ 0.
1) Set up Taylor’s formula for f(x) i xg with p as point of expansion.

2) Formulate and prove a theorem which states that f(x) has a mazimum or a minimum or none of
the kind at the point xg.

A. Maximum/minimum.

D. Apply Taylor’s formula.

I. 1) This is trivial,
f(x) = f(z0) + % f(p)(l“o) (= 20)? + (x — x)P ez — o).

2) Here we shall split into the cases, whether p is odd or even.

a) If p is odd, then (x — xo)? changes its sign in a neighbourhood of xg, so we have neither a
maximum nor a minimum.

b) If p = 2n is even, we must split according to whether f(™) (o) > 0 or ™ (z4) < 0.

10
Download free eBooks at bookboon.com



Calculus Analyse 1c-6 Taylor's formula for simple functions

i) If £ (20) > 0, then f(x) > f(xo) in a neighbourhood of xg, = # x¢, so f(x) has a
local minimum at xg.

i) If f®)(z9) < 0, then f(z) < f(xo) in a neighbourhood of xg, x # xg, so f(x) has a
local maximum at xg.

Example 1.9 Find all values of the constant a, for which there exists a 6 > 0, such that the parabola
y =1+ ax? lies above the chain curve y = coshx for 0 < |z| < 6.

A. Local comparison of graphs.

D. Find the Taylor expansion of y = cosh x with the expansion point z¢o = 0 and then analyze.

SIMPLY CLEVER SKODA
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- ’I.’.
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We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

11 Click on the ad to read more
Download free eBooks at bookboon.com



http://www.employerforlife.com

Calculus Analyse 1c-6 Taylor's formula for simple functions

15
1.4
13
12
1.1

1
Figure 3: The graphs of y = coshz and the limit case y = 1 4 3 22. When z # 0, then the graph of

the polynomial is always lying below the graph of the chain curve.

I. We conclude from

1
y=coshx =1+ §$2 + 22e(z),

1
that if a > ok then there always exists a § > 0, such that the parabola y = 1 + a2 lies above the

1
chain curve y = coshz for 0 < |x| < §. The figure indicates for a = 3 the biggest value of a, for

which this is not possible.

Example 1.10 Find the Taylor expansion of degree n = 6 for the functions
(1) f(x) =sina?, (2) f(z) =e*, (3) f(z)=In(1+2%).

A. Taylor expansions.

D. Substitute in known Taylor expansions.

I. 1) From

. 1
sing =y — 54" +y°(y”),
we get by the substitution y = 2,

1
f(z) =sinz? = 2? — 6 25 + 2% ().

2) From

1 1 1 1 1 1
Y = Lo, b3 L a5 16 6
e TR LA TR TR TR A TR O
we get by the substitution y = 2z,

4 2 4 4
621=1—|—2x—|—2x2—|—§x3+§x4+1—5x5+£x6+m65(x).

12
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Calculus Analyse 1c-6 Taylor's formula for simple functions

3) From

1
n(l+y)=y—3 y> + ye(y),

we get by the substitution y = 3,

fl@)=I(1+2%) =2° - %xG + 2% ().

Example 1.11 Find the Taylor expansion for n =4 and xo = 0 for the function

1

A. Taylor expansion.
D. Differentiate five times.
I. When f(z) = (1 + )72, we get by differentiation
fla)==21+2)7% f'(2)=31+2)"", [fP(2)=-4(1+2)"7,

@) =5!1+2)°%  fO@=-6(14z)"".
Thus,

f(=)

FO)+ 5 /02 + 5 F(0) 2 + 5 F(0) 2

1 1
+ PO+ = fP Q) a?
2 3, 4, 5, 6 1
TR TR TR TRl Saya
6 6
6 e
(1+8)7

|
—

|

|
8

|
B

|

|
8

= 1—2z+32% —4a® +52* —

where x > —1, and ¢ is some number between 0 and x.

Example 1.12 Find the Taylor polynomial Py(x) of second order at the point xog = 0 for the function
fz) =In(1 + "), zeR.

A. Taylor expansion, cf. Example 2.15.

D. Differentiate two times and find the coefficients.

I. From
flx) = In(l+e%), f(0) = In2,
/ _ e’ — 1 _ 1 / 1
1 _ € 1 —
f'(x) = ma ) = 1

we obtain the Taylor polynomial expanded from zy = 0,

11 1 1
PQ(‘T>:1n2+§'1$2=1n2+§$+g$2.

13
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Calculus Analyse 1c-6 Taylor's formula for simple functions

Example 1.13 Indicate on a figure the domain of the function
fla,y) =4+ —y?).

Find the approximating Taylor polynomial of first order, when (x,y) = (1, —2) is used as the point of
expansion.

A. Domain of a function at an approximating polynomial (in two variables).

D. Apply the usual procedure of solution.

Figure 4: The domain is the open set inside the parabola of the equation z = y? — 4.

I. The domain is the open set inside the parabola on the figure. By differentiation we get

f(:r,y) = 11’1(4 +1{E - y2)7 f(la _2) = 07

4 = '(1,2) =1
fa(z,9) 4+15y27 f2(1,2) )
Y
f;(x,y):74+x_y27 fg{/(1772):4,
hence

Pi(r,y) =04+1-(z—1)+4-(y+2)=c—1+2(y+2).

14
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Calculus Analyse 1c-6 Estimates of remainder terms

2 Estimates of remainder terms

Example 2.1 Give an estimate of the expression

=3 |
(1+¢)=
where £ lies between 0 and x, in the cases of
1 1
1 < — 2 < —.
1) i<, @) i<y

A. A latent estimate of a remainder term.

D. Estimate by making the (positive) denominator as small as possible, and the (positive) numerator
as big as possible.

I. 1) When z € [ , and & lies between 0 and x, then the expression becomes largest when

1
107 10
1
—— =z =¢, thus

10
2 2
1 9 1 1 10 2 1 1 1
—_— <{— =) == ‘=) =— = =0.0117.
1+oi| " = 7 \10 9 10 10 27
3 1
1 —
(%)
1
2) We use the same method for |z| < 3 Here, the expression is largest when —— = x = £, thus
! 2 < ! AN of. L L Lorom
—| —_— |z ] =22 =-"—==0. .
1+92[" ~ 1\ \2 2 V2

(1-3)

Example 2.2 Give an estimate of the expression

§ 2
1+&2 77
where & lies between 0 and x, and when
1
(1) <y @) <2

A. A latent estimate of a remainder term.

D. Find the maximum of %52 in the two intervals and estimate.
I. The function ¢(§) = T e is odd, hence it is sufficient only to consider > 0 and 0 < & < x. We
conclude from
1-&2
Iy
SO (5) - (1 +€2)2a

1
that ¢(&) is increasing for £ € [0, 1], and decreasing for £ €1, +o00[. Maximum is ¢(1) = 3"

15
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Calculus Analyse 1c-6 Estimates of remainder terms

1 1 1
1) When 0 < ¢ <z < —, the maximum is obtained for £ = x = 3 Therefore, if |z| < 3 then

§
1+¢2

1 2
5 1 1
2<¢. - —
x—l N2 <2> 10
*(5)

2) If0 < & < <2, then p(€) is largest for £ = 1, and 22 is largest for # = 2. Since |p(€)] is even,
we get for general |z| < 2 the estimate

§ > 1 2
< 22 =2
’1 > N 1 2 2
Ijoined MITAS because e St
I wanted real responsibility www.discovermitas.com

Wy aa
TR T S
LY TR,
e T e
Pt 3 F
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=
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Calculus Analyse 1c-6 Estimates of remainder terms

Example 2.3 Let Pi(x) denote the Taylor polynomial of order 1 with the point of expansion xg =0
for the function f(x) = Arctan 2z. Give an estimate of the remainder term Ry(x), when

1) i<, @) el <

A. Taylor expansion and an estimate of the remainder term.

D. Differentiate two times or apply Example 1.3 and Example 1.4, and apply Taylor’s formula. Es-
timate the remainder term.

I. Let f(x) = Arctan 2z. Then

16z

f'(=) A+ a2

R @) =~

When xy = 0 is the point of expansion, we get

8¢ 2
R

Arctan 2z = f(x0)0f'(xo) - (x — z0) + % () (@ = wo)* = 20 — (14 4£2)2

where £ lies somewhere between 0 and .
It follows that P;(z) = 2z and that

8¢

m a? = | R ()]

)~ Pilo)] =

Now Arctan 2x is an odd function, so we can assume in the estimation of the remainder term that
x>0, thus 0 < ¢ < x.

The function

8¢
=—— 0
o) = Trgmp Sl
has the derivative
P(6) = oy (1 - 12€)
(1+482)3 '
H (&) isi i f&e{o 1[ dd i f§“>1 I ticul €),&£>0
ence is increasing for ,——=| and decreasing for ——. In particular, , ,
v & . 2v/3 & 03 T v
has its maximum for £ = —.
: 2V/3
1) If |z| < ! < ! then ¢(§), € > 0, is maximum for ! This is also the case of 22, hence
— < — X = —.
— 10 2\/3’ SD ) — K 10 b
we get the estimate of the remainder term
1
8. — 2
8¢ 2 10 1
e 10 () & 4.
|Ry ()] ‘(1+4§2)2 z? < i 2 (15 0,007
()
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Calculus Analyse 1c-6 Estimates of remainder terms

1
so ¢(£), € > 0, attains its maximum at £ = ——, and 22 its

2V3’

1 1 1
2) If || < =, then — < =,

1
maximum at x = 7" Thus we get the estimate of the remainder term

8¢

(1+4¢2)?

= 2
1 1 9
2<A. Z) = — .2 ~0.3248.
z° < 5 73 16 0,3248

R =

Example 2.4 Given the function

f(z) =z cosuz, x e R
1) Set up Taylor’s formula for n = 2 with the point of expansion xo =0 for f(x).
2) Estimate the remainder term Ry (z), when |z| < 1.

3) Prove that

|z cosz — x| < 22 for|z| < 1.

A. Taylor expansion and estimate of a remainder term.

D. Differentiate two times and apply Taylor’s formula. Estimate the remainder term. We get some
problems in (3).

I. 1) When f(z) = x cosz we get
f(x) = cosx — x sinx, f"(x) = —2sinz — x cosw,
thus with the point of extension zg = 0,

f(x) = =xcosx
= f(wo) + f'(wo) (x — z0) + % (&) - (x — x0)?
= x—%{Qsinf—l—fcosﬁ]wxz,

for some £ between 0 and .
2) The function 2sin + £ cos € is odd with the derivative

7 il il 3 i \/g
3cosé —Esiné > 3 cos 3 3 sin 3 573 >0 for £ € [0, 1]

The maximum is attained for [2sin§ + £ cos€| in the interval [—1, 1] for £ = 1. Hence
[2sin€ 4+ £cosé| <2-sinl+cosla~2-1,1116,

and we get the estimate of the remainder term

1
|R1(z)| < 5 {2sin1 + cos1}x? ~ 1,1116 - 2* < 1,1116.

18
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Calculus Analyse 1c-6 Estimates of remainder terms

3) By the estimate from (2) we get
Lo 2 2
|z cosx — x| < 5 [2sinl1+1-cosl| z®~1,111627,
which is not sufficient.

Instead we estimate directly, where we use that sin? z < 2?2 for every z,

|z cosz —z| = |z|(1—cosz) =2 sin? z -
2

2 1 1
2-(5) - lal = 5 2 < 5 lal?,

IN

for |z| < 1.

~
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Calculus Analyse 1c-6 Estimates of remainder terms

Example 2.5 Given the function

f(z) =In(1 +sinx), x € }—Z,E[.
272
1) Set up Taylor’s formula for n = 2 with the point of expansion xo =0 for f(x).

2) Prove that

|f($)—$\§%~10_2 forxe{o,%}

A. Taylor expansion of second order from xy = 0. Cf. also Example 2.6.
D. Differentiate two times: then estimate the remainder term.

I. 1) First calculate

;.\ COST " 77sinx~(1+sinx)fcos2x77 1
f(x)il—l—sinac7 Filw) = (1+sinx)? - 1+sinz’
hence
(1 +sinz) = £0) + F(0) 2 + = F/(€) 2 g — oo — 1 g2
2 2 1+siné
for some & between 0 and .
1
2)If0§£§x§ﬁ,then
1] 1 , 1 1, 1,
Y <. < .1
(@) =l 2'1+sin§‘x Sy 140t S

Example 2.6 Given the function

f(z) =In(1 +sinz), aze }—f, 5[.
22
1) Find the Taylor polynomial Pa(x) of order 2 with the point of expansion xo =0 for f(x).
2) Prove that

[f(z) = Po(2)| <2-107%  forze [07 1_10} :

A. Same function as in Example 2.5; we shall only develop one further step. Taylor polynomial,
estimate of remainder term.

D. Differentiate three times. Set up the Taylor polynomial and then continue with the estimate of
the remainder term.

I. When f(z) = In(1 +sinx) we get

;, \_ COSm oA 1 (3) (o cosT
f(gr)_l—l—sinsv7 fla) = 1+sinz’ ! (x)_(1+sinm)27
1
where f®)(z) > 0 for z € {0, 1—0}
20
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Calculus Analyse 1c-6 Estimates of remainder terms

1) The Taylor polynomial P»(z) with point of expansion 2o = 0 is
1
Py(a) = fO)+ /(0) - 5 [/ (000 =2 — 5 0.
2) Then by Taylor’s formula,

f(a) = Pa(e) + 5 SD() -0

1
for some £ between 0 and z. If x € [0, E} then f(3) (&) 2% > 0, hence

1 1 cosé
[f(2) = Pa(2)] = f(2) = Pa(w) = 5 fP(€) 2" = & (I +smée”
The numerator cos ¢ decreases and the denominator (1 + sin¢)? increases when ¢ runs through

1
{0, 1—0} , hence f®)(€) is largest for € = 0. Then we get the estimate

1 cos0
6 (1+40)2

2
21073 = o 1073 <2-107*

Example 2.7 Find The Taylor polynomial P, (x) for each of the following functions with the given
point of expansion xo and for the given n. Give an estimate of the remainder term for |x| < 0.2:

1) f(x) =tanx, 29 =0, n = 2.
2) f(z) =lncosz, 9 =0, n = 3.
3) f(x) =sinhz, g =0, n =4.

A. Taylor polynomials and estimates of remainder terms. In all three cases the point of expansion is
o = 0.

D. Differentiate in each case n + 1 times with due respect to following the estimate of the remainder
term. Find the polynomials.

I. 1) If f(x) =tanx and n = 2, then

1 £(z) = 2sinx f(g)(x)

cosd '

_ 6sin’x 2

fl(x) =

Thus

cos?zx’ costxr  cos?x’

Py(x) = f(0) + f/(0) - = + % f(0) - 2% = x,

21
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Calculus Analyse 1c-6 Estimates of remainder terms

3:l.3sin2§+(:082§ e
3 cos* ¢

Ry(z) = 5[ 2

2
1 __3 3
cos*¢  cos?¢

When |z] < 0.2 and ¢ lies somewhere between 0 and x we get the estimate of the remainder

term
1 2 1
R e Pt
[Ba@)l = cos? ¢ 3’ cos? ¢
1 2 1
< 3 T (0,2)% ~ 0,003118.
cos? cos?

2) If f(z) =Incosz and n = 3, then

1
, - _t " _
fla)=—tma, )=
2sinx 6 1
®)(g) = — ) () — _ 4
F) cos? z’ /@) { cos? } cos?x’
Thus,

Py(e) = F(0) + f/(0) 2 + 5 f/(0) 2% + 5 [H(0)* =~ a2,

and

_ Ll a2 20 L
R3(m)_4!f (€)= 4 |cos2¢ 3 cos2é o

x
If we notice that this remainder term is 1 times the remainder term in (1), we end up with

the estimate of the remainder term

1 1 2 1
R <-q———-= 1< 0,003118 - 0,05 = 0.000156.
|Rs(2(] < 4{c032§ 3}0052§x -

3) If f(x) = sinhz and n = 4, then

f(@) = fP(z) = f*(z) = sinhz,

and
(@) = O (@) = fO(2) = cosha,
thus
1 1
Py(x) =2+ gxs :l‘+63§37
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and

1
Ry(z) = = cosh¢ - 2°.

~ 5l

1
For |z| < 0,2 = F we get the estimate of the remainder term

|Ry(x)] < L cosh

— 120

(

1

5

1 5
A Z) ~2,72-1076.
) (5) =2

in a row

<
)
&
%)

Stockholm
(]

no.l
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Example 2.8 1) Find the Taylor polynomial Py(x) with the point of expansion xo = 0 of the function

flz)=V1+z.

2) Give an estimate of the remainder term Ro(x) when z € [0; 0.02].

3) What are the bounds for this estimate for +/1.0272

A. Taylor expansion.

D. Differentiate three times. Find Py (z) and estimate Rs(x).

I. 1) We obtain from f(z) = ¢/1+z = (1+ )3 that

Fla)=30+at  fa)=—p (1)
@) (z) = 20 -3
FO@) = 5 1+ 2)7F,

Hence,

£l = $0) + 70w + 5 £(0) -2 + 5 FOE)-

for some ¢ lying between 0 and z, i.e.

1 1
Py (x) =l+gz- 51:2
with the remainder term
5 1
R S — -

2) When 0 < £ < 2 < 0,02, we get (1+£)5 > 1, so

5 3

< — -z
Rafo)| < 5 o

3) Putting z = 0,02 we get

2 \° 40

100

3
5 1
|R2(0,02)| < - <—> — 1079 < =106,

- 81 2
corresponding to
1
/1,02 — Py(0,02)] < 3 1075,

Here,

1 1
Py(0,02) =1+ 50,02 ¢ -0.022 ~ 1,006622.
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Example 2.9 What is the smallest order of the Taylor expansion of the function

flz) = V1+az,

> —1,

if we want the Taylor polynomial only to deviate from f(x) by at most 1072 on the interval [0,1]?

A. Estimate of a remainder term.
D. Differentiate f(x) n times, until

1
(n+1)!

£ ()

is < 1072, whenever 0 < ¢ <z < 1.

L. If f(z) = (14 )3, then

F(2) = Ky (14 2)577,

where k,, is some constant, which is calculated below.

Let n > 1. Then (1 + §)%_" is largest for £ = 0, corresponding to the value 1, so we shall “only”

find n such that

1

k| < 1072
(n+1)!| +l

First note that

1 1]/1 130 — 4 1
k== (z=n+1)EK, - kool
n'|n| n!‘(?) n ) o 3n (n—l)!|n1|
If we put
1
an:_|kn|a TLZL
n!
then
1 3n—4
a; = — og a, = “Qp_1 formn>2,
3 3n
and we continue successively
21 5 8 10
a2—6a1—9, CL3—96l2— y a4—12 03—243,
_no_ 2 4 15 ot 3n
=15 M T g 6718 77 6561’ 7751 % T 10683
L2 9% 23 o 21505 26 55913
824 77T T 500490 7T 27 TP T 15943290 0T 30 77T 4782969
L2 1621577 _ 32 12972616 _ 1
33 M0 T 157837977 T 36 T 1420541793 100

1
Since we first obtain |R(™ (z)| < 100 for n+1 = 12, we must approximate f(z) by Pi1(x) in order

to obtain the given estimate over the interval [0, 1].
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Example 2.10 Calculate sin1 by using the first five terms different from 0 of the Taylor polynomial.
Estimate the remainder term.

A. Taylor expansion and estimate of the remainder term.

D. Differentiate f(x) = sinz 10-11 times. Then set up the Taylor polynomial and find the value for
x = 1. Finally, estimate the remainder term.

I. It may seem insurmountable to differentiate 10-11 times. However, the periodicity of the functions
reduces this task to

4

f@) = [O(x) =[O (2) =sinz,
fl@) = fO%) = fO2) = cos,
f'e) = fO@) = 1) = —sin,
fFla)y = fO®) =) = —cos

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International
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By an expansion from xy = 0 we get

1 1 1 1 1 1 71

Pl)=1- o4 doo=lm oo — o =

3175 79 3175 9l
We get for the remainder term,
11 1

. . 10__7<__
sing] 20 = 3628800 ~ 3

1
|Ro ()| = 101 \

but since f1°(0) = 0, we even get the better estimate

1 1
|cosé|-a't <

- <
- 11! 39916800 —

1
|Rio(z)| = 0

Example 2.11 Consider the function

X

f(x) = cos <§>

1075;

1
3

5
6

2953
+ =gy ~ 0, 84146,

1077,

and the corresponding approximating polynomials P, (x) with the same point of expansion xg = 0 of

this function.

1) Find P,(x), such that

|f(x) = Py(x)] < 1074 for all x € {—%, 1—10] .

2) Find P,(x), such that

|f(z) = Po(x)] <1072 for all z € [—,m].

A. Taylor polynomial and estimate of the remainder term.

D. Find n, such that R, (z) satisfies the given estimates.

I. We have
1
(n+1)!

R () = FrrDE) -2,

where ¢ lies somewhere between 0 and x, and

™

£ = 2,}+1 - cos (g +(n+1)- 5) :

where

[Ru(a)| < ﬁ Ghe

cos (g +(n+1)- g) ’ <1 for every &. In general,
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1) We shall first find n, such that

()] < (ni e (%) <1074

1
for every |z| < 10" Use the method of trial and error:
1 /1) 1
Forn =1 t=- (=) =<=>10""
orn we ge 5 (20) >

1 /1)’ 1
Forn2weget—o( ) <1074

6 \20) — 48000
1 1
This shows that if z € [E , E] then we can use n = 2, and we find that
1 ra\2 z?
roy=1- () 1
2() 21 \2 8
. . . AN . 1 1
is a good approximation of cos (5) in the interval 1o’ E} If we use MAPLE to sketch

the graphs, it is not possible on the figure to distinguish between the graphs.

-0.2

1
Figure 5: The graphs of cos (g) and 1 — 3 22 for x € [—m,7]. We cannot distinguish between the

1 1
two graphs in the interval |——, —|.
10° 10

2) Then we shall find n, such that

1 T n+1 9
< - (=
[ Fen(@)] < (n 4 1)! (2) <10

3
for every & € [—m,w]. Since g > 3 > 0, we must at least require that (n + 1)! > 100, i.e.

3\ 4
n > 4. Now, <§> > 22 =4, so even (n + 1)! > 400, i.e. n > 5. Since cos (g) is an even

function, n = 6 is the first realistic candidate. When n = 6 we get the following estimate of
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the remainder term,

1 /m\7
— (Z) ~0,004682 < 1072
71 (2) ) <5

hence n = 6 can indeed be chosen, where

1 rx 1 1 1

P6<x>=1—a(5)2+a@4‘%(5)6:1‘%””2+@x4‘m””6'

“I studied
English for 16 P
'years but...
...I finally
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six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my
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s 1 |

f E Y
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Example 2.12 Let xz € [0,1[. Use Taylor’s formula to prove that

1 3 5
(1) 1—2)" = 1+§3«”+§(1—§)_5$2
for some £ lying between 0 and x.

According to Albert Einstein, the kinetic energy of a particle is given by

1
Eki,,(v) = m002 _ —1

- ()

where myq is the mass of the particle at rest, c is the speed of light (= 3-10° km/s), and v is the speed
of the particle. It is well-known that the classical kinetic energy is

, 0<v<ec,

1
T(v) = 3 mov?.

The relative error by replacing E\;,(v) by T'(v) is defined by

E..(v) —T(v)

F =
E kin ('U)

2. Prove by means of (1) that
A 2
b 3(2) :
v
4{1‘(5) }

3. Prove by means of the result in (2) and a pocket calculator that if v < 3-10* km/s, then F < 1072,
Hence, up to these velocities the relative error is at most 1 %.

[N

A. Applications of Taylor expansions.
D. Differentiate (1 — )~ 2 two times.
I. 1) When f(z)=(1—x)"2, z €[0,1], then f(0) =1, and

Fay=g -2 fl=20-7

Njw

By Taylor’s formula there exists a £ € [0, z], such that

f) = (L—a)h = fO) 4 4 0+ o ()
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2
2) Then by insertion we get for some £ € {O, (E) ] that
¢

E,.(v) —T()

S )
(1= ) "1}
! moc? {(1 _ [%r>_§ j 1}
(B sl
(-1) -
fei@r o @) -y
(b o )
-0y |
i do-0 ()
which is clearly positive. Then
s -0 i (8 5 (Y
Fo= 13 ol =z L)
I+ (1=973 (E) (1_£)§+Z<E)
s (o) (2)

IN

W
—
[l
|
Iy
S~—
ol
—N
—

\
/~
ol
—

N
—
o

because we increase a positive fraction by decreasing the denominator. In fact, we first delete

3 2
7 and then replace £ by its maximum (E) .
c

v 1
_<_
3) Ifc_lo,then
2
3'<1lo> 3 7100\ 2
_— = — . _ . -2
F < £ =7 < 9> 10

1 2
1{1- 5

3 /100\° 3 3 3 1
< So=) - 10%="(1+ -+ -+ ——]-1072
4 (99) 4 <+99+992+993)
3 104
2. 2102 <1072
< 1 100 07“ <10
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Example 2.13 Consider the function f(x) = e* and Taylor’s formula with the point of expansion
o = O,
2 n

. r
(2)6 :1+ﬂ+g+"'+E+Rn+1([E),
where Ry,1(x) denotes the remainder term. We shall in the following only consider the case x > 0.

1. Prove that R,1(x) > 0, and then show that

xP

(3) e > —, x>0, everypeN.
p!

2. Prove from (1) that for every o € Ry,

(03

— —0 for x — 4o0.
e(lj

In the final question we shall prove how we from (2) can prove that e is an irrational number. We
shall take for granted that e €12,3[. Then we apply a proof by contraposition, so we assume that

(4)e:m7 meN, neN, n>2
n

we shall then prove that this assumption will lead to a contradiction, hence that the assumption s
false.
3. Assume that (4). Then by (2) for x =1,

m 11 1
—=lt gttt B (1),

First prove that 0 < n! R,11(1) < 1. Multiply the equation by n! and then derive the contradiction.
A. Taylor expansion. There are given some guidelines.
D. Follow the guidelines.

I. 1) Since f(™(z) =e* > 0, we get

e&'
_ n+1
Ryyi(x) = CEw] " >0, for z > 0,
hence
T 1‘2 n n
T f— _— _— ... —_—
e —1+1!+2!+ +n!+Rn+1($)>n!,
and we derive (3), i.e.
P
ex>F, x>0, everypéeN.
2) When p > « it follows from (3) for x > 0 that
@ P11 !
o< =L P o for x — +o00.
eT er gpp—« rp—o
32
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3) Assume that

m 1 1 1 ef
= =14+ = 0,1].
=L Tttt ataror fcld
Then
eé

0 < nlRyyi(1) =

< <1 for n > 2,
n+1 n+1

because e < 3.

When we multiply the equation by n! we get

m(n—1)! =n! 1+i+l+ —i—i —|—i
o 12 n! n+1’

where

1 1 1
—1)! | — —_ —_
m(n —1)! and n! {1—|— T + o1 + n!}

$
e
are both integers. Since

n+1

is not an integer, we have reached our contradiction.
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Example 2.14 (Cf. Ezample 4.23) Given the function

f(x)cos<%x2+x), x €R.

1) Find the Taylor polynomial Pa(x) with the point of expansion xg =0 for f(x).

2) Prove by Taylor’s formula that

F(@) - Po(a)] <8-107°  for |a| < =

5

A. Taylor expansion and estimates of remainder term. The example is the same as the first two
bullets in Example 4.23.

D. Differentiate and then find the coefficients.

I. 1) We get successively by differentiation

fla) = —(x+1)sin<%x2+x>,

1

f"(x) = —(z+1)*cos (5 z? + x) — sin <% x? + m) ,

f (@)
This gives

Po(e) = F(O)+ (0) -+ o f(0)-a? = 140~ sa? =1 .

1 1
(z +1)*sin <§x2+x> —3(x+1)cos (§x2—|—x>.

1
2

2) According to Taylor’s formula there exists a £ lying between 0 and x, such that

1
f(@) = Pofw) = 5 fO(€) - 2.
From this we derive the estimate

@) - Pl = g [FO@) Jaf?

Now

1
< —

50

1
‘§x2+x

+

1
5

3
& (§+1)3sin(1§2+§)—3(§+1)cos(1§2+£)‘.
6 2 2
11 1
=5 for |ac|<g7

1
and |§| < |z| < £ 50 We get the estimate

|f(z) = Pa(2)]

<

11 1 o1 1
6?{(54—1) sm%—FB(g—i-l)cosO}
8 1(6% 11 6

—— .. Z43.2.1

1000 6{53 50 05 }

8 (6211 3 2
_— Z 8.1073. 2
1000{ + }< 3

125-50 5
8-1073.
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Example 2.15 Find the Taylor polynomial Py(x) of first order at the point xg = 0 for the function
f(x) =In(1+ €"), z € R.

Then prove that

|f(x) — Pi(x)] < liﬁ for x € {O, %] )

A. Taylor polynomial and estimate of the remainder term. Cf. Example 1.12.

D. Since we later shall estimate the remainder term, we differentiate twice.

I. From
f(z) = In(1+e%), f(0) = In2
, e’ 1 , 1
= P 1 —_—— —
F@) = =1 HOREES
we get
1
Pi(xz) =In2+ 5%
Since
,, - er - 1
fiz) = (14+e%)2  (1+4em)(1+e ™)
1 1

l+erte®+1 2(1 + coshz)’

1 11
it follows for z € [O, 5} (and even for z € {—5, 5] ), that

11 1
[f(z) = Pr()] < 91 " 92 g@é 2(1 + cosh z)

1 1 1 1

hence we get a better estimate than wanted.
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Example 2.16 1) Find the Taylor polynomial Py(x) of order 2 at the point xo = 0 for the function
e’sinx, x € R.

2) Prove that

1
le® sinx — Py(x)] < 0,02, forx e [O, g] .

A. Taylor polynomial. Cf. Example 2.17.
D. The Taylor coefficients are found by differentiation.

I. 1) First variant. By successive differentiation we get

f(x) = e sinz, f(0) = 0,
f'(x) = e*{sinx+cosx}, f(0) = 1,
f"(x) = 2e*cosuz, 7o) = 2,
f@(z) = 2e*{cosz —sinz},

where we shall use the third derivative in the estimate of the remainder term.

It follows that

1
Pg(x):x+§-2x2::c+x2.
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Second variant. From
x 1 2 . 1 3
e :1+x+§x 4.+ og Slnz:zfgx 4+

it follows by simple multiplying the two expressions that

1
f(:z:):33—|—352—i—§9(;3—|—--~7

hence

Py(x) = x + 22

1
2) Ifz € [0, g], then

e sine— Po()| < o Y ‘f(?’)(x)‘.(%)?)

mE[O,%]

11 Je 1
< L. aye=YCr 2 o0
< 5w Ve <w

Example 2.17 1) Find the Taylor polynomial Pa(x) of order 2 at the point xo = 0 for the function
e’sinz, r € R.

2) Prove that

1
|e” sinax — Py(z)] < 0,02, if v € [0, g] .

3) Prove also that we even have
. . 1
le® sinz — Py(z)| < 0,0125, if v e [07 5} .

A. Taylor polynomial. The first two bullets are the same as the first two bullets in Example 2.16.

D. The Taylor coefficients are found by differentiation. We can reuse Example 2.16 in the first two
questions.

I. 1) First variant. By successive differentiation we get

f@) = evsing, [0 = o,
f'(x) = e*{sinx+cosx}, f(0) = 1,
f"(x) = 2e"cosuz, 17(0) 2,
f@(x) = 2e"{cosz —sinx},

where we save the third derivative for the estimate of the remainder term.

We see that

1
Pg(x):sc+§~2 2=g 427
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Second variant. From
x 1 2 : 3
e =14+ -z"+--- and smz:x—éx 4+

we get by simply multiplying the two expressions that
2, L 3
fl@y=z+z +§x +,

hence

Py(z) = x + 2°.

1
2) Ifze [07 5}, then

le® sinax — Py(z)| % Z ’f(?))(x)‘.(%)i%

<
" ze0,1]
11 e 1
- 6 27 \/E 81 50 ’

3) From

f®(z) = —4e® sin

1
follows that f(3)(ac) is decreasing in [0, 5} , and since we already know that f(®) () > 0, we get

sup
ZL’E[O,%]

FO @) = 190 = 2

Hence we obtained the improved estimate

1 1\*
le®sinx — Py(z)] < = sup f(3)(x)’- =
3! 1 3
136[053]
< L 2 ! = ! < L =0,0125
- 6 27 81 80 ‘
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Example 2.18 1) Let g = 0 be the chosen expansion point. Find the Taylor polynomial Ps(x) of
third order for the function

flz)=(1+2)*In(1 +2).
2) Prove by an estimate of the remainder term that we have the inequality
—107° < f(x) — P3(x) <0
foro<zx< L
or0<z< .

A. Taylor expansion and estimate of the remainder term.

D. Differentiate and find the Taylor coefficients.

04 0.2 0.2 0.4

Figure 6: The graphs of f(z) = (1 + x)?In(1 + x) and Ps(x), —0,4 < z < 0,4 with an indication of
the interval [—0, 1;0, 1].

I. 1) We obtain by differentiation,

f@)=(1+2z)?In(l +z), f(0) =0,
fl(x)=214+z)In(1+2)+ (1 + z), f(0) =1,
f(z) =2In(1 + z) + 3, 7"(0) = 3,
fO@) = 77— &) =2,
fW(a) = TSk

Thus the Taylor polynomial at xy = 0 is given by

3 1
P3(.T):LL'+§$2+§.’L'3.

1
2) fx € [O, E} then f* < 0, hence f(x) — Ps(x) < 0 in the same interval, and we get the

estimate

|f(xz) — Ps(z)] < l' . <i>4- sup ’f(4)(x)’ —107%. 3

<1077,
s 12 ({140
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thus

—107° < f(x) — P3(x) <0 for x € {O, ILO} .

Example 2.19 Given the function
1
f(z) = T € [ i ﬂ-} .

cosx’ 66

1
1) Prove that the Taylor polynomial of order 2 with the point of expansion xo = 0 is Py(z) = 1+ 3 z2.

2) Prove that the remainder term Ra(x) satisfies the following estimate in the given interval
|R2(x)] <0,3.
A. Taylor polynomial and estimate of the remainder term

D. Differentiate three times

\/

1
Figure 7: The graphs of f(x) = (above) and the approximation Py(x) =1+ 3 22 (below) in the

Ccos T
interval [—E z}
6761

I. By differentiation we get for x € [—z z),

6’6
f) = — ) =1
)= —— —
C%SJI’ )
nx
(@) = — f'(0) =0,
cos1 T . |+ sin?
sin® x sin® x
% _ 9. _ , "0) = 1,
() cos T + cos3 x cosS x 1(0)
and
. . 2
f(s)(m) _ 2Slnx+3~sinm- 1+ sin“x
cos? x cos* x
= CS;;ZQ; {2cos’z 4+ 3+ 3sin’z} = :;;142 {54 sin? z}.
40
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1) Tt follows from the above that
1 ! 1 " 2 1 2
Pg(m):f(O)—&-Ff(O)-x—i—?f(O)~a: :1+§x.

2) Also, we get the remainder term from the above

1

Rofa) = 5 76 -2 = ¢ - 2o

:g‘m'(5+sin2£)'$3,

where ¢ is some point lying between 0 and x. Since sin¢ is increasing and cos¢ is decreasing

for £ € [O, %}, and since Ry(z) is even because f(z) is even, we find that |Ro(x)| is largest for

(¢,2) =+ (%, %), thus
Bl < oo (st £} (5)
1 3
s e
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3 Approximating polynomials

Example 3.1 Find the Taylor polynomial Ps(x) for the function f(z) =
expansion xo = 0. Sketch the graphs of P3 and f.

%—Fl with the point of
x

A. Comparison between a function and one of its Taylor polynomials.

D. Find the Taylor polynomial and sketch the graphs.

11
Figure 8: The graphs of P3(x) and f(x) € {—57 5}

I. We get by differentiation

x

f@) = oy

, - 1—2? - 2 1

fl@) = (1+22)2  (1+a2)2 1422

8z 2z

" .
o = ~arep T ir e

f(?’) - 48332 _ 8 _ 8332 2

A+ (11a2F (+22P (11222
Here it is no need to further reduce these expressions because we shall only put g = 0. This gives

1
Py(z) =z + 3 (-8 +2)z® =z —2®.

1
For P3(z) = x — 23 we get Pj(z) = 1— 3z, corresponding to Pj(z) =0 for z = +—

V3

~ 40, 57735,

where

1 2 1
Pt )=+2 1 ~ 10,3840
3< \/5) 33
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Example 3.2 1) Find the Taylor polynomial Ps(x) with the point of expansion xog = 0 for the poly-
nomaal

Q) = (x + a)",
where a is a real number.
2) Prove that we for all x get Py(x) = Q(x).
3) Use the method to se up a formula for (v + a)™.
A. Taylor polynomial for the polynomial (z + a)™.
D. The Taylor polynomial is found in the usual way.
I. 1) We get

Q') Q"0 Q®(0) Q™ (0)
Ps(z) = Q0)+ TR z? + 3l 3 + 1 zt
Q) 5 QY(0)
T TR 7 8!
We see that we by differentiation get

+

QV(x)=8-7T---8—j+1)(x+a)®7, j=1,...,8,
thus

(4) o 8—j 8! 8—j .

QUO0)=8-7---(9—j)a :(S—j)!a ; j=1,...,8,

which is also true for j =0,
Q(0) = Q" (0) = a".
From these results follows that a general term of the Taylor expansion is

() ) | o o
Q ,(O)xaz : 8 — ¥y = 8 a7 j=0,1,...,8.
3! JH8 = j)! J

Then we find the Taylor polynomial

Py(x) = i ( j ) )

=0
2) Since Q) (x) = 0, it follows from Taylor’s formula that
1
Q(x) = (z +a)® = Ps(z) + ] QY (&) 2" = Py(w).

3) When we use the same method as above we obtain the general binomial formula

(a:—l—a)":i:( ;L >a"jxj.

Jj=0
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Example 3.3 Prove that for positive x,

1 1 1 1 1
1—|—§x3—§x6<\/1+x3<1+§m3—§x6+1—6x9,

and find the corresponding bounds for

1
2
/ V14 addr.
0

A. Taylor expansions with hidden estimate of the remainder term.

D. Put y = 22, and then find the Taylor expansion with respect to .

I If we put f(y) = vI+y=(1+y)2, then

wjw

f’(y):%(lw)’%, f"(y):*%(lw)’ ,
) = 12 (+y)E,

[SI]

FfOUy) == 1+yF,

ool w

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @

www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Thus f(0) =1 and

fE ) >0 and fCV(y) <0, for n € N,
SO
1 1 1
P2(9)21+%y—?'%y27 Ra(y) > 0,
) 1 3
P. =1 — — syt =28 R 0
3(y) BT AT R AR 3(y) <0,
and we conclude that
y oy vy
Pz(y)=1+§——<f(y)=v1+y<1+——§+ﬁ,
If we put y = 2, then
3 2 3 28 20
1+2 Y e 1rad <1 o T
—|—2 3 < +x° < —|—2 8+16

From

3 3 40 4T 11 11
2 xr xr €T X

e o e 2y L L o 507673
/0{+2 S}x [x+ } 5+ 158 : ,

56

B 1+x3 x6+x916 el o111
- _— - xr = — RN — R
0 20 2756 128 ' 160 210

we conclude that

N|=

3 6 1
{1+%—%}dz</ V1+adde
0

% .1:3 $6 xg
1+ %9 T g~ 0, 507679
< /0 { tT9 T3 +16} TR0 ’

0,507673 ~ /
0

y > 0.

128

~ 0,507679,

and we have found a good approximation of the integral of v/1 + 3,

1
0,507673 < /2 V1+z3dr <0,507679.
0
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Example 3.4 Find the Taylor polynomial of order 3 with any point of expansion xq for the function
fla)=(1+2)

A. Taylor polynomial; any point of expansion. Obviously, the function is always equal to its Taylor
polynomial of order 3, because f(x) itself is a polynomial of third degree.

D. We have here two possibilities:

1) the binomial formula,
2) the method of differentiation.

I. 1) We get by the binomial formula

fl@) = (1+2)°=({1+z0} +{z —x})’
= (14+20)®+3(1+20)%(z — x0) + 3(1 + 20)(z — 20)* + (x — x0)°.

2) By successive differentiation we get

flx) =1 +2)3, f(zo) = (14 m0)3,
f(x) =3(1+x)?, f'(z0) = 3(1 + 20)?,
f"(x0) = 6(1 + z), f"(x0) = 6(1 + x0),
f®(x) =6, & (z) = 6.

The Taylor polynomial is

Pie) = (@) = flzo) + /(@) (0 = 20) + o7 £(w0) (2 = 20)? + 57 1O w0) (2 = 20)°
= (1420 + 300+ z0)*(x — 20) + 3(1 + z0)(x — 20)* + (. — 20)°.

Example 3.5 Find the Taylor polynomial Pg(x) with the point of expansion xo = 0 for the functions
(1) f(z) = sin 2z, (2) f(z) = cos2z, (3) flz)=(1+2%)%

A. Taylor expansions.

D. Perform a simple calculation in (3). In (1) and (2) we differentiate.

I. 1) If we put g(y) = siny, then

9(y) = g (y) = g®(y) = siny, g'(y) = g®(y) = cosy,
9" () = 99 (y) = —siny, g® () = ¢ (y) = — cosy,
hence
1 1 1
Pg,S(y) =Y - §y3+5y5 — ﬁy7.

Now, f(x) = g(2x), so we get

4 4 8
Py(z) = P, g(2z) =2z — 3 3+ i z° — 3 z’
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2) Analogously for g(y) = cosy,

g9ly) = (y) 9% (y) = cosy, g (y) = g (y) = —siny,
”(y) ©)(y) = —cosy, ¥ (y) = gD (y) = siny,
thus
Lo, ] 1 1
Pg,S()*lfg +4|y75y +8!y.

Then by putting f(z) = g(2z),

2 4 2
Ps(.ft) Pg8(2$)—1—21‘ —|—§x—£ +E 8

3) We simply get by a squaring

Pg(z) = (1 +22)? =14 222 + 2.

Example 3.6 Prove that a Taylor polynomial with the point of expansion xo = 0 of an odd (an even,
resp.) function only contains odd (even, resp.) powers of x.

A function f(x) is called odd, if f/ —x) = —f(x), and it is called even, if f(—x) = f(z).
A. Taylor expansion of an odd (even, resp.) function.

D. Differentiate the definitions of an odd, (an even, resp.)function.

I. When f(—z) = —f(z) is odd we get by differentiation,

" f(er) = (C1)" O () = — £ ().

dx"

By a rearrangement followed by putting x = 0 we get
{(=)" + 13" (0) =0.
If n = 2m is even, then (—1)>™ +1 = 2 # 0, and ™ (0) = 0. We conclude that the Taylor
polynomial only contains powers of x of odd exponents.
If instead f(—x) = f(z) is even, then we get by differentiation,

d'fL
dz™

f=z) = ()" f") (—z) = [ ().
If we put & = 0, we get by a rearrangement,

{(=1)" = 1}£™(0) = 0.

When n = 2m + 1 is odd, then (—1)2"+! —1 = -2 # 0, so f@™+1)(0) = 0. We conclude that the
Taylor polynomial only contain powers of x of even exponents.
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Example 3.7 Find the Taylor polynomial different from 0 of lowest degree for the functions
(1) f(z) =6sinx — 62 + 2>, (2) f(z)=In(l+2z)—=.
A. The meaning is that one shall find the smallest n, for which

]' n
— () #0.

The simplest method is of course to insert known series, but this is not the purpose, so we shall
here choose the most difficult method, which also will indicate the order of the zero at x = 0 for
the function.

D. Differentiate and put x = 0.

/
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I. 1) We get by successive differentiation

f(x) = 6sinx — 62 + 23, f£(0) =0,
f(z) = 6cosz — 6 + 322, f(0)=6—-6+0=0,
f"(x) = —6sinx + 6z, f(0) =0,
f®)(z) = —6cosz + 6, @) =0,
f@(z) = 6sinz, f®(0) =0,

f®)(z) = 6cos, f®0) =6

The searched Taylor polynomial is

6 1
Po(e) = 5 FO0)0 = o0 = o a”

2) We get by successive differentiation

f(x):hl(llJrI)*I, f(0) =0,
fl(l'):1+x—]_, f/(O):O,
f”(x)z—ma f7(0) = -

The searched Taylor polynomial is

1 1
Py(z) = 5 F@0) 2% = 5 z2.

Example 3.8 Find the Taylor expansion of order n = 3 for the functions

(1) f(z) =22 —In(1 + 2?), (2) f(z) =sin2zx + 1+ 22.
A. Taylor expansions.
D. Differentiate three times.

I. 1) We get by successive differentiation

flx) =e* 1H(12+$) f(0)=1,
! T € /
[ (x) = 2¢? i a2 o f'(0) =2,
" _ Tz L 7 49 _
' (x) = 4e? 1+$2+(1+I2)2, f"(0)=4-2=2,
FO(@) = 862 4ol }, FO(0) = 8
hence
) 2 8
—In(l+2%) = 1+2x+§m +§x + 2%¢(x)

4 3
= 142z +2? +§x + 7 e(x).
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2) We get by successive differentiation

f(x):sinZac—l—\/l—l—ag::?, f(0)=1,

f/(l') = 2cos2x + —m, f’(O) = 2,
f(z) = —4sin 2z + ! + @) (0) = =8,

Vitaz? (1+a22)3
hence
Lo 45 3
f(m):1+2x+§x — 3% + ze(x).

REMARK. Since we later always instead ought to use the method of direct insertion of known
series, we add this variant, though this was not the purpose of the example.

a) In the first case we get

fx) = €* —In(1+2?%)
42 83 3 5 at 4
= 1—1—21:—1—74—?—1—335(30) -z —74—.%6(37)

4
= 1+2$+$2+§1‘3+$36(l‘).

b) In the second case we get

flz) = sin2z+ 1+ 2?2

— {233— 8%3 +x35(9c)} + {10(

1 4
= 1+2x+§x2—§x3+x35(9c).

— bl

) 2+ x?’s(x)}

Example 3.9 Find the Taylor expansion of order n =6 for the functions
(1) f(z) = cos 3z —In(1 — z?), (2) f(z) = V1 -z +sin(z?).
A. Taylor expansions.

D. Either differentiate six times (this is not done here), or insert known series. We shall here use the
latter method.

I. 1) Since
o 1 2 1 4 1 6 6
cosy=1-cry”+ 1y ARE (y),
and

1 1
—In(1 —2) =2+ = 22 + = 2° + 2%¢(2),

2 3
we get by the substitutions y = 3z and z = 22 that
f(z) = cos3z —In(1 —2?)
1 1 1
= 1- 3 322? + ] 3t — Gl 3020 + 2%(x)
1 1
+a? + 5 xt + 3 25 + 2%¢(x)
7 31 163
= 1- 5332—1— §x4— %xﬁ—i—xﬁs(x).
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) (—2)* + < é ) (—2)° + ( é ) (—2)° + 2°%(x)

_ 1 Lo 1 3 5 4 7T 5 21 5 6
= 1755t %Y Tt T med T qomt TUEw)
and
2 Looy 1o a3, 6 o 1 g o
sm(m):i(x)—g(x) +axe(x) = 5" + z%e(x),
we get
fx) = V1—z+sin(2?)
1 1
= 1f—x+zx27—x3fiz4fix5 o7 x5 + 25¢(z).

2 8 16 128 256~ 3072

Example 3.10 Find the Taylor expansion of order n = 8 for the functions
(1) f(x)= e —cosw, (2) f(x)=sinz — 2ze " .
A. Taylor expansions.

D. When the order is as big as n = 8, one should probably avoid the method of successive differenti-
ations. Instead we insert known series development.

I. 1) From the series of the exponential we get

1 1 1
€_£2:1—1)2+§$4—6l‘6+ﬂ1‘8+1‘85($).
Furthermore,
1 1 1
cosx:1—§x2+ﬂm4f%x6+40320x8+x85(x),
hence
flx) = e —cosx
R T S B U2 T B WA T T N
= ‘5“(5‘%)“ ‘(6‘@)“ 51§ )¢ TeE@
1, 11, 119 1679
= Tt T Taosw® U@
2) Since

2

d 2
f(x) =sinx — 2ze™™ = o {e*m — cos a:} ,

one may wrongly conclude that by differentiation of the result of (1) should obtain

flx) = sinz — 2we™*
B 11, 119 . 1679 . -
= ST T ot U@
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THIS METHOD IS IN GENERAL WRONG, BECAUSE WE DO NOT KNOW HOW TO DIFFERENTIATE
THE UNSPECIFIED &(z)-TERM! These derivatives may in some cases be very large, indeed. The
annoying thing of this example is that it can here be proved (with some more theory!) that in
this present case this method is legal, but this theory is not in general known to to the students

at this stage!

We use instead that

. L s, 1 s 1 45
ST =& 52 +ax 5 x°e(x),

and that if follows from (5) that

1
—2ze™™ = 2z 4 22% — 2° + 3 7+ 28e(2),

hence
f(z) = sinz-— 2zxe™"
1 1 5 1 1
= x+<26>x3(1—!>x"+(§ﬂ>x7+xss(x)
B 1, 119 , 1179 .,
= T T ot e

We see that apart from the order of the e(x)-term we obtain the same result as if we formally
had differentiated the result of (1).

> Apply now

REDEFINE YOUR FUTURE
AXA GLOBAL GRADUATE
PROGRAM 2015

redefining / standards M

N

Click on the ad to read more

a
o)
]
[2]
f=
S
=
S
2
9]
=
[on
©
&0
S
3
2
o)
<n

52
Download free eBooks at bookboon.com



http://s.bookboon.com/AXA

Calculus Analyse 1c-6 Approximating polynomials

Example 3.11 Find the Taylors expansion with the point of expansion xo = 0 and any order n of
the functions

(1) flz)=2%  (2) f(x) =

A. Taylor expansion.
D. Find a general expression for f)(z).
I 1) If f(z) =2% = e*™2 then f(F)(z) = (In2)* - 2%, so

fM(0) _ (n2)*

k! k'

and the Taylor expansion is

flz)=2%= Z i' (In2)* % + z"¢(x).

k:ol€
2) If
1 . 1
f(z) F*(I+2) Sy T
2
then
FP ) = (~)F RNz +2)7F
SO
90 _ (1
K 2k+17

and the Taylor expansion is

S () areta),
k=0

fz) =

N =

1 —
24z

which we of course also could have obtained directly by putting y = g into the development
1 1

of = ——.
2 1+y
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Example 3.12 Find the Taylor expansion with the point of expansion xo = 0 and of any order n for
the functions

(1) f(x)=sinz + cosx, 2) f(z)=V1+a2—V1—22
A. Taylor expansion for any n.
D. Substitute into known developments.

I. 1) Strictly speaking we should here consider the two cases of even and odd order. We shall here
lazily restrict ourselves to the case of odd order, so we develop up to order 2n + 1. From

SIN T = kz m l'2k+1 + .’EQ +1€($)7
=0

and

_ E (_1)k 2k 2n+1
cosx—Z—x + " e(x),

|
Pt (2k)!
we get
f(z) = sinz+cosz
L AT N G O L WP
= Z—x +Z—x + " e ().
P (2k)! = (2k+1)!
2) If we expand to order 2n, then
fa) = (+ah)F - (1-a)
o1 n 1
= Z i )x%_'_Z(_l)lHl( ]zg >x2k+x2n
k=0 k=0
no/1
=Y ( 2 ) {1+ (1)} 2% 4 2%e(x)
k=0
[=2]

I
g

1
3 4k+2 | 2n
ok k1 )9: + e (x),

—1 -1 -1
where [HT] denotes the integer part of nT, i.e. the biggest integer < nT We obtain

the latter result by putting n odd or even into the second last equation.
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Example 3.13 1) Find the Taylor polynomial P, (x) of order n with the point of expansion x¢g = 0
for the function f(x) = cos® x.

2) Find the Taylor polynomial Q. (x) of order n with the point of expansion xo = 0 for the function
.2
g(x) = sin” z.

3) Prove that P,(z) + Qn(z) = 1 for every x € R.

A. Taylor polynomials. The fundamental trigonometric relation.

2

D. Express cos? z and sin® z by cos 2z before the Taylor expansion.

1 1
I. 1) We get from cos?z = 3 + 5 008 2z that

11 1 1 (—1)"
2 e _ - 2, = 4 2n
cos’x = 2—|—2{1 2!(2(E) +4!(2m) +- @)l (2x) }
+a?"e(x)
2 5, 2 4 W22 o om
= 1- 51 —I—Im +- 4 (=1) o) "+ "e(x)
= 1-2%+ lx‘l +-+(=1)" 1 2" 4 2 (x)
2(2n)! ’
Notice that Pay,11(2) = Pon ().
1 1
2) Analogously, we get from sin? z = 3 ~ g cos 2z that
23 22n—1
sin? = o1 x? — a0 [P Y G B L o) 2" 4 2%"e (1)
Here
Q2n+1($) = Q2n(33)
2 ) 23 4 22n71 on
B AR S A T

= 1-— Pgn(.’IJ) =1- P2n+1($).
3) It follows clearly from the remark in (2) that
P (x)+ Qn(z) =1 for every n € N.

We could not expect this result even if we know that cos? z + sin? z = 1.
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Example 3.14 1) Find the approzimating polynomial Ps(x) of at most third degree with the point of
expansion xg = 0 for the function

() = In(1 + 22), xe]—%,—&-oo[.

2) Prove that

1
In(1 4+ 22) < Ps(x) for every x > —3 ¥ # 0.

A. Approximating polynomial.

D. Differentiate four times.

05 1152

8
Figure 9: The graph of y = In(1+2z) and its approximating polynomial y = 2z — 222 + 3 23 (dotted).

I. 1) We get by successive differentiations

f(x) = ln(§+2x), . f(0),
(@) = Tm e 70 =2
1
" - , "00) = _4’
f"(x) 2 rJr%)Q £7(0)
f('?’)(I) = (x+ %)3a f/,(o) - _4a
fO@) = —2—, @) =16,
@) 6
(4) - _
e @D
Hence
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with the remainder term

1 6 4
Rs(z) = —— zt = — zt
A (¢4 %)4 (1+26)*
for some & between 0 and z.
2) From

In(1 + 2z) = P3(x) + R3(x)

and

44
Ry(w) = ———— < 0

(14 2¢)

1
for every = > —3 and every & between 0 and =, we conclude that

for every x > ——.

In(1 + 22) < P3(x) 5

-~
1 /
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Example 3.15 Write a MAPLE programme, which sketches the graph of the Taylor polynomial of
order 6 with the point xo = 0 as extension point in the interval [—3, 3] for the function

f(z) =In(1+ V1 +sinx), z €R.
A. MAPLE programme.

D. This example, found in some textbook, is rather strange because one would usually instead directly
sketch the graph of the function itself. One will almost always lose some information by considering
the Taylor polynomial instead. An exception is of course when the function is itself a polynomial
and we want the Taylor polynomial of at least the same order as the degree of the polynomial.

D. The first command is
taylor (1n(1+sqrt(1+sin(x))),x=0,6);
We get the result

1 3 1 3 1
W) 4 2p 22y 239 a1 s 6
n()+4x 5% Y oe® " 10m® * a6 ” + 0 (2°)

Then we remove the term O (Jc6), and e.g. continue by

Figure 10: The graphs of Ps(z) and f(z) = In(1 + /1 + sinz), (dotted), z € [-3, 3].

plot ([[t,1n(2)+t/4-3%t"2/32+t"3/96-3*t"4/1024+t"5/1536,t=-3..3],
[t,In(1+sqrt(1+sin(t))),t=-3..3]],linestyle=[1,2],color=black) ;

Hereby we get the figure where we for comparison also have sketched the graph of the function itself
(here dotted line): It is seen that the graph of the function has a kink for z = — g, a phenomenon

which is never possible for any Taylor polynomial.
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Example 3.16 Find for every one of the following functions f(x) an expression for f™(0), and then
find the approximating polynomial of at most degree n at the point xo = 0 for f(x).

(1) flz)=a" (2) flz)= o (3) fle) =

A. Approximating polynomials. Note that (1) is almost the same as Example 3.11 (1).
D. Just differentiate.
I. 1) It follows immediately from f(z) = a® = €™ that
F (@) = (nayresne, {0 (0) = (na)”,
hence

1 1 1
P.(x)=1+ T Ina-z+ = (Ina)?z® 4+ - + o (Ina)?z".

Assume that

n!
(1 —z)ntt’

f(n) —
We see that this is true for n = 0, n = 1 and n = 2. Then by a differentiation of the assumption
we get

1 n+1)! (n+1)!
Fo (@) = (l(x)77,)+2 T (1 —2)erD

i.e. a formula of the same structure, only with n replaced by n + 1. Hence we conclude by
induction that

n! (0
f™(z) = G and  f(™(0) = n! " ) =1.
Hence
Pzx)=14z+2>+ - +a"
3) When
1 1 1
@) =515
24x 2 1+ E
2
we get (cf. (2))
1 n! 1
(n) — —(—1)"
2
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SO

Example 3.17 One often applies Taylor expansions in physics and technical sciences to approximate
functions which cannot be calculated directly. The procedure is often that one expands up to some
giwen order and neglect the remainder term. One example is

3 1
(5) T(A) = / R —,
0 1— A2sin%t

One cannot calculate the integral directly. The task is now to give a procedure which shows how T(A)

depends on A for small values of A (this integral occurs e.g. in the formula of the oscillation time for
a mathematical pendulum,).

1) Find the Taylor expansion of order n =4 for the function

1

o) = i

2) Find the Taylor expansion of order n =4 for the integrand in (5), where A is the variable while t
in this connection is kept fized.

3) Replace the integrand in (5) by the found approximation and then find a corresponding approxi-
mation of T(A).

[There will occur some integrals which the student must find in a table, because they are not known
at this stage./

A. Approximation of an elliptic integral.
D. Find the Taylor expansion of the integrand.

I. 1) We get by a Taylor expansion
1 1
xX = —_—— — 1_k2$2 2
fo) = = (1 )
1
3 2,2 ) 2,.2\2 4
= 1+< %)(—kx)+ %)(—kx)que(x)
k‘2
= 1+7m2+%k4x4+x45(x).

2) Replace kx by A sint. Then it follows directly from (1) that

1

1 3
— =14 = A%sin®t+ —A4sin4t+A4a(A).
1— A2gin’t 2 8
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3) Finally, we shall calculate

™

2z 1
/ {1+—A281n2t+§A4sin4t} dt.
) 2 8

1
Now sin® ¢ = 5 {1 — cos2t}, so

1
sin*t = 1{1—2c0s2t+cos22t}

1 —|—cos4t}

1-2 2t
{ cos 2t + 5

N = DN =

1 1
cos 2t + 3 + 3 cos 4t

O W |~ =]

1
cos 2t + 3 cos 4t.

Then by insertion,

™

2z 1
/2 {1+—A2sin2t+§A4Sin4t} dt
0 2 8

1 1 (2 3 1 [
:g §A2-§/0 (1—cos2t)dt—|—§A4-§/o {3 —4cos2t + cos4t} dt
A? 1 T 3 1 2
:g—’_f [t—§ sith]O +aA4 [3t—25in2t+1 Sin4t]0
_7T+A2 7r+9 4 T
2 4 2 64 2
T 1 9
= 14+ =A%+ = A%
2{ 1 T }
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Example 3.18 In this example we shall derive a formula which approximates the length of a circular
arc. This formula is due to Huygens (1629-1695). We shall use the figure and the notation given in

the text. We shall assume that the angle ¢ satisfies ¢ € [0, g}

Figure 11: Circle of radius 7, centre angle ¢, thus periphery angle g below. The arc is denoted by £,

and the corresponding cord is denoted by d. Finally, we let s denote the height on the dotted vertical
diagonal.

The approximating expression l of the length € is given in the form
{=ad+ bs,
where a and b are constants which will be found below.

1) First prove that
(= 2ar sing + br sin .
2) We consider lasa Junction of ¢. Find the approzimating polynomial Ps(¢) and the corresponding
remainder term Rs(¢) with the point of expansion ¢ = 0.

3) Find the constants a and b, such that Ps (p) =€ =2rp, and set up the corresponding approximation
{ expressed by d and s.

4) Prove that

~ r
C— 0 < — . P,
=t < 55 %

A. An approximation with given guidelines.
D. Follow the guidelines.
I. 1) It follows from some simple geometric considerations (look at some rectangular triangles) that
d=2r sing and s =1 siny,
thus
(= ad+ bs = 2ar sing + br sin .

62
Download free eBooks at bookboon.com



Calculus Analyse 1c-6 Approximating polynomials

2) Then by some differentiations,

dal _
%~ = ar cos % + br cos @, 2(0) = ar + br,
d?¢ -
i = —Z—T sing —br sin g, 2'(0) =0,
d3¢ -
a7 7(14—70 cosg — br cos p, 13)(0) = —% — br,
d*v N
d—<p4 = % sin% + br sin o, (™®(0) =0,
a0
d—ga5 = % cosg—l—br cos @,

[ ]
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and we get by insertion into Taylor’s formula that

0o 0 5 9 5

Up) = —rot+—r ¢ 4

120 | 16 2

where € lies somewhere between 0 and . Then

1 1
(a+byro— 2 (a4 4b)re® + — {i cos§+bcos§} S,

Pi(g) = Pa(9) = (a-+ B)rip — 5 (a+ 40,

and the remainder term is

1 a 3 5
Ry(p) = 120{16 cos2—|—bcosf}rgo .

3) Thus, if we put P3(¢) = ¢ = 2rp, then

1
Py(g) = (a+)ro = o7 (a+ 4b)ro® = 2rg,
and we obtain the conditions

a+b=2 og a+4b=0.

2
Hence, a = —4b and 2 = —3b, i.e. b = -3 so finally a = ; Then we get by insertion

~ 8 2
(=ad+bs=—-d—=s.
ad + 08 3 33

8 2
4) Putting a = 3 and b = -3 the expression of the remainder term becomes
1 81 & 2 5
Ry(p) = m{§~1—6cosigcosf}r<p

S S 6 S D
= 19515 %55 3 o8& ¥

When ¢ € [0, g}, then both cos g and cos ¢ are positive, so

1 1 9
|Ra(p)] < 120 rnax{é cosg, 3 0055} P
1 2 r
D - SR S
= 120 377 T1807
i i 1 § 2 - . . s
REMARK. Since the function G cos 373 cos ¢ is increasing in [0, 5}7 one can actually prove
that
r m
S 03]
|R4(%0)|_240<P . ve0g O
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4 Limit processes

Example 4.1 Find the following limits by means of a Taylor expansion:

In(l+z)—=x . 6sinz — 6z + 2°

5 , (2) lim

(1) lim lim =

x—0 x€X
A. A Taylor expansion.

D. Find the order of the zero in the denominator. Then expand the numerator to the same order,
and then finally take the limit.

I. 1) Since 22 is 0 of order 2, we expand the numerator f(z) = In(1 + x) — z to the order 2. Then
f(0) =0 and

1 1
= —1 " = -

f'(=)
so f/(0) =0 and f”(0) = —1. Then
f(x) =In(10z) —x = —% x? + 2% (x), where e(z) — 0 for x — 0.

Finally, we get by insertion and a limit process that

1
z—0 2 o z—0 2 2 '
2) Since the denominator 22 is 0 of order 3, we expand the numerator
f(z) = 6sinx — 6z + 23, f(0) =0,

to the order 3. Then by differentiation,

f'(x) =6cosx — 6+ 322, J'(0) =0,

f"(x) = —6sinz + 6z, f"(0) =0,

f(3) (.CL') = 76 cosx + 6, f(B)(O) = 0’
hence

f(x) =0+ a’e(x), hvor e(x) — 0 for z — 0.
Finally, we get by insertion and a limit process,

. 6sinz — 6z + 2° . x3e(x)
lim ———————— = lim
xe0 3 z—0 3

=0.

REMARK. The method above is the one which should be used when one is learning the technique.
Later on one should instead use that the Taylor expansions taken from zg = 0 are known for most
of the important functions. I shall in the following also demonstrate how one uses such tables.
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1) By using a table we get

2 2

In(l+z)—x= {ﬂc - % +xga(x)} —z = —% + z%e(2),
thus
2
z 2
In(l+z)—z ~—o toel@) 1
2 = = =—3 +5(:v)—>—§ for x — 0.
2) By using a table we get
3 5
6sinz — 62 +2° = G{x—a;—'—ka;—'—kx%(x)}—ﬁx—i-m?’
1 5 5
= 5% + z’e(x),
thus
6si 6 & 23 ia;‘r’—l—a:‘r’s(oc) 1
sinz — 6z +2° 9 B 5
— — . _%x +a%e(x) —» 0 for x — 0.
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Example 4.2 Find the following limits by means of a Taylor expansion,

ox(e®4 1) —2(e* = 1) . sinz—=x
M I - W

A. Limits by a Taylor expansion.
D. Then denominator is in both cases 0 of order 3 at o = 0. We therefore expand the numerator to
the order 3. We shall here use the direct method, where we assume the series expansions known.
I. 1) From
T 1 2 1 3 3
e =1+a:+§x +6x + z’e(x),
we get by insertion

1 1) — T _ 1
hmﬂc(e—i—) 2(e )

z—0 3
Lo o Loyl 5, 3
x 2—|—a:—|—§x + xfe(x) p —2 x—|—§x —1—633 + xde(x)
lim
x—0 aj3
1
Sat—cat fate(x)
r—0 T 6
2) From sinz = 2 — — 2 + x3¢(z) we get by insertion,
1 smx—x_l. —5 0 +ate(x) 1
z—0 3 B acli% 3 o 6

Example 4.3 Find by means of a Taylor expansion the following limits,

n X 7COSZII7
(1) tim BAED) gy, LS

im
z—0 2 —1 z—0 ztanz
A. Limits found by means of a Taylor expansion.

D. The order of the zero at 0 of the denominator is 1 in (1), and 2 in (2), so the numerators should
be expanded similarly.

I. 1) From In(1+ z) = 2 + ze(z) and ** — 1 = 2z + ze(z), we get by insertion that

In(1 1 1
i n(l+x) — lim r+ae(r) +ex

P20 €2 — 1 4002z +ae(z)  ao02+e(z) 2

2) Since 1 — cos?x = sin’ x, we can actually here make a shortcut, because

1—cos?zx sin® x sinx
= - = - COST.
rtanx " s x x
cosT
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Then we either get directly (known from high school) that

1 —cos?z . sinz
im —— = lim ccosz=1-1=1,
z—0 xtanz z—0 T

or more elaborated,
2

. 1l—cos”x . sinz
lim — = lim — -cosx
z—0 xtanz z—0 T
. + xe
T e . G S B
x—0 X

= lim {1+ e(@)}{1 +e(0)) = 1

Example 4.4 Prove that the limits

1 i 3) —
lim nx ’ 2) lim sin(z + z°) —x
z—0-+ {E2 + x4+ 1 x—0 {L'5

(1)

)

do not exist.

A. Both limits should be divergent.

D. Clearly, the denominator is # 0 for 2z = 0 in (1), thus since the numerator tends to —oo, it follows
by inspection that (1) is divergent. We shall use a little more in (2) to get to the same conclusion.

I. 1) Since the numerator tends to —oo, and the denominator tends to 1 for 2 — 0, we see that

. Inz
lim ——— = —
a—0+ 22+ + 1
is divergent.
2) Put f(z) = sin(z + 2®) — 2. Then f(0) = 0, and

f'(z) = (1 +3z%) cosx — 1, £'(0) =0,

f"(z) = —(1 + 322)sinx + 6z cos , 17(0) =0,

f@)(z) = (5 — 32?) cosx — b sinz, f®(0) =5,
hence

5
f(z) =sin(z +23) —2 = 37 + z7e(x).
Then by insertion,

5 4 3 5
sin(z + %) —x 5T T e(z) g T

= = — 400 for x — 0,
b x® 22
and
. sin(x+23) -2

lim —————— = 4

z—0 0
is divergent.

68

Download free eBooks at bookboon.com



Calculus Analyse 1c-6 Limit processes

Example 4.5 Find the limits

) cos T . (Inx)? . l—cosz
1) tim —ST @) g ) Lo cosw
z—% /1 —sinx

if they ewist.

2

A. Limit processes. In all three cases one should use common sense instead of some standard method.
The two first cases are divergent, and indeed it does not in (1) give sense to write lim without any
specification of the limit process, because one may obtain different possible limit values according

b
to whether one approaches 5 from above or from below.

D. In all three cases we either inspect, or rearrange in a convenient way.

L

0.5

. -

Figure 12: The graph of f(z) = oSt

I 1) Ifz < g during the limit process, then

cosx = ++/(1 +sinz)(1 —sinz),

hence
Ccos T
lim ——— = lim (—H/l —|—sinac) =2.
z—2 /1 —sinz 2—35-

If z > g during the limit process, then

cosz = —/(1 +sinz)(1 —sinz),

hence

Ccos T
lim ——— = lim (—\/1 —|—sina:) = V2.
z—%+ /1 —sinx z—35+

We conclude that the limit does not exist.
It is illustrated on the figure what happens in a neighbourhood of = = g
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2) If x — 0+, then the numerator tends to +oo while the denominator tends to 1, so

N ()
r—0+ (SC2 - 1)2 B '

REMARK. In the case z — 1, we put

z, g(1) =0,
, g (1) =1,

(Inx)? Iz \? 1
1 = m
z—1 (22 —1)2 z—1\z—1 (x4 1)2
1 _ _ B 2
_ !t 1+ (z—1e(z—-1) _ 1
4 r—1 X — ].

EXPERIENCE THE POW
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Example 4.6 Consider the functions below for x — 0 by first putting all the terms on the same
fraction line:

W @)= s - @ 0= 5

sinez er—1°

A. A limit process. A reasonable guess is that (1) is divergent, because In(1 + z) = x + xe(x) is of

lower degree than z2.

D. Put all the terms on the same fraction line and the find the Taylor expansions of the numerator
and the denominator.

I. 1) We get by some Taylor expansions,

£ B 1 _i_wz—ln(l—l—m)_ﬁ—x—i—xs(gﬁ)
z) = In(1+2z) 22  22In(l1+2)  22{z+ze(x)}
oz —l4zte@) 1 14e(x)
T 23 1+4e@) 22 1+e(n)

The last factor tends to 1, so f(z) — —oo for @ — 0.

1
REMARK. Suppose now that the example contains an error, so that we should have had —
x
1
instead of —. Then we get the following expansions
x

1

1 1 x—In(1+2x) $7x+§x2+$25(33)
f@) = g a= -
In(l+2z) = xIn(l+ z) x{x + ze(x)}
1
= 1—_|_€ — 5 for z — 0. <>
2) Analogously,
1 1 e’ —1—sinx

f@) = sy s

sinz e —1 {e® —1}sinz

1 1
T+ — 2% +2%(z) —z+ = 23 + 23=(2)

_ 2l 31
{z + ze(z) H{a + ze(x)}
1 2 2
st +ae(r) 4
_ 2
= m — § for x — 0.
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Example 4.7 1) What is the sign for a term of the form x? + (x) - 2%, when x is close to 07

2) Find the sign of a term of the form z™ + e(x) - ™, n € N, when x is close to 0.
3) Find

. In(l1+4+2z)—=z . -1 1
@ 1m0 ()

A. Limit processes.

D. Use common sense.

I. 1) Since 2% > 0 is dominating for o # 0 close to zero, the sign must be positive.

2) If n is even, then 2™ 4 ¢(x) - 2™ is positive in a neighbourhood of zero.

If n is odd, then ™ + e(x) - 2™ is positive for x positive, and negative for x negative.

3) a) We get by a Taylor expansion,

In(l+z)—= x_%x2+$2€(x)—$
at N x4
1 1
= ﬁ{_i +s(x)}—>—oo for z — 0.
b) We get by a Taylor expansion,
1 1 —z?+sinz x+ae(a)
Csing 22 a?sinz 22{x +2e(2)}
= %-11—23—%1—00 for x — 0.

Example 4.8 Let

fay = YBE e ool

What happens to f(x) under each of the limit processes x — 1+ and x — +o0?

Consider each of the following functions under the given limit process by putting the dominating term

outside as a factor:

1) f(z) =e® — 22 for x — +oo.

2) f(z) =In(1+ 2?) +x for x — —oo0.
3) f(x) =lnx + i for x — 0+.

A. Limit processes.

D. Apply the rules of magnitude.
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I. Weget fromnz=In{l+ (z—1)} =(x —1)+ (& — 1)e(z — 1),

flz) = Vine  {/(a—1)+ (@ —1)e(z—1)
(@) = r—1 r—1
1

(x—1)3

V1+e(x) —» 400  forz—1+4.

Since Inx < z — 1, we also have

V1 vr—1 1
= n:c< .17 = — 0 for x — +o0,

0o = <% T T ao?

thus
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R

61}

and the rules of magnitude follows that f(z) — 400 for x — +oo.
2) From

f(m)—ln(1+x2)+x_x{l+w},

and the rules of magnitude follows that f(z) — —oo for & — —oc.
3) It follows from
1 14z -2

f(x)zlnx—k;:T,

where x - Inz — 0 for  — 0+ that at f(x) — 400 for © — 0+.

Example 4.9 Let f, g :]0,00[— R be two differentiable functions where g'(x) # 0 for every
x €]0,00[. Check in each of the following cases whether the claim is correct or wrong:
1) Assume that f(z) — oo for x — 0, and g(x) — —oo for x — 0.
!/

If f,(x) — ¢ for x — 0, where ¢ € R, then M — ¢ forx — 0.
g'(z) g(x)
2) Assume that f(x) — 0 for v — 0, and g(z) — 0 for x — 0.

/
If @ — ¢ for x — 0, where c € R, then f/(x)
g(z) g'(x)

3) Assume that f(x) — 0 for x — oo, and g(x) — oo for x — oo.

If f'(x)g' (x) — ¢ (€ R) for x — oo, then f(x)g(z) — ¢ for x — oo.

— ¢ forx — 0.

A. General limit processes and I’Hospital’s rules.
D. Analyze each of the cases. Give counterexamples, if possible.
I. 1) If we put h(z) = —g(z), then

f(z) = 400 and h(z) — 400 for x — 0+,

and h/(z) = —¢'(x) # 0. Tt follows from I’Hospital’s second rule that

f'(x) _ f'(x) ¢ or r —

W(z) —g(z) : "
implies

m__M—)——C =C or r —

o@ et
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2) This claim is wrong. Let e.g.

f@=csint  og  gl)=vE

x

Then f(z) — 0 and g(z) — 0 for x — 0+, because e.g.

1
|f(x)|a:-sin—‘§z%xﬂ0 forz — 0+.
x
Furthermore,
1
‘@—\/_ sin—‘g\/EHO for x — 0+,
g(x) @
so@e()forx—ﬂﬂ—.
g(x)
Finally,
1 1 1 1 1 1
f'(x):sin——i—x{—cos—}~{——2}:sin—+—cos—,
x x x T  x x
11
dg'(z) == —, th
and ¢'(x) W us
f'(x) - 2
) :2\/Esmg—&—% cos —,
where

1
‘Qﬂsin—‘gm/iﬂ() for z — 0+,
T

2 1
while — — 400 and cos — oscillates “wildly” between —1 and 1.
NG x

Hence the limit does not exist.

3) This claim is also wrong.

1
Let e.g. f(x) = - and g(z) =« Inz. Then f(x) — 0 and g(x) — +oo for z — +o0.

1

Furthermore, f'(z) = —— and ¢'(x) = 1+ Inz, thus
T
1+ Inx

f(x)g' (z) = o 0 for z — 400

due the the rules of magnitude. Clearly,

f(x)g(x) =lnz — 400 for x — +o0.
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Example 4.10 It is well-known that the function h given by

Ll fora =0,
hle) = { (1+x)=, for @ >0,

18 CONtINUOUS.

1) Find h'(z) for xz > 0.

2) Then find the limit lim, o4 h'(z).
A. Differentiation and a limit process.
D. Differentiate.

I. 1) For z > 0 we get

8=

h(z) = (1+2)% =exp (1“(1”)> .

X
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Hence,
W) = exp In(1+a)Y 1 ~ In(1+2)
x x(1+x) x?
1 — (1 In(1
= (1—|-x)%, x (1+2)In(1+2) for x > 0.
1+ 2

y 154

0.5

Figure 13: The graph of y = (1 +2)7, z > 0.

2) For # — 0+ it is well-known that

(1—1—;10)% —e and

and
r— (14 z)In(1+z) v—(1+2){z— 2% +a%()}
x? x?

Finally we get

1
lim h'(x)=e-1- (—> S
z—0+ 2 2
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Example 4.11 1) Find the approzimating polynomial of at most second degree with the point of
expansion xg = 0 for the function

f(x)Veosz,

2) Find

z—0

3) Prove that

3
Veosz > 1— — 22 for alle x € [—%,ﬂ].

x2

10

ve

7r7r[
272"

. yeosx  sinx
lim - — .
T

6

A. Taylor expansion; limit process; estimate of remainder term.

D. Differentiate f(x).

I. 1) We get by successive differentiation
flx) =
file) =

@) =

7@

Hence

f(x)

)(x) =

1

1 Ttanz - (14 tan®2)f(z)

—|—é tanx - (2 + tan? z) f(z)
é tanz - f(z) - {—4 —4tan®z + 2 + tan®z}
f% (24 3tan?z) - tanx - \/cos z.

1
=1--2— —(2+3tan®&)tan& \/cos¢ - 2°

4

48

for some ¢ between 0 and .

2) We get

from

1 1
=1--12°+2%(2*) og sinz=z- gxﬁ—kx?’s(x)

4

{\/m_sinx}

2

3

I T\/cosx — sinx
fr— m ——

z—0 x3
zlimi x—lxg—l—xge(x)—x+lx3+x35(x)
x—0 13 4 6
1
3, .3
. —Ex + xve(x) :7i
z—0 23 12

f0) =1,

f(0) =

f(0) =

)
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0.4 0.2 0 0.2 0.4

3
Figure 14: The graphs of y/cosz and 1 — 10 22 for x € [—%, %)

3) We get from the expansion of f(z) with a remainder term,

1
Veosz = 1— -2 — — 2% — — (2+ 3tan® &) tan&/cos & - 2°
3 1
1— = g2 —2r - — (2 V/
{ 10x}+{20x 48( + 3tan® £) tan £4/cos x}

Thus, the claim will be proved, if we can prove that

1 1

— % — — (24 3tan?¢) tanéy/cos € - 2® > 0 for |z| < E,

20 48 6

where ¢ lies somewhere between 0 and 2. When we divide by 2 (for z # 0) and rearrange, we
see that it is sufficient to prove that

48 12 ™

(2 + 3tan®¢) tan £y/cos € - x<—0:€ for [£] < |z] <

(=2}

sin &
Veosé

Here, we can estimate upwards by replacing both £ and = by %, because tan £+/cos & =

is increasing in the given interval. Hence

(2 +3tan?¢) tanéy/cos€ - x < (2+

and the claim is proved.
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Example 4.12 Let the function [ be given by
f(z) = In(1 + sinh 2z).

1) Find the approxzimating polynomial of at most second degree for f with the point of expansion
o = 0.

2) Find the limit for x — 0 of

f(z) —2sinx
1—cosz

A. Approximating polynomial; limit process. The example is very similar to Example 5.6.

D. Differentiate f(x).

I. 1) We get by successive differentiations,

f(z) = In(1+4 sinh2z), f(0) =0,

, _ 2cosh2z N
fl@) = mv f(@) =2,
f'(z) = _—4cosh” 2z +sinh2z - {--- ), £7(0) = —4,

(1 + sinh 2x)2

360°
thinking.
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Limit processes

hence,

& T+ —fﬂ(o) z? =2z — 222

Pala) = £(0) + 1 o+

2) From
f(z) =22 — 227 + 2%, sinz = x + 2?%e(x),
1
cosr=1-— 3 x? + 2?e(x),

follows that

f(z) —1sinz 2z —22* + 2?c(zx) — 22 + 2”¢(x)
— B 1
1—coszx 1— (1 -3 m2> + 22¢(z)
=22 +ate(x) 4 1+ e(x)

1 9’
3 2?2 4 22e(x) 1+e(@)

hence

lim f(z) —2sinz
z—0 1 —cosx

= 4.

Example 4.13 Find every solution x(t) of the differential equation
d*x
e =0
which also satisfies
d t
E<#>HO fort — 0.

A. Differential equation of second order and of constant coefficients. Limit process.
D. First find the complete solution of the differential equation, and then apply the condition.

I. The complete solution of the differential equation is

z(t) = ¢y cosht + o sinh t, teR, ¢, co €R arbitreere.
cosht - L

Clearly, " — 400 for t — 0, so the only possibility of a solution is when

x(t)  sinht

t t

When this equation is differentiated we get

d (x(t) t cosht — sinht

—_— —_— f— C —_———

dt t 12

1 1
t{1+ 5152 +t25(t)} —t— 6t3 + t3e(t)

= C -

t2
13 3
—t +t E(t) 1
— 6-3T=C{§t+t5(t)}—’0 for t — 0.
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Example 3.18 In this example we shall derive a formula which approximates the length of a circular
arc. This formula is due to Huygens (1629-1695). We shall use the figure and the notation given in

the text. We shall assume that the angle ¢ satisfies ¢ € [0, g}

Figure 11: Circle of radius 7, centre angle ¢, thus periphery angle g below. The arc is denoted by £,

and the corresponding cord is denoted by d. Finally, we let s denote the height on the dotted vertical
diagonal.

The approximating expression l of the length € is given in the form
{=ad+ bs,
where a and b are constants which will be found below.

1) First prove that
(= 2ar sing + br sin .
2) We consider lasa Junction of ¢. Find the approzimating polynomial Ps(¢) and the corresponding
remainder term Rs(¢) with the point of expansion ¢ = 0.

3) Find the constants a and b, such that Ps (p) =€ =2rp, and set up the corresponding approximation
{ expressed by d and s.

4) Prove that

~ r
C— 0 < — . P,
=t < 55 %

A. An approximation with given guidelines.
D. Follow the guidelines.
I. 1) It follows from some simple geometric considerations (look at some rectangular triangles) that
d=2r sing and s =1 siny,
thus
(= ad+ bs = 2ar sing + br sin .
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Example 4.15 Apply I’Hospital’s rule to find the following limits

(1) Tim 20F2) (2) Tim L% cos’x.

e—0 e2r — 1" -0 xtanz
A. Limits found by an application of I’'Hospital’s rule.
D. Always start by checking the numerator and the denominator separately.

I. 1) Let T(x) = In(1 + 2) and N(x) = e?** — 1. Then T'(0) = 0 and N(0) = 0, thus

1
Co(lta) o T(2) . Tyax 1
Iy My T S T

ALTERNATIVELY we get by using the Taylor expansions,

In(1+ x) x + xe(x) 1+e(x) 1
= = — = for z — 0.
e — 1 1+2x4ze(x)—1 2+4e(x) 2
2) We get by a reduction
l1—cos’z sin®z  cosz-sina
rtanz . sinz x
cos T
= cosx-wel-l for x — 0,
x

because we know from the textbook that

sinx
=1.

limz — 0

ALTERNATIVELY we put T'(x) = 1 —cos?x and N(x) = x-tanz. Then T(0) = 0 and N(0) = 0,

hence
1—cos?’z . T'(x) : 2sinz - cosx

im = lim = lim :
e—0 x-tanx  2z—0 N'(z) 2—0z(1+tan®x) + tanw

Now T"(0) = 0 and N’(0) = 0, so we proceed by

. T"(x) ) 2cos?x — 2sin’ x 2
= lim = lim 3 s~ =3
a—0 N"(x) 2—02(1+tan“z) +x-2tanz - (1 +tan*x) 2
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Example 4.16 Calculate the integral

- |,
for every a > 0, and then find limg,_ o I(c).
A. Integral containing a parameter. Limit with respect to the parameter.
D. First find an indefinite integral.

I. An indefinite integral is e.g. given by

1 1 1
i = = / oy
/\/1+oz:z:2 Va Jy—vae 1+ y2
1
= NG Arsinh(va - )
1
SIMPLY CLEVER SKODA
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Then we get for the definite integral,

1
1 1
I« :/ ——dr=— In(vVa+vl+a).
@)=, izam =@ )
Now, a power function dominates a logarithm, so

lim I(a) = lim In{va+v1+a)

a— 400 a—+00 \/a

=0.

Example 4.17 1) Find the Taylor expansion of degree n = 2 for the function
flx) =V1+x+ 22

2) Find the Taylor expansion of degree n = 2 for the function

f(x):\/lererQfl—l:c.

2
3) Finally, find the limit
i Vitz+a2-1-1z
im .

z—0 (Ez

A. A limit found by means of Taylor expansions.
D. Find the Taylor expansions.
I. 1) We have

flz) = V1+az+a?

= 1+<%)(x+x2)+(é)(w—i—xz)Q—FmZE(x)
= 1+%(w—i—xQ)——(x2+2x3+334)+x25(:5)
3

2) We now get from (1),

1 3
f(m)z\/1—|—a:+3:2—1—§m:—x2—|—x25(33).

8

3) Finally, if follows from (2) that

VIt a2—1-Lta 2224 2%(x) 3

lim 2° —lfjp & 7 =

x—0 1’2 x—0 ;L'2 8
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Example 4.18 Find the following limits

In(1 1 — cos?
(1) lim M’ (2) lim Soosr
z—0 e2r — 1] z—0 T -tanx
(3) lim LY @) lim {2z -2 | (142 2
s bbo gving e T x '

A. Limits.

D. We use a Taylor expansion in (1) and (4). In (2) and (3) other methods are easier to apply.

I. 1) We immediately get

. In(1+2x) . x + xe(x) .t aze(z) 1
lim = lim = lim ———~ = -.
a—0 €2 —1  2—=0142x+xe(x)—1 2020+ ze(x) 2

2) By a small rearrangement we get

o 1—rcos?z . sin’ z . sinx
lim —— = lim - = lim -cosx = 1.
z—0 - -tanx z—0 sinx -0 T
x .

COS T

3) If we put y = VInz, it follows that y — 400 for # — +o0, and then it follows from the rules
of magnitude that

Inz y?

lim ——————= lim = =0.
. 1
4) Since i 0 for x — +o0, we get

= lim
=+ exp(VInz)  y—tooe¥
1\2
(2]}
x

1
= lim {2:172:172 In <1+ —>}
r— 400 T
=2 lim {z—2x? 11 i—&-ie !
B r——+00 €T 2 2 2 T

1
lim 2{$—$+§+E(CL‘)}:1.

T—+00

lim {Qx —2%In

T—+00
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Example 4.19 When one shall calculate the bending of a beam one often applies the so-called Berry
functions Bg(\), which are defined by

~ 6{v/X cosh(BVA) — sinh(VA)}
B A sinh(v/)) ’

Here, (3 is a fized real constant. We shall find a value of the function Bg(\) for A =0, such that the
function becomes continuous at A = 0.

Bs(A)

for A > 0.

Which value should one choose?
A. A limit process in .

D. Use Taylor expansions.

I. From
L, 2 . L 3 3
coshz =1+ o +z°e(r) and sinha =ax+ i + z°e(z),
we get by insertion that

VX - cosh(BvA) — sinh(vV/\)

Bg(\) = 6-

A -sinh(v/\)
) ﬁ{1+ﬂ2A+Ag(A)}—\/X—éA\/XH\/Xe(A)
MVA+Ae(V)}
1—1—62/\4—)\6()\)—1—%/\4—)\5()\)
MIreV)
_ 6-(&2—%>~11285—>662—1 for A — 0 +.

Hence we shall put

Bs(0) =632 — 1.
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Example 4.20 (Cf. Ezample 4.21). Let p(t) =t — te=, t € R.

1) Find the Taylor expansion of order 3 (i.e. the approzimating polynomial of at most third degree)
for the function ¢(t) with the point of expansion ty = 0.

2) Find the limit

o(t)
t—oc sinht — sint cost’

A. Approximating polynomial and limit.
D. We shall give two solutions of the first bullet.
I. Let p(t) =t — te=t*. Then (t) is of class C*°. We consider the two variants:

First variant. From e* = 1+ u + ue(u) for u — 0, we get by the substitution u = —#? that
o(t) = t{l - e*tg} =t{1-(1-2+82et)} =+ 3e(1t),

thus P3(t) = t3.

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com
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SUPErvisor in

the North Sea
advising and
ern  Nelping foremen

0 solve problems
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Second variant. By successive differentiations we get with the point of expansion ¢y = 0,

lt) = t—te ) p(0) = 0,
Pt = 1-et +2t2e’t2, ©'0) = 0,
O'(t) = 6te t —4t3e o'ty = 0,
eB (1) = 6e " — 2427 4814 e, o) = 6
Hence,
"(t (3) 0 6
P3(t) = p(0) + ' (0) t + ¢2§ ) 247 3'( )t3 = 5153 = 3.

This bullet can be solved in at least four ways:

First variant. Using a simple rearrangement we get by some e-functions that

1
sinht —sint - cost = sinht — 3 sin 2t

{t+ %ﬁ +t3s(t)} — % {2t— % (2t)3 +t35(t)}

144 5
= %z@ +t3e(t) = 6t3 +t3e(t).
Then apply the result from (1),
o(t) B e(t)  14e(t)

6
— - for t — 0.
N —— 5 5 -
sinht —sint - cost 6t3+t35(t) 6+€(t) )

Second variant. Even if one does not use the trick of applying the result of the FIRST VARIANT,
it is still possible to solve the problem by using e-functions:

sinht¢ —sint - cost

1 1 1
:{t+ §t3+t3g(t)}—{t—§t3+t3s(t)}{1—5t2+t3e(t)}
1 3 3 1 3 3 1 3 3 3
=t P+ e() —t+ S P+ () + 5 04 e(6) +1e(1)

5
= gtf" + % e(t),

and then continue as in the First variant.

3. variant. The approximating polynomial by the method of differentiation. If we put

Y(t) = sinht — sint - cost,

then
»(t) = sinh?¢ —sint - cost, »(0) = 0,
Y'(t) = cosht— cos?t+sin’t, P'(0) = 0,
"’(t) = sinht+4sint - cost, P"(0) = 0,
YB3 (t) = cosht+4cos?t — 4sin?t, »3)(0) 5,
hence

$3(0)
3!
and then proceed like in the First variant.

P =(0) + ' (0)t + 1/’"2(,0) 2+ B3+ tPe(t) = gt3 +t3e(2),
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4. variant. Application of I'Hospital’s rule where we forget that some of the calculations already
have been made in (1):

T(t)=p(t)=t—te ", 7(0) =0,

N(t) =sinht —sint - cost, N(0) =0.

T'(t)=1—e" +22e ", T'(0) = 0,

N'(t) = cosht — cos®t + sin®¢t, N'(0) =0,

T'(t) =6te ™ — 413 et T"(0) = 0,

N"(t) = sinht + 4 sint - cost, N"(0) =0,

TO @) =6t —24¢2e " + 8¢t T7®3(0) = 6,

N®)(t) = cosht + 4cos?t — 4sin’t, NG(0) = 5.
From

T(0) =T'(0)=T"(0) =0,  N(0)=N'(0) =N"(0) =0,

we conclude by successively applying I’'Hospital’s rule that
t T(t T'(t
20 LT T

i T//(t)
im i =1 = lim

t—0 sinht — sint - cost t—0 N(t) t—>0N'(t) =0 N"(t)
TG TO() 6

= lim

_ T
=0 N®I(t)  NG(©0) 5

Example 4.21 (Cf. Ezample 4.20). Let the function o(x) be given by
ap(x)za:—xe_””Q, r eR.

1) Find the Taylor polynomial of order 3 for p(x) with the expansion point xo = 0.

2) Let ¢(x) denote the indefinite integral of p(x), for which ¥(0) = 0. Find by applying the result of
(1) the Taylor polynomial of order 4 for v(x) with the point of expansion xo = 0, and then find
the limat

I s
cosr —exp | —=ux
. 2
lim .

2—0 ()

A. The first bullet is the same as the first bullet of Example 4.20. The purpose of the present example
is partly to find the Taylor expansion, and partly to apply this in a limit process-

D. 1) Use the exponential series.

2) Integrate this series and find the Taylor expansion of

(27)
COST — exp —ELL' .

Finally, go to the limit.
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I. 1) From

1 1
@(x)zx—me_zzzx—x{l——x2+—x4+--~}=x3——a:5+~--,

1! 2!
we get the Taylor polynomial

Pg(x) = .’133.

2) Clearly, ¢(x) = ix‘l + zte(z). Since

(-32)
coS T — exp —57

2
1 5, 1 4 122 1 (22

N VR N
7S TR
we get by insertion,
L 1 1
COS X — exp —5:10 ——x4+x45(33) _ 1
fny = Jim % -1y
e W(z) o 7o+ ate(a) 1

Example 4.22 Find the limit

o osinz? —2vV1+a2+2
lim 1 .

x—0 xT

A. Limit process.
D. Find the Taylor expansion of fourth order for the numerator.

I. From the expansions

) (22)" + 2t ()

—
_|_
8
[ V)
|
—~
—
T
8
[ V)
SN—
Nl
I
—_
+
N
[
N——
8
no
+
7N
[N RN

we get by insertion,

1 1
Cosin(2?) —2V/Txa242 T o2-atfoat424ate(e)  cat4ate()
lim 1 = lim 7 = lim 7 =—.
z—0 X z—0 xT z—0 x 4
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REMARK. The expression can also be considered as a function in v = 22 — 0+ for 2 — 0. One
may therefore instead change the variable to

sin(:cQ)—2\/1+x2+2 sinu — 21 4+u+2

:7}’112) {L’4 :uliT(I)lJr u2
2 L Lo o
u+u?e(u) —2 1+§u—§u +ufe(u)p —2 ]
= w 0

~
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Example 4.23 (Cf. Ezample 2.14). Given the function

f(x)zcos(%ﬁ—&—m), z €R.

1) Find the Taylor polynomial Pa(x) with the point of expansion xg =0 for f(x).

2) Prove that

f(2) = P—2(2)] <8107 for |a| < é

3) Find the limit

Lo 14 £ a2
COS 2£L' T 2$

lim
z—0

3

A. Taylor expansion, error estimate, limit.

D. 1) Use one of the standard methods by the calculation of the Taylor expansion.

2) Estimate the remainder term of the Taylor expansion.

3) Use (1) and (2) in the limit process.

I. 1) The simplest method is to use the series expansion. (An alternative solution is given in the

next bullet.)

We find

where we shall use Ps(z) in (3).

2) By successive differentiations we get

f(z)
()
£O (@)

Thus again

Pg(x):f(0)+f’(0)-x+%f”(0)-x2:1—&—0—1332:1——xQ.

1
= —(x+1)sin<§x2+x),
_ 2 L (L o
= —(x+1) cos(gx +x>—sm<§aﬁ —|—a:>,
1 1
= (x+1)3sin<§x2+x>—3(x+1)cos (5302—1—:2).

1
2 2
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By Taylor’s formula there exists a & somewhere between 0 and x, such that

f(2) = Pola) = 57 SO () - 2.

Then we have the estimate

7@ - Pl = 5 [fO@) Jef?

|ac|3 3 L L
= |+ Dsin (5 +¢) —8(E+ Deos ( F€24€) |-
Now,
1 2 4 < 1 +1 11 for | |<1
—x T — 4+ - == or |x -
2 50 5 50 5’

1
and |¢] < |z| < 5 S0 e get the estimate

3
|f(z) = Pa(x)] < é%{(%—i—l) sin%—l—S(%—i—l)cosO}

8 1(6% 11 6
- { . +3._.1}

1000 6 | 5% 50 5
8 6211 3 2
= ————— +-5<8:107%. =
1000{125-50+5} 3
< 8-107°.
3) From
cos (— z? + :c) = Py(z) + 23¢(),
we get
1 1
cos(—x2+x>—1+—x2 I S P SR g
lim 2 2 = lim 2 2 2
3 3
r—0 T z—0 x
1
—— 23+ 23¢(x) 1
= lim —2 3 = lim {———!—5(3&)}———
z—0 xT z—0
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Example 4.24 Find the limit

1
Incoshz — 5 x?

lim
x—0 xX

1
A. Limit by an application of a Taylor expansion.

D. Set up Taylor’s formula for n = 4 and point of expansion zy = 0, and then insert.
I. When f(z) = Incosh z, we have

sinx

fl(z) = = tanhz, f"(x) =1 — tanh® z,

coshx
f®(z) = —2tanh (1 — tanh® z) = 2tanh® 2 — 2tanh z,
f®(z) = (6tanh?® z — 2)(1 — tanh® z),

thus
1., 1., 2 1 (3) 3
Incoshz = f(O)—l—if(O)x-i-Ef(O)x +§f (0)z
1
+5 FO0) 2t + 2t e(x)
1 2 1 3 1 4 4
= O+O—|—§-1-x —|—§-O-x —|—J(—2)x + z%e(x)
1 1
= §x271—21}4+z4€($),

hence by insertion,

1
Incoshx — —x

lim ——=— = lim = ——.
z—0 I4

Example 4.25 1) Set up Taylor’s formula for o =0 and n = 3 for the function

T ™
:1 _—— —.
f(z) =Incosz, 5 <T<3

2) Find the limit

1
Incosz + 5332

alzii% x?
A. Taylor’s formula and a limit.

D. Differentiate three times.
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I. Clearly, f(z) is defined for ,g <z < g, because cos z > 0 in this interval

f(z) = Incosz,
f(x) = _HT . tana,
cosx
f"(x) = —tan’z—1,
94
fOz) = —2tanz(l+tan’z) = —C()S;—?z
If o = 0, then
L, Lo 2 1 (3) 3
Incosz = f(0)+ﬂf(0)$+§f(0)$ taf (&)

1 siné o
Q(_ )'cosggm

1
= 0+O+§(—1)x2+
1 5, 1 sing 4

2 _gcos3§x'

Finally we get for the limit process,

1 1 1
Incosx + - 22 —— 2% + 2%(x) + = 2?
lim ———2— = lim 2_ o
z—0 €T z—0 X

. Then by differentiation,

no.l

nine years
in a row

<
)
&
%)

Stockholm
(]
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Example 4.26 1) Find the Taylor expansion of order 4 at the point xo = 0 for the function

fx) =1+ 222, x e R

2) Find
. V14222 —(1+2?)
lim 7 .
z—0 €T

A. Taylor expansion and a limit.

D. Put u = 22, and consider instead the Taylor expansion of /1 + v of second order.

Jur (3 )wee

1 1

we get by the substitution u = 22,

flz) = \/1+2x2:1+%-2x27l~(2x2)2+~'

8

I. 1) From

=Nl
[N RN

1+u = 1+<

14 22

1
,§x4+...’

hence,
1
Py(z) =14 2% - 5354 og V14222 =Py(z)+ate(x).

2) When we insert the result above we get

1
VIT 222 — (14 22) 1—|—x2—§x4+x45(3§)—(1+x2) 1
1 = :7§+€($),

T

and we conclude that

. V1+222 — (14 2?) 1
lim T = ——.
r—0 xX 2
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Example 4.27 1) Find the Taylor expansion of order 2 at the point xo = 0 for the function

1
f(x)zy/l—kisinx, zeR.

2) Then find the limit (e.g. by applying (1))

1+1 . (x)
— SInx — € —
Vo *P\q

lim —5
z—0 sin” x

A. Taylor expansion and a limit.

D. Even if I can find an alternative method of solution, I shall only apply the method of finding the

coefficients by calculating the first two derivatives of f(x).

I. 1) We have

1
fla) = \:/1+§sm, ORIt
, cosw , 1
= -7 0) = z
@) = ') 3
1—|—§s1nx
f@) = sinz-{-}
cos )\ 2 1 1 ) 1
_Z 0) = ——
(20 (-3) S0 =
(Hl—&—isinm)
thus
1 1
P. =1+-z— —2?
2@) =14 go— g
2) Since
exp (5) =14 L4 L
AL T T T ’
and
sin?z =%+,
we have
1 . T T 1 T 1
14 = _ <_> r— 1 5 o T 1 9 2
\/ LT g smz—exp {7 _ 1+4 e 1 1 3% + z%e(x)
sin? x? 4+ x2e(x)
1 1
—<@+3—2)+ (a:),
hence
Ji+ta (x)
— sinx —exp | —
; 25 T — exp 1 3
im — = ——.
z—0 sin® x 64
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Example 4.28 1) Find the Taylor polynomial of order 3 at the point xo = 0 for the function

=1 ’ }__’_{'
f(x) ncosx T e 579

2) Find the limit

. cosx —Incosx —1
lim .
x—0 !ES

A. Taylor polynomial and a limit.

Either insert known Taylor series, or differentiate. Clearly, (1) must be applied in (2).

25

1
Figure 15: The graphs of y = —Incosx (above) and its approximating polynomial Ps(x) = 5 x2.

I. 1) First variant. We see that

f(z) = —Incosz=—In{l—(1—cosx)}
L 5
= 1—COSZC+"':§LE 4+

where the dots indicate terms of degree > 4, thus

1
Ps(x) = 3 z2.

Second variant. From

f(x) = —lIncosz, £(0) = 0,
f'(x) = tanz, [0 =0,
f'(@) = 1+tan’z, [0 =1
f@(z) = 2tanz(l +tan’z), @) = o,
we get
Ps(z) = %x2
99
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2) First variant. If we use the setup of (1) First variant, we get

cosz —Incosz —1  1—cosz+a’e(x) — (1 —cosx)
x3 N a3
= ¢(z)—0 for x — 0,
thus
—1 -1
i €082 —Incosz _o.

z—0 $3
Second variant. A more traditional procedure is the following,
2 2 3
cosw — Incosz — 1 l—sa?+ 52— 1+a°e(z)

— 2 2 — | —
T - = = e =0

ﬂﬂl__Jl-"—.
y \ tﬁ?ﬂ.}éﬁ‘}
STUDY AT

LINKOPING UNIVERSITY, SWEDEN
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from Linképing University, Sweden.
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Example 4.29 1) Find the Taylor polynomial Ps(x) of order 2 at the point xg = 0 for the function

f(@)=In(1 —x) +€", x <1

1
2) Prove that if |x| < 7 then

1

[Rs(@)] = |f(2) = Py(a)] < 555

3) Find the limit

lim 7]"(1‘) _ 1.
x—0 1'3

A. Taylor polynomial, estimate of a remainder term and a limit process.

D. Either insert known series expansions, or differentiate.

108 g6 04 62 O 0204 06 038 1

Figure 16: The graphs of y = In(1 — ) 4+ e” and its approximating polynomial P3(z) from zy = 0.

I. 1) First variant. By using well-known Taylor series we get for x €] —1,1],

flx) = In(l—z)+¢€"
+1+z+%x2+%z3+ix4+~-
= —%xg—%xéhr-'-,
hence,

1
Piy(z)=1- 61‘3.
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Second variant. It follows from

/()
f'z) =

~
€
—~
8
~
I

that

1
2) If |z] < T then

|f(z) — P3(2)]
3) Finally,

lim fl@) —1

z—0+ x3

Example 4.30 Find

rsinr —In(1 + 2?)

In(1 — ) + e, [y =1
1 /
_ @ 0) = 0
= + e, f(0) ;
o T 7 _
2 Lem @) = -1
6 + e”
(1—=)* ’
1 3 _ 1 3
T
1 /1\* -6
— Im@l<y (7)o g e
11 6 1 (2 2
< o + Ve p < {—+

Q

im )
z—0 2coshx —2 — 22

(Hint: Use Taylor’s formula.)

A. Limit process.

D. Start by expanding the denominator in order to find the order of the expansion.

24 27 44

24 44 ) /3\?

()
0,00341 < 0,004 = ——.
’ ’ 250

1
—— a3 + 23¢(x)
lim ————
z—0+ 3

. 1 1
7w1—1>%(1+ {_6 * g(x)} 6

I. The denominator has the expansion

2coshz —2—22 =

1 1
2{1+§x2+2—4x4+x45(z)}2x2

%x4+x45(1‘) =m4{§ +€(x)}.

|
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This shows that the order of expansion is 4. Then we expand the numerator up to order 4,

1 1
zsinz —In(1+2%) = x{x - Eaz?’ +x3€(x)} — {xQ - 51'4 +x4a(x)}

1
= 2—6$4—ZC2+§$4+$4E($)

Finally, by insertion,

x? 1 +e(x)
rsinz — In(1 + 2?) ) 12 1
lim =lim ———= = -,
a—0 2coshz — 2 — 22 z—0 4{1 } 4
x ()

Example 4.31 Find

1-— 63’”2
li — |
2o\ - sin(2x)

A. A limit process.

D. The denominator has a zero of order 2 at xy = 0. Therefore, we shall find the Taylor expansions
of the numerator and the denominator of order 2.

Alternatively and more troublesome we can also apply I’Hospital’s rule.
I. First variant. From
1—e¥ =1-— {1+ 32” +2%¢(2)} = —32° + 2%¢(x),
and

z-sin(2z) =z - {20 + x - e(x)} = 22 + 2%(x),

we get
) 1— 3’ . =3x? +a%e(z) . —3+e(x) 3
Iim [ ——— | = lim = lim = ——,
x—0 \ 2 - sin(2x) a—0 222+ 22e(x) -0 2+e(x) 2

Second variant. If we put
T(x)=1- 37" and N(z) =z - sin(2x),
then both T'(x) and N(x) are of class C*° and T'(0) = 0 and N(0) = 0. Then by a couple of

differentiations
T'(z) = —61 - €37, T'(0) =0,
N'(x) = sin(2zx) + 2x - cos(2x), N'(0) =0,
og
T"(z) = —6 - 3" — 3622, T"(0) = —6,

N"(z) = 4cos(2x) — 422 sin(2z), N"(0) = 4.
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By repeating I’'Hospital’s rule we get

o 32
lim 1-e = lim T(x)

a—0 x -sin(2x) =—0 N(z) «—0 N'(z) «—0 N"(z) N"(0) 4 2
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5 Asymptotes

Example 5.1 Find the possible asymptotes for the functions

(1) f(@:ﬁ;i, (@) £(&) = In (2 + =27

A. Asymptotes.

D. The functions are defined for every x. Therefore, we shall only consider what happens for x — 400
and for z — —oo.

I. 1) It follows from

1—et 2
14er 146" ’

that this expression tends towards -1 for & — +oo (cf. the latter expression), and towards
+1 for # — —oo (cf. the former expression). This means that f(z) ~ —22 for x — +o0 and
f(x) ~ 22 for # — —o0, and we do not have any asymptote.

-5 -1 05 0.5 1 15

Figure 17: The function f(z) = In(e?* + ¢~2%) and its two asymptotes.

2) We conclude from
fl) = In(e* +e )= (e {1+ 6741})
= 2x+In (1 + 674:”) =2 +e 4 e (6741) ,
that f(x) has the asymptote y = 2z for x — +o0.
3) From
f(z) = In(e™®®{e!® +1}) = =2z +In(1 4 €**)
= —2p+ i 4 ehoe ()

follows that f(z) has the asymptote y = —2z for  — —oc.
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Example 5.2 Find the possible asymptotes for the function

f(z) =va? -5z +6.

A. Asymptotes.

D Remove the “squared term” from the expression inside the square root, and find the Taylor expan-
sion of the rest.

Figure 18: The function f(x) = va? — 5x + 6 and its two asymptotes.

I. It follows from

2
5 1
f@)=vVa2—bx+6=(z—2)(x—3) = (x_§> -3
that the function is defined in the two intervals | — 00,2] and [3,4o00[. Since the function is

continuously defined in the end points x = 2 and = = 3, we do not have asymptotes at these
points, though we of course have vertical half tangents.

)
1) If z € [3,400], then in particular x — 3> 0, thus

f(x)

Il
/N
&
|
DN | Ot
N~

()
|
B~
Il
/N
&
|
N | Ot
N~
[y
|
—~
[N}
5
| | =
ot
S~—
[\v]

5
and we conclude that y = x — 3 is an asymptote for z — 4o0.
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- T )t

N D S S S S
_I242x—5x6x’

5
and we conclude that y = —z + 3 is an asymptote for z — —oo.

Example 5.3 Find the possible asymptotes for the function

22 4+ax+1

J@) = In(1+e*)’

A. Asymptotes.

D. The function is defined for all € R. Investigate what happens for z — +oco and z — —o0,

separately.

xtr+1

Figure 19: The function f(z) = )

I. 1) When z — 400, we use that

In(l1+e”)=In(e"{l+e*})=a+n(l+e ™) =a+e " +e "c(e ™),

and its asymptote y = x + 1.
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SO

?+r+1 ?+r+1
flx) = oy = e
In(l4+e*) z+e®+e%e(e®)
r+1+—
- I
1+ —e+—-eTec(e ™)
x x
1 1 1
= {x+1+—}{1— er—eze(ex)}
x x x
1 _ _ -
= z+l+-——eT—=e T+ e Te(e?),
x x x
and thus,

fl)—(x+1)—0 for © — +o0,

and we see that y = x + 1 is an asymptote for x — +o0.

Excellent Economics and Business programmes at:

Wl . .
W university of
4}&5 groningen

i

(AACSB>

ACCREDITED
\ Y

| 4

| |

“The perfect start

of a successful,
international career’

I

-, , 4 CLICKHERE
® F to discover why both socially
and academically the University
of Groningen is one of the best

I laces for a student to be
www.rug.nl/feb/education P

108 Click on the ad to read more
Download free eBooks at bookboon.com



http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Calculus Analyse 1c-6 Asymptotes

2) If © — —oo, then In(1 + €”) = e” 4+ " ¢ (e”), where e” — 0, hence
?>+z+1 B >+z+1

In(1+e*)  e* +e?e(e?)

(®+z+1)e® (®+z+ 1)el!

1+e(e®)  14e(er)

Clearly, f(x) does not have an asymptote for  — —oo.

Example 5.4 Find the possible asymptotes for the function
3 2 2 2
f(@) = (2% — 32® + 2) sinh = — 22°.
x
A. Asymptotes.

D. The function is not defined at x = 0, so there is a possibility of asymptotes for x — 0, for x — 400,
and for x — —o0.

2
Figure 20: The graphs of the function f(z) = (23 — 322 4 2)sinh <—> — 222 and its asymptote
x

4
y = —6x + 3 Different scales on the axes.

2
I. 1) If 2 — 0, the factor 3 — 322 + 2 tends towards 2, and sinh (—> — =oo for £ — 0%x. Thus we
x
have a vertical asymptote z = 0.
2) If © — +oo, then

(2 2 1 /2\° [1\® /1 2 4 1 1% (/1
sinh[ =) ==4+=(=] +(=) e|=)|==4+=--=+= (=),
T z 3l \x T T x 3 23 T
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hence
. 2
flz) = (2% 32> +2)sinh <—) — 222
x
2 4 1 1 1
_ 3 2 2
4 4 1 8 1
_ 2 2
- 6 ,
T + 3 +e
4
and we conclude again that the function has the asymptote y = —6x + 3 for z — +oo.
Example 5.5 Check whether the function
f(x) = x Arctan z, r eR,
has asymptotes for x — —oc and x — 00, TESP..
A. Asymptotes; the example is almost the same as Example 5.7 (b).
D. Re-write the terms containing Arctan x etc., and then take the Taylor expansion.
1
I. If we put g(z) = Arctan x+ Arctan —,  # 0, then
x
1 1 1
/
g'(z) 1+x2+ N2 (:ﬂ) ’
1+ (3)
T
. . . T T W
thus g(z) is a constant in each of the intervals x > 0 and « < 0. From g(1) = 1 + 1°3 and
(—1) = T T 7 ;
AN R EA
T 1
— — Arctan —, for x > 0,
2 T
Arctan z =
1
~T _ Arctan -, for x < 0.
2 T
Furthermore,

1 .
Arctan y =y — 3 v+ 3 (y), y — 0.

1
1) If x — 400, then — — 0+, hence
x

1
flx) = x~Arctanw—w{g— Arctan —}
x
T +1 1+1 1
= - ——4+-—=+—=¢|—
2 oz 323 3 \z
1 1
— Fe-1e3e(3).
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Figure 21: The graphs of y = zArctan x and its two asymptotes.

0
and we conclude that y = 5 x — 1 is an asymptote for x — +oc.

1
2) If # — —o0, then — — 0—, hence
x

1
f(z) = x-Arctan x :x{—g — Arctan }
x
1 1
2 T T
and we conclude that y = —g z — 1 is an asymptote for r — —oo.

Example 5.6 Given the function
f(z) = In(1 + sinh 2z).

1) Find the approzimating polynomial of at most second degree for [ with the point of expansion
Tog = 0.

2) Find the limit

. In(14sinh2z) 4 2e % — 2
lim
2—0 x+In(1 — )

3) Prove that the graph of f has two asymptotes, and find an equation for each of these.
A. Approximating polynomial; limit; asymptotes. The example is very similar to Example 4.12.

D. Use some Taylor expansions.

1
I. 1) The function f(z) is defined, if and only if 1+sinh 2z > 0, i.e. if and only if z > ~3 In(v2+1),

(cf. the calculation below). It follows from

f(z) = In(1+4 sinh2z), f(0) =0,

, 2cosh 2z S
f'(x) ma f(0) =2,
fra) = - A ) o) £7(0) = 4,

(1+ sinh 2z)2
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that the approximating polynomial is

2 4

z? =2z — 222,
and since f(z) is of class C'™° in its domain, we get
f(x) =22 — 227 + 2%¢(2).
2) From
f(z) =22 — 222 + 2%¢(2),
27" =2 — 2x + 2% + 2%e(z),

1
In(l—2)=—-x— 5 2? + 2%e(2),
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we get by insertion,

. In(1 +sinh2z) 4+ 2e* — 2 . 20— 227 + 222+ 2% — 2 + 2%e(2)
hn%) In(1 - hH%) 1
o v +1n(l - ) o x—x—§d2+x2a(x)
e G B
O g2y x2e(x)

-2

Figure 22: The graphs of y = In(1 + sinh 22) and its approximating polynomial y = 22 — 222 and the
two asymptote (both dotted).

3) First notice that 1 4 sinh 2z = 0, when
0 = e 42— =2 {643” +2e%* 41— 2}

= e {(e 1)’ -2},
i.e. when €2* = —1 ++/2 (> 0), thus In(1 + sinh 2z) is defined if and only if
x> % In(v2—1) = —% In(v2 + 1).
Now,

1
f(z) =1In(1 + sinh 22) — —oc0 for r — -5 ln(\/§—|— 1)+,

1
so the vertical line = = In(v/2 4 1) is an asymptote for f(x).

If instead © — +00, then we get by the definition the following calculations,
1
f(z) = In(l+sinh2z) =In (1 + 3 {62’” — 6_2;8})
= In (62‘7’ +2— e_h) —In2

92 _ —2z
= In (62‘”) —In2+1n (1 + Te)
e

92— —2z
= 2x—1n2—|—ln<1—|—+).
eflj
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Since
92— —2z
ln(1+fe>—>0 for x — 400,
e xT

it follows that y = 2x — In 2 is also an asymptote.

The two asymptotes of f(z) are

1
y=2x—In2 and x:—§ln(\/§+1).

Example 5.7 1) Check in the following two cases whether the graph of f has an asymptote for
x — 400, and in case of an asymptote, an equation of it.

(a) f(z) =z tanhx, (b) f(z) = x Arctan z.

2) Prove that

1 2 1 3 1
(—2+—> ln(l—i—x):——l———i—s(—), for x — 0,
T T r 2 T

and then show that the graph of
9 1
f(t) = (t*+2t)In L+
has an asymptote for both t — +oo and t — —o0.

Find the equation of the asymptote.
A. Asymptotes.

D. Use Taylor expansions.

Figure 23: The graphs of y = x tanhx and its asymptote y = z.
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I. 1) a) It follows from

x

f(l') = ftanhx:x.i+671
el‘
1*6721’ 672:&
= T oo & 1-2. —
L x{ 1+e—2x}
that
2 x
[f(@) =2l = =7 - =7 = 0 for x — 400,

1+ 67230 621

and we conclude that y = z is an asymptote for f(z) = x - tanhz, when x — +o0.

07T T s 2 25 3

Figure 24: The graphs of y = z Arctan x and its asymptote y = gx -1

b) The function

1
p(x) = Arctan z + Arctan —, x>0,
T
has the derivative
1 1 1
!
= ==1)=0
A=t 1\ ( 962) ’
1y (-)
x
. . T T
thus ¢ is a constant. If we put x = 1, we obtain the constant 1 + 1= i.e.

1 s
Arctan x + Arctan — = —,
x 2
hence
1
Arctan z = T Arctan —.
T

Finally,
™ 1
f(z) = x-Arctan x)x {5 — Arctan —}
x

T 1 1 1 T 1
= 97— —-+—-¢l— =—-rz—1+¢e(—-]),
2 x T 2 T

71'
and the asymptote has the equation y = 5 r—1.
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-0 8 6 4

1
Figure 25: The graphs of y = (22 + 2x) In <1 + )
x

2) From
L o o
ln(1+x):x—§a@ + x%e(x),

follows that

3
and its asymptote y = x + 3

12 12 1,
(m2+m>ln(l+m) = (172-1—3:){15—296 +xs(m)}
O F
= ——5tel x + xe(w
1 3
= 54—5—}—5(3:) for x — 0.
o 1
Thus by the substitution ¢t = —
x
1 1

f(t)

I N
x2€m_2€t’

3
and we conclude that y =t + 3 is an asymptote for f(t) for both t — 400 (i.e. for x — 0+),

and t — —oo (i.e. for z — 0—).

(* +2t) In (1 + Z) = (P + %) In(1 + x)
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6 Improper integrals

Example 6.1 One shall in the following integrals

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,
3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral,

“+oc0o 1
(a) / xe "dx, (b) / B h dx.
0 0

22 +x—2
A. Improper integrals.

D. Find the indefinite integral.

American online
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08

0.6

0.4

0.2

x

Figure 26: The graph of the integrand xe™*.

I. (a) We see that f(z) = ze 7 is defined for every x € R. We conclude from

f/(x) = (1 - x)e—m7

that f(x) has at maximum for = 1, and that clearly f(x) — 0 for  — 400, and that the
integrand is > 0 everywhere.

We find an indefinite integral by partial integration,

/me_”” de =z (—e ") - / 1o (e ®)de=—ze "+ /e_“” de = —(z +1)e™ ™.

This function converges towards 0 for £ — +o00, hence the integral is convergent, and we get
the value

+oo
/ ze Pdr= lim {-(z+1)e "} +1=0+1=1
0

xr——+00

2¢ +1

Figure 27: The graph of the integrand f(z) = et
22 +x—
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2 1
(b) The function f(x) = % is defined for = # 1 and = # 2. It follows by a decomposition
24z —
that
fz) = ! + ! <0 forxzel0,1]
R S ore Y

so an integral is

1 1
/x+2dx+/x_ldlen(w—i—Q)—i—ln(l—x),

where ALTERNATIVELY one could have noticed directly that the numerator is the derivative of
the dominator, thus

2 1
/%dmzlnhQ—l—x—Q .
T T —

Now, In(1 — z) — —oo for  — 1—, so the integral is divergent.

Example 6.2 One shall in each of the following cases

1) find the range of the integrand,

2) sketch the graph of the integrand in the interval of integration,
3) check whether the integral is convergent or divergent,

4) in case of convergence, one shall find the value of the integral,

(a) /0+<>° sinz dx, (b) /11 \/1%—332 dzx.

A. Improper integrals.

D. First find an indefinite integral.

Figure 28: The graph of f(x) = sinz.
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I. (a) The function f(x) = sinx is defined for every x € R with the indefinite integral — cosx, so

xT
/ sinxdr =1 — cosx.
0

Since 1 — cosx does not have a limit for x — +o00, the improper integral is divergent.

REMARK. The correct procedure of dealing with improper integrals is always first to split the
integrand into a positive part f* > 0 and a “negative part” f~ > 0, such that

fl@)=f"(@) - (@),
where more precisely

Fr(@) =max{f(),0}  and  f(2) = max{—f(x),0}.

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%
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The improper integral is convergent, if and only if

/ [f@de  og / (@) da

are both convergent, and if so, then

/f(x)dxZ/f+(x)dx—/f_(x)da:.

I am often missing this clarification in elementary textbooks. In the case above we may of
course make a shortcut, because it is obvious that the limit does not exist. One can, however,
construct cases, in which the limit exists for the indefinite integral, and where the improper
integral does not exist in the strict sense given above. ¢

Figure 29: The graph of the integrand forx €] —1,1[.

1
V1—22

1
(b) The function f(x) = ———= is defined and positive for x €] —1,1[. An integral is Arcsin x,
V1— 2?2

thus the improper integral is convergent, and we find

dx = [Arcsin 2], = g - (—E) = .

! 1
/_1\/171C2 2
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Improper integrals

Example 6.3 One shall in each of the following integrals

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,
3) check whether the integral is convergent or divergent,

4) in case of convergence find the value of the integral,

400 1 3 1
—d b — dx.
@ [ 0 [ pa

A. Improper integrals.

D. Check the indefinite integral.

0.2

0.1

Figure 30: The graph of f(z) = — 1
x

I. (a) The integrand f(z) = ) is defined and positive in R. An indefinite integral is
x

S 1 t]" 1 z
/0 2 +4dt = [5 Arctan 5}0 = EArctan 37

which is clearly convergent for x — +00, so its value is

+oo
1 1 T 1 = =
———dr = lim = Arctan — = - - — = —.
/0 22+ 40T 2 e g T g 2 1

(b) The integrand

1 1 1 1 1
f(m)_IQ—l_Ez—1_§x+l

is defined for z € R\ {—1,1}, and it is positive for  €]1, 3]. An indefinite integral is

1 1 1 1 1 1 1
/Q—dx:— —dm——/—dx:—lnx—,
22— 1 2 ) -1 2) v 11 2

r+1
which clearly is divergent for z — 14.
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Figure 31: The graph of

2 -1

Example 6.4 We shall for the following integrals

1) find the domain of the integrand,

2)
3)
4)

sketch the graph of the integrand in the interval of integration,
check whether the integral is convergent or divergent,

in case of convergence, find the value of the integral,

1 1 “+o0 x
(a) /0 xlnxdx’ (b) ; ﬁdx.

. Improper integrals.

. Follow the guidelines of the example.

for €11, 3].

1
Figure 32: The graph of —— x €]0, 1[.
zlnz
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d
I. (a) Put f(x) = R From E{x Inz} = Inz 4+ 1 follows that the function has a maximum
1 1
for x = 2 corresponding to f <g> = —e. Furthermore, z Inz — 0— for z — 0+, and for

x — 1—. We therefore conclude that f(z) — —oo by these limit processes, and f(x) is negative
everywhere in |0, 1[.

An integral of f(x) is

1
/ dx =1In|lnz|.

r Inx

We conclude from In|lnz| — —oo for £ — 1—, and In|Inz| — 400 for z — 0+, that the
improper integral is divergent.

/
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0.8

0.6

0.4

0.2

Figure 33: The graph of

x
NI

x
(b) Let f(x) = Niwri Then f(0) =0, and
f(x):#ﬁl#o for  — 400,

1
1+ —

and we see that the improper integral is divergent.

Example 6.5 One shall in each of the following cases
1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,
3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral,

oo o=V too og
@ [ ) /_oo S

A. Improper integrals.

D. Find an integral.

I. (a) The function f(x) = < is defined and positive for > 0. We get by the monotone

Jz

substitution y = \/z, i.e. ¥ = y?, dz = 2y dy, the integral

-V -y
/6 dx:/ e—~2ydy:7267ﬁ,
\/E u=vz Y

which has the limits —2 for + — 04 and 0 for x — 400, hence the improper integral is
convergent, and its value is

r — = Z.
0 \/E

B
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e VE
Figure 34: The graph of ——, z > 0.
N

2x

Figure 35: The graph of f(x) = a2
x

2
(b) The function f(z) = 1 i

5 is defined for every z € R, and
T

1— a2

f’(@“) = QW,

thus we have a maximum for z = 1, corresponding to f(1) = 1.

The integrand is positive for > 0 and negative for x < 0. An integral is
2z 9
Let us only consider the positive part. Here,
/E 2 g In(1+2%) — + f /+
——dt=1In %) — 400 or x 00
0 1 + t2 ) )

and we conclude that the improper integral is divergent.
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REMARK. There is a nasty trap here. One was actually guided towards the following fallacy:
When we integrate over the symmetric interval [—x, x], z > 0, then

T2t
/,z e dt = [ln(1+t2)]iw =0—0 for  — 400,

and we would wrongly conclude that we got “convergence” and the “value” 0. ¢

Example 6.6 One shall in each of the following cases

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,
3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral.

+o0 1 z
(1) / n_2x dz, (2) / cot x dx.
1 € 0

A. Improper integrals.

D. Find an integral.

0.2

0.1

|
Figure 36: The graph of y = n_2:z:7 x> 1.
x

1
I. 1) The function f(x) = n—f is define and differentiable for > 0, and f(z) > 0 for = > 1, i.e. in
Z
the interval of integration. We conclude from

_1—21nm
=—

I'(z) =0 forz= /e,

and f(1) =0 and f(z) — 0 for x — +o0, that = /e corresponds to a global maximum. The

1
value is here f(\/e) = %
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By a partial integration,

1 1 1 1+1
/ﬂd$:_ﬂ+/_dx:_ +lnz
22 T 22

1+Inx

The integrand is > 0 everywhere in the interval of integration, and the integral — — 0

x
for x — +o0. Thus, we conclude that the improper integral is convergent, and its value is

+oo
/ ln_:cdm: lim {1+lnx}+1+ln11.
1

1

2 T—+00 x
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s

Figure 37: The graph of y = cotz, z € }O,

2) The function f(x) = cotz is defined and differentiable for « # pmw, p € Z. It is > 0 in the

interval }0, g} , hence we shall only find an integral and then consider the limit process.

m
Now sinz > 0 for 0 < z < 5 thus an integral is given by

/cotxdaj:/c_osmdlenbinﬂ = Insinz, S ]O, E].
sinz 2

Since Insinx — —oo for £ — 0+, the improper integral is divergent.

Example 6.7 Consider the improper integral

+oo tax
/ ¢ —dz.
oo lHe

1) Find the domain of the integrand.

2) Sketch the graph of the integrand in the interval of integration.
3) Is the improper integral convergent or divergent?

4) In case of convergence, find the value of the integral.

A. Improper integral.

D. Check the sign and find an integral.

I. The function f(x) = e is defined and differentiable and strictly positive for every x € R. It
e
follows from
1 e3®
! - - - 1 _ 2 xT
f (l‘) 3 (1+€1)2{ e }7
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Figure 38: The graph of y = “
1+e®
that the function has a global maximum for £ = —In 2, since the function clearly tends to 0 for
x — £00, and because x = —In 2 is the only point for which f’(x) = 0. The value of the function
at this point is
2 4/1
—In2) == ¢/ =.
f-mn2) =2 /2
We get the integral by using the substitution y = es r
i d
/ © —dx = / Y 3
I+e yzeacp(%a:) 1+y
Now, 43 +1 = (y+ 1)(y* — y + 1), so by a decomposition,
1 a n by + ¢
v +1 y+1 y2—y+1’
where
_ 1 1
Tyl ®
hence
by+c  l—iyP+iy—5 1 Y2 —y—2
y-y+1 +D*—y+1) 3 (+HE*—y+1)
1 oy-2 1 21 1 1

3 2-y+1 6 2—y+1 2 P2—y+1
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Then by insertion,

es’”® 1 1 2y—1 3 1
dr = _Z 2 d
/l—i—ew v /y_eéw y+1 2y2—y+1+2 nNe 3 (Y
Y73) 1
3 2 y—%
= ln(erl)f—ln(y —y+1)+ 3" — Arctan -
3 2 y=ed ®
1 (1+es 1 1
= = +\/—Arctan{ (2@3””1)}
2 {631—6390—&—1} V3
L esz+2esf+1 2037 — 1
= - + V3 Arctan{ ———
1 1 2037 — 1
= —In<1+3- +V3Arctan{ ———
2 { 3 —1+e‘3$} { V3 }
1 2e37% — 1
= —1In 1++ +v/3 Arctan i .
2 2cosh(§)71 V3

It follows clearly from the latter rearrangement that the logarithmic term tends to 0 for x — 400,
and that the Arctan term also has limit values for x — 4+o0o. We therefore conclude that the

improper integral is convergent, and its value is

/+oo e g =3 __\/_ Arctan(—i>:\/§'< *

T
Lo 1+ V3 2
Example 6.8 One shall in the following cases
1) find the domain of the integrand,
2) sketch the graph of the integrand in the interval of integration,
3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral.

+o0 1 +o0 T
1 ——d 2 ——dx.
() /0 2 t2r 1 @) /0 222z 42

A. Improper integrals.
D. Check the sign and find an integral; then take the limit.
I. 1) Clearly,

1 B 1

M) = e 2~ el
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"g.a
04
04

0.2

1

Figure 39: The graph of y = PR y——E
x x

is defined and positive and differentiable for every x € R, and f(z) — 0 for  — %00, and f(z)
has a global maximum for z = —1, where the denominator is smallest.

The integral is

1 1
—————do = | —————dr = Arct 1
/:U2+2:c+2 x /(:E+1)2+1 x rctan(z + 1),

and we conclude that the improper integral is convergent, and its value is

+oo
1 T T T
/0 7 og g2 dv = [Arctan@ + g 2 4 1
Figure 40: The graph of y = ﬁx—i—f T > geqO.
2) The function
x x
/(@) 2 -20+2 (z—1)2+1’
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is defined and differentiable for every z € R, and f(x) > 0 for x > 0 where f(0) = 0, and

f(z) — 0+ for & — 400. Now,

—z2 42

f'(@) = (22 — 22+ x)?

is 0 for z = v/2 > 0, so this corresponds to a maximum,

fva) = 2

We get from the decomposition

f@) = z—1 n 1
YT o2l @—1)2 11
the integral
/#dzzlln{(x—lf—i—l}—k Arctan(xz + 1)
2 —2x+2 2 ’

where the logarithmic term tends to 400 for x — +o00, while the Arctan term is bounded. It

follows that the improper integral is divergent.
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Example 6.9 Prove that the improper integral below is convergent, and find its value.

T 4r 44
ﬁdx.
9 rt + 4x

A. Improper integral.

D. Decompose and find an integral.

4r +4

Figure 41: The graph of y = prEISE T >2
x x

I. It follows from the factorization 24422 = x?(2%+4) that the integrand is defined and differentiable
for  # 0. It is positive for x > 2. We shall only find an integral and then go to the limit.

We get by decomposition,

4x+4 4 1 1
TR 1) . = 19— -~
x4 422 (+1) xz2(22 +4) (@ + ){xZ x2+4}
_ 1 x 1
Tz a2 2244 2244

When x > 2, an integral is given by

4r+4 1
——dr = d —d dx —d
/x4+4z2 * / x—l—/ T / z2 44 /x2+4 v
1 T
= lnx—E—gl( +4)——Arctan(§>
1 1 T 1 e+ 4
= —2 75 Arctan (5) ~3 In ( e )

1 1 x 1 4
= 5§Arctan(§)§1n<1+ﬁ).

. . ™ . . .
If ©+ — 400 this expression converges towards 1 and the improper integral is convergent, and
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its value is

+oo
Az +4 11 1
TR e = T 44 - Arctanl+ - In2
/2 oy a2 g Tg Tpfctandt g n

= Tl T
T TiTaTgTagM

1 us
—(1+1In2) — —.
S (1+1n2)
Example 6.10 1) Decompose the fraction

82 + 24
(x —1)2(22 + 22 +5)’

2) Prove that the integral

/+°° 8x2 + 24 "
o (v —=1)2(22 + 2z +5)

is convergent, and find its value.

A. Decomposition, where the degree of the denominator is 2 + the degree of the numerator. Improper

integral.

D. Decompose.

Figure 42: The graph of y =

I. 1) We get by decomposition,

(x —1)2(x2+ 2z +5)

8x2 + 24 B 4 +8x2+24—4332—8x—20
(x—1)2(z2 +22+5)  (z—1)2 (x —1)2(x2 + 22 +5)
4 4a? — 8z + 4

4 4

@—12  (@-122+20+5)

@12 @riP+d
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2) An integral is

82 + 24 4 r+1
dr = ——= 49 Avctan [ 222
/(z—1)2(:c2+2x+5) eyt r”‘“( ) )

The singular point = 1 does not belong to the interval [2, +00], thus the improper integral is
convergent, and its value is

+oo 2
8x + 24 3
dr =4+ 7 — 1 Arctan >.
/2 (@ — 122 20 +5) W T HArcang
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Example 6.11 Prove that the improper integral

° 1
/ dx
Ina €7 —3

is convergent, and find its value.

A. Improper integral.

D. The integrand is defined and positive in the interval of integration. Use the substitution ¢t = e*
to find an integral.

Figure 43: The graph of for y = x > In4.

er —3’

I. If we substitute t = e, t > €% = 4, we get the integral

1 1 1 1
de = —dt = —= — -
/ e 3% /t:ez t(t—3) /t:ez { 3 3
1 t—3 1 3
—In{—— =-1 -— .
()] (- 2)
The integrand is positive in the interval of integration, and the indefinite integral

1
/ dleln 173
et —3 3 et

is defined for > In4, and it tends to 0 for x — +o00. Hence we conclude that the improper
integral is convergent, and its value is

400 +oo
/ ! dr = 1ln 1—i :O—lln 1—§ :—llnlzglnl
ma €*—3 3 e* ) 14 3 4 3 4 3
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Example 6.12 1) Decompose the rational function

1122 — 30z + 9

Fe) = o)

2) Prove that the improper integral

/::OO F(x)dx

is convergent, and find its value.
A. Decomposition and improper integral.
D. Use the standard procedures.

I. 1) We get by decomposition,
1122 — 30x +9

Fla) = z(z—1)(22+9)
B 1 1 1122300 +9+ (z—1) (2% +9) + (22 +9)
Tz -1 + x(r—1)(x2+9)
1 1 112% —30z+ Pz —9+ (z—1) 22+ 23+ 9z
B 757x—1+ x(x—1)(x2+9)
B 1 1 23 +112? - 12z+2%(z—1)
Tz -1 i z(x —1)(z2+9)
B 1 1 z(x—1)(xz+12) + z(z — 1z
B 757x—1+ x(x—1)(x2+9)
1 1 2z + 12
- i i it eEro
C. TEsT:

1 1 +2$+12
r x-—1 22 +9
1

= s DEEre) U@ DE ) —a(et+9)+ Qe +12) (7 ~)}

1 3 2 3 3 2 2
= m{—x —9z+2°+9—2° —9z+22° — 227 +122% — 122}
1122 — 302 + 9
z(rx —1)(z24+9)°

2) If > 1, then an integral is

1 1 2z 12
F - o
/ (z) do /{ x x—1+x2—|—9+x2+9}dx

12 T
_ _ _ 2 -“ e
= Inz —In(x — 1) +In(z* +9) + 3 Arctan (3)

= In {x2+9)} + 4 Arctan (g)

Q.E.D.

x(x—1
z+9 T
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The latter expression of the integral clearly converges towards 4 - T +0 =27 for x — +o00. We

conclude that the improper integral is convergent, and its value is

e 3?49 3
F(x)de = 2ﬁ—ln(3-2>—4Arctan(3>

= 277—1n3—4~%:7‘r—1n3,

3

where we have used that the integrand is positive, and that the integral has a limit for x — +oc.

Example 6.13 Prove that the integral

L orss
——dx
0 \/17502

is convergent, and find its value.
A. Improper integral.

D. The integrand is positive in [0, 1], but it is not defined for = 1. Find an integral and take the
limit x — 1—.

I. An integral is

TH3 /de—k?)/#dx
V1 — 2 V1— g2 V1 — 2

= 3Arcsin x — /1 — 22.

This shows clearly that the improper integral is convergent, and its value is

243 3

———dr=—+1.
0 \/1—332 2

Example 6.14 Prove that the improper integral

+oo 1
d
/1 z{(lnz)3+ (Inx)>+Inz+ 1} *

is convergent, and find its value.

A. Improper integral.
D. Use the substitution y = Inx, and then find an integral.

I. The integrand is clearly positive in the interval of integration, so it suffices to apply the substitution,
followed by a limit process.

1
By the substitution y = Inz (> 0), dy = — dx, the integral is written
x

[
xr = e — .
r{(Inz)?>+ (Inz)2+Inz+ 1} y:mry?’—&-yz—i—y-i-ly
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Then by a decomposition,

2 B 2 _1 2=+
vHyr+y+1l W+ @2+1) y+1 o (y+1) (2 +1)
1 Y 1

R R R

[ ]
B By 2020, wind could provide one-tenth of our planet's

ra | n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
ication. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!
Trﬁf Power of Knowledge Engineering

:’:-‘%.i

e
Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowlede _&
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hence,

2 d
/x{(lnx)?’ + (nz)2+Inz+1} *

1 Y 1
/y—lnw{y+1 y2+1 y2+1} v

1
= |ln(y+1) — 5 In (y* + 1) + Arctan y]

1 2
In {(y;—_)} + Arctan y}
Y +1 y=Ilnz

2y
Inq1 Arct
n{ +y2+1}+ rcany}

y=Ilnz

y=Ilnz

2Inz
In {1 + m} + Arctan(lnz).

This expression is clearly convergent for £ — 400, and when = = 1 the integrand is continuous,
thus the improper integral is convergent, and its value is

oo 2 ™ T
dr=0+2 _—0-0=".
/1 z{(Ilnz)®+ (Inz)? 4+ Inz + 1} * + 2 2

Example 6.15 Let n € N be a natural number. Prove that the integral

“+o0
/ 22e " dx
0

is convergent, and find its value.

A. Improper integral.
D. Find an integral, either by partial integration or by guessing.

I. The integrand is defined and non-negative for all x > 0, so it suffices to find an integral and then
perform the limit process.

First variant. We guess the integral of the form

F(z) = (aa® + B2 + yz +6) e ",

fl@) = F(x)
= -n (ax?’ + Bz 4+ vz + 6) e "+ (3a:102 + 202 + 'y) e "
= —nax®e” ™ + (3a —nB)zie " + (26 — ny)ze " + (v —nd)e "%,

which is equal to 23e~"* for

—na=1, 3a—-nf=0, 286—ny=0 og v—nd=0,
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thus
1 3« 3 273 6 v 6
= ——, ﬂzi_ 27 V== 3 6_7:_74
n n n n n n n
An integral is
3 _—nx 1 3.3 2.2 —nx
z’e da::——4 (nx + 3n“x —|—6nx—|—6)e .
n
Second variant. By successive partial integrations we get
1 3
/x:‘e_m de = —=ze 42 /xze_m dx
n n
1 3 6
= —Z gl — x2e T 4 — /xe_m” dx
n n n
1 3 6 6
— _7x36—nz_72$2€—nz_?xe—nx_i_?/e—nzdx
n n n n
_ _11‘36—711) _ ixQe—nx _ ixe—nac _ E e—nx
n n2 n3 nt

1
= —a (n3x3 +3n222 + 6nx + 6) e ",

An exponential dominates every polynomial, so the integral above converges towards 0 for
r — 400, and the improper integral is convergent with the value

+o0
/ e dr =0 — (—%) :%.
0 n n

Example 6.16 1) Find the approzimating polynomial of at most third degree with the point of ex-
pansion to = 0 of the solution of the solution of differential equation

dr  d’x
oE fWJrQ:c:coth, teR,

which satisfies the initial conditions
z(0) = 0, 2'(0) =1, 2"(0) = 1.
2) Prove that the improper integral
T 2p 42
- S dr
0 T3 — x4 42
is convergent, and find its value.

A. Approximating polynomial of a solution of a differential equation, and an improper integral.

D. Rearrange the differential equation and put x = 0. The improper integral is treated in the usual
way.
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I. 1) By a rearrangement of the differential equation and insertion of z = 0 we get

23 (0) = cos(2-0) + 2" (0) —22(0) =1+1—-0=2,
SO

z"(0) 2 50(3)(0) 3 15, 13
t B =t 124 43
1l o T g Tyl Tty

2) The denominator

? — 2?2 +2=(z+D){(x-1)*+1}

is only 0 for = —1 ¢ [0,4o00[, thus the integrand is defined and positive in i [0,4+o00[. By

reduction
2w+2 2 4 2 2
w3 —224+2 (z+D){(z—-124+1} (z—-1)2+1’
hence
o242 " dx
/0z3—:1:2+2 x /0(x71>2+1 [2 Arctan(z — 1)]{

= 2Arctan(n — 1) + 2 Arctan 1

3
— 2'g+2-%:§, for n — 400,

and the improper integral is convergent with the value

/+°° 2z + 2 3
32 =
0 T3 —x% 42 2

Example 6.17 (Cf. Example 6.18)
1) Prove that

1
/ V1—a2de=".
0 4
2) Prove that the integral

oo q 1

is convergent, and find its value.

HinT. Use some substitution to prove that

k 1
1 1
/ —2\/1——26133:/ V1 —u?du.
1 X X %
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3) Prove that the integral

“+oo
1 /1 1

is convergent for every k € N, and find its value.

A. Improper integrals.
D. Either use an area consideration, or some substitution.

I. 1) First variant. A graphical consideration shows that the integral can be interpreted as the area
of one quarter of the unit disc, hence

1
/ \/1—x2dx:£
0 4

Vowo Toucxs | Rewanr Tovcks | Mack Toueks | Vowo Buses | Vowo Coxsteucrion Ecuresent | Wowo Pesm | Vowo Aemo | Vowo IT

Vowo Fieskcer Sepaces | Vowo 3P | Vowo Powemreaim | Vowo Paers | Vowo Techwowosy | Vowo Loasncs | Busieess Anes Asie
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0.4

0.2

Figure 44: The graph of for y = v1 — 22, 2 € [0,1].
Second variant. If we instead apply the monotonous substitution

T = sint, te {O,g],

then

1
/ V1—2a2dx
0

5
/ V1—sin?t-costdt

[SE]

O\MHO\O

+cost - costdt

2 cos2t+1
cothdt:/ %dt

+sm2t% 7T+0_
4], a7

(e}

1 =« m
202 4’

, du = —— dx, u €]0, 1], we get

8] =

2) Choosing the substitution u = —
x

F / mdu—/ VI du.

The integrand is positive, so by taking the limit k& — +oo,

+oo k
1 . 1 1
S do= lm | 1= do

= lim \/lfUZdU*/ \/17u2duf

k—-+oo
3) Since
1 1 1 1
OSE ka_W<W for x € [1,400[, k€N,

the improper integral is convergent, because the improper integral of 1/z**! is convergent.
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We find by the substitution

1 k

Uzﬁa d’U,:—W

+0o0 +oo
1 1 1 1 1
Ie = /1 ;\/ﬁ_ﬂdx:/l sl Vel

1 [0 s
—— [ V1—?du= L.
k/l Y

dx, u €]0,1],

Example 6.18 (Cf. Ezample 6.17)
1) Calculate the integral

1
/ V1 —a22dx.
0

2) Prove that the integral

e 1
1 xr €z

is convergent, and find its value.

HiNT. Use a substitution to prove that

k 1
1 1
/ —\/1- = dwz/ V1 —u?du.
1 X X %

3) Find the Taylor polynomial Ps(t) of order 6 and point of expansion ty = 0 for the function

ot) =t* 1 —t2, te[-1,1].

Replace the integrand in

teo g 1

1

by the function Pg <), and calculate this approzimation of the integral from (2).
x

A. Improper integrals, and a Taylor expansion and an approximation of an integral.

The first two bullets are the same as the first two bullets of Example 6.17.

D. Either use an area consideration, or some substitution. Then a Taylor expansion, followed by a
partial integration.

I. 1) First variant. A graphical consideration shows that the integral can be interpreted as the area
of a quarter of the unit disc, so

1
/ \/I—xde:I
0

1
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0.2

Figure 45: The graph of y = /1 — 22, 2 € [0,1].

Second variant. If we instead use the monotonous substitution
T
T = sint, te {O,—],
2

then

1
/ V1—22de
0

[ME]

V1 —sin?t-costdt

[SE]

+cost - costdt

T cos2t+1
COSQtdt:/ Mdt

I
N | = O\ O\
N w3

0 2
™ sin2t]? o« s
= 2+{ 1 ]04+04.
o 1 1
2) If we choose the substitution u = = du = 2 dz, u €]0,1], then

/$2F /MdU—/ V1—u?du.

The integrand is positive, and we get by taking the limit k¥ — 400 that

+°° 1 k1 1
——da:_ lim — 1——2dx
r— 400 x

= lim / \/1—u2du—/ \/1—u2du——

k— o0

3) From
1 1
o(t) =t2/1 —t2 :tQ{l— §t2— gt4+t4a(t)},

follows that

11&6.

1
Pﬁ(t):t2—§t4—8
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Then by insertion,

“+o0
1 1
[Ti et
1 xT T

Q
»\
+
8
A
Y
8=
~—
U
8

97
= —(120-20—-3) = —— ~ 0,808 333.
( ) 120 '

For comparison it was shown in Example 6.17 that the true value is % ~ 0,785398, so the

error is < 3 %.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Example 6.19 1) Decompose the fraction

P(z)  z*—10z2-10
Q)  (z—1)2%(z?+ 6z +12) reR\ {1}

2) Prove that the integral

oo P(x)
2 (z)

is convergent, and find its value.

dx

A. Decomposition followed by an improper integral.

D. Decompose successively. Then consider the difference in degrees and apply the decomposition
from (1).

I. 1) We first see that
2464+ 12= (z+3)>+3>3,
and the fraction is already written in its canonical form.

Then by decomposition,
P(z) 1-10-10 1 22 —1+2-10 1

0@ ~ 146412 @-12 @-12@2+6e+12) F@=12
1 +x2710x710+x2+6x+12
(x —1)2 (x —1)%(22 + 62 + 12)
1 N 222 — 4x + 2
(x—1)2  (z—1)2(22 + 62+ 12)
L 2z — 1)2
@— 12 " (z— 1202+ 6z 1 12)
1 2
(x —1)2 +x2+6m+12'

C. TEsT:
1 N 2 —2? — 6 — 12+ 22% — 4z +2
(x—1)2  224+6x+12 (x —1)2(z2 + 62 + 12)
2?2 — 10z — 10
= . .E.D.
(x —1)%(22 4+ 62+ 12) Q

2) We now make the following very practical rearrangement of the fraction,

P) 1 2 1 2
0@) = (—12 @aeer12  @-12  (@+372+3
R R
(z—-12 V3 z+3\° V3
(7))
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Clearly, both terms can be integrated to infinity, and the singularity = 1 does not lie in the
interval [2,+00][. We conclude that the improper integral is convergent. Finally, its value is
calculated in the following way,

;mggwgdx - _/2+°O(x_11 f/m (a:+3>2 %dw
V3

- [ e ()

- —1+%{g _ Arctan (%)}

il 1

G \fA“ta“(j@>

Example 6.20 Check for each of the following four integrals, whether it is convergent or divergent:
= 1

1) f02 ﬁ d.’L‘,

2) fog tan z dx,

3) Jif

dx,
cosx

4) fo <— +tanz — CL) dx.

0S
A. Convergence/divergence of improper integrals.
D. Find the indefinite integrals and then take the limits.

I. 1) The integrand is here always positive, and an integral is
1
It follows that

[ gate= i [ =t bl = {25 -ovaf = vam

and we have convergence.

T
2) Ifzx e [0, — [, then tan z is positive, and an integral is

sin x
tanx dxr = dr = —Incos .
CcoS ¥

If follows from

lim {—Incosx} = 400,
IH%

that the integral is divergent.
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3) Since

1 sinx
>

T
=tanz > 0 for0<z< —,
Ccos & cos T 2

E z 1
and since f02 tanx dz is divergent according to (2), the larger integral f02 ——dzx is also
cosw

divergent.

ALTERNATIVELY an integral is
1
[ Ky
cos T cos= 1 —sin“x
1 1 1
2 / (1 +sinx + 1- sinx) S

1
= 5 {In|1 +sinz| —In|1 —sinz|}

11 1+sinx
= —1In
2 1—sinz /)’

This e-book Y o N
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where

1 1+sinx ™
—In|—— f 2

2“(1sinz>_’+°° e
and the integral is divergent.

4) Based on the results of (2) and (3) one might be misled to conclude that the present integral
is divergent. This is not true. Let = € ]O, g [ Then an integral is

/ L+tanx7 ! dx
NG cos x

1 1 i
=2yx —Incosz — = In (ﬂ>

2 1 —sinx
1+sinx
1 —sinx

1 1
:2\/_—§lncos2x—§ln(

1 I <1+sinx

:2\/5—5 n -(1—sin2x)>

:2\/_—%ln{(l—i—sinx)Q‘}:2\/——ln(1+sinx),

1 —sinx

hence

/5 ! + ta ! d
. ngp— ——
0 vz T s [

. : “f1 1
= lim lim — +tanx — dzx
amT—b—0+ [, |z cos

a

= aE%l— blir(g1+ [2v/z — In(1 + sin x)]b

= 2\/§—ln2—02 V2r —1n2,
and the integral is convergent.

REMARK. One shall strictly speaking also check the variation of the sign of the integrand before
we go to the limit. This will here be left to the reader. ¢

Example 6.21 Check if the improper integrals

/1 ! dx /1 LI dz
o tanz o \tanz x ’

are convergent. If so, find the value.

A. Improper integrals.

D. What is “wrong” in the integral? Check the sign of the integrand. Truncate the interval of
integration and integrate. Finally, take the limit.
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I. 1) Clearly, tanz > 0 for z €]0,1], and the questionable point is = 0. If we truncate by ¢ > 0,
we get

1 1
1 S
/ da::/ Cosxdm:[lnsinx};:lnelflnsine.
g g

tanx sin x
Since Insine — —(—00) = +o0 for € — 0+, this improper integral is divergent.

2) Since tanz > z for x €]0,1[, we get

1
n — — < 0 in the same interval. The questionable
anr T
point is = 0. If we truncate by € > 0, we get

1 . 1
11 in z
/ ( — > = [Insinz —Inz]! = [ln SIIIL]
J. \tanz x N x|,

= Insinl —In

L lnsinl for e — 0+,

3

where we have used the well-known result
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Example 6.22 Check if the improper integral
1

+o0 SIn —
296 dx
1 X

is convergent or divergent.

A. Improper integral.
1 . . . . . o 1

D. If z > —, then the integrand is positive. By a finite truncation and the substitution ¢t = — we get
™ x

1
n sin — 1
/ x2x de = / sintdt = [— cost]
1 1

n

3=

1
= cos——cosl —1—cosl for n — 400,
n

thus the improper integral is convergent, and its value is
1
+o0 sin —
/ —f dr=1—cos1.
1 x

REMARK. Strictly speaking one is only asked about the convergence or the divergence. Therefore,
the following is sufficient:

1
The integrand is continuous in the closed and bounded interval {1, —}, hence the integral exists
T

in this interval.

1
For z € [—, ~+00 { we get the estimate
m

1
Since — can be integrated to infinity, the same holds for the smaller integrand, and the improper
x

integral is convergent. ¢
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