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Examples of Eigenvalue Problems Introduction

Introduction

Here we present a collection of examples of eigenvalue problems. The reader is also referred to Calculus
4b as well as to Calculus 3c-2.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c¢ and
Calculus 2¢, because we now assume that the reader can do this himself.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
20th May 2008
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Examples of Eigenvalue Problems Initial and boundary value problems

1 Initial and boundary value problems
Example 1.1 Solve the following eigenvalue problem

y" + Ay =0, x e [0,L], y(0)=1y'(0)=0.
This is a pure initial value problem

y(0)=0 and  y'(0)=0,

hence the solution is unique. Obviously, the zero solution is the only solutions.

Example 1.2 Prove that the boundary value problem

de dy -7
T T2+ =0, s, y0)=1, ylm)=—eT,

has infinitely many solutions and find these. Sketch the graphs of some of these solution.

The characteristic polynomial
R®4+2R+2=(R+1)?+1
has the roots R = —1 % 1.

The complete solution is given by

y(x) = cre " cosz + cee Fsinz, wx€[0,7], c1,c2 €R.

0.8+
0.6+
0.4

0.2+
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It follows from the boundary values that
y(0)=c1 =1 og y(r)=—cre ™ =—€".
We get in both cases that ¢; = 1, and we have no requirement on ¢, € R.

The complete solution of the boundary value problem is

y(x) =e Fcosx +ce Tsinz, x€[0,7], c€R arbitreer.

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiiated entities.
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Example 1.3 For a loaded column at equilibrium, one can as a mathematical model for a (small)
bending y(x) in a convenient coordinate system use the following linear boundary value problem,

d2
Eld—;; +Py=-Pe, z€[0,L], y0)=0, y(L)=0.

Here, E, I, L, P and e are given positive constants. For convenience we write P/(EI) = k2.
1) Find the solution of the boundary value problem.

71_2

2) Prove that y(L) — oo for P — EI4L2 ,

no matter how small the fixed constant e is.

P
3) Sketch y(L) as a function of kl = 4/ Bl -L,0<kL< g

1) By a division with EI > 0 the equation is transferred into the inhomogeneous equation

dzy 2 2 2 P

(a) First find the complete solution. The characteristic equation
R4+ k?>=0, ie. R=4ik, [NBEk>J(]
provides us with the following solution of the corresponding homogeneous equation
cq coskx + co sin kx, c1,co are arbitrary.

We guess a particular solution as the constant y = —e. Since the equation is linear, the
complete solution is

y = —e + ¢y cos(kx) + cosin(kx), « €[0,L], c1,cq arbitrary.

NB. Unfortunately e is a constant which has nothing to do with the usual mathematical constant

2,718. ...
(b) Insert into the boundary conditions.
We get
y(0)=0=—e+cy, dvs. ¢; = e,
and

y' (L) = 0= —c1ksin(kL) + cok cos(kL),
hence [because k > 0]
cocos(kL) =e- (kL).

If kL = g + pm, then the left hand side is 0, and the right hand side is +e. Therefore we do
not have any solution for kL = g + pm, p € Np.

8
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Examples of Eigenvalue Problems Initial and boundary value problems

If kL # g + pm, p € Ny, then cos(kL) # 0, so
¢y = e-tan(kL).

By insertion of ¢; = e and ¢3 = e - tan(kL) we get the solution
y = —e+ecos(kx)+ etan(kL)sin(kx)

= e {m (cos(kL) - cos(kx) + sin(kL) - sin(kx)) — 1}

cos(k(L — z))
= — 2 15, € [0,L].
e{ cos(kL) v€[0.]
2
0 9 P ™2 1
2) fP— Elm from below, then k° = T (5) "Iz from below, so
™
kL — — —.
72

By insertion of z = L we get

2

1 m
L) = — -1 for P— El— —.
y(L) 6{cos(kL) } e e TR
3) The function
(L) = L b= cfsee(kr) — 1)
YRS =€ cos(kL) -
(secant = 1/cosine) is easily sketched on a figure.
/
/
/
2 /
1 /
A A

Legend

Funktionen $y_k(L)$
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Initial and boundary value problems

Example 1.4 Consider the boundary value problem
y"+3y =0, z € [0,7], y(0) = y(m) = 0.
Set up the linear system of equations
Bc =1z,

and check it.

The characteristic polynomial R? + 3 has the two simple roots R = +i+/3, so the complete solution is

y = c1 cos(V3x) + cpsin(V3z), x €[0,7], c1,co, arbitrary.
It follows from the boundary conditions,

o +0- e = y(0) =0,

c1-cos(V/3m) ey -sin(v3w) = y(r) = 0.

The matrix equation is

Be = ( COS(\l/gw) sm<?/§n> ) ( 2 ) - (

Since

o O
N—

det B = sin(v/37) # 0,

the solution ¢; = ¢2 = 0 is unique end the zero solution is the only solution.

Example 1.5 Consider the boundary value problem
y" +4y =0, ze0,7], y(0)=y(m)=0.
Set up the linear system of equations
Bc =1z,

and check it.

Since the characteristic polynomial R2+4 has the two simple roots R = £2i, the complete solution

is
y = c¢1 cos(2x) + cosin(2z), z € 0,7, c1,cq arbitary.
It follows from the boundary conditions that

c1+0-co=y(0)=0,
c1+0-cy=y(m) =0.

The matrix equation becomes

(1 8)(2)-(3)

10
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where

rang(B|z) = rang(B) =1 <n = 2.

It follows immediately that the boundary value problem has infinitely many solutions,

y = c-sin(2z), z €[0,7], =z €R arbitrary.

SIMPLY CLEVER SKODA
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Example 1.6 Prove that the boundary value problem

Py | dy
a2 T Y 0, r€[0,1], y(0)=y'(1)=0,

has a nontrivial solution and find all its complete solution.
The characteristic polynomial
R>4+2R+1=(R+1)?
has the double root R = —1, so the complete solution is
y=cie *+cowe *, x € [0,1],
where ¢; and ¢ are arbitrary constants.
From the boundary value y(0) = 0 follows that
y(0) = c1 =0,

so the candidates must have the form

y(x) = comwe™ ™.

Since
xr

y'(@) =co(1—m)e”,

it follows from the boundary value y’(1) = 0 that

which is fulfilled for every ¢y € R.

The complete solution of the boundary value problem is

y=c-zre * x €10,1], ¢ an arbitrary constant.
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Example 1.7 Given the boundary value problem
v+ Ny =0, re[0,1], NeRy,
with the boundary conditions
y0)=1, ¢ (0)=-1,  y@)+y'(1)=0,
where X is considered as a parameter.

Find all the possible values of the parameter X € Ry, and the corresponding functions y(x).

This example is a boundary value problem, very much like an eigenvalue problem without being one.
The differences are

1) we have three conditions for an equation of second order,
2) the boundary conditions are not zero.

Clearly, the complete solution is
Y = €1 COS AT + co sin \x

where
Yy = —Acy sin Az + Aeo cos Ax.

It follows from the boundary conditions that
y(0) =c1 =1, y'(0) = cod = —1,

y(1) + 4’ (1) = c1{cos A — Asin A} + ca{sin A + Acos A} = 0.

1
Hence ¢; =1, 5 = - which we put into the latter equation,
1 A2 +1
0=cos\— Asin A — Xsin/\ —COSA = — :\r sin A.

The latter equation is fulfilled if \,, = nmw, n € N. If we e.g. put

1
yn(x) = cos(nra) — — sin(nwx), n €N,
nw

then all eigenfunctions corresponding to A\, = nm, n € N, are given by

1
y(x) =c-yn(z) =c {cos(mm;) - sin(mrm)} , ¢ arbitrary.
™
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2 Eigenvalue problems

Example 2.1 (Cf. Example 1.1). Solve the following eigenvalue problem
y" 4+ Ay =0, r€0,L], y(0)=0, v'(L)=0.
The characteristic polynomial R? + X has the roots:
(a) If \ = —k2%, then R = £k, k > 0.
(b) If A =0, then R = 0 is a double root.
(c) If A = k2%, then R = +ik, k > 0.
We treat each of the three cases separately.
(a) If A = —k?, k > 0, then the complete solution is
y = ¢1 sinh(kx) 4 ¢o cosh(kx).
It follows from the boundary condition y(0) = 0 that ¢ = 0, hence
y = cysinh(kx) where /(z) = c1k cosh(kx).

Applying the boundary condition 3'(L) = 0 we get ¢k = 0, so ¢; = 0. The zero solution is the
only solution, and no A = —k? < 0 is an eigenvalue.

(b) If A =0, then the complete solution is
Y =c1T + o where y/(z) = c;.
It follows from the boundary conditions that
y(0)=c2=0 og y(L)=c1=0,
and again we only get the zero solution, so A = 0 is not an eigenvalue.
(c) If A= k2% k > 0, then the complete solution is
y(z) = 1 sin(kz) + co cos(kz).
Using the boundary condition y(0) = c3 = 0 we see that the candidates should be searched among
y(x) = ¢ sin(kx) where y'(z) = ¢y - kcos(kx).
It follows from the latter boundary condition that
y' (L) =0 = c1k - cos(kL).
We find proper solutions, when cos(kL) = 0, i.e. when

knL:g+n7r, n € Np,

so the eigenvalues are

1 /7 2 72(2n+1)2
An:ki:ﬁ(g—Fnﬂ') :%, ’I’LEN(),

and a generating eigenfunction is

yn(2) = sin(k,x) = sin ((Zn + 1)%3}‘) .
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Example 2.2 Solve the following eigenvalue problem
y'+xy=0, zel01], y(0)=y'(1) -y (0)=0.
The characteristic polynomial is R? + A.

1) If A\ = —k? < 0, k > 0, then the characteristic polynomial has the two real roots R = £k, and the
complete solution is

y(x) = ¢y sinh(kz) + co cosh(kx).

It follows immediately from the boundary condition y(0) = 0 that ¢o = 0, so the set of candidates
is limited to

y(x) = ¢y sinh(kx) where vy'(z) = c1k - cosh(kx).
By insertion into the boundary condition

Y (1) = My'(0) = ¢/ (1) + k*/(0) = 0
we get

0 = c1k{cosh(k) + k*},

hence ¢; = 0, and we only get the zero solution, hence no A = —k? < 0 is an eigenvalue.
0.0 The Graduate Programme
I ]OlI‘led MITAS because for Engineers and Geoscientists

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and
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2) If A =0, then the complete solution is
y(z) = a1z + co.
It follows from the boundary conditions that
y(0)=co=0 and y'(1)=0-y(0)=c; =0,
and we obtain again only the zero solution, so A = 0 is not an eigenvalue.

3) If A = k% >0, k > 0, the the characteristic equation R? + k% = 0 has the two complex solutions
R = £ik. The complete solution is

y(x) = ¢ sin(kx) + g cos(kx).

The boundary condition y(0) = 0 implies that co = 0, so the set of candidates shall be found
among

y(x) = ¢y sin(kz) where y'(z) = c1k cos(kx).
By insertion into the second boundary condition we get
0=y'(1) = Ay'(0) = y'(1) — k*y'(0) = crk{cos(k) — k*}.

We get proper solutions, when cos(k) = k2. By considering a graph we see that there is precisely
one solution k& > 0, namely k ~ 0, 824.

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

More explicitly we apply the Newton-Raphson iteration formula on the equation

F(k) = k* —cosk where F'(k) =2k +sink.
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The iteration formula is

B F(k,) k2 — cosky,
Fn1 = ko = Fl(ky) b S sy

By putting k1 = 1 we get

ko = 0,838218, k3 =0,824242, k4 = ks =0,824132,
corresponding to the eigenvalue

A =k* ~0,679194,
and a generating eigenfunction is

yo(z) = sin(kzx) = sin(0, 824x).

Example 2.3 Solve the following eigenvalue problem
y' + X =0, z€l0,L], y(0)=y(L)=0.
The characteristic polynomial
R?>4+ AR =R(R+ )
has the roots R =0 and R = —A\.
1) If A =0, then R =0 is a double root, and the complete solution is
y(zx) = 1z + co.

It follows from y(0) = 0 = ¢y that the candidates are limited to y = ¢yz. However, since y(L) =
c1L = 0 implies ¢; = 0, we only get the zero solution, and A\ = 0 is not an eigenvalue.

2) If X # 0, then the complete solution is
y(x) = c1 exp(—Az) + co.
It follows from the boundary conditions that

y(0) =c1 +c2 =0, thus co=—cy,
y(L) = crexp(—AL) +c2 =0, thus ci{exp(—AL)—1}=0.

Since exp(—AL) # 1, we have ¢; = 0, which implies that ¢ = 0. Again, we only obtain the zero
solution, hence no A # 0 is an eigenvalue.

Summing up we see that the eigenvalue problem does not have any eigenvalue.

Example 2.4 Solve the following eigenvalue problem

y W+ ay@ =0, zel0,1], y"0)=1y"(0)=y"(1)=y"(1)=0.

17
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The characteristic polynomial is R* + AR? = R?(R? + \).

)

If \=—k?> <0, k>0, then R = 0 is a double root, and we have furthermore two simple, real
roots R = +k. The complete solution is

y(x) = e1 + caw + c3 cosh(kx) + ¢4 sinh(kz).

Since the terms c¢; + cox disappear after at least two differentiations, every A € R is an eigenvalue,
and c1 + cox is the corresponding eigenfunction.

We shall then check if there are other eigenfunctions. We first calculate
Y (x) = c3k? cosh(kx) + c4k? sinh(kx),

y" (x) = csk® sinh(kz) 4 c4k> cosh(kzx).

It follows from the first condition y”(0) = 0 that ¢3 = 0. Then it follows from the second condition
y"(0) = 0 that ¢4 = 0.

If \=—k%2 <0, k>0, then )\ is an eigenvalue with the eigenfunctions

y(z) = c1 + ez, c1,co arbitrary.

If A =0, then R = 0 is a multiple root of multiplicity four. The complete solution is
y(x) = c1 + cox + c3x? + ey’

where
y"(x) = 2c3 + 6cgz, and " (z) = 6cy.

We conclude as above that A = 0 is an eigenvalue with the corresponding eigenfunctions ¢y + cox.
There are no other eigenfunctions, because

y"(0)=2c3=0 and y"(0)=6cs=0
imply that ¢3 = ¢4 = 0.

If A = k2, then R = 0 is a double root, and R = =ik are simple, complex conjugated roots. The
complete solution is

y(x) = 1 + cox + cgsin(kx) + ¢4 cos(kx).

We conclude as above that ¢, + cox are eigenfunctions for every such A = k2.

We shall now check if there exist other eigenfunctions. We first calculate
y'(z) = —csk? sin(kx) — c4k? cos(kz).

It follows from y”(0) = 0 that ¢4 = 0, so only y”(z) = —c3k?sin(kx) is relevant where
y"(0) = —c3k® cos(kx).

It follows from 3"(0) = —c3k® = 0 that c3 = 0, hence the only eigenfunctions are ¢; + cox.

18
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Summing up we see that every A € R is an eigenvalue with
y(z) = 1 + cox, c1,co arbitrary,

as the corresponding eigenfunctions.

Example 2.5 Solve the following eigenvalue problem
y @+ =0, xe0.L], y'(0)=y"(0)=y'(L)=y"(L)=0.
The characteristic polynomial is R?(R? + \).

1) If A\ = —k? < 0, k > 0, then R = 0 is a double root, and R = 4k are simple, real roots. The
complete solution is

y(x) = ¢1 + cox + ¢z cosh(kx) + ¢4 sinh(kx).

Clearly, the constants y(z) = c; are always eigenfunctions, hence A = —k2, k > 0 is always an
eigenvalue.

~
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We shall now check if there exist other eigenfunctions. We first calculate
y'(z) = ca + c3ksinh(kx) + ¢4k cosh(kx)

and
y"(x) = c3k?®sinh(kx) + c4k® cosh(kx).

It follows from the former two boundary conditions that
0=9(0)=co+csk and 0=1y"(0) = csk?,

hence ¢4 = 0 and thus ¢y = 0. This reduces the set of possible candidates to
y(z) = c1 + ¢z cosh(kx)

where
y'(x) = csksinh(kz) and y"(x) = c3k®sinh(kx).

It follows from the next boundary condition that y'(L) = ¢k sinh(kL) = 0, hence ¢z = 0.

Every A < 0 is an eigenvalue with yo(x) = 1 as the corresponding generating eigenfunction.

If A =0, then R =0 is a root of multiplicity four. The complete solution is
y(x) =1 + cox + c32? 4 eqz?

where
Y (x) = e + 2c3w + 3cqx®  and  y"'(x) = 6ey.

It is immediately seen that yo(0) = 1 is a generating eigenfunction, so A = 0 is an eigenvalue.

We shall now check if there are other eigenfunctions. We get by insertion into the first two boundary
conditions that

y'(0)=co=0 and y"'(0)=06cy =0, hencecy=cq=0.
Finally, v'(L) = 2¢3L = 0, so ¢3 = 0.
Summing up we see that there do not exist any other eigenfunctions than the constants.

If A\=%2>0, k>0, then R =0 is a double root, and R = +ik are simple, complex conjugated
roots. The complete solution is

y(x) = ¢1 + cax + ez sin(kz) + ¢4 cos(kz).

It follows again that the constants are eigenfunctions. Then we check if there are other eigenfunc-
tions. We first calculate

y'(z) = ca + czk cos(ks) — cqk sin(kx)

20
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and
y" (x) = —c3k® cos(kx) 4 cuk® sin(kx).
We get from the first two boundary conditions that
Y (0)=co4c3k=0 and y"”(0)=—c3k®=0,
hence ¢3 = 0, and thus ¢y = 0.

It remains to consider
y(x) = 1 + ¢4 cos(kx)

where
Y (z) = —csksin(kz) and y"(x) = cak®sin(kx).

The latter two boundary conditions, y'(L) = 3"’ (L) = 0, will both give us the condition
sin(kL) =0, thus k, L =nm, neN.

For the particular eigenvalues

2
)\n:ki:(nf,n—), ’I’LEN,

we also get the eigenfunctions

nwx
), n € N.

yn(x) = cos (T

Summing up we see that every A € R is an eigenvalue with the corresponding generation eigenfunction
yo(z) = 1.

Furthermore, when \,, = (n7/L)?, n € N, we get the generating eigenfunctions

yn(x) = cos (?), n e N.

Example 2.6 Solve the following eigenvalue problem
y W+ =0, ze[0,1], y(0)=y'(0)=y"(0)=y(1)=0.

The characteristic polynomial is R* + AR? = R%2(R? + ).

1) If A= —k? <0, k > 0, then R = 0 is a double root, and R = +k are two real simple roots. The
complete solution is

y(x) = ¢1 + cox + ¢z sinh(kz) + ¢4 cosh(kx)
where

y'(z) = co + czk cosh(kx) + ¢4k sinh(kx),

21
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y"(x) = c3k? sinh(kz) 4 c4k? cosh(kz).

By inspection we see that we should start with the boundary condition
v (0) = 0 = c4k?, thus ¢4 = 0.
Then we get
y(0)=0=c1 +c4 =cq, ie. c; =0.
We have furthermore
y'(0) = 0 = ¢ + c3k, ie. cg = —kes,
so the candidates must necessarily have the structure
y(x) = es{—ka + sinh(kx)}.
Then the latter boundary condition gives
y(1) = 0 = ca{sinh(k) — k}, k> 0.
The function ¢(t) = sinh(¢) — ¢t is strictly increasing for ¢t > 0 (because ¢’(t) = cosht —1 > 0), and

©(0) = 0, so sinh(k) — k > 0, and ¢5 = 0. Hence we only get the zero solution, and we conclude
that no A < 0 can be an eigenvalue.
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2) If A =0, then the root R = 0 has multiplicity four. The complete solution becomes
y(x) = c1 + cow + c3x? + cqa®
where
Y (x) = co 4+ 2c3w + 3cax®  og Y (x) = 2c3 + 6ey.

It follows from y(0) = 0 that ¢; = 0.
It follows from ¥’ (0) = 0 that ¢ = 0.
It follows from y”(0) = 0 that ¢3 = 0.

Since ¢; = ¢o = ¢3 = 0, we also get y(1) = ¢4 = 0, and the zero solution is the only solution.
Therefore we conclude that A = 0 is not an eigenvalue.

3) If A= k2 >0, k > 0, then the root R = 0 has multiplicity two, and we have furthermore the two
simple and complex conjugated roots R = +ik, k > 0. The complete solution is

y(x) = ¢1 + cox + ez sin(kx) + cq cos(kx)
where

y'(z) = co + csk cos(kx) — cqk sin(kx),

y"(x) = —csk?sin(kx) — c4k? cos(kx).

254

0.57

We have concerning the boundary conditions:

It follows from y”(0) = —c4k? = 0 that ¢4 = 0.

It follows from y(0) =0 = ¢1 + ¢4 = ¢; that ¢; = 0.
It follows from y'(0) = 0 = g + c3k that ca = —csk.

The possible candidates then necessarily have the structure
y(x) = cg{—ka + sin(kz)}

We conclude from y(1) = {—k+sink}ecs = 0 by considering a graph that —k+sink < 0, sa ¢3 = 0.
Again we only obtain the zero solution.
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Summing up it follows that no A € R is an eigenvalue.

Example 2.7 Solve the following eigenvalue problem
y'+ =0, zel01], y0)-y1)=0, y'(0)+y'(1)=0
The characteristic polynomial is R? + A.
1) If A= —k? > 0, k > 0, then the complete solution is
y(x) = c1 cosh(kx) + co sinh(kz)
where
y'(z) = c1ksinh(kz) + ¢ cosh(kx).
It follows from the boundary conditions that
y(0) — y(1) = ¢1{1 — cosh(k)} — casinh(k) = 0,
y'(0) + /(1) = c1ksinh(k) + cok{1 + cosh(k)} = 0,
hence on matrix form
1 — cosh(k) — sinh(k) c 0
ksinh(k) k{1 + cosh(k)} ) 0
It follows from
1 — cosh(k) — sinh(k)
det B = = k{1 — cosh?(k) + sinh?(k)} = 0,
Esinh(k) k{1 + cosh(k)}
that there exist proper solutions (c1, ) # (0,0), e.g.
¢1 = sinh(k) and ca =1 — cosh(k).
Every A = —k? < 0, k > 0, is an eigenvalue and the corresponding generating eigenfunction is
yi(z) = sinh(k) cosh(kz) + (1 — cosh(k)) sinh(kz) = sinh(k{1 — z}) + sinh(kz).
2) If A =0, then the root R = 0 has multiplicity 2 and the complete solution is
y(z) = c1x + o where ¢/ (x) = c;.
It follows from the boundary values that
y(0) —y(1) = —c1 =0 and y'(0) +y'(1) =2¢; =0,

hence ¢; = 0, and ¢y can be chosen arbitrarily.

We conclude that A = 0 is an eigenvalue and that we can choose the generating eigenfunction
yo(z) = 1.
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3) If \=k? >0, k > 0, then the complete solution is
y(x) = 1 cos(kx) + co sin(kx)
where
y'(z) = —crksin(kx) + eak cos(kx).
It follows from the boundary conditions that
y(0) —y(1) = ¢1(1 — cos k) — casink = 0,

y'(0) +¢'(1) = —c1ksink + cak(1 + cosk) = 0,

hence written in the form of a matrix,
1—cosk —sink c1 0
—ksink  k(1+ cosk) o 0

It follows from
1 —cosk —sink
det B = = k(1 — cos® k —sin’ k) = 0,
—ksink k(14 cosk)
that we have proper solutions (¢, ¢2) # (0,0), e.g.
c1 =sink and cg=1—cosk, fork+#2nmw, neN.
Every A = k? > 0, k > 0 is an eigenvalue and a corresponding eigenfunction can be chosen as
yr(x) = sink - cos(kx) + (1 — cos k) sin(kx) = sin(k{1l — x}) + sin(kx), for k # nm,
and
Yno(x) = cos(2nmx) for k = 2n,

and

Yn1(x) =sin(2n + 1)z for k = (2n + 1)7.
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Example 2.8 Consider the problem of the column from Example 1.8 and put e = 0. Solve this

eigenvalue problem and sketch y(L) as a function of kL = \/P/(EI) - L.

When we put e = 0 in Example 1.3, then

d?y

dz?
Write P/(EI) = k2. Then we get by a division by EI,
&y

T2 TRy =0, wel0.I], y(0)=0, y'(L)=0.

The complete solution is
y(z) = ¢1 coskx + co sinkx

where

y'(z) = —cr1ksinkx + cok cos kx.
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It follows from the boundary conditions that
y(O) =0= C1,

y'(L) =0 = —ciksinkL + cok coskL = cok cos kL.

Clearly, ¢; = 0, so we only obtain proper solutions y(z) = cg sin kz, if

coskL =0, thus k,L = g +nm, n e Np.

02 04 06 08 1

1

the eigenvalues are

72 (2n + 1)2
)\n:kiz%, n€N07

and a corresponding eigenfunction may be chosen as

yn(x) = sin <W> s n € Ny.

There are infinitely many eigenfunctions ¢ - y,(x), ¢ € R\ {0}, of which yo(z) and y; (z) are sketched
on the figure.
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Example 2.9 Consider the eigenvalue problem

yY'+Ay=0, z€l[0,1, ¥'(0)=0, y1)+y'(1)=0.
1) Prove that we have separated (Sturm) boundary conditions.
2) Prove that A < 0 and A = 0 cannot be eigenvalues.

3) Find an equation which an eigenvalue X must fulfil. The put A = 2, and sketch the roots (o) of
the equation above and find the corresponding eigenfunctions (yy).

4) Ezplain that all of the conclusions of the eigenvalue theorem (Sturm’s oscillation theorem) are
fulfilled.

1) If we write the equations of the boundary values as

0-y(0)+1-4'(0)=0

Ly() +1-y'(1) =0,

we see that we have separated (Sturm) boundary conditions. Since r(z) = 1, we even have a
regular Sturm-Liouville problem.

2) If A = —a?, a < 0, then the complete solution is

y(z) = ¢1 cosh(ax) + ¢o sinh(ax)

where
y'(z) = ciasinh(ax) + caa cosh(ax).

It follows from the former boundary condition that
y'(0) = cacx = 0, dvs. ¢3 = 0.

Hence we only need to consider the candidates
y(x) = ¢y cosh(ar) med 9'(z) = cyasinh(ax).

Then by the latter boundary condition,
y(1) + /(1) = c1{cosh(a) + asinh(a)} = 0.

Since cosh(a) + asinh(«) > 0 for a > 0, we must have ¢; = 0, so we only obtain the zero solution,
thus no A < 0 can be an eigenvalue.

If A = 0, then the equation is reduced to " = 0, so the complete solution is
y(x) = c1x + ca, with  ¢/(2) = ¢;.

It follows from 3'(0) = 0 that ¢; = 0, and y(z) = ¢ must be a constant. Then
y(1)+y' (1) =c2+0=1c2 =0,

and we also here only get the zero solution. Thus A = 0 cannot be an eigenvalue either.
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3) Finally, if A = o, a > 0, then the complete solution is
y(z) = ¢1 cos(ax) + co sin(ax)
where
y'(z) = —ciasin(az) + coa cos(ax),

It follows from y’(0) = coar = 0 that ¢o = 0, so the candidates must necessarily fulfil

y(z) = ¢1 cos(aux) where Y (x) = —crasin(ax).
Then by the second boundary condition,
y(1) +¢'(1) = c1{cosa — asina} = 0.
We get proper solutions ¢; # 0 when
cosa = asina, a > 0.
Since cos e # 0 for every solution, this is also written
cota = a, a >0,

which is easily solved graphically.

It follows that there exists precisely one root «,, in every interval Jnm, (n + 1)7[, n € N, and that
Qp R NT for large n € N,

or more precisely,
ap = nm +e(n), neN,

where £(0) €]0 z

, 5[, and £(n) — 0 decreasingly.

A corresponding generating eigenfunction is e.g.

Yn(x) = cos(a,x), n € Np.
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4) Finally, we shall check the conclusions of Sturm’s oscillation theorem.

a) Since A, = a2, n € Ny, we clearly have
A <A< <Ay < oo e

and \,, — oo for n — oo.

b) To every eigenvalue A, there corresponds (modulo an arbitrary constant factor) precisely one
eigenfunction,

Yn (@) = cos(anz) = cos(v/Anz).

1
¢) Since nw < a, < (n + 5) m, n € N, we see that ¢, (z) = a,z satisfies

[0,n7] C ([0,1]) C {0, <n+ %) w[, n € N.

1
Since cost has precisely n zeros in [0, n7w] and [0, <n + 5) T {, the function y, (x) = cos(,x)

must have precisely n zeros in [0, 1], and it is obvious that y, () changes its sign whenever we
CTOSS a Zero.
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Remark 2.1 We can now find the values of the first a,,. However, this cannot be done by a direct
application of either Newton-Raphson’s iteration formula or Banach’s fixpoint theorem, because they
cannot be used on

cosa —asina =0 eller cota = a.
Instead one may use the alternative form
o, = nm + Arccot a,, n € Np,

and then the methods mentioned can be applied.

Example 2.10 Consider the eigenvalue problem
y'+xy=0, 2€l0,1, y0)=0, y(1)=y(1).
1) Prove that we have no negative eigenvalues.
2) Prove that A = 0 is an eigenvalue and find a corresponding eigenfunction.

3) Prove that the remaining eigenfunctions are given by y,(x) = sin a, @, where o, is the n-th positive
root of the equation tanz = z. Sketch the roots.

1) Put A = —k? < 0, where k > 0.

e The complete solution.
The characteristic equation

RP4A=R’ -k =(R-k)(R+k)=0

has the solutions R = =+k, and the differential equation is homogeneous, so the complete
solution is

y(x) = ¢1 cosh(kz) 4 co sinh(kx)
where
y'(z) = c1ksinh(kz) + cok cosh(kx).

Remark 2.2 Masochists would probably here choose the variant

kx T

= 1" + Goe” med ' = & ke*® — éoke k.
Yy Yy

This variant will of course give the same result after much bigger calculations.

e Insert into the boundary conditions.
It follows from the first boundary condition that

y(0)=0=c¢ [possibly 0=2¢1+ ¢
The candidates must then necessarily satisfy

y(x) = casinh(kx), where y'(z) = cok cosh(kx).
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Then we get from the second boundary condition,
y(1) = casinh(k) = 3/ (1) = cok - cosh(k),
hence by a rearrangement,
co{sinh(k) — k cosh(k)} = 0.
If there are proper solutions (i.e. ¢y # 0), then
(1) sinh(k) — k cosh(k) = 0.
The function
©(t) = sinh(t) — t cosh(t)
has the derivative
¢'(t) = —tsinht <0  fort >0,
so p(t) is decreasing! Now, ¢(0) = 0, so
sinh(k) — kcosh(k) <0 for alle k > 0,
and we only get the solution co = 0. Thus, no A < 0 can be an eigenvalue.
ALTERNATIVELY we see that (1) is equivalent to
tanh(k) = k,
where a graphical analysis shows that k& = 0 is the only solution.

Iy

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
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2

d
2) Let A =0, so the equation is reduced to d_g =0.
x

e The complete solution follows by two integrations,
Yy =c1x + o where y = ci.
e Insertion into the boundary conditions:
y(0) =0 = ca, thus y = c1z where ¢y = c;.
The latter boundary condition is now trivial,
y(1) = c1 =y (1).
e The complete set of eigenfunctions is

y(z) = az, x €[0,1], ¢ arbitrary.
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3) Let A\=k%>0, k> 0.
e The complete solution of
% +Ey=0
is
y(x) = ¢1 cos(kx) + o sin(kx)
where

y'(2) = —ciksin(kx) + cak cos(kx).

e Insertion into the boundary conditions.
It follows from the first boundary condition that

y(0) =0=c,
so we must necessarily have
y(x) = casin(kz) where 3'(z) = cok cos(kz).
It follows from the second boundary condition y(1) = y’(1) that
co sin(k) = cok cos(k).
We only obtain proper solutions, co # 0, if
F(k) = sin(k) — kcos(k) =0, thus tan(k) = k.
By a graphical consideration we see that there is no solution in }O, g {, and that there is

7r
precisely one solution «,, € |nmw,nmw + 5 [, n € N, where it follows from the geometry that

(nw+g)—o¢n—>0 for n — oo.

e Since ¢; = 0, we find the eigenvalues \,, = o2 with the generating eigenfunctions
Yn(z) = sin(a,z), x€10,1] ogn e N.

Remark 2.3 The zeros of F(z) = sin z — z cos z can be found very fast by a Newton-Raphson
iteration. In fact, since

F'(2) = zsinz,
we get the iteration scheme

F(z,) 2y, COS Zp, — Sin z,,
Zntl = Zn — T =2zn + - =z, +cotz, — —.
F'(z,) Zp, Sin 2z, Zn
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1 2 « 3 4
Using the initial values z(go) = g + nm we get for the first zeros,

n 1 2 3 4

o3 5 7 9
2 777 — 471239 g — 7.85398 7” — 10,99557 7” — 14,13717
2™ 4,50018 7,72666 10,90463 14,06643
P 4,49342 7,72525 10,90412 14,06619
P 4,49341 7,72525 10,90412 14,06619
o 1,49341 7,72525 10,90412 14,06619

Example 2.11 Consider the eigenvalue problem
y'+2y +ay =0, zel0,1], y(0)=y(1)=0.
1) Prove that A =1 is not an eigenvalue.

2) Prove that there does not exist any eigenvalue A < 1.

3) Prove that the n-th positive eigenvalue is A, = n*7% + 1, and find a corresponding eigenfunction.

1) Let A = 1. Then the characteristic equation is
R*4+2R+1=(R+1)*=0.

e Since R = —1 is a double root, the complete solution is

y(x) = crze™ ™ + coe™ ",
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e Insertion into the boundary conditions:
It follows from the first boundary condition that

y(o) =0= C2,

hence we shall only look for candidates of the structure y = cyze™".
It follows from the second boundary condition that

y(1) =0=rc;-1-e !, thus ¢; = 0.
Since (c1,¢2) = (0,0) is the only solution, we conclude that A = 1 is not an eigenvalue.
2) Assume that A=1—k% <1, k > 0.

e The complete solution:
The characteristic equation

RP42R+1 -k =(R+1) k=0

has the two simple roots R = —1 + k.
The complete solution is

y(z) = cre” * cosh(kx) + coe” * sinh(kx).

e Insertion into the boundary conditions:
It follows from y(0) = 0 that

y(0) = ¢; = 0.
Then we shall only look for candidates of the form y(z) = coe* sinh(kx). Then it follows from
y(1) = 0 that

y(1) = 0 = cye” ! sinh(k).
Now, e~ !sinh(k) > 0 for k > 0, so ca = 0 is the only solution. Hence, no A < 1 is an eigenvalue.
3) Assume that A=1+k%> 1,k > 0.

e The complete solution.
The characteristic equation

REP42R+1+k =(R+1)?+Kk* =0
has the two simple roots R = —1 + ik, so the complete solution is
y(z) = cre” " cos(kx) + coe” " sin(kx).

e Insertion into the boundary conditions.

We get from y(0) = 0 that ¢; = 0, so we need only in the following to consider functions of the
form

(2) y(x) = coe™" sin(kx).
We get from y(1) = 0 that
1
Ccy-— -sink = 0.
e

We get proper solutions ¢y # 0, when k,, = nm, n € N.
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e Eigenvalues and eigenfunctions.
The eigenvalues are A\, = 1 + k2 =n?r? +1,n € N.
A corresponding eigenfunction is by (2) given by

Yn(x) = e sin(nmz), x € [0,1],

and all eigenfunctions corresponding to A, are given by ¢ - y,(z), where ¢ # 0 is an arbitrary
constant.
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Example 2.12 Consider the eigenvalue problem
v +xy=0, zc[0,1], y(0)=0, y(1)+vy'(1)=0.
1) Prove that we do not have negative eigenvalues.
2) Prove that A = 0 is not an eigenvalue.
3) Find all positive eigenvalues and the corresponding eigenfunctions.
1) Let A = —k% k > 0.

e The characteristic equation R? — k2 = 0 has the two simple roots R = +k, so the complete
solution is

y(x) = 1 cosh(kz) + co sinh(kz)
where
y'(z) = c1k - sinh(kw) + cok - cosh(kz).

e Insertion into the boundary conditions:
It follows immediately from y(0) = 0 that ¢; = 0, so the candidates must have the structure

y(z) = cosinh(kzr) med vy'(z) = cok - cosh(kx).
By insertion into the second boundary condition we get
0=y(1)+y' (1) = co{sinh(k) + k - cosh(k)}.

From sinh(k) + k& - cosh(k) > 0 for every k > 0 follows that co = 0. Since (c1,¢2) = (0,0), we
conclude that we only have the zero solution, hence no A < 0 is an eigenvalue.

2) If A =0, the differential equation is reduced to y” = 0.
e The complete solution is (by two integrations)
y(r) =cix+co  where 9y (x) =cy.

e Insertion into the boundary conditions:
It follows from y(0) = 0 = ¢y that y(z) = 1.
It follows from 0 = y(1)+4'(1) = ¢1 +¢1 = 2¢; that ¢; = 0, hence we only get the zero solution,
and A = 0 is not an eigenvalue.

3) Let A= k2, k> 0.

e The characteristic equation R?+k? = 0 has the two simple, complex conjugated roots R = +ik,
hence the complete solution is

y(x) = ¢1 cos(kx) + co sin(kx)
where

y'(z) = —c1k - sin(kx) + cok - cos(kz).
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e Insertion into the boundary conditions:
It follows immediately from y(0) = 0 that ¢; = 0, so the candidates must have the structure

y(x) = casin(kz) where v'(2) = cok - cos(kx).
Then it follows from the second boundary condition that
0=y(1)+ ¥y (1) = co{sin(k) + k - cos(k)}.
We obtain proper solutions, c¢o # 0, when
sink+k-cosk =0, thus k= —tank.

By considering a graph we see that there is precisely one solution

T
oy € }mr— §,n7r{ for every n € N.

e Eigenvalues and eigenfunctions.

The eigenvalues are A, = a2, n € N, and the corresponding generating eigenfunctions are

yn = sin(ay,x). All eigenfunctions are of course given by ¢ - y,(x), where ¢ # 0 is an arbitrary
constant.

Remark 2.4 It follows from the figure that
T
anf(mrfa)ﬂo for n — oc.

Newton-Raphson’s iteration formula becomes a little complicated, if we choose

F(z) =sinz + z - cos z,
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though this choice does not harm the convergence,

B F(z,) sin z,, + 2, - COS 2,
Zn41 = Zn — F/(

=z, ! .
Zn) Zp - Sinz, — 2cos 2z,

One may here choose the initial values

zép):pw—g7 peN.

Example 2.13 Consider the eigenvalue problem

1)

2)

3)

v +Xxy=0, zec[0,L], y(0)=0, cy(L)—y'(L)=0, ceR.

Prove that A = 0 is an eigenvalue, if and only if cL = 1, and find in that particular case a
corresponding generating eigenfunction.

Prove that there exists just one negative eigenvalue, if and only if cL > 1. Find in the case of cL = 6
an approzimate value of the negative eigenvalue and a corresponding generating eigenfunction.

Find in case of cL = —1 an approximate value of the smallest positive eigenvalue and a corre-
sponding generating eigenfunction.

Let A = 0. The complete solution is
y(r) = c1o + ¢ med ¢ (z) =c1.

It follows from the boundary conditions that

y(0) =0 = ¢z, s | =0
cy(L) —y' (L) = cicL — coc — ¢ = 0, c1(eL—1)=0.

It follows that A = 0 is an eigenvalue, if and only if ¢cL = 1. If so, then y = x is a generating
eigenfunction corresponding to A = 0.

Then assume that A = —a?

equation is

, a > 0, is an eigenvalue. The complete solution of the differential

y(x) = ¢1 cosh(ax) + ¢ sinh(ax).

It follows from the boundary condition y(0) = ¢; = 0 that if A = —a? is an eigenvalue, then [where
we put ¢g = 1]

Yo (x) = sinh(ax), z €0, L],
is a corresponding generating eigenfunction.
This eigenfunction must also fulfil the second boundary condition,
(3) ¢ ya(L) —y, (L) = c-sinh(aL) — a - cosh(aL) = 0.

The equation (3) is a little tricky. In the first case, & > 0 was given, and we should find a
connection between ¢ and L, which assures that (3) is satisfied. It is, however, difficult to give a
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direct solution of the equation, because we end up with a discussion of another equation of the
form

eQaL_ c+a
c—a

An alternative procedure is the following: Let ¢ = a > 0 be the wvariable, and let ¢ and L be
constants. Then define an auxiliary function by

@e,(t) = ¢ -sinh(tL) — t - cosh(tL), t>0.
We see that ¢.,1,(0) = 0 and

go'ch(t) = ¢+ Lcosh(tL) — cosh(tL) — tL - sinh(tL) = (¢L — 1) cosh(tL) — tL - sinh(tL)
= (e¢L—1)coshu—wu-sinhu, w=t-L>0.

If therefore cL < 0, then ¢, ; (t) < 0 for ¢ > 0, and ¢ 1(t) is decreasing, so (3) is never fulfilled.
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2.59

0.5

A necessary condition for (3) is therefore that ¢L > 1. We shall now assume this. Then (3) is also
written

L-y.1(a)=c-L-sinh(aL) —aL - cosh(aL) =0,
hence withu=t-L=a«a-L >0,

cL - sinhu — ucoshu = 0.
Now, coshu > 1, so we rewrite the equation above to
(4) u = cLtanhu, u > 0.

The curve z = cLtanh u has z = ¢L as an horizontal asymptote. Its derivative is ¢L > 1 for u = 0,
and it decreases towards 0 for u increasing. Hence this curve has precisely one intersection with
the curve z = u, which again means that the curve given by (4) has precisely one solutionu = «L.

We have now proved that if cL > 1, then there is just one negative eigenvalue A = —a?2, where
« = u/L, and where u is the unique positive solution of (4).

A corresponding generating eigenfunction is y,(z) = sinh(ax).
Now put ¢L = 6, so (4) is written
u = 6tanhu, u > 0.

Since tanh u — 1 for u — oo, we get u ~ 6. Then by Newton-Raphson iteration, or just by regula
falsi on a pocket calculator (i.e. successive interpolation between u = 5,9 and u = 6,0 etc.) we get

u = 5,999926, thus u =~ 6.
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2.59

0.59

Then a ~ 6/L and A = —a? = —36/L?, and a corresponding generating eigenfunction is approxi-
matively

o) = s ().

3) Let A = a?, @ > 0. The complete solution is
y(z) = ¢1 sin(ax) + ¢5 cos(ax).
It follows from y(0) = ¢2 = 0 that we may only consider
y(r) = ey sin(az) where y'(z) = ciacos(ax).
Then by the second boundary condition,
cy(L) —y'(L) = c1{csin(aL) — acos(aL)} = 0.
We only obtain proper solutions (where ¢; # 0) if
cLsin(aL) — aLcos(aL) = 0.
If we put ¢L = —1 and ¢t = «aL, it follows that we shall find the smallest positive solution of

sint+tcost =0, thus t= —tant.

We get by a graphical consideration that ¢ € ] g, T {
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Remark 2.5 When we apply the Newton-Raphson iteration method we put
F(t) =sint +tcost where F’'(t)=2cost— tsint.

Then

sint + tcost

t)y=t+ ——
9(t) +tsint—2cost’

and the iteration formula becomes

sin o, + o, COS iy,

Qpt1 = Qp + . .
o, Sin o, — 2 oS au,

Choosing the initial value a; = 2 we get as = 2,029048 and a3 = 2,028758 = a4, hence
1 1
a = 2,028758 - 7 where A = a? =4,115858 - T3

A generating eigenfunction is

i (2) = sin (27028758 : %) .

Example 2.14 Consider an axle which is simply supported at its endpoints © = 0 and x = L. The
azle is rotating with the constant angular speed w. For some values of w, called the critical angular
speeds, the axle may rotate in a bent form. The model equation for small bendings of the rotating axle
18

d4
(5) BISY —Wlou=0, xel0,L]

dxt
where E is the elasticity module of the axle, I is the moment of inertia, and o is the mass per length.
Given the boundary conditions
u(0) = u"(0) = u(L) = u"(L) =0,

we shall find the critical angular speeds and their corresponding bendings u(x). We therefore consider
(5) together with the boundary conditions above as an eigenvalue problem where the eigenvalue is de-
fined as A = w?, and where we shall find the positive eigenvalues and their corresponding eigenfunctions
u(x). (It may be convenient to introduce k* = w?o/(EI).)

When we divide by EI > 0 the text above is transformed into the following shorter and equivalent
eigenvalue problem,

d*u "
w—k U:O,

u(0) =0, «’(0)=0, ,u(L)=0, «'(L)=0.

1) The complete solution.

The characteristic equation

0=R*"—k*=(R*+ k) (R* - k?)
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has the four simple roots R = +ik and R = +k, so the complete solution of the differential equation
is

u(x) = ¢ cos(kx) + cosin(kx) + c3 cosh(kz) + ¢4 sinh(kx).
Since we later on also shall consider the boundary conditions, we here also compute for convenience,
u”(x) = k*{—c; cos(kx) — cosin(kx) + c3 cosh(kx) + ¢4 sinh(ka)}.
2) Insertion into the boundary conditions.
It follows from the first two boundary conditions that
w(0) =¢1 + 3 =0,
u”(0) = k?{—c1 + c3} =0,
hence ¢; = ¢3 = 0. Then the candidates must have the structure

u(x) = cosin(kx) + ¢4 sinh(kx)

= —cosin(kx) 4 ¢4 sinh(kx).

sssssssssssssvsssssassssssssssssssssnssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N
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Then it follows from the latter two boundary conditions that
w(L) = cysin(kL) + ¢4 sinh(kL) = 0,

u// (L)
k2
If we shall have proper solutions, then we must have

= —cgsin(kL) + ¢y sinh(kL) = 0.

sin(kL)  sinh(kL)
0= = 2sinh(kL) - sin(kL).
—sin(kL) sinh(kL)
Since sinh(kL) > 0, the only possibility is sin(kL) = 0, thus
koL =nm, n € N.
We get e.g. by insertion
u(L) = ¢o -0+ ¢4 - sinh(nm) =0,
so ¢4 = 0 and ¢y is arbitrary.
3) Eigenvalues and eigenfunctions.

We have seen in 2) that the eigenvalues are

o K:EI  n*m*EI

[ 0

n € N.

Ap =W

The corresponding generating eigenfunctions are then

U, (x) = sin (k,x) = sin (mr- %) , x € [0, L].

The complete set of corresponding eigenfunctions is then given by ¢ - u,(x), where ¢ # 0 is an
arbitrary constant.

Example 2.15 Consider the eigenvalue problem
a*y" +ay' + 2y =0, welle, y1)=0, yle)=0.

The differential equation is a so-called Fuler differential equation. Prove that the eigenvalues are
A = n?7w2, n €N, and find the corresponding eigenfunctions.

The Euler differential equations are characterized by each term of the equation has the structure

)
dxJ

We have here two possible methods of solution:
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1) The method of guesses, i.e. we guess the structure y = x®. Then we typically obtain a
polynomial in «, which we put equal to 0.

e If the order — as in the present case — is 2, and we have two different real roots a1 and as, then
we can immediately write down the complete solution, namely that it is generated by the two
linearly independent solutions z®* and z®2.

o If « is a (real) double root, two linearly independent solutions are ® and z® In |z|.

e If the roots are complex conjugated, o + i3, we have two linearly independent solutions given
by

2% cos(B1n |z|) and = sin(G1n |z|).

2) The standard method. We apply the substitution v = Inx, 2 > 0, thus = e¢“. Then by the
chain rule,

d_dy ety dy

iz dr TV T de? du

By this substitution it follows by insertion that an Euler differential equation is always transferred
into a differential equation of constant coefficients, thus

d*y dy
2
r —= 4+ ax— 4+ ayy =0
dx? ta da:+ 2¥
is transferred into

d2y

d
ﬁjL(alfl)iJragy:O, u=1Inz, x>0

First method. By insertion of y = =% we get
(6) 2%{a(a—1)+a+ A =2%*+)) =0,
so we obtain a solution, if a? + A = 0. (This corresponds to the usual characteristic equation).

1) If A = —k%, k > 0, then a = £k, hence z¥ and 2~F are two linearly independent solutions. Then
it follows by the existence and uniqueness theorem for linear differential equations of second order
that the complete solution is

y(z) = cra® 4 ek,

It follows from the initial conditions that

y(1) =0=c1 + co,
dvs. ¢1 = ¢ = 0.
y(e) =0=ckei + e Fey = e F{e®Fey + e},

Hence, no A > 0 can be an eigenvalue.

2) If A = 0, we rewrite the equation is rewritten in the following way,

d(y’) d
200 r_ N "N — 0.
0==2z"y +$y—x{x +1-y —atx(xy)—o
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Then by integration,

T =c, hence y(z) = ¢ Inx + ca.

Then by the boundary conditions,
y(1)=0=c2 and y(e)=0=c1 +eca,

hence ¢; = co = 0, and A = 0 is not an eigenvalue.

3) If A\ =k?, k> 0, then a = 4ik. The corresponding solutions are

2z = exp(+ikInz), x € [1,€],

hence the complete solution is
y(x) = ¢y sin(klnx) 4 ¢o cos(kInx).

Since y(1) = 0 = ¢, the candidates must have the structure y(z) = ¢y sin(kInz). Then it follows
from y(e) = 0 that

crsin(kIne) = ¢y sin(k) = 0.

If there exists eigenvalues, then we must have sink = 0, hence k,, = nw, n € N. The eigenvalues
are \, = k2 = n?7%, n € N, and the corresponding generating eigenfunctions are

yn(x) = sin(ky, Inz) =sin(nrlnz), neN.

Second method. When we apply the substitution u = Inx, the problem is transferred into

d*y Ny — B B
W +Ay=0, ue [07 1]a Ylu=0 = Yju=1 = 0.

1) If A= —k?, k > 0, then the complete solution is
y(u) = ¢q cosh(ku) + co sinh(ku).
It follows from the boundary conditions that
Yju=o = 0 = ¢1 0g Yjy=1 = c1 cosh(k) + cosinh(k) = ¢y sinh(k) = 0,
hence ¢; = ¢ = 0, and no A < 0 is an eigenvalue.
2) If A =0, then y(u) = ciu + co. Then we get by the boundary conditions that
Yu=o =2 =0 and yj,—1 =c1 +c2 =0,
hence ¢; = ¢ =0, and A = 0 is not an eigenvalue.
3) If A =k?, k > 0, then the complete solution is
y(u) = ¢q cos(ku) + co sin(ku).
It follows from the boundary conditions that
Yu=0 = €1 = 0 0g Yjy=1 = c1cosk + casink = casink =0,

and it follows that the eigenvalues correspond to sink = 0, thus k, = nm, n € N. We conclude
that the eigenvalues are A\, = k2 = n?7% n € N, and the corresponding generating eigenfunctions
are

yn(z) = sin(k,u) = sin(nwlnz), z€[le], neN.
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Example 2.16 Consider the eigenvalue problem

d*y dy

2 _ _ _

i 3$% +Ay=0, ze[le], y(1)=0, yle)=0.

The differential equation is an Euler differential equation. Prove that every eigenvalue is bigger than
4, that A, = n*7% + 4, and that the corresponding eigenfunctions are y,(x) = z?sin(nwlnx).

Hint: Apply the substitution u = Inx € [0, 1] and derive the eigenvalue problem where u is the variable.
Put z(u) = y(z).

The different methods of solution of an Euler differential equation have already been described in the
beginning of Example 2.15.

When we apply the monotonous substitution « = Inz € [0, 1] we get by the chain rule,

d_dvd: 1
de  dr du oz du’ r=e

and

dzy_d ldz|  1dz 1 1d2z_1 sz_dz
x du du?  duf’

d?  dz T TRl s rdE B
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Then by insertion into the differential equation,

5 d%y dy 5 1{d22 dz} 1dz d*z  dz dz
T x =z —3x- U) = —5 — —

22 | du?  du

and the transformed equation becomes

d?z dz
el Ruiad —
I Ju +Az=0

with the boundary conditions

z(0)=y(1)=0 and z(1) = y(e) = 0.

The characteristic polynomial is

R —4R+ X =(R—-2)>+ )\ —4.

If \ = 4—k? < 4, k > 0, then the characteristic polynomial has the two real simple roots R = 2+k,
so the complete solution is

2=c e(?—i—k)u + ¢ e(Q—k)u _ 62u {Cl eku + ¢ e—ku} )
It follows from the boundary conditions that
2(0)=ci+ea=00g 2(1)=e*{e" - c1 +e " e} =0,

thus

l-ci+1-co=0 og ek-cl+efk-cQ:O.

Now, e* # e7*, so it follows immediately that ¢; = co = 0, corresponding to the zero solution, and
no A =4 — k% < 4 is an eigenvalue.

If A = 4, then the characteristic polynomial has the double root R = 2. The complete solution is
then

2(u) = ¢ 2" + coue*™ = e*(cy + cou).
It follows from the boundary conditions that
2000 =c; =0 and 2(1) =e*(c; + ) =0,
hence ¢; = ¢o = 0, corresponding to the zero solution, and A = 4 cannot be an eigenvalue.

If A\ =4+ k? >4, k> 0, then the characteristic polynomial has the complex conjugated roots
R =2+ ik. The complete solution is

2(u) = ¢1 €2¥sin(ku) + ¢y €2 cos(ku).
It follows from the first boundary condition that

Z(O) =0= Ca,
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so each candidate must have the structure
2(u) = ¢1 €2“sin(ku).

Then it follows from the second boundary condition that
2(1) = 0 = ¢; e sin(k).

Here we only obtain proper solutions, if k,, = nm, n € N. If so, then the eigenvalue is
Ap =4+ K2 =4+ 0272 n e N.

A generating eigenfunction is

2 (u) = e?*sin(k,u) = €2

“sin(nmu).
This is transformed back to y, by v = Inz, thus

Yn (1) = 2, (v) = 2z, (Inz) = 2% sin(nwInz), x € [1,€l.

Example 2.17 Consider the eigenvalue problem

y” + >\y = Oa US [_ﬂ-vﬂ-]a y(_ﬂ) = y(ﬂ-)a y/(_ﬂ-) = y/(_ﬂ-)'
1) Prove that A =0 is an eigenvalue and find a corresponding eigenfunction.
2) Prove that there are no negative eigenvalues.

3) Find all the positive eigenvalues and prove that each of them has two corresponding linearly inde-
pendent eigenfunctions. Ezxplain why this is not a counterexample to Sturm’s oscillation theorem.

1) If A =0, then the complete solution is
y(r) =ciz+ca med y'(x)=ci.
It follows from the boundary conditions that
—C1T +Cy = 1T + Co and ¢ =cq,

hence ¢; = 0, while ¢o is arbitrary. It follows that A = 0 is an eigenvalue with a corresponding
generating eigenfunction yo(z) = 1.

2) If A= —k? k > 0, then the complete solution is

y(z) = ¢1 cosh(kx) + ¢o sinh(kx)

where
v (z) = key sinh(kx) + kco cosh(kx).

It follows from the boundary conditions that
¢1 cosh(km) — eo sinh(kx) = ¢1 cosh(km) + ¢o sinh(kn),

hence ¢y = 0 after a reduction, and
k{—cy sinh(k7) + ¢o cosh(km)} = k{c; sinh(k7) + ¢o cosh(km)},

from which ¢; = 0. Now ¢; = ¢o = 0 corresponds to the zero solution, so no A\ < 0 can be an
eigenvalue.
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3) If A = k2, k > 0, the complete solution is
y(x) = ¢1 cos(kx) + co sin(k)
where
y'(z) = —key sin(kz) + keg cos(kx).
It follows from the boundary conditions that
y(—7) = ¢y cos(km) — casin(km) = y(7) = ¢1 cos(km) + o sin(km),
y'(—7) = kcg cos(km) + key sin(kw) = y/(m) = keg cos(kr) — key sin(kr),
hence
2cosin(km) =0 and 2c¢iksin(kr) = 0.

These equations are satisfied for all (¢, ¢q), if sin(kw) = 0, thus if k£ € N.

We conclude that A, = n%, n € N, is an eigenvalue with the corresponding two linearly independent
eigenfunctions

Yn,1(x) = cosnx and Yn2(x) = sinnz.

Since the boundary conditions are not separated, the assumptions of Sturm’s oscillation theorem
are not fulfilled, thus it cannot be applied. For that reason the example is not a counterexample
to this theorem.

Example 2.18 The bending u(z) of a column can be modelled as an eigenvalue problem in the fol-
lowing way by convenient choices of the geometry, the spring constant and the material constant,

d* d?
d—;+a2d—;;=(), UE[O,l],

uw(1) =0, «/(1)=0, «"(0)=0, a*(0)+u(0)+u®(0)=0.
1) Consider a as an eigenvalue. Prove that the positive eigenvalues are the roots of the equation

tana = a(1 — a?).

2) Find the smallest positive eigenvalue (approximatively) graphically as well as by means of an iter-
ation with 2 decimals.

3) Find a corresponding eigenfunction u(s) for the smallest positive eigenvalue.
We assume that @ > 0. This implies that the characteristic polynomial
R* 4+ a’R* = R*(R* + d®)
has the simple imaginary roots +ia supplied with the og double root R = 0. The complete solution is

w(z) = e1 sin(ax) + co cos(ax) + c3z + ¢4
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where

u'(x) = acy cos(ax) — acy sin(ax) + c3

and

u” () = —a’cy sin(ax) — acy cos(ax),
and

u® (z) = —a’ey cos(ax) + a®eysin(az).

1) We get by insertion into the boundary conditions,

u(l) = 0=cisina+cacosa+ c3+ cy,
(1) = 0=ac)cosa—acssina+ cs,
u"(0) = 0=—d’c,

and

a®u’ (0) + u(0) + u(?’)(O) =0=2a%c; +a’cs+co+cy—aey.

> Apply now
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24

_3

—5-

It follows immediately that co = 0, so the system is reduced to

sina-cg + ¢33 + cu = 0,
acos-c, + c3 = 0,
a’cs + ¢ = 0.

Then it follows from the last equation that c4 = —a?cs, so the first two are reduced to
(7) sina-¢;  + (1—a)ez = 0,
acosa-cy —+ 1-c3 = 0.

The determinant condition for proper solutions is

sina  1—a?

=sina —a(l —a?)cosa = 0.
acosa 1

If cosa = 0, then sina # 0, and there is no solution. We can therefore assume that cosa # 0.
Then the determinant condition can be written

(8) tana = a(1 — a?).

2) A graphical consideration shows that the smallest positive solution of (8) lies very close to 7/2 in
the interval |7/2,7[. It is, however, difficult to create a figure which shows that we actually have
a~1,8.

We shall use the Newton-Raphson iteration method to find the smallest positive zero a € |r/2, 7|
of

F(a) =tana —a(l — a2) = tana + a® — a.
Since

F'(a) =1+ tan®a + 3a* — 1 = tan® a + 3a?,
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the iteration is given by

Fla,) —  tana, + an(a? —1)

© Fla,) " tan? a,, + 3a2

Gpt1 = Qnp , néeN.

Notice that the denominator F'(a) = tan®+3a? > 3(7/2)? > 0, so we may expect a very fast
convergence.

If we e.g. choose a; = 2 (a more energetic choice would of course be a; = 1, 8), then we get
ag = 1,772572, a3 =1,805332, a4 =1,809239

as = 1,809278, ag = 1,809279.
Then with 2 decimals a ~ 1, 81.

We shall continue in 3) to work with the better value

a = ag = 1,809279.

When we calculate the eigenfunction we choose ¢; = 1. As mentioned above we use the improved
value a = 1,809279 in order to minimize the rounding errors. The final results will only be given
with 2 decimals.

We have from above that c¢o = 0, and we have furthermore chosen c3 = 1. We shall therefore only
calculate
c3

cy = —a’cy and from (7), ¢ = — ,
a.cosa

thus
ey = —a® = —3,273491 ~ —3,27

and

cp = = 2,339710 = 2, 34.

a cos a

With 2 decimals an eigenfunction corresponding to the smallest positive eigenvalue a ~ 1,81 is
approximately given by

u(x) = 1 sin(az) + o cos(ax) + czx + ¢4 =~ 2,34sin(1, 81z) + = — 3,27.

Remark 2.6 From a practical point of view the result cannot be correct, because we get u(0) =
—3,27. If the spring constant is the same for the two springs, then we should get 0 by the symmetry.
An analysis of the boundary conditions shows that there is “something wrong** with

au/(0) + u(0) + u® = 0.

In fact, the physical dimensions do not agree. For instance, u(0) has dimension ¢, and u® has
dimension ¢/¢3 = 1/¢%. One should therefore always check the physical dimensions of a model, before
one starts on solving it. Inside pure mathematics, however, this is an excellent example.
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Example 2.19 In the investigation of the stability of rotating thin columns one may as a linearized
model of the bending u(x) perpendicular to the plane of rotation use the following eigenvalue problem,

u® + Q¥ r— 1)/ =0, 0<z<1, u(0)=1(0)=u"(1)=0.

Here, r is a positive constant, and A = Q2 denotes the eigenvalue. We shall only be concerned with
the positive eigenvalues.
Find in the three cases v > 1, r = 1 and r < 1 the possible solutions of the eigenvalue problem (i.e.
both savel eigenvalues and eigenfunctions).
We consider here an eigenvalue problem for a differential equation of third order,

d3u du

— +Q%(r—1)— =0, 0<z<1.

dx3 O )dx =T=
The characteristic polynomial is

R34+ Q%*(r — )R = R{R?* + Q*(r — 1)}.
1) If r > 1, the characteristic polynomial has the roots

R=0 and R =+iQvr—1.

The complete solution is

u=-cysin(QvVr —1-2)+cacos(QvVr —1-2)+c3

where
u' = QVr — Leos(QVr —1-x) — coQV/r — 1sin(QV/r — 1 - )
and

u" = —c1 P (r — 1) sin(QVr —1-2) — c2Q%(r — 1) cos(QVr — 1 - ).
It follows from the boundary conditions that

u(0) =0 = co + c3, thus c3 = —cg,
and

u'(0) =0 =c;Qr — 1, ie. ¢ =0.
Since ¢; = 0, it follows from the latter boundary condition that

u”(1) = 0= —0 — c20%(r — 1) cos(Q/r — 1).

Now ¢; = 0 and ¢3 = —cq, so we only obtain proper solutions when
cos(QVr—1) =0, thus Qvr—1= g +nm, n €Ny

This corresponds to the eigenvalues

2 1 7 2
)\n:anrilz(2n+1)7 ’I’LENO,

with the corresponding generating eigenfunction (i.e. cg = 1)

up () = cos (3(271 + 1)33) -1, n € Np.
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2) If r = 1, then the characteristic polynomial is reduced to R? in which R = 0 is a root of multiplicity

three. The complete solution is
u(z) = 2% + cox + c3,
where
u(x)=2c1x+ca og  u(x)=2c.
It follows from the boundary conditions that
u(0) =0 = c3,

W (0)=0=cy, u'(1)=0=2c,

so there does not exist any proper solution, hence not eigenvalue or eigenfunction.

Notice that since r — 1 = 0 we see that ) has totally disappeared from the problem.

3) If 0 < r < 1, then the characteristic polynomial has the three real roots

R=0 and R=40v1—1.
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The complete solution is

u = c1 sinh(QV1 — 7z) + 3 cosh(QV1 — 7z) + c3
where

u' = Q1 — r{ci cosh(QV1 — rz) + ¢ sinh(QV1 — r2)},
and

u” = Q*(1 — r){e; sinh(QV/1 — 7x) + c3 cosh(QV/1 — rx)}.
It follows from the boundary conditions that

u(0) =ca+c3 =0, thus c3 = —co,

' (0)=c1 /1 —r=0, ie ¢ =0.

since ¢; = 0, it follows from the latter boundary condition that
(1) =0+ c0%(1—7)-1=c0%(1 —r) = 0.

Since 1 —7 > 0 and € > 0, we must have co = 0 and thus c¢3 = 0, and we only get the zero solution,
so we have no eigenvalue when 0 < r < 1.

Example 2.20 Given the differential equation
Y+ 20y 4+ 20%y =0, 0<z<m,

with y(0) —y'(0) = 0 and y(7) —y'(7) = 0, and where the parameter \ € R is considered as a possible
ergenvalue.

1) Prove that A = 0 is not an eigenvalue.

2) Find all the eigenvalues and the corresponding eigenfunctions.

1) If A =0, then the equation is reduced to y”" = 0, the complete solution of which is
Yy =ci+cox where y' = c.
Then by insertion into the boundary conditions,
y(0) —y'(0) =c1 — 2 =0,
hence ¢; = ¢y, and
y(m) —y'(m) =c1 + cam —ca =0,
so ¢ = —(m — 1)es.

Since ¢; = ¢g = 0 is the only solution, we conclude that A = 0 is not an eigenvalue.
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2) If X # 0, then the characteristic polynomial

R242AR+2)% = (R+ \)? + A%,

has the simple roots R = —A +i\. The complete solution is
y = cre M cos(Ax) + coe M sin(Ax)

where
Y = Mca — c1)e ™ cos(Ax) — A(ep + cp)e M sin(Azx).

It follows from the boundary conditions that

0= y(O) — y'(O) = C1 — )\(CQ — Cl) = (]. + )\)Cl — )\CQ.

Now A #£ 0 by (1), so ¢y =

c1, which by insertion gives

0 = y(m)—vy'(7)

1+ A
= cle_)‘ﬂ COS()\T(') +c- —; e M

)
— ()\ ? - )\> cre” " cos(AT) + ( +A- ! +>\> cre” " sin(Arr)

A
_ cle_)‘“{(l—l)cos()\w) ( A7;1)2)5111 m}

e A+ (A+1)?
A

T sin( A

= cie sin(Arr).

Since A2+ (A+1)2 > 0 for all A € R\ {0}, we only obtain proper solutions, ¢; # 0, if A = n € Z\ {0}.
We get for A\, =n € Z\ {0} and ¢; = n that co = n+ 1, so an eigenfunction corresponding to n is

Yn(x) =ne " cosnz + (n+ 1)e” """ sinnz, n € Z\ {0}.
All the eigenfunctions corresponding to A, =n € Z\ {0} are then given by ¢y, (), where ¢ is an
arbitrary constant.
Remark 2.7 We get for n = —1,

y—1(x) = —e" cosx

without any sine term.
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Example 2.21 Given the eigenvalue problem

d*y d?y
LA a4
dx? + dz?

1) Check if A =0 is an eigenvalue.

=0, zel[0,1], y(0)=y"(0)=y(1)=1y(1)=0.

2) Prove that every eigenvalue X\ # 0 must fulfil the equation tan A = \.

1) For A = 0 the equation is reduced to % = 0, the complete solution of which is
Yy=co+Cc1T+ 021‘2 + 03333
where
j—i = ¢y + 209x + 3es32?  and % = 2¢9 + 6e3x.

It follows from the boundary conditions that
y(0) = co =0, y(1) =co+c1+e2+c3 =0,
y"(0) =2c2 =0, y' (1) =1 + 2¢2 + 3¢5 =0,
which is reduced to ¢y = ¢o = 0 and
c1+c3=0, c1 + 3c3 =0,
hence also ¢; = ¢z = 0.
Since the zero solution is the only solution, we conclude that A = 0 is not an eigenvalue.
2) If A # 0, then the characteristic polynomial
R'+ NR?* = R*(R* + \?)

has the double root R = 0 and the two simple and complex conjugated roots R = +i\. The
complete solution is

Yy = o+ c1x + co cos Ax + c3sin Ax

where
dy .
e = ¢1 — coAsin Az + c3 )\ cos A\x
T
and
d2
d—;g = —coM? cos Az — c3\? sin Az

It follows from the boundary conditions that

y(0) =co+c2 =0, y"(0) = —c2A? =0,
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y(1) =co+c¢1 4+ cacos A+ czsin A = 0,
y'(1) = ¢1 — coAsin A + cgAcos A = 0.

Since the two values £\ correspond to the same square A%, we may of course assume that A > 0.
Then by the first two equations, co = 0 and ¢y = 0, and the two remaining equations are reduced

to

c1 +cgsin A =0, o 1 sinA\ et _ (0

c1 + c3hcos A =0, 01 AcosA c3 ) \0 )"
We only get proper solutions, if the matrix is singular, i.e. if

1 sinA
1 AcosA

‘ = AcosA —sin A =0,

hence
Acos A —sin A = 0.

Since sin A # 0, when cos A = 0, we must have cos A # 0 for every solution. Then the equation is
rewritten as

tan A = \.
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s
It follows from the figure that we have precisely one solution \,, > 0 in each interval |nm,nm + —|,

1
n € N, and that A\, ~ <n+§)7rforn—>oo.

A corresponding eigenfunction is e.g.
on(z) = sin(Apx) — (sin \,) -z,

where we have chosen ¢; = —sin A, and c3 = 1.

Example 2.22 Given the eigenvalue problem

d2
CY =0, 0<z<

1
dz? 2’

y(O)+5(0) =0, 1y (;) 0.

1) Prove that we have no negative eigenvalues.

2

2) Find an equation from with one in principle can find the smallest eigenvalue (the calculation is

not required,).
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1) If A < 0, A = —k?, then the complete solution is
y = ¢1 cosh(kz) + co sinh(kx)
where
y' = k{cg cosh(kz) + ¢ sinh(kz)}.
We get by insertion into the boundary conditions that

y(0) +4'(0) = ¢1 + ke = 0,

1 k . k
Yy (§> = cosh (§> ¢y + sinh (§> co = 0.

This linear system of equations in (c1, ¢2) has the determinant

1 k
Lk k k k k(k
' k —Slnhi—kcoshg—coshE{tanhE—k:}<Cosh§{§—k}<O for k > 0.

k
cosh 5 sinh 3

Since this determinant is # 0, the system has only the zero solution, so no A < 0 can be an
eigenvalue.

2) If A =0, then the complete solution is
y=c1+cax  where ¢/ () = ca.

It follows from the boundary conditions that

1 1
Y(O0) 49 (0) =itz =0 og y(g):cﬁi@:o.

The only solution is ¢; = ¢o = 0, so A = 0 cannot be an eigenvalue either.
If A\=4k%>0, k >0, then the complete solution is
y = ¢y cos(kx) + cosin(kx)
where
Yy = kcg cos(kx) — ke sin(kx).
We get by insertion into the boundary conditions that
y(0) +4'(0) = ¢1 + kea = 0,

1 — E +‘ E =0
Y B = COS D) C1 Sin D) Cco = U.

This system has proper solutions (c1, ) # (0,0), if and only if the corresponding determinant is

zero, thus
k k
0= :sin<§>—k-cos<§), k> 0.

cos — sin —
2

2
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2.5

0.57

Since cos 5 # 0 for every solution, this condition is equivalent to the equation

k
tana = k.

ko k k
Since tan 3 ~ 3 < k in the neighbourhood of 0, and tan 5 — oo for k — w—, this equation must

by the continuity have a solution k €]0,7[. It follows from the figure that it has precisely one
solution.

Remark 2.8 It can be proved by a Newton-Raphson iteration that the first, i.e. the smallest
positive eigenvalue is

A\ = k? ~ 5,434,
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Example 2.23 Consider the eigenvalue problem

1)
2)

P AW 1y =0, 20,1, y(0)-y'(0) = y(1)—y/(1) =0.
dz? dz ’ T
Prove that A = —2 is an eigenvalue and find all its corresponding eigenfunctions.

Prove that every A € R is an eigenvalue for the eigenvalue problem under consideration, and that
y=e", x €0,1], is a corresponding eigenfunction.

We get by insertion of A = —2 that

Py dy
RO e ATy 0,1
gz gy Tv=0 welndl

with the characteristic polynomial R? — 2R + 1 = (R — 1)2. Since the root R = 1 has multiplicity
2, the complete solution is

y=cie” + cowe® where y' = (c1 + c2)e” + cowe®.
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First calculate
y(0)=c1  and  ¢'(0) = c1 +co,
and
y(1)=c1+co  and  y'(1) =1 + 2ca.
It follows from the boundary conditions that
c1 =c1+ ¢ and c1+ca=c1+2c

for co = 0 and c¢; arbitrary constants. Hence, A = —2 is an eigenvalue, and every eigenfunction
has the form ce”.

2) It is immediately seen that the function y = e* fulfils both the equation and the boundary condi-
tions, no matter the choice of A € R.

Example 2.24 Consider the eigenvalue problem
d?y \ dy
dx? dr

Prove that A\ = 0 is not an eigenvalue. Then prove that the eigenvalue problem does not have an

ergenvalue.

0, ze€l0,1], y(0)=0, ¢'(1)=0.

d?y

1) When X\ = 0, the equation is reduced to 2 0, the complete solution of which is
x

Y =cC1x + Ca.
By insertion into the boundary conditions we get
y(0)=co=0 and ¢'(1)=c; =0.
This shows that A = 0 is not an eigenvalue.
2) If X # 0, then the characteristic polynomial
R?>4+ AR =R(R+ ),

has the roots R = 0 and R = —\. The complete solution is

Az Az

Yy =c1+coe” where ¢’ = —Acae™

By insertion into the boundary values we get
y(0)=c1+c2=0 og y'(1)=—Acze > =0.

Since A # 0, we get ¢o = 0, and hence ¢; = —co = 0.

It follows in particular that no A # 0 can be an eigenvalue.

Summing up, the eigenvalue problem does not have any eigenvalue.
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3 Nontypical eigenvalue problems

We collect in this chapter some eigenvalue problems which for some reason are nontypical. In some of
the cases there is required a lot more of the reader than one could expect. In other cases I have found
some eigenvalue problems in the literature, which I feel very strange. They have only been included
here, because some of the readers may come across them.

Example 3.1 Consider the eigenvalue problem
u” 4+ QP (r — D' + Q2u(1) =0, x€[0,1], u(0)=/(0)=u"(0)=0,
where r is a positive constant, and §2 is the eigenvalue.
1) Prove for every fixed r > 1 that the positive eigenvalues fulfil the equation
(9) tan Qv/r — 1 = rQVr — 1.
(Hint: Use the three boundary conditions and furthermore the identity u(1) = u(1)).
2) Find for r = 2 the smallest positive eigenvalue with three decimals.

3) We again assume that r > 1. Prove that the smallest positive eigenvalue Qg satisfies Qo — /3 for
r— 1.

(Hint: Apply (9), put x = /r — 1 and use Taylor’s formula for tan Qx).

4) Find in the case of r =1 all the positive eigenvalues and their corresponding eigenfunctions.

1) Since u(1) occurs, the equation is not a usual differential equation. If we consider for a while u(1)
just as some constant ¢ (“independent of w(t)”), it makes sense to guess a particular solution of
the form ug(z) = ax + b.

Since r > 1, we get by insertion
0+Q*r —1)a+Q%(a+b) = Q% (ra+b) =0.
Now, > 0, so b = —ra, and ug(xz) = a(x — r) where u(1) = a(1 — ), thus

u(1)
1—r

For given u(1), a particular solution is

u(1)
1—r

ux) = (x —7).

The “homogeneous” equation where we neglect the term Q2u(1), has the characteristic polynomial
R34+ Q%*r — )R = R{R* + O*(r — 1)}.

Since r > 1, the complete solution is

u(xz) = ¢y sin(Qvr — 1x) 4+ co cos(QVr — 1a) + ¢5 + %(1’ —7)
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where

u(1) = c1 sin(QVr — 1) + co cos(QVr — 1) + 3 +u(1),
and we derive the additional condition
(10) ¢; sin(Qvr — 1) + ez cos(QV/r — 1) + ¢3 = 0.

Now,

u' () = QVr — 1{cy cos(QVr — 1z) — cosin(QVr — 1)} + (1)

1—7’

u(x) = —Q%(r — 1){e1 sin(QV/r — 12) + ¢z cos(Q/r — 12)}.

It follows from the boundary conditions that

w(0) =co+c3+ u(1l) =0,

r—1

1
w(0) = QvVr—1— :u(l) =0,

u’(1) = —Q*(r — 1){cy sin(QVr — 1) + ez cos(QV/r — 1)} = 0.

When we compare the latter equation and (10) we get ¢3 = 0, and the system is reduced to the

three equations

62+

1) =
(1) =0,
1

caSr—1-—
r—
¢ sin(QvVr — 1) 4 cg cos(2vr — 1) = 0.

It follows from the first two equations that

1 u(l) =0,

Cy = — rlu(l) and ¢y = —1rQVr —1lc;.
r—

Then by insertion into the last equation,
a{sin(Qvr —1) — rQvr — Lcos(Qvr — 1)} = 0.
A necessary condition for 2 being an eigenvalue is therefore

(11) sin(Qvr —1) = rQvr — 1cos(Qvr — 1).

Clearly, a solution of this equation also satisfies cos(Q2v/r — 1) # 0, so we get as required (9),

tan(Qvr — 1) = rQvr — 1.

The condition (11) is also sufficient. Assume that it holds, and let

u(z) = ¢1 sin(QVr — 1z) + co cos(QVr — 1x) + ¢3 + & (x—r).

1—r
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If u(z) is an eigenfunction, then we have already proved above that ¢; = 0 and

1
cy = — ! u(1), O — :7‘_1u(1)7

r—1

and by (11),

c1sin(QVr — 1) +cacos(QVr —1) = c17QVr — 1cos(QVr — 1) + ¢z cos(QV/r — 1)

= cos(QVr — H{earrQVr — 1+ ¢} = 0.

Since cos(Qv/r — 1) # 0, this is reduced to

aVr—1= ! u(1), Ccy = — Tlu(l),
r— r—

1
O=crQVr—14+co=r- ey (1)—ri1u(1):0,

which is fulfilled for whatever the choice of u(1). If we choose e.g. u(1) = 1, then we obtain the
corresponding generating eigenfunction

_sin(Qyr — 1) r "1 ! x—r
UQ(.’I?)—Q(T_l)m—T_lCOS(Q\/'I‘ 1 )+1—r( ).
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2.5+

¥1.5+

0.57

2) Now let » = 2. Then (9) is written in the form

tan Q = 29.

By a graphical consideration we see that there is precisely one solution in the interval ]0, 7/2[, and
since

e T
tan— =1<2. - =
an4 1

T

3

the solution must even lie in the interval |7 /4, 7/2[.

We shall now find the zero in |7 /4, 7/2[ of the function
F(2) = 2QcosQ — sin Q.

Here we apply Newton-Raphson iteration . From
F'(Q) =2cos Q — 2Qsin Q — cos Q = —2Qsin Q + cos Q,

follows that the iteration formula becomes

B F(Q,) Q 29, cos 2, —sin (),
Fr(Q,) " 2Q,sinQ, —cosQ,’

Q71—0—1 = Qn
Thus with the initial value Q; =1,
Qo =1,209282, Q3 = 1,167398, Q4 = 1,165565, 25 = 1, 165561,

hence Q ~ 1, 1656.

70
Download free eBooks at bookboon.com



Examples of Eigenvalue Problems Nontypical eigenvalue problems

3) Let us return to the equation (9),

tan(Qvr — 1) = rQvr — 1.

If we put x = /r — 1, then ©z — 0+ for r — 14.

Let p(u) = tanu, p(0) = 0. Then

¢'(u) = 1+tan?u, ©'0)=1
©"(u) = 2tanu(l+ tan®u), ©"(0) =0,
©®0) = 2(1+tan®u)? +tanu-{---}, ©®(0) =2,

so by a Taylor expansion,
p(u) =tanu = u + %u3 +ube(u).

Then put u = Qoy/r — 1 > 0. It follows from (9) that
POV T = tan( V7 — 1) = Qo7 — T+ 2 QT — 10— 1) + (Vi 1Ps(vr —1).

When this equation is divided by Qov/r — 1 > 0, then
r=1+ %Qo(r — 1)+ (r—1De(vr—1),

hence by a rearrangement,
Q- (r—1)=3(r—1)+ (r—1Le(vr—1).

This equation is then divided by r» — 1 > 0. This gives
Qo(r)? =3+e(Vr—1),

hence by taking the limit,

Q = lim Qo(r) = V3.

4) If we put r = 1, the eigenvalue problem is reduced to
u® 4+ Qu(1) =0, zel0,1], u(0)=1u'(0)=u"(1)=0.

If we again just consider u(1l) as a constant, the corresponding homogeneous equation becomes
u®) = 0, the complete solution of which is

u(x) = o1 + c3x + 4.
This should inspire us to guess on the structure of the solution

u(x) = 122 4 cox? + esr + ¢y
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of the original equation. We see that
u(l) =c1 + o+ c3+cq.
If we put this function u(x) into the differential equation (thus testing it), we get
u® + Q?u(1) = 6cy + Q%(cq + o + 3 +cq) = 0.
Furthermore,
u' () = 3c12” + 2co1 + c3, v () = 6c1a + 2¢s.
Then by the boundary conditions,
w0)=0=cq, v(0)=0=c3, u"(1)=6c1+2c2=0.
Now, c3 = ¢4 =0, so
u(z) = c12® + cox?,
where ¢1, ¢o and u(1) satisfy
c1 4o —u(l) =0, (% +6)c; + Q% =0, 6c1 + 2¢o = 0.

We find the eigenvalues which this system is singular. We see that u(1) = ¢; + ¢2 only occurs in
the first equation. Hence, the condition becomes

3 02
1 1

0246 02 )
6 ) =4(3 - 0?),

0:‘ 4 2

_‘6 0?

thus Q2 = 3. From Q > 0 follows that Q = /3, which was already indicated in 3).

Now let Q = /3. We shall now express ¢; and ¢y by u(1). The equations

1
c1+ co = u(l) 1= _5 u(1)7
imply
- 3
301 + C2 0, cy = 5 U(].)

For £ = v/3 the only eigenfunctions are

u(r) = —% u(l)a® + gu(l):zc2 = @ 2?3—-=z), zel0,1].

It is left to the reader to test this solution, i.e. prove that the obtained function u(x) is an eigenfunction
for r = 1 corresponding to Q = /3.

The eigenvalue problem of this example is of a type, which is usually not included in the textbooks.
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Example 3.2 In some cases one may also be forced to use the power series method in eigenvalue
problems. We shall here illustrate this in a (very big and complicated) example.

Consider the eigenvalue problem

Py dy

y(0) =y'(0) =¢"(\) =y""(}) =0.

This is the model equation of the bending of a vertical thin column of length A, clamped in one end and
under the influence of the weight of the column. One wants to find the smallest positive eigenvalue .

1) First inspect the equation. Since

d dy | d’y  dy
s{o-oft-u-0f- 2

the differential equation is also written

dy d dy
— — A _— — pr—
dx4+d:1: {( m)dac}
This can immediately be integrated,

—+(\—2)-"= =c, c arbitraer.
X X

EXPERIENCE THE POW
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2) The determination of ¢ by using the boundary value y”’(\) = 0 follows from the equation
c=y"(\)+ A=Ay (A) =0.

The problem is then reduced to the simpler homogeneous equation

d d
which is a camouflaged differential equation of second order in d—y We therefore put z = d—y, SO
x x

d?z

@‘F()\—I)Z:O,

where the boundary values for z are
2(0)=%'(0)=0 and 2'(\)=y"(\)=0.

Remark 3.1 We have already applied the boundary value y"”’(\) = 2”(\) = 0, and we see that it
now also follows from the equation. Furthermore, y(0) = 0 is not at all relevant for z = y/'.

3) Change of variable. The factor A — x is annoying, so we change the variable to t = A — z. If we
put

u(t) = z(x), thus u(A —z) = z(x),
then the equation is transferred into

d2
Eg +tu(t) =0 where u(X\) =0 and u'(0) = 0.

4) We shall neglect the boundary condition u(\) = 0 for a while, when we find a power series solution
of this equation. We shall later come back to the condition u(\) = 0. It follows from «’'(0) = 0
that a; = 0. By inserting the formal power series

oo d2u o
u(t) = Z apt™ and i Z n(n —1)a,t" 2
n=0 n=2
into the differential equation we get
0 = el + tu(t) = z n(n — 1at" 2% + Z ant" "t = Z(n +2)(n 4+ Dagp4ot™ + Z Ap_1t"
n=2 n=0 n=0 n=1

202+ Y {(n+2)(n+ 1)antz + an_1}t".

n=1

Then we get by the identity theorem that as = 0 (we have already proved that a; = 0), and for
n € N (the summation domain)

(n+2)(n+1)apse +apn—1=0 for n € N.
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This is by n +— n + 1 transformed to
(n+3)(n+2)apis +a, =0 for n € Ny.

There is a leap of 3 in the indices, hence we conclude by induction from a; = 0 and as = 0 that
a3n+1 =0 and agpi2 =0 for n € Np.

We can now write the power series solution in the form

=Y = 3 b
n=0 n=0
where the recursion formula for as, = b, is obtained by n +— 3n, thus
(3n+ 3)(3n + 2)asp43 + asn, = 0, n € Ny,
SO
1

brt1 Z—m bn, b, = azn, n € Np.

The radius of convergence for by # 0 (and hence for b, # 0) and ¢ # 0 is found by the criterion
of quotients

— 0 for n — oo.

ana ()] _ [baia[[HFD
an(t) EAIEER (Bn+3)(3n + 2)

It follows that the series is convergent for every ¢ € R, and that o = oo

Since we are actually considering a boundary value problem, the coefficients ag = by # 0 are
“free”. We choose ag = by = 1. Then by induction,

bn:a?m— H3]+1 n € N.

We have now proved that

(12) Z—z =z(x)=uA—2) = Z azn(A — )%, r € R,

where we have found as,, in (4). The function cannot be expressed by elementary functions. It
can, however, be termwise integrated. Since y(0) = 0, we get by termwise integration and a
rearrangement that

y(@) = = iaz’m/ox( A—t)>rdt = Za?m [—

_ —  a3n 3n+1 a3n 3n+1
= _T8n N N By
n;) 3n+1 T; i A G R

which is the structure of the eigenfunctions, if only we can find the eigenvalues.

()\ _ t)3n+1

0
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6) We still miss to find the smallest (positive) A = A.;j¢, for which we have a proper solution, i.e.
where ag # 0. Here we use the boundary condition ¢’ (0) = 0, thus by (12),

y'(0) = Z azn A" =0 where ag = 1.
n=0

This transcendent equation is solved approximatively in the following way:

We write for convenience n = A3, and then we find successively the smallest root of each of the
polynomials

P,(n) = Zagknk, n € N.
k=0

Since the as, have alternating signs, the possible real roots can only be positive. The first poly-
nomials may only have complex roots, but if two succeeding polynomials P, () and P,,11(n) have
here (smallest) real roots 7, and 7,41, then every following polynomial P, ,,(n) will also have a
(smallest) real root 7,1, Since as, is alternating, it is easy to prove that 7,4, m > 1, always
lies between 7,, and 7,41, so we get a convergent sequence. The following numerical computations
show that the convergence is very fast.

7) Numerical computations. No text needed.

1
n=1 Pl(n):1—3—2777 m=6 and X\ =V6=1,81712.
_ _ n n _ _ _
n=2 Pg(n)_1—6<1—ﬁ), e =8,29180 and My = /75 = 2,02403.
n=3 Pg(n):l—g@—%(l—%)), ns = T,814712 and A3 = &1 = 1,98444.
- =1 (-5 (-5 (- 5))
—4:. P =1-T(1-L (-1 (1-
" 1) 6 30 72 12.11/))°

na = 7,838213 and Mg = ¥/ns =1,98643.

n=>5: P5(77)=1—g (1—?:7_0 (1_% (1_1733_2 (1_ 157'714))>> ’

ms =17,837325 and A = /15 = 1,98635.

and for n = 6,

=12 (1 5 (-2 (1 2 (- - ).

ne =7,837348 and A = /7 = 1,98635.

It follows that A5 = g = 1,98635 is an estimate of A ;4 with 5 decimals. This result is obtained
after six iterations.
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Example 3.3 Find the complete solution of the homogeneous system

i) -0 3) ()

We can solve this example in many ways. Here we shall give three variants.

1) The eigenvalue method. The eigenvalues are the roots of the characteristic polynomial

‘ TN ‘:(/\—1)(/\+3)—5:)\2+2)\—8:()\+1)2—9,
thus
2,
A=—1+3= { o

a) If A = 2, then we get the matrix

()= 5)

and we conclude that an eigenvector can be chosen as e.g. (5,1).
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b) If A = —4, we get the matrix

1-A S
1 -3-A

(1)

and we can choose the eigenvector (1, —1).

Summing up the complete solution is

1\ (5 e 1\ [ B e % c1
(1) (2o (1)-(5 2

2) The fumbling method. We write the system of equations,

d
%—.’El—f—f)l'g,
%:.’51731’2

It follows from the latter equation that

dx
(13) xr1 = d—tQ +3£C2,

so by insertion into the former,

dl’l - d2(L'2 dl’g

d
+3—:m1+5x2:ﬁ+8m2.

At dr? dt
Then by a rearrangement,

d2$2 dl’g

dt? dt

+2—— —8z2 = 0.

dt

The characteristic equation R? + 2R — 8 = 0 has the roots R = 2 and R = —4, so

Ty = 02e2t + cze_4t.

If this is put into (13), then

dl‘g

T = —= + 319 = (2c1€%" — 4626_4t) + (381€2t + 3coe™) = 5epe?t — cpe .

dt

Summing up we have

1\ _ [ Bepe?t —cgem [ 5e*t —e % c1
9 12t + coe™ M et e co

3) The exponential matrix. The characteristic polynomial is

A+1)2 -9

Then we get by Caley-Hamilton’s theorem,

(A+1)2 —91=0, dvs. B> =9I, where B=A + 1
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Since I trivially commutes with A, we get
exp(At) = exp((B-— =e” eXp(Bt)

n=0

{
.

cosh(3t)I + = smh(3t) }

1
2n 2n 2n+1,2n+1
2 4 § o B2
(2n+ 1) }

1 0 2 5
cosh(3t) (O 1) 3smh(3t)<1 2)}

_ 1 _¢ { 3cosh3t+ 2sinh 3t 5sinh 3¢

- 3¢ sinh 3¢ 3 cosh 3t — 2sinh 3t
1 _, [ 3e43e 3423t —2¢ 5t 5e3t — 5e—3t

= g e3t _ =3t 3e3t 433t —e3t 4 93t
1 5edt 43t Bedt _5e—st

= 6 e3t _ =3t @3t 4 5e—3t

67415 €2t+5€74t

(=]

1 <5€2t+6_4t 5€2t—5€_4t)

Hence the complete solution is

7\ _, 5e2t e 4t L 5e%t —5e 4t
T — ¢ o2t _ o4t 2 62t+5e—4t .

Example 3.4 Prove that A = 3 is an eigenvalue for the eigenvalue problem

dzy dy 2
_ o2 _ = 1 = 1
LT @9 +6Ny =0, wel01, y(0)=0, y(1)

and find a corresponding eigenfunction.

If we immediately put A = 3, then

dQZ/ dy 2
- -= = 1 = 1) =0.
T3 0+ O+m)y=0, =01, y(0)=0, y1)=0

The characteristic polynomial
R?> —6R+9+72=(R—-3)*+7°

has the roots 3 4+ im, and the complete solution is
y = 1% cos(mz) 4 o3 sin(ma).

It follows from the the boundary conditions that

y(0)=c1 =0 and y(1) = —e3¢; =0,

)
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so ¢; = 0, and ¢o can be chosen arbitrarily. We get a corresponding eigenfunction by ¢; = 0 and
Co = 1,

y(x) = 3% sin(rx), x €[0,1].

Remark 3.2 The example is tricky, because if one does not immediately put A = 3, then we get the
characteristic polynomial

R? —2\R+ 7 — 9 + 6,
the (real or complex) roots are
R=A+VXN2—m2+9-6x=A+/(A—3)2— 72

The complete solution is for A # 3 + 7 in a complex form

y = crexp((A+ V(A —=3)2 —72)x) + caexp((A — V(A —3)2 —72)x)

= M {01 exp(v/ (A —3)2 =2 x) + caexp(—+/ (A — 3)3 — 72 x)} .
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If we put x = 0, then y(0) = 0 gives that co = —¢;. If ¢; = 1, then it follows from y(1) = 0 that
exp(v/ (A —3)2 = 72) —exp(—+/ (A —3)2 = 72) =0,

thus
exp(2y/(A — 3)2 — 72) = 1 = %™, p € L.

Hence
2y/ (A= 3)%2 — w2 = 2ipm, thus /(A —3)2 — w2 =ipm, peZ.

In particular we must have (A — 3)2 < 72, thus —m +3 < XA < 7 + 3, and
A=3)3=(1—-pHr*>0.

The only possibility is p = 0, where A =3 + 7, and p = +1, where A\ = 3.

We have already checked A = 3.

If A =3+, then X\ is a double root in characteristic polynomial, and the complete solution is
y = c1e™ + cpe™”, A=3=+m.

It follows from y(0) = 0 that ¢; = 0 and y(1) = 0 we get co = 0, and none of these possible values is
an eigenvalue.

We have with this additional remark shown that A = 3 is the only eigenvalue of the problem.

Example 3.5 Consider the eigenvalue problem

d’y | dy

— 4+ A=—-A+1y=0 € 10,1 1)=0 '(0) = 0.

Tz TAT A+ ly=0, z€[0,1], y(1)=0, ¥(0)
Prove that A = —2 is an eigenvalue and find a corresponding eigenfunction.
First variant. If we immediately put A = —2, then we obtain

Py dy

— —2— =0.

dx? dx +y

The characteristic equation R? — 2R + 1 = (R — 1) = 0 has the double root R = 1, so the complete
solution is

y = ae” + bxe” where i = (a + b)e” + bze”.
It follows from the boundary values that

{ y(1) = (a+b)e =0,
y'(0) =0,

which are satisfied if a +b = 0, e.g. if a = 1 and b = —1. This proves that A = —2 is an eigenvalue
and that a corresponding eigenfunction is

y=e" —ze® =(1—x)e”, x €[0,1].
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A check shows that the conditions indeed are satisfied.

Second variant. If one does not start by putting A = —2, then we must go through the following
considerations: The general characteristic equation

RP4AR-A+1)=(R+X+1)(R-1)=0

has the roots R=1and R = -\ — 1. If A = —2 we get the double root R = 1. If A # —2 the roots
are simple.

If A # —2, the complete solution is
y =ae® +be~MVT where yf = ae® — (A + 1)be” A1z,
It follows from the boundary values that

y(1) = ae +be 21 =0,
Y(0)=a—-A+1)b=0,

which we write in form of a matrix

(5 ) (5)-(0)

If X # —2, the eigenvalues are those values for which the matrix is singular, hence
—A-1

PN = ~(A+1)

’ = —e(A+1)—e D =,

It follows from
P\ =—ete MY =¢ {e’“*z) - 1} ,
that ¢’(A) = 0 for A = —2, corresponding to a (global) maximum
O(=2) = —e(=2+1) —e T2 —¢ _ e =0,
hence () is only zero at the exceptional value A = —2, and no A # —2 is an eigenvalue.

If A = —2, we just repeat the first variant, and we see that A = —2 is the only eigenvalue and a
generating eigenfunction is

y(x) = (1 —x)e”, x €[0,1].
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Example 3.6 Consider the eigenvalue problem

Py dy )
oz 2, TNy =0, w01, y(0)-y'(0)=y(1) =0.

2

™
Prove that A\ = T is an eigenvalue and find a corresponding eigenfunction.

2
If we immediately put A = %, then we get the characteristic equation

2 m?
R _2R+1+Z:0’

the solutions of which are R=1+1 g Then we get the complete solution
. T v . TT
Yy = ce 0057 + coe sm?

where

’—(c +7Tc)e””cos7m+<c ﬂc)ezsinﬂx
Yy = 1 22 D) 2 21 9

Then by the boundary conditions,
y(l)=co-e-1=0, thus ¢o = 0,

and
T

™
y0) =y (0 =c1 = (a+Fe) =—Fe2=0,

so co = 0, and ¢, is arbitrary.

2

™
It follows that A = T is an eigenvalue and that a corresponding eigenfunction is obtained for c; = 0

and e.g. ¢; = 1, hence
T
=e" cos —.
Y 2

Remark 3.3 It is possible to prove that all eigenvalues are given by

1\ 2
)\n_wg(n—FE) , n € Ny

with the corresponding generating eigenfunctions

on(z) = cos(y/Anz) = co8 (w <n ; %) x)  neM
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Example 3.7 Consider the eigenvalue problem

d?y dy
—2+(/\+3)%+3)\y:0, 126[0,1],

5y(0) +¢'(0) = y(1) +4'(1) = 0.

Prove that A = 3 is an eigenvalue and find a corresponding eigenfunction.

If we immediately put A = 3, then we get the simpler equation,

Py dy

- J -7 — 1

d:r2+6dx+9y 0, x €10,1],

the characteristic equation of which R? + 6R + 9 = (R + 3)? = 0 has the double root R = —3. The
complete solution is

y=cre 3% 4+ coxe 3
where
d
d—y = (=3¢ + c2)e 3" — 3coze ™",
T
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By insertion into the boundary conditions we get
5(0) + ' (0) = 5¢1 — 3¢1 + ¢ = 2¢1 + ¢ =0,
and
y(1) +4/(1) = 673{61 +co—3c1 + e — 3} = 7673(261 +c)=0.

These two conditions are simultaneously fulfilled if and only if co = —2¢;, where ¢; can be chosen
arbitrarily. We conclude that A = 3 is an eigenvalue and that a corresponding eigenfunction is obtained
be e.g. choosing ¢; =1,

y(r) = 3% — 22737 = (1 — 22)e 3",

Example 3.8 Consider the eigenvalue problem

%—(AH)%%;,:O, = {o,g},
w(0) ~'(0) =3y (3) - v (3) =0

1) Prove that A = 2 is an eigenvalue and find all its corresponding eigenfunctions.

2) Is y = €2* cos (x + %) , x € [0, g] , an eigenfunction corresponding to the eigenvalue A = 27

1) If we put A = 2, then we get the differential equation

Py dy

— —4—=+5y=0
dz? dx oy

with constant coefficients. The characteristic equation
R~ 4R+5=(R—-2*+1=0

has the two simple complex conjugated roots R = 2 £ ¢. The complete solution is

y = c1e*® cosx + coe** sin z.
Then by a differentiation,
y'(z) = 2¢1€%® cosx — 127 sinx + 2¢9€%* sinz + c9e2® cosx
= (2c1 4+ c2)e*"cosx + (2¢2 — ¢1)e*F sin .
When we put these into the boundary conditions, we get

ZU(O) - y’(O) = — (201 + 62) =—C —C = —(C1 + Cz) =0,

0 ™
3y (5) -y <5> = 3c2e™ — (2c2—c1)e” = (¢1 + c2)e™ = 0.
We obtain the eigenfunctions when co = —cq, hence the eigenfunctions are c¢; times the generating
eigenfunction

1 1 s
= —sinz) = V2 —= — —= si = V2e ( _)
x) = e (cosx —sinx 2 cosx sin x 2e“"cos |z + .

85
Download free eBooks at bookboon.com



Examples of Eigenvalue Problems Nontypical eigenvalue problems

1
2) If we choose ¢; = —, we get the eigenfunction
V2
1 9 ( T
— yo(z) = " cos m—l——),
7 Yo(z) 1

4

and we see that the answer is “yes”.
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