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Preface

Preface
The series of elementary algebra exercise books is designed for undergraduate students with any 
background and senior high school students who like challenging problems. This series should be useful 
for non-math college students to prepare for GRE general test – quantitative reasoning and GRE subject 
test – mathematics. All the books in this series are independent and helpful for learning elementary 
algebra knowledge.

The number of stars represents the difficulty of the problem: the least difficult problem has zero star 
and the most difficult problem has five stars. With this difficulty indicator, each reader can easily pick 
suitable problems according to his/her own level and goal.
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Real numbers

1 Real numbers
1.1 Compute 

1
2

1 + 1
2

+
1
3

(1 + 1
2
)(1 + 1

3
)
+ · · ·+

1
2001

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

.

Solution: This quantity is equal to 
1
2

1 + 1
2

+
1
3

(1 + 1
2
)(1 + 1

3
)
+· · ·+

1
2001

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)
+

1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

− 1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)
= 1− 1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

= 1− 1
3
2
× 4

3
× · · · × 2001

2000
2002
2001

= 1− 1

1001
=

1000

1001

1
2

1 + 1
2

+
1
3

(1 + 1
2
)(1 + 1

3
)
+· · ·+

1
2001

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)
+

1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

− 1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)
= 1− 1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

= 1− 1
3
2
× 4

3
× · · · × 2001

2000
2002
2001

= 1− 1

1001
=

1000

1001

 

1
2

1 + 1
2

+
1
3

(1 + 1
2
)(1 + 1

3
)
+· · ·+

1
2001

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)
+

1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

− 1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)
= 1− 1

(1 + 1
2
)(1 + 1

3
) · · · (1 + 1

2001
)

= 1− 1
3
2
× 4

3
× · · · × 2001

2000
2002
2001

= 1− 1

1001
=

1000

1001
.

1.2 If p, q  are prime numbers and satisfy 5p+ 3q = 19 . Compute the value of 
1

√
q −√

p
.

Solution: The equation 5p+ 3q = 19  implies that one of p, q  is even. Since p, q  are prime numbers  

and the only even prime number is 2, we have two possibilities: if q = 2 , then p = 13/5 , not a prime 

number, so this case is impossible; if p = 2, then q = 3 , thus 
1

√
q −√

p
=

1√
3−

√
2
=

√
3 +

√
2 .

1.3 Solve |x|+ x+ y = 10 and x+ |y| − y = 12  for x, y .

Solution: It is easy to figure out that x ≤ 0 or y ≥ 0  are impossible. Thus x > 0  and y < 0  which 
lead to x = 32/5, y = −14/5 .

1.4 Given (4a3 − 1004a− 1001)1001 = 1+
√
1001
2

, compute the value of (4a3 − 1004a− 1001)1001 .

Solution: (4a3 − 1004a− 1001)1001 = 1+
√
1001
2

⇒ 2a− 1 =
√
1001 ⇒ 4a2− 4a− 1000 = 0 ⇒ (4a3− 1004a− 1001)1001 =

[(4a3 − 4a2 − 1000a) + (4a2 − 4a− 1000)− 1]1001 = (0− 0− 1)1001 = −1

 = 1+
√
1001
2

⇒ 2a− 1 =
√
1001 ⇒ 4a2− 4a− 1000 = 0 ⇒ (4a3− 1004a− 1001)1001 =

[(4a3 − 4a2 − 1000a) + (4a2 − 4a− 1000)− 1]1001 = (0− 0− 1)1001 = −1.

1.5 If a, b, x  are real numbers and (x3 +
1

x3
− a)2 + |x+

1

x
− b| = 0. Show b(b2 − 3) = a .

Proof: Since a, b, x  are real numbers, the equation implies that a, b, x3 + 1
x3 = a  and a, b, x  + 1

x
= b . Hence, 

a = x3 +
1

x3
= (x+

1

x
)(x2 − 1 +

1

x2
) = (x+

1

x
)[(x+

1

x
)2 − 3] = b(b2 − 3).

1.6 If the real numbers a, b, c  satisfy a = 2b+
√
2  and +

√
3
2
c2 + 1

4
= 0 . Evaluate bc/a .

Solution: Substitute a = 2b+
√
2  into ab+

√
3
2
c2 + 1

4
= 0 , then 2b2 +

√
2b+ (

√
3

2
c2 +

1

4
) = 0. 

Since b  is a real number, ∆b = (
√
2)2 − 4× 2× (

√
3

2
c2 +

1

4
) = −4

√
3c2 ≥ 0 , that is c2 ≤ 0. On 

the other hand, c  is a real number, thus c2 ≥ 0. As a conclusion, c = 0 , therefore bc/a = 0 .

1.7 Compute 
1

1024
+

1

512
+

1

256
+ · · ·+ 1

2
+ 1 + 2 + 4 + · · ·+ 1024.
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Solution: Since 
1

1024
= 1− 1

2
− 1

4
− 1

8
− · · · − 1

1024
, the original sum is equal to 1 − 1

2
− 1

4
− 1

8
− · · · − 1

1024
+

1

512
+

1

256
+ · · · + 1

2
+ 1 + 2 + 4 + · · · + 1024 =

1− 1

1024
+ 1 + 2 + 4 + · · ·+ 1024

 

1 − 1

2
− 1

4
− 1

8
− · · · − 1

1024
+

1

512
+

1

256
+ · · · + 1

2
+ 1 + 2 + 4 + · · · + 1024 =

1− 1

1024
+ 1 + 2 + 4 + · · ·+ 1024

 

1 − 1

2
− 1

4
− 1

8
− · · · − 1

1024
+

1

512
+

1

256
+ · · · + 1

2
+ 1 + 2 + 4 + · · · + 1024 =

1− 1

1024
+ 1 + 2 + 4 + · · ·+ 1024 

1 − 1

2
− 1

4
− 1

8
− · · · − 1

1024
+

1

512
+

1

256
+ · · · + 1

2
+ 1 + 2 + 4 + · · · + 1024 =

1− 1

1024
+ 1 + 2 + 4 + · · ·+ 1024 . 

Let S = 1 + 2 + 4 + · · ·+ 1024  denoted as (i), then 2S = 2 + 4 + 8 + · · ·+ 2048  denoted as 
(ii). (ii)-(i) ⇒ S = 2048− 1 = 2047 . Hence, the original sum is 1− 1

1024
+ 2047 = 2047

1023

1024
.

1.8 If the prime numbers x, y, z  satisfy xyz = 5(x+ y + z) , find the values of x, y, z .

Solution: xyz = 5(x+ y + z)  implies that at least one of the three prime numbers is five. Without 
loss of generality, let x = 5 , then the equation becomes yz = 5 + y + z , that is, (y − 1)(z − 1) = 6  . 
Since 6 = 2× 3 = 1× 6 , there are two possibilities (without considering the order of y  and z ): 
(1) y = 3, z = 4; (2) y = 2, z = 7. The case (1) is inappropriate since z = 4 is not a prime number. 
Therefore, the three prime numbers are 2, 5, 7.

1.9 Simplify 
2
√
6− 1√

2 +
√
3 +

√
6

.

Solution: Let 
√
2 +

√
3 = a , and take square to obtain 2

√
6 = a2 − 5 , thus 

2
√
6− 1√

2 +
√
3 +

√
6
=

a2 − 5− 1

a+
√
6

=
(a+

√
6)(a−

√
6)

a+
√
6

= a−
√
6 =

√
2 +

√
3−

√
6.

1.10 If a > 1, b > 0 and ab + a−b = 2
√
2 , evaluate ab − a−b .

Solution: ab + a−b = 2
√
2 ⇒ (ab + a−b)2 = 8 ⇒ a2b + a−2b = 6 . Thus 

(ab − a−b)2 = a2b − 2 + a−2b = 6− 2 = 4 ⇒ ab − a−b = ±2 .  
The conditions a > 1, b > 0 imply that ab − a−b > 0 . As a conclusion, ab − a−b = 2 .

1.11 Find the integer part of A = 11×70+12×69+13×68+···+20×61
11×69+12×68+13×67+···+20×60

× 100.

Solution: A = 11×69+12×68+13×68+···+20×60
11×69+12×68+13×67+···+20×60

× 100

+ 11+12+13+···+20
11×69+12×68+13×67+···+20×60

× 100

= 100 + 11+12+13+···+20
11×69+12×68+13×67+···+20×60

× 100

 
= 11×69+12×68+13×68+···+20×60

11×69+12×68+13×67+···+20×60
× 100

+ 11+12+13+···+20
11×69+12×68+13×67+···+20×60

× 100

= 100 + 11+12+13+···+20
11×69+12×68+13×67+···+20×60

× 100
  

= 11×69+12×68+13×68+···+20×60
11×69+12×68+13×67+···+20×60

× 100

+ 11+12+13+···+20
11×69+12×68+13×67+···+20×60

× 100

= 100 + 11+12+13+···+20
11×69+12×68+13×67+···+20×60

× 100 .

Since 131
69

=
11 + 12 + 13 + · · ·+ 20

(11 + 12 + 13 + · · ·+ 20)× 69
× 100

<
11 + 12 + 13 + · · ·+ 20

11× 69 + 12× 68 + 13× 67 + · · ·+ 20× 60
× 100

<
11 + 12 + 13 + · · ·+ 20

(11 + 12 + 13 + · · ·+ 20)× 60
× 100 = 1

2

3

 
1
31

69
=

11 + 12 + 13 + · · ·+ 20

(11 + 12 + 13 + · · ·+ 20)× 69
× 100

<
11 + 12 + 13 + · · ·+ 20

11× 69 + 12× 68 + 13× 67 + · · ·+ 20× 60
× 100

<
11 + 12 + 13 + · · ·+ 20

(11 + 12 + 13 + · · ·+ 20)× 60
× 100 = 1

2

3

 

1
31

69
=

11 + 12 + 13 + · · ·+ 20

(11 + 12 + 13 + · · ·+ 20)× 69
× 100

<
11 + 12 + 13 + · · ·+ 20

11× 69 + 12× 68 + 13× 67 + · · ·+ 20× 60
× 100

<
11 + 12 + 13 + · · ·+ 20

(11 + 12 + 13 + · · ·+ 20)× 60
× 100 = 1

2

3
. 

Therefore the integer part of A  is 100 + 1 = 101 .

1.12 If a < b < 0 and a2 + b2 = 4ab, evaluate 
a+ b

a− b
.

Solution 1: a2 + b2 = 4ab ⇒ (a+ b)2 = 6ab . Since a < b < 0, a + b = −
√
6ab . Similarly, we can 

obtain a− b = −
√
2ab . Hence, a+ b

a− b
=

−
√
6ab

−
√
2ab

=
√
3 .
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Solution 2: Let a + b = x , a− b = y , then a + b = x= x+y
2
, b = x−y

2 . Substitute them into a2 + b2 = 4ab  
to obtain x2 = 3y2. Since x, y < 0 , then x =

√
3y , that is a + b =

√
3(a− b) . Thus a+ b

a− b
=

√
3  .

1.13 Given a, b, x  = (b
n

n+1 − a
n

n+1 )
n+1
n , compute the value of A =

n
√

xn +
n+1
√
anxn2 +

n
√

an +
n+1
√
xnan2 − b 

A =
n
√

xn +
n+1
√
anxn2 +

n
√

an +
n+1
√
xnan2 − b .

Solution: a, b, x = (b
n

n+1 − a
n

n+1 )
n+1
n ⇒ x

n
n+1 = b

n
n+1 − a

n
n+1 . Thus A =

n

√
x

n2

n+1 (x
n

n+1 + a
n

n+1 ) +
n

√
a

n2

n+1 (a
n

n+1 + x
n

n+1 ) − b =
n
√
x

n
n+1 + a

n
n+1 (

n

√
x

n2

n+1 +

n

√
a

n2

n+1 )− b =
n
√
x

n
n+1 + a

n
n+1 (x

n
n+1 + a

n
n+1 )− b =

n
√

b
n

n+1 − a
n

n+1 + a
n

n+1 (b
n

n+1 − a
n

n+1 +

a
n

n+1 )− b = b
1

n+1 b
n

n+1 − b = b− b = 0

 

A =
n

√
x

n2

n+1 (x
n

n+1 + a
n

n+1 ) +
n

√
a

n2

n+1 (a
n

n+1 + x
n

n+1 ) − b =
n
√
x

n
n+1 + a

n
n+1 (

n

√
x

n2

n+1 +

n

√
a

n2

n+1 )− b =
n
√
x

n
n+1 + a

n
n+1 (x

n
n+1 + a

n
n+1 )− b =

n
√

b
n

n+1 − a
n

n+1 + a
n

n+1 (b
n

n+1 − a
n

n+1 +

a
n

n+1 )− b = b
1

n+1 b
n

n+1 − b = b− b = 0

A =
n

√
x

n2

n+1 (x
n

n+1 + a
n

n+1 ) +
n

√
a

n2

n+1 (a
n

n+1 + x
n

n+1 ) − b =
n
√
x

n
n+1 + a

n
n+1 (

n

√
x

n2

n+1 +

n

√
a

n2

n+1 )− b =
n
√
x

n
n+1 + a

n
n+1 (x

n
n+1 + a

n
n+1 )− b =

n
√

b
n

n+1 − a
n

n+1 + a
n

n+1 (b
n

n+1 − a
n

n+1 +

a
n

n+1 )− b = b
1

n+1 b
n

n+1 − b = b− b = 0

 A =
n

√
x

n2

n+1 (x
n

n+1 + a
n

n+1 ) +
n

√
a

n2

n+1 (a
n

n+1 + x
n

n+1 ) − b =
n
√
x

n
n+1 + a

n
n+1 (

n

√
x

n2

n+1 +

n

√
a

n2

n+1 )− b =
n
√
x

n
n+1 + a

n
n+1 (x

n
n+1 + a

n
n+1 )− b =

n
√

b
n

n+1 − a
n

n+1 + a
n

n+1 (b
n

n+1 − a
n

n+1 +

a
n

n+1 )− b = b
1

n+1 b
n

n+1 − b = b− b = 0

A =
n

√
x

n2

n+1 (x
n

n+1 + a
n

n+1 ) +
n

√
a

n2

n+1 (a
n

n+1 + x
n

n+1 ) − b =
n
√
x

n
n+1 + a

n
n+1 (

n

√
x

n2

n+1 +

n

√
a

n2

n+1 )− b =
n
√
x

n
n+1 + a

n
n+1 (x

n
n+1 + a

n
n+1 )− b =

n
√

b
n

n+1 − a
n

n+1 + a
n

n+1 (b
n

n+1 − a
n

n+1 +

a
n

n+1 )− b = b
1

n+1 b
n

n+1 − b = b− b = 0 .

1.14 If x, y  are positive integers and satisfy 25 × xy = 25xy  where 25xy  is one number instead of a 

multiplication, find the values of x  and y .

Solution: Since 25  is an even number, 25xy  is even, thus y  can only be 2, 4, 6, 8. When y = 2 , we 
consider two cases: If x < 9 , then 25x2 ≤ 25 × 82 = 2048  not in the structure of 25xy ; If x = 9 , 
we have 25 × 92 = 2592  within the structure of 25xy . Hence, x = 9, y = 2  satisfy all the conditions. 
Similarly we can discuss the cases y = 4, 6, 8 , and we find that no x  value satisfies all the conditions.

1.15 The real numbers a, b, c  satisfy a2 + b2 + c2 = 9 , what is the maximum of 
(a− b)2 + (b− c)2 + (c− a)2? 

Solution: (a − b)2 + (b − c)2 + (c − a)2 = 2(a2 + b2 + c2) − (2ab + 2bc + 2ca) = 3(a2 + b2 +
c2)− (a+ b+ c)2

 
(a − b)2 + (b − c)2 + (c − a)2 = 2(a2 + b2 + c2) − (2ab + 2bc + 2ca) = 3(a2 + b2 +

c2)− (a+ b+ c)2

(a − b)2 + (b − c)2 + (c − a)2 = 2(a2 + b2 + c2) − (2ab + 2bc + 2ca) = 3(a2 + b2 +
c2)− (a+ b+ c)2 . Since a, b, c  are real numbers, (a + b+ c)2 ≥ 0 . In addition, a2 + b2 + c2 = 9 . 

Thus (a− b)2 + (b− c)2 + (c− a)2 ≤ 3(a2 + b2 + c2) = 3× 9 = 27 . The maximal value is 27.

1.16 x, y  are positive real numbers and 
1

x
− 1

y
− 1

x+ y
= 0 , what is the value of 

(y
x

)3

+

(
x

y

)3

? 

Solution: 1

x
− 1

y
− 1

x+ y
= 0 ⇒ y − x

xy
=

1

x+ y
⇒ y

x
− x

y
= 1 , thus y

x
+

x

y
=

√(
y

x
− x

y

)2

+ 4
y

x

x

y
=

√
5 

y

x
+

x

y
=

√(
y

x
− x

y

)2

+ 4
y

x

x

y
=

√
5. Therefore, 

(y
x

)3

+

(
x

y

)3

=

(
y

x
+

x

y

)(
y2

x2
− y

x

x

y
+

x2

y2

)
=

(
y

x
+

x

y

)[(
y

x
+

x

y

)2

− 3
y

x

x

y

]
=

√
5(5− 3) = 2

√
5

 

(y
x

)3

+

(
x

y

)3

=

(
y

x
+

x

y

)(
y2

x2
− y

x

x

y
+

x2

y2

)
=

(
y

x
+

x

y

)[(
y

x
+

x

y

)2

− 3
y

x

x

y

]
=

√
5(5− 3) = 2

√
5

 

(y
x

)3

+

(
x

y

)3

=

(
y

x
+

x

y

)(
y2

x2
− y

x

x

y
+

x2

y2

)
=

(
y

x
+

x

y

)[(
y

x
+

x

y

)2

− 3
y

x

x

y

]
=

√
5(5− 3) = 2

√
5 .

1.17 Let x, y, z  are distinct real numbers, and x, y, z+ 1
y
= y + 1

z
= z + 1

x , show x2y2z2 = 1.

Proof: The conditions imply that x, y, zx, y, z = y−z
x−y

, xz = z−x
y−z

, xy = x−y
z−x . Multiply them together to obtain 

x2y2z2 = 1.

1.18 �  Given 2x+ 6y ≤ 15, x ≥ 0, y ≥ 0 , find the maximum value of 4x+ 3y .
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Solution: 2x+6y ≤ 15 ⇒ y ≤ 5

2
− 1

3
x ⇒ 4x+3y ≤ 4x+

15

2
−x = 3x+

15

2
⇒ 5

2
− 1

3
x ≥ y ≥ 0, 

thus 4x+ 3y ≤ 3× 15

2
+

15

2
= 30. The maximum value is 30.

1.19 �  Given x+ y = 8 , xy = z2 + 16 , find the value of 3x+ 2y + z .

Solution 1: Let x = 4 + t, y = 4− t , substitute into xy = z2 + 16 : 16− t2 = z2 + 16 , which leads 
to t = z = 0, then x = y = 4 , thus 3x+ 2y + z = 12 + 8 + 0 = 20 .

Solution 2: Treat x, y  as two roots of the equation u2 − 8u+ z2 + 16 = 0. ∆ = 64− 4z2 − 64 ≥ 0 ⇒ 4z2 ≤ 0 ⇒ z = 0 ⇒ u2 − 8u+ 16 = 0 ⇒ (u− 4)2 = 0 ⇒
u1 = u2 = 4

 
∆ = 64− 4z2 − 64 ≥ 0 ⇒ 4z2 ≤ 0 ⇒ z = 0 ⇒ u2 − 8u+ 16 = 0 ⇒ (u− 4)2 = 0 ⇒

u1 = u2 = 4
 

∆ = 64− 4z2 − 64 ≥ 0 ⇒ 4z2 ≤ 0 ⇒ z = 0 ⇒ u2 − 8u+ 16 = 0 ⇒ (u− 4)2 = 0 ⇒
u1 = u2 = 4, i.e. x = y = 4 .

1.20 �  Given x+ y + z = 0 , find the value of a, b, x( 1
y
+ 1

z
) + y( 1

x
+ 1

z
) + z( 1

x
+ 1

y
) .

Solution: a, b, x ( 1
y
+ 1

z
)+y( 1

x
+ 1

z
)+z( 1

x
+ 1

y
) = x( 1

x
+ 1

y
+ 1

z
)−1+y( 1

x
+ 1

y
+ 1

z
)−1+z( 1

x
+ 1

y
+ 1

z
)−1 =

( 1
x
+ 1

y
+ 1

z
)(x+ y + z)− 3 = 0− 3 = −3

 ( 1
y
+ 1

z
)+y( 1

x
+ 1

z
)+z( 1

x
+ 1

y
) = x( 1

x
+ 1

y
+ 1

z
)−1+y( 1

x
+ 1

y
+ 1

z
)−1+z( 1

x
+ 1

y
+ 1

z
)−1 =

( 1
x
+ 1

y
+ 1

z
)(x+ y + z)− 3 = 0− 3 = −3.

1.21 For a natural number n , let tn  be the sum of all digits in n , for instance, t2009 = 2 + 0 + 0 + 9 = 11, 
evaluate t1 + t2 + · · ·+ t2009.
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Solution: Let T = t1 + t2 + · · ·+ (2 + 0 + 0 + 8) + (2 + 0 + 0 + 9), and then reverse the order 
of right hand side to obtain T = (2 + 0 + 0 + 9) + (2 + 0 + 0 + 8) + · · ·+ 2 + 1 . Add up these 
two equalities to obtain 2T = [1+(2+0+0+9)]+[2+(2+0+0+8)]+· · ·+[(2+0+0+8)+2]+[(2+0+0+9)+1] =

12× 2009 ⇒ T = 12× 2009/2 = 12054
 

2T = [1+(2+0+0+9)]+[2+(2+0+0+8)]+· · ·+[(2+0+0+8)+2]+[(2+0+0+9)+1] =
12× 2009 ⇒ T = 12× 2009/2 = 12054

 

2T = [1+(2+0+0+9)]+[2+(2+0+0+8)]+· · ·+[(2+0+0+8)+2]+[(2+0+0+9)+1] =
12× 2009 ⇒ T = 12× 2009/2 = 12054.

1.22 Let a  be a positive integer, b  and c  are prime numbers, and they satisfy a = bc, 1
a
+ 1

b
= 1

c , find 

the value of a .

Solution: 1
a
+

1

b
=

1

c
⇒ 1

a
=

1

c
− 1

b
=

b− c

bc
. Since a = bc , we have b− c = 1 , thus c  and b  are 

two consecutive prime numbers, which has the only choice c = 2, b = 3, thus a = 6 .

1.23 �  Let x, y  are two natural numbers and they satisfy x > y, x+ y = 667. Let p  be the least 

common multiple of x  and y , let d  be the greatest common divisor of x  and y , and p = 120d . 

Find the maximum value of x− y .

Solution: Let x = md, y = nd , then m,n  should be coprime since d  is the greatest common divisor. 
x > y  implies m > n . p = mnd = 120d ⇒ mn = 120. In addition, (m+ n)d = 667 = 23× 29 = 1× 667 

(m+ n)d = 667 = 23× 29 = 1× 667 . Since 23 and 29 are coprime, there are only three possibilities: (1) m+ n = 23, d = 29 ; 
(2) m+ n = 29, d = 23 ; (3) m+ n = 667, d = 1 . Together with mn = 120, we have (1) 

m = 15, n = 8; (2) m = 24, n = 5; (3) no solution. Thus (m− n)max = 24− 5 = 19 which leads 

to (x− y)max = (24− 5)× 23 = 437.

1.24 If x, y, z  satisfy 3x+ 7y + z = 5  (i), 4x+ 10y + z = 39  (ii), find the value of 
x+ y + z

x+ 3y
.

Solution: (i)× 3− (ii)× 2 ⇒ x+ y + z = −63. (ii) − (i) ⇒ x+ 3y = 34 .  
Hence, x+ y + z

x+ 3y
= −63

34 
x+ y + z

x+ 3y
= −63

34
.

1.25 Given a = 3
√
4 + 3

√
2 + 1 , find the value of 

3

a
+

3

a2
+

1

a3
.

Solution: ( 3
√
2− 1)a = (

3
√
2− 1)(

3
√
4 +

3
√
2 + 1) = 2− 1 = 1 ⇒ 1

a
=

3
√
2− 1, thus 3

a
+

3

a2
+

1

a3
=

3a2 + 3a+ 1

a3
=

a3 + 3a2 + 3a+ 1− a3

a3
=

(
a + 1

a

)3

−1 =

(
1 +

1

a

)3

−
1 = 2− 1 = 1

 
3

a
+

3

a2
+

1

a3
=

3a2 + 3a+ 1

a3
=

a3 + 3a2 + 3a+ 1− a3

a3
=

(
a + 1

a

)3

−1 =

(
1 +

1

a

)3

−
1 = 2− 1 = 1

 

3

a
+

3

a2
+

1

a3
=

3a2 + 3a+ 1

a3
=

a3 + 3a2 + 3a+ 1− a3

a3
=

(
a + 1

a

)3

−1 =

(
1 +

1

a

)3

−
1 = 2− 1 = 1 .

1.26 a �= 0  is a real number, and 
x

x2 + x+ 1
= a , express 

x2

x4 + x2 + 1  as a function of a .

Solution: 
x

x2 + x+ 1
= a ⇒ x2 + x+ 1

x
=

1

a
⇒ x+

1

x
=

1

a
− 1 ⇒ x2 +

1

x2
= (

1

a
− 1)2 − 2 . 

Hence, x4 + x2 + 1

x2
= x2+

1

x2
+1 = (

1

a
−1)2−1 =

(1− a)2 − a2

a2
=

1− 2a

a2
⇒ x2

x4 + x2 + 1
=

a2

1− 2a

 
x4 + x2 + 1

x2
= x2+

1

x2
+1 = (

1

a
−1)2−1 =

(1− a)2 − a2

a2
=

1− 2a

a2
⇒ x2

x4 + x2 + 1
=

a2

1− 2a
.
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1.27 A nonzero real number a  satisfies a2 = 3a− 1 , then find the value of 2a
5 − 5a4 + 2a3 − 8a2

a2 + 1
.

Solution: a2 = 3a− 1 ⇒ a2 − 3a+ 1 = 0 , and since 
3a

a2 + 1
= 1 , we have 2a5 − 5a4 + 2a3 − 8a2

a2 + 1
=

(a2 − 3a+ 1)(2a3 + a2 + 3a)− 3a

a2 + 1
= − 3a

a2 + 1
= −1 

2a5 − 5a4 + 2a3 − 8a2

a2 + 1
=

(a2 − 3a+ 1)(2a3 + a2 + 3a)− 3a

a2 + 1
= − 3a

a2 + 1
= −1 .

1.28 �  Given 
y + z

ay + bz
=

z + x

az + bx
=

x+ y

ax+ by
= m  and xyz �= 0, show 

y + z

ay + bz
=

z + x

az + bx
=

x+ y

ax+ by
= m = 2

a+b  when a + b �= 0  .

Proof: 
y + z

ay + bz
= m ⇒ y + z = m(ay + bz) ⇒ (1− am)y = (bm− 1)z  

(i). Similarly we can obtain (1− am)z = (bm− 1)x  

(ii), (1− am)x = (bm− 1)y  

(iii). (i)× (ii)× (iii) ⇒ (1− am)3xyz = (bm− 1)3xyz , which together with xyz �= 0 leads to 
(1− am)3 = (bm− 1)3 ⇒ 1− am = bm− 1 ⇒ m =

2

a+ b
 when a + b �= 0 .

1.29 Given a + b = 2 , find the value of a3 + 6ab+ b3 .

Solution: a3+6ab+b3 = (a+b)(a2−ab+b2)+6ab = 2(a2−ab+b2)+6ab = 2a2+4ab+2b2 =
2(a+ b)2 = 2× 22 = 8

a3+6ab+b3 = (a+b)(a2−ab+b2)+6ab = 2(a2−ab+b2)+6ab = 2a2+4ab+2b2 =
2(a+ b)2 = 2× 22 = 8  

1.30 Given x2 + xy = 3  (i), xy + y2 = −2  (ii), find the value of 2x2 − xy − 3y2.

Solution: (i)× 2− (ii)× 3 ⇒ 2x2 − xy − 3y2 = 12.

1.31 �  If the real numbers a, b, c  satisfy 
ab

a + b
=

1

3
,

bc

b+ c
=

1

4
,

ca

c+ a
=

1

5
, find the value of 

abc

ab+ bc + ca
.

Solution: 
ab

a + b
=

1

3
⇒ a+ b

ab
= 3 ⇒ 1

a
+

1

b
= 3 (i). Similarly, we can obtain 

1

b
+

1

c
= 4 (ii), 

1

c
+

1

a
= 5  (iii). (i)+(ii)+(iii) ⇒ 1

a
+

1

b
+

1

c
= 6 ⇒ abc

ab+ bc + ca
=

1
1
a
+ 1

b
+ 1

c

=
1

6
.

1.32 �  Given a4 + b4 + c4 + d4 = 4abcd , show a = b = c = d .

Proof: a4 + b4 + c4 + d4 − 4abcd = 0 ⇒ (a4 − 2a2b2 + b4) + (c4 − 2c2d2 + d4) + (2a2b2 −
4abcd+2c2d2) = 0 ⇒ (a2 − b2)2 + (c2 − d2)2 +2(ab− cd)2 = 0 ⇒ a2 = b2, c2 = d2, ab =
cd ⇒ a = b = c = d

 a4 + b4 + c4 + d4 − 4abcd = 0 ⇒ (a4 − 2a2b2 + b4) + (c4 − 2c2d2 + d4) + (2a2b2 −
4abcd+2c2d2) = 0 ⇒ (a2 − b2)2 + (c2 − d2)2 +2(ab− cd)2 = 0 ⇒ a2 = b2, c2 = d2, ab =
cd ⇒ a = b = c = d

 
a4 + b4 + c4 + d4 − 4abcd = 0 ⇒ (a4 − 2a2b2 + b4) + (c4 − 2c2d2 + d4) + (2a2b2 −

4abcd+2c2d2) = 0 ⇒ (a2 − b2)2 + (c2 − d2)2 +2(ab− cd)2 = 0 ⇒ a2 = b2, c2 = d2, ab =
cd ⇒ a = b = c = d.

1.33 Consider two real numbers x, y , find the minimum value of 5x2 − 6xy + 2y2 + 2x− 2y + 3 

and the associated values of x, y .
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Solution: 5x2 − 6xy + 2y2 + 2x− 2y + 3 = (x− y + 1)2 + (2x− y)2 + 2. Since (x− y + 1)2 ≥ 0, (2x− y)2 ≥ 0 
(x− y + 1)2 ≥ 0, (2x− y)2 ≥ 0, the minimum value of 5x2 − 6xy + 2y2 + 2x− 2y + 3 is 2, and the associated 

values of x, y  are x = 1, y = 2  (solved from x− y + 1 = 0, 2x− y = 0).

1.34 �  Factoring x4 + x3 + x2 + 2 .

Solution: Let x4+x3+x2+2 = (x2+ax+1)(x2+bx+2) = x4+(a+b)x3+(ab+3)x2+(2a+b)x+2, 
then equaling the corresponding coefficients to obtain a + b = 1, ab + 3 = 1, 2a + b = 0 ⇒ a = −1, b = 2 ⇒ x4 + x3 + x2 + 2 =

(x2 − x+ 1)(x2 + 2x+ 2)
 

a + b = 1, ab + 3 = 1, 2a + b = 0 ⇒ a = −1, b = 2 ⇒ x4 + x3 + x2 + 2 =
(x2 − x+ 1)(x2 + 2x+ 2)

 

a + b = 1, ab + 3 = 1, 2a + b = 0 ⇒ a = −1, b = 2 ⇒ x4 + x3 + x2 + 2 =
(x2 − x+ 1)(x2 + 2x+ 2) .

1.35 Let a, b, c  are lengths of three sides of a triangle, and they satisfy a2 − 16b2 − c2 + 6ab+ 10bc = 0, 

show a + c = 2b .

Proof: a2−16b2−c2+6ab+10bc = a2+6ab+9b2−25b2+10bc−c2 = (a+3b)2−(5b−c)2 =
(a+ 3b− 5b+ c)(a+ 3b+ 5b− c) = (a− 2b+ c)(a+ 8b− c) = 0

 a2−16b2−c2+6ab+10bc = a2+6ab+9b2−25b2+10bc−c2 = (a+3b)2−(5b−c)2 =
(a+ 3b− 5b+ c)(a+ 3b+ 5b− c) = (a− 2b+ c)(a+ 8b− c) = 0. Since a, b, c  represent 
lengths of three sides of a triangle, a + 8b− c > 0 , thus a− 2b+ c = 0 ⇒ a+ c = 2b .

1.36 �  x, y  are prime numbers, x = yz , 
1

x
+

1

y
=

3

z
, find the value of x+ 5y + 2z .
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Solution: 
1

x
+

1

y
=

3

z
⇒ yz + xz = 3xy . Since x = yz , we have x+ xz = 3xy . Since x �= 0 , we 

have 1 + z = 3y . Since y, z  are prime numbers, the only possibility is y = 2, z = 5, x = 2× 5 = 10  . 
Hence, x+ 5y + 2z = 10 + 5× 2 + 2× 5 = 30 .

1.37 �  Given 
a+ b

a− b
=

b+ c

2(b− c)
=

c+ a

3(c− a)
 where a, b, c  are distinct, show 8a+ 9b+ 5c = 0 .

Proof: Let 
a+ b

a− b
=

b+ c

2(b− c)
=

c+ a

3(c− a)
= k , then a + b = k(a− b)  (i), b+ c = 2k(b− c)  (ii), 

c+ a = 3k(c− a)  (iii). (i)× 6 + (ii)× 3 + (iii)× 2 ⇒ 8a + 9b+ 5c = 0 .

1.38 �  The positive integers x, y, z  satisfy x, y, z+y
z
= 11, x, y, z+x

z
= 14 , and x+ y �= z , find a positive 

integer for x+ y

z
 if possible.

Solution: Since x+ y

z
 is a positive integer, we can let 

x+ y

z
= k  where k  is a positive integer, then 

x+ y = k  (i). The sum of x, y, z+y
z
= 11 and x, y, z+x

z
= 14  leads to x, y, z+y + x+y

z
= 25 (ii). Substitute (i) 

into (ii): kz+k = 25 ⇒ k = 25
z+1

. Therefore, z = 4 or 24 . However when z = 24, k = 1  which 

violates x+ y �= z . Hence, z = 4, k = 5 , then 
x+ y

z
= 5 .

1.39 �  If the polynomial 6x2 − 5xy − 4y2 − 11x+ 22y +m  can be factored into the product of 

two linear polynomials, find the value of m  and factor the polynomial.

Solution: Let 6x2 − 5xy − 4y2 − 11x+ 22y +m = (2x+ y + k)(3x− 4y + l) = 6x2 − 5xy − 4y2 +
(3k + 2l)x+ (l − 4k)y + kl

6x2 − 5xy − 4y2 − 11x+ 22y +m = (2x+ y + k)(3x− 4y + l) = 6x2 − 5xy − 4y2 +
(3k + 2l)x+ (l − 4k)y + kl, then equaling the coefficients: 3k + 2l = −11, l − 4k = 22, kl = m, 

which result in k = −5, l = 2, m = −10 .  

Hence, 6x2 − 5xy − 4y2 − 11x+ 22y +m = 6x2 − 5xy − 4y2 − 11x+ 22y − 10 = (2x+ y −
5)(3x− 4y + 2)

6x2 − 5xy − 4y2 − 11x+ 22y +m = 6x2 − 5xy − 4y2 − 11x+ 22y − 10 = (2x+ y −
5)(3x− 4y + 2)6x2 − 5xy − 4y2 − 11x+ 22y +m = 6x2 − 5xy − 4y2 − 11x+ 22y − 10 = (2x+ y −

5)(3x− 4y + 2) .

1.40 �  Given |x+ 4|+ |3− x| = 10− |y − 2| − |1 + y| , find the maximum and minimum values 

of xy .

Solution: |x+ 4|+ |3− x| = 10− |y − 2| − |1 + y| ⇒ |x+ 4|+ |3− x|+ |y − 2|+ |1 + y| = 10. 

Since |x+ 4|+ |3− x| ≥ 7 and |y − 2|+ |1 + y| ≥ 3. |x+ 4|+ |3− x| + |y − 2|+ |1 + y| = 10  
only if we choose equal sign in both inequalities.

|x+ 4|+ |3− x| ≥ 7 ⇒ −4 ≤ x ≤ 3 ;

|y − 2|+ |1 + y| ≥ 3 ⇒ −1 ≤ y ≤ 2 .

Hence, xy  has the maximum value 6  and the minimum value −8 .
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1.41 ��  If the real numbers a, b, c  satisfy a + b+ c = 0, abc = 1 , show one of a, b, c  should be 

greater than 3/2.

Proof: Since a, b, c  are real numbers and abc = 1 , we have at least one of a, b, c  is greater than zero. 
Without loss of generality, let c > 0 .

a + b+ c = 0 ⇒ a + b = −c  (i); abc = 1 ⇒ ab = 1
c  (ii); ab=

(
a+b
2

)2 −
(
a−b
2

)2
 (iii).

Substitute (i),(ii) into (iii): 1
c
=

c2

4
−
(
a− b

2

)2

⇒
(
a− b

2

)2

=
c2

4
− 1

c
=

c3 − 4

4c
≥ 0 , which 

together with c > 0  implies c3 ≥ 4. Hence, c ≥ 3
√
4 = 3

√
32/8 > 3

√
27/8 = 3/2 .

1.42 ��  Given m+ n+ p = 30, 3m+ n− p = 50, m,n, p  are positive, and x = 5m+ 4n+ 2p  , 

find the range of x .

Solution: (3m+ n+ p)− (m+ n+ p) = 50− 30 ⇒ m− p = 10 ⇒ m = 10 + p > 10  since 
p > 0.
(3m+ n+ p) + (m+ n + p) = 50 + 30 ⇒ m+

n

2
= 20 ⇒ m = 20− n

2
< 20  since n > 0 . 

n + p = 30−m ⇒ 10 < n + p < 20.
Hence, x = 5m+4n+2p = (4m+2n)+(m+n+p)+n+p = 80+30+n+p = 110+n+p ∈

(120, 130)
x = 5m+4n+2p = (4m+2n)+(m+n+p)+n+p = 80+30+n+p = 110+n+p ∈

(120, 130).

1.43 ��  Given a, b, c  are real numbers and satisfy a + b = 4, 2c2 − ab = 4
√
3c− 10, find the 

values of a, b, c .

Solution: 2c2 − ab = 4
√
3c − 10 ⇒ 2c2 − 4

√
3c + 10 = ab =

(
a+ b

2

)2

−
(
a− b

2

)2

=
(
4

2

)2

−
(
a− b

2

)2

= 4−
(
a− b

2

)2

⇒ 2c2−4
√
3c+6+

(
a− b

2

)2

= 0 ⇒ 2(c−
√
3)2+

(
a− b

2

)2

= 0 ⇒ c =
√
3, a = b = 2

 
2c2 − ab = 4

√
3c − 10 ⇒ 2c2 − 4

√
3c + 10 = ab =

(
a+ b

2

)2

−
(
a− b

2

)2

=
(
4

2

)2

−
(
a− b

2

)2

= 4−
(
a− b

2

)2

⇒ 2c2−4
√
3c+6+

(
a− b

2

)2

= 0 ⇒ 2(c−
√
3)2+

(
a− b

2

)2

= 0 ⇒ c =
√
3, a = b = 2

 

2c2 − ab = 4
√
3c − 10 ⇒ 2c2 − 4

√
3c + 10 = ab =

(
a+ b

2

)2

−
(
a− b

2

)2

=
(
4

2

)2

−
(
a− b

2

)2

= 4−
(
a− b

2

)2

⇒ 2c2−4
√
3c+6+

(
a− b

2

)2

= 0 ⇒ 2(c−
√
3)2+

(
a− b

2

)2

= 0 ⇒ c =
√
3, a = b = 2.

1.44 �  x  is a real number, find the minimum value of x−
√
x− 1 and its associated x  value.

Solution: Let y = x−
√
x− 1 ⇒ x−y =

√
x− 1 ⇒ x2−2xy+y2 = x−1 ⇒ x2−(2y+1)x+y2+1 =

0
0 

(i). ∆ = (2y + 1)2 − 4(y2 + 1) = 4y − 3 ≥ 0 ⇒ y ≥ 3/4. Substitute the minimum value of y , 
3/4, into (i): x 2 − 5

2
x+ 25

16
= 0 ⇒ 1

16
(16x2 − 40x+ 25) = 0 ⇒ (4x− 5)2 = 0 ⇒ x = 5/4. 

Hence, when x = 5/4 , x−
√
x− 1 has the minimum value 3/4.

1.45 �  If a, b, c  are nonzero real numbers, and a + b+ c = abc, a2 = bc , show a2 ≥ 3 .

–

–
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Proof: The conditions a + b+ c = abc, a2 = bc  imply that b+ c = abc− a = a3 − a ⇒  

b+ c = a3 − a,

bc = a2.

Hence, we can treat b, c  as two roots of the quadratic equation x2 − (a3 − a)x+ a2 = 0 .  
Since a, b, c  are nonzero real numbers, we have 
∆ = (a3 − a)2 − 4a2 ≥ 0 ⇒ a2(a2 + 1)(a2 − 3) ≥ 0 ⇒ a2 − 3 ≥ 0 ⇒ a2 ≥ 3 .

1.46 ��  t  is a positive integer, show 2 and 3 are not common factors of t2 − t+ 1  and  

t2 + t− 1 .

Proof: t  is a positive integer, thus one of the two consecutive integers t− 1  and t  should be an even 
number, then t2 − t = t(t− 1) is even, then t2 − t+ 1  is odd. Same logic to get t2 + t  is even, 
t2 + t− 1  is odd. Hence, 2 is not a common factor of t2 − t+ 1  and t2 + t− 1 .

One of the three consecutive integers t− 1, t, t+ 1  should be divisible by 3, thus at least one of 
t2 − t = t(t− 1) and t2 + t = t(t+ 1)  is divisible by 3. Therefore, at least one of t2 − t+ 1  and 
t2 + t− 1  is not divisible by 3.

1.47 �  If 3a− b+ 2c = 8, a+ 4b− c = 2, evaluate 6a+ 11b− c .
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Solution: Let 6a+11b− c = m(3a− b+2c) +n(a+4b− c) = (3m+n)a+ (4n−m)b+ (2m−n)c , 
then equaling the coefficients to obtain 

3m+ n = 6

4n−m = 11

2m− n = −1

⇒ m = 1, n = 3 ⇒ 6a+ 11b− c = 1× 8 + 3× 2 = 14.

1.48 ��  Given 
1

x
+

1

y
+

1

z
=

1

x+ y + z
= 1 , show x = 1  or y = 1  or z = 1.

Proof: 
1

x
+

1

y
+

1

z
= 1 ⇒ xy + xz + yz = xyz  (i);

1
x+y+z

= 1 ⇒ x+ y + z = 1 ⇒ x = 1− y − z  (ii).

Substitute (ii) into (i): (1− y − z)y + (1− y − z)z + yz = (1− y − z)yz ⇒ (z − 1)(y + z)(y − 1) = 0  
(iii). (ii) is equivalent to y + z = 1− x  and substitute it into (iii): (z − 1)(1− x)(y − 1) = 0 , 
therefore x = 1  or y = 1  or z = 1.

1.49 �  Show 1 + 2 + 22 + · · ·+ 25n−1  is divisible by 31.

Proof: 1 + 2 + 22 + · · · + 25n−1 =
1− 25n

1− 2
= 25n − 1 = 32n − 1 = (31 + 1)n − 1 =

C0
n31

n + C1
n31

n−1 + · · ·+ Cn−1
n 31 + Cn

n − 1 = 31(C0
n31

n−1 + C1
n31

n−2 + · · ·+ Cn−1
n )

 

which is

 

obviously divisible by 31.

1.50 �  The real numbers a, b, c  satisfy 
a

b
=

b

c
, and x, y  are mean values of a, b  and b, c  respectively. 

Show a
x
+

c

y
= 2 .

Proof: 
a

b
=

b

c
⇒ a

a+ b
=

b

b+ c
. Since x, y = a+b

2
, y = b+c

2 ,  

we have 
a

x
+

c

y
=

a

(a+ b)/2
+

c

(b+ c)/2
=

2a

a+ b
+

2c

b+ c
=

2b

b+ c
+

2c

b+ c
= 2 .

1.51 �  Given abc = 1 , evaluate 
2012

1 + a + ab
+

2012

1 + b+ bc
+

2012

1 + c+ ca
.

Solution:

 

2012

1 + a + ab
+

2012

1 + b+ bc
+

2012

1 + c+ ca

= 2012

(
1

1 + a + 1
c

+
1

1 + 1
ac

+ 1
ac
c
+

1

1 + c+ ca

)

= 2012

(
c

c+ ac+ 1
+

ac

ac+ 1 + c
+

1

1 + c+ ca

)
= 2012 .

1.52 �  Given x7 + x6 + x = −1 , evaluate x2000 + x2001 + · · ·+ x2012 .
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Solution: x7 + x6 + x = −1 ⇒ x6(x+ 1) + (x+ 1) = 0 ⇒ (x+ 1)(x6 + 1) = 0 ⇒ x = −1  since 
x6 + 1 > 0 . Hence, x2000 + x2001 + · · ·+ x2012 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

seven 1′s

+ (−1) + (−1) + · · ·+ (−1)︸ ︷︷ ︸
six (−1)′s

= 1.

1.53 ��  Given a < b < c , determine ±  sign of 
1

a− b
+

1

b− c
+

1

c− a
.

Solution: Let a− b = x, b− c = y, c− a = z . Since a < b < c , we have x < 0, y < 0, z > 0 . 

x + y + z = a − b + b − c + c − a = 0 ⇒ (x + y + z)2 = 0 ⇒ 2(xy + yz + zx) =
−(x2 + y2 + z2) ⇒ xy + yz + zx < 0

x + y + z = a − b + b − c + c − a = 0 ⇒ (x + y + z)2 = 0 ⇒ 2(xy + yz + zx) =
−(x2 + y2 + z2) ⇒ xy + yz + zx < 0 . Therefore 
1

a− b
+

1

b− c
+

1

c− a
=

1

x
+

1

y
+

1

z
=

yz + zx+ xy

xyz
< 0 , that is, 1

a− b
+

1

b− c
+

1

c− a
 is negative.

1.54 �  Factor (a + b− 2ab)(a− 2 + b) + (1− ab)2 .

Solution: Let a + b = x, ab = y , then 

1.55 �  The real numbers m,n, p  are not all equal, and x = m2 − np, y = n2 − pm, z = p2 −mn  . 

Show at least one of x, y, z  is positive.

Proof:  2(x+y+z) = 2(m2+n2+p2−mn−np−pm) = (m−n)2+(n−p)2+(p−m)2 ≥ 0 . 

In addition, since m,n, p  are not all equal, then m− n, n− p, p−m  are not all zeros. Thus 
x+ y + z > 0 , which shows at least one of x, y, z  is positive.

1.56 �  a, b, c  are nonzero real numbers, and a + b+ c = 0 ,  

evaluate 
1

b2 + c2 − a2
+

1

c2 + a2 − b2
+

1

a2 + b2 − c2
.

Solution: a + b+ c = 0 ⇒ b+ c = −a ⇒ (b+ c)2 = a2 ⇒ b2 + c2 − a2 = −2bc . Similarly, we 
can obtain a2 + b2 − c2 = −2ab, c2 + a2 − b2 = −2ca. In addition, −2bc,−2ab,−2ca are  nonzero. 
Hence, 

1

b2 + c2 − a2
+

1

c2 + a2 − b2
+

1

a2 + b2 − c2
= − 1

2bc
− 1

2ca
− 1

2ab
= −a + b+ c

2abc
= 0.

1.57 �  Find the minimum value of the fraction 3x
2 + 6x+ 5

1
2
x2 + x+ 1

.

Solution: 
3x2 + 6x+ 5
1
2
x2 + x+ 1

=
6x2 + 12x+ 10

x2 + 2x+ 2
=

6(x2 + 2x+ 2)− 2

x2 + 2x+ 2
= 6− 2

(x+ 1)2 + 1
 which has 

the minimum value 4 when x = −1.

(a+ b− 2ab)(a− 2 + b) + (1− ab)2 = (x− 2y)(x− 2) + (1− y)2 = x2 − 2x− 2xy +
4y + 1 − 2y + y2 = x2 − 2x(y + 1) + (y + 1)2 = (x − y − 1)2 = (a + b − ab − 1)2 =
[(a− 1)− b(a− 1)]2 = (a− 1)2(b− 1)2
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1.58 ��  For real numbers x, y , define the operator x ∗ y = ax+ by + cxy  where a, b, c  are 

 constants. We know that 1 ∗ 2 = 3, 2 ∗ 3 = 4, and there is a nonzero real number d  such that 
x ∗ d = x  holds for any real number x. Find the value of d .

Solution: For any real number x , we have x ∗ d = ax+ bd+ cdx = x , 0 ∗ d = bd = 0 . Since 
d �= 0 , then b = 0, thus 

1 ∗ 2 = a + 2b+ 2c = 3

2 ∗ 3 = 2a + 3b+ 6c = 4

⇒  

a + 2c = 3

2a+ 6c = 4

which results in a = 5, c = −1 . In addition, 1 ∗ d = a+ bd + cd = 1 , and substitute 
a = 5, b = 0, c = −1  into it to obtain d = 4 .

1.59 ��  Show for any positive integer N , we can find two positive integers a  and b  such that 

N =
b− 2a+ 1

a2 − b
.
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Proof: N = b−2a+1
a2−b

= −a2+b+a2−2a+1
a2−b

= −(a2−b)+(a−1)2

a2−b
⇒ (N + 1)(a2 − b) = (a− 1)2 .  

Choose N + 1 = a− 1 , then a2 − b = a− 1 . Thus a = N + 2 , 
b = a2 − a+1 = (N +2)2 − (N +2)+ 1 = N2 +4n+4−N − 2+ 1 = N2 +3N +3.  

Since N  is a positive integer, then a, b  are are positive integers as well.

1.60 ��  Given x �= 0 , find the maximum value of 
√
1 + x2 + x4 −

√
1 + x4

x
.

Solution:

 

√
1 + x2 + x4 −

√
1 + x4

x
=

x√
1 + x2 + x4 +

√
1 + x4

=
x

|x|(
√
x2 + 1

x2 + 1 +
√

x2 + 1
x2 )

=
x

|x|(
√

(x− 1
x
)2 + 3 +

√
(x− 1

x
)2 + 2)

 whose maximum 

value is 1√
3 +

√
2
=

√
3−

√
2 when x, y = 1

x
> 0 .

1.61 ��  Given 
1

4
(b− c)2 = (a− b)(c− a) , a �= 0 , evaluate b+ c

a
.

Solution 1: When a = b , we have (b− c)2 = 0 ⇒ b = c , then 
b+ c

a
=

b+ b

b
= 2 .

When a �= b , the given equality becomes 
(b− c)2 = 4(a− b)(c− a) ⇒ (b+ c)2 − 4a(b+ c) + 4a2 = 0 ⇒ [(b+ c)− 2a]2 = 0 ⇒

b+ c = 2a ⇒ b+ c

a
= 2

(b− c)2 = 4(a− b)(c− a) ⇒ (b+ c)2 − 4a(b+ c) + 4a2 = 0 ⇒ [(b+ c)− 2a]2 = 0 ⇒
b+ c = 2a ⇒ b+ c

a
= 2 .

Solution 2: When a = b , it is the same as solution 1.

When a �= b , (b− c)2 − 4(a− b)(c− a) = 0 . Treat this as the discriminant of the quadratic  equation 
(a− b)x2 + (b− c)x+ (c− a) = 0 . Since the sum of all coefficients is 0, then 1 is a root of this 
quadratic equation. Since ∆ = (b− c)2 − 4(a− b)(c− a) = 0 , then x1 = x2 = 1 . Vieta’s formulas 
implies that 

( ) ( )( )

x1x2 =
c− a

a− b
= 1 ⇒ b+c = 2a ⇒ b+ c

a
= 2.

1.62 ��  Find the minimum positive integer A  and the corresponding positive integer B  such that 

(1) A  is divisible by 200 and its quotient divided by 19 has a remainder of 2, divided by 23 has a 

 remainder of 10; (2) B > A , B −A  has four digits and is divisible by 3,4,17,25.

Solution: (1) ⇒ A/200 = 19U + 2 = 23V + 10 where U, V  are positive integers, then  

U, V = V + 4V+8
19

 . Since U  is a positive integer, then 4V + 8

19
 is a positive integer. Let 4V + 8

19
= p , then 

U, V = 4p− 2 + 3
4
p  in which 

3

4
p  should be a positive integer. Since 3 and 4 are coprime, then p = 4n  

(n is a positive  integer). To have minimum A, we choose n = 1, p = 4, V = 17, then 

A = 200(23× 17 + 10) = 80200.
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According to (2) and since 3,4,17,25 are coprime, then B −A  should be 3× 4× 17× 25× k = 5100k  
(k  is a positive integer). In addition, B −A  is a four-digit number, thus k = 1 . Hence, 

B = A+ 5100 = 85300 .

1.63 ��  If the real numbers x, y, z  satisfy x+ y + z = a , x2 + y2 + z2 = a2/2  (a > 0 ), show 
x, y, z  are nonnegative and not greater than 2a/3 .

Proof: x+ y + z = a ⇒ z = a− (x+ y)  and substitute it into x2 + y2 + z2 = a2/2  to obtain 

x2 + y2 + (x+ y)2 − 2a(x+ y) + a2 = a2/2 ⇒ x2 + y2 + xy− ax− ay+ a2/4 = 0 ⇒
y2 + (x− a)y + (x− a/2)2 = 0

x2 + y2 + (x+ y)2 − 2a(x+ y) + a2 = a2/2 ⇒ x2 + y2 + xy− ax− ay+ a2/4 = 0 ⇒
y2 + (x− a)y + (x− a/2)2 = 0. Since x, y are real numbers, then ∆ = (x− a)2 − 4(x− a/2)2 ≥ 0 ⇒ x(2a− 3x) ≥ 0 ⇒ 0 ≤ x ≤ 2a/3

∆ = (x− a)2 − 4(x− a/2)2 ≥ 0 ⇒ x(2a− 3x) ≥ 0 ⇒ 0 ≤ x ≤ 2a/3 . Similarly, we can show 0 ≤ y ≤ 2a/3, 0 ≤ z ≤ 2a/3 . 

Therefore x, y, z  are nonnegative and not greater than 2a/3 .

1.64 ��  Two real numbers x, y  satisfy x3 + y3 = 2 . Find the maximum value of x+ y .

Solution: Let x+ y = t . a, b, x3 + y3 = 2 ⇒ (x+ y)[(x+ y)2 − 3xy] = 2 ⇒ t(t2 − 3xy) = 2 ⇒ xy = t3−2
3t

. 
Thus we can treat x, y  as the two roots of the quadratic equation 2 − tu+ t3−2

3t
= 02 − tu+ t3−2

3t
= 0 , then 

∆ = t2 − 4t3 − 8

3t
≥ 0 ⇒ −t3 + 8

3t
≥ 0 ⇒ 0 < t ≤ 2 ⇒ 0 < x+ y ≤ 2. Hence, the maximum value of 

x+ y  is 2.

1.65 �  Write 
x+ 4

x3 + 2x− 3
 as partial fractions.

Solution: x = 1  is a root of the cubic equation x3 + 2x− 3 = 0, thus x− 1  is a factor of x3 + 2x− 3  . 

Use polynomial long division to obtain the other factor x2 + x+ 3 . Let 
x+ 4

x3 + 2x− 3
=

A

x− 1
+

Bx+ c

x2 + x+ 3
=

(A+ B)x2 + (A− B + 2C)x+ 3A− C

x3 + 2x− 3
. Make the coefficients 

equal to obtain 

A+ B = 0

A−B + C = 1

3A− C = 4

⇒ A = 1, B = −1, C = −1 . Hence, 
x+ 4

x3 + 2x− 3
=

1

x− 1
− x+ 1

x2 + x+ 3
.

1.66 ��  Show a 3 + 3
2
a2 + 1

2
a− 1  is an integer for any positive integer a , and it has a remainder 

of 2 when divided by 3.

Proof: a 3 + 3
2
a2 + 1

2
a− 1 = 2a3+3a2+a

2
− 1 = a(a+1)(2a+1)

2
− 1. For any positive integer a , 

a(a + 1)

2
 

is an integer, thus a 3 + 3
2
a2 + 1

2
a− 1  is an integer.

+C
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a 3 + 3
2
a2 + 1

2
a− 1 = a(a+1)(2a+1)

2
− 1 = 2a(2a+1)(2a+2)

8
− 1 . One of 2a, 2a+ 1, 2a+ 2  is a 

multiple of 3. Since 3 and 8 are coprime, then 2a(2a+ 1)(2a+ 2)

8
 is divisible by 3. Hence the original 

expression is a multiple of 3 minus 1, i.e. it has a remainder of 2 when divided by 3.

1.67 ��  x, y, z  are real numbers, 3x, 4y, 5z  follow a geometric sequence, and 
1

x
,
1

y
,
1

z
 follow an 

arithmetic sequence, find the value of x
z
+

z

x
.

Solution: 

(4y)2 = 15xz (i)
2

y
=

1

x
+

1

z
(ii)

(ii) ⇒  x, y, z= 2xz
x+z , substitute it into (i): 

16

(
2xz

x+ z

)2

= 15xz ⇒ (x+ z)2

xz
=

64

15
⇒ x

z
+ 2 +

z

x
=

64

15
⇒ x

z
+

z

x
=

34

15.

1.68 ��  Given 0 < a < 1 and [a + 1
50
] + [a+ 2

50
] + · · ·+ [a + 39

50
] = 6, evaluate [50a] . Here [∗] 

means the integer part of ∗ .
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Solution: 0 < a + 1
50

< a + 2
50

< · · · < a+ 39
50

< 2 , thus [a + 1
50
], [a + 2

50
], · · · , [a+ 39

50
] are 

equal to 0 or 1. The condition [a + 1
50
] + [a+ 2

50
] + · · ·+ [a + 39

50
] = 6 implies that six of 

[a + 1
50
], [a + 2

50
], · · · , [a+ 39

50
] are equal to 1. Hence, [a + 1

50
] = [a+ 2

50
] = · · · = [a + 33

50
] = 0 

and [a + 34
50
] = [a+ 35

50
] = · · · = [a + 39

50
] = 1. Then 0 < a + 33

50
< 1  and 1 ≤ a+ 34

50
< 2 , which 

lead to 16 ≤ 50a < 17 ⇒ [50a] = 16 .

1.69 �  Factoring x3 + y3 + z3 − 3xyz .

Solution: 
x3 + y3 + z3 − 3xyz = x3 + 3x2y + 3xy2 + y3 + z3 − 3x2y − 3xy2 − 3xyz = (x +

y)3 + z3 − 3xy(x+ y + z) = (x + y + z)[(x + y)2 − (x+ y)z + z2]− 3xy(x+ y + z) =
(x+ y + z)(x2 + y2 + z2 − xy − yz − zx) .

1.70 ��  a, b, c  are prime numbers, c  is a one-digit number, and ab+ c = 1993 , evaluate a + b+ c  .

Solution: The right hand side of ab+ c = 1993  is an odd number, thus one of ab  and c  is an even 
number. If c  is an even prime number which has to be 2, then ab = 1993− 2 = 1991 = 11× 181, 
then one of a, b  is 11, and the other one is 181. If ab  is an even number, let b  be the even prime 
number 2, then 2a+ c = 1993 . Since c  is a prime number, then c = 3 , 5, or 7, and a = 995, 944, 
or 993, all of which are not prime numbers. Hence a + b+ c = 11 + 181 + 2 = 194 .

1.71 ��  Find the minimum positive fraction such that it is an integer when divided by 54/175  or 

multiplied by 55/36.

Solution: Let the minimum positive fraction be y/x , where x, y  are coprime positive integers, then 
y

x
÷ 54

175
=

y

x
× 175

54
 and 

y

x
× 55

36
 are both integers. Thus 175/54  and 55/36  are irreducible fractions, 

then x  is a common divisor of 175 and 55, and y  is the smallest common multiple of 54 and 36. To 
minimize y/x , we should maximize x  and minimize y , then x  should be the largest common divisor 
of 175 = 52 × 7 and 55 = 5× 11 , which is 5, and y  should be the smallest common multiple of 
54 = 2× 33  and 36 = 22 × 32 , which is 22 × 33 = 108 . Therefore, the minimum positive fraction 
y/x = 108/5 .

1.72 ��  a, b, c, d  are positive integers, and a5 = b4, c3 = d2, c− a = 11, evaluate d− b .

Solution: Let a5 = b4 = t20   where t  is a positive integer, then a = t4, b = t5 . Let c3 = d2 = p6  where 
p  is a positive integer, then c = p2, d = p3. In addition, c− a = 11, then 

p2 − t4 = 11 ⇒ (p − t2)(p + t2) ⇒ p − t2 = 1, p + t2 = 11 ⇒ p = 6, t =
√
5, b =

(
√
5)5 = 25

√
5, d = 63 = 216, d− 6 = 216− 25

√
5

p2 − t4 = 11 ⇒ (p − t2)(p + t2) ⇒ p − t2 = 1, p + t2 = 11 ⇒ p = 6, t =
√
5, b =

(
√
5)5 = 25

√
5, d = 63 = 216, d− 6 = 216− 25

√
5 .

1.73 �� Given x+ y − z

z
=

x− y + z

y
=

y + z − x

x
 and xyz �= 0, evaluate (x+ y)(y + z)(z + x)

xyz
.

0  

d− b
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Solution: Let x+ y − z

z
=

x− y + z

y
=

y + z − x

x
= k , then x+ y − z = kz  (i), x− y + z = ky  (ii), 

y + z − x = kx  (iii). (i)+(ii)+(iii): x+ y + z = k(x+ y + z) ⇒ (k − 1)(x+ y + z) = 0. There are 
two possibilities k = 1  or x+ y + z = 0 . When k = 1 , then x+ y = 2z, x+ z = 2y, y + z = 2x, 
then (x+ y)(y + z)(z + x)

xyz
=

2z · 2x · 2y
xyz

= 8 . When x+ y + z = 0 , then 

x+ y = −z, y + z = −x, z + x = −y , then (x+ y)(y + z)(z + x)

xyz
=

(−z) · (−x) · (−y)

xyz
= −1 . As a 

conclusion, (x+ y)(y + z)(z + x)

xyz
 is 8 or -1.

1.74 ���  Let 

S =

√
1 +

1

12
+

1

22
+

√
1 +

1

22
+

1

32
+

√
1 +

1

32
+

1

42
+ · · ·+

√
1 +

1

20102
+

1

20112
,  find the integer 

part of S .

Solution: According to the rule in the terms of S , we obtain the general formula  
an =

√
1 + 1

n2 +
1

(n+1)2
=

√
(1 + 1

n
)2 − 2

n
+ 1

(n+1)2
=

√
(n+1

n
)2 − 2n+1

n
1

n+1
+ 1

(n+1)2
=

√
(n+1

n
− 1

n+1
)2 = n+1

n
− 1

n+1
= 1 + 1

n
− 1

n+1

 an =
√
1 + 1

n2 +
1

(n+1)2
=

√
(1 + 1

n
)2 − 2

n
+ 1

(n+1)2
=

√
(n+1

n
)2 − 2n+1

n
1

n+1
+ 1

(n+1)2
=

√
(n+1

n
− 1

n+1
)2 = n+1

n
− 1

n+1
= 1 + 1

n
− 1

n+1
. Thus 

S = (1+ 1
1
− 1

2
)+(1+ 1

2
− 1

3
)+(1+ 1

3
− 1

4
)+ · · ·+(1+ 1

2009
− 1

2010
)+(1+ 1

2010
− 1

2011
) =

2011− 1
2011

= 20102010
2011

∈ (2010, 2011)
 2010 2010

2011  ∈ 
(2010, 2011) which implies that S  has the integer part 2010.

1.75 ���  Given x =
√
5+1
2

, evaluate 
x3 + x+ 1

x5
.

Solution: Let y =
√
5−1
2

, then xy = 1, x− y = 1 . 
x3 + x+ 1

x5
=

x3 + x+ xy

x5
=

x2 + 1 + y

x4
=

x2 + x− y + y

x4
=

x+ 1

x3
=

x+ xy

x3
=

1 + y

x2
=

x

x2
=

1

x
= y =

√
5− 1

2

 
x3 + x+ 1

x5
=

x3 + x+ xy

x5
=

x2 + 1 + y

x4
=

x2 + x− y + y

x4
=

x+ 1

x3
=

x+ xy

x3
=

1 + y

x2
=

x

x2
=

1

x
= y =

√
5− 1

2
.

1.76 ���  M  is a 2000-digit number and a multiple of 9. M1 is the sum of all digits of M , M2 is 

the sum of all digits of M1, and M3 is the sum of all digits of M2. Find the value of M3.

Solution: Obviously M1,M2,M3  are multiples of 9. Since M  has 2000 digits, the sum of all its digits 
M1 ≤ 9× 2000 = 18000 , then M1 has at most five digits and the first digit is 0 or 1. Thus 
M2 ≤ 1 + 4× 9 = 37 , which implies that M2 has at most two digits and the first digit is less than or 
equal to 3. Thus M3 ≤ 3 + 9 = 12. In addition, M3 is divisible by 9 and M3 �= 0 , hence M3 = 9 .

1.77 ��  Let x, y  be two distinct positive integers, and 
1

x
+

1

y
=

2

5
, evaluate 

√
x+ y .
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Solution: Set 1
x
=

2a

5(a+ b)
,
1

y
=

2b

5(a+ b)
 where a, b  are positive integers and coprime, and let a > b . 

Then 2x =
5(a+ b)

a
= 5 + 5× b

a
. Since x  is a positive integer, then b

a
=

1

5
, thus 2x = 6 ⇒ x = 3 . On 

the other hand, 2y =
5(a+ b)

b
= 5 + 5× a

b
. Since y  is a positive integer, then 

a

b
= 5 , thus y = 15 . 

Therefore, 
√
x+ y =

√
18 = 3

√
2 .

1.78 ��  The positive integers a, b, c  satisfy a2 + 3b2 + 3c2 + 13 < 2ab+ 4b+ 12c , find the value 

of a + b+ c .

Solution: a2 + 3b2 + 3c2 + 13 < 2ab+ 4b+ 12c ⇒ a2 + 3b2 + 3c2 + 13− 2ab− 4b− 12c+ 1 <
1 ⇒ (a− b)2 + 2(b− 1)2 + 3(c− 2)2 < 1

a2 + 3b2 + 3c2 + 13 < 2ab+ 4b+ 12c ⇒ a2 + 3b2 + 3c2 + 13− 2ab− 4b− 12c+ 1 <
1 ⇒ (a− b)2 + 2(b− 1)2 + 3(c− 2)2 < 1. (a− b)2 ≥ 0, (b− 1)2 ≥ 0, (c− 2)2 ≥ 0, and a, b, c 

are positive integers, thus a = b = 1, c = 2 , hence a + b+ c = 4 .

1.79 ���  Find the minimum positive integer n  that is a multiple of 75 and has 75 positive integer 

factors (including 1 and itself).

Solution: n = 75k = 3× 52k  where k  is a positive integer. To minimize n , let n = 2α · 3β · 5γ   
(γ ≥ 2, β ≥ 1), and (α + 1)(β + 1)(γ + 1) = 75 , from which α + 1, β + 1, γ + 1  are all odd numbers, 
thus α, β, γ  are all even numbers. Then γ = 2, and (α + 1)(β + 1) = 25 = 5 = 1× 25.
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1) If α + 1 = 5, β + 1 = 5 , then α = 4, β = 4 , thus n = 24 · 34 · 52 .

2) If α + 1 = 1, β + 1 = 25 , then α = 0, β = 24 , thus n = 20 · 324 · 52 2
0 · 324 · 52.

According to (1)(2), the minimum positive integer n = 24 · 34 · 52 = 32400

1.80 ���  Given the sets M = {x, xy, lg(xy)}, N = {0, |x|, y} , and M = N , evaluate 

(x+
1

y
) + (x2 +

1

y2
) + (x3 +

1

y3
) + · · ·+ (x2001 +

1

y2001
).

Solution: M = N  implies that one element in M  should be 0. The existence of lg(xy)  implies that 
xy �= 0, thus x, y  cannot be 0. Hence, lg(xy) = 0 ⇒ xy = 1 ⇒ y =

1

x
. 

Thus M = {x, 1, 0}, N = {0, |x|, 1
x
} . According to M = N  again, we have either 

x = |x|

1 =
1

x

or 

x =
1

x
1 = |x|

However, x = 1  violates the uniqueness of every element in a set. Hence, x = −1, y = −1 . Then 
xy �= 02k+1 + 1

y2k+1 = −2  (k = 0, 1, 2, · · · ); a, b, x2k + 1
y2k

= 2 (k = 1, 2, · · · ). In the original summation, 
the number of 2k + 1  terms is one more than the number of 2k  terms, therefore 

(x+
1

y
) + (x2 +

1

y2
) + (x3 +

1

y3
) + · · ·+ (x2001 +

1

y2001
) = −2 .

1.81 ��  Find the integer part of the number (
√
7 +

√
5)6.

Solution: Let 
√
7 +

√
5 = x,

√
7−

√
5 = y , then 

x + y = 2
√
7, xy = 2 ⇒ x2 + y2 = (x + y)2 − 2xy = (2

√
7)2 − 2 × 2 = 24 ⇒

x6 + y6 = (x2)3 + (y2)3 = (x2 + y2)(x4 − x2y2 + y4) = (x2 + y2)[(x2 + y2)2 − 3x2y2] =
24[242 − 3× 4] = 24× 564 = 13536

. 

Hence, (
√
7 +

√
5)6 + (

√
7−

√
5)6 = 13536. Since 0 <

√
7−

√
5 < 1,  

then 13535 < (
√
7 +

√
5)6 < 13536 , which implies that the integer part of (

√
7 +

√
5)6 is 13535.

1.82 ��  The real numbers x, y  satisfy 4x2 − 5xy + 4y2 = 5 , let S = x2 + y2 , evaluate 
1

Smin
+

1

Smax

.

20 · 324 · 52 = 32400.
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Solution 1: Let x = a+ b, y = a− b  and substitute into 4x2 − 5xy + 4y2 = 5 :  

4(a+ b)2 − 5(a+ b)(a− b) + 4(a− b)2 = 5 ⇒ 3a2+13b2 = 5 ⇒ b2 =
5− 3a2

13
≥ 0 ⇒

5− 3a2 ≥ 0 ⇒ 0 ≤ a2 ≤ 5

3

4(a+ b)2 − 5(a+ b)(a− b) + 4(a− b)2 = 5 ⇒ 3a2+13b2 = 5 ⇒ b2 =
5− 3a2

13
≥ 0 ⇒

5− 3a2 ≥ 0 ⇒ 0 ≤ a2 ≤ 5

3
. Therefore 

1

Smin
+

1

Smax= (a+ b)2 + (a− b)2 = 2a2 + 2b2 = 2a2 + 10−6a2

13
= 20

13
a2 + 10

13
. 

When a = 0 , 
1

Smin
+

1

Smaxmin = 10
13. When a = 02 = 5

3 , 
1

Smin
+

1

Smaxmax = 10
3 . Hence, 1

Smin
+

1

Smax
=

13

10
+

3

10
=

8

5
.

Solution 2: Obviously S = x2 + y2 > 0  (since x, y  cannot be both zero due to 4x2 − 5xy + 4y2 = 5). 
Let x =

√
S cos θ, y =

√
S sin θ , and substitute into 4x2 − 5xy + 4y2 = 5 : 

4S cos2 θ − 5S cos θ sin θ + 4S sin2 θ = 5 ⇒ 4S − 5

2
sin 2θ = 5 ⇒ sin 2θ =

8S − 10

5S
. Since 

| sin 2θ| ≤ 1, then 
∣∣∣∣
8S − 10

5S

∣∣∣∣ ≤ 1 ⇒ −1 ≤ 8S − 10

5S
≤ 1 ⇒ 10

13
≤ S ≤ 10

3
.

1.83 ���  For a positive integer n , find the integer part of (
√
n2 + 2n+ n)2 .

Solution: For a positive integer n , we have 
n2 < n2 + 2n < n2 + 2n + 1 = (n + 1)2 ⇒ n <

√
n2 + 2n < n + 1 ⇒ 0 <√

n2 + 2n− n < 1
n2 < n2 + 2n < n2 + 2n + 1 = (n + 1)2 ⇒ n <

√
n2 + 2n < n + 1 ⇒ 0 <√

n2 + 2n− n < 1 . Let x = (
√
n2 + 2n+ n)2, y = (

√
n2 + 2n− n)2 , then 

x+ y = (
√
n2 + 2n+ n)2 + (

√
n2 + 2n− n)2 = 4n2 + 4n . Since 0 <

√
n2 + 2n− n < 1 ,  

then 0 < (
√
n2 + 2n− n)2 < 1, then  

(
√
n2 + 2n+ n)2 = 4n2 + 4n− (

√
n2 + 2n− n)2 ∈ (4n2 + 4n− 1, 4n2 + 4n) , thus the  integer 

part of (
√
n2 + 2n+ n)2  is 4n2 + 4n− 1 .

1.84 ���  The positive real numbers p, q  satisfy p2 + q2 = 7pq  and make the polynomial 
xy + px+ qy + 1  of x, y  be factored into a product of two first-order polynomials, find the values 

of p, q .

Solution: p > 0, q > 0, p2 + q2 = 7pq ⇒ p2 + 2pq + q2 = 9pq ⇒ p+ q = 3
√
pq . Since the 

 polynomial xy + px+ qy + 1  can be factored into a product of two first-order polynomials, we have 
xy + px+ qy + 1 = (ax+ b)(cy + d) = acxy + adx+ bcy + bd . Make the corresponding 
 coefficients equal: ac = 1, bd = 1, ad = p, bc = q , thus p > 0, q > 0, p2 + q2 = 7pq ⇒ p2 + 2pq + q2 = 9pq ⇒ p+ q = 3

√
pq

= abcd = 1, p+ q = 3
√
pq = 3 ⇒ p = 3+

√
5

2
, q = 3−

√
5

2
 or = 3−

√
5

2
, q = 3+

√
5

2
.

1.85 ��  The positive integers a, b, c  satisfy a2 + b2 + c2 + 3 < ab+ 3b+ 2c , find the values of 
a, b, c .

Solution: a, b, c  are positive integers, thus a2 + b2 + c2 + 3 and ab+ 3b+ 2c  are both integers, 
then  a, b, c2 + b2 + c2 + 3 < ab+ 3b+ 2c ⇒ a2 + b2 + c2 + 4 ≤ ab+ 3b+ 2c ⇒ a2 − ab + b2

4
+

3b2

4
−3b+3+ c2 −2c+1 ≤ 0 ⇒ (a− b

2
)2+ 3

4
(b−2)2+(c−1)2 ≤ 0 ⇒ a− b

2
= 0, b−2 =

0, c− 1 = 0 ⇒ a = 1, b = 2, c = 1

 
2 + b2 + c2 + 3 < ab+ 3b+ 2c ⇒ a2 + b2 + c2 + 4 ≤ ab+ 3b+ 2c ⇒ a2 − ab + b2

4
+

3b2

4
−3b+3+ c2 −2c+1 ≤ 0 ⇒ (a− b

2
)2+ 3

4
(b−2)2+(c−1)2 ≤ 0 ⇒ a− b

2
= 0, b−2 =

0, c− 1 = 0 ⇒ a = 1, b = 2, c = 1

2 + b2 + c2 + 3 < ab+ 3b+ 2c ⇒ a2 + b2 + c2 + 4 ≤ ab+ 3b+ 2c ⇒ a2 − ab + b2

4
+

3b2

4
−3b+3+ c2 −2c+1 ≤ 0 ⇒ (a− b

2
)2+ 3

4
(b−2)2+(c−1)2 ≤ 0 ⇒ a− b

2
= 0, b−2 =

0, c− 1 = 0 ⇒ a = 1, b = 2, c = 1 

2 + b2 + c2 + 3 < ab+ 3b+ 2c ⇒ a2 + b2 + c2 + 4 ≤ ab+ 3b+ 2c ⇒ a2 − ab + b2

4
+

3b2

4
−3b+3+ c2 −2c+1 ≤ 0 ⇒ (a− b

2
)2+ 3

4
(b−2)2+(c−1)2 ≤ 0 ⇒ a− b

2
= 0, b−2 =

0, c− 1 = 0 ⇒ a = 1, b = 2, c = 1.
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1.86 ���  The positive integers m,n  satisfy (11111 +m)(11111− n) = 123456789, show 
m− n  is a multiple of 4.

Proof: Since 123456789 is an odd number, then 11111 +m  and 11111− n  are odd numbers, then 
m,n  are both even numbers. 

(11111+m)(11111−n) = 123456789 ⇔ 11111×11111−11111n+11111m−mn =
123456789 ⇔ 11111(m− n) = mn + 2468

(11111+m)(11111−n) = 123456789 ⇔ 11111×11111−11111n+11111m−mn =
123456789 ⇔ 11111(m− n) = mn + 2468 . Since mn  is a multiple of 4 and 2468 = 4× 617  

is also a multiple of 4, then 11111(m− n)  is a multiple of 4. In addition, since 11111 and 4 are 
coprime, then m− n  is a multiple of 4.

1.87 ���  The nonzero real numbers a, b, c, x, y, z  satisfy 
x

a
=

y

b
=

z

c
, evaluate

xyz(a + b)(b+ c)(c+ a)

abc(x+ y)(y + z)(z + x)
.

Solution: Let 
x

a
=

y

b
=

z

c
= t ⇒ xyz

abc
= t3, and 

x+ y

a + b
=

y + z

b+ c
=

z + x

c+ a
= t ⇒ (x+ y)(y + z)(z + x)

(a+ b)(b+ c)(c+ a)
= t3 ⇒ (a+ b)(b+ c)(c+ a)

(x+ y)(y + z)(z + x)
=

1

t3

x+ y

a + b
=

y + z

b+ c
=

z + x

c+ a
= t ⇒ (x+ y)(y + z)(z + x)

(a+ b)(b+ c)(c+ a)
= t3 ⇒ (a+ b)(b+ c)(c+ a)

(x+ y)(y + z)(z + x)
=

1

t3
. 

Hence, 
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xyz(a+ b)(b+ c)(c+ a)

abc(x+ y)(y + z)(z + x)
= t3

1

t3
= 1.

1.88 ���  Given 2007x2 = 2009y2 = 2011z2, x > 0, y > 0, z > 0 , and 
1

x
+

1

y
+

1

z
= 1, show 

√
2007x+ 2009y + 2011z =

√
2007 +

√
2009 +

√
2011.

Proof: Let 2007x2 = 2009y2 = 2011z2 = k  (k > 0),  then 

2007x = k/x, 2009y = k/y, 2011z = k/z . Since 
1

x
+

1

y
+

1

z
= 1, then 

√
2007x+ 2009y + 2011z =

√
k/x+ k/y + k/z =

√
k(1/x+ 1/y + 1/z) =

√
k.

On the other hand, 
2007 = k/x2, 2009 = k/y2, 2011 = k/z2 ⇒

√
2007 +

√
2009 +

√
2011 =

√
k/x +√

k/y +
√
k/z =

√
k

2007 = k/x2, 2009 = k/y2, 2011 = k/z2 ⇒
√
2007 +

√
2009 +

√
2011 =

√
k/x +√

k/y +
√
k/z =

√
k . Hence the aimed equality holds.

1.89 ��  If x, y, z  are nonzero real numbers, and x+ y + z = xyz, x2 = yz , show x2 ≥ 3 .

Proof: x+ y + z = xyz ⇔ y + z = xyz − x = x3 − x  since yz = x2 . Then we can treat y, z  as 
two roots of the quadratic equation u2 − (x3 − x)u+ x2 = 0 . Since x, y, z  are real numbers, then 

∆ = (x3 − x)2 − 4x2 ≥ 0 ⇒ x6 − 2x4 − 3x2 ≥ 0 ⇒ x2(x4 − 2x2 − 3) ≥ 0 ⇒
x2(x2 + 1)(x2 − 3) ≥ 0

∆ = (x3 − x)2 − 4x2 ≥ 0 ⇒ x6 − 2x4 − 3x2 ≥ 0 ⇒ x2(x4 − 2x2 − 3) ≥ 0 ⇒
x2(x2 + 1)(x2 − 3) ≥ 0. Since x �= 0 , then x2 > 0, x2 + 1 > 0, thus x2 − 3 ≥ 3 , i.e. x2 ≥ 3 .

1.90 ��  Given a, b, c  are nonzero real numbers, and a2 + b2 + c2 = 1 ,  
a + b+ c(1

b
+ 1

c
) + b(1

c
+ 1

a
) + c( 1

a
+ 1

b
) + 3 = 0, find all possible values of a + b+ c .

Solution: 
a + b+ c(1

b
+ 1

c
) + b(1

c
+ 1

a
) + c( 1

a
+ 1

b
) + 3 = 0 ⇒ ac+ab

bc
+ ab+bc

ac
+ bc+ca

ab
+ 3 = 0 ⇒ (a + b +

c)(ab+ bc+ ca) = 0 ⇒ a + b+ c = 0

c) (1
b
+ 1

c
) + b(1

c
+ 1

a
) + c( 1

a
+ 1

b
) + 3 = 0 ⇒ ac+ab

bc
+ ab+bc

ac
+ bc+ca

ab
+ 3 = 0 ⇒ (a + b +

c)(ab+ bc+ ca) = 0 ⇒ a + b+ c = 0 or ab+ bc + ca = 0 . For the case ab+ bc + ca = 0 , since 

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc + ca) = 1, then (a + b+ c)2 = 1 ⇒ a+ b+ c = ±1 . 
Hence, a + b+ c  can be -1, 0, or 1.

1.91 ��  If the sum of two consecutive natural numbers n  and n + 1  is the square of another natural 

number m , show n  is divisible by 4.

Proof: n + n+ 1 = m2 , i.e. m2 = 2n+ 1 . 2n+ 1  is an odd number, then m2 is also an odd 
number, then m  has to be odd. Let m = 2k + 1  (k  is a nonnegative integer). 
n = m2−1

2
= (m−1)(m+1)

2
= 2k(k + 1) . Since k(k + 1) is obviously an even number, then 

n = 2k(k + 1)  is divisible by 4.

1.92 ��  If x3 − 2x2 + ax− 6  and x3 + 5x2 + bx+ 8  have a second order common factor, 

determine the values of a, b .
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Solution: Let 

 x3 − 2x2 + ax− 6 = (x2 + px+ q)(x+ c) = x3 + (c+ p)x2 + (cp+ q)x+ cq

 x3 + 5x2 + bx+ 8 = (x2 + px+ q)(x+ d) = x3 + (d+ p)x2 + (dp+ q)x+ dq

Make the corresponding coefficients equal to have 
p+ c = −2, cp+ q = a, cq = −6, d+ p = 5, dp+ q = 6, dq = 8 . From these six algebraic 

equations, we obtain a = −1, b = 6, c = −3, d = 4, p = 1, q = 2 .

1.93 ���  In the Cartesian plane XOY , all coordinates of the points A(x1, y1)  and B(x2, y2)  are 

one-digit positive integers. The angle between OA  and the positive part of x  axis is greater than  
450 , and the angle between OB  and the positive part of x  axis is less than 450 . Denote 
B′ = (x2, 0), A

′ = (0, y1) . The area of �OB′B  is 33.5 larger than the area of �OA′A . Find the 

four-digit number x1x2y2y1  where x1, x2, y2, y1  are the four digits.

Solution: 
1

Smin
+

1

Smax�OB′B = S�OA′A + 33.5 ⇒ 1
2
x2y2 =

1
2
x1y1 + 33.5 ⇒ x2y2 = x1y1 + 67 . Since 

x1y1 > 0, then x2y2 > 67 . In addition, x2, y2 are one-digit positive integers, then x2y2 = 72  or  
81 . ∠BOB′ < 450, then the point B  is below the diagonal line y = x , then x2 > y2 , thus  
x2y2 �= 81 , then x2y2 = 72 , which implies x2 = 9, y2 = 8 . Hence, x1y1 = 5. Since  
∠AOB′ > 450 , then the point A  is above the diagonal line y = x , then x1 < y1 . Since x1, y1 are 
one-digit positive integers, then x1 = 1, y1 = 5 . Therefore the four-digit number x1x2y2y1 = 1985 .

1.94 ��  Given a positive integer n > 30 and 2002n  is divisible by 4n− 1 , find the value of n.

Solution: Let 2002n
4n− 1

= k , then 
2002n

4n− 1
= k= 500 + 2(n+250)

4n−1 . Since 4n− 1  is an odd number, then 2(n+ 250)  

is divisible by 4n− 1 . Let 
n + 250

4n− 1
= p  ( p  is a positive integer), then 4p =

4n+ 1000

4n− 1
= 1 +

1001

4n− 1
, 

thus 1001 is divisible by 4n− 1 . Since n ≥ 30  and 1001 = 7× 11× 13 , then we should have 
4n− 1 = 143 , which implies n = 36, p = 2.

1.95 ��  How many integers satisfying the inequality |x− 2000|+ |x| ≤ 9999? 

Solution: If x ≥ 2000 , then the inequality becomes (x− 2000) + x ≤ 9999 ⇔ 2000 ≤ x ≤ 5999.5 . 
There are 4000 integers satisfying the inequality. If 0 ≤ x < 2000 , then the inequality becomes 
(2000− x) + x ≤ 9999 ⇔ 2000 ≤ 9999 that is always true, then there are 2000 integers satisfying 
the inequality. If x < 0 , then the inequality becomes 
(2000− x) + (−x) ≤ 9999 ⇔ −3999.5 ≤ x < 0 . There are additionally 3999 integers satisfying 
the inequality. Hence, totally there are 4000 + 2000 + 3999 = 9999  integers satisfying the inequality.

Download free eBooks at bookboon.com



Elementary Algebra Exercise Book I

31 

Real numbers

1.96 ���  The real numbers x, y, z  satisfy x+ y + z = 3  (i), x2 + y2 + z2 = 29  (ii), 
x3 + y3 + z3 = 45  (iii). Evaluate xyz  and x4 + y4 + z4 .

Solution: (i)2-(ii): xy + yz + zx = −10 . Since 

x3 + y3 + z3 − 3xyz = x3 + 3x2y + 3xy2 + y3 + z3 − 3x2y − 3xy2 − 3xyz = (x +
y)3 + z3 − 3xy(x+ y + z) = (x + y + z)[(x + y)2 − (x+ y)z + z2]− 3xy(x+ y + z) =
(x+ y + z)(x2 + y2 + z2 − xy − yz − zx)

 x3 + y3 + z3 − 3xyz = x3 + 3x2y + 3xy2 + y3 + z3 − 3x2y − 3xy2 − 3xyz = (x +
y)3 + z3 − 3xy(x+ y + z) = (x + y + z)[(x + y)2 − (x+ y)z + z2]− 3xy(x+ y + z) =
(x+ y + z)(x2 + y2 + z2 − xy − yz − zx)

 
x3 + y3 + z3 − 3xyz = x3 + 3x2y + 3xy2 + y3 + z3 − 3x2y − 3xy2 − 3xyz = (x +

y)3 + z3 − 3xy(x+ y + z) = (x + y + z)[(x + y)2 − (x+ y)z + z2]− 3xy(x+ y + z) =
(x+ y + z)(x2 + y2 + z2 − xy − yz − zx) , then 45− 3xyz = 3(29 + 10) ⇒ xyz = −24. 

Since (xy + yz + zx)2 = 100 ⇒ x2y2 + y2z2 + z2x2 + 2xyz(x+ y + z) = 100 , then 

x2y2 + y2z2 + z2x2 = 100− 2 · (−24) · 3 = 244 .  

Hence, x4 + y4 + z4 = (x2 + y2 + z2)2 − 2(x2y2 + y2z2 + z2x2) = 292 − 2× 244 = 353 .

1.97 �  Let 
1

Smin
+

1

Smax= 1 + 1
22

+ 1
32

+ · · ·+ 1
20092 , find [S].

Solution: 1 < S = 1 +
1

22
+

1

32
+ · · · + 1

20092
< 1 +

1

1× 2
+

1

2× 3
+ · · · + 1

2008× 2009
=

1 + 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

2008
− 1

2009
= 2− 1

2009
= 1

2008

2009

  1 < S = 1 +
1

22
+

1

32
+ · · · + 1

20092
< 1 +

1

1× 2
+

1

2× 3
+ · · · + 1

2008× 2009
=

1 + 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

2008
− 1

2009
= 2− 1

2009
= 1

2008

2009
. Hence, [S] = 1 .
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1.98 ���  Let 
1

Smin
+

1

Smax= 1 + 1√
2
+ 1√

3
+ · · ·+ 1√

994009 , find [S].

there are 2000 integers satisfying the inequality. If x < 0, then the inequality becomes
(2000 − x) + (−x) ≤ 9999 ⇔ −3999.5 ≤ x < 0. There are additionally 3999 integers
satisfying the inequality. Hence, totally there are 4000 + 2000 + 3999 = 9999 integers
satisfying the inequality.

1.96 ⋆⋆⋆ The real numbers x, y, z satisfy x+ y + z = 3 (i), x2 + y2 + z2 = 29 (ii),
x3 + y3 + z3 = 45 (iii). Evaluate xyz and x4 + y4 + z4.

Solution: (i)2-(ii): xy + yz + zx = −10. Since x3 + y3 + z3 − 3xyz = x3 + 3x2y +
3xy2+ y3+ z3− 3x2y− 3xy2− 3xyz = (x+ y)3+ z3− 3xy(x+ y+ z) = (x+ y+ z)[(x+
y)2 − (x+ y)z + z2]− 3xy(x+ y + z) = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx), then
45− 3xyz = 3(29 + 10) ⇒ xyz = −24. Since (xy + yz + zx)2 = 100 ⇒ x2y2 + y2z2 +
z2x2 + 2xyz(x + y + z) = 100, then x2y2 + y2z2 + z2x2 = 100 − 2 · (−24) · 3 = 244.
Hence, x4 + y4 + z4 = (x2 + y2 + z2)2 − 2(x2y2 + y2z2 + z2x2) = 292 − 2× 244 = 353.

1.97 ⋆ Let S = 1 +
1

22
+

1

32
+ · · ·+ 1

20092
, find [S].

Solution: 1 < S = 1+
1

22
+

1

32
+ · · ·+ 1

20092
< 1+

1

1× 2
+

1

2× 3
+ · · ·+ 1

2008× 2009
=

1 + 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

2008
− 1

2009
= 2− 1

2009
= 1

2008

2009
. Hence, [S] = 1.

1.98 ⋆⋆⋆ Let S = 1 +
1√
2
+

1√
3
+ · · ·+ 1√

994009
, find [S].

Solution: Let k be a positive integer, we have
1

√
k + 1 +

√
k
<

1

2
√
k
<

1√
k +

√
k − 1

⇔
√
k + 1−

√
k <

1

2
√
k
<

√
k −

√
k − 1. Thus we have

√
2− 1 <

1

2
√
1
< 1,

√
3−

√
2 <

1

2
√
2
<

√
2 − 1, · · · ,

√
994010 −

√
994009 <

1

2
√
994009

<
√
994009 −

√
994008. Add

them up to get
√
994010− 1 <

1

2
(1 +

1√
2
+

1√
3
+ · · ·+ 1√

994009
) <

√
994009− 1

2
⇒

997− 1 <
1

2
S < 997− 1

2
⇒ 1992 < 2

√
994010− 2 < S < 1993 ⇒ [S] = 1992.

1.99 ���  Given x, y, z, a, b, c  are distinct rewal numbers, and 

1

x+ a
+

1

y + a
+

1

z + a
=

1

a
,

1

x+ b
+

1

y + b
+

1

z + b
=

1

b
,

1

x+ c
+

1

y + c
+

1

z + c
=

1

c
,

Evaluate 
1

a
+

1

b
+

1

c
.

Solution: The three equalities imply that we can treat a, b, c  as three distinct roots of the equation 
1

x+ t
+

1

y + t
+

1

z + t
=

1

t
, which is equivalent to 2t3 + (x+ y + z)t2 − xyz = 0 . Vieta’s 

formulas lead to ab+ bc + ca = 0 , thus 
1

a
+

1

b
+

1

c
=

ab+ bc + ca

abc
= 0 .

1.100 ���  If m  is a natural number, Sm  represents the sum of all digits of m , and the largest 

common divisor of Sm  and Sm+1 is a prime greater than 2, find the minimum value of m .

Solution: (Sm, Sm+1) > 2 ⇒ Sm+1 − Sm �= 1 . Assume m  has 9’s as the last n  digits (n ≥ 0 ), then 
Sm+1 = Sm − 9n+ 1 . Let (Sm, Sm+1) = d , then d = (Sm, 9n− 1) , d|9n− 1 , thus n �= 0, 1  
(since d > 2 ). If n = 2 , then d|17 , d = 17, Sm  has the minimum value 34 (since Sm ≥ 18 ) and m  
has the minimum value 8899. If n = 3 , then d|26 , d = 13, Sm  has the minimum value 39 (since 
Sm ≥ 27 ) and m  has the minimum value 48999. If n ≥ 4 , then m ≥ 9999  when d  exists. Hence, 
m  has the minimum value 8899.

1.101 ���  Given ax+ by = 7, ax2 + by2 = 49, ax3 + by3 = 133, ax4 + by4 = 406 , evaluate 

2002(x+ y) + 2002xy +
a+ b

21
.
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Solution: (ax+ by)(x+ y) = ax2 + axy + bxy + by2 = (ax2 + by2) + (a + b)xy , 
(ax2 + by2)(x+ y) = ax3 + ax2y + bxy2 + by3 = (ax3 + by3) + (ax+ by)xy , 
(ax3 + by3)(x+ y) = ax4 + ax3y + bxy3 + by4 = (ax4 + by4) + (ax2 + by2)xy .  
Substitute ax+ by = 7, ax2 + by2 = 49, ax3 + by3 = 133, ax4 + by4 = 406   into the above 
equalities to obtain 

7(x+ y) = 49 + (a+ b)xy (i)

49(x+ y) = 133 + 7xy (ii)

133(x+ y) = 406 + 49xy (iii)

(ii) × 7− (iii) ⇒ x+ y = 2.5 .
(ii) × 19− (iii) × 7 ⇒ xy = −1.5 .
Substitute x+ y = 2.5, xy = −1.5  into (i): a + b = 21 .
Therefore, 2002(x+ y) + 2002xy +

a+ b

21
= 2002× 2.5 + 2002× (−1.5) +

21

21
= 2003 .

1.102 ���  If , q, 2p−1
q

, 2q−1
p  are integers, and p > 1, q > 1 , find the value of p+ q .

Solution 1: If p = q , then 2p− 1

q
=

2p− 1

p
= 2− 1

p
. Since p > 1 is an integer, then 2p−1

q
= 2− 1

p
 is 

not an integer, a contradiction to the given problem. Hence, p �= q . Without loss of generality, Let 
p > q  and let 2q − 1

p
= m  (m  is a positive integer). Since mp = 2q − 1 < 2p− 1 < 2p , then m = 1 , 

then p = 2q − 1, then 2p− 1

q
=

4q − 3

q
= 4− 3

q
. Additionally since 2p− 1

q
 is also a positive integer 

and q > 1 , then q = 3 , then p = 2q − 1 = 5 , thus p+ q = 8.

Solution 2: Starting from p > q , let 2p− 1

q
= m  (i), 

2q − 1

p
= n  (ii). m,n  are both positive integers 

and m > n . (ii) is equivalent to q = np+1
2 , substitute it into (i): 2p− 1 = m

np+ 1

2
, thus 

(4−mn)p = m + 2 , thus 4−mn  is a positive integer, i.e. mn = 1  or mn = 2  or mn = 3 . Recall 

that m > n , then we only have two possibilities m = 2, n = 1  or m = 3, n = 1 . When 
m = 2, n = 1 , (i)(ii) lead to p = 2, q = 3/2  ( q  is not an integer). When m = 3, n = 1 , (i)(ii) lead 

to p = 5, q = 3 , hence p+ q = 8.

1.103 ���� If the real numbers a, b, c, d  are all distinct, and a, b, c, d+1
b
= b+ 1

c
= c+ 1

d
= d+ 1

a
= x 

find the value of x .

Solution: a, b, c, d+1
b
= b+ 1

c
= c+ 1

d
= d+ 1

a
= x ⇒  a, b, c, d+1

b
= x  (i), a, b, c, d+1

c
= x  (ii), a, b, c, d+

1
d
= x  (iii),  

a, b, c, d+ 1
a
= x  (iv). (i) implies a, b, c, d= 1

x−a , substitute it into (ii): a, b, c, d= x−a
x2−ax−1 , substitute it into (iii): 

x− a

x2 − ax− 1
+

1

d
= x , that is, dx3 − (ad+ 1)x2 − (2d− a)x+ ad+ 1 = 0  (v).
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(iv) implies ad+ 1 = ax , substitute it into (v): 
dx3 − ax3 − 2dx+ ax+ ax = 0 ⇒ (d− a)x3 − (d− a)2x = 0 ⇒ (d− a)(x3− 2x) = 0. Since 
d− a �= 0, then x3 − 2x = 0 . If x = 0 , then a, b, c, d = x−a

x2−ax−1
⇒ a = c , a contradiction. Hence, 

x2 − 2 = 0 ⇒ x2 = 2 ⇒ x = ±
√
2 .

1.104 ���  Consider a group of natural numbers a1, a2, · · · , an , in which there are Ki  numbers 
equal to i  (i = 1, 2, · · · , m ). Let S = a1 + a2 + · · ·+ an, Sj = K1 +K2 + · · ·+Kj  
(1 ≤ j ≤ m ). Show S1 + S2 + · · ·+ Sm = (m+ 1)Sm − S .

Proof: S = a1 + a2 + · · ·+ an = K1 · 1 +K2 · 2 + · · ·+Kn ·m = (K1 +K2 + · · ·+Km) +
(K2 +K3 + · · ·+Km) + · · ·+Km = Sm + (Sm − S1) + · · ·+ (Sm − Sm−1) + Sm − Sm =
(m+ 1)Sm − (S1 + S2 + · · ·+ Sm)

.

Hence, S1 + S2 + · · ·+ Sm = (m+ 1)Sm − S .

1.105 ���  There are ten distinct rational numbers, and the sum of any nine of them is an irreducible 

proper fraction whose denominator is 22, find the sum of these ten rational numbers.
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Solution: Let these ten distinct rational numbers be a1 < a2 < · · · < a10 . We have 
(a1 + a2 + · · ·+ a10)− ak =

m

22
, where k = 1, 2, · · · , 10. m  is an odd number and 

1 ≤ m ≤ 21, m �= 11 . Additionally because a1, a2, · · · , a10  are all distinct, then  

10(a1+a2+· · ·+a10)−(a1+a2+· · ·+a10) =
1 + 3 + 5 + 7 + 9 + 13 + 15 + 17 + 19 + 21

22
.

Hence, a1 + a2 + · · ·+ a10 = 5/9.

1.106 ��  Given a + b+ c = abc �= 0, evaluate 
(1− b2)(1− c2)

bc
+

(1− a2)(1− c2)

ac
+

(1− a2)(1− b2)

ab
.

Solution: a, b, c, d+b+ c = abc �= 0 ⇒ ab = a+b+c
c

⇒ a+b
c

= ab− 1 .  

Similarly, b+ c

a
= bc− 1,

a+ c

b
= ac− 1 . We have 

(1− b2)(1− c2)

bc
+
(1− a2)(1− c2)

ac
+
(1− a2)(1− b2)

ab
=

1− b2 − c2 + b2c2

bc
+
1− a2 − c2 + a2c2

ac
+

1− a2 − b2 + a2b2

ab
= (

1

bc
+

1

ac
+

1

ab
)− b+ c

a
− a+ c

b
− a + b

c
+ab+ac+bc =

a+ b+ c

abc
−

(bc−1)− (ac−1)− (ab−1)+ab+ac+bc = 1−bc+1−ac+1−ab+1+ab+ac+bc = 4 .

1.107 ���  Let a, b, c  be distinct positive integers, show at least one of a3b− ab3, b3c− bc3, c3a− ca3  

is divisible by 10.

Proof: Because a3b− ab3 = ab(a2 − b2), b3c− bc3 = bc(b2 − c2), c3a− ca3 = ca(c2 − a2) , then 
if a, b, c  has at least one even number or they are all odd numbers, a3b− ab3, b3c− bc3, c3a− ca3  
are divisible by 2.

If one of a, b, c  is a multiple of 5, then the conclusion is proven.

If a, b, c  are not divisible by 5, then the last digits of a2, b2, c2 can only be 1,4,6,9. Thus the last digits 
of a2 − b2, b2 − c2, c2 − a2 should have 0  or ±5 , that is, at least one of a2 − b2, b2 − c2, c2 − a2 is 
divisible by 5. Since 2 and 5 are coprime, thus at least one of a3b− ab3 = ab(a2 − b2), b3c− bc3 = bc(b2 − c2), c3a− ca3 = ca(c2 − a2) 

a3b− ab3 = ab(a2 − b2), b3c− bc3 = bc(b2 − c2), c3a− ca3 = ca(c2 − a2) is divisible by 10.

1.108 ���  Let a, b, c  are positive integers and follow a geometric sequence, and b− a  is a perfect 

square, log6 a + log6 b+ log6 c = 6 , find the value of a + b+ c .

Solution: log6 a + log6 b+ log6 c = 6 ⇒ log6 abc = 6 ⇒ abc = 66 . In addition, b2 = ac , then 
b = 62 = 36, ac = 362 . In order to make 36− a  a perfect square, a  can only be 11,27,32,35, and a  
is a divisor of 362 , thus a = 27 , then c = 48. Therefore, a + b+ c = 27 + 36 + 48 = 111 .
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1.109 ���  The real numbers a, b, c, d  satisfy a + b = c + d, a3 + b3 = c3 + d3 , show 
a2011 + b2011 = c2011 + d2011 .

Proof: If a + b = c + d = 0, then the conclusion is obviously true. 

If a + b = c + d �= 0, then 

a3 + b3 = c3 + d3 ⇒ (a+ b)(a2 − ab+ b2) = (c+ d)(c2 − cd+ d2) ⇒ a2 − ab+ b2 =
c2 − cd + d2 ⇒ (a + b)2 − 3ab = (c + d)2 − 3cd ⇒ ab = cd ⇒ (a + b)2 − 4ab =
(c+ d)2 − 4cd ⇒ (a− b)2 = (c− d)2 ⇒ a− b = ±(c− d)

 a3 + b3 = c3 + d3 ⇒ (a+ b)(a2 − ab+ b2) = (c+ d)(c2 − cd+ d2) ⇒ a2 − ab+ b2 =
c2 − cd + d2 ⇒ (a + b)2 − 3ab = (c + d)2 − 3cd ⇒ ab = cd ⇒ (a + b)2 − 4ab =
(c+ d)2 − 4cd ⇒ (a− b)2 = (c− d)2 ⇒ a− b = ±(c− d)

 
a3 + b3 = c3 + d3 ⇒ (a+ b)(a2 − ab+ b2) = (c+ d)(c2 − cd+ d2) ⇒ a2 − ab+ b2 =

c2 − cd + d2 ⇒ (a + b)2 − 3ab = (c + d)2 − 3cd ⇒ ab = cd ⇒ (a + b)2 − 4ab =
(c+ d)2 − 4cd ⇒ (a− b)2 = (c− d)2 ⇒ a− b = ±(c− d). Hence, 

a− b = c− d (i)

a+ b = c+ d (ii)

or 

a− b = d− c (iii)

a + b = c+ d (iv)

(i)+(ii): a = c ; (i)-(ii): b = d .

(iii)+(iv): a = d ; (iii)-(iv): b = c .

For either case, we have a2011 + b2011 = c2011 + d2011 .

1.110 ���  The real numbers a, b, c, d  satisfy a + b+ c+ d = 0 , show 
a3 + b3 + c3 + d3 = 3(abc + bcd+ cda+ dab) .

Proof: 
a+b+c+d = 0 ⇒ a+b = −(c+d) ⇒ 0 = (a+b)3+(c+d)3 = a3+b3+3a2b+3ab2+

c3+d3+3c2d+3cd2 ⇒ a3+b3+c3+d3 = −3(a2b+ab2+c2d+cd2) ⇒ a3+b3+c3+d3−
3(abc+bcd+cda+dab) = −3(a2b+ab2+c2d+cd2)−3(abc+bcd+cda+dab) = −3(a2b+
ab2+c2d+cd2+abc+bcd+cda+dab) = −3[(a2b+ab2+abc+abd)+(acd+bcd+c2d+cd2)] =
−3[ab(a+b+c+d)+cd(a+b+c+d)] = 0 ⇒ a3+b3+c3+d3 = 3(abc+bcd+cda+dab) .

1.111 ���  Consider a 2n× 2n  square grid chessboard, each grid can only have one piece, and 

there are 3n  grids having pieces, show we can always find n  rows and n  columns such that these 3n  

pieces are within these n  rows or these n  columns.
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Proof: Denote the number of pieces in each row or column as p1, p2, · · · , pn, pn+1, · · · , p2n  with the 
order p1 ≥ p2 ≥ · · · ≥ pn ≥ pn+1 ≥ · · · ≥ p2n . The given condition implies that 
p1 + p2 + · · ·+ pn + pn+1 + · · ·+ p2n = 3n  (i). If p1 + p2 + · · ·+ pn ≤ 2n− 1  (ii), then at 
least one of p1, p2, · · · , pn  is not greater than 1. (i)-(ii): pn+1 + · · ·+ p2n ≥ n+ 1 , then at least one 
of pn+1, · · · , p2n  is greater than 1, a contradiction. Hence, we have p1 + p2 + · · ·+ pn ≥ 2n . Hence, 
we choose not less than 2n  pieces from the n  rows and then choose the remaining pieces from the n  
columns to include all 3n  pieces.

1.112 ����  Find a positive number such that its fractional part, its integer part, and itself are 

geometric.

Solution: Denote the number as x > 0 , its integer part [x] , and its fractional part x− [x].  
The given condition implies that x(x− [x]) = [x]2 ⇒ x2 − [x]x − [x]2 = 0 ,   
where [x] > 0, 0 < x− [x] < 1 . The solution is x > 0 = 1+

√
5

2
[x] . Since 0 < x− [x] < 1 ,  

then 0 <
1 +

√
5

2
[x] < 1 ⇒ 0 < [x] <

1 +
√
5

2
< 2 ⇒ [x] = 1, x =

1 +
√
5

2
[x] > 0, 0 < x− [x] < 1

.

1.113 ����  Consider a sequence a1, a2, a3, · · · , an  satisfying a1 + a2 + · · ·+ an = n3  for any 

positive integer n , evaluate 
1

a2 − 1
+

1

a3 − 1
+ · · ·+ 1

a100 − 1
.
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Solution: When n ≥ 2 , we have a1 + a2 + · · ·+ an = n3  (i), a1 + a2 + · · ·+ an−1 = (n− 1)3  
(ii). (i)-(ii): an = n3 − (n− 1)3 = 3n2 − 3n+ 1 . Thus 

1

an − 1
=

1

3n2 − 3n
=

1

3n(n− 1)
=

1

3

(
1

n− 1
− 1

n

)
, n = 1, 2, 3, · · · , 100 .  

Hence,  1

a2 − 1
+

1

a3 − 1
+ · · · + 1

a100 − 1
=

1

3
(1 − 1

2
) +

1

3
(
1

2
− 1

3
) + · · · + 1

3
(
1

99
− 1

100
) =

1

3
(1− 1

100
) =

1

3
× 99

100
=

33

100

1

a2 − 1
+

1

a3 − 1
+ · · · + 1

a100 − 1
=

1

3
(1 − 1

2
) +

1

3
(
1

2
− 1

3
) + · · · + 1

3
(
1

99
− 1

100
) =

1

3
(1− 1

100
) =

1

3
× 99

100
=

33

100

.

1.114 ����  x1, x2, x3, x4, x5 are distinct positive odd numbers and satisfy 
(2005− x1)(2005− x2)(2005− x3)(2005− x4)(2005− x5) = 576 , what is the last digit of 
x2
1 + x2

2 + x2
3 + x2

4 + x2
5? 

Solution: Since x1, x2, x3, x4, x5 are distinct positive odd numbers, then 
2005− x1, 2005− x2, 2005− x3, 2005− x4, 2005− x5 are distinct even numbers, thus 576 
needs to be factored into the product of five distinct even numbers, which has a unique form: 
576 = 242 = 2× (−2)× 4× 6× (−6) .  

Hence, 
(2005−x1)

2+(2005−x2)
2+(2005−x3)

2+(2005−x4)
2+(2005−x5)

2 = 22+(−2)2+
42+62+(−6)2 = 96 ⇒ 5×20052−4010(x1+x2+x3+x4+x5)+(x2

1+x2
2+x2

3+x2
4+x2

5) =
96 ⇒ x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 96− 5× 20052 + 4010(x1 + x2 + x3 + x4 + x5) ≡ 1  
(mod 10), that is, the last digit of x2

1 + x2
2 + x2

3 + x2
4 + x2

5  is 1.

1.115 ����  There are 95 numbers a1, a2, · · · , a95 , which can only be +1 or -1. Find the minimum 

value of the sum of all products of any two, S = a1a2 + a1a3 + · · ·+ a94a95 ; also determine how 

many (+1)’s and how many (-1)’s in the 95 numbers such that the minimum S  is obtained.

Proof: Assume there are m  (+1)’s and n  (-1)’s in a1, a2, · · · , a95 , then m+ n = 95  (i). 
a1a2 + a1a3 + · · ·+ a94a95 = S , multiply it by 2 plus a21 + a22 + · · ·+ a295 = 95: 
(a1 + a2 + · · ·+ a95)

2 = 2S + 95. a1 + a2 + · · ·+ a95 = m− n , then (m− n)2 = 2S + 95 . 
The minimum value of S  to make 2S + 95  a perfect square is Smin = 13 . When S = Smin , 
(m− n)2 = 112, that is, m− n = ±11  (ii). (i)(ii) imply that m+ n = 95, m− n = 11  or 
m+ n = 95, m− n = −11 , from which we have m = 53, n = 42 or m = 42, n = 53. Hence, 
when there are 53 (+1)’s and 42 (-1)’s, or there are 42 (+1)’s and 53 (-1)’s, S = Smin = 13.

1.116 ����  Let p = n(n+ 1)(n+ 2) · · · (n + 7) , where n  is a positive integer, show 
[ 4
√
p] = n2 + 7n+ 6 .
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Proof: Let a = n2 + 7n+ 6 , then  
p = n(n+7)(n+1)(n+6)(n+2)(n+5)(n+3)(n+4) = (n2+7n)(n2+7n+6)(n2+7n+

10)(n2+7n+12) = (a−6)a(a+4)(a+6) = a4+4a(a2−9a−36) = a4+4a(a+3)(a−12)
.  

When n ≥ 1 , a > 12 , then a4 < p . On the other hand, 
(a+1)4−p = a4+4a2+1+4a3+2a2+4a−a4−4a3+36a2+144a = 42a2+148a+1 >

0 ⇒ p < (a+ 1)4
(a+1)4−p = a4+4a2+1+4a3+2a2+4a−a4−4a3+36a2+144a = 42a2+148a+1 >

0 ⇒ p < (a+ 1)4 .  Hence, a4 < p < (a + 1)4 ⇒ a < 4
√
p < a + 1 ⇒ [ 4

√
p] = a = n2 + 7n+ 6.

1.117 ����� The real numbers a, b, c, d, e  satisfy
a + b+ c+ d+ e = 8, a2 + b2 + c2 + d2 + e2 = 16 , find the maximum value of e .

Solution: Substitute a = 8− b− c− d− e  into a2 + b2 + c2 + d2 + e2 = 16: 

(8 − b − c− d − e)2 + b2 + c2 + d2 + e2 = 16 ⇒ 2b2 − 2(8 − c− d − e)b+ (8 − c−
d− e)2 + c2 + d2 + e2 − 16 = 0

(8 − b − c− d − e)2 + b2 + c2 + d2 + e2 = 16 ⇒ 2b2 − 2(8 − c− d − e)b+ (8 − c−
d− e)2 + c2 + d2 + e2 − 16 = 0 . Since b  is a real number, then  

∆b = 4(8− c− d− e)2 − 8[(8− c− d− e)2 + c2 + d2 + e2 − 16] ≥ 0 ⇒ 3c2 − 2(8−
d− e)c + (8− d− e)2 − 2(16− d2 − e2) ≤ 0

∆b = 4(8− c− d− e)2 − 8[(8− c− d− e)2 + c2 + d2 + e2 − 16] ≥ 0 ⇒ 3c2 − 2(8−
d− e)c + (8− d− e)2 − 2(16− d2 − e2) ≤ 0 . There are real values c  satisfying this inequality if 
and only if  ∆c = 4(8− d− e)2 − 12[(8− d− e)2 − 2(16− d2− e2)] ≥ 0 ⇒ 4d2− 2(8− e)d+ (8−

e)2 − 3(16− e2) ≤ 0
∆c = 4(8− d− e)2 − 12[(8− d− e)2 − 2(16− d2− e2)] ≥ 0 ⇒ 4d2− 2(8− e)d+ (8−

e)2 − 3(16− e2) ≤ 0. There are real values d  satisfying this inequality if and only if 
∆d = 4(8 − e)2 − 16[(8 − e)2 − 3(16 − e2)] ≥ 0 ⇒ 5e2 − 16e ≤ 0 ⇒ e(5e − 16) ≤

0 ⇒ 0 ≤ e ≤ 16/5
∆d = 4(8 − e)2 − 16[(8 − e)2 − 3(16 − e2)] ≥ 0 ⇒ 5e2 − 16e ≤ 0 ⇒ e(5e − 16) ≤

0 ⇒ 0 ≤ e ≤ 16/5 . Hence, the maximum value of e  is 16/5.

1.118 ����� Let a positive integer d  not equal to 2,5,13, show we can find two elements a, b  

from the set {2, 5, 13, d}  such that ab− 1  is not a perfect square.

Proof: 2× 5− 1 = 32, 2× 13− 1 = 52, 5× 13− 1 = 82 , thus we need to show at least one of 
2d− 1, 5d− 1, 13d− 1 is not a perfect square. We prove this by contradiction. Suppose these three 
numbers are perfect squares, that is, 2d− 1 = x2  (i), 5d− 1 = y2 (ii), 13d− 1 = z2  (iii), where 
x, y, z  are positive integers. (i) implies 2d− 1 ≡ 1  (mod 2), then x  is an odd number, thus 2d− 1 ≡ 1  
(mod 4), thus d ≡ 1  (mod 2), that is, d  is an odd number. Similarly (ii)(iii) imply y, z  are even 
numbers. Let y = 2y1, z = 2z1 , where y1, z1  are positive integers. Substitute them into (ii)(iii) and 
subtract the two resulting equalities: z21 − y21 = 2d ⇒ (z1 − y1)(z1 + y1) = 2d  (iv). The right hand 
side of (iv) is divisible by 2, but the left hand side (z1 − y1) + (z1 + y1) = 2z1  is an even number, 
then z1 − y1  and z1 + y1 are multiples of 2, thus the left hand side of (iv) is divisible by 22 . However, 
d  is an odd number, thus the right hand side of (iv) is not divisible by 22 , a contradiction to the 
assumption.

1.119 ����  Let x, y, z  be nonnegative real numbers, and x+ y + z = 1 , find the maximum 

value of xy + yz + zx− 2xyz .
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Solution: (1− 2x)(1− 2y)(1− 2z) = (1− 2y− 2x+ 4xy)(1− 2z) = 1− 2y− 2x+ 4xy− 2z +
4yz + 4zx− 8xyz = 1− 2(x+ y + z) + 4(xy + yz + zx − 2xyz)
(1− 2x)(1− 2y)(1− 2z) = (1− 2y− 2x+ 4xy)(1− 2z) = 1− 2y− 2x+ 4xy− 2z +

4yz + 4zx− 8xyz = 1− 2(x+ y + z) + 4(xy + yz + zx − 2xyz) ,  
thus xy + yz + zx− 2xyz+yz + zx − 2xyz = 1

4
[(1− 2x)(1− 2y)(1− 2z) + 1] . 

Since x+ y + z = 1 , then at most one of 1− 2x, 1− 2y, 1− 2z  is less than zero, thus 

(1− 2x)(1− 2y)(1− 2z) ≤
(
1− 2x+ 1− 2y + 1− 2z

3

)3

=

[
3− 2(x+ y + z)

3

]3
=

(
3− 2

3

)3

=
1

27

(1− 2x)(1− 2y)(1− 2z) ≤
(
1− 2x+ 1− 2y + 1− 2z

3

)3

=

[
3− 2(x+ y + z)

3

]3
=

(
3− 2

3

)3

=
1

27
. Hence, xy + yz + zx− 2xyz+yz + zx − 2xyz ≤ 1

4
( 1
27

+ 1) = 7
27 . Therefore, the maximum value 

of xy + yz + zx− 2xyz  is 7/27.

1.120 ����� Let a, b, c ∈ R, a+ b+ c = 0 , show 

a5 + b5 + c5

5
=

a2 + b2 + c2

2
· a

3 + b3 + c3

3
.
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Proof: Let F (n) = an + bn + cn . Obviously a, b, c  are roots of the equation 
(x− a)(x− b)(x− c) = 0 . This equation is equivalent to 
x3 = (a + b+ c)x2 − (ab+ bc+ ca)x+ abc .  
When n ≥ 4 , we have xn = (a+ b+ c)xn−1 − (ab+ bc+ ca)xn−2 + (abc)xn−3.  
Thus an = (a+ b+ c)an−1 − (ab+ bc + ca)an−2 + (abc)an−3.  
Similarly, bn = (a+ b+ c)bn−1 − (ab+ bc + ca)bn−2 + (abc)bn−3   
and cn = (a + b+ c)cn−1 − (ab+ bc + ca)cn−2 + (abc)cn−3 . Add the above three equalities 
together: F (n) = (a + b+ c)F (n− 1)− (ab+ bc + ca)F (n− 2) + (abc)F (n− 3) .  
In addition, we know a2 + b2 + c2 + 2ab+ 2bc + 2ca = (a+ b+ c)2  
and a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) . When a + b+ c = 0 , 
then 

(1) = 0, ab+ bc+ ca = −a2+b2+c2

2
= −1

2
F (2), abc = 1

3
(a3 + b3 + c3) = 1

3
F (3), F (n) =

1
2
F (2)F (n− 2) + 1

3
F (3)F (n− 3)(1) = 0, ab+ bc+ ca = −a2+b2+c2

2
= −1

2
F (2), abc = 1

3
(a3 + b3 + c3) = 1

3
F (3), F (n) =

1
2
F (2)F (n− 2) + 1

3
F (3)F (n− 3)

 (1) = 0, ab+ bc+ ca = −a2+b2+c2

2
= −1

2
F (2), abc = 1

3
(a3 + b3 + c3) = 1

3
F (3), F (n) =

1
2
F (2)F (n− 2) + 1

3
F (3)F (n− 3) . Choose n = 4 , we have 

(1) = 0, ab+ bc+ ca = −a2+b2+c2

2
= −1

2
F (2), abc = 1

3
(a3 + b3 + c3) = 1

3
F (3), F (n) =

1
2
F (2)F (n− 2) + 1

3
F (3)F (n− 3)(4) = 1

2
F 2(2) . Choose n = 5 , we 

have 
(1) = 0, ab+ bc+ ca = −a2+b2+c2

2
= −1

2
F (2), abc = 1

3
(a3 + b3 + c3) = 1

3
F (3), F (n) =

1
2
F (2)F (n− 2) + 1

3
F (3)F (n− 3)(5) = 1

2
F (2)F (3) + 1

3
F (3)F (2) = 5

6
F (2)F (3) . Hence, F (5)

5
=

F (2)

2
· F (3)

3
, that is, 

a5 + b5 + c5

5
=

a2 + b2 + c2

2
· a

3 + b3 + c3

3
.

1.121 ����� Given x = by + cz, y = cz + ax, z = ax+ by , find the value of 
a

a + 1
+

b

b+ 1
+

c

c+ 1
.

Solution: From the given conditions, we have 
x− y = by + cz − cz − ax ⇒ (a + 1)x = (b+ 1)y ;

y − z = cz + ax− ax− by ⇒ (b+ 1)y = (c+ 1)z ;

z − x = ax+ by − by − cz ⇒ (c+ 1)z = (a+ 1)x .

Hence, (a + 1)x = (b+ 1)y = (c+ 1)z . Let (a + 1)x = (b+ 1)y = (c+ 1)z = k , then 
(ax+ by + cz) + (x+ y + z) = 3k  (i). Add up the given equalities in the problem: 
x+ y + z = 2(ax+ by + cz)  (ii). (i)(ii) lead to ax+ by + cz = k , thus 
a

a + 1
+

b

b+ 1
+

c

c+ 1
=

ax

(a+ 1)x
+

by

(b+ 1)y
+

cz

(c+ 1)z
=

ax+ by + cz

k
=

k

k
= 1 .

1.122 ����� Consider a cuboid whose length, width, height are positive integers m,n, r  and 
m ≤ n ≤ r . We paint red color on the surface of the cuboid completely and then chop it into cubes 
with side length 1. If we know that the number of cubes without red face plus the number of cubes with 
two red faces minus the number of cubes with one red face is 1985, find the values of m,n, r .
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Solution: We have three cases, separated by the value of m , to discuss.

(1) If m > 2 , then the number of cubes without red face is k0 = (m− 2)(n− 2)(r − 2) , the 
number of cubes with one red face is 
k1 = 2(m− 2)(n− 2) + 2(m− 2)(r − 2) + 2(n− 2)(r − 2) , the number of cubes with two 
red faces is k2 = 4(m− 2) + 4(n− 2) + 4(r − 2). We have 

k0 + k2 − k1 = 1985 ⇒ (m − 2)(n − 2)(r − 2) + 4[(m − 2) + (n − 2) + (r −
2)] − 2[(m − 2)(n − 2) + (m − 2)(r − 2) + (n − 2)(r − 2)] = 1985 ⇒ (m − 2)(n −
2)[(r − 2) − 2] − 2(m − 2)[(r − 2) − 2] − 2(n − 2)[(r − 2) − 2] + 4(r − 2) = 1985 ⇒
(m−2)(n−2)[(r−2)−2]−2(m−2)[(r−2)−2]−2(n−2)[(r−2)−2]+4[(r−2)−2] =
1977 ⇒ [(r − 2)− 2][(m − 2)(n − 2)− 2(m − 2)− 2(n − 2) + 4] = 1977 ⇒ [(r − 2)−
2]{(m− 2)[(n− 2)− 2]− 2[(n− 2)− 2]} = 1977 ⇒ (m− 4)(n− 4)(r − 4) = 1977

 

Because 1977 = 1× 3× 659 = 1× 1× 1977 = (−1)(−1) · 1977 , then 
m− 4 = 1, n− 4 = 3, r − 4 = 659 , or m− 4 = 1, n− 4 = 1, r − 4 = 1977 ,  or 
m− 4 = −1, n− 4 = −1, r − 4 = 1977 . Therefore, m = 5, n = 7, r = 663 , or 
m = 5, n = 5, r = 1981 , or m = 3, n = 3, r = 1981 .

(2) If m = 1 , then n = 1  leads to no solution, thus n ≥ 2 . In this case, the number of cubes without 
red face k0 = 0, the number of cubes with one red face k1 = 0, and the number of cubes with two red 
faces k2 = (n− 2)(r − 2). We have k0 + k2 − k1 = k2 = 1985 , thus 
(n− 2)(r − 2) = 1985 = 5× 397 = 1× 1985, from which we obtain n− 2 = 5, r − 2 = 397 , 
or n− 2 = 1, r − 2 = 1985. Therefore, m = 1, n = 7, r = 399 , or m = 1, n = 3, r = 1987 .

(3) If m = 2 , then k0 = 0, k1  and k2  are even numbers. In this case, obviously k0 + k2 − k1 �= 1985 .

As a conclusion, there are five possibilities:

m = 5, n = 7, r = 663 ;

m = 5, n = 5, r = 1981 ;

m = 3, n = 3, r = 1981 ;

m = 1, n = 7, r = 399 ;

m = 1, n = 3, r = 1987 .
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2 Equations
2.1 Given the equation 

5

2
x− b =

8

5
x+ 142 , find the smallest positive integer b  such that the solution 

x  is a positive integer.

Solution: 
5

2
x− b =

8

5
x+ 142 ⇒ b =

9

10
x− 142. Since b  is a positive integer, then 

9

10
x  should be 

a positive integer and greater than 142. Thus x  should be a multiple of 10. To minimize b , x = 160 , 
then b = 9

10
× 160− 142 = 2 , that is, the smallest positive integer b  is 2.

2.2 Solve x− a− b

c
+

x− b− c

a
+

x− c− a

b
= 3.

Solution 1: The equation implies a, b, c �= 0 . Multiply abc  on both sides of the equation: 
(x − a − b)ab + (x − b − c)bc + (x − c − a)ca = 3abc ⇔ (ab + bc + ca)x = 3abc +

ab(a + b) + bc(b+ c) + ca(c+ a) ⇔ (ab+ bc+ ca)x = (a+ b+ c)(ab+ bc+ ca)
(x − a − b)ab + (x − b − c)bc + (x − c − a)ca = 3abc ⇔ (ab + bc + ca)x = 3abc +

ab(a + b) + bc(b+ c) + ca(c+ a) ⇔ (ab+ bc+ ca)x = (a+ b+ c)(ab+ bc+ ca) . 
When ab+ bc + ca �= 0 , x = a+ b+ c ; When ab+ bc + ca = 0 , x  can be any real number.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Elementary Algebra Exercise Book I

44 

Equations

Solution 2:  x− a− b

c
+
x− b− c

a
+
x− c− a

b
= 3 ⇔ x− a− b

c
−1+

x− b− c

a
−1+

x− c− a

b
−

1 = 0 ⇔ x− (a+ b+ c)

c
+
x− (a+ b+ c)

a
+
x− (a+ b+ c)

b
= 0 ⇔ [x−(a+b+c)](

1

a
+

1

b
+

1

c
) = 0 ⇔ [x− (a+ b+ c)]

ab+ bc + ca

abc
= 0

x− a− b

c
+
x− b− c

a
+
x− c− a

b
= 3 ⇔ x− a− b

c
−1+

x− b− c

a
−1+

x− c− a

b
−

1 = 0 ⇔ x− (a+ b+ c)

c
+
x− (a+ b+ c)

a
+
x− (a+ b+ c)

b
= 0 ⇔ [x−(a+b+c)](

1

a
+

1

b
+

1

c
) = 0 ⇔ [x− (a+ b+ c)]

ab+ bc + ca

abc
= 0

 

x− a− b

c
+
x− b− c

a
+
x− c− a

b
= 3 ⇔ x− a− b

c
−1+

x− b− c

a
−1+

x− c− a

b
−

1 = 0 ⇔ x− (a+ b+ c)

c
+
x− (a+ b+ c)

a
+
x− (a+ b+ c)

b
= 0 ⇔ [x−(a+b+c)](

1

a
+

1

b
+

1

c
) = 0 ⇔ [x− (a+ b+ c)]

ab+ bc + ca

abc
= 0 .  

When ab+ bc + ca �= 0 , x = a+ b+ c ;  

When ab+ bc + ca = 0 , x  can be any real number.

2.3 Find the condition for a  such that the equation |ax− 2y − 3|+ |5x+ 9| = 0  has the solution 
(x, y)  where x, y  have the same sign.

Solution: |ax − 2y − 3| + |5x + 9| = 0 ⇒ ax − 2y − 3 = 0, 5x + 9 = 0 ⇒ x = −9

5
< 0, y =

ax

2
− 3

2
= − 9

10
a− 3

2

|ax − 2y − 3| + |5x + 9| = 0 ⇒ ax − 2y − 3 = 0, 5x + 9 = 0 ⇒ x = −9

5
< 0, y =

ax

2
− 3

2
= − 9

10
a− 3

2 . Since x, y  have the same sign, < 0 ⇒ a > −5
3
.

2.4 Find all positive integer solutions of the equation 123x+ 57y = 531 .

Solution: 123x+ 57y = 531 ⇔ 41x+ 19y + 177 ⇔ y = 9− 2x+
6− 3x

19
. Thus x = 2, y = 5  

is a specific solution, then all positive integer solutions should have the form x = 2− 19t, y = 5 + 41t, 
where t  is an integer. 2− 19t > 0, t+ 41t > 0 ⇒ − 5

41
< t <

2

19
, thus the only integer t = 0 . Hence, 

the original equation only has one positive integer solution x = 2, y = 5 .

2.5 Solve the equation x4 − 12x3 + 47x2 − 60x = 0 .

Solution:x4 − 12x3 + 47x2 − 60x = 0 ⇔ x(x3 − 3x2 − 9x2 + 27x + 20x − 60) = 0 ⇔
x[x2(x− 3)− 9x(x− 3) + 20(x− 3)] = 0 ⇔ x(x− 3)(x− 4)(x− 5) = 0

 x4 − 12x3 + 47x2 − 60x = 0 ⇔ x(x3 − 3x2 − 9x2 + 27x + 20x − 60) = 0 ⇔
x[x2(x− 3)− 9x(x− 3) + 20(x− 3)] = 0 ⇔ x(x− 3)(x− 4)(x− 5) = 0, which leads to four 
solutions: x = 0  or 3 or 4 or 5.

2.6 Given |x− 2| < 3, solve the equation |x+ 1|+ |x− 3|+ |x− 5| = 8.

Solution 1: |x− 2| < 3 ⇒ −1 < x < 5 . 
Then |x+ 1|+ |x− 3|+ |x− 5| = 8 ⇒ x+ 1 + |x− 3| − x+ 5 = 8 ⇒ |x− 3| = 2 .
When x ≥ 3, x− 3 = 2 ⇒ x = 5 which does not satisfy the given inequality;
When x < 3 , −(x− 3) = 2 ⇒ x = 1  which satisfies the given inequality.

Solution 2: |x− 2| < 3 ⇒ −1 < x < 5 .
When −1 < x < 3 , |x+ 1|+ |x− 3|+ |x− 5| = 8 ⇒ (x+ 1)− (x− 3)− (x− 5) = 8 ⇒ x = 1 ;
When 3 ≤ x < 5 , |x+ 1|+ |x− 3|+ |x− 5| = 8 ⇒ (x+ 1) + (x− 3)− (x− 5) = 8 ⇒ x = 5 , 
a contradiction to 3 ≤ x < 5 , or x = 5  does not satisfy the given inequality.

=
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2.7 Solve the equation x|x| − 3|x| − 4 = 0 .

Solution: When x ≥ 0, x|x| − 3|x| − 4 = 0 ⇒ x2 − 3x− 4 = 0 ⇒ (x+ 1)(x− 4) = 0 ⇒ x = −1 
(deleted since x ≥ 0) or x = 4 .

When x < 0 , x|x| − 3|x| − 4 = 0 ⇒ −x2 + 3x− 4 = 0 ⇒ x2 − 3x+ 4 = 0  which has no 
solution since ∆ = 9− 16 < 0 .

As a conclusion, the original equation has a unique solution x = 4 .

2.8 We know that the equation system 

3x+my − 5 = 0

x+ ny − 4 = 0

has no solution, and m,n  are integers whose absolute values less than 7, find the values of m,n .

Solution: The equation system has no solution, then 3
1
=

m

n
�= 5

4
, thus m = 3n  and 4m �= 5n . 

Additionally since |m| = |3n| < 7 , thus −7

3
< n <

7

3
. Since n  is an integer, then n = −2,−1, 0, 1, 2, 

then m = −6,−3, 0, 3, 6 . Hence, when m = −6, n = −2  or m = −3, n = −1  or m = 0, n = 0  
or m = 3, n = 1  or m = 6, n = 2 , the original equation system has no solution.

2.9 Assume the equation 2x2 + x+ a = 0 has the solution set A , and the equation 2x2 + bx+ 2 = 0  

has the solution set B , and A ∩B = {1/2} , find A ∪B .

Solution: Let A = {1/2, x1}, B = {1/2, x2} .  
Vieta’s formulas lead to x1 + 1/2 = −1/2, x2/2 = 1 ⇒ x1 = −1, x2 = 2 .  
Hence, A ∪B = {1/2,−1} ∪ {1/2, 2} = {−1, 1/2, 2} .

2.10 Find real valued solutions of the equation 
√
x+

√
y − 1 +

√
z − 2 = (x+ y + z)/2.

Solution 1: 
√
x+

√
y − 1 +

√
z − 2 = (x+ y + z)/2 ⇔ x− 2

√
x+ 1+ (y− 1)− 2

√
y − 1+ (z −

2)− 2
√
z − 2 + 1 = 0 ⇔ (

√
x− 1)2 + (

√
y − 1− 1)2 + (

√
z − 2− 1)2 = 0 ⇒

√
x− 1 =

0,
√
y − 1− 1 = 0,

√
z − 2− 1 = 0 ⇒ x = 1, y = 2, z = 3

√
x+

√
y − 1 +

√
z − 2 = (x+ y + z)/2 ⇔ x− 2

√
x+ 1+ (y− 1)− 2

√
y − 1+ (z −

2)− 2
√
z − 2 + 1 = 0 ⇔ (

√
x− 1)2 + (

√
y − 1− 1)2 + (

√
z − 2− 1)2 = 0 ⇒

√
x− 1 =

0,
√
y − 1− 1 = 0,

√
z − 2− 1 = 0 ⇒ x = 1, y = 2, z = 3

√
x+

√
y − 1 +

√
z − 2 = (x+ y + z)/2 ⇔ x− 2

√
x+ 1+ (y− 1)− 2

√
y − 1+ (z −

2)− 2
√
z − 2 + 1 = 0 ⇔ (

√
x− 1)2 + (

√
y − 1− 1)2 + (

√
z − 2− 1)2 = 0 ⇒

√
x− 1 =

0,
√
y − 1− 1 = 0,

√
z − 2− 1 = 0 ⇒ x = 1, y = 2, z = 3

 √
x+

√
y − 1 +

√
z − 2 = (x+ y + z)/2 ⇔ x− 2

√
x+ 1+ (y− 1)− 2

√
y − 1+ (z −

2)− 2
√
z − 2 + 1 = 0 ⇔ (

√
x− 1)2 + (

√
y − 1− 1)2 + (

√
z − 2− 1)2 = 0 ⇒

√
x− 1 =

0,
√
y − 1− 1 = 0,

√
z − 2− 1 = 0 ⇒ x = 1, y = 2, z = 3

√
x+

√
y − 1 +

√
z − 2 = (x+ y + z)/2 ⇔ x− 2

√
x+ 1+ (y− 1)− 2

√
y − 1+ (z −

2)− 2
√
z − 2 + 1 = 0 ⇔ (

√
x− 1)2 + (

√
y − 1− 1)2 + (

√
z − 2− 1)2 = 0 ⇒

√
x− 1 =

0,
√
y − 1− 1 = 0,

√
z − 2− 1 = 0 ⇒ x = 1, y = 2, z = 3.

Solution 2: Let 
√
x = t  (t ≥ 0), 

√
y − 1 = u  (u ≥ 0), 

√
z − 2 = v  (v ≥ 0 ). Then 

x = t2, y = u2 + 1, z = u2 + 2 , substitute it into the original equation to obtain

t + u + v = (t2 + u2 + 1 + v2 + 2)/2 ⇔ t2 + u2 + v2 − 2t − 2u − 2v + 3 = 0 ⇔
(t− 1)2 + (u− 1)2 + (v − 1)2 = 0 ⇒ t = u = v = 1 ⇒ x = 1, y = 2, z = 3

 t + u + v = (t2 + u2 + 1 + v2 + 2)/2 ⇔ t2 + u2 + v2 − 2t − 2u − 2v + 3 = 0 ⇔
(t− 1)2 + (u− 1)2 + (v − 1)2 = 0 ⇒ t = u = v = 1 ⇒ x = 1, y = 2, z = 3 .
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2.11 Solve the equation 
x+ 1

x+ 4
− x+ 4

x+ 1
+

x+ 1

x− 2
− x− 2

x+ 1
=

2

3
.

Solution: The equation is equivalent to 

1 − 3

x+ 4
− 1 − 3

x+ 1
+ 1 − 3

x− 2
− 1 +

3

x+ 1
=

2

3
⇔ 3

x− 2
=

2

3
+

3

x+ 4
⇔

x2 + 2x− 35 = 0

  
1 − 3

x+ 4
− 1 − 3

x+ 1
+ 1 − 3

x− 2
− 1 +

3

x+ 1
=

2

3
⇔ 3

x− 2
=

2

3
+

3

x+ 4
⇔

x2 + 2x− 35 = 0  and x �= 2, x �= −4 . We can factor it to be (x− 5)(x+ 7) = 0 , which leads 
to solutions x = 5, x = −7 .

2.12 If the equation x2 − 2x− 4y = 5  has real valued solutions, find the maximum value of x− 2y .

Solution: Let x− 2y = t , then we have a system of equations: x2 − 2x− 4y = 5  (i) and x− 2y = t  
(ii). (i)-(ii)×2 : x2 − 4x = 5− 2t ⇔ x2 − 4x+ 2t− 5 = 0. This quadratic equation has real valued 
solutions, thus ∆ = 16− 4(2t− 5) = 4(9− 2t) ≥ 0 ⇔ t ≤ 9/2 , that is, the maximum value of 
x− 2y  is 9/2.

2.13 Solve the equation lg x+ lg x3 + lg x5 + · · ·+ lg x2n−1 = n  (n ∈ N ).

Solution: lg x+lg x3+lg x5+ · · ·+lg x2n−1 = n ⇔ lg x1+3+5+···+(2n−1) = n ⇔ lg x(1+2n−1)n/2 =
n ⇔ n2 lg x = n ⇔ lg x = 1/n

 lg x+lg x3+lg x5+ · · ·+lg x2n−1 = n ⇔ lg x1+3+5+···+(2n−1) = n ⇔ lg x(1+2n−1)n/2 =
n ⇔ n2 lg x = n ⇔ lg x = 1/n  (since n ∈ N ), whose solution is x = n

√
10.

+
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2.14 Solve the equation 5x+1 = 3x
2−1 .

Solution: 5x+1 = 3x
2−1 ⇔ (x+ 1) lg 5 = (x2 − 1) lg 3 ⇔ (x+ 1)[lg 5− (x− 1) lg 3] = 0 , thus 

x+ 1 = 0 or lg 5− (x− 1) lg 3 = 0 , which imply two solutions x = −1, x = log3 15 .

2.15 Solve the equation x4 − 4x2 + 1 = 0 .

Solution: Let y = x2 , then the equation becomes 
y2 − 4y + 1 = 0 ⇔ (y − 2)2 = 3 ⇒ y = 2±

√
3 ⇒ x2 = 2 +

√
3 or x2 = 2−

√
3,  

the first of which implies x = ±
√

2 +
√
3 = ±

√
3+1
2 , the second of which implies 

x = ±
√

2−
√
3 = ±

√
3−1
2

. Hence, the four solutions are 
√
3+1
2

,−
√
3+1
2

,
√
3−1
2

,−
√
3−1
2

.

2.16 For any real number k , the equation (k2 + k + 1)x2 − 2(a+ k)2x+ k2 + 3ak + b = 0 always 

has the root x = 1 . Find (1) the real numbers a, b ; (2) the range of the other root when k  is a random 

real number.

Solution: (1) x = 1  is always a root, then (k2 + k + 1)− 2(a+ k)2 + k2 + 3ak + b = 0 is always 
valid for any k , that is, (1− a)k + (1− 2a+ b) = 0  for any k , thus 1− a = 0, 1− 2a+ b = 0 , 

which lead to a = b = 1.

(2) Let the other root be x2 , then Vieta’s formulas imply 

1 · x2 =
k2 + 3ak + b

k2 + k + 1
=

k2 + 3k + 1

k2 + k + 1
⇔ (x2 − 1)k2 + (x2 − 3)k + (x2 − 1) = 0. 

∆ = (x2 − 3)2 − 4(x2 − 1)2 = −3x2
2 + 2x2 + 5 ≥ 0 which implies −1 ≤ x2 ≤ 5/3 .

2.17 Solve |3x− |1− 2x|| = 2 .

Solution: |3x− |1− 2x|| = 2 ⇒ 3x− |1− 2x| = ±2 . 

When 3x− |1− 2x| = 2, |1− 2x| = 3x− 2, then 3x− 2 ≥ 0 ⇒ x ≥ 2/3, and 

1− 2x = ±(3x− 2)  which leads to x = 1  or x = 3/5 < 2/3 (deleted). 

When 3x− |1− 2x| = −2 , |1− 2x| = 3x+ 2 , then 3x+ 2 ≥ 0 ⇒ x ≥ −2/3 , and 

1− 2x = ±(3x+ 2)  which leads to x = −1/5  or x = −3 < −2/3  (deleted).
Hence, the original equation has solutions x = 1  or x = −1/5 .

2.18 The equation 7x2 − (k + 13)x+ k2 − k − 2 = 0  (k  is a real number) has two real roots α, β , 

and 0 < α < 1, 1 < β < 2. Fine the range of k .
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Solution: Let f(x) = 7x2 − (k + 13)x+ k2 − k − 2 , since 0 < α < 1, 1 < β < 2 are two roots 
of f(x) = 0, then 

f(0) = k2 − k − 2 > 0

f(1) = k2 − 2k − 8 < 0

f(2) = k2 − 3k > 0

⇒
k > 2 or k < −1
−2 < k < 4
k > 3 or k < 0

⇒ 3 < k < 4  or −2 < k < −1 .

2.19 Solve the equation 
√
x2 + 2x− 63 +

√
x+ 9−

√
7− x+ x+ 13 = 0.

Solution: The equation has real roots if and only if x2 + 2x− 6 ≥ 0, x+ 9 ≥ 0, 7− x ≥ 0 ⇒ x ≤ 7  
or x ≤ −9, x ≥ −9, x ≤ 7 ⇒ x = −9 or x = 7 . It is easy to obtain that x = −9 is a root of the 
original equation, but x = 7  is not. Hence, the original equation has a unique root x = −9.

2.20 The equation k lg2 x+ 3(k − 1) lg x+ 2k = 0  has the variable x  and the parameter k , if the 
equation has two roots, one less than 100, one greater than 100, Find the range of k .

Solution: Let t = lg x , and x1 < 100, x2 > 100 , then the original equation becomes 
kt2 + 3(k − 1)t+ 2k = 0. Because x1 < 100 < x2 , we have 

lg x1 < 2 < lg x2 ⇒ t1 < 2 < t2 ⇒ kf(2) < 0 ⇒ k[4k + 6(k − 1) + 2k] < 0 ⇒
k(2k − 1) < 0 ⇒ 0 < k < 1/2

 lg x1 < 2 < lg x2 ⇒ t1 < 2 < t2 ⇒ kf(2) < 0 ⇒ k[4k + 6(k − 1) + 2k] < 0 ⇒
k(2k − 1) < 0 ⇒ 0 < k < 1/2.

2.21 Given y −
√
ab = a

√
bx− a+ b

√
a− bx  (a > 0, b > 0), show loga(xy2) = 2 .

Proof: The equation makes sense if and only if bx− a ≥ 0, a− bx ≥ 0 , i.e. x ≥ a/b, x ≤ a/b , then 
x = a/b , substitute it into the original equation to obtain y =

√
ab . Hence, 

loga(xy
2) = loga[

a
b
(
√
ab)2] = loga(

a
b
· ab) = loga a

2 = 2 .

2.22 For what values of k , the quadratic equation (k2 − 1)x2 − 6(3k − 1)x+ 72 = 0  with variable 
x  has two distinct positive integer roots.

Solution: ∆ = 36(3k − 1)2 − 4× 72(k2 − 1) = 36(k − 3)2 > 0 ⇒ k �= 3 . The quadratic formula 
implies x= 6(3k−1)±6(k−3)

2(k2−1)
, that is, x1 = 12

k+1
, x2 =

6
k−1. Since x1, x2 are positive integer roots and  

k �= 3 , then k = 2 . When k = 2 , x1 = 4, x2 = 6 . Hence, k = 2  is the only value of k  such that the 
equation has two distinct positive integer roots.

2.23 �  Solve the equation P 2
4 · C4

x+3 = (C5
8 − 1)P 2

x+1.
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Solution: 

P 2
4 · C4

x+3 = (C5
8 − 1)P 2

x+1

⇔  

4× 3× (x+ 3)(x+ 2)(x+ 1)x

4× 3× 2× 1
=

(
8× 7× 6× 5× 4

5× 4× 3× 2× 1
− 1

)
(x+ 1)x

⇔  
(x+ 3)(x+ 2)(x+ 1)x

2
= 55(x+ 1)x.

Since x+ 1 ≥ 2, x+ 3 ≥ 4 , then x ≥ 1, then x �= 0, x �= −1 . We can divide (x+ 1)x/2 on both 
sides: (x+ 3)(x+ 2) = 110 ⇔ x2 + 5x− 104 = 0 ⇔ (x+ 13)(x− 8) = 0 which leads to 
x = 8  or x = −13 (deleted). Hence, the original equation has the root x = 8 .

2.24 �  The three roots of the equation 3x3 + px2 + qx− 4 = 0  are the side length, the radius of the 

inscribed circle, the radius of the circumcircle, of a same equilateral triangle. Find the values of p, q .

Solution: Let the equilateral triangle has the side length a , then the radius of the inscribed circle and 
the radius of the circumcircle are 

√
3
6
a  and 

√
3
3
a , respectively. Vieta’s formulas imply 

a +
√
3
6
a+

√
3
3
a = −p

3
 (i), a

√
3
6
a+ a

√
3
3
a+

√
3
6
a ·

√
3
3
a = q

3
 (ii), a ·

√
3
6
a ·

√
3
3
a = 4

3
 (iii). (iii) leads 

to a = 2 , substitute it into (i)(ii) to obtain p = −6− 3
√
3, q = 2 + 6

√
3 .
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2.25 Solve the equation system 

log2 x+ logy 8 = 2,

logy 2 + log8 x
2 = 1.

Solution: The system is equivalent to 

log2 x+
3

log2 y
= 2 (i)

1

log2 y
+

2 log2 x

3
= 1 (ii)

(ii)×3-(i): log2 x = 1 ⇒ x = 2 . Substitute it into (i): y = 8 . We can easily verify x = 2, y = 8  is a 
solution of the original system.

2.26 Given (x) = x− 1
x , solve the equation f [f(x)] = x .

Solution: [f(x)] = x− 1
x
− 1

x− 1
x

= x4−3x2+1
x3−x , 

thus [f(x)] = x ⇔ x4−3x2+1
x3−x

= x ⇒ x2 = 1
2
⇒ x = ±

√
2
2 .

2.27 ��  n  is a positive integer, and denote an  as the number of nonnegative integer solutions (x, y, z) 

to the equation x+ y + 2z = n . Find the values of a3  and a2001 .

Solution: When n = 3 , we have x+ y + 2z = 3 . Since x ≥ 0, y ≥ 0, z ≥ 0 , we have 0 ≤ z ≤ 1. 
When z = 1, then x+ y = 1 , then (x, y) = (0, 1)  or (1, 0) . When z = 0, then x+ y = 3 , then 
there are four possibilities of (x, y) . Hence, a3 = 2 + 4 = 6 . When n = 2001 , we have 
x+ y + 2z = 2001 , thus 0 ≤ z ≤ 1000 . When z = 0, then x+ y = 2001 , then there are 2002 
possibilities of (x, y) . When z = 1, then x+ y = 1999 , then there are 2000 possibilities of (x, y)
. . . . . . .  When z = 1000 , then x+ y = 1 , then there are two possibilities of (x, y) . As a conclusion, 
a2001 = 2002 + 2000 + 1998 + · · ·+ 4 + 2 = 1003002 .

2.28 Solve the equation x2 + x− 2x
√
x− 2− 6 = 0 .

Solution: x2 + x− 2x
√
x− 2− 6 = 0 ⇔ x2 − 2x

√
x− 2 + x− 2 = 4 ⇔ (x−

√
x− 2)2 = 4 ⇔

x−
√
x− 2 = ±2

x2 + x− 2x
√
x− 2− 6 = 0 ⇔ x2 − 2x

√
x− 2 + x− 2 = 4 ⇔ (x−

√
x− 2)2 = 4 ⇔

x−
√
x− 2 = ±2 .

When x−
√
x− 2 = 2 , then x− 2−

√
x− 2 = 0 ⇔

√
x− 2(

√
x− 2− 1) = 0 ⇒ x = 2  or 

x = 3 .

When x−
√
x− 2 = −2 , then x+ 2 =

√
x− 2 ⇒ x2 + 3x+ 6 = 0 which has no solution since 

∆ = 32 − 4× 6 < 0 .

It is easy to check that x = 2, x = 3  are the solutions of the original equation.
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2.29 Solve the equation log2(9x−1 + 7) = 2 + log2(3
x−1 + 1).

Solution: The equation is equivalent to 

log2[(3
x−1)2 + 7] = log2 4(3

x−1 + 1) ⇔ (3x−1)2 + 7 = 4(3x−1 + 1) . Let y = 3x−1 > 0, then 
y2 − 4y + 3 = 0 ⇔ (y − 1)(y − 3) = 0 ⇒ y = 1  or y = 3 .
When y = 1 , 3x−1 = 1 ⇒ x− 1 = 0 ⇒ x = 1 .
When y = 3 , 3x−1 = 3 ⇒ x− 1 = 1 ⇒ x = 2 .
It is easy to verify that x = 1, x = 2  are the solutions of the original equation.

2.30 �  Find all prime number solutions of the equation x(x+ y) = z + 120 .

Solution: When z = 2, then x(x+ y) = 122, then x+ y = 122/x  is an integer and since x  is a 
prime number, then x = 2  or 61 . When x = 2 , then y = 59 ; When x = 61 , then y = −59  (deleted).

When z  is an odd number, then x  and x+ y  are both odd numbers. Thus y  has to be the only even 
prime number, i.e. y = 2 . Then x(x+ 2) = z + 120 ⇔ z = (x− 10)(x+ 12) . Since z  is a prime 
number, then x− 10 = 1, then x = 11, z = 23 .

As a conclusion, there are two possibilities: x = 2, y = 59, z = 2  or x = 11, y = 2, z = 23 .

2.31 Solve the equation 
√
2x2 − 7x+ 1−

√
2x2 − 9x+ 4 = 1  (i).

Solution: Multiply both sides by 
√
2x2 − 7x+ 1 +

√
2x2 − 9x+ 4 :√

2x2 − 7x+ 1 +
√
2x2 − 9x+ 4 = 2x− 3  (ii). (i)+(ii): 

√
2x2 − 7x+ 1 = x− 1, taking square 

to obtain x2 − 5x = 0 ⇒ x(x− 5) = 0 ⇒ x = 0  or x = 5 . We can verify these two possible 
solutions via the original equation (i): x = 5  is indeed a root of (i), but x = 0  is a extraneous root 
generated by taking square.

2.32 �  Find positive integers m,n  such that the quadratic equation 4x2 − 2mx+ n = 0  has two 

real roots both of which are between 0 and 1.

Solution: The equation has two real roots, thus ∆ = 4m2 − 16n ≥ 0 ⇒ n ≤ m2/4 . Since both roots 
are between 0 and 1, then f(0) = n > 0, f(1) = 4− 2m+ n > 0 , then n > 2m− 4  (m,n ∈ N ). 
Hence, 2m− 4 < n ≤ m2/4 , which implies a unique choice: m = 2, n = 1 .

2.33 ��  Solve the system of equations 

(1 + y)x = 100 (i),

(y4 − 2y2 + 1)x−1 =
(y − 1)2x

(y + 1)2
(y > 1) (ii).
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Solution: (ii) ⇔ (y − 1)2x(y + 1)2x

(y − 1)2(y + 1)2
=

(y − 1)2x

(y + 1)2
. Since y �= ±1 , then 

(y−1)2x(y+1)2x−(y−1)2x(y−1)2 = 0 ⇔ (y−1)2x[(y+1)2x−(y−1)2] = 0 ⇒ y = 1 or 
(y + 1)x = ±(y − 1). The second case together with (i) leads to ±(y − 1) = 100 ⇒ y = 101 or 

y = −99  (deleted since y > 1 ).

When y = 1 , then (i) implies 2x = 100 ⇒ x =
2

lg 2
.

When y = 101, then (i) implies 102x = 100 ⇒ x =
2

lg 102
.

We can verify that x− 10 = 1= 2
lg 2

, y = 1  and x− 10 = 1= 2
lg 102

, y = 101  are the two solutions of the original system 
of equations.

2.34 �  If a, b, c  are nonzero real numbers, solve the system of equations 
xy

ay + bx
= c,

yz

bz + cy
= a,

zx

az + cx
= b.
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Solution: 

xy

ay + bx
= c

yz

bz + cy
= a

zx

az + cx
= b

⇔  

ay + bx

xy
=

1

c
bz + cy

yz
=

1

a
az + cx

zx
=

1

b
⇔  

a

x
+

b

y
=

1

c
(i)

b

y
+

c

z
=

1

a
(ii)

a

x
+

c

z
=

1

b
(iii)

(i)+(ii)+(iii): 
a

x
+

b

y
+

c

z
=

1

2

(
1

a
+

1

b
+

1

c

)
 (iv). Then (iv)-(ii), (iv)-(iii), (iv)-(i): 

= 2a2bc
ab+ac−bc

, y = 2b2ca
bc+ab−ac

, z = 2c2ab
ca+bc−ab

.

2.35 The real numbers x, y  satisfy the equation x2 − 2xy + y2 −
√
2x−

√
2y + 6 = 0. Find the 

minimum value of x+ y .

Solution: Let x+ y = k , then y = k − x . Substitute it into the equation: 
x2−2x(k−x)+(k−x)2−

√
2x−

√
2(k−x)+6 = 0 ⇔ 4x2−4kx+(k2−

√
2k+6) = 0,  

then ∆ = (4k)2 − 16(k2 −
√
2k + 6) = 16

√
2k − 96 ≥ 0 ⇔ k ≥ 3

√
2 ,  

thus k = x+ y  has the minimum value 3
√
2 .

2.36 �  Solve the equation (
√

2 +
√
3)x + (

√
2−

√
3)x = 4 .

Solution: The equation is equivalent to (
√

2 +
√
3)x + 1

(
√

2+
√
3)x

= 4 . Let y = (
√
2 +

√
3)x , then 

y + 1
y
= 4 ⇒ y2 − 4y + 1 = 0  whose roots are y = 2±

√
3 .

When y = 2 +
√
3 , (

√
2 +

√
3)x = 2 +

√
3 = (

√
2 +

√
3)2, thus x = 2 .

When y = 2−
√
3 , (

√
2 +

√
3)x = 2−

√
3 = 1

2+
√
3
= (

√
2 +

√
3)−2, thus x = −2.

We can verify that x = 2, x = −2  are indeed roots of the original equation.
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2.37 If the equation x2 − kx+ k2 − 4 = 0  has two positive roots, find the range of k .

Solution: The condition of two positive roots (denoted by x1, x2)  
implies x1 + x2 = k > 0, x1x2 = k2 − 4 > 0,∆ = k2 − 4(k2 − 4) = −3k2 + 16 ≥ 0 .  
From these three inequalities, we can easily obtain 2 < k ≤ 4

√
3/3.

2.38 Solve the system of equations 

2
√
x2−x−2 = 4y,

lg(1 + y) = 2 lg y + lg 2.

Solution: The second equation leads to 
lg(1 + y) = lg 2y2 ⇒ 1 + y = 2y2 ⇒ 2y2 − y − 1 = 0 ⇒ y = 1 or −1/2  (deleted since 

y > 0 ). Substitute y = 1  into the first equation: 

2
√
x2−x−2 = 22 ⇒

√
x2 − x− 2 = 2 ⇒ x2 −x− 6 = 0 ⇒ (x− 3)(x+2) = 0 ⇒ x = 3 or 

x = −2. Hence, (3, 1), (−2, 1)  are solutions of the original equation system.

2.39 Solve the equation 
√
4x2 + 2x+ 7 = 12x2 + 6x− 119.

Solution: Write the equation as 
√
4x2 + 2x+ 7 = 3(4x2 + 2x+ 7)− 140 . Let 

√
4x2 + 2x+ 7 = t  

(t ≥ 0), then t = 3t2 − 140 ⇒ 3t2 − t− 140 = 0 ⇒ (3t+ 20)(t− 7) = 0 ⇒ t = −20/3 
(deleted) or t = 7 .  
Thus 

√
4x2 + 2x+ 7 = 7 ⇒ 4x2 + 2x+ 7 = 49 ⇒ 2x2 + x− 21 = 0 ⇒ (x− 3)(2x+ 7) =

0 ⇒ x = 3
 √

4x2 + 2x+ 7 = 7 ⇒ 4x2 + 2x+ 7 = 49 ⇒ 2x2 + x− 21 = 0 ⇒ (x− 3)(2x+ 7) =
0 ⇒ x = 3 or x = −7/2 . We can verify that both x = 3, x = −7/2  are roots of the original 
equation.

2.40 �  Let S  be the sum of reciprocals of two real roots of the equation (a2 − 4)x2 + (2a− 1)x+ 1 = 0  

where a  is a real number, find the range of S .

Solution: Let x1, x2 be the two roots, then x = 3, x = −7/21 + x2 =
1−2a
a2−4

, x1x2 =
1

a2−4 . The quadratic equation has 
real roots, thus a2 − 4 �= 0,∆ = (2a− 1)2 − 4(a2 − 4) ≥ 0 , thus a �= ±2, a ≤ 17/4 . Hence, 
S= 1

x1
+ 1

x2
= x1+x2

x1x2
= 1− 2a  should satisfy S �= −3, S �= 5, S ≥ −15/2 .

2.41 �  Let a, b  be two real numbers, |a| > 0, and the equation ||x− a| − b| = 5  has three distinct 

roots, find the value of b .

Solution: The equation ||x− a| − b| = 5  is equivalent to |x− a| − b = ±5 ⇔ |x− a| = b± 5. 
The equation has three distinct roots if and only if b− 5 = 0 , that is b = 5 and the roots are 
x = a, x = a± 10 .
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2.42 �  Solve the system of equations 

x2 + xy + y2 = 84,

x+
√
xy + y = 14.

Solution: The second equation is equivalent to x+ y = 14−√
xy ⇒ x2 + xy + y2 = 196− 28

√
xy . 

The left hand side is 84  due to the first equation, then 84 = 196− 28
√
xy ⇒ √

xy = 4 . Substitute 
it into the second equation to obtain x+ y = 10 . Hence, we can treat x, y  as roots of the quadratic 
equation z2 − 10z + 16 = 0 . The roots are z = 2 or z = 8. Therefore, the original system of equations 

has two solutions (2, 8) , (8, 2) .

2.43 ��  The real numbers a, b, c  satisfy a �= b  and 2009(a− b) +
√
2009(b− c) + (c− a) = 0  , 

find the value of (c− b)(c− a)

(a− b)2
.

Solution: Let 
√
2009 = x , then (a− b)x2 + (b− c)x+ (c− a) = 0 . a �= b  implies that this 

 equation is a quadratic equation. Obviously, x =
√
2009  and 1  are two roots of this quadratic 

equation, then 
√
2009 + 1 =

c− b

a− b
,
√
2009× 1 =

c− a

a− b
.  

Hence, 
(c− b)(c− a)

(a− b)2
=

c− b

a− b
× c− a

a− b
= (

√
2009 + 1)

√
2009 = 2009 +

√
2009.
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2.44 ��  Find all functions f(x)  that satisfy the equation 2f(1− x) + 1 = xf(x) .

Solution: Replace x  with 1− x  in the equation: 2f(x) + 1 = (1− x)f(1− x)  (i).  
Rewrite the original equation as f(1− x) = 1

2
[xf(x)− 1]  (ii). Substitute (ii) into (i): 

2f(x) + 1 = (1 − x)1
2
[xf(x) − 1] ⇔ 4f(x) + 2 = xf(x) − 1 − x2f(x) + x ⇔

(x2 − x+ 4)f(x) = x− 3 ⇔ (x) = x−3
x2−x+4

2f(x) + 1 = (1 − x)1
2
[xf(x) − 1] ⇔ 4f(x) + 2 = xf(x) − 1 − x2f(x) + x ⇔

(x2 − x+ 4)f(x) = x− 3 ⇔ (x) = x−3
x2−x+4

f(1− x) = 1
2
[xf(x)− 1]

2f(x) + 1 = (1 − x)1
2
[xf(x) − 1] ⇔ 4f(x) + 2 = xf(x) − 1 − x2f(x) + x ⇔

(x2 − x+ 4)f(x) = x− 3 ⇔ (x) = x−3
x2−x+4 .

2.45 ��  If the equality ab = 2(c+ d) is always valid, show at least one of the equations 
x2 + ax+ c = 0  and x2 + bx+ d = 0 has real root(s).

Proof: ∆1 = a2 − 4c,∆2 = b2 − 4d . Assume ∆1 < 0 , then a2 − 4c < 0 , then a2 < 4c . 
ab = 2(c+ d) ⇔ ab− 2c = 2d , thus ∆2 = b2 − 4d = b2 − 2ab+ 4c > b2 − 2ab+ a2 = (b− a)2 ≥ 0. 
Similarly if we assume ∆2 < 0 , then we will obtain ∆1 ≥ 0 .

2.46 Solve the equation loga x+ logx b = 1  where a > 1, b > 1.

Solution: loga x+ logx b = 1 ⇒ lg x

lg a
+

lg b

lg x
= 1 ⇒ lg2 x− lg a lg x+ lg a lg b = 0 . To guarantee the 

existence of real valued solutions, we need ∆ = lg2 a− 4 lg a lg b = lg a(lg a− 4 lg b) ≥ 0 . Since 

a > 1, lg a > 0 , thus lg a ≥ lg b4 . Hence, a ≥ b4 . When a ≥ b4 , we have 

lg x =
lg a±

√
lg2 a− 4 lg a lg b

2

, thus x = a+ b= 10(lg a±
√

lg2 a−4 lg a lg b)/2 . When a < b4 , the original 

equation has no root.

2.47 ��  The real number x  satisfies the equation =
√

x− 1
x
+
√

1− 1
x , find the value of [2x] .

Solution: Let a =
√
x− 1

x
, b =

√
1− 1

x
, then x = a+ b  (i), a2 − b2 = x− 1 ,  

then a− b = a2−b2

a+b
= x−1

x
= 1− 1

x  (ii). (i)+(ii): 
2a = x− 1

x
+1 = a2+1 ⇒ a2− 2a+1 = 0 ⇒ a = 1 ⇒

√
x− 1

x
= 1 ⇒ x2−x+1 =

0 ⇒ x = 1±
√
5

2

2a = x− 1
x
+1 = a2+1 ⇒ a2− 2a+1 = 0 ⇒ a = 1 ⇒

√
x− 1

x
= 1 ⇒ x2−x+1 =

0 ⇒ x = 1±
√
5

2 . Since x > 0 , then x = 1+
√
5

2
⇒ 2x =

√
5 + 1 ⇒ 3 < 2x < 4 ⇒ [2x] = 3 .

2.48 �  Solve the equation a2x(a2 + 1) = (a3x + ax)a .

Solution: a2x(a2+1) = (a3x+ax)a ⇔ a2x+2+a2x = a3x+1+ax+1 ⇔ a3x+1−a2x+2−a2x+ax+1 = 0. 
Since a �= 0  by the definition of an exponential function, then we can divide both sides by a  to obtain 
a3x − a2x+1 − a2x−1 + ax = 0 ⇔ (ax − a)(a2x − ax−1) = 0 ⇒ ax = a  or a2x = ax−1 , which 
imply x = 1  or x = −1. We can verify that both x = 1, x = −1  are roots of the original equation.

Download free eBooks at bookboon.com



Elementary Algebra Exercise Book I

57 

Equations

2.49 �  Solve the equation (x− 1)4 + (x+ 3)4 = 82 .

Solution: Let y = x+ 1 , then the original equation becomes 

(y− 2)4 + (y+2)4 = 82 ⇔ (y2 − 4y+4)2 + (y2+4y+4)2 = 82 ⇔ y4 +24y2− 25 =
0 ⇔ (y2 + 25)(y2 − 1) = 0

(y− 2)4 + (y+2)4 = 82 ⇔ (y2 − 4y+4)2 + (y2+4y+4)2 = 82 ⇔ y4 +24y2− 25 =
0 ⇔ (y2 + 25)(y2 − 1) = 0 . Since y2 + 25 > 0 ,  
then y2 − 1 = 0 ⇒ y = ±1 ⇒ x+ 1 = ±1 ⇒ x = 0  or x = −2.  
Hence, the original equation has two roots x = 0, x = −2 .

2.50 �  Solve the equation 
1

x2 + 2x− 3
+

18

x2 + 2x+ 2
− 18

x2 + 2x+ 1
= 0 .

Solution: Let x2 + 2x+ 1 = y , then the original equation becomes 
1

y − 4
+

18

y + 1
− 18

y
= 0 ⇒ 1

y − 4
=

18

y(y + 1)
⇒ y2−17y+72 = 0 ⇒ (y−8)(y−9) =

0 ⇒ y = 8  
1

y − 4
+

18

y + 1
− 18

y
= 0 ⇒ 1

y − 4
=

18

y(y + 1)
⇒ y2−17y+72 = 0 ⇒ (y−8)(y−9) =

0 ⇒ y = 8 or y = 9 .
When y = 8 , we have x2 + 2x+ 1 = 8 ⇒ x = −1 + 2

√
2 or x = −1− 2

√
2 .

When y = 9 , we have x2 + 2x+ 1 = 9 ⇒ x = 2  or x = −4.
We can easily verify that x = −1 + 2

√
2, x = −1 − 2

√
2, x = 2, x = −4  are roots of the original 

equation.

2.51 �  Let x1, x2 be the two real roots of the quadratic equation x2 + x− 3 = 0, find the value of 
x3
1 − 4x2

2 + 19.

Solution: x2
1 + x1 − 3 = 0, x2

2 + x2 − 3 = 0 , thus x2
1 = 3− x1, x

2
2 = 3− x2 . Vieta’s formulas 

imply x1 + x2 = −1 . Hence, 

x3
1−4x2

2+19 = x1(3−x1)−4(3−x2)+19 = 3x1−x2
1+4x2+7 = 3x1−(3−x1)+4x2+7 =

4(x1 + x2) + 4 = 4× (−1) + 4 = 0

 
x3
1−4x2

2+19 = x1(3−x1)−4(3−x2)+19 = 3x1−x2
1+4x2+7 = 3x1−(3−x1)+4x2+7 =

4(x1 + x2) + 4 = 4× (−1) + 4 = 0 .

2.52 ��  If x, y, z  are real roots of the equation system 

x2 − yz − 8x+ 7 = 0,

y2 + z2 + yz − 6x+ 6 = 0,

find the range of x .

Solution: The system is equivalent to 

yz = x2 − 8x+ 7 (i)

y2 + z2 + yz = 6x− 6 (ii)

(ii)-(i)×3 : y2+z2−2yz = −3x2+30x−27 ⇒ (y−z)2 = −3(x−1)(x−9) ≥ 0 ⇒ (x−1)(x−9) ≤
0 ⇒ 1 ≤ x ≤ 9

 y2+z2−2yz = −3x2+30x−27 ⇒ (y−z)2 = −3(x−1)(x−9) ≥ 0 ⇒ (x−1)(x−9) ≤
0 ⇒ 1 ≤ x ≤ 9 .
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2.53 �  If a, b, k  are rational numbers, and b = ak + c
k , show the equation ax2 + bx+ c = 0  has 

two rational roots.

Proof: The discriminant ∆ = b2 − 4ac = (ak + c
k
)2 − 4ac = (ak − c

k
)2, thus 

√
∆ = ±(ak − c

k
) . 

In addition, ak − c
k
= ak − (b− ak) = 2ak − b . Since a, b, k  are rational numbers, ak − c

k  is also 
a rational number, thus 

√
∆  is a rational number, therefore the two roots of the quadratic equation 

x = −b±
√
∆

2a  are rational numbers.

2.54 ��  If x1, x2 are the two real roots of the equation x2 + ax+ a− 1
2
= 0 , find the value of a  

such that (x1 − 3x2)(x2 − 3x1)  reaches the maximum value.

Solution: Vieta’s formulas imply x1 + x2 = −a, x1x2 = a− 1
2
, thus 

(x1−3x2)(x2−3x1) = 10x1x2−3(x2
1+x2

2) = 16x1x2−3(x1+x2)
2 = 16a−8−3a2 =

−3(a− 8
3
)2 + 40

3

 (x1−3x2)(x2−3x1) = 10x1x2−3(x2
1+x2

2) = 16x1x2−3(x1+x2)
2 = 16a−8−3a2 =

−3(a− 8
3
)2 + 40

3
. Since the quadratic equation has two real roots, the discriminant 

∆ = a2 − 4(a− 1
2
) = [(a− 2) +

√
2][(a− 2)−

√
2] ≥ 0  which leads to a ≥ 2 +

√
2  or 

a ≤ 2−
√
2. Since 8/3 ∈ (2−

√
2, 2 +

√
2) , the extreme values should be obtained at boundaries.

When a = 2 +
√
2 , (x1 − 3x2)(x2 − 3x1) = 4

√
2 + 6.

When a = 2−
√
2 , (x1 − 3x2)(x2 − 3x1) = −4

√
2 + 6 .

Hence, when a = 2 +
√
2 , (x1 − 3x2)(x2 − 3x1)  reaches the maximum value 4

√
2 + 6 .
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2.55 ��  Given y = 8= x2−2x+4
x2−3x+3

, find all values of x  such that y  is an integer.

Solution: y = 8= x2−2x+4
x2−3x+3

= 1 + x+1
x2−3x+3

. Let λ =
x+ 1

x2 − 3x+ 3
, then λx2 − (3λ+ 1)x+ 3λ− 1 = 0  

(� ). The discriminant  ∆ ≥ 0 ⇒ (3λ+ 1)2 − 4λ(3λ− 1) ≥ 0 ⇒ 3λ2 − 10λ− 1 ≤ 0 ⇒ 5−2
√
7

3
≤ λ ≤ 5+2

√
7

3

∆ ≥ 0 ⇒ (3λ+ 1)2 − 4λ(3λ− 1) ≥ 0 ⇒ 3λ2 − 10λ− 1 ≤ 0 ⇒ 5−2
√
7

3
≤ λ ≤ 5+2

√
7

3
. To make y  an integer, λ  should be an integer, thus λ = 0, 1, 2, 3 , substitute 

them into (� ) to obtain x = −1, 2 +
√
2, 2−

√
2, 1, 5/2, 2, 4/3.

2.56 ��  Solve the equation 
√

12− 12
x2 +

√
x2 − 12

x2 = x2 .

Solution: Squaring both sides to obtain 

12 − 12
x2 + x2 − 12

x2 + 2
√
12x2 − 144

x2 + 144
x4 − 12 = x4 ⇔ 2

√
12
√

x4 − x2 − 12 + 12
x2 =

|x|(x4 − x2 − 12 + 24
x2 )

12 − 12
x2 + x2 − 12

x2 + 2
√
12x2 − 144

x2 + 144
x4 − 12 = x4 ⇔ 2

√
12
√

x4 − x2 − 12 + 12
x2 =

|x|(x4 − x2 − 12 + 24
x2 ) . Let x4 − x2 − 12 = t  and substitute it into the above equality: 

4× 12(t+ 12
x2 ) = x2(t2 + 242

x4 + 48t
x2 ⇔ 48t+ 242

x2 = x2t2 + 242

x2 + 48t ⇔ x2t2 = 0 . Since 
x �= 0 , then t = 0 , then x4 − x2 − 12 = 0 , then x2 = 1±7

2  which should be nonnegative, thus 
x2 = 4 , that is x = ±2. We can easily verify that x = ±2 are roots of the original equation.

2.57 ��  The real numbers α, β, γ  are roots of the cubic equation 2x3 + x2 − 4x+ 1 = 0 . Evaluate 

(1) α2 + β2 + γ2 , (2) 1
βγ

+ 1
γα

+ 1
αβ , (3) α3 + β3 + γ3 .

Solution: (1) Vieta’s formulas imply α + β + γ = −1
2  (i), αβ + βγ + γα = −2  (ii), αβγ = −1

2  
(iii). (i)2-(ii)×2 : 
α2 + β2 + γ2 + 2αβ + 2βγ + 2γα − 2αβ − 2βγ − 2γα = (−1

2
)2 − (−2) × 2 ⇒

α2 + β2 + γ2 = 41
4

 α2 + β2 + γ2 + 2αβ + 2βγ + 2γα − 2αβ − 2βγ − 2γα = (−1
2
)2 − (−2) × 2 ⇒

α2 + β2 + γ2 = 41
4

.

(2) 1
βγ

+ 1
γα

+ 1
αβ

= α+β+γ
αβγ

= −1/2
−1/2

= 1 .

(3) The original equation is equivalent to x3 = −x2+4x−1
2

, substitute α, β, γ  into it and add them up 

to obtain α3+β3+γ3 = −α2+4α−1
2

+−β2+4β−1
2

+−γ2+4γ−1
2

= −(α2+β2+γ2)+4(α+β+γ)−3
2

=
−4 1

4
−2−3

2
=

−45
8

  

α3+β3+γ3 = −α2+4α−1
2

+−β2+4β−1
2

+−γ2+4γ−1
2

= −(α2+β2+γ2)+4(α+β+γ)−3
2

=
−4 1

4
−2−3

2
=

−45
8

 

α3+β3+γ3 = −α2+4α−1
2

+−β2+4β−1
2

+−γ2+4γ−1
2

= −(α2+β2+γ2)+4(α+β+γ)−3
2

=
−4 1

4
−2−3

2
=

−45
8 .

2.58 �  Solve the system of equations 

x2 − xy + y2 − 19x− 19y = 0,

xy = −6.

Multiply the second equation by 3 and add it to the first equation: (x+ y)2 − 19(x+ y) + 18 = 0 ⇔ (x+ y − 1)(x+ y − 18) = 0 ⇒ x+ y = 1 
(x+ y)2 − 19(x+ y) + 18 = 0 ⇔ (x+ y − 1)(x+ y − 18) = 0 ⇒ x+ y = 1or x+ y = 18 . We discuss these two cases 

separately.

When x+ y = 1 , we can treat x, y  as two roots of the quadratic equation z2 − z − 6 = 0 ⇔ (z − 3)(z + 2) = 0 ⇒ z = 3 
z2 − z − 6 = 0 ⇔ (z − 3)(z + 2) = 0 ⇒ z = 3  or z = −2 , thus we obtain two solutions (3,−2), (−2, 3) .

Download free eBooks at bookboon.com



Elementary Algebra Exercise Book I

60 

Equations

When x+ y = 18 , we can treat x, y  as two roots of the quadratic equation z2 − 18z − 6 = 0 ⇒ z = 9± 2
√
97 

z2 − 18z − 6 = 0 ⇒ z = 9± 2
√
97  thus we obtain two solutions (9 + 2

√
97, 9− 2

√
97), (9− 2

√
97, 9 + 2

√
97). 

Hence the original system has four solutions (3,−2), (−2, 3), (9 + 2
√
97, 9− 2

√
97), (9− 2

√
97, 9 + 2

√
97) 

(3,−2), (−2, 3), (9 + 2
√
97, 9− 2

√
97), (9− 2

√
97, 9 + 2

√
97) .

2.59 ��  Solve the equation xx + 85x−x − 100x−2x = −14 .

Solution: Let y = xx , then the equation becomes 
y + 85

y
− 100

y2
= −14 ⇔ y3 + 14y2 + 85y − 100 = 0. Obviously y = 1  is one root, that is, 

xx = 1 whose root is x = 1 . Let α, β  be the other two roots, then Vieta’s formulas imply 
1 + α + β = −14, α+ β + αβ = 85, αβ = 100 , from which we can obtain 
α2 + 15α+ 100 = 0, β2 + 15β + 100 = 0 . The discriminant ∆ = 152 − 400 < 0 , thus α, β  do 
not exist. Hence, x = 1  is the only root of the original equation.

2.60 ��  The equation 5x2 − (10 cosα)x+ 7 cosα + 6 = 0  has two identical roots, α  is one angle 

of a parallelogram, and the sum of two adjacent sides is 6, find the maximal area of the parallelogram.

Solution: The quadratic equation has two identical roots, thus the discriminant 
∆ = 100 cos2 α− 140 cosα− 120 = 0 ⇔ 5 cos2 α− 7 cosα− 6 = 0 ⇒ cosα = 7±13

10
. Since 

| cosα| ≤ 1 , then cosα = 7−13
10

= −3
5 . The angle of a parallelogram, α , is between 00  and 1800 , 

and since cosα = −3
5
< 0, thus α ∈ (900, 1800) , then sinα =

√
1− cos2 α = 4

5 . Let one side of 
parallelogram has length u , then one adjacent side has length 6− u . The area 
S = u(6− u) sinα = u(6− u)4

5
= −4

5
(u− 3)2 + 36

5 . Hence, the maximal area Smax = 36
5  when 

u = 3 .

2.61 ��  Find all positive integer solutions (x, y)  of the equation 

x
√
y + y

√
x−

√
2011x−

√
2011y +

√
2011xy = 2011.

Solution: The equation is equivalent to √xy
√
x+

√
xy

√
y−

√
2011x−

√
2011y+

√
2011xy−(

√
2011)2 = 0 ⇔ √

xy(
√
x+

√
y)−√

2011(
√
x+

√
y)+

√
2011

√
xy−(

√
2011)2 = 0 ⇔ (

√
xy−

√
2011)(

√
x+

√
y+

√
2011) = 0√

xy
√
x+

√
xy

√
y−

√
2011x−

√
2011y+

√
2011xy−(

√
2011)2 = 0 ⇔ √

xy(
√
x+

√
y)−√

2011(
√
x+

√
y)+

√
2011

√
xy−(

√
2011)2 = 0 ⇔ (

√
xy−

√
2011)(

√
x+

√
y+

√
2011) = 0

√
xy

√
x+

√
xy

√
y−

√
2011x−

√
2011y+

√
2011xy−(

√
2011)2 = 0 ⇔ √

xy(
√
x+

√
y)−√

2011(
√
x+

√
y)+

√
2011

√
xy−(

√
2011)2 = 0 ⇔ (

√
xy−

√
2011)(

√
x+

√
y+

√
2011) = 0√

xy
√
x+

√
xy

√
y−

√
2011x−

√
2011y+

√
2011xy−(

√
2011)2 = 0 ⇔ √

xy(
√
x+

√
y)−√

2011(
√
x+

√
y)+

√
2011

√
xy−(

√
2011)2 = 0 ⇔ (

√
xy−

√
2011)(

√
x+

√
y+

√
2011) = 0. 

Since 
√
x+

√
y +

√
2011 > 0, then 

√
xy −

√
2011 = 0 ⇒ xy = 2011 . Since 2011 is a prime, 

then x = 1, y = 2011  or x = 2011, y = 1 . Hence the original equation has two positive integer 
solutions (1, 2011), (2011, 1).

2.62 �  x1, x2 are two roots of the quadratic equation x2 − (k − 2)x+ k2 + 3k + 5 = 0  where k  

is a real number, find the maximum value of x2
1 + x2

2 .
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Solution: According to Vieta’s formulas, we have x1 + x2 = k − 2, x1x2 = k2 + 3k + 5 , thus 
x2
1 + x2

2 = (x1 + x2)
2 − 2x1x2 = (k − 2)2 − 2(k2 + 3k + 5) = −(k + 5)2 + 19 . 

Since the equation has real roots, then the discriminant 
∆ = (k − 2)2 − 4(k2 + 3k + 5) ≥ 0 ⇔ 3k2 + 16k + 16 ≤ 0 ⇒ −4 ≤ k ≤ −4

3 . The function 
f(k) = −(k + 5)2 + 19 is a monotonically decreasing function on the interval [−4,−4

3
] , thus the 

maximum value is f(−4) = 18  which is also the maximum value of x2
1 + x2

2 .

2.63 �  Solve the equation x
2

4
− 3

2
x+

6

x
+

4

x2
= 0.

Solution:

x2

4
− 3

2
x+

6

x
+

4

x2
= 0 ⇔ x2 − 6x+

24

x
+

16

x2
= 0 ⇔ (x− 4

x
)2 − 6(x− 4

x
) + 8 = 0 . 

Let x− 4
x
= y , then y2 − 6y + 8 = 0 ⇔ (y − 2)(y − 4) = 0 ⇒ y = 2  or y = 4 .

When y = 2 , we have x− 4
x
= 2 ⇒ x2 − 2x− 4 = 0 ⇒ x = 1±

√
5.

When y = 4 , we have x− 4
x
= 4 ⇒ x2 − 4x− 4 = 0 ⇒ x = 2± 2

√
2 .

Therefore, the original equation has four roots 1±
√
5, 2± 2

√
2 .
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2.64 ��  m,n  are positive integers, m �= n , the equation 

(m− 1)x2 − (m2 + 2)x+ (m2 + 2m) = 0 and the equation 

(n− 1)x2 − (n2 + 2)x+ (n2 + 2n) = 0 has a common root. Find the value of mn + nm

m−n + n−m
.

Solution: The quadratic formula together with m > 1, n > 1, m �= n  gives us the following: the first 

equation has roots x = m, m+2
m−1

, and the second equation has roots x = n, n+2
n−1 . Since m �= n , then 

m,n= n+2
n−1

, n = m+2
m−1 . Both of these two equalities give us the same result: 

mn−m− n− 2 = 0 ⇔ (m− 1)(n− 1) = 3 . 

Since m,n  are both positive integers, then we only have two possibilities: m− 1 = 1, n− 1 = 3  or 
m− 1 = 3, n− 1 = 1 , which lead to m = 2, n = 4  or m = 4, n = 2 , thus 
mn + nm

m−n + n−m
= mn · nm = 42 · 24 = 256 .

2.65 ��  We usually use [x]  to represent the integer part of the real number x , here we define 
{x} = x− [x]  which is the decimal part of the real number x . (1) Find a real number x  to satisfy 
{x} + { 1

x
} = 1 . (2) Show that all x  satisfying the equation in (1) are not rational numbers.

Solution: (1) Let x = m+ α, 1
x
= n+ β  (m,n  are integers, 0 ≤ α, β ≤ 1 ). 

{x} + { 1
x
} = 1 ⇔ α + β = 1 , thus x+ 1

x
= m+ α + n+ β = m+ n+ 1  is an integer. Let 

x+ 1
x
= k  (k  is an integer), that is x2 − kx+ 1 = 0  whose roots are x = 1

2
(k ±

√
k2 − 4) .

When |k| = 2 , |x| = 1  which does not satisfy the equation {x} + { 1
x
} = 1 .

When |k| ≥ 3 , x = 1
2
(k ±

√
k2 − 4)  which satisfies {x} + { 1

x
} = 1 .

(2) k2 − 4  is not a perfect square (if it is, then k2 − 4 = h2, i.e. k2 − h2 = 4 , but when |k| ≥ 3  the 
difference between two perfect squares is not less than 5), thus x  is an irrational number.

2.66 ��  The equation (x2 − 1)(x2 − 4) = k  has four nonzero real roots, and these roots form an 
arithmetic sequence, find the value of k .

Solution: Let y = x2 , then the equation becomes y2 − 5y + 4− k = 0. Let α, β  (0 < α < β ) are 
roots of y2 − 5y + 4− k = 0, then the original equation has four roots ±

√
α,±

√
β . They form 

an arithmetic sequence, then 
√
β −

√
α =

√
α− (−

√
α) , then β = 9α . In addition, Vieta’s 

formulas imply α + β = 5 , then we can obtain α = 1
2
, β = 9

2 , thus 4− k = αβ = 9
4 , therefore 

k = 4− 9
4
= 7

4.
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2.67 ��  Given a real number d  and |d| ≤ 1/4 , solve the equation 
x4 − 2x3 + (2d− 1)x2 + 2(1− d)x+ 2d+ d2 = 0 .

Solution: Rewrite the equation as d2 + (2x2 − 2x+ 2)d+ x4 − 2x3 − x2 + 2x = 0  and treat it a 

quadratic equation for d , then the quadratic formula implies d = −x2 − x  or d = −x2 + 3x− 2 . 
Both are quadratic equations for x . Solve them to obtain four roots of the original equation:  
x = −1+

√
1−4d

2
, −1−

√
1−4d

2
, 3+

√
4d+1
2

, 3−
√
4d+1
2

. All these roots exist since |d| ≤ 1/4 .

2.68 �  Show that the x, y -dependent equation x2 − y2 + dx+ ey + f = 0  represents two straight 

lines if and only if d2 − e2 − 4f = 0 .

Proof: The equation represents two straight lines, then we should have 
x2−y2+dx+ey+f = (x−y+k1)(x+y+k2) = x2−y2+(k1+k2)x+(k1−k2)y+k1k2 .  

Make the corresponding coefficients equal: k1 + k2 = d, k1 − k2 = e, k1k2 = f . The first two 
equations lead to k1 = d+e

2
, k2 =

d−e
2

, and substitute them into the third equation: d+e
2

· d−e
2

= f , 

which is equivalent to d2 − e2 − 4f = 0 .

2.69 �  Solve the equation log8(x2 + 1)3 − log2 xy + log√2

√
y2 + 4 = 3 .

Solution: 
log8(x

2+1)3− log2 xy+log√2

√
y2 + 4 = 3 ⇔ log2(x

2+1)− log2 xy+log2(y
2+4) =

3 ⇔ log2
(x2+1)(y2+4)

xy
= 3 ⇔ (x2+1)(y2+4)

xy
= 8 . 

Since x, y �= 0 , we have 
x2y2 + 4x2 + y2 + 4 = 8xy ⇔ (2x− y)2 + (xy − 2)2 = 0 ⇒ 2x− y = 0, xy − 2 = 0 .  
Solve these two equations to obtain two solutions of the original equation: (1, 2), (−1,−2) .

2.70 �  Solve the equation 
√
x+

√
x+ 7 + 2

√
x2 + 7x = 35− 2x .

Solution: 
√
x+

√
x+ 7+2

√
x2 + 7x = 35−2x ⇔ x+2

√
x(x+ 7)+x+7+

√
x+

√
x+ 7−42 =

0 ⇔ (
√
x+

√
x+ 7)2+(

√
x+

√
x+ 7)−42 = 0 ⇔ (

√
x+

√
x+ 7+7)(

√
x+

√
x+ 7−6) = 0.

Since 
√
x+

√
x+ 7 + 7 > 0 , then 

√
x+

√
x+ 7 = 6. Squaring both sides to obtain 

2
√
x2 + 7x = 29− 2x , and squaring again to obtain 144x = 841, thus x = 841/144 which is the 

root of the original equation.

2.71 ���  The x -dependent equation x2 + p|x| = qx− 1 has four distinct real roots, show that 
p+ |q| < −2.
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Proof: When x > 0 , the equation becomes x2 + (p− q)x+ 1 = 0 (i); When x < 0 , the equation 

becomes x2 − (p+ q)x+ 1 = 0 (ii). We need two positive roots from (i) and two negative roots from 

(ii). Hence, the smaller root of (i) is greater than zero, and the larger root of (ii) is less than zero, that is 
q−p−

√
(p−q)2−4

2
> 0  and p+q+

√
(p+q)2−4

2
< 0  (obviously both discriminants need to be positive, 

(p− q)2 − 4 > 0, (p+ q)2 − 4 > 0). Therefore, q − p >
√

(p− q)2 − 4 > 0  (iii) and 
0 <

√
(p+ q)2 − 4 < −(p+ q)  (iv). (iii) implies q > p , and since (p− q)2 − 4 > 0 , then 

q − p > 2 , then p− q < −2 . (iv) implies p+ q < 0, and since (p+ q)2 − 4 > 0 , then p+ q < −2 . 

As a conclusion, p+ |q| < −2.

2.72 ���  Solve the functional equation f(x) + f(x−1
x
) = 1 + x  (x �= 0, x �= 1 ) (i).

Solution: Replace x  with x−1
x

 in (i): f(x−1
x
) + f( −1

x−1
) = 2x−1

x
 (ii). Replace x  with −1

x−1  in (i): 

f( −1
x−1

) + f(x) = x−2
x−1

 (iii). (i)+(iii)-(ii) ⇒ f(x) = x3−x2−1
2x(x−1)

= x3−x2−1
2x2−2x

, which is the only solution 

of the original functional equation (i).
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2.73 ��  Solve the equation (
√
3)tan 2x − 9

√
3

3tan 2x
= 0 .

Solution: Let (
√
3)tan 2x = y  ( y > 0 ), then the equation becomes y > 0

−9
√
3

y2
= 0 ⇒ y3−9

√
3

y2
= 0 ⇒ y3 − 9

√
3 = 0 ⇒ y = 35/6 ⇒ (

√
3)tan 2x = 35/6 ⇒

tan 2x
2

= 5
6
⇒ tan 2x = 5

3
⇒ 2x = kπ + arctan 5

3

 −9
√
3

y2
= 0 ⇒ y3−9

√
3

y2
= 0 ⇒ y3 − 9

√
3 = 0 ⇒ y = 35/6 ⇒ (

√
3)tan 2x = 35/6 ⇒

tan 2x
2

= 5
6
⇒ tan 2x = 5

3
⇒ 2x = kπ + arctan 5

3  (k ∈ N ) ⇒ x = kπ
2
+ 1

2
arctan 5

3  (k ∈ N ). 

Hence, the solution set of the original equation is {x|x =
kπ

2
+

1

2
arctan

5

3
, k ∈ N} .

2.74 �  Solve the system of equations 

lg |x+ y| = 1,

lg y − lg |x| =
1

log4 100
.

Solution: The system is equivalent to 

lg |x+ y| = lg 10,

lg
y

|x| = lg 2,

which lead to 

|x+ y| = 10,

y = 2|x|.

y > 0  is always true since y = 2|x|  and x �= 0 .
When x > 0 , the system becomes 

x+ y = 10,

y = 2x,

whose solution is x = 10/3, y = 20/3.
When x < 0 , the system become 

x+ y = 10,

y = −2x,

whose solution is x = −10, y = 20 .
We can verify that (10/3, 20/3), (−10, 20) indeed are solutions of the original system.
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2.75 �  Solve the equation 2x+
√
x+

√
x+ 2 + 2

√
x2 + 2x− 4 = 0.

Solution: The equation is equivalent to 
x+2

√
x
√
x+ 2+x+2+

√
x+

√
x+ 2−6 = 0 ⇔ (

√
x+

√
x+ 2)2+(

√
x+

√
x+ 2)−6 =

0

x+2
√
x
√
x+ 2+x+2+

√
x+

√
x+ 2−6 = 0 ⇔ (

√
x+

√
x+ 2)2+(

√
x+

√
x+ 2)−6 =

0. Let 

y =
√
x+

√
x+ 2  ( y > 0 ), then y2 + y − 6 = 0 ⇒ (y − 2)(y + 3) = 0 ⇒ y = 2  or y = −3  

(deleted). Hence,  
√
x +

√
x+ 2 = 2 ⇒

√
x+ 2 = 2 −

√
x ⇒ x + 2 = 4 − 4

√
x + x ⇒

√
x = 1/2 ⇒

x = 1/4

√
x +

√
x+ 2 = 2 ⇒

√
x+ 2 = 2 −

√
x ⇒ x + 2 = 4 − 4

√
x + x ⇒

√
x = 1/2 ⇒

x = 1/4 , 

which is the root of the original equation.

2.76 ��  Solve the system of equations 

x+ y + z = 3,

x2 + y2 + z2 = 3,

x5 + y5 + z5 = 3.

Solution: x+ y + z = 3 ⇔ x+ y = 3− z  (i), x2 + y2 + z2 = 3 ⇔ x2 + y2 = 3− z2  (ii). 
xy = (x+y

2
)2 − (x−y

2
)2 = (3−z

2
)2 − (x−y

2
)2 (iii). (i)2-(ii): xy = (3−z)2

2
− 3−z2

2
 (iv). (iii)&(iv)

⇒ (3−z
2
)2 − (x−y

2
)2 = (3−z)2

2
− 3−z2

2
⇒ 3(z − 1)2 + (x− y)2 = 0 ⇒ z = 1, x = y .  

Substitute them into (i) to obtain x = y = 1 . Obviously x = y = z = 1  satisfies 
x5 + y5 + z5 = 3. Hence, the original system has the solution x = 1, y = 1, z = 1 .

2.77 ��  Solve the equation 4x4 + 12x3 − 47x2 + 12x+ 4 = 0 .

Solution: Obviously x = 0  is not a root, so we assume x �= 0 , then we can divide both sides by x2 : 
4x2 + 12x− 47 + 12

x
+ 4

x2 = 0 , then 4(x2 + 1
x2 ) + 12(x+ 1

x
)− 47 = 0 (i). Let x+ 1

x
= u , then 

x2 + 1
x2 = u2 − 2 . 

Substitute them into (i) to obtain 4(u2 − 2) + 12u− 47 = 0 ⇒ 4u2 + 12u− 55 = 0 ⇒ u = 5/2  
or u = −11/2 . When u = 5/2 , x+ 1

x
= 5

2
⇒ 2x2 − 5x+ 2 = 0 ⇒ x = 2 or x = 1/2 . When 

u = −11/2 , x+ 1
x
= −11

2
⇒ 2x2 + 11x+ 2 = 0 ⇒ x = −11±

√
105

4
. Hence, the original equation 

has four roots: x = 2, x = 1/2, x = −11+
√
105

4
, x = −11−

√
105

4
.

2.78 ��  Solve the equation 3
√
10− 2x+ 3

√
2x− 1 = 3.

Solution: Let 3
√
10− 2x = a, 3

√
2x− 1 = b , then a + b = 3 . 3

√
10− 2x = a ⇒ a3 = 10− 2x  

(i). 3
√
2x− 1 = b ⇒ b3 = 2x− 1 (ii). (i)+(ii)⇒ a3 + b3 = 9 ⇒ (a + b)(a2 − ab+ b2) = 9 ⇒ a2 − ab+ b2 = 3 

(iii). Substitute a = 3− b  into (iii): (3− b)2 − (3− b)b+ b2 = 3 ⇒ b2 − 3b+ 2 = 0 ⇒ b = 1  or 
b = 2.
When b = 1, (ii)⇒ x = 1.
When b = 2, (ii)⇒ x = 9/2 .
We can verify that x = 1, x = 9/2 are indeed two roots.
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2.79 ��  The real coefficient equation x3 + 2kx2 + 9x+ 5k = 0  has an imaginary root whose 
modulus is 

√
5 , find the value of k  and solve the equation.

Solution: The equation should have two imaginary roots and one real root: a± bi, c . Vieta’s formulas 
and the modulus 

√
5  lead to 

a+ bi + a− bi + c = −2k

(a + bi)(a− bi) + (a+ bi)c+ (a− bi)c = 9

(a + bi)(a− bi)c = −5k

a2 + b2 = 5

⇒  

2a+ c = −2k

a2 + b2 + 2ac = 9

(a2 + b2)c = −5k

a2 + b2 = 5

⇒ a = ±1, b = ±2, c = ±2, k = ±2 .
When k = 2 , the equation becomes x3 + 4x2 + 9x+ 10 = 0  and its roots are x = −1± 2i, x = −2 .
When k = −2, the equation becomes x3 − 4x2 + 9x− 10 = 0  and its roots are x = 1± 2i, x = 2 .
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2.80 �  Solve the equation x+ log9 3
x = log9(4− 5 · 9x) .

Solution: The equation is equivalent to log9 9
x + log9 3

x = log9(4− 5 · 9x) ⇒ log9 3
3x = log9(4− 5 · 9x) ⇒ 33x = 4− 5 · 32x

log9 9
x + log9 3

x = log9(4− 5 · 9x) ⇒ log9 3
3x = log9(4− 5 · 9x) ⇒ 33x = 4− 5 · 32x . Let 3x = y , then the equation becomes 

y3 + 5y2 − 4 = 0 ⇒ y3 + y2 + 4y2 − 4 = 0 ⇒ (y + 1)(y2 + 4y − 4) = 0 ⇒ y = −1 y3 + 5y2 − 4 = 0 ⇒ y3 + y2 + 4y2 − 4 = 0 ⇒ (y + 1)(y2 + 4y − 4) = 0 ⇒ y = −1  or 
y = −2(1 +

√
2)  or y = 2(

√
2− 1) . Since y = 3x > 0 , then y = −1, y = −2(1 +

√
2) are 

incorrect. Hence, y = 2(
√
2− 1) ⇒ 3x = 2(

√
2− 1) ⇒ x = log3 2(

√
2− 1)y = 2(

√
2− 1) ⇒ 3x = 2(

√
2− 1) ⇒ x = log3 2(

√
2− 1) , which is the only 

root.

2.81 ���  Solve the system of equations 

4x2

1 + 4x2
= y,

4y2

1 + 4y2
= z,

4z2

1 + 4z2
= x.

Solution: Obviously x ≥ 0, y ≥ 0, z ≥ 0 . The first equation together with 
1 + 4x2 = (1− 2x)2 + 4x ≥ 4x  leads to y = 8= 4x2

1+4x2 ≤ 4x2

4x
= x . Similarly, the second and the 

third equations lead to z ≤ y, x ≤ z . Hence, x = y = z , then 4x2

1+4x2 = x ⇒ 4x3 − 4x2 + x = 0 ⇒ x(2x− 1)2 = 0 ⇒ x = 0 
4x2

1+4x2 = x ⇒ 4x3 − 4x2 + x = 0 ⇒ x(2x− 1)2 = 0 ⇒ x = 0  or x = 1/2 . Therefore, (0, 0, 0), (1/2, 1/2, 1/2)  are the solutions.

2.82 ���  Find all distinct real roots of the equation  (x3 − 3x2 + x− 2)(x3 − x2 − 4x+ 7) + 6x2 − 15x+ 18 = 0

(x3 − 3x2 + x− 2)(x3 − x2 − 4x+ 7) + 6x2 − 15x+ 18 = 0 .

Solution: Let A = x3 − 2x2 + 3
2
x+ 5

2
, B = x2 − 5

2
x+ 9

2 , then the equation becomes 
(A−B)(A+B) + 6B − 9 = 0 ⇒ A2 − (B − 3)2 = 0 ⇒ (A+B − 3)(A−B + 3) =

0 ⇒ A+ B − 3 = 0
(A−B)(A+B) + 6B − 9 = 0 ⇒ A2 − (B − 3)2 = 0 ⇒ (A+B − 3)(A−B + 3) =

0 ⇒ A+ B − 3 = 0  or A−B + 3 = 0 .

If A + B − 3 = 0 , then x3 − x2 − 4x+ 4 = 0 ⇒ (x− 1)(x− 2)(x+ 2) = 0 ⇒ x = 1  or 
x = ±2.
If A−B + 3 = 0 , then x3 − 3x2 + x+ 1 = 0 ⇒ (x− 1)(x2 − 2x− 1) = 0 ⇒ x = 1 or 
x = 1±

√
2 .

As a conclusion, the equation has four distinct real roots: x = 1, x = ±2, x = 1±
√
2 .

2.83 ���  If a, b, c  are real numbers, ac < 0,
√
2a+

√
3b+

√
5c = 0 , show the quadratic equation 

ax2 + bx+ c = 0  has a root within the interval (34 , 1) .

–
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Proof: Let f(x) = ax2 + bx+ c , then f(34) · f(1) = ( 9
16
a+ 3

4
b+ c)(a+ b+ c) = 1

16
(9a+ 12b+ 16c)(a+ b+ c)

f(3
4
) · f(1) = ( 9

16
a+ 3

4
b+ c)(a+ b+ c) = 1

16
(9a+ 12b+ 16c)(a+ b+ c) . Since 

√
2a+

√
3b+

√
5c = 0, a, b= −

√
6a−

√
15c

3
, then 

(9a + 12b + 16c)(a + b + c) = (9a − 4
√
6a − 4

√
15c + 16c)(a −

√
6
3
a −

√
15
3
c + c) =

[(
√
81 −

√
96)a + (

√
256 −

√
240)c][3−

√
6

3
a + 3−

√
15

3
c] = c2[(

√
81 −

√
96)a

c
+ (

√
256 −√

240)][3−
√
6

3
a
c
+ 3−

√
15

3
] < 0

 (9a + 12b + 16c)(a + b + c) = (9a − 4
√
6a − 4

√
15c + 16c)(a −

√
6
3
a −

√
15
3
c + c) =

[(
√
81 −

√
96)a + (

√
256 −

√
240)c][3−

√
6

3
a + 3−

√
15

3
c] = c2[(

√
81 −

√
96)a

c
+ (

√
256 −√

240)][3−
√
6

3
a
c
+ 3−

√
15

3
] < 0

(9a + 12b + 16c)(a + b + c) = (9a − 4
√
6a − 4

√
15c + 16c)(a −

√
6
3
a −

√
15
3
c + c) =

[(
√
81 −

√
96)a + (

√
256 −

√
240)c][3−

√
6

3
a + 3−

√
15

3
c] = c2[(

√
81 −

√
96)a

c
+ (

√
256 −√

240)][3−
√
6

3
a
c
+ 3−

√
15

3
] < 0

(9a + 12b + 16c)(a + b + c) = (9a − 4
√
6a − 4

√
15c + 16c)(a −

√
6
3
a −

√
15
3
c + c) =

[(
√
81 −

√
96)a + (

√
256 −

√
240)c][3−

√
6

3
a + 3−

√
15

3
c] = c2[(

√
81 −

√
96)a

c
+ (

√
256 −√

240)][3−
√
6

3
a
c
+ 3−

√
15

3
] < 0

(9a + 12b + 16c)(a + b + c) = (9a − 4
√
6a − 4

√
15c + 16c)(a −

√
6
3
a −

√
15
3
c + c) =

[(
√
81 −

√
96)a + (

√
256 −

√
240)c][3−

√
6

3
a + 3−

√
15

3
c] = c2[(

√
81 −

√
96)a

c
+ (

√
256 −√

240)][3−
√
6

3
a
c
+ 3−

√
15

3
] < 0, thus f(3

4
) · f(1) < 0  , which implies that one root is within (3

4
, 1) .

2.84 ���  The real numbers a, b  satisfy 

ax+ by = 3,

ax2 + by2 = 7,

ax3 + by3 = 16,

ax4 + by4 = 42,

compute ax5 + ay5 and x, y .

Solution 1: We have (ax+ by)(x+ y) = ax2 + axy + bxy + by2 = (ax2 + by2) + (a + b)xy ; 
(ax2 + by2)(x+ y) = ax3 + ax2y + bxy2 + by3 = (ax3 + by3) + (ax+ by)xy ;  
(ax3 + by3)(x+ y) = ax4 + ax3y + bxy3 + by4 = (ax4 + by4) + (ax2 + by2)xy ; 
(ax4 + by4)(x+ y) = ax5 + ax4y + bxy4 + by5 = (ax5 + by5) + (ax3 + by3)xy .  
Substitute the given equations into them: 

3(x+ y) = 7 + (a+ b)xy (i),

7(x+ y) = 16 + 3xy (ii),

16(x+ y) = 42 + 7xy (iii),

42(x+ y) = (ax5 + by5) + 16xy (iv).

(ii)×7− (iii)×3 : x+ y = −14 , substitute it into (ii): xy = −38. Substitute 
x+ y = −14, xy = −38  into (iv): ax5 + by5 = 42(−14)− 16(−38) = 20 .  

In addition, x+ y = −14, xy = −38 ⇒ x = −7 −
√
87, y = −7 +

√
87 or 

x = −7 +
√
87, y = −7−

√
87 .

Solution 2: Let an = axn + byn , then a1 = 3, a2 = 7, a3 = 16, a4 = 42. Let x, y  be the two roots 
of the quadratic equation t2 − pt− q = 0, then x2 − px− q = 0 ⇒ axn+2 = paxn+1 + qaxn . 
Similarly, byn+2 = pbyn+1 + qbyn . Add them up to obtain axn+2 + byn+2 = p(axn+1 + byn+1) + q(axn + byn) ⇒ an+2 = pan+1 + qan

axn+2 + byn+2 = p(axn+1 + byn+1) + q(axn + byn) ⇒ an+2 = pan+1 + qan .
When n = 1 , 7p+ 3q = 16 .
When n = 2 , 16p+ 7q = 42 .
Solve 7p+ 3q = 16 and 16p+ 7q = 42 to obtain p = −14, q = 38, thus an+2 = −14an+1 + 38an . 
Hence, ax5 + bx5 = a5 = −14× 42 + 38× 16 = 20 . 
Substitute p = −14, q = 38  into the equation x2 − px− q = 0: x2 + 14x− 38 = 0 ⇒ x = −7 ±

√
87. 

Substitute p = −14, q = 38  into the equation t2 − pt− q = 0: t2 + 14t− 38 = 0 . Since x, y  are 
the two roots, then Vieta’s formulas imply x+ y = −14 , thus y = −14− x = −7 ∓

√
87. Hence, 

the system has two solutions: (−7 +
√
87,−7−

√
87), (−7−

√
87,−7 +

√
87) .
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2.85 ��  Given f(x) = lg(x2 + 1), solve the equation f(100x − 10x+1)− f(24) = 0.

Solution: The function f(x) = lg(x2 + 1) has the domain (−∞,+∞) , and it is decreasing on 
(−∞, 0) and increasing on (0,+∞). In addition, it is an even function. Hence, 
f(100x − 10x+1)− f(24) = 0 ⇔ f(100x − 10x+1) = f(24) ⇔ 100x − 10x+1 = ±24 .

When 100x − 10x+1 = 24 , we have (10x)2 − 10 · 10x − 24 = 0 ⇒ (10x + 2)(10x − 12) = 0 ⇒ 10x = 12 ⇒ x = lg 12

(10x)2 − 10 · 10x − 24 = 0 ⇒ (10x + 2)(10x − 12) = 0 ⇒ 10x = 12 ⇒ x = lg 12 since 10x + 2 > 0 .

When 100x − 10x+1 = −24 , we have  (10x)2 − 10 · 10x + 24 = 0 ⇒ (10x − 4)(10x − 6) = 0 ⇒ 10x = 4  
or 10x = 6 ⇒ x = lg 4  or x = lg 6. Therefore, the original equation has three roots: 
x = lg 12, x = lg 4, x = lg 6 .

2.86 ���  The equation x4 + ax3 + bx2 + ax+ 1 = 0  has at least one real root, where a, b  are 

real numbers. Find the minimum value of a2 + b2.
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Solution: x = 0  is not a root, so we assume x �= 0  and divide both sides by x2  to obtain 
(x+ 1

x
)2 + a(x+ 1

x
) + b− 2 = 0 (i). (x+ 1

x
)2 = x2 + 2 + 1

x2 = (x− 1
x
)2 + 4 ≥ 4 , thus 

|x+ 1
x
| ≥ 2 . Let y = x+ 1

x , then (i) becomes y2 + ay + b− 2 = 0  (|y| ≥ 2)  (ii). (ii) needs to have 
a real root and |y| ≥ 2, then |a

2
|+ |

√
a2−4(b−2)

2
| ≥ |−a±

√
a2−4(b−2)

2
| ≥ 2, thus √

a2 − 4(b− 2) ≥ 4− |a| . Now we are ready to find the minimum value of a2 + b2. Without loss 
of generality, assume a > 0 .

(1) When a ≤ 4 , we have 
√

a2 − 4(b− 2) ≥ 4− a ≥ 0 , taking square to obtain 2a ≥ b+ 2 . When 
b+ 2 ≥ 0 , b ≥ −2 , 4a2 ≥ b2 + 4b+ 4 , then a2 + b2 ≥ 1

4
(b2 + 4b+ 4) + b2 = 5

4
(b+ 2

5
)2 + 4

5 . 
Hence, a2 + b2 has the minimum value 4

5 when b = −2
5. When b+ 2 ≤ 0 , b ≤ −2 , then 

a2 + b2 ≥ b2 ≥ 4 > 4
5 .

(2) When a > 4 , we have a2 + b2 > a2 > 16 > 4
5 .

As a conclusion from (1)(2), a2 + b2 has the minimum value 45.

2.87 ����  If  a, b  are distinct prime numbers, show the x, y -dependent equation 
√
x+

√
y =

√
ab  

has no positive integer solution.

Proof: We prove the result by contraction. Assume the equation has a positive solution x, y  such that √
x+

√
y =

√
ab  holds. Taking square to obtain x+ y + 2

√
xy = ab , thus 

√
xy  is a rational 

number. xy  is a positive integer whose square root is either a positive integer or a irrational number. 
Hence, 

√
xy  has to be a positive integer.

On the other hand, multiply 
√
x+

√
y =

√
ab  by 

√
x : x+

√
xy =

√
abx , thus 

√
abx  is a positive 

integer. Since a, b  are distinct prime numbers, then x = abt2 , t ∈ N . Same logic follows for y : 
y = abs2 , s ∈ N . Therefore, 

√
x+

√
y =

√
ab  becomes 

√
ab(t+ s) =

√
ab ⇒ t+ s = 1, a 

contradiction to t + s ≥ 2 . As a result, 
√
x+

√
y =

√
ab  has no positive integer solution.

2.88 ���  The real numbers x, y, z  satisfy the equations 

x+ y + z = 2,

xyz = 4.

(1) Find the minimum value of the largest one of x, y, z ; (2) Find the minimum value of |x|+ |y|+ |z| .

Solution: (1) Without loss of generality, assume x  is the largest one among x, y, z , that is, x ≥ y, x ≥ z . 
The first equation implies that x > 0  and y + z = 2− x , and the second equation implies yz = 4

x , 
thus y, z  are the two roots of the quadratic equation u2 − (2− x)u+ 4

x
= 0 . The discriminant 

∆ = (2−x)2−4 · 4
x
≥ 0 ⇒ x3−4x2+4x−16 ≥ 0 ⇒ (x2+4)(x−4) ≥ 0 ⇒ x−4 ≥

0 ⇒ x ≥ 4

∆ = (2−x)2−4 · 4
x
≥ 0 ⇒ x3−4x2+4x−16 ≥ 0 ⇒ (x2+4)(x−4) ≥ 0 ⇒ x−4 ≥

0 ⇒ x ≥ 4 . 
Hence, x = 4  is the minimum value of the largest one of x, y, z . At this time, y = z = −1 .
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(2) Since xyz > 0, then x, y, z  are all positive, or they are one positive two negative.

If x, y, z  are all positive, (1) implies x ≥ 4, a contradiction to x+ y + z = 2 .
If x, y, z  are one positive two negative, without loss of generality we assume x > 0, y < 0, z < 0 , then 
|x|+ |y|+ |z| = x− y − z = x− (y + z) = x− (2− x) = 2x− 2 . (1) implies x ≥ 4, thus 
2x− 2 ≥ 16 . x = 4, y = z = −1  satisfy all conditions and the equal sign is obtained in the  inequality. 
Hence, the minimum value of |x|+ |y|+ |z|  is 6.

2.89 ���  a, b, c  are nonzero real numbers, solve the system of equations 

(x+ y)(x+ z) = a2, (i)

(y + z)(x + y) = b2, (ii)

(x+ z)(y + z) = c2. (iii)

Solution 1: (i)× (ii)/(iii), (i)× (iii)/(ii), (ii)× (iii)/(i) ⇒  

(x+ y)2 =
a2b2

c2

(x+ z)2 =
a2c2

b2

(y + z)2 =
b2c2

a2

⇒  

x+ y = ±ab

c
(iv)

x+ z = ±ac

b
(v)

y + z = ±bc

a
(vi)

[(iv) + (v)− (vi)]/2 ⇒ x = ±a2b2+a2c2−b2c2

2abc .

[(iv) + (vi)− (v)]/2 ⇒ y = ±a2b2+b2c2−a2c2

2abc .

[(v) + (vi)− (iv)]/2 ⇒ z = ±a2c2+b2c2−a2b2

2abc .

Obviously (iv)(v)(iv) should have the same sign on the right hand side. Hence, the original system has two 

solutions: (a
2b2+a2c2−b2c2

2abc
, a2b2+b2c2−a2c2

2abc
, a2c2+b2c2−a2b2

2abc
),  (−a2b2+a2c2−b2c2

2abc
,−a2b2+b2c2−a2c2

2abc
,−a2c2+b2c2−a2b2

2abc
) .
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Solution 2: (i)× (ii)× (iii): (x+ y)2(x+ z)2(y + z)2 = a2b2c2 ⇒ (x+ y)(x+ z)(y + z) = ±abc  
(iv). (iv)/(i),(iv)/(ii),(iv)/(iii) ⇒ y + z = ± bc

a
, x+ z = ±ac

b
, x+ y = ±ab

c . The right hand side 
should have the same sign, thus 

y + z =
bc

a

x+ z =
ac

b

x+ y =
ab

c

or 

y + z = −bc

a

x+ z = −ac

b

x+ y = −ab

c

They lead to the two solutions same as Solution 1.

2.90 ����  Nonnegative real numbers x, y, z  satisfy  4
√
5x+9y+4z − 68× 2

√
5x+9y+4z + 256 = 0  . 

Find the maximum and minimum values of x+ y + z .
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Solution: Let 2
√
5x+9y+4z = t , then t2 − 68t+ 256 = 0 ⇒ (t− 4)(t− 64) = 0 ⇒ t = 4  or 

t = 64 .

When t = 4 , 2
√
5x+9y+4z = 4 = 22 ⇒

√
5x+ 9y + 4z = 2 ⇒ 5x+ 9y + 4z = 4.

When t = 64 , 2
√
5x+9y+4z = 64 = 26 ⇒

√
5x+ 9y + 4z = 6 ⇒ 5x+ 9y + 4z = 36 .

Since x, y, z  are nonnegative real numbers, 4(x+ y + z) ≤ 5x+ 9y + 4z ≤ 9(x+ y + z) .

When 5x+ 9y + 4z = 36 , x+ y + z ≤ 9, thus x+ y + z  has the maximum value 9, which can be 
obtained when x = y = 0, z = 9 .

When 5x+ 9y + 4z = 4 , x+ y + z ≥ 4/9 , thus x+ y + z  has the minimum value 4/9, which can 
be obtained when x = z = 0, y = 4/9 .

2.91 ����  Solve the equation x3 − [x] = 3 .

Solution: x = [x] + {x} ⇒ [x] = x− {x}, then the equation is equivalent to 
x3 − (x− {x}) = 3 ⇔ x3 − x = 3− {x} . Since 0 ≤ {x} < 1 , then 2 < x3 − x ≤ 3 ⇔ 2 < (x− 1)x(x+ 1) ≤ 3

2 < x3 − x ≤ 3 ⇔ 2 < (x− 1)x(x+ 1) ≤ 3  (� ). When x ≤ −1 , (x− 1)x(x+ 1) < 0, (� ) has no solution. When 
x ≥ 2, x3 − x = x(x2 − 1) ≥ 2(22 − 1) = 6, (� ) has no solution. When 1 < x < 2 , [x] = 1 , 

then the original equation becomes x3 − 1 = 3 ⇒ x3 = 4 ⇒ x = 3
√
4 , which is the root of the original 

equation.

2.92 ����  The x -relevant equation (a2 − 1)( x
x−1

)2 − (2a+ 7)( x
x−1

+ 1 = 0  has real roots. (1) 

Find the range of the parameter a . (2) If the equation has two real roots x1, x2, and x1

x1−1
+ x2

x2−1
= 3

11 , 

find the value of a .

Solution: (1) Let x
x−1

= t , t �= 1 , then the equation becomes (a2 − 1)t2 − (2a+ 7)t+ 1 = 0.

When a2 − 1 = 0 , a = ±1 , the equation is equivalent to −9t + 1 = 0  or −5t + 1 = 0 , thus 
t = 1

9  or t = 1
5 . When t = 1

9 , x
x−1

= 1
9  whose root is x = −1

8 . When t = 1
5 , x

x−1
= 1

5  whose root 
is x = −1

4 . Hence, the original equation has real roots when a = ±1 .

When a �= ±1 , the equation (a2 − 1)t2 − (2a+ 7)t+ 1 = 0 has real roots if and only if 
∆ = (2a+ 7)2 − 4(a2 − 1) = 28a+ 53 ≥ 0  which implies a ≥ −53

28 . When a = −53
28 , the  equation 

(a2 − 1)t2 − (2a+ 7)t+ 1 = 0 has two identical roots which are not one. Hence, when a ≥ −53
28 , 

the original equation has real roots, that is, the range of a  is [−53
28
,+∞) .

(2) Since x1

x1−1 , x2

x2−1  are the two roots of (a2 − 1)t2 − (2a+ 7)t+ 1 = 0, Vieta’s formulas imply 
x1

x1−1
+ x2

x2−1
= 2a+7

a2−1
. On the other hand, we have x1

x1−1
+ x2

x2−1
= 3

11 , thus 2a+7
a2−1

= 3
11

⇒ 3a2 − 22a− 80 = 0 ⇒ (a− 10)(3a+ 8) = 0 ⇒ a = 10 
2a+7
a2−1

= 3
11

⇒ 3a2 − 22a− 80 = 0 ⇒ (a− 10)(3a+ 8) = 0 ⇒ a = 10or a = −8
3 . Since a ≥ −53

28 , then a = 10  is the only 

possibility.
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2.93 ���  Solve the equation 2 logx a + logax a+ 3 loga2x a = 0 .

Solution: If a = 1 , then the equation becomes 6 logx 1 = 0  whose solution set is x > 0  but x �= 1 .

If a > 0  but a �= 1, then x > 0, x �= 1, x �= 1
a
, x �= 1

a2 , and logx a = 1
loga x

, logax a = loga a
loga a+loga x

= 1
1+loga x

, loga2x a = loga a
2 loga a+loga x

= 1
2+loga x

logx a = 1
loga x

, logax a = loga a
loga a+loga x

= 1
1+loga x

, loga2x a = loga a
2 loga a+loga x

= 1
2+loga x . The original equation is equivalent to 

2
loga x

+ 1
1+loga x

+ 3
2+loga x

= 0 . Let t = loga x , then 2
t
+ 1

1+t
+ 3

2+t
= 0 ⇒ 6t2+11t+4

t(1+t)(2+t)
= 0 ⇒ 6t2 + 11t + 4 = 0 ⇒ (3t+ 4)(2t + 1) = 0 ⇒

t = −4
3

2
t
+ 1

1+t
+ 3

2+t
= 0 ⇒ 6t2+11t+4

t(1+t)(2+t)
= 0 ⇒ 6t2 + 11t + 4 = 0 ⇒ (3t+ 4)(2t + 1) = 0 ⇒

t = −4
3

2
t
+ 1

1+t
+ 3

2+t
= 0 ⇒ 6t2+11t+4

t(1+t)(2+t)
= 0 ⇒ 6t2 + 11t + 4 = 0 ⇒ (3t+ 4)(2t + 1) = 0 ⇒

t = −4
3  or t = −1

2 . When t = −4
3 , then 

loga x = −4
3
⇒ x = a−

4
3 . When t = −1

2 , then loga x = −1
2
⇒ x = a−

1
2 . It is not difficult to verify 

that x = a−
4
3 , x = a−

1
2  are roots of the original equation.

2.94 ���  The coefficients of the last three terms of the expansion of (xlg x + 1)n  are positive  integer 

roots of the equation 3y
2 · 9−10y · 81−11 = 1 . The middle term of the expansion is the root of the 

equation 3
√

m
2
= 0.1−2 +

√
2m , find the value of x .

Solution: 3y2 ·9−10y ·81−11 = 1 ⇔ 3y
2 ·3−20y ·3−44 = 30 ⇒ y2−20y−44 = 0 ⇒ (y+2)(y−22) =

0 ⇒ y = −2
3y

2 ·9−10y ·81−11 = 1 ⇔ 3y
2 ·3−20y ·3−44 = 30 ⇒ y2−20y−44 = 0 ⇒ (y+2)(y−22) =

0 ⇒ y = −2  or y = 22 . We only need positive integer roots, so y = 22 . The coefficients of the last 
three terms are Cn−2

n + Cn−1
n + Cn

n = 22, then C2
n+C1

n+1 = 2 ⇒ n(n−1)
2

+n = 21 ⇒ n2+n−42 = 0 ⇒ (n+7)(n−6) = 0 ⇒ n = 6

C2
n+C1

n+1 = 2 ⇒ n(n−1)
2

+n = 21 ⇒ n2+n−42 = 0 ⇒ (n+7)(n−6) = 0 ⇒ n = 6 since n + 7 > 0 . 

3
√

m
2
= 0.1−2 +

√
2m ⇔ 3

2

√
2m = 100 +

√
2m ⇒

√
2m = 200 ⇒ m = 200003

√
m
2
= 0.1−2 +

√
2m ⇔ 3

2

√
2m = 100 +

√
2m ⇒

√
2m = 200 ⇒ m = 20000 . Since n = 6 , 

the middle term of the expansion is T4 = C3
6 (x

lg x)3 = 6×5×4
3×2×1

(xlg x)3 = 20x3 lg x . According to the 

condition of the problem, we have  20x3 lg x = 20000 ⇒ x3 lg x = 1000 ⇒ lg x3 lgx = lg 1000 ⇒ 3(lg x)2 = 3 ⇒ lg x =
±1 ⇒ x = 1020x3 lg x = 20000 ⇒ x3 lg x = 1000 ⇒ lg x3 lgx = lg 1000 ⇒ 3(lg x)2 = 3 ⇒ lg x =

±1 ⇒ x = 10

20x3 lg x = 20000 ⇒ x3 lg x = 1000 ⇒ lg x3 lgx = lg 1000 ⇒ 3(lg x)2 = 3 ⇒ lg x =
±1 ⇒ x = 10  or x = 1/10 .

2.95 ����  Let p  be an odd prime number, find all positive integer roots of the equation 
x2 = y(y + p) .

Solution: x2 = y(y + p) ⇔ (x+ y)(x− y) = py . Since p  is a prime number, we have p|x− y  or 
p|x+ y . If p|x− y , then x− y ≥ p  (note that x > y ), thus we should have x+ y ≤ y , impossible. 
Thus p|x+ y . Let x+ y = pn  (i), where n  is a positive integer, then the original equation becomes 
n(x− y) = y , thus n|y  and x = n+1

n
y . Hence, x+ y = 2n+1

n
y  (ii). (i)&(ii) lead to (2n+ 1)y = n2p . 

Since (n2, 2n+ 1) = 1 , we have n2|y . (2n+ 1) y
n2 = p  and p  is a prime, thus y

n2 = 1 , then 
p = 2n+ 1 ⇒ n = p−1

2 , then y = n2 = (p−1
2
)2 , x = n+1

n
y = n+1

n
n2 = n(n + 1) = p−1

2
· p+1

2
= p2−1

2  . 
Therefore, the original equation has only one positive integer root: x = p2−1

2
, y = (p−1

2
)2 .

Download free eBooks at bookboon.com



Elementary Algebra Exercise Book I

76 

Equations

2.96 ����  Consider the real coefficient equations 

ax2
1 + bx1 + c = x2

ax2
2 + bx2 + c = x3

...

ax2
n−1 + bxn−1 + c = xn

ax2
n + bxn + c = x1

where a �= 0 , show that when ∆ = (b− 1)2 − 4ac = 0 , this equation system has a unique solution.

Proof: The system is equivalent to 

ax2
1 + (b− 1)x1 + c = x2 − x1

ax2
2 + (b− 1)x2 + c = x3 − x2

...

ax2
n−1 + (b− 1)xn−1 + c = xn − xn−1

ax2
n + (b− 1)xn + c = x1 − xn
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and we can observe that ∆ = (b− 1)2 − 4ac  is the discriminant of the quadratic equation 
ax2 + (b− 1)x+ c = 0 . When ∆ = 0, ax2

i + (b− 1)xi + c  is a perfect square, i.e. 
ax2

i + (b− 1)xi + c = a(xi +
b−1
2a

)2 (i = 1, 2, 3, · · · , n). If a < 0 , then a(xi +
b−1
2a

)2 ≤ 0 , thus 
x2 − x1 ≤ 0, x3 − x2 ≤ 0, · · · , xn − xn−1 ≤ 0, x1 − xn ≤ 0 , which is equivalent to 
x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn−1 ≥ xn ≥ x1 . Hence, we can only choose equal sign in all these inequalities, 
that is, x1 = x2 = x3 = · · · = xn = 1−b

2a . If a > 0 , same logic follows to obtain 
x1 = x2 = x3 = · · · = xn = 1−b

2a . As a conclusion, the equation system has a unique solution when 
∆ = 0.

2.97 ����� Given f(1) = 1
5  and when n > 1 , f(n−1)

f(n)
= 2nf(n−1)+1

1−2f(n) , find f(n) .

Solution: Multiply f(n−1)
f(n)

= 2nf(n−1)+1
1−2f(n)  by f(n)[1− 2f(n)]  to obtain f(n− 1)− 2f(n− 1)f(n) = 2nf(n− 1)f(n) + f(n)

f(n− 1)− 2f(n− 1)f(n) = 2nf(n− 1)f(n) + f(n) , which is equivalent to f(n− 1)− f(n) = 2(n + 1)f(n)f(n− 1) . 
Divide both sides by f(n)f(n− 1)  to obtain 1

f(n)
− 1

f(n−1)
= 2(n+ 1). Replace n  with 2, 3, · · · , n  

successively to obtain 1
f(2)

− 1
f(1)

= 2× 3, 1
f(3)

− 1
f(2)

= 2× 4, · · · , 1
f(n)

− 1
f(n−1)

= 2(n+ 1) . 
Add them up to obtain 1

f(n)
− 1

f(1)
= 2[3 + 4 + · · ·+ (n+ 1)] = 2× (3+n+1)(n−1)

2
= (n− 1)(n+ 4)

1
f(n)

− 1
f(1)

= 2[3 + 4 + · · ·+ (n+ 1)] = 2× (3+n+1)(n−1)
2

= (n− 1)(n+ 4). Hence, 1
f(n)

= 1
f(1)

+ (n− 1)(n+ 4) = 5 + n2 + 3n− 4 = n2 + 3n+ 1 .

As a conclusion, f (n) = 1
n2+3n+1

.

2.98 ����  Solve the equation 12(a
x + a−x) = m .

Solution: Multiply the equation by 2ax  and reorganize it to obtain a2x − 2max + 1 = 0 . Let t = ax  
(t > 0 ), then t2 − 2mt+ 1 = 0 . When ∆ = 4m2 − 4 ≥ 0 , i.e. m ≥ 1  or m ≤ −1 , the t
- dependent equation has real roots: t1 = m−

√
m2 − 1, t2 = m+

√
m2 − 1 . If m = 1 , then 

t1 = t2 = 1 , thus ax = 1 , the original equation has a unique root x = 0 . If m > 1 , 
m+

√
m2 − 1 > m−

√
m2 − 1 > 0 , then ax = m±

√
m2 − 1, that is, the original equation has 

two distinct real roots: x = loga(m±
√
m2 − 1) . If m < 1 , since |m| >

√
m2 − 1 , then 

m < −
√
m2 − 1 , then m−

√
m2 − 1 ≤ m+

√
m2 − 1 < 0 . ax = m±

√
m2 − 1 has no 

 solution since ax > 0 . As a conclusion, when m < 1 , the original equation has no root; when m = 1  , 
the original equation has a unique root x = 0 ; when m > 1 , the original equation has two distinct 
roots x = loga(m±

√
m2 − 1) .

2.99 ����  Solve the system of equations 

x4 + y2 + z = 18

x2y − yz1/2 = −3

z1/2x2 = 4
to obtain real solutions.
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Solution: Let x2 = u, y = v, z1/2 = t , then the system becomes 

u2 + v2 + t2 = 18 (i)

uv − vt = −3 (ii)

ut = 4 (iii)

(i)+(ii)×2-(iii)×2 : u2+v2+t2+2(uv−vt−ut) = 4 ⇔ (u+v−t)2 = 4 ⇒ u+v−t = ±2 ⇒ u−t = −v±2

u2+v2+t2+2(uv−vt−ut) = 4 ⇔ (u+v−t)2 = 4 ⇒ u+v−t = ±2 ⇒ u−t = −v±2 , substitute it into (ii): v2 ± 2v − 3 = 0 whose roots are v = ±1  or v = ±3 .  Substitute 
the values of v  into (ii)(iii): 

u− t = −3

ut = 4
t− u = −3

ut = 4
3u− 3t = −3

ut = 4
3t− 3u = −3

ut = 4

Solve them to obtain (u, v, t) = (1, 1, 4), (−4, 1,−1), (4,−1, 1), (−1,−1,−4),

(
√
17−1
2

, 3,
√
17+1
2

), (
√
17+1
2

, 3,
√
17−1
2

), (
√
17+1
2

,−3,
√
17−1
2

), (
√
17−1
2

,−3,
√
17+1
2

)
 (u, v, t) = (1, 1, 4), (−4, 1,−1), (4,−1, 1), (−1,−1,−4),

(
√
17−1
2

, 3,
√
17+1
2

), (
√
17+1
2

, 3,
√
17−1
2

), (
√
17+1
2

,−3,
√
17−1
2

), (
√
17−1
2

,−3,
√
17+1
2

)

(u, v, t) = (1, 1, 4), (−4, 1,−1), (4,−1, 1), (−1,−1,−4),

(
√
17−1
2

, 3,
√
17+1
2

), (
√
17+1
2

, 3,
√
17−1
2

), (
√
17+1
2

,−3,
√
17−1
2

), (
√
17−1
2

,−3,
√
17+1
2

). Notice that the 

second, fourth, sixth, eighth solutions have negative u = x2  which is impossible, therefore all 
possible solutions of the original system are

2.100 ����  Find the polynomial p(x)  defined on a set of real numbers such that p(0) = 0 and 
p(x2 + 1) = [p(x)]2 + 1.

Solution: Let x = 0  and substitute into p(x2 + 1) = [p(x)]2 + 1 to obtain p(1) = [p(0)]2 + 1 = 1 
since p(0) = 0. Choose x = 1, 2 to obtain p(2) = [p(1)]2 + 1 = 2, p(5) = [p(2)]2 + 1 = 5 . Keep 
going, we have p(26) = [p(5)]2 + 1 = 26, p(262 + 1) = [p(26)]2 + 1 = 262 + 1, · · · . Hence, the 
equation p(x)− x = 0 has infinitely many roots: 0, 1, 2, 5, 26, 262 + 1, · · · . Since p(x)− x  is a 
polynomial, p(x)− x = 0 always holds, that is, p(x) = x .
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3 Inequalities
3.1 Determine the order of the numbers 49 , log5 2,

2
5 .

Solution: 4
9
− log5 2 = 4

9
− lg 2

lg 5
= 4 lg 5−9 lg 2

9 lg 5
= lg 54−lg 29

9 lg 5
= lg 625−lg 512

9 lg 5
> 0 , thus 49 > log5 2 . 

log5 2− 2
5
= lg 2

lg 5
− 2

5
= 5 lg 2−2 lg 5

5 lg 5
= lg 32−lg 25

5 lg 5
> 0 , thus log5 2 > 2

5 . Hence, 49 > log5 2 > 2
5 .

3.2 Solve the inequality 1
100

< log20.1 x < 1.

Solution: 1
100

< log20.1 x < 1 ⇒ 1 < log0.1 x < 1
10  or −1 < log0.1 x < − 1

10
⇒ 0.1 < x < 10

√
0.1 

or 10
√
10 < x < 10.

3.3 a, b, c, d  are positive numbers, show 
√

(a+ c)(b+ d) ≥
√
ab+

√
cd .

Proof: ad + bc ≥ 2
√
abcd ⇔ ad + bc + ab + cd ≥ ab + 2

√
abcd + cd ⇔ (a + c)(b + d) ≥

(
√
ab+

√
cd)2 ⇔

√
(a + c)(b+ d) ≥

√
ab+

√
cd

 ad + bc ≥ 2
√
abcd ⇔ ad + bc + ab + cd ≥ ab + 2

√
abcd + cd ⇔ (a + c)(b + d) ≥

(
√
ab+

√
cd)2 ⇔

√
(a + c)(b+ d) ≥

√
ab+

√
cd since a, b, c, d > 0.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE


Elementary Algebra Exercise Book I

80 

Inequalities

3.4 �  Given −1 ≤ u+ v ≤ 1, 1 ≤ u− 2v ≤ 3 , find the range of 2u+ 5v .

Solution: Let 2u+ 5v = λ1(u+ v) + λ2(u− 2v) = (λ1 + λ2)u+ (λ1 − 2λ2)v 2u+ 5v = λ1(u+ v) + λ2(u− 2v) = (λ1 + λ2)u+ (λ1 − 2λ2)v ,  
then λ1 + λ2 = 2  and λ1 − 2λ2 = 5 . Solve them to obtain λ1 = 3, λ2 = −1 .  
Hence, 2u+ 5v = 3(u+ v)− 1(u− 2v) ∈ [(−1)× 3− 3, 1× 3− 1] = [−6, 2] 2u+ 5v = 3(u+ v)− 1(u− 2v) ∈ [(−1)× 3− 3, 1× 3− 1] = [−6, 2].

3.5 Given |h| < ε
4
, |k| < ε

6 , show |2h− 3k| < ε .

Proof: |h| < ε
4
⇔ − ε

4
< h < ε

4
⇔ − ε

2
< 2h < ε

2 . 
|k| < ε

6
⇔ − ε

6
< k < ε

6
⇔ − ε

2
< 3k < ε

2 .
Hence, −ε < 2h− 3k < ε ⇔ |2h− 3k| < ε .

3.6 Show the inequality 12 ·
3
4
· 5
6
· · · · · 99

100
< 1

10 .

Proof: 12 < 2
3
, 3
4
< 4

5
, · · · , 97

98
< 98

99
, 99
100

< 100
101 . Multiply all these inequalities: 12 ·

3
4
· · · · · 97

98
· 99
100

< 2
3
· 4
5
· · · · · 98

99
· 100
101 

1
2
· 3
4
· · · · · 97

98
· 99
100

< 2
3
· 4
5
· · · · · 98

99
· 100
101 . Multiply this inequality by 1

2
· 3
4
· · · · · 97

98
· 99
100: (12 ·

3
4
· · · · · 97

98
· 99
100

)2 < 1
101 . 

Take the square root to obtain 12 ·
3
4
· · · · · 97

98
· 99
100

< 1√
101

< 1
10 .

3.7 Solve the inequality lg(x2 − x− 6) < lg(2− 3x).

Solution: The inequality holds if and only if 

x2 − x− 6 > 0

2− 3x > 0

x2 − x− 6 < 2− 3x

⇒  

x < −2 or x > 3
x < 2

3

−4 < x < 2
⇒ −4 < x < −2 , which is the solution of the original inequality.

3.8 �  a, b  are real numbers and a3 + b3 = 2 , show a + b ≤ 2 .

Proof: Suppose a + b > 2 , then  b > 2 − a ⇒ b3 > (2 − a)3 = 8 − 12a + 6a2 − a3 ⇒ a3 + b3 > 8 − 12a + 6a2 =
6a2 − 12a+ 6 + 2 = 6(a− 1)2 + 2 > 2

 
b > 2 − a ⇒ b3 > (2 − a)3 = 8 − 12a + 6a2 − a3 ⇒ a3 + b3 > 8 − 12a + 6a2 =

6a2 − 12a+ 6 + 2 = 6(a− 1)2 + 2 > 2
 

b > 2 − a ⇒ b3 > (2 − a)3 = 8 − 12a + 6a2 − a3 ⇒ a3 + b3 > 8 − 12a + 6a2 =
6a2 − 12a+ 6 + 2 = 6(a− 1)2 + 2 > 2  , a contradiction to 

a3 + b3 = 2 . Hence, a + b ≤ 2 .
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3.9 The rational numbers a, b, c, d  satisfy d > c  (i), a + b = c + d  (ii), a + d < b+ c  (iii), 

determine the order of these four numbers.

Solution: (i) ⇒ b+ d > b+ c . This together with (iii) implies a + d < b+ d , thus a < b . (iii)-(ii) 
⇒ d− b < b− d ⇒ d < b . (ii) ⇒ b− d = c− a , since b− d > 0 , then c− a > 0, i.e. c > a . 
As a conclusion, we obtain the order a < c < d < b .

3.10 If the inequality ax2 + bx− 6 < 0  has the solution set {x| − 2 < x < 3}, find the values of a  

and b .

Solution: The condition implies that the equation ax2 + bx− 6 = 0  has two roots x = −2, x = 3 . 
Vieta’s formulas imply 

−2 + 3 = −a

b

(−2)× 3 = −6

a

from which we can obtain a = 1, b = −1 .

3.11 Given 2x+ 6y ≤ 15, x ≥ 0, y ≥ 0, find the maximum value of 4x+ 3y .

Solution: 2x+ 6y ≤ 15 ⇔ y ≤ 15−2x
6

= 5
2
− 1

3
x , thus 4x+ 3y ≤ 4x+ 15

2
− x = 3x+ 15

2 . 

y ≥ 0 ⇒ 5
2
− 1

3
x ≥ 0 ⇒ x ≤ 15

2 . Hence, 4x+ 3y ≤ 3× 15
2
+ 15

2
= 30 , which implies that the 

maximum value of 4x+ 3y  is 30.

3.12 �  Given (m+ 1)x2 − 2(m− 1)x+ 3(m− 1) < 0 , find all real values of m  such that the 

inequality has no solution.

Solution: The inequality has no solution if and only if 

∆ = 4(m− 1)2 − 12(m+ 1)(m− 1) ≤ 0

m+ 1 > 0

⇒  

m2 +m− 2 ≥ 0

m+ 1 > 0

⇒  

m ≤ −2 or m ≥ 1
m > −1

⇒ m ≥ 1 .
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3.13 The inequality 
√
x > ax+ 3

2  has the solution set {x|4 < x < b} , find the values of a  and b .

Solution: 
√
x > ax+ 3

2
⇔ a(

√
x)2 −

√
x+ 3

2
< 0 . The solution set {x|4 < x < b}  is equivalent 

to {x|2 <
√
x <

√
b} . Vieta’s formulas imply 

2 +
√
b =

1

a

2
√
b =

3

2a
a > 0

⇒ a = 1
8
, b = 36.

3.14 If the inequality x2 − ax− 6a ≤ 0  has solutions, and the two roots x1, x2 of x2 − ax− 6a = 0  

satisfy |x1 − x2| ≤ 5 . Find the range of the real number a .

Solution: The inequality has solutions if and only if ∆ = a2 + 24a ≥ 0 ⇔ a ≥ 0  or a ≤ −24 . Vieta’s 
formulas imply 

x1 + x2 = a

x1x2 = −6a
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|x1 − x2| =
√

(x1 − x2)2 =
√

(x1 + x2)2 − 4x1x2 =
√
a2 + 24a ≤ 5, that is 

a2 + 24a− 25 ≤ 0 ⇒ (a+ 25)(a− 1) ≤ 0 ⇒ −25 ≤ a ≤ 1 .  
As a conclusion, a  has the range: −25 ≤ a ≤ −24  or 0 ≤ a ≤ 1 .

3.15 �  If 0 < a < 1, 0 < b < 1, 0 < c < 1 , show it is impossible that (1− a)b, (1− b)c, (1− c)a  

are all greater than 1/4.

Proof 1: We prove the conclusion by contraction. Suppose (1− a)b > 1
4
, (1− b)c > 1

4
, (1− c)a > 1

4
. 

Multiply them to obtain  abc(1 − a)(1− b)(1− c) > 1
64. On the other hand, 

0 < (1− a)a ≤ [1−a+a
2

]2 = 1
4

, similarly we have 0 < (1− b)b ≤ 1
4
, 0 < (1− c)c ≤ 1

4
 0 < (1− b)b ≤ 1

4
, 0 < (1− c)c ≤ 1

4
. Multiply 

them to obtain abc(1 − a)(1− b)(1− c) ≤ 1
64 , a contractions.

Proof 2: Since 0 < a < 1, 0 < b < 1, 0 < c < 1 , we let a = sin2 α, b = sin2 β, c = sin2 γ , then 
(1−a)b·(1−b)c·(1−c)a = abc(1−a)(1−b)(1−c) = sin2 α sin2 β sin2 γ cos2 α cos2 β cos2 γ =

1
64
sin2 2α sin2 2β sin2 2γ ≤ 1

64

(1−a)b·(1−b)c·(1−c)a = abc(1−a)(1−b)(1−c) = sin2 α sin2 β sin2 γ cos2 α cos2 β cos2 γ =
1
64
sin2 2α sin2 2β sin2 2γ ≤ 1

64
, thus it is impossible that (1− a)b, (1− b)c, (1− c)a  are all greater 

than 1/4.

3.16 If −1 < x < 1,−1 < y < 1 , show | x+y
1+xy

| < 1 .

Proof: | x+y
1+xy

| < 1 ⇔ ( x+y
1+xy

)2 < 1 ⇔ (x + y)2 < (1 + xy)2 ⇔ x2 + y2 < 1 + x2y2 ⇔
(x2 − 1)(1− y2) < 0
| x+y
1+xy

| < 1 ⇔ ( x+y
1+xy

)2 < 1 ⇔ (x + y)2 < (1 + xy)2 ⇔ x2 + y2 < 1 + x2y2 ⇔
(x2 − 1)(1− y2) < 0, which is obviously valid since −1 < x < 1,−1 < y < 1 .

3.17 ��  Given f(x) = lg 1+2x+a·4x
3  (a ∈ R ), (1) f(x)  is well defined when x ≤ 1, find the range 

of a , (2) if 0 < a ≤ 1, show 2f(x) < f(2x)  when x �= 1 .

Solution: (1) Since 1 + 2x + a · 4x > 0 , a > −[(1
4
)x + (1

2
)x] . Since (14)

x, (1
2
)x  are decreasing 

functions on the interval (−∞, 1] , then −[(1
4
)x + (1

2
)x]  reaches the maximum value −(1

4
+ 1

2
) = −3

4 
at x = 1 , thus a > −3

4 .

(2) Use the inequality a+b+c
3

<
√

a2+b2+c2

3
 to obtain (1+2x+a ·4x)2 < 3(1+4x+a2 ·16x) < 3(1+4x+a ·16x) ⇒ 1+4x+a·16x

3
> (1+2x+a·4x

3
)2 

(1+2x+a ·4x)2 < 3(1+4x+a2 ·16x) < 3(1+4x+a ·16x) ⇒ 1+4x+a·16x
3

> (1+2x+a·4x
3

)2 , that is f(2x) > 2f(x) .

3.18 �  If a, b, c > 0 , show 2(a+b
2

−
√
ab) ≤ 3(a+b+c

3
− 3

√
abc) .

Proof: 2(a+b
2

−
√
ab) ≤ 3(a+b+c

3
− 3
√
abc) ⇔ a+ b−2

√
ab ≤ a+ b+ c−3 3

√
abc ⇔ c+2

√
ab ≥

3 3
√
abc

2(a+b
2

−
√
ab) ≤ 3(a+b+c

3
− 3
√
abc) ⇔ a+ b−2

√
ab ≤ a+ b+ c−3 3

√
abc ⇔ c+2

√
ab ≥

3 3
√
abc . We only need to show the last inequality. c+ 2

√
ab = c+

√
ab+

√
ab ≥ 3

3
√
c ·

√
ab ·

√
ab = 3 3

√
abc

c+ 2
√
ab = c+

√
ab+

√
ab ≥ 3

3
√
c ·

√
ab ·

√
ab = 3 3

√
abc .
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3.19 �  Given the function f(x) = 2x+3

4x+8, (1) find the maximum value of f(x) , (2) show 
f(a) < b2 − 4b+ 11

2  for any real numbers a, b .

Solution: (1) f(x) = 2x+3

4x+8
= 8

2x+ 8
2x

≤ 8

2
√

2x· 8
2x

= 8
4
√
2
=

√
2 , thus f(x)max =

√
2 .

(2) Since f(a) ≤
√
2  and b2 − 4b+ 11

2
= (b− 2)2 + 3

2
≥ 3

2
>

√
2 , we have f(a) < b2 − 4b+ 11

2  
for any real numbers a, b .

3.20 �  Show 2(
√
n+ 1− 1) < 1 + 1√

2
+ 1√

3
+ · · ·+ 1√

n
< 2

√
n  for any n ∈ N .

Proof: 1√
k
= 2

2
√
k
> 2√

k+
√
k+1

= 2(
√
k + 1−

√
k). Let m = 1 + 1√

2
+ 1√

3
+ · · ·+ 1√

n ,  
then m > 2(

√
2− 1 +

√
3−

√
2 + · · ·+

√
n+ 1−

√
n) = 2(

√
n+ 1− 1) ,  

and m < 2(1− 0 +
√
2− 1 +

√
3−

√
2 + · · ·+

√
n−

√
n− 1) = 2

√
n .  

Hence, 2(
√
n+ 1− 1) < 1 + 1√

2
+ 1√

3
+ · · ·+ 1√

n
< 2

√
n

3.21 �  Given a2 + b2 + c2 = 1 , show −1
2
≤ ab+ bc+ ca ≤ 1 .

Proof: a2 + b2 ≥ 2ab, b2 + c2 ≥ 2bc, c2 + a2 ≥ 2ca , add them up to obtain ab+ bc + ca ≤ a2 + b2 + c2 = 1 
ab+ bc + ca ≤ a2 + b2 + c2 = 1 . Since (a + b+ c)2 ≥ 0 , a2 + b2 + c2 + 2(ab+ bc + ca) ≥ 0, then 

ab+ bc + ca ≥ −1
2
(a2 + b2 + c2) = −1

2 , thus −1
2
≤ ab+ bc+ ca ≤ 1 .

3.22 ��  Given a, b, c > 0 , show c
a+b

+ a
b+c

+ b
c+a

≥ 3
2 .

Proof: c
a+b

+ a
b+c

+ b
c+a

= a+b+c
a+b

+ a+b+c
b+c

+ a+b+c
c+a

− 3 = (a + b+ c)( 1
a+b

+ 1
b+c

+ 1
c+a

)− 3 =
1
2
[(a + b) + (b + c) + (c + a)]( 1

a+b
+ 1

b+c
+ 1

c+a
) − 3 ≥ 1

2
· 3 3

√
(a+ b)(b+ c)(c+ a) ·

3 3

√
1

a+b
· 1
b+c

· 1
c+a

− 3 = 9
2
− 3 = 3

2

 
c

a+b
+ a

b+c
+ b

c+a
= a+b+c

a+b
+ a+b+c

b+c
+ a+b+c

c+a
− 3 = (a + b+ c)( 1

a+b
+ 1

b+c
+ 1

c+a
)− 3 =

1
2
[(a + b) + (b + c) + (c + a)]( 1

a+b
+ 1

b+c
+ 1

c+a
) − 3 ≥ 1

2
· 3 3

√
(a+ b)(b+ c)(c+ a) ·

3 3

√
1

a+b
· 1
b+c

· 1
c+a

− 3 = 9
2
− 3 = 3

2

 

c
a+b

+ a
b+c

+ b
c+a

= a+b+c
a+b

+ a+b+c
b+c

+ a+b+c
c+a

− 3 = (a + b+ c)( 1
a+b

+ 1
b+c

+ 1
c+a

)− 3 =
1
2
[(a + b) + (b + c) + (c + a)]( 1

a+b
+ 1

b+c
+ 1

c+a
) − 3 ≥ 1

2
· 3 3

√
(a+ b)(b+ c)(c+ a) ·

3 3

√
1

a+b
· 1
b+c

· 1
c+a

− 3 = 9
2
− 3 = 3

2
.

3.23 Solve the inequality 
√
2x+ 5 > x+ 1.

Solution: To make the square root valid, we need 2x+ 5 ≥ 0 ⇔ x ≥ −5
2. When x+ 1 < 0, i.e. 

x < −1, we have 
√
2x+ 5 ≥ 0 > x+ 1 , thus the original inequality has the solution −5

2
≤ x < −1. 

When x ≥ −1 , the original inequality has the solution −1 ≤ x < 2 . The union of these two solution 
sets provides the solution of the original inequality: {x| − 5

2
≤ x < 2}.

3.24 �  Solve the inequality xloga x > x4·
√
x

a2
 (a > 0, a �= 1 ).

Solution: When a > 1 , take the log with base a  on both sides to obtain 
(loga x)

2 > 9
2
loga x−2 ⇒ 2(loga x)

2−9 loga x+4 > 0 ⇒ (2 loga x−1)(loga x−4) >
0 ⇒ loga x < 1

2

 (loga x)
2 > 9

2
loga x−2 ⇒ 2(loga x)

2−9 loga x+4 > 0 ⇒ (2 loga x−1)(loga x−4) >
0 ⇒ loga x < 1

2  or loga x > 4 ⇒ 0 < x <
√
a  or x > a4 . When 0 < a < 1, 

(loga x)
2 < 9

2
loga x − 2 ⇒ (2 loga x − 1)(loga x − 4) < 0 ⇒ 1

2
< loga x < 4 ⇒ a4 <

x <
√
a

 (loga x)
2 < 9

2
loga x − 2 ⇒ (2 loga x − 1)(loga x − 4) < 0 ⇒ 1

2
< loga x < 4 ⇒ a4 <

x <
√
a .
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3.25 ��  Given a > 0, b > 0, c > 0, a+ b+ c = 1 , show (1 + 1
a
)(1 + 1

b
)(1 + 1

c
) ≥ 64 .

Proof: Since a, b, c > 0, a+ b+ c = 1 , then 1 + 1
a
= 1 + a+b+c

a
= 2 + b+c

a
≥ 2 + 2

√
bc

a
≥ 2

√
2 · 2

√
bc

a
= 4

√√
bc
a 

1 + 1
a
= 1 + a+b+c

a
= 2 + b+c

a
≥ 2 + 2

√
bc

a
≥ 2

√
2 · 2

√
bc

a
= 4

√√
bc
a

. Similarly we can obtain 1 + 1
b
≥ 4

√√
ca
b
, 1 + 1

c
≥ 4

√√
ab
c

. Multiply these 

three inequalities to obtain (1 + 1
a
)(1 + 1

b
)(1 + 1

c
) ≥ 4

√√
bc
a

· 4
√√

ca
b

· 4
√√

ab
c

= 64 .

3.26 �  Show 1n + 1
n+1

+ 1
n+2

+ · · ·+ 1
n2 > 1  for n ∈ N , n ≥ 2 .

Proof: 1n + 1
n+1

+ 1
n+2

+ · · ·+ 1
n2 > n

n2 +
1
n2 +

1
n2 + · · ·+ 1

n2 = n+n(n−1)
n2 = 1 .

3.27 �  Given x ≥ 0, y ≥ 0 , show 12(x+ y)2 + 1
4
(x+ y) ≥ x

√
y + y

√
x .

Proof: 1
2
(x + y)2 + 1

4
(x + y) = 1

2
(x + y)[(x + y) + 1

2
] = 1

2
(x + y)[(x + 1

4
) + (y + 1

4
)] ≥

√
xy[(x+ 1

4
) + (y + 1

4
)] ≥ √

xy[2
√

1
4
x+ 2

√
1
4
y] =

√
xy(

√
x+

√
y) = x

√
y + y

√
x

 
1
2
(x + y)2 + 1

4
(x + y) = 1

2
(x + y)[(x + y) + 1

2
] = 1

2
(x + y)[(x + 1

4
) + (y + 1

4
)] ≥

√
xy[(x+ 1

4
) + (y + 1

4
)] ≥ √

xy[2
√

1
4
x+ 2

√
1
4
y] =

√
xy(

√
x+

√
y) = x

√
y + y

√
x .

3.28 �  Show 13 ≤ x2−x+1
x2+x+1

≤ 3 .

Proof: Let y = x2−x+1
x2+x+1 , then  yx2 + yx+ y − x2 + x− 1 = 0 ⇔ (y − 1)x2 + (y + 1)x+ y − 1 = 0 

yx2 + yx+ y − x2 + x− 1 = 0 ⇔ (y − 1)x2 + (y + 1)x+ y − 1 = 0 . Consider the discriminant ∆ = (y+1)2−4(y−1)2 = −3y2+10y−3 ≥ 0 ⇒ 3y2−10y+3 ≤ 0 ⇒ (3y−1)(y−3) ≤
0 ⇒ 1

3
≤ y ≤ 3

 
∆ = (y+1)2−4(y−1)2 = −3y2+10y−3 ≥ 0 ⇒ 3y2−10y+3 ≤ 0 ⇒ (3y−1)(y−3) ≤

0 ⇒ 1
3
≤ y ≤ 3

 

∆ = (y+1)2−4(y−1)2 = −3y2+10y−3 ≥ 0 ⇒ 3y2−10y+3 ≤ 0 ⇒ (3y−1)(y−3) ≤
0 ⇒ 1

3
≤ y ≤ 3 .
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3.29 �  a, b, x, y  are positive numbers and satisfy a + b = 10, a
x
+ b

y
= 1 , and x+ y  has the 

minimum value 18, find the values of a, b .

Solution: The conditions imply that x+y = (a
x
+ b

y
)(x+y) = a+b+ ay

x
+ bx

y
= 10+ ay

x
+ bx

y
≥ 10+2

√
ay
x
· bx

y
= 10+2

√
ab 

x+y = (a
x
+ b

y
)(x+y) = a+b+ ay

x
+ bx

y
= 10+ ay

x
+ bx

y
≥ 10+2

√
ay
x
· bx

y
= 10+2

√
ab . Since x+ y  has the minimum value 18, then  10 + 2

√
ab = 18 ⇒

√
ab = 4 ⇒ ab = 16 

10 + 2
√
ab = 18 ⇒

√
ab = 4 ⇒ ab = 16 . Solve 

a + b = 10

ab = 16

to obtain a = 2, b = 8 or a = 8, b = 2.

3.30 �  If x, y > 0 , find the maximum value of 
√
x+

√
y√

x+y .

Solution: f(x, y) =
√
x+

√
y√

x+y , f 2(x, y) =
x+y+2

√
xy

x+y
= 1 +

2
√
xy

x+y
≤ 1 +

2
√
xy

2
√
xy

= 2 , thus f(x, y) ≤
√
2 , 

which means the maximum value of 
√
x+

√
y√

x+y  is 
√
2 .

3.31 ��  Given x > 0 , show x+ 1
x
+ 1

x+ 1
x

≥ 5
2.

Solution: Let f(x) = x+ 1
x  (x > 0), then x+ 1

x
≥ 2 . Let 2 ≤ α < β , then f(α)− f(β) = (α + 1

α
)− (β + 1

β
) = (α− β) + ( 1

α
− 1

β
) = (α−β)(αβ−1)

αβ
< 0 

f(α)− f(β) = (α + 1
α
)− (β + 1

β
) = (α− β) + ( 1

α
− 1

β
) = (α−β)(αβ−1)

αβ
< 0, that is, f(x)  is an increasing function on 

[2,+∞) . Hence, f(x+ 1
x
) ≥ f(2) = 5

2.

3.32 �  Real numbers a, b, c  satisfy a + b+ c = 0, abc = 2 , show that at least one of a, b, c  is not 

less than 2.

Proof: Obviously at least one of a, b, c  is positive. Without loss of generality, let a > 0 , then 
b+ c = −a, bc = 2/a , that is, b, c  are the two roots of the quadratic equation x2 + ax+ 2

a
= 0. 

Consider the discriminant ∆ ≥ 0 ⇒ a2 − 8
a
≥ 0 ⇒ a3 ≥ 8 ⇒ a ≥ 2 .

3.33 �  |x2 − 4| < 1  holds whenever |x− 2| < a  holds, find the range of the positive number a .

Solution: Let A = {x : |x− 2| < a, a > 0}, B = {x : |x2 − 4| < 1},  
then A = {x : 2− a < x < 2 + a, a > 0}, B = {x : −

√
5 < x < −

√
3,
√
3 < x <

√
5} .  

Since A ⊆ B , we have 

2− a > −
√
5

2 + a < −
√
3

or 

2− a >
√
3

2 + a <
√
5
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⇔  

a < 2 +
√
5

a < −2−
√
3

or 

a < 2−
√
3

a <
√
5− 2

which implies 0 < a <
√
5− 2  since a > 0 .

3.34 Solve the inequality 
√
x2 − 3x+ 2 > x− 3 .

Solution: The inequality is equivalent to 

x− 3 < 0

x2 − 3x+ 2 ≥ 0

or 

x− 3 ≥ 0

x2 − 3x+ 2 > (x− 3)2

⇒  

x < 3

x ≤ 1 or x ≥ 2

or 

x ≥ 3

x > 7/3

⇒ x ≤ 1  or 2 ≤ x < 3  or x ≥ 3.

3.35 ��  Given |a| < 1, |b| < 1, |c| < 1, show (1) |1− abc| > |ab− c| ; (2) a + b+ c < abc+ 2 .

Proof: (1) The given conditions imply 1− a2b2 > 0, 1− c2 > 0 . Multiply them together to obtain 

1 + a2b2c2 > a2b2 + c2 ⇒ 1 − 2abc + a2b2c2 > a2b2 − 2abc + c2 ⇒ (1 − abc)2 >
(ab− c)2 ⇒ |1− abc| > |ab− c|

 1 + a2b2c2 > a2b2 + c2 ⇒ 1 − 2abc + a2b2c2 > a2b2 − 2abc + c2 ⇒ (1 − abc)2 >
(ab− c)2 ⇒ |1− abc| > |ab− c|.

(2) (a− 1)(b− 1) > 0 ⇒ a+ b < ab+ 1  (i). (ab− 1)(c− 1) > 0 ⇒ ab+ c < abc + 1  (ii). 
(i)+(ii)⇒ a+ b+ c < abc + 2.
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3.36 The smaller root of the quadratic equation x2 − 5x log8 k + 6 log28 k = 0  is in the interval (1, 2) . 

Find the range of the parameter k.

Solution: The parabola opens upward, and the smaller root is within (1, 2) , then 

f(1) > 0

f(2) < 0

⇒ log8 k > 1/2 or log8 k < 1/3
2/3 < log8 k < 1

⇒ 2/3 < log8 k < 1 ⇒ 4 < k < 8.

3.37 �  The inequality ax2 + bx+ c > 0  has the solution set {x|α < x < β}  where 0 < α < β . 

Find the solution set of the inequality cx2 + bx+ a < 0 .

Solution: The given condition implies that 






α + β = −b/a > 0
αβ = c/a > 0

a < 0

 and let the quadratic equation

cx2 + bx+ a = 0  has two roots x1, x2. Then x1 + x2 = − b
c
= α+β

αβ
= 1

α
+ 1

β ; 
x1x2 =

a
c
= 1

αβ
= 1

α
· 1
β . 0 < α < β ⇒ 1

β
< 1

α , in addition c < 0 , then cx2 + bx+ a < 0  has 
the solution set {x|x < 1

β
or x > 1

α
} .
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3.38 �  Real numbers a, b, x, y  satisfy a2 + b2 = 1, x2 + y2 = 1 , show |ax+ by| ≤ 1 .

Proof 1: (|a| − |x|)2 ≥ 0 ⇒ a2 + x2 ≥ 2|ax|. Similarly we have b2 + y2 ≥ 2|by| .  

Therefore, a2 + b2 + x2 + y2 ≥ 2(|ax|+ |by|) . Since a2 + b2 = 1, x2 + y2 = 1 ,  

then 2 ≥ 2(|ax|+ |by|) ≥ 2|ax+ by| , thus |ax+ by| ≤ 1 .

Proof 2: Since a2 + b2 = 1, x2 + y2 = 1 , let a = sin θ, b = cos θ, x = sinϕ, y = cosϕ , then 
ax+ by = sin θ sinϕ + cos θ cosϕ = cos(θ − ϕ) . Thus |ax+ by| = | cos(θ − ϕ)| ≤ 1 .

3.39 �  If a, b, c  are distinct positive numbers, show 1a +
1
b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab .

Proof 1: 1
a
+1

b
+1

c
−( 1√

bc
+ 1√

ca
+ 1√

ab
) = bc+ca+ab−(a

√
bc+b

√
ca+c

√
ab)

abc
= 2(bc+ca+ab)−2(a

√
bc+b

√
ca+c

√
ab)

2abc
=

(
√
ab−

√
bc)2+(

√
bc−

√
ca)2+(

√
ca−

√
ab)2

abc
> 0

 1
a
+1

b
+1

c
−( 1√

bc
+ 1√

ca
+ 1√

ab
) = bc+ca+ab−(a

√
bc+b

√
ca+c

√
ab)

abc
= 2(bc+ca+ab)−2(a

√
bc+b

√
ca+c

√
ab)

2abc
=

(
√
ab−

√
bc)2+(

√
bc−

√
ca)2+(

√
ca−

√
ab)2

abc
> 0.

Proof 2:  1
a
+ 1

b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab
⇔ bc+ca+ab

abc
> a

√
bc+b

√
ca+c

√
ab

abc
⇔ bc + ca + ab >

a
√
bc+ b

√
ca+ c

√
ab ⇔ 2(bc+ ca+ ab) > 2(a

√
bc+ b

√
ca+ c

√
ab) ⇔ (

√
ab−

√
bc)2 +

(
√
bc−

√
ca)2 + (

√
ca−

√
ab)2 ≥ 0

 
1
a
+ 1

b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab
⇔ bc+ca+ab

abc
> a

√
bc+b

√
ca+c

√
ab

abc
⇔ bc + ca + ab >

a
√
bc+ b

√
ca+ c

√
ab ⇔ 2(bc+ ca+ ab) > 2(a

√
bc+ b

√
ca+ c

√
ab) ⇔ (

√
ab−

√
bc)2 +

(
√
bc−

√
ca)2 + (

√
ca−

√
ab)2 ≥ 0which is obviously valid.

Proof 3: Since a, b, c  are distinct positive numbers, then (
√
ab−

√
bc)2 > 0, (

√
bc−

√
ca)2 > 0, (

√
ca−

√
ab)2 > 0 

(
√
ab−

√
bc)2 > 0, (

√
bc−

√
ca)2 > 0, (

√
ca−

√
ab)2 > 0 . Add them up to obtain 2(ab+bc+ca)−2(a

√
bc+b

√
ca+c

√
ab) > 0 ⇒ ab+bc+ca > a

√
bc+b

√
ca+c

√
ab ⇒

1
a
+ 1

b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab

 
2(ab+bc+ca)−2(a

√
bc+b

√
ca+c

√
ab) > 0 ⇒ ab+bc+ca > a

√
bc+b

√
ca+c

√
ab ⇒

1
a
+ 1

b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab

 
2(ab+bc+ca)−2(a

√
bc+b

√
ca+c

√
ab) > 0 ⇒ ab+bc+ca > a

√
bc+b

√
ca+c

√
ab ⇒

1
a
+ 1

b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab .

3.40 �  Real numbers x, y, z  satisfy the inequalities |x| ≥ |y + z|, |y| ≥ |z + x|, |z| ≥ |x+ y| . 

Show x+ y + z = 0 .

Proof: If one of x, y, z  is zero, without loss of generality, assume x = 0 , then |y + z| = 0 , thus 
y + z = 0 , which implies x+ y + z = 0 . If x, y, z  are all nonzero, then there are four possibilities:

1) If x, y, z  are all positive, then y + z ≤ x, z + x ≤ y, x+ y ≤ z , impossible.

2) If x, y, z  have two positive one negative, without loss of generality, assume 
x > 0, y > 0, z < 0 . |y + z| ≤ x ⇒ −x ≤ y + z ≤ x ⇒ x+ y + z ≥ 0 . On the other 

hand |x+ y| ≤ |z| ⇒ x+ y ≤ −z ⇒ x+ y + z ≤ 0. As a conclusion, x+ y + z = 0 .

3) If x, y, z  have one positive two negative, without loss of generality, assume 

x > 0, y < 0, z < 0 . |y + z| ≤ x ⇒ y + z ≥ −x ⇒ x+ y + z ≥ 0 . On the other 

hand, |x+ y| ≤ |z| ⇒ x+ y ≤ −z ⇒ x+ y + z ≤ 0. As a conclusion, x+ y + z = 0 .

4) If x, y, z  are all negative, then x ≤ y + z ≤ −x, y ≤ z + x ≤ −y, z ≤ x+ y ≤ −z , 
then x+ y + z ≤ 2(x+ y + z) , thus x+ y + z ≥ 0, a contradiction to the assumed 
negativity condition.

1
a
+ 1

b
+ 1

c
> 1√

bc
+ 1√

ca
+ 1√

ab
⇔ bc+ca+ab

abc
> a

√
bc+b

√
ca+c

√
ab

abc
⇔ bc + ca + ab >

a
√
bc+ b

√
ca+ c

√
ab ⇔ 2(bc+ ca+ ab) > 2(a

√
bc+ b

√
ca+ c

√
ab) ⇔ (

√
ab−

√
bc)2 +

(
√
bc−

√
ca)2 + (

√
ca−

√
ab)2 ≥ 0
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3.41 �  If x > y > 0 , show 
√

x2 − y2 +
√

2xy − y2 > x .

Proof 1: x > y > 0 ⇒ xy > y2, 2xy − y2 > y2 ⇒ x2 − y2 > x2 − 2xy + y2 = (x − y)2 ⇒√
x2 − y2 > x− y

x > y > 0 ⇒ xy > y2, 2xy − y2 > y2 ⇒ x2 − y2 > x2 − 2xy + y2 = (x − y)2 ⇒√
x2 − y2 > x− y, and 

√
2xy − y2 > y , thus 

√
x2 − y2 +

√
2xy − y2 > x− y + y = x .

Proof 2: x > y > 0 ⇒ y > −y ⇒ x+ y > x− y ⇒ x2 − y2 > (x− y)2 ⇒
√

x2 − y2 > x− y 
(i). 2xy > 2y2 ⇒ 2xy − y2 > y2 ⇒

√
2xy − y2 > y  (ii). 

(i)+(ii)⇒
√
x2 − y2 +

√
2xy − y2 > x .

Proof 3: 
√

x2 − y2+
√
2xy − y2 > x ⇔ x2− y2+2

√
(x2 − y2)(2xy − y2)+2xy− y2 > x2 ⇔√

(x2 − y2)(2xy − y2) > y2 − xy

√
x2 − y2+

√
2xy − y2 > x ⇔ x2− y2+2

√
(x2 − y2)(2xy − y2)+2xy− y2 > x2 ⇔√

(x2 − y2)(2xy − y2) > y2 − xy . The left hand side is greater than zero, while he right hand side 

y2 − xy = y(y − x) < 0 , thus 
√

(x2 − y2)(2xy − y2) > y2 − xy  always holds.

3.42 �  Given x > 0, y > 0, 1
x
+ 9

y
= 1, show x+ y ≥ 12 .

Proof: Since x > 0, y > 0 , we have 1x + 9
y
≥ 2

√
1
x
· 9
y
= 6√

xy . Since 1x + 9
y
= 1 , we have 

6√
xy

≤ 1, 

which is equivalent to 
√
xy ≥ 6. x+ y ≥ 2

√
xy ≥ 12.

3.43 �  a, b, c  are real numbers and a + b+ c = 1 , show a2 + b2 + c2 ≥ 1
3.

Proof 1: a + b+ c = 1 ⇒ c = 1− a− b , then a2+b2+c2− 1
3
= a2+b2+(1−a−b)2− 1

3
= a2+b2+1+a2+b2−2a−2b+2ab− 1

3
= 2(a2+

b2+ab−a−b+ 1
3
) = 2[a2+(b−1)a+( b−1

2
)2−( b−1

2
)2+b2−b+ 1

3
] = 2[(a+ b−1

2
)2+ (3b−1)2

12
] ≥ 0

 
a2+b2+c2− 1

3
= a2+b2+(1−a−b)2− 1

3
= a2+b2+1+a2+b2−2a−2b+2ab− 1

3
= 2(a2+

b2+ab−a−b+ 1
3
) = 2[a2+(b−1)a+( b−1

2
)2−( b−1

2
)2+b2−b+ 1

3
] = 2[(a+ b−1

2
)2+ (3b−1)2

12
] ≥ 0

a2+b2+c2− 1
3
= a2+b2+(1−a−b)2− 1

3
= a2+b2+1+a2+b2−2a−2b+2ab− 1

3
= 2(a2+

b2+ab−a−b+ 1
3
) = 2[a2+(b−1)a+( b−1

2
)2−( b−1

2
)2+b2−b+ 1

3
] = 2[(a+ b−1

2
)2+ (3b−1)2

12
] ≥ 0 a2+b2+c2− 1

3
= a2+b2+(1−a−b)2− 1

3
= a2+b2+1+a2+b2−2a−2b+2ab− 1

3
= 2(a2+

b2+ab−a−b+ 1
3
) = 2[a2+(b−1)a+( b−1

2
)2−( b−1

2
)2+b2−b+ 1

3
] = 2[(a+ b−1

2
)2+ (3b−1)2

12
] ≥ 0.

Proof 2: a + b+ c = 1 ⇒ (a + b+ c)2 = 1 ⇒ a2 + b2 + c2 = 1− 2(ab+ bc + ca)  (i). 
a2 + b2 ≥ 2ab, b2 + c2 ≥ 2bc, c2 + a2 ≥ 2ca , add them up to obtain 2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca) 

2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca)(ii).
(i)+(ii)⇒ 3(a2 + b2 + c2) ≥ 1 ⇒ a2 + b2 + c2 ≥ 1

3.

3.44 �  The function f(x)  is defined on [0, 1], and f(0) = f(1) . For any distinct x1, x2 ∈ [0, 1] , 

we have |f(x2)− f(x1)| < |x2 − x1| . Show |f(x2)− f(x1)| < 1
2.

Proof: Let 0 ≤ x1 < x2 ≤ 1 . We consider two cases:

1) If x2 − x1 ≤ 1
2 , then |f(x2)− f(x1)| < |x2 − x1| ≤ 1

2.
2) If x2 − x1 >

1
2, then from f(0) = f(1)  we obtain |f(x2)− f(x1)| = |f(x2)− f(1) + f(0)− f(x1)| ≤ |f(x2)− f(1)|+ |f(0)− f(x1)|

|f(x2)− f(x1)| = |f(x2)− f(1) + f(0)− f(x1)| ≤ |f(x2)− f(1)|+ |f(0)− f(x1)|. Hence, (1− x2) + (x1 − 0) = 1− (x2 − x1) <
1
2 

(1− x2) + (x1 − 0) = 1− (x2 − x1) <
1
2 .
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3.45 �  The equation |x| = ax+ 1  has one negative root but no positive root, find the range of the 

parameter a .

Solution 1: Let x  be the negative root of the equation |x| = ax+ 1 , then −x = ax+ 1 ⇒ x = −1
a+1

< 0 , 

thus a + 1 > 0 . Equivalently, when a > −1 , the equation has a negative root.

Suppose the equation has a positive root x, then x = ax+ 1 ⇒ x = 1
1−a

> 0 , thus a < 1 .

As a conclusion, the condition that the equation has one negative root but no positive root is equivalent 
to a > −1  holds but a < 1  fails, that is, a ≥ 1 .

Solution 2: Another approach is to plot the functions y = |x|  and y = ax+ 1  on the Cartesian plane. 
This will directly give us the same conclusion.

3.46 Solve the inequality 3x
2−4x−23
x2−9

> 2 .

Solution: 3x2−4x−23
x2−9

> 2 ⇔ x2−4x−5
x2−9

> 0 ⇔ (x+1)(x−5)
(x+3)(x−3)

> 0 . This inequality is equivalent to 

(x+ 3)(x+ 1)(x− 3)(x− 5) > 0  whose solution set is (−∞,−3) ∪ (−1, 3) ∪ (5,+∞) .

3.47 �  Consider the inequality x+ 2 > m(x2 − 1) , (1) if the inequality holds for any real number 
x , find the range of m ; (2) if for any m ∈ [−2, 2]  the inequality holds, find the range of x .

Solution: (1) x+ 2 > m(x2 − 1) ⇔ m(x2 − 1)− (x+ 2) < 0 ⇔ mx2 − x−m− 2 < 0 . This 

inequality holds for any real number x , then 
{

m < 0
∆ = 1 + 4m(m+ 2) < 0

⇔
{

m < 0
4m2 + 8m+ 1 < 0

⇔
{

m < 0

−1 −
√
3
2

< m < −1 +
√
3
2

⇔

−1−
√
3
2

< m < −1 +
√
3
2

{
m < 0
∆ = 1 + 4m(m+ 2) < 0

⇔
{

m < 0
4m2 + 8m+ 1 < 0

⇔
{

m < 0

−1 −
√
3
2

< m < −1 +
√
3
2

⇔

−1−
√
3
2

< m < −1 +
√
3
2

 

{
m < 0
∆ = 1 + 4m(m+ 2) < 0

⇔
{

m < 0
4m2 + 8m+ 1 < 0

⇔
{

m < 0

−1 −
√
3
2

< m < −1 +
√
3
2

⇔

−1−
√
3
2

< m < −1 +
√
3
2

.

(2) For any m ∈ [−2, 2]  the inequality holds. Let f(m) = (x2 − 1)m− (x+ 2)  which is a linear 

function of m , and f(m) < 0  should hold for any m ∈ [−2, 2] , equivalently we should have {
−2(x2 − 1)− (x+ 2) < 0
2(x2 − 1)− (x+ 2) < 0

⇔
{

2x2 + x > 0
2x2 − x− 4 < 0

⇔
{

x > 0 or x < −1
2

1−
√
33

4
< x < 1+

√
33

4

⇔

0 < x < 1+
√
33

4

{
−2(x2 − 1)− (x+ 2) < 0
2(x2 − 1)− (x+ 2) < 0

⇔
{

2x2 + x > 0
2x2 − x− 4 < 0

⇔
{

x > 0 or x < −1
2

1−
√
33

4
< x < 1+

√
33

4

⇔

0 < x < 1+
√
33

4

{
−2(x2 − 1)− (x+ 2) < 0
2(x2 − 1)− (x+ 2) < 0

⇔
{

2x2 + x > 0
2x2 − x− 4 < 0

⇔
{

x > 0 or x < −1
2

1−
√
33

4
< x < 1+

√
33

4

⇔

0 < x < 1+
√
33

4  or 1−
√
33

4
< x < −1

2
.

3.48 �  x, y, z  are positive numbers, and xyz(x+ y + z) = 1 . Find the minimum value of 
(x+ y)(x+ z) .

Solution: The given conditions imply that (x+ y)(x+ z) = yz + x(x+ y + z) ≥ 2
√

yz · x(x+ y + z) = 2 
(x+ y)(x+ z) = yz + x(x+ y + z) ≥ 2

√
yz · x(x+ y + z) = 2. When x =

√
2− 1, y = z = 1 , the equal sign is reached in the above 

inequality, thus the minimum value of (x+ y)(x+ z)  is 2.
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3.49 ��  Real numbers a, b, c  satisfy a2 + b2 + c2 = 1 . Show that one of |a− b|, |b− c|, |c− a|  

is not greater than 
√
2
2

.

Proof: Without loss of generality, we assume a ≤ b ≤ c , and let m  be the minimum one of 
|a− b|, |b− c|, |c− a| . Then b− a ≥ m, c− b ≥ m, c− a = (c− b) + (b− a) ≥ 2m . On one 
hand, (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2)− 2(ab+ bc+ ca) = 3(a2 + b2 + c2)−
(a+ b+ c)2 ≤ 3

 (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2)− 2(ab+ bc+ ca) = 3(a2 + b2 + c2)−
(a+ b+ c)2 ≤ 3 . On the other hand, (a− b)2 + (b− c)2 + (c− a)2 ≥ m2 +m2 + (2m)2 = 6m2

 
(a− b)2 + (b− c)2 + (c− a)2 ≥ m2 +m2 + (2m)2 = 6m2 . Hence, 6m2 ≤ 3 ⇒ m ≤

√
2
2

.

3.50 �  Let α, β  be real numbers, show log2(2α + 2β) ≥ α+1
2

+ β+1
2 .

Proof: To show log2(2α + 2β) ≥ α+1
2

+ β+1
2 , we only need to show 2α + 2β ≥ 2

α+β+2
2 , we only need 

to show 22α + 2α+β+1 + 22β ≥ 2α+β+2 , we only need to show 2α−β−2 + 2−1 + 2β−α−2 ≥ 1, we 
only need to show 2α−β + 2 + 1

2α−β ≥ 4 , we only need to show (2
α−β
2 − 1

2
α−β
2

)2 ≥ 0  which is 

obviously valid.
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3.51 ��  Given the function f(x) = ax2 − c  that satisfies −4 ≤ f(1) ≤ −1,−1 ≤ f(2) ≤ 5 . 

Find the range of f(3) .

Solution: From f(x) = ax2 − c , we know f(1) = a− c, f(2) = 4a− c , thus a = 1
3
[f(2)− f(1)], c = 1

3
[f(2)− 4f(1)]

a = 1
3
[f(2)− f(1)], c = 1

3
[f(2)− 4f(1)] . Then f(3) = 9a− c = 3[f(2)− f(1)]− 1

3
[f(2)− 4f(1)] = 8

3
f(2)− 5

3
f(1) 

f(3) = 9a− c = 3[f(2)− f(1)]− 1
3
[f(2)− 4f(1)] = 8

3
f(2)− 5

3
f(1) . Hence, 83 × (−1) + (−5

3
)× (−1) ≤ f(3) ≤ 8

3
× 5 + (−5

3
)× (−4)  , that is, −1 ≤ f(3) ≤ 20 

−1 ≤ f(3) ≤ 20 .

3.52 �  Given real numbers a > 0, b > 0, c > 0 and a + b+ c = 1 , show 1a +
1
b
+ 1

c
≥ 9 .

Proof 1: The conditions together with Cauchy’s Inequality imply a+b+c
3

≥ 3
√
abc ⇒ 1

3√abc
≥ 3

a+b+c
= 3 . 

Apply Cauchy’s Inequality again to obtain 1
a
+ 1

b
+ 1

c

3
≥ 3

√
1
a
· 1
b
· 1
c
= 1

3√
abc

≥ 3 ⇒ 1
a
+ 1

b
+ 1

c
≥ 9 .

Proof 2: 1
a
+ 1

b
+ 1

c
− 9 = bc+ac+ab

abc
− 9 = (a+b+c)(bc+ac+ab)−9abc

abc
= a2c+a2b+b2c+ab2+ac2+bc2−6abc

abc
=

a(b−c)2+b(c−a)2+c(a−b)2

abc
≥ 0

 1
a
+ 1

b
+ 1

c
− 9 = bc+ac+ab

abc
− 9 = (a+b+c)(bc+ac+ab)−9abc

abc
= a2c+a2b+b2c+ab2+ac2+bc2−6abc

abc
=

a(b−c)2+b(c−a)2+c(a−b)2

abc
≥ 0.

3.53 ��  Let a > 0, b > 0 and a + b = 1 , show (a + 1
a
)2 + (b+ 1

b
)2 ≥ 25

2 .

Proof 1: 1 = a + b ≥ 2
√
ab ⇒

√
ab ≤ 1

2
⇒ ab ≤ 1

4
⇒ 1

ab
≥ 4.  

And (a+
1
a
)2+(b+ 1

b
)2

2
≥ [

a+ 1
a
+b+ 1

b

2
]2 = 1

4
(1 + 1

a
+ 1

b
)2 = 1

4
(1 + 1

ab
)2 ≥ 25

4 
(a+ 1

a
)2+(b+ 1

b
)2

2
≥ [

a+ 1
a
+b+ 1

b

2
]2 = 1

4
(1 + 1

a
+ 1

b
)2 = 1

4
(1 + 1

ab
)2 ≥ 25

4
,  

thus (a + 1
a
)2 + (b+ 1

b
)2 ≥ 25

2 .

Proof 2: Let a = sin2 α, b = cos2 α , then 

(a+ 1
a
)2+(b+ 1

b
)2 = (sin2 α+csc2 α)2+(cos2 α+sec2 α)2 ≥ 1

2
(sin2 α+csc2 α+cos2 α+

sec2 α)2 = 1
2
(1+ 1

sin2 α
+ 1

cos2 α
)2 = 1

2
(1+ 1

sin2 α cos2 α
)2 = 1

2
(1+ 4

sin2 2α
) = 1

2
(1+4 csc2 2α)2 ≥

1
2
(1 + 4)2 = 25

2

(a+ 1
a
)2+(b+ 1

b
)2 = (sin2 α+csc2 α)2+(cos2 α+sec2 α)2 ≥ 1

2
(sin2 α+csc2 α+cos2 α+

sec2 α)2 = 1
2
(1+ 1

sin2 α
+ 1

cos2 α
)2 = 1

2
(1+ 1

sin2 α cos2 α
)2 = 1

2
(1+ 4

sin2 2α
) = 1

2
(1+4 csc2 2α)2 ≥

1
2
(1 + 4)2 = 25

2 (a+ 1
a
)2+(b+ 1

b
)2 = (sin2 α+csc2 α)2+(cos2 α+sec2 α)2 ≥ 1

2
(sin2 α+csc2 α+cos2 α+

sec2 α)2 = 1
2
(1+ 1

sin2 α
+ 1

cos2 α
)2 = 1

2
(1+ 1

sin2 α cos2 α
)2 = 1

2
(1+ 4

sin2 2α
) = 1

2
(1+4 csc2 2α)2 ≥

1
2
(1 + 4)2 = 25

2

(a+ 1
a
)2+(b+ 1

b
)2 = (sin2 α+csc2 α)2+(cos2 α+sec2 α)2 ≥ 1

2
(sin2 α+csc2 α+cos2 α+

sec2 α)2 = 1
2
(1+ 1

sin2 α
+ 1

cos2 α
)2 = 1

2
(1+ 1

sin2 α cos2 α
)2 = 1

2
(1+ 4

sin2 2α
) = 1

2
(1+4 csc2 2α)2 ≥

1
2
(1 + 4)2 = 25

2

 
(a+ 1

a
)2+(b+ 1

b
)2 = (sin2 α+csc2 α)2+(cos2 α+sec2 α)2 ≥ 1

2
(sin2 α+csc2 α+cos2 α+

sec2 α)2 = 1
2
(1+ 1

sin2 α
+ 1

cos2 α
)2 = 1

2
(1+ 1

sin2 α cos2 α
)2 = 1

2
(1+ 4

sin2 2α
) = 1

2
(1+4 csc2 2α)2 ≥

1
2
(1 + 4)2 = 25

2

 
(a+ 1

a
)2+(b+ 1

b
)2 = (sin2 α+csc2 α)2+(cos2 α+sec2 α)2 ≥ 1

2
(sin2 α+csc2 α+cos2 α+

sec2 α)2 = 1
2
(1+ 1

sin2 α
+ 1

cos2 α
)2 = 1

2
(1+ 1

sin2 α cos2 α
)2 = 1

2
(1+ 4

sin2 2α
) = 1

2
(1+4 csc2 2α)2 ≥

1
2
(1 + 4)2 = 25

2
.

3.54 �  Let a, b, c, d,m, n  be positive real numbers, P =
√
ab+

√
cd,Q =

√
ma+ nc

√
b
m
+ d

n
. 

Compare P  and Q .

Solution: P 2 = ab+ cd+ 2
√
abcd,Q2 = (ma+ nc)( b

m
+ d

n
) = ab+ cd+ nbc

m
+ mad

n . Since 
nbc
m

+ mad
n

≥ 2
√

nbc
m

· mad
n

= 2
√
abcd , then P 2 ≤ Q2. Because P,Q  are positive, we have P ≤ Q .

3.55 ��  Show the inequality (a + b)8 ≤ 128(a8 + b8) .

Proof: (a− b)2 ≥ 0 ⇒ a2 + b2 ≥ 2ab . Similarly we have a4 + b4 ≥ 2a2b2, a8 + b8 ≥ 2a4b4. Add 
a2 + b2, a4 + b4, a8 + b8  to the above three inequalities respectively to obtain 2(a2 + b2) ≥ (a+ b)2, 2(a4 + b4) ≥ (a2 + b2)2, 2(a8 + b8) ≥ (a4 + b4)2 

2(a2 + b2) ≥ (a+ b)2, 2(a4 + b4) ≥ (a2 + b2)2, 2(a8 + b8) ≥ (a4 + b4)2 . The last inequality leads to 128(a8 + b8) ≥ 64(a4 + b4)2 = 16[2(a4 + b4)]2 ≥ 16[(a2 + b2)2]2 = {[2(a2 + b2)]2}2 ≥
{[(a+ b)2]2}2 = (a+ b)8

 
128(a8 + b8) ≥ 64(a4 + b4)2 = 16[2(a4 + b4)]2 ≥ 16[(a2 + b2)2]2 = {[2(a2 + b2)]2}2 ≥

{[(a+ b)2]2}2 = (a+ b)8
 

128(a8 + b8) ≥ 64(a4 + b4)2 = 16[2(a4 + b4)]2 ≥ 16[(a2 + b2)2]2 = {[2(a2 + b2)]2}2 ≥
{[(a+ b)2]2}2 = (a+ b)8.
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3.56 ��  Given the function f(x2 − 3) = loga
x2

6−x2  (a > 0, a �= 1 ) that satisfies f(x) ≥ loga 2x . 

Find the domain of the function f(x) .

Solution: Let x2 − 3 = t , then x2 = 3 + t . Substitute it into the function: f(t) = loga
3+t
3−t , thus 

f(x) = loga
3+x
3−x . Then the inequality f(x) ≥ loga 2x  is equivalent to loga

3+x
3−x

≥ loga 2x .

If a > 1 , then 






3+x
3−x

> 0
3+x
3−x

≥ 2x

x > 0

⇒ x ∈ (0, 1) ∪ [−3
2
, 3).

If 0 < a < 1, then 






3+x
3−x

< 0
3+x
3−x

≤ 2x

x > 0

⇒ x ∈ [1, 3
2
) .

3.57 ��  Given a < −1 , and x  satisfies x2 + ax ≤ −x , and x2 + ax  has the minimum value  
−1

2 , find the value of a .

Solution: a < −1, x2 + ax ≤ −x ⇒ x[x+ (a + 1)] ≤ 0 ⇒ 0 ≤ x ≤ −(a + 1) . Let f(x) = x2 + ax = (x+ a
2
)2 − a2

4 
f(x) = x2 + ax = (x+ a

2
)2 − a2

4 .

If −(a + 1) < −a
2
⇔ −2 < a < −1 , then f(x)  reaches its minimum value f(−a− 1) = a + 1  

at x = −(a + 1) , thus a + 1 = −1
2
⇒ a = −3

2 .

If −(a + 1) ≥ −a
2
⇔ a ≤ −2 , then f(x)  reaches it minimum value −a2

4  at x = −a
2 , thus 

−a2

4
= −1

2
⇒ a = ±

√
2  both of which violate a ≤ −2 .

As a conclusion, a = −3
2 .

3.58 ��  a1, a2, · · · , an  are positive numbers and satisfy a1a2 · · ·an = 1 , show 
(2 + a1)(2 + a2) · · · (2 + an) ≥ 3n .

Proof: Use an arithmetic mean-geometric mean inequality a + b+ c ≥ 3 3
√
abc  (a, b, c  are positive 

numbers) to obtain 2 + ai = 1 + 1 + ai ≥ 3 3
√
ai  (i = 1, 2, · · · , n ). Then (2 + a1)(2 + a2) · · · (2 + an) ≥ 3n · 3

√
a1a2 · · ·an = 3n 

(2 + a1)(2 + a2) · · · (2 + an) ≥ 3n · 3
√
a1a2 · · ·an = 3n .

3.59 ���  If a, b, c  are side lengths of a triangle, show a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0  

and determine when the equal sign is reached.
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Proof: Let a = y + z, b = z + x, c = x+ y  where x, y, z  are positive numbers. Substitute them into 
the inequality: (y + z)2(x + z)(y − x) + (z + x)2(x + y)(z − y) + (x + y)2(y + z)(x − z) ≥ 0 ⇔

x3z + y3x+ z3y − xyz(x+ y + z) ≥ 0
 

(y + z)2(x + z)(y − x) + (z + x)2(x + y)(z − y) + (x + y)2(y + z)(x − z) ≥ 0 ⇔
x3z + y3x+ z3y − xyz(x+ y + z) ≥ 0

 

(y + z)2(x + z)(y − x) + (z + x)2(x + y)(z − y) + (x + y)2(y + z)(x − z) ≥ 0 ⇔
x3z + y3x+ z3y − xyz(x+ y + z) ≥ 0 . Divide both sides by xyz  to obtain 

x2

y
+ y2

z
+ z2

x
≥ x+ y + z  which can be proven by the inequalities x

2

y
+ y ≥ 2x, y2

z
+ z ≥ 2y, z

2

x
+ x ≥ 2z 

x2

y
+ y ≥ 2x, y

2

z
+ z ≥ 2y, z

2

x
+ x ≥ 2z .

These inequalities have the equal sign if and only if x = y = z , that is, the original inequality has the 
equal sign if and only if a = b = c .

3.60 ��  a, b  are real numbers, show 
|a+b|

1+|a+b| ≤
|a|

1+|a| +
|b|

1+|b| .

Proof: Since |a+ b| ≤ |a|+ |b| , we have |a+b|
1+|a+b| =

1+|a+b|−1
1+|a+b| = 1 − 1

1+|a+b| ≤ 1 − 1
1+|a|+|b| =

|a|+|b|
1+|a|+|b| =

|a|
1+|a|+|b| +

|b|
1+|a|+|b| ≤

|a|
1+|a| +

|b|
1+|b|

 
|a+b|

1+|a+b| =
1+|a+b|−1
1+|a+b| = 1 − 1

1+|a+b| ≤ 1 − 1
1+|a|+|b| =

|a|+|b|
1+|a|+|b| =

|a|
1+|a|+|b| +

|b|
1+|a|+|b| ≤

|a|
1+|a| +

|b|
1+|b|

|a+b|
1+|a+b| =

1+|a+b|−1
1+|a+b| = 1 − 1

1+|a+b| ≤ 1 − 1
1+|a|+|b| =

|a|+|b|
1+|a|+|b| =

|a|
1+|a|+|b| +

|b|
1+|a|+|b| ≤

|a|
1+|a| +

|b|
1+|b| .

3.61 ��  Given 0 < a < 1, x2 + y = 0 , show loga(ax + ay) ≤ loga 2 +
1
8 .

Proof: ax + ay ≥ 2
√
axay = 2a

x+y
2 . Since 0 < a < 1, we have loga(ax + ay) ≤ loga(2a

x+y
2 ) = loga 2 +

x+y
2

= loga 2 +
x−x2

2
= loga 2 +

1
2
x(1 − x) ≤

loga
1
2
(x+1−x

2
)2 = loga 2 +

1
8

 
loga(a

x + ay) ≤ loga(2a
x+y
2 ) = loga 2 +

x+y
2

= loga 2 +
x−x2

2
= loga 2 +

1
2
x(1 − x) ≤

loga
1
2
(x+1−x

2
)2 = loga 2 +

1
8

 

loga(a
x + ay) ≤ loga(2a

x+y
2 ) = loga 2 +

x+y
2

= loga 2 +
x−x2

2
= loga 2 +

1
2
x(1 − x) ≤

loga
1
2
(x+1−x

2
)2 = loga 2 +

1
8

.
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3.62 ���  The system of inequalities 
√
x2 − 2x− 8 < 8− x

x2 + ax+ b < 0

has the solution 4 ≤ x < 5 , find the conditions a  and b  should satisfy.

Solution: √
x2 − 2x− 8 < 8− x ⇒






x2 − 2x− 8 ≥ 0
8− x > 0
x2 − 2x− 8 < (8− x)2

⇒






x ≤ −2 or x ≥ 4
x < 8
x < 36

7

 ⇒ x ≤ −2  

or 4 ≤ x ≤ 36
7 .

The solution of the inequality x2 + ax+ b < 0  should have the form α < x < β . Since the solution 
of the inequality system is 4 ≤ x < 5 , then β = 5,−2 ≤ α < 4. Since β = 5 , then 25 + 5a+ b = 0  
Since α + β = −a , then 3 ≤ −a < 9 , that is, −9 < a ≤ −3 . As a conclusion, a, b  should satisfy 
{

−9 < a ≤ −3
5a+ b+ 25 = 0 .

3.63 ���  If x, y, z ≥ 1 , show  (x2 − 2x+ 2)(y2 − 2y + 2)(z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2 
(x2 − 2x+ 2)(y2 − 2y + 2)(z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2 .

Proof: Since x ≥ 1, y ≥ 1 , we have (x2−2x+2)(y2−2y+2)− [(xy)2−2xy+2] = (−2y+2)x2+(6y−2y2−4)x+(2y2−
4y+2) = −2(y−1)x2−2(y−1)(y−2)+2(y−1)2 = −2(y−1)[x2+(y−2)x+1−y] =
−2(y − 1)(x− 1)(x+ y − 1) ≤ 0

 
(x2−2x+2)(y2−2y+2)− [(xy)2−2xy+2] = (−2y+2)x2+(6y−2y2−4)x+(2y2−

4y+2) = −2(y−1)x2−2(y−1)(y−2)+2(y−1)2 = −2(y−1)[x2+(y−2)x+1−y] =
−2(y − 1)(x− 1)(x+ y − 1) ≤ 0

 

(x2−2x+2)(y2−2y+2)− [(xy)2−2xy+2] = (−2y+2)x2+(6y−2y2−4)x+(2y2−
4y+2) = −2(y−1)x2−2(y−1)(y−2)+2(y−1)2 = −2(y−1)[x2+(y−2)x+1−y] =
−2(y − 1)(x− 1)(x+ y − 1) ≤ 0

 (x2−2x+2)(y2−2y+2)− [(xy)2−2xy+2] = (−2y+2)x2+(6y−2y2−4)x+(2y2−
4y+2) = −2(y−1)x2−2(y−1)(y−2)+2(y−1)2 = −2(y−1)[x2+(y−2)x+1−y] =
−2(y − 1)(x− 1)(x+ y − 1) ≤ 0

 

(x2−2x+2)(y2−2y+2)− [(xy)2−2xy+2] = (−2y+2)x2+(6y−2y2−4)x+(2y2−
4y+2) = −2(y−1)x2−2(y−1)(y−2)+2(y−1)2 = −2(y−1)[x2+(y−2)x+1−y] =
−2(y − 1)(x− 1)(x+ y − 1) ≤ 0 , then (x2 − 2x+ 2)(y2 − 2y + 2) ≤ (xy)2 − 2xy + 2 

(x2 − 2x+ 2)(y2 − 2y + 2) ≤ (xy)2 − 2xy + 2 (i). Similarly, since xy ≥ 1, z ≥ 1 , we have [(xy)2 − 2xy + 2](z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2 
[(xy)2 − 2xy + 2](z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2(ii). From (i) and (ii), we can obtain (x2 − 2x+ 2)(y2 − 2y + 2)(z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2 

(x2 − 2x+ 2)(y2 − 2y + 2)(z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2.

3.64 ��  Given natural numbers a < b < c , m  is an integer, and 1a +
1
b
+ 1

c
= m , find a, b, c .

Solution: Since a, b, c  are natural numbers and a < b < c , we have a ≥ 1, b ≥ 2, c ≥ 3, 0 < m ≤ 1
1
+ 1

2
+ 1

3
= 15

6

a ≥ 1, b ≥ 2, c ≥ 3, 0 < m ≤ 1
1
+ 1

2
+ 1

3
= 15

6 . Since m  is an integer, we have m = 1  and a �= 1 . If a ≥ 3 , then 
1
a
+ 1

b
+ 1

c
≤ 1

3
+ 1

4
+ 1

5
= 47

60
< 1 . Hence, 1a +

1
b
+ 1

c
�= m = 1. Therefore, a = 2 . Then 1b +

1
c
= 1− 1

2
= 1

2 
1
b
+ 1

c
= 1− 1

2
= 1

2 . If b ≥ 4 , then 1b +
1
c
≤ 1

4
+ 1

5
= 9

20
< 1

2 , thus b = 3. Then 1c = 1− 1
2
− 1

3
= 1

6 , thus 
c = 6 .

3.65 ���  Given 1 < a < 2, x ≥ 1 , and f(x) = ax+a−x

2
, g(x) = 2x+2−x

2 . (1) Compare f(x)  and 
g(x) . (2) Let n ∈ N, n ≥ 1 , show f(1) + f(2) + · · ·+ f(2n) < 4n − 1

2m .

Solution: (1) f(x)−g(x) = ax+a−x

2
−2x+2−x

2
= 1

2
(a

2x+1
ax

−22x+1
2x

) = 2xa2x+2x−22xax−ax

2x+1ax
= (ax−2x)(2xax−1)

2x+1ax
. 

Since 1 < a < 2, x ≥ 1 , then 2xax > 1, ax < 2x , thus (ax−2x)(2xax−1)
2x+1ax

< 0 ,  

that is, f(x)− g(x) < 0 . Hence, f(x) < g(x).
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(2) Since f(x) < g(x), then f(1)+ f(2)+ · · ·+ f(2n) < g(1)+ g(2)+ · · ·+ g(2n) = 1
2
(2+22+ · · ·+22n)+ 1

2
(1
2
+

1
22

+ · · ·+ 1
22n

) = (1 + 2 + 22 + · · ·+ 22n−1) + 1
2
(1− 1

22n
) < 4n − 1 + 1− 1

22n
= 4n − 1

22n

 
f(1)+ f(2)+ · · ·+ f(2n) < g(1)+ g(2)+ · · ·+ g(2n) = 1

2
(2+22+ · · ·+22n)+ 1

2
(1
2
+

1
22

+ · · ·+ 1
22n

) = (1 + 2 + 22 + · · ·+ 22n−1) + 1
2
(1− 1

22n
) < 4n − 1 + 1− 1

22n
= 4n − 1

22n

 

f(1)+ f(2)+ · · ·+ f(2n) < g(1)+ g(2)+ · · ·+ g(2n) = 1
2
(2+22+ · · ·+22n)+ 1

2
(1
2
+

1
22

+ · · ·+ 1
22n

) = (1 + 2 + 22 + · · ·+ 22n−1) + 1
2
(1− 1

22n
) < 4n − 1 + 1− 1

22n
= 4n − 1

22n f(1)+ f(2)+ · · ·+ f(2n) < g(1)+ g(2)+ · · ·+ g(2n) = 1
2
(2+22+ · · ·+22n)+ 1

2
(1
2
+

1
22

+ · · ·+ 1
22n

) = (1 + 2 + 22 + · · ·+ 22n−1) + 1
2
(1− 1

22n
) < 4n − 1 + 1− 1

22n
= 4n − 1

22n
.

3.66 ��  a, b, c  are real numbers, and a + b+ c < 0 , show 

∣∣∣∣∣∣

a b c
b c a
c a b

∣∣∣∣∣∣
≥ 0 .

Proof: a2 + b2 ≥ 2ab, b2 + c2 ≥ 2bc, c2 + a2 ≥ 2ca , and add them up to obtain 

2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca) 2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca) , thus (ab+ bc + ca)− (a2 + b2 + c2) ≤ 0 . 
∣∣∣∣∣∣

a b c
b c a
c a b

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a + b+ c b c
a + b+ c c a
a + b+ c a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
1 c a
1 a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
0 c− b a− c
0 a− b b− c

∣∣∣∣∣∣
=

(a+ b+ c)[−(b− c)2 − (a− b)(a− c)] = (a+ b+ c)[(ab+ bc+ ca)− (a2 + b2 + c2)] ≥ 0

 
∣∣∣∣∣∣

a b c
b c a
c a b

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a + b+ c b c
a + b+ c c a
a + b+ c a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
1 c a
1 a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
0 c− b a− c
0 a− b b− c

∣∣∣∣∣∣
=

(a+ b+ c)[−(b− c)2 − (a− b)(a− c)] = (a+ b+ c)[(ab+ bc+ ca)− (a2 + b2 + c2)] ≥ 0

 
∣∣∣∣∣∣

a b c
b c a
c a b

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a + b+ c b c
a + b+ c c a
a + b+ c a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
1 c a
1 a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
0 c− b a− c
0 a− b b− c

∣∣∣∣∣∣
=

(a+ b+ c)[−(b− c)2 − (a− b)(a− c)] = (a+ b+ c)[(ab+ bc+ ca)− (a2 + b2 + c2)] ≥ 0

∣∣∣∣∣∣

a b c
b c a
c a b

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a + b+ c b c
a + b+ c c a
a + b+ c a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
1 c a
1 a b

∣∣∣∣∣∣
= (a+b+c)

∣∣∣∣∣∣

1 b c
0 c− b a− c
0 a− b b− c

∣∣∣∣∣∣
=

(a+ b+ c)[−(b− c)2 − (a− b)(a− c)] = (a+ b+ c)[(ab+ bc+ ca)− (a2 + b2 + c2)] ≥ 0.

3.67 ���  If the system of inequalities 

{
x2 − x− 2 > 0
2x2 + (5 + 2k)x+ 5k < 0 has only one integer solution 

−2 , find the range of k .

Solution: The solution of x2 − x− 2 > 0  is x < −1 or x > 2 . The second inequality is equivalent to 

(2x+ 5)(x+ k) < 0 . When −k < −5
2 , i.e. k > 5

2 , the second inequality has the solution 

−k < x < −5
2 , in which −2  is not included. When −k > −5

2 , i.e. k < 5
2 , the second inequality has 

the solution −5
2
< x < −k , then the solution of the inequality system is 

{
x < −1
−5

2
< x < −k

 or {
x > 2
−5

2
< x < −k . To have only one integer solution −2 , we should have −k ≤ 3  and −k > −2 , 

that is, −3 ≤ k < 2 . When −k = −5
2 , i.e. k = 5

2 , the second inequality has no solution. As a 

conclusion, k ∈ [−3, 2) .

3.68 ��  Let a, b, c  are positive numbers, show aabbcc ≥ (abc)
a+b+c

3 .

Proof: Without loss of generality, let a ≥ b ≥ c > 0 . To show aabbcc ≥ (abc)
a+b+c

3 , we only need to 

show a3ab3bc3c ≥ (abc)a+b+c , we only need to show aa−b

ac−a
bb−a

bc−a
cc−a

cb−c ≥ 1 , we only need to show 
aa−b

ba−b
bb−c

cb−c
ca−c

aa−c ≥ 1 . Since a− b ≥ 0, b− c ≥ 0, a− c ≥ 0 , we have ab ≥ 1, b
c
≥ 1, a

c
≥ 1 , thus the 

last inequality holds.

3.69 ���  If a, b, c, x, y, z  are all real numbers, and a2 + b2 + c2 = 25, x2 + y2 + z2 = 36, ax+ by + cz = 30 
a2 + b2 + c2 = 25, x2 + y2 + z2 = 36, ax+ by + cz = 30 , find the value of a+b+c

x+y+z .
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Solution: Cauchy’s Inequality implies 25× 36 = (a2 + b2 + c2)(x2 + y2 + z2) ≥ (ax+ by + cz)2 = 302 
25× 36 = (a2 + b2 + c2)(x2 + y2 + z2) ≥ (ax+ by + cz)2 = 302 . The equal sign is obtained since 25× 36 = 302 . Thus there exist λ, µ  (not both zero) such that 

λa = µx, λb = µy, λc = µz . Therefore λ2(a2 + b2 + c2) = µ2(x2 + y2 + z2) ⇒ 25λ2 = 36µ2 ⇒ 5λ = ±6µ 
λ2(a2 + b2 + c2) = µ2(x2 + y2 + z2) ⇒ 25λ2 = 36µ2 ⇒ 5λ = ±6µ . However, ax+ by + cz = 30 , thus 5λ = 6µ ⇒ µ

λ
= 5

6
⇒ a+b+c

x+y+z
= µ

λ
= 5

6 .

3.70 ���  Let r, s, t  satisfy 1 ≤ r ≤ s ≤ t ≤ 4 , find the minimum value of (r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2 

(r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2 .

Solution: (r−1)2+( s
t
−1)2+( t

s
−1)2+(4

r
−1)2 ≥ [

(r−1)+( s
t
−1)+( t

s
−1)+( 4

r
−1)

2
]2 ⇒ 4[(r−1)2+( s

t
−

1)2+( t
s
−1)2+(4

r
−1)2] ≥ [(r−1)+( s

t
−1)+( t

s
−1)+(4

r
−1)]2 = [(r+ s

t
+ t

s
+ 4

r
)−4]2

  (r−1)2+( s
t
−1)2+( t

s
−1)2+(4

r
−1)2 ≥ [

(r−1)+( s
t
−1)+( t

s
−1)+( 4

r
−1)

2
]2 ⇒ 4[(r−1)2+( s

t
−

1)2+( t
s
−1)2+(4

r
−1)2] ≥ [(r−1)+( s

t
−1)+( t

s
−1)+(4

r
−1)]2 = [(r+ s

t
+ t

s
+ 4

r
)−4]2. 

Cauchy’s Inequality implies that r + s
t
+ t

s
+ 4

r
≥ 4 4

√
r · s

t
· t
s
· 4
r
= 4 4

√
4 ,  

thus 4[(r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2] ≥ [4 4

√
4 − 4]2 ⇒ (r − 1)2 + ( s

t
− 1)2 +

( t
s
− 1)2 + (4

r
− 1)2 ≥ 4(

√
2− 1)2

4[(r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2] ≥ [4 4

√
4 − 4]2 ⇒ (r − 1)2 + ( s

t
− 1)2 +

( t
s
− 1)2 + (4

r
− 1)2 ≥ 4(

√
2− 1)2

 4[(r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2] ≥ [4 4

√
4 − 4]2 ⇒ (r − 1)2 + ( s

t
− 1)2 +

( t
s
− 1)2 + (4

r
− 1)2 ≥ 4(

√
2− 1)2 

4[(r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2] ≥ [4 4

√
4 − 4]2 ⇒ (r − 1)2 + ( s

t
− 1)2 +

( t
s
− 1)2 + (4

r
− 1)2 ≥ 4(

√
2− 1)2 .  

The equal sign is obtained if and only if r =
√
2, s = 2, t = 2

√
2.  

Hence, the minimum value of (r − 1)2 + ( s
t
− 1)2 + ( t

s
− 1)2 + (4

r
− 1)2  is 4(

√
2− 1)2.
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3.71 ���  Real numbers a1, a2 satisfy a21 + a22 ≤ 1 , show that for any real numbers b1, b2 , 
(a1b1 + a2b2 − 1)2 ≥ (a21 + a22 − 1)(b21 + b22 − 1)  always holds.

Proof: If b21 + b22 − 1 > 0 , since a21 + a22 ≤ 1 , we have (a21 + a22 − 1)(b21 + b22 − 1) ≤ 0 , then 

obviously (a1b1 + a2b2 − 1)2 ≥ (a21 + a22 − 1)(b21 + b22 − 1) . If b21 + b22 − 1 ≤ 0 , Mean Inequality 

implies that a1b1 ≤ a21+b21
2

, a2b2 ≤ a22+b22
2 . Thus a1b1 + a2b2 ≤ 1

2
(a21 + a22 + b21 + b22) ≤ 1 ⇒ 1 − a1b1 − a2b2 ≥ (1−a21−a22)+(1−b21−b22)

2
⇒

(1 − a1b1 − a2b2)
2 ≥ [

(1−a21−a22)+(1−b21−b22)

2
]2 ≥ 1

2
[(1 − a21 − a22)

2 + (1 − b21 − b22)
2] ≥ (a21 +

a22 − 1)(b21 + b22 − 1)

 

a1b1 + a2b2 ≤ 1
2
(a21 + a22 + b21 + b22) ≤ 1 ⇒ 1 − a1b1 − a2b2 ≥ (1−a21−a22)+(1−b21−b22)

2
⇒

(1 − a1b1 − a2b2)
2 ≥ [

(1−a21−a22)+(1−b21−b22)

2
]2 ≥ 1

2
[(1 − a21 − a22)

2 + (1 − b21 − b22)
2] ≥ (a21 +

a22 − 1)(b21 + b22 − 1)

 

a1b1 + a2b2 ≤ 1
2
(a21 + a22 + b21 + b22) ≤ 1 ⇒ 1 − a1b1 − a2b2 ≥ (1−a21−a22)+(1−b21−b22)

2
⇒

(1 − a1b1 − a2b2)
2 ≥ [

(1−a21−a22)+(1−b21−b22)

2
]2 ≥ 1

2
[(1 − a21 − a22)

2 + (1 − b21 − b22)
2] ≥ (a21 +

a22 − 1)(b21 + b22 − 1)
 a1b1 + a2b2 ≤ 1

2
(a21 + a22 + b21 + b22) ≤ 1 ⇒ 1 − a1b1 − a2b2 ≥ (1−a21−a22)+(1−b21−b22)

2
⇒

(1 − a1b1 − a2b2)
2 ≥ [

(1−a21−a22)+(1−b21−b22)

2
]2 ≥ 1

2
[(1 − a21 − a22)

2 + (1 − b21 − b22)
2] ≥ (a21 +

a22 − 1)(b21 + b22 − 1)
 

a1b1 + a2b2 ≤ 1
2
(a21 + a22 + b21 + b22) ≤ 1 ⇒ 1 − a1b1 − a2b2 ≥ (1−a21−a22)+(1−b21−b22)

2
⇒

(1 − a1b1 − a2b2)
2 ≥ [

(1−a21−a22)+(1−b21−b22)

2
]2 ≥ 1

2
[(1 − a21 − a22)

2 + (1 − b21 − b22)
2] ≥ (a21 +

a22 − 1)(b21 + b22 − 1) .

3.72 ���  Let A = {x|1 + 1
log3 x

− 1
log5 x

< 0};B = {x|(1
3
)a log3 2 < (1

2
)x(x−a+1), a ∈ R} , find 

the range of a  such that A ⊆ B .

Solution: 1 + 1
log3 x

− 1
log5 x

< 0 ⇒ 1 + logx 3− 2 logx 5 < 0 ⇒ logx
3
25

< logx x
−1 . Thus x > 1 , 

then 1x > 3
25, then 1 < x < 25

3 . Hence, A = {x|1 < x < 25
3
} . (13)

a log3 2 < (1
2
)x(x−a+1) ⇒ 3log3 2

−a
< 2−x(x−a+1) ⇒ 2−a < 2−x(x−a+1) ⇒ −a <

−x(x− a+ 1) ⇒ (x− a)(x+ 1) < 0
 

(1
3
)a log3 2 < (1

2
)x(x−a+1) ⇒ 3log3 2

−a
< 2−x(x−a+1) ⇒ 2−a < 2−x(x−a+1) ⇒ −a <

−x(x− a+ 1) ⇒ (x− a)(x+ 1) < 0

 
(1
3
)a log3 2 < (1

2
)x(x−a+1) ⇒ 3log3 2

−a
< 2−x(x−a+1) ⇒ 2−a < 2−x(x−a+1) ⇒ −a <

−x(x− a+ 1) ⇒ (x− a)(x+ 1) < 0 (� ).

When a = −1 , (� ) has no solution.

When a > −1 , (� ) has the solution −1 < x < a .

When a < −1 , (� ) has the solution a < x < −1 .

Hence, B =






φ (a = −1)
{x| − 1 < x < a} (a > −1)
{x|a < x < −1} (a < −1)

 from which we know that when a ≥ 25
3 , A ⊆ B .

3.73 ����  x, y, z  are positive numbers, show 
(x+1)3

y
+ (y+1)3

z
+ (z+1)3

x
≥ 81

4 .

Proof: Since x, y, z > 0 ,Mean Inequality implies that (x+1)3

y
+ 27

2
y + 27

4
≥ 3 3

√
(x+1)3

y
· 27

2
y · 27

4
= 27

2
(x+ 1) ⇒ (x+1)3

y
≥ 27

2
(x− y) + 27

4 
(x+1)3

y
+ 27

2
y + 27

4
≥ 3 3

√
(x+1)3

y
· 27

2
y · 27

4
= 27

2
(x+ 1) ⇒ (x+1)3

y
≥ 27

2
(x− y) + 27

4
. Similarly, we can obtain (y+1)3

z
≥ 27

2
(y − z) + 27

4
, (z+1)3

x
≥ 27

2
(z − x) + 27

4 
(y+1)3

z
≥ 27

2
(y − z) + 27

4
, (z+1)3

x
≥ 27

2
(z − x) + 27

4
. Add them up to obtain the aimed inequality.

3.74 ����  m,n  are positive numbers, show 
√
m+ 1 >

√
n  holds if and only if for any x > 1 , 

mx+ x
x−1

>
√
n .

Proof: m,n > 0, x− 1 > 0 , then mx+ x
x−1

= mx−m+m+x−1+1
x−1

= [m(x−1)+ 1
x−1

]+m+1 ≥ 2
√
m+m+1 = (

√
m+1)2 

mx+ x
x−1

= mx−m+m+x−1+1
x−1

= [m(x−1)+ 1
x−1

]+m+1 ≥ 2
√
m+m+1 = (

√
m+1)2 . If and only if m(x− 1) = 1

x−1 , i.e. x = 1 + 1√
m , mx+ x

x−1  has the 
minimum value (

√
m+ 1)2 . Hence, mx+ x

x−1
>

√
n  for any x > 1  if and only if (

√
m+ 1)2 > n , 

i.e. 
√
m+ 1 >

√
n .
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3.75 ���  Given f(x) = ax2 + bx , and 1 ≤ f(−1) ≤ 3, 2 ≤ f(1) ≤ 4 , find the range of f(−3) .

Solution: f(−1) = a− b, f(1) = a+ b, f(−3) = 9a− 3b . Let f(−3) = mf(−1) + nf(1) 
where m,n  are parameters ready to be determined. 9a− 3b = m(a− b) + n(a + b) = (m+ n)a− (m− n)b 

9a− 3b = m(a− b) + n(a + b) = (m+ n)a− (m− n)b . Comparing the coefficients to obtain 
{

m+ n = 9
m− n = 3

⇒ m = 6, n = 3 . Thus 

f(−3) = 6f(−1) + 3f(1). Since 1 ≤ f(−1) ≤ 3, 2 ≤ f(1) ≤ 4 , we have 12 ≤ 6f(−1) + 3f(1) ≤ 30 
12 ≤ 6f(−1) + 3f(1) ≤ 30 , then 12 ≤ f(−3) ≤ 30 . Therefore the range of f(−3)  is [12, 30] .

3.76 ���  Given 0 < b < 1, 0 < a < π
4 , and x = (sinα)logb sinα, y = (cosα)logb cosα, z = (sinα)logb cosα 

x = (sinα)logb sinα, y = (cosα)logb cosα, z = (sinα)logb cosα , determine the order of x, y, z .

Solution: 0 < b < 1 , thus f(x) = logb x  is a decreasing function. 0 < a < π
4 , thus 0 < sinα < cosα < 1 

0 < sinα < cosα < 1 . Therefore, logb sinα > logb cosα > 0 , then (sinα)logb sinα < (sinα)logb cosα  , i.e. x < z . And 
(sinα)logb cosα < (cosα)logb cosα , i.e. z < y . Hence, we obtain the order x < z < y .

3.77 ���  Consider a triangle with side lengths a, b, c , and its area is 1/4, the radius of its circumcircle 

is 1 . If s =
√
a+

√
b+

√
c, t = 1

a
+ 1

b
+ 1

c . Compare s  and t .

Solution: Let C  be the angle whose opposite side length is c , and the radius of circumcircle R = 1 , 
then c = 2R sinC = 2 sinC . In addition, 12ab sinC = 1

4. Therefore abc = 1 . Then t = 1
a
+ 1

b
+ 1

c
= 1

2
( 1
a
+ 1

b
) + 1

2
(1
b
+ 1

c
) + 1

2
(1
c
+ 1

a
) ≥

√
1
ab
+
√

1
bc
+
√

1
ca

=
√
c+

√
a+

√
b√

abc
=

√
a+

√
b+

√
c = s

 
t = 1

a
+ 1

b
+ 1

c
= 1

2
( 1
a
+ 1

b
) + 1

2
(1
b
+ 1

c
) + 1

2
(1
c
+ 1

a
) ≥

√
1
ab
+
√

1
bc
+
√

1
ca

=
√
c+

√
a+

√
b√

abc
=

√
a+

√
b+

√
c = s

 

t = 1
a
+ 1

b
+ 1

c
= 1

2
( 1
a
+ 1

b
) + 1

2
(1
b
+ 1

c
) + 1

2
(1
c
+ 1

a
) ≥

√
1
ab
+
√

1
bc
+
√

1
ca

=
√
c+

√
a+

√
b√

abc
=

√
a+

√
b+

√
c = s . 

The equal sign can only be obtained if a = b = c = R = 1 , which is impossible. Hence, s < t .

3.78 ���  a, b, c  are positive numbers and a + b+ c ≤ 3 , show 32 ≤ 1
a+1

+ 1
b+1

+ 1
c+1

< 3.

Proof: Since a, b, c > 0 , we have 1
a+1

< 1, 1
b+1

< 1, 1
c+1

< 1 , then 1
a+1

+ 1
b+1

+ 1
c+1

< 3 . Mean 

Inequality implies  .  

Therefore, ( 1
a+1

+ 1
b+1

+ 1
c+1

)[(a+1)+(b+1)+(c+1)] ≥ 3 3

√
1

(a+1)(b+1)(c+1)
·3 3
√
(a+ 1)(b+ 1)(c+ 1) =

9
( 1
a+1

+ 1
b+1

+ 1
c+1

)[(a+1)+(b+1)+(c+1)] ≥ 3 3

√
1

(a+1)(b+1)(c+1)
·3 3
√
(a+ 1)(b+ 1)(c+ 1) =

9 . Since 0 < a + b+ c ≤ 3, then 1
a+1

+ 1
b+1

+ 1
c+1

≥ 9
(a+1)+(b+1)+(c+1)

≥ 9
3+3

= 3
2.

3.79 ���  Given a, b, c,m, n, p > 0 , and a +m = b+ n = c+ p = R , show an + bp+ cm < R2
 

an + bp+ cm < R2 .

1
a+1

+ 1
b+1

+ 1
c+1

≥ 3 3

√
1

(a+1)(b+1)(c+1)
, (a+1)+(b+1)+(c+1)≥ 3 3

√
(a+ 1)(b+ 1)(c+ 1)
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Proof: Construct an equilateral triangle ABC  with side length R . Choose points D,E, F  on sides 
AB,BC,CA  respectively such that AD = a,DB = m,BE = c, EC = p, CF = b, FA = n . 
In this way, three side lengths are a +m, c+ p, b+ n , and a +m = c+ p = b+ n = R . Connect 
D  with E , connect E  with F , and connect F  with D . Let S�ADF = S1, S�BDE = S2, S�CEF = S3, S�ABC = S 

S�ADF = S1, S�BDE = S2, S�CEF = S3, S�ABC = S . Then S1 + S2 + S3 =
1
2
an sin 600 + 1

2
cm sin 600 + 1

2
bp sin 600 =

√
3
4
(an + cm+ bp) 

S1 + S2 + S3 =
1
2
an sin 600 + 1

2
cm sin 600 + 1

2
bp sin 600 =

√
3
4
(an + cm+ bp) . S = 1

2
R2 sin 600 =

√
3
4
R2. S = S1 + S2 + S3 + S�DEF > S1 + S2 + S3 , thus √

3
4
(an + cm+ bp) <

√
3
4
R2, that is, an + bp+ cm < R2 .

3.80 ����  Let x1, x2, · · · , xn  are positive numbers, show 
x2
1

x2
+

x2
2

x3
+ · · ·+ x2

n−1

xn
+ x2

n

x1
≥ x1 + x2 + · · ·+ xn 

x2
1

x2
+

x2
2

x3
+ · · ·+ x2

n−1

xn
+ x2

n

x1
≥ x1 + x2 + · · ·+ xn .

Proof 1: Since x1, x2, · · · , xn > 0 , we can do the following: (x1 − x2)
2 ≥ 0 ⇒ x2

1 + x2
2 ≥ 2x1x2 ⇒ x2

1

x2
+ x2 ≥ 2x1 

(x1 − x2)
2 ≥ 0 ⇒ x2

1 + x2
2 ≥ 2x1x2 ⇒ x2

1

x2
+ x2 ≥ 2x1 . Similarly, we can obtain x

2
2

x3
+ x3 ≥ 2x2, · · · ,

x2
n−1

xn
+ xn ≥ 2xn−1,

x2
n

x1
+ x1 ≥ 2xn . 

Add them up to obtain (
x2
1

x2
+

x2
2

x3
+ · · · + x2

n−1

xn
+ x2

n

x1
) + (x1 + x2 + · · · + xn) ≥ 2(x1 + x2 + · · · + xn) ⇒

x2
1

x2
+

x2
2

x3
+ · · ·+ x2

n−1

xn
+ x2

n

x1
≥ x1 + x2 + · · ·+ xn

 
(
x2
1

x2
+

x2
2

x3
+ · · · + x2

n−1

xn
+ x2

n

x1
) + (x1 + x2 + · · · + xn) ≥ 2(x1 + x2 + · · · + xn) ⇒

x2
1

x2
+

x2
2

x3
+ · · ·+ x2

n−1

xn
+ x2

n

x1
≥ x1 + x2 + · · ·+ xn

 

(
x2
1

x2
+

x2
2

x3
+ · · · + x2

n−1

xn
+ x2

n

x1
) + (x1 + x2 + · · · + xn) ≥ 2(x1 + x2 + · · · + xn) ⇒

x2
1

x2
+

x2
2

x3
+ · · ·+ x2

n−1

xn
+ x2

n

x1
≥ x1 + x2 + · · ·+ xn .

Proof 2: Mean Inequality implies that x2
1

x2
+ x2 ≥ 2

√
x2
1

x2
· x2 = 2x1 . Similarly, we have 

x2
2

x3
+ x3 ≥ 2x2, · · · ,

x2
n−1

xn
+ xn ≥ 2xn−1,

x2
n

x1
+ x1 ≥ 2xn . Add them up to obtain the result.
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Proof 3: x2
n

x1
+

x2
1

x1
+

x2
1

x2
+

x2
2

x2
+ · · ·+ x2

n−1

xn
+ x2

n

xn
=

x2
n+x2

1

x1
+

x2
1+x2

2

x2
+ · · ·+ x2

n−1+x2
n

xn
≥ 2(x1xn

x1
+ x1x2

x2
+

· · ·+ xn−1xn

xn
) = 2(x1 + x2 + · · ·+ xn)

 
x2
n

x1
+

x2
1

x1
+

x2
1

x2
+

x2
2

x2
+ · · ·+ x2

n−1

xn
+ x2

n

xn
=

x2
n+x2

1

x1
+

x2
1+x2

2

x2
+ · · ·+ x2

n−1+x2
n

xn
≥ 2(x1xn

x1
+ x1x2

x2
+

· · ·+ xn−1xn

xn
) = 2(x1 + x2 + · · ·+ xn)

x2
n

x1
+

x2
1

x1
+

x2
1

x2
+

x2
2

x2
+ · · ·+ x2

n−1

xn
+ x2

n

xn
=

x2
n+x2

1

x1
+

x2
1+x2

2

x2
+ · · ·+ x2

n−1+x2
n

xn
≥ 2(x1xn

x1
+ x1x2

x2
+

· · ·+ xn−1xn

xn
) = 2(x1 + x2 + · · ·+ xn) which implies the result.

Proof 4: x2
1

x2
+

x2
2

x3
+ · · · + x2

n−1

xn
+ x2

n

x1
= [x2−(x2−x1)]2

x2
+ [x3−(x3−x2)]2

x3
+ · · · + [xn−(xn−xn−1)]2

xn
+

[x1−(x1−xn)]2

x1
= (x2 + x3 + · · ·+ xn + x1)− 2(x2 − x1 + x3 − x2 + · · ·+ xn − xn−1 + x1 −

xn) +
(x2−x1)2

x2
+ (x3−x2)2

x3
+ · · ·+ (xn−xn−1)2

xn
+ (x1−xn)2

x1
= (x1 + x2 + · · ·+ xn) +

(x2−x1)2

x2
+

(x3−x2)2

x3
+ · · ·+ (x1−xn)2

x1
≥ x1 + x2 + · · ·+ xn

 .

Proof 5: Since x1, x2, · · · , xn > 0 , let a1 =
√
x2, a2 =

√
x3, · · · , an−1 =

√
xn, an =

√
x1, b1 = x1√

x2
, b2 = x2√

x3
, b3 =

x3√
x4
, · · · , bn−1 =

xn−1√
xn

, bn = xn√
x1

 
a1 =

√
x2, a2 =

√
x3, · · · , an−1 =

√
xn, an =

√
x1, b1 = x1√

x2
, b2 = x2√

x3
, b3 =

x3√
x4
, · · · , bn−1 =

xn−1√
xn

, bn = xn√
x1

 

a1 =
√
x2, a2 =

√
x3, · · · , an−1 =

√
xn, an =

√
x1, b1 = x1√

x2
, b2 = x2√

x3
, b3 =

x3√
x4
, · · · , bn−1 =

xn−1√
xn

, bn = xn√
x1. Cauchy Inequality implies that 

(a21 + a22 + · · ·+ a2n)(b
2
1 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)

2 , then [(
√
x2)

2+(
√
x3)

2+· · ·+(
√
xn)

2+(
√
x1)

2]· [( x1√
x2
)2+( x2√

x3
)2+· · ·+(xn−1√

xn
)2+( xn√

x1
)2] ≥

[
√
x2

x1√
x2

+
√
x3

x2√
x3

+ · · ·+√
xn

xn−1√
xn

+
√
x1

xn√
x1
]2 ⇒ (x2 + x3 + · · ·+ xn + x1)(

x2
1

x2
+

x2
2

x3
+

· · ·+ x2
n−1

xn
+ x2

n

x1
≥ (x1 + x2 + · · ·+ xn−1 + xn)

2

 
[(
√
x2)

2+(
√
x3)

2+· · ·+(
√
xn)

2+(
√
x1)

2]· [( x1√
x2
)2+( x2√

x3
)2+· · ·+(xn−1√

xn
)2+( xn√

x1
)2] ≥

[
√
x2

x1√
x2

+
√
x3

x2√
x3

+ · · ·+√
xn

xn−1√
xn

+
√
x1

xn√
x1
]2 ⇒ (x2 + x3 + · · ·+ xn + x1)(

x2
1

x2
+

x2
2

x3
+

· · ·+ x2
n−1

xn
+ x2

n

x1
≥ (x1 + x2 + · · ·+ xn−1 + xn)

2

 

[(
√
x2)

2+(
√
x3)

2+· · ·+(
√
xn)

2+(
√
x1)

2]· [( x1√
x2
)2+( x2√

x3
)2+· · ·+(xn−1√

xn
)2+( xn√

x1
)2] ≥

[
√
x2

x1√
x2

+
√
x3

x2√
x3

+ · · ·+√
xn

xn−1√
xn

+
√
x1

xn√
x1
]2 ⇒ (x2 + x3 + · · ·+ xn + x1)(

x2
1

x2
+

x2
2

x3
+

· · ·+ x2
n−1

xn
+ x2

n

x1
≥ (x1 + x2 + · · ·+ xn−1 + xn)

2

 [(
√
x2)

2+(
√
x3)

2+· · ·+(
√
xn)

2+(
√
x1)

2]· [( x1√
x2
)2+( x2√

x3
)2+· · ·+(xn−1√

xn
)2+( xn√

x1
)2] ≥

[
√
x2

x1√
x2

+
√
x3

x2√
x3

+ · · ·+√
xn

xn−1√
xn

+
√
x1

xn√
x1
]2 ⇒ (x2 + x3 + · · ·+ xn + x1)(

x2
1

x2
+

x2
2

x3
+

· · ·+ x2
n−1

xn
+ x2

n

x1
≥ (x1 + x2 + · · ·+ xn−1 + xn)

2

 

[(
√
x2)

2+(
√
x3)

2+· · ·+(
√
xn)

2+(
√
x1)

2]· [( x1√
x2
)2+( x2√

x3
)2+· · ·+(xn−1√

xn
)2+( xn√

x1
)2] ≥

[
√
x2

x1√
x2

+
√
x3

x2√
x3

+ · · ·+√
xn

xn−1√
xn

+
√
x1

xn√
x1
]2 ⇒ (x2 + x3 + · · ·+ xn + x1)(

x2
1

x2
+

x2
2

x3
+

· · ·+ x2
n−1

xn
+ x2

n

x1
≥ (x1 + x2 + · · ·+ xn−1 + xn)

2 

[(
√
x2)

2+(
√
x3)

2+· · ·+(
√
xn)

2+(
√
x1)

2]· [( x1√
x2
)2+( x2√

x3
)2+· · ·+(xn−1√

xn
)2+( xn√

x1
)2] ≥

[
√
x2

x1√
x2

+
√
x3

x2√
x3

+ · · ·+√
xn

xn−1√
xn

+
√
x1

xn√
x1
]2 ⇒ (x2 + x3 + · · ·+ xn + x1)(

x2
1

x2
+

x2
2

x3
+

· · ·+ x2
n−1

xn
+ x2

n

x1
≥ (x1 + x2 + · · ·+ xn−1 + xn)

2 . Divide both sides by x1 + x2 + · · ·+ xn−1 + xn ≥ 0 to obtain 
x2
1

x2
+

x2
2

x3
+ · · ·+ x2

n−1

xn
+ x2

n

x1
≥ x1 + x2 + · · ·+ xn−1 + xn .

3.81 ����  If x, y  are real numbers, and y ≥ 0, y(y + 1) ≤ (x+ 1)2 , show y(y − 1) ≤ x2 .

Proof: If 0 ≤ y ≤ 1 , obviously y(y − 1) ≤ 0 ≤ x2. If y > 1 , then y(y + 1) ≤ (x+ 1)2 ⇒ y2 + y + 1
4
≤ (x+ 1)2 + 1

4
⇒ (y + 1

2
)2 ≤ (x+ 1)2 + 1

4
⇒ 1 <

y ≤
√

(x+ 1)2 + 1
4
− 1

2

 
y(y + 1) ≤ (x+ 1)2 ⇒ y2 + y + 1

4
≤ (x+ 1)2 + 1

4
⇒ (y + 1

2
)2 ≤ (x+ 1)2 + 1

4
⇒ 1 <

y ≤
√

(x+ 1)2 + 1
4
− 1

2

 
y(y + 1) ≤ (x+ 1)2 ⇒ y2 + y + 1

4
≤ (x+ 1)2 + 1

4
⇒ (y + 1

2
)2 ≤ (x+ 1)2 + 1

4
⇒ 1 <

y ≤
√

(x+ 1)2 + 1
4
− 1

2
. The 

inequality to prove y(y − 1) ≤ x2 ⇔ y2 − y + 1
4
≤ x2 + 1

4
⇔ (y − 1

2
)2 ≤ x2 + 1

4
⇔ y ≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
− 1

2
≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
≤

√
x2 + 1

4
+ 1 ⇔ (x+ 1)2 + 1

4
≤

x2 + 1
4
+ 2

√
x2 + 1

4
+ 1 ⇔ x2 + 2x+ 11

4
≤ x2 + 2

√
x2 + 1

4
+ 11

4
⇔ x ≤

√
x2 + 1

4

 

y(y − 1) ≤ x2 ⇔ y2 − y + 1
4
≤ x2 + 1

4
⇔ (y − 1

2
)2 ≤ x2 + 1

4
⇔ y ≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
− 1

2
≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
≤

√
x2 + 1

4
+ 1 ⇔ (x+ 1)2 + 1

4
≤

x2 + 1
4
+ 2

√
x2 + 1

4
+ 1 ⇔ x2 + 2x+ 11

4
≤ x2 + 2

√
x2 + 1

4
+ 11

4
⇔ x ≤

√
x2 + 1

4

y(y − 1) ≤ x2 ⇔ y2 − y + 1
4
≤ x2 + 1

4
⇔ (y − 1

2
)2 ≤ x2 + 1

4
⇔ y ≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
− 1

2
≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
≤

√
x2 + 1

4
+ 1 ⇔ (x+ 1)2 + 1

4
≤

x2 + 1
4
+ 2

√
x2 + 1

4
+ 1 ⇔ x2 + 2x+ 11

4
≤ x2 + 2

√
x2 + 1

4
+ 11

4
⇔ x ≤

√
x2 + 1

4

y(y − 1) ≤ x2 ⇔ y2 − y + 1
4
≤ x2 + 1

4
⇔ (y − 1

2
)2 ≤ x2 + 1

4
⇔ y ≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
− 1

2
≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
≤

√
x2 + 1

4
+ 1 ⇔ (x+ 1)2 + 1

4
≤

x2 + 1
4
+ 2

√
x2 + 1

4
+ 1 ⇔ x2 + 2x+ 11

4
≤ x2 + 2

√
x2 + 1

4
+ 11

4
⇔ x ≤

√
x2 + 1

4

y(y − 1) ≤ x2 ⇔ y2 − y + 1
4
≤ x2 + 1

4
⇔ (y − 1

2
)2 ≤ x2 + 1

4
⇔ y ≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
− 1

2
≤

√
x2 + 1

4
+ 1

2
⇔

√
(x+ 1)2 + 1

4
≤

√
x2 + 1

4
+ 1 ⇔ (x+ 1)2 + 1

4
≤

x2 + 1
4
+ 2

√
x2 + 1

4
+ 1 ⇔ x2 + 2x+ 11

4
≤ x2 + 2

√
x2 + 1

4
+ 11

4
⇔ x ≤

√
x2 + 1

4

which is obviously valid.

3.82 ����  If real numbers x, y, z  satisfy x2 + y2 + z2 = 2, show x+ y + z ≤ xyz + 2.

Proof: If one (or more) of x, y, z  is not positive, without loss of generality let z ≤ 0 . Since 
x+y ≤

√
2(x2 + y2) ≤

√
2(x2 + y2 + z2) = 2, xy ≤ 1

2
(x2+y2) ≤ 1

2
(x2+y2+z2) = 1, then 

2 + xyz − (x+ y + z) = [2− (x+ y)− z(xy − 1)] ≥ 0 , that is, x+ y + z ≤ xyz + 2.

If x, y, z  are all positive, let 0 < x ≤ y ≤ z .

When z ≤ 1 , 2 + xyz − (x+ y + z) = 1− x− y + xy + 1− xy − z + xyz = (1− x)− y(1− x) +
(1− xy)− z(1− xy) = (1− x)(1− y) + (1− xy)(1− z) ≥ 0

 
2 + xyz − (x+ y + z) = 1− x− y + xy + 1− xy − z + xyz = (1− x)− y(1− x) +

(1− xy)− z(1− xy) = (1− x)(1− y) + (1− xy)(1− z) ≥ 0
 

2 + xyz − (x+ y + z) = 1− x− y + xy + 1− xy − z + xyz = (1− x)− y(1− x) +
(1− xy)− z(1− xy) = (1− x)(1− y) + (1− xy)(1− z) ≥ 0 , that is,x+ y + z ≤ xyz + 2 

x+ y + z ≤ xyz + 2.

x2
1

x2
+

x2
2

x3
+ · · · + x2

n−1

xn
+ x2

n

x1
= [x2−(x2−x1)]2

x2
+ [x3−(x3−x2)]2

x3
+ · · · + [xn−(xn−xn−1)]2

xn
+

[x1−(x1−xn)]2

x1
= (x2 + x3 + · · ·+ xn + x1)− 2(x2 − x1 + x3 − x2 + · · ·+ xn − xn−1 + x1 −

xn) +
(x2−x1)2

x2
+ (x3−x2)2

x3
+ · · ·+ (xn−xn−1)2

xn
+ (x1−xn)2

x1
= (x1 + x2 + · · ·+ xn) +

(x2−x1)2

x2
+

(x3−x2)2

x3
+ · · ·+ (x1−xn)2

x1
≥ x1 + x2 + · · ·+ xn
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When z > 1, x+ y + z ≤
√
2[z2 + (x+ y)2] =

√
2(2 + 2xy) = 2

√
1 + xy ≤ 2 + xy < 2 + xyz 

x+ y + z ≤
√
2[z2 + (x+ y)2] =

√
2(2 + 2xy) = 2

√
1 + xy ≤ 2 + xy < 2 + xyz .

As a conclusion, x+ y + z ≤ xyz + 2 holds.

3.83 ����  Given the function f(x) = ax2 + bx+ c  (a > 0 ), and the two roots of the equation 
f(x)− x = 0  satisfy 0 < x1 < x2 <

1
a . (1) When x ∈ (0, x1) , show x < f(x) < x1 ; (2) Assume 

the curve of the function f(x)  is symmetric about the straight line x = x0 , show x0 <
x1

2 .

Proof: (1) Let G(x) = f(x)− x . Since x1, x2 are the two roots of the equation f(x)− x = 0 , then 
G(x) = a(x− x1)(x− x2). When x ∈ (0, x1) , since x1 < x2, a > 0, then G(x) = a(x− x1)(x− x2) > 0 ⇒ f(x)− x > 0 ⇒ f(x) > x 

G(x) = a(x− x1)(x− x2) > 0 ⇒ f(x)− x > 0 ⇒ f(x) > x . x1 − f(x) = x1 − [x+G(x)] = x1 − x− a(x− x1)(x− x2) = (x1 − x)[1 + a(x− x2)]

x1 − f(x) = x1 − [x+G(x)] = x1 − x− a(x− x1)(x− x2) = (x1 − x)[1 + a(x− x2)]. Since 0 < x1 < x2 <
1
a , we have x1 − x > 0, 1 + a(x− x2) = 1 + ax− ax2 > 1− ax2 > 0

x1 − x > 0, 1 + a(x− x2) = 1 + ax− ax2 > 1− ax2 > 0 , thus x1 > f(x) .

(2) x0 = − b
2a . Since x1, x2 are the roots of the equation f(x)− x = 0 , that is, x1, x2 are the roots 

of the equation ax2 + (b− 1)x+ c = 0 . Vieta’s formula implies x1 + x2 = − b−1
a , thus 

b = 1− a(x1 + x2) , then x0 = − b
2a

= a(x1+x2)−1
2a

= ax1+ax2−1
2a . Since ax2 < 1 , that is, 

ax2 − 1 < 0 , then x0 =
ax1+ax2−1

2a
< ax1

2a
= x1

2 .

3.84 ����� Let a, b, c  are positive numbers, show a + b+ c ≤ a2+b2

2c
+ b2+c2

2a
+ c2+a2

2b
≤ a3

bc
+ b3

ca
+ c3

ab 
a + b+ c ≤ a2+b2

2c
+ b2+c2

2a
+ c2+a2

2b
≤ a3

bc
+ b3

ca
+ c3

ab .

Proof: Without loss of generality, assume a ≥ b ≥ c > 0 , then a2 ≥ b2 ≥ c2, 1
c
≥ 1

b
≥ 1

a , then 
a2 · 1

a
+ b2 · 1

b
+ c2 · 1

c
≤ a2 · 1

b
+ b2 · 1

c
+ c2 · 1

a
, a2 · 1

a
+ b2 · 1

b
+ c2 · 1

c
≤ a2 · 1

c
+ b2 · 1

a
+ c2 · 1

b . Add 
these two inequalities up to obtain a + b+ c ≤ a2+b2

2c
+ b2+c2

2a
+ c2+a2

2b
. a3 ≥ b3 ≥ c3, 1

bc
≥ 1

ca
≥ 1

ab, 
then a3 · 1

bc
+b3 · 1

ca
+c3 · 1

ab
≥ a3 · 1

ab
+b3 · 1

bc
+c3 1

ca
, a3 · 1

bc
+b3 · 1

ca
+c3 · 1

ab
≥ a3 · 1

ca
+b3 · 1

ab
+c3 1

bc
. 

Add these two inequalities up to obtain a3

bc
+ b3

ca
+ c3

ab
≥ a2+b2

2c
+ b2+c2

2a
+ c2+a2

2b
. Hence, 

a + b+ c ≤ a2+b2

2c
+ b2+c2

2a
+ c2+a2

2b
≤ a3

bc
+ b3

ca
+ c3

ab
.

3.85 ����� Solve the inequality log2(x12 + 3x10 + 5x8 + 3x6 + 1) > 1 + log2(x
4 + 1) .

Solution: The inequality is equivalent to log2(x12 + 3x10 + 5x8 + 3x6 + 1) > log2(2x
4 + 2) ⇔ x12 + 3x10 + 5x8 + 3x6 + 1 >

2x4 + 2 ⇔ 2x4 + 1 < x12 + 3x10 + 5x8 + 3x6
log2(x

12 + 3x10 + 5x8 + 3x6 + 1) > log2(2x
4 + 2) ⇔ x12 + 3x10 + 5x8 + 3x6 + 1 >

2x4 + 2 ⇔ 2x4 + 1 < x12 + 3x10 + 5x8 + 3x6
 

log2(x
12 + 3x10 + 5x8 + 3x6 + 1) > log2(2x

4 + 2) ⇔ x12 + 3x10 + 5x8 + 3x6 + 1 >
2x4 + 2 ⇔ 2x4 + 1 < x12 + 3x10 + 5x8 + 3x6 . Obviously 

x = 1  does not satisfy the inequality, thus we can divide both sides by x6  to obtain 2
x2 +

1
x6 < x6+3x4+5x2+3 = x6+3x4+3x2+1+2x2+2 = (x2+1)3+2(x2+1) ⇔

( 1
x2 )

3 + 2( 1
x2 ) < (x2 + 1)3 + 2(x2 + 1)

 
2
x2 +

1
x6 < x6+3x4+5x2+3 = x6+3x4+3x2+1+2x2+2 = (x2+1)3+2(x2+1) ⇔

( 1
x2 )

3 + 2( 1
x2 ) < (x2 + 1)3 + 2(x2 + 1)

 

2
x2 +

1
x6 < x6+3x4+5x2+3 = x6+3x4+3x2+1+2x2+2 = (x2+1)3+2(x2+1) ⇔

( 1
x2 )

3 + 2( 1
x2 ) < (x2 + 1)3 + 2(x2 + 1) 2

x2 +
1
x6 < x6+3x4+5x2+3 = x6+3x4+3x2+1+2x2+2 = (x2+1)3+2(x2+1) ⇔

( 1
x2 )

3 + 2( 1
x2 ) < (x2 + 1)3 + 2(x2 + 1). Let g(t) = t3 + 2t , then the inequality becomes g( 1

x2 ) < g(x2 + 1) . Since g(t) = t3 + 2t 
g(t) = t3 + 2t is an increasing function, then the inequality is equivalent to 1

x2 < x2 + 1 ⇔ (x2)2 + x2 − 1 > 0 
1
x2 < x2 + 1 ⇔ (x2)2 + x2 − 1 > 0 whose solution is x2 >

√
5−1
2

 (the other part x2 < −
√
5+1
2

 is deleted). Hence, the original 
inequality has the solution set (−∞,−

√√
5−1
2

) ∪ (
√√

5−1
2

,+∞).
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3.86 ����� Let a, b, c  are integers and at least one of them is nonzero, and their absolute values 

are not greater than 106 , show |a+ b
√
2 + c

√
3| > 10−21 .

Proof: When b = 0, c = 0, the conclusion is obviously valid. When one of b, c  is nonzero, we consider 
the following four numbers: t1 = a+ b

√
2 + c

√
3, t2 = a+ b

√
2− c

√
3, t3 = a− b

√
2 + c

√
3, t4 = a− b

√
2− c

√
3 

t1 = a+ b
√
2 + c

√
3, t2 = a+ b

√
2− c

√
3, t3 = a− b

√
2 + c

√
3, t4 = a− b

√
2− c

√
3. They are all irrational numbers, and t = t1t2t3t4 = [(a+ b

√
2)2 − 3c2][(a− b

√
2)2 − 3c2] = (a2 + 2

√
2ab+ 2b2 − 3c2)(a2 −

2
√
2ab + 2b2 − 3c2) = [(a2 + 2b2 − 3c2) + 2

√
2ab][(a2 + 2b2 − 3c2) − 2

√
2ab] = [(a2 +

2b2 − 3c2)2 − 8a2b2] ∈ Z
t = t1t2t3t4 = [(a+ b

√
2)2 − 3c2][(a− b

√
2)2 − 3c2] = (a2 + 2

√
2ab+ 2b2 − 3c2)(a2 −

2
√
2ab + 2b2 − 3c2) = [(a2 + 2b2 − 3c2) + 2

√
2ab][(a2 + 2b2 − 3c2) − 2

√
2ab] = [(a2 +

2b2 − 3c2)2 − 8a2b2] ∈ Z

 
t = t1t2t3t4 = [(a+ b

√
2)2 − 3c2][(a− b

√
2)2 − 3c2] = (a2 + 2

√
2ab+ 2b2 − 3c2)(a2 −

2
√
2ab + 2b2 − 3c2) = [(a2 + 2b2 − 3c2) + 2

√
2ab][(a2 + 2b2 − 3c2) − 2

√
2ab] = [(a2 +

2b2 − 3c2)2 − 8a2b2] ∈ Z
 t = t1t2t3t4 = [(a+ b

√
2)2 − 3c2][(a− b

√
2)2 − 3c2] = (a2 + 2

√
2ab+ 2b2 − 3c2)(a2 −

2
√
2ab + 2b2 − 3c2) = [(a2 + 2b2 − 3c2) + 2

√
2ab][(a2 + 2b2 − 3c2) − 2

√
2ab] = [(a2 +

2b2 − 3c2)2 − 8a2b2] ∈ Z

t = t1t2t3t4 = [(a+ b
√
2)2 − 3c2][(a− b

√
2)2 − 3c2] = (a2 + 2

√
2ab+ 2b2 − 3c2)(a2 −

2
√
2ab + 2b2 − 3c2) = [(a2 + 2b2 − 3c2) + 2

√
2ab][(a2 + 2b2 − 3c2) − 2

√
2ab] = [(a2 +

2b2 − 3c2)2 − 8a2b2] ∈ Z . Thus |t| ≥ 1 , 

which implies that |t1| ≥ 1
|t2|·|t3|·|t4| . In addition, since 1 +

√
2 +

√
3 < 10  and |a|, |b|, |c| ≤ 106, 

we have |ti| ≤ (1 +
√
2 +

√
3) · 106 < 107, thus |t1| > 1

107·107·107 = 10−21 .

3.87 ����� For k ∈ N , show 16 <
80∑

k=1

1√
k
< 17 .

Proof: From 
√
k − 1 <

√
k <

√
k + 1 , we have 

√
k +

√
k − 1 < 2

√
k <

√
k + 1 +

√
k . k ∈ N , 

then 
1√

k+1+
√
k
<

√
12
√
k < 1√

k+
√
k−1

⇒ 2(
√
k + 1 −

√
k) < 1√

k
< 2(

√
k −

√
k − 1) ⇒

2(
√
n+ 1−

√
m) <

n∑

k=m

1√
k
< 2(

√
n−

√
m− 1)

 
1√

k+1+
√
k
<

√
12
√
k < 1√

k+
√
k−1

⇒ 2(
√
k + 1 −

√
k) < 1√

k
< 2(

√
k −

√
k − 1) ⇒

2(
√
n+ 1−

√
m) <

n∑

k=m

1√
k
< 2(

√
n−

√
m− 1), where 1 ≤ m ≤ n , and m,n ∈ N . Choose 

n = 80, m = 1, then 16 <
80∑

k=1

1√
k

. Choose n = 80, m = 2, then 1 +
80∑

k=2

1√
k
< 2(

√
80− 1) + 1 < 2

√
81− 1 = 17 

1 +
80∑

k=2

1√
k
< 2(

√
80− 1) + 1 < 2

√
81− 1 = 17 . Hence, 16 <

80∑

k=1

1√
k
< 17 .

1
2 √ k
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3.88 ����� For n ∈ N , n > 1 , show n! < (n+1
2
)n .

Proof 1: (applying mean inequality)
n! = 1 · 2 · · · · · k · · · · · (n− 1) · n  (i),
n! = n · (n− 1) · · · · · (n− k + 1) · · · · · 2 · 1 (ii).
(i)× (ii): (n!)2 = (1 · n)[2(n− 1)] · · · · · [k(n− k + 1)] · · · · · [(n− 1)2](n · 1) . Since 1 · n ≤ (1+n

2
)2, 2(n − 1) ≤ (2+n−1

2
)2 = (1+n

2
)2, · · · , k(n − k + 1) ≤ (k+n−k+1

2
)2 =

(1+n
2
)2, · · · , (n− 1)2 ≤ (n−1+2

2
)2 = (1+n

2
)2, n · 1 ≤ (1+n

2
)21 · n ≤ (1+n

2
)2, 2(n − 1) ≤ (2+n−1

2
)2 = (1+n

2
)2, · · · , k(n − k + 1) ≤ (k+n−k+1

2
)2 =

(1+n
2
)2, · · · , (n− 1)2 ≤ (n−1+2

2
)2 = (1+n

2
)2, n · 1 ≤ (1+n

2
)2

1 · n ≤ (1+n
2
)2, 2(n − 1) ≤ (2+n−1

2
)2 = (1+n

2
)2, · · · , k(n − k + 1) ≤ (k+n−k+1

2
)2 =

(1+n
2
)2, · · · , (n− 1)2 ≤ (n−1+2

2
)2 = (1+n

2
)2, n · 1 ≤ (1+n

2
)2 1 · n ≤ (1+n

2
)2, 2(n − 1) ≤ (2+n−1

2
)2 = (1+n

2
)2, · · · , k(n − k + 1) ≤ (k+n−k+1

2
)2 =

(1+n
2
)2, · · · , (n− 1)2 ≤ (n−1+2

2
)2 = (1+n

2
)2, n · 1 ≤ (1+n

2
)2. There are n  terms. Thus (n!)2 ≤ [(1+n

2
)2]n ⇔ (n!)2 ≤ (n+1

2
)2n ⇔ n! ≤ (n+1

2
)n 

(n!)2 ≤ [(1+n
2
)2]n ⇔ (n!)2 ≤ (n+1

2
)2n ⇔ n! ≤ (n+1

2
)n . Since n > 1 , then n! < (n+1

2
)n .

Proof 2: (applying mathematical induction)

When n = 2 , LHS= 2! = 2 , RHS= (2+1
2
)2 = 9

4 . The inequality holds.

Assume the inequality holds for n = k , that is, k! < (k+1
2
)k . Then k!(k + 1) < (k+1

2
)k(k + 1) ⇔ (k + 1)! < (k+1

2
)k(k + 1) 

k!(k + 1) < (k+1
2
)k(k + 1) ⇔ (k + 1)! < (k+1

2
)k(k + 1) . (k+1

2
)k(k+1) < [ (k+1)+1

2
]k+1 ⇒ 2(k+1

2
)k(k+1

2
) < [ (k+1)+1

2
]k+1 ⇒ 2(k+1

2
)k+1 < [ (k+1)+1

2
]k+1 ⇒

2 < [ (k+1)+1
2

]k+1( 2
k+1

)k+1
 

(k+1
2
)k(k+1) < [ (k+1)+1

2
]k+1 ⇒ 2(k+1

2
)k(k+1

2
) < [ (k+1)+1

2
]k+1 ⇒ 2(k+1

2
)k+1 < [ (k+1)+1

2
]k+1 ⇒

2 < [ (k+1)+1
2

]k+1( 2
k+1

)k+1
 

(k+1
2
)k(k+1) < [ (k+1)+1

2
]k+1 ⇒ 2(k+1

2
)k(k+1

2
) < [ (k+1)+1

2
]k+1 ⇒ 2(k+1

2
)k+1 < [ (k+1)+1

2
]k+1 ⇒

2 < [ (k+1)+1
2

]k+1( 2
k+1

)k+1 . Binomial theorem implies that 

(1 + 1
k+1

)k+1 = 1 + (k + 1) 1
k+1

+ · · · > 2 . Thus (k+1
2
)k(k + 1) < [ (k+1)+1

2
]k+1 (k+1

2
)k(k + 1) < [ (k+1)+1

2
]k+1  holds. Hence, 

the original inequality n! < (n+1
2
)n  holds according to mathematical induction above.

3.89 ����� Let a1, a2, · · · , an  be a permutation of 1, 2, · · · , n , show 12 +
2
3
+ · · ·+ n−1

n
≤ a1

a2
+ a2

a3
+ · · ·+ an−1

an 
1
2
+ 2

3
+ · · ·+ n−1

n
≤ a1

a2
+ a2

a3
+ · · ·+ an−1

an .

Proof: Since a1, a2, · · · , an  is a permutation of 1, 2, · · · , n , we have 

(a1 + 1)(a2 + 1) · · · · · (an−1 + 1) ≥ (1 + 1)(2 + 1) · · · · · (n− 1 + 1) = a1a2 · · ·an(a1 + 1)(a2 + 1) · · · · · (an−1 + 1) ≥ (1 + 1)(2 + 1) · · · · · (n− 1 + 1) = a1a2 · · ·an . Thus 
a1
a2
+a2

a3
+· · ·+an−1

an
+1

1
+1

2
+· · ·+an−1

an
+ 1

a1
+ 1

a2
+· · ·+ 1

an
= 1

a1
+a1+1

a2
+a2+1

a3
+· · ·+an−1+1

an
≥

n n

√
(a1+1)(a2+1)·····(an−1+1)

a1a2···an ≥ n

 
a1
a2
+a2

a3
+· · ·+an−1

an
+1

1
+1

2
+· · ·+an−1

an
+ 1

a1
+ 1

a2
+· · ·+ 1

an
= 1

a1
+a1+1

a2
+a2+1

a3
+· · ·+an−1+1

an
≥

n n

√
(a1+1)(a2+1)·····(an−1+1)

a1a2···an ≥ n

a1
a2
+a2

a3
+· · ·+an−1

an
+1

1
+1

2
+· · ·+an−1

an
+ 1

a1
+ 1

a2
+· · ·+ 1

an
= 1

a1
+a1+1

a2
+a2+1

a3
+· · ·+an−1+1

an
≥

n n

√
(a1+1)(a2+1)·····(an−1+1)

a1a2···an ≥ n  . In addition, n = (1
1
+ 1

2
+ · · ·+ 1

n
) + (1

2
+ 2

3
+ · · ·+ n−1

n
) . 

Hence, 12 +
2
3
+ · · ·+ n−1

n
≤ a1

a2
+ a2

a3
+ · · ·+ an−1

an 
1
2
+ 2

3
+ · · ·+ n−1

n
≤ a1

a2
+ a2

a3
+ · · ·+ an−1

an .

3.90 ����� If real numbers a, b, c  satisfy a + b+ c = 3 , show 
1

5a2−4a+11
+ 1

5b2−4b+11
+ 1

5c2−4c+11
≤ 1

4 .

Proof: If a, b, c  are all less than 9
5, then we can show 1

5a2−4a+11
≤ 1

24
(3− a)  (�) . Actually 

(�) ⇔ (3−a)(5a2−4a+11) ≥ 24 ⇔ 5a3−19a2+23a−9 ≤ 0 ⇔ (a−1)2(5a−9) ≤
0 ⇔ a < 9

5

(�) ⇔ (3−a)(5a2−4a+11) ≥ 24 ⇔ 5a3−19a2+23a−9 ≤ 0 ⇔ (a−1)2(5a−9) ≤
0 ⇔ a < 9

5 (�) ⇔ (3−a)(5a2−4a+11) ≥ 24 ⇔ 5a3−19a2+23a−9 ≤ 0 ⇔ (a−1)2(5a−9) ≤
0 ⇔ a < 9

5
. Similarly, we can obtain 1

5b2−4b+11
≤ 1

24
(3− b), 1

5c2−4c+11
≤ 1

24
(3− c) . Add these three 

inequalities up to obtain 1
5a2−4a+11

+ 1
5b2−4b+11

+ 1
5c2−4c+11

≤ 1
24
(3−a)+ 1

24
(3−b)+ 1

24
(3−c) = 1

24
[9−(a+b+c)] =

1
24
[9 − 3] = 1

4

  
1

5a2−4a+11
+ 1

5b2−4b+11
+ 1

5c2−4c+11
≤ 1

24
(3−a)+ 1

24
(3−b)+ 1

24
(3−c) = 1

24
[9−(a+b+c)] =

1
24
[9 − 3] = 1

4

 

1
5a2−4a+11

+ 1
5b2−4b+11

+ 1
5c2−4c+11

≤ 1
24
(3−a)+ 1

24
(3−b)+ 1

24
(3−c) = 1

24
[9−(a+b+c)] =

1
24
[9 − 3] = 1

4 .
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If at least one of a, b, c  is not less than 9
5, without loss of generality, assume a ≥ 9

5, then 
5a2 − 4a+ 11 = 5a(a− 4

5
) + 11 ≥ 5 · 9

5
· (9

5
− 4

5
) + 11 = 20 . Thus 1

5a2−4a+11
≤ 1

20 . Since 
5b2 − 4b+ 11 ≥ 5 · (2

5
)2 − 4 · (2

5
) + 11 = 11− 4

5
> 10 , then 1

5b2−4b+11
< 1

10 . Similarly, we have 
1

5c2−4c+11
< 1

10. Hence, 1
5a2−4a+11

+ 1
5b2−4b+11

+ 1
5c2−4c+11

< 1
20

+ 1
10

+ 1
10

= 1
4 .

3.91 ����� Given a natural number n > 1 , show C1
n + C2

n + C3
n + · · ·+ Cn

n > n× 2
n−1
2 .

Proof: According to Binomial theorem, we have 2n = (1 + 1)n = 1 + C1
n + C2

n + · · ·+ Cn
n , thus 

C1
n + C2

n + C3
n + · · ·+ Cn

n = 2n − 1 . On the other hand, the geometric series with first term 1  and 

common ratio 2  is Sn = 1·(1−2n)
1−2

= 2n − 1 , i.e. 2n − 1 = 1 + 2 + 22 + 23 + · · ·+ 2n−1. Therefore, 
2n−1
n

= 1+2+22+23+···+2n−1

n
> n

√
1× 2× 22 × 23 × · · · × 2n−1 =

n
√
21+2+3+···+(n−1) =

n
√
2

n(n−1)
2 = 2

n−1
2

  2n−1
n

= 1+2+22+23+···+2n−1

n
> n

√
1× 2× 22 × 23 × · · · × 2n−1 =

n
√
21+2+3+···+(n−1) =

n
√
2

n(n−1)
2 = 2

n−1
2 , that is, 2n − 1 > n× 2

n−1
2 . Hence, C1

n + C2
n + C3

n + · · ·+ Cn
n > n× 2

n−1
2 .

3.92 ����� Positive numbers x, y, z  satisfy x2 + y2 + z2 = 1, find the minimum value of 
x

1−x2 +
y

1−y2
+ z

1−z2 .

Solution: (applying mean inequality)

x5 + 2
3
√
3
x2 = x5 + 1

3
√
3
x2 + 1

3
√
3
x2 ≥ 3 3

√
x5 · 1

3
√
3
x2 · 1

3
√
3
x2 = x3

 x5 + 2
3
√
3
x2 = x5 + 1

3
√
3
x2 + 1

3
√
3
x2 ≥ 3 3

√
x5 · 1

3
√
3
x2 · 1

3
√
3
x2 = x3 .  

Similarly, we can obtain y5 + 2
3
√
3
y2 ≥ y3, z5 + 2

3
√
3
z2 ≥ z3 .  

Add these three inequalities up to obtain x5 + y5 + z5 + 2
3
√
3
(x2 + y2 + z2) ≥ x3 + y3 + z3 . 

Since x2 + y2 + z2 = 1, then x5 + y5 + z5 + 2
3
√
3
≥ x3 + y3 + z3 ,  

then x3(1− x2) + y3(1− y2) + z3(1− z2) ≤ 2
3
√
3

  (i). 

[x3(1− x2) + y3(1− y2) + z3(1− z2)]( x
1−x2 +

y
1−y2

+ z
1−z2

) ≥ (
√

x3(1− x2)
√

x
1−x2 +√

y3(1− y2)
√

y
1−y2

+
√

z3(1− z2)
√

z
1−z2

= x2 + y2 + z2 = 1

[x3(1− x2) + y3(1− y2) + z3(1− z2)]( x
1−x2 +

y
1−y2

+ z
1−z2

) ≥ (
√

x3(1− x2)
√

x
1−x2 +√

y3(1− y2)
√

y
1−y2

+
√

z3(1− z2)
√

z
1−z2

= x2 + y2 + z2 = 1 . Thus x
1−x2 +

y
1−y2

+ z
1−z2

≥ 1
x3(1−x2)+y3(1−y2)+z3(1−z2) 

x
1−x2 +

y
1−y2

+ z
1−z2

≥ 1
x3(1−x2)+y3(1−y2)+z3(1−z2) (ii). From (i) and (ii), we obtain x

1−x2 +
y

1−y2
+ z

1−z2
≥ 3

√
3

2 .  

When x = y = z = 1√
3, x

1−x2 +
y

1−y2
+ z

1−z2  reaches the minimum value 3
√
3

2
.

3.93 ����� Positive numbers a1, a2, · · · , an  and b1, b2, · · · , bn   

satisfy a1 + a2 + · · ·+ an ≤ 1, b1 + b2 + · · ·+ bn ≤ n ,  

show ( 1
a1

+ 1
b1
)( 1

a2
+ 1

b2
) · · · ( 1

an
+ 1

bn
) ≥ (n+ 1)n .
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Proof: The given conditions together with Mean Inequality result in a1a2 · · ·an ≤ (a1+a2+···+an
n

)n ≤ 1
nn  

(i), and b1b2 · · · bn ≤ ( b1+b2+···+bn
n

) = 1  (ii). In addition, 1

ai
+

1

bi
=

1

nai
+ · · ·+ 1

nai︸ ︷︷ ︸
n terms

+
1

bi
≥ (n+ 1) n+1

√(
1

nai

)n(
1

bi

)
 

1

ai
+

1

bi
=

1

nai
+ · · ·+ 1

nai︸ ︷︷ ︸
n terms

+
1

bi
≥ (n+ 1) n+1

√(
1

nai

)n(
1

bi

)

 (i = 1, 2, · · · , n ) (iii).

From (i),(ii),(iii), we can obtain 

(
1

a1
+

1

b1

)(
1

a2
+

1

b2

)
· · ·

(
1

an
+

1

bn

)
≥ (n+ 1)n n+1

√
1

(nn)n
·
(

1

a1a2 · · · an

)n

· 1

b1b2 · · · bn

         

≥ (n+ 1)n n+1

√
1

(nn)n
· (nn)n · 1

= (n+ 1)n.
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