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PREFACE

This text is to a large extent a result of teaching two courses in molecular modeling and
computational chemistry at the Norwegian University of Science and Technology (NTNU)
in Trondheim. An introductory course in Molecular Modeling has been given annually since
2002 on the M.Sc. level based on the book by Leach (Leach 2001). This course gives an
introduction to and an overview of the topic, including the basic elements in computational
quantum chemistry, force fields and molecular simulations, as well as some more specialized
topics as free-energy calculations and solvation models. A biannual course on the Ph.D.
level, Advanced Molecular Modeling, has been given since 2004 based on own lecture notes
and review papers. These notes have previously been used in a course organized by Prof.
Kurt V. Mikkelsen at Aarhus University (1995) and annually at the University of Copenhagen
(1997-2002). For this course, two sets of lecture notes, Intermolecular Interactions and
Simulations of Liquids, were developed, where the notes on Intermolecular Interactions are
based on an introductory chapter in my Ph.D. thesis (Astrand 1994). The notes have also
been used in a course on Intermolecular Interactions at the University of Tromse in 2002,
and at a summer school in Molecular Dynamics and Chemical Kinetics: Exploitation of Solar
Energy at the University of Copenhagen annually since 2013. This text is therefore the result
of lecture notes gathered and updated continuously over the years.

There are many excellent books in the field of computational and theoretical chemistry, but
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they are often specialized in one or a few of the topics important for a general course in
molecular modeling. So it is rather the lack of a book with the, according to me, desired
composition (table of contents) for a general text on molecular modeling than the lack of
good texts on each of the topics that lead to that eventually this project was initiated.

The clear separation between content and style in BIgX (Lamport 1994) makes it pivotal in
organizing and developing a complex document. In addition, the graphics
systems for TgX have been used extensively to construct the graphics leading to that all
figures in the document are included as in-line BKIgX code. Consequently, the graphics
appear in a consistent way and can be easily updated as the document is developed. All
references with a are clickable in the reference lists as a result of using together
with the . Also text marked with (with one exception) are clickable with a
link to an external web-page. Developing a complex BIEX document has many similarities to
software development. Since the repository only consists of text files (including the figures
when PGF/TikZ is used), it is therefore natural to use a version control system and for this
project git (Chacon and Straub 2014) is used.

There is a multitude of software available to do the actual calculations using the methods
discussed in this text. If possible, I have so far chosen to use software that is generally
available in the Linux-based system. Avogadro is used as a molecule editor (Hanwell
et al. 2012) to generate input files for the quantum chemical calculations, and for the
quantum chemical calculations NWChem (Valiev et al. 2010) has been used.

There are of course many persons that have contributed indirectly to this text. I am in
particular grateful to my Ph.D. thesis adviser Prof. Gunnar Karlstrom (Lund University) and
to my postdoc adviser Prof. Kurt V. Mikkelsen (University of Copenhagen). Since the notes
have been used extensively in courses over the years, I am also grateful to all the students that
have commented on different parts of the original notes or in other ways given feedback.

I also would like to thank for publishing this text, and in particular I would like to
thank Karin Hamilton Jakobsen at Bookboon for the encouragement to actually convert a set
of separate notes into one coherent document. I support the idea of Bookboon to distribute
free ebooks for students.

First edition

The 1st edition is by no means a complete book on molecular modeling, it is rather a
compendium containing some of the chapters relevant for a general course in molecular
modeling and computational chemistry. Apart from a brief introduction, this edition
consists of two chapters on computational quantum chemistry and force fields, respectively.
Since this text is published as an e-book only, it is, as for a software, possible to publish
corrections and additions frequently. The goal is to publish a new edition annually as long
as [ use the text myself in teaching, so comments on the content are most welcome.

POA
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INTRODUCTION

1.1 What is molecular modeling?

With molecular models we mean models where a molecule is constituted by atoms
connected by chemical (covalent) bonds (see figure 1.1 for two examples). Molecular models
are normally based on a mechanistic model for describing the structure of molecules and
other molecular properties as well as the interactions between molecules. Using the here
quite ill-defined term afom rather than nucleus for the constituents of a molecule indicates
that the constituent of interest consists of both a nucleus and core electrons (whereas the
valence electrons mainly form the covalent bonds between the atoms), and we also therefore
refer to the models discussed in this text as atomistic models. The letters in the figure denote
the position of the atoms: H for hydrogen, C for carbon, N for nitrogen, O for oxygen, etc.,
and the solid lines denote covalent bonds, i.e. electron pairs shared by the two connected
atoms. Another common way to depict the structure of molecules is with ball-and-stick
models, where two molecules are shown in figure 1.2. Here a colour code is used for each
element: black for C, red for O, blue for N, white for H, etc.

The terms molecular modeling, computational chemistry and theoretical chemistry are often
used interchangeably and the distinctions, if ever been meaningful, have more or less
lost their meaning. A text on computational chemistry should in my opinion include the
aspects of how to solve the problem on a modern computer system including the choice
of algorithms, parallelization on large-scale clusters and optimization on gpu-accelerators.
The subtitle of this text Concepts in Computational Chemistry indicates that we rather focus
on what is needed from a user perspective to understand the methods in computational
chemistry rather than the implementation of the methods. The so far never-ending rapid
development of computer technology has evidently lead to a revolution in chemistry, and
computational chemistry has become an accompanying analysis technique in line with
many common experimental characterization techniques. So the role of high-performance
computers is indisputable, but in this text we assume that we have the required computer

|
HfN/ \NfH
L Ao AP

Figure 1.1: Chemical structure for urea (left) and
phenol (right). In phenol, the hydrogens on the Figure 1.2: Ball-and-stick representation of water
phenyl ring are suppressed. (left) and formamide (right).
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resources in terms of both hardware and software at hand. Theoretical chemistry, although
by many often used as a synonym for quantum chemistry, is the widest term including
theoretical development (i.e. new equations), computational chemistry (i.e. how to solve
the equations on a computer), and how to apply the methods in different applications which
requires a detailed knowledge of each particular application area. Theoretical chemistry is
also a wider concept than molecular modeling and includes also thermodynamics, chemical
kinetics and molecular informatics.

Computer modeling is in many cases an attractive alternative to experiments with the
requirement that the accuracy of the modeled property rivals that of the experiment.
Computer-based simulations are in most cases less expensive and less time-consuming than
to carry out the corresponding experiments, and in addition simulations can more easily
be performed at extreme conditions, e.g. at very high pressures or temperatures, or with
hazardous components, e.g. with explosives or poisonous molecules, than experiments.
In simulations, it is also easier to investigate different contributions, e.g. from a non-zero
temperature or from a solvent, to a property since in calculations we often add up various
contributions which thus can be analyzed individually whereas we in an experiment often
only get a single number as the result. Similarly, it is often possible to partition the computed
property into various terms or in other ways to analyze the computed result in terms of
properties that cannot be measured experimentally. As an example, the electrostatics of a
molecule is commonly analyzed in terms of partial atomic charges, a property that cannot
be measured experimentally.

When presenting a method in computational chemistry, we are thus interested in three
different things: the theory behind the method describing which properties that can be
computed (at least in principle), the accuracy of the method, and finally, how the results can
be analyzed to provide further insights about the studied system. To stop after the second
step is a pity, then an accurate calculations is not more valuable than an accurate experiment
since it only provides "a single number".

1.2 Brief summary

The most fundamental way to describe a molecular system theoretically is with quantum
mechanics. In molecular quantum mechanics (quantum chemistry), we normally approx-
imate both nuclei and electrons as point particles, i.e. each particle has a mass, an electric
charge and possibly also a spin. Nevertheless, the molecular problem in quantum mechanics
is complicated and only the hydrogen atom (one nucleus and one electron) in a clamped-
nucleus approach (the nucleus is kept in a fixed position in space and has no kinetic
energy) has been solved analytically. The goal is to solve the Schrédinger equation for
molecular systems, but for many-electron atoms and all molecules this can only be achieved
by approximate models solved numerically. A major part of computational chemistry is
therefore devoted to approximate methods for calculating molecular energies and properties
including very accurate molecular-orbital methods to include electron correlation, methods
based on density-functional theory, and phenomenologically based force-field methods. If
the wavefunction of a molecule is known, however, all information about the molecule can
be extracted from its wavefunction. An introduction to computational methods in quantum
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chemistry is given in chapter 2.

Although we briefly introduce classical electrostatics in chapter 2, we are often interested
in the interaction between a molecular system and an electromagnetic field. The obvious
example is spectroscopy where the molecular system is perturbed by an applied electromag-
netic field and the response is measured. Another example is organic solar cells (e.g. Gritzel
cellswhere the light of the sun is absorbed by a photosensitizer and the excited electron is
separated from the hole leading to an electrical current. Also long-range intermolecular
interactions can be described in terms of electrostatics using the same basic concepts, i.e.
a molecule is interacting with the electrostatic potential, electric field, etc. arising from the
charge distribution of the surrounding molecules. The proper starting point of this branch
of molecular modeling are Maxwell’s equations.

At least historically, quantum chemical calculations are computationally too expensive to
be used for very large systems (thousands of atoms) or in molecular dynamics simulations
where the interatomic forces have to be computed repeatedly (perhaps millions of times).
This gap is filled by force fields, i.e. simple and approximate models for the molecular energy
as well as intermolecular interactions that is feasible for large-scale molecular dynamics
simulations. Force fields are here first introduced phenomenologically and subsequently
in a more systematic way by deriving each term in a force field from quantum chemistry. An
introduction to force fields is given in chapter 3.

A quantum chemical calculation gives in principle information about the properties of a
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Microscopic world: Macroscopic world:

Quantum mechanics Thermodynamics

Statistical mechanics

Ay = Ey S=kglnW U=sqtw
Classical mechanics ; Kinetics
F=ma 4B = k[ Al - k/[B]

Figure 1.3: Statistical thermodynamics provides the connection between the microscopic and the macroscopic
world.

molecular system at the temperature 0 K. To obtain properties for a liquid or solution for
example at room temperature and ambient pressure, we need to employ statistical thermo-
dynamics. Statistical thermodynamics (statistical mechanics is used as an equivalent term
in this text) is the theory that provides the link between the microscopic world described
by quantum mechanics (and sometimes classical mechanics) and the macroscopic world
described by thermodynamics and chemical kinetics (see figure 1.3). A key component of
statistical thermodynamics is the partition function and all thermodynamics properties of
a system can be provided from the partition function provided that it is known. This is
not the case for a realistic system as a molecular liquid, so the problem of calculating the
properties of a liquid is instead turned into a sampling scheme where liquid configurations
are sampled from the correct distribution (e.g. at a given temperature, pressure and density)
using molecular dynamics or Monte Carlo simulations. Another major part of computational
chemistry is therefore devoted to simulations of molecular liquids.

A chemical event, e.g. a chemical reaction or the absorption of a photon, is in most cases
local in space where the actual event involves perhaps 5-10 atoms whereas the total system
may consist of thousands of atoms as well as fast in time, often on the femtosecond scale.
Consequently, multiscale and multiphysics methods in theoretical chemistry have been
developed over the years.

In molecular informatics, which may be subdivided into chemoinformatics and bioin-
formatics, molecular properties are related to how the system functions (photovoltaic cell,
electrochemical battery, drug, etc.) by statistics without an underlying mechanistic model
and is therefore a separate branch of theoretical and computational chemistry.

Many of the grand challenges in chemistry today are strongly connected to severe problems
for our society, as for example a sustainable production of energy and electricity, clean water
and food production, the environment, and nano-scale devices for the next generation of
information technology. In all these cases, modeling on the atomistic scale have already
provided or can give substantial contributions.
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MOLECULAR QUANTUM MECHANICS

Quantum mechanics, together with statistical mechanics, is the foundation of theoretical
chemistry and molecular modeling. Quantum mechanics applied on molecular systems,
quantum chemistry, provides the chemical model for describing chemical bonds and
reactions, intermolecular interactions and molecular properties. Quantum chemistry also
provides the foundation for many less sophisticated (coarse-grained) models for describing
molecules such as force fields.

Previous knowledge in quantum mechanics is expected in line with an undergraduate course
in physical chemistry (see “Recommended Literature” at the end of the chapter), and many
of the sections in this chapter are regarded as repetition which is also reflected in the form of
the presentation. The goal of the first sections are to provide the fundamentals of quantum
mechanics and quantum chemistry needed in the forthcoming sections and chapters. For
a more complete presentation of quantum chemistry, specialized texts on the subject are
recommended at the end of the chapter.

2.1 The Schriodinger equation

The Schrédinger equation (Schrédinger 1926) is here presented as a hypothesis that has
proven to be incredibly useful, and we do not aim at giving a motivation for its existence
or the way it looks like. Knowing the solution to the Schrodinger equation provides all the
necessary information of a microscopic system at the temperature 0 K. The time-dependent
Schrodinger equation is given as

FAIGE R 3

(2.1.1)
where 71 = h/2m and h is Planck’s constant, ¢ is the time, ¥ is the wavefunction where 7; _ is
a short-hand notation for the position vectors of N particles, 7,7, ..., 7y. The Hamiltonian,
J?, is the energy operator and is divided into a kinetic energy operator, 9 ,and a potential
energy operator, 7, as

H=9 +7V . 2.1.2)

A

The kinetic energy operator, , is the sum of the kinetic energy operator of all particles in
the system,

R N _hZ )
g = V<, 2.1.3
izzizmi ’ (219

where m; is the particle mass of particle i, N is the number of particles, and Vf is the
Laplacian of particle i given in Cartesian coordinates as
2 2 2
2 0 0 0

l:ﬁ-'_@-i_@, (2.1.4)
l 1 1

Download free eBooks at bookboon.com



where 7; = (x;, ¥, z;) is the position vector in Cartesian coordinates. The potential energy
operator, ¥ (7y. ), is unique for each type of system, and in chemistry we are mainly
interested in the Hamiltonian for molecular systems which is discussed in section 2.2.

If the Hamiltonian is a function of only the spatial variables, 7;_y, and not of the time,
separation of variables is used to simplify the Schrodinger equation. The wavefunction
is thus written as the product of a spatial wavefunction, ¥ (7;_n) and a time-dependent
function, (1),

LG ELAGISLIOR (2.1.5)
which is plugged into the Schrédinger equation in eq. (2.1.1) leading to
1 100
— Y =ih——. 2.1.6
vV g5y (216

Since the left-hand side is a function of only 7,y and the right-hand side is a function of
only ¢, both sides have to be equal to a constant, identified as the energy E. This leads to the
time-independent Schrddinger equation for the spatial part,

Hy =Ey, (2.1.7)
and to a trivial solution for the time-dependent part,
0(1)=Ce ", (2.1.8)

where C is a constant. For most Hamiltonians (but not all), the solution to the time-
independent Schrodinger equation in eq. (2.1.7) is quantized,

FOU = EnWn, (2.1.9)

which is interpreted as that a quantum particle is in a state n with discrete energy levels
at E,,. Eq. (2.1.9) is an eigenvalue problem, where E,, are the eigenvalues and v, are the
eigenfunctions of the operator 2. The time-independent Schrodinger equation’ is solvable
analytically only for a few model systems, where some of them are discussed in appendix 2.A.

2.2 The molecular Hamiltonian

In quantum chemistry, a molecule is represented by n electrons and N nuclei, where an
electron has a charge —e and a mass m,, and a nucleus I has a charge Z;e and a mass m;.
Both the nuclei and the electrons are regarded as point charges, i.e. they have no extension
in space. The kinetic energy operator, 9, for a molecule is given by a trivial extension of
eq. (2.1.3) as a sum of the kinetic energy for all nuclei and electrons,

N _h2 _hZ

n
& _ 2 2
g = 2—v1+22 Vi (2.2.1)
1=1<Mp i=14Me
nuclei ele(?t?ons

!In the remaining part of the text, the time-independent Schrodinger equation in eq. (2.1.9) is referred to
as the Schrodinger equation. Also, the eigenfunctions in eq. (2.1.9), ¥, are referred to as the wavefunction. If
the time dependence is included, we will explicitly refer to the time-dependent Schrédinger equation and the
time-dependent wavefunction, respectively.
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ATOMISTIC MODELS MOLECULAR QUANTUM MECHANICS

The potential energy operator, 7, for a molecule is given by the Coulomb interaction
between point charges for all the nuclei and electrons,

. N o zizie2 AN —762 n e?
=y 22 L yy 22 Ly — (2.2.2)
=, dmegRyy 51 4TEoTT =1, dmegrij
J=141 N
“~————celectron-nucleus —— —_—
nucleus-nucleus electron-electron

which is thus divided into nucleus-nucleus, electron-nucleus and electron-electron interac-
tions. Here Z;e is the charge of nucleus I so that Z; is the atomic number of the nucleus,
e.g. Z; =1 for hydrogen and Z; = 6 for carbon, and e is the elementary charge so that the
charge of the electron is —e. We normally use capital letter subscripts, I, ], K, ..., to denote
nuclei and small letter subscripts, i, j, k, ..., to denote electrons. If the distance involves only
nuclei, it is denoted by R, whereas r is used if the distance involves at least one electron.
In quantum chemistry, it is common to use atomic units (instead of SI units), where some
constants are set equal to +1, see table 2.1. In atomic units, the molecular Hamiltonian for
the kinetic energy operator becomes

g--ly Ly ivz (2.2.3)
2mm o2 -
—_—— ——
nuclei electrons
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charge of electron: e = —1 | length: 1 bohr=0.529177 A

mass of electron: m, =1 | energy: 1 hartree =2625.4996 kJ/mol
h=h/2n=1 1 hartree = 27.2113845 eV
dmeg =1

Table 2.1: Atomic units. Constants set to +1 (to the left) and some common unit conversions (to the right).

and for the potential energy operator we get

N ZiZ n N -Z L
- I I
7=Y ZZ .y ¥ + Y = . (2.2.4)
=1, Ry i=11=1 Til i=1, Tij
J=I+1 ——— j=i+l
“———— electron-nucleus ——
nucleus-nucleus electron-electron
We can thus write the molecular Hamiltonian .™°! as
T = G+ Gyt Vo + Von + Ve (2.2.5)

i.e. the kinetic energy operators of the nuclei and electrons, respectively, as well as the
nucleus-nucleus, nucleus-electron and electron-electron Coulomb interaction operators.

2.3 Some basic properties of the wavefunction

We will essentially only list some of the basic properties of the wavefunction needed in
the forthcoming sections. For a more systematic introduction to basic molecular quantum
mechanics, see e.g. (Atkins and Friedman 2010).

According to Born’s interpretation of the wavefunction (Born 1926), vy, dt is interpreted
as the probability for a particle in state i to be in a volume element d7. Here, ¥ denotes
the complex conjugate of v, i.e. the wavefunction may be complex including both a real
and an imaginary part, however the probability ¥}y ; d has by construction only a real part
which is a requirement for an observable. Assuming that a probability for state i, p;(7), is
normalized, i.e. the probability to find a particle anywhere in space is 1, we have

p;dt = f yiy;dr=1, (2.3.1)

all space all space
and we refer to this condition as if the wavefunction is normalized. Here dr is the volume
element, which in Cartesian coordinates for a single particle is dr = dxdydz and in spherical

polar coordinates it is dr = r?sin(0) dr d0 d¢, respectively. In this text, the integration limits
are dropped if we integrate over all space so that

...dTEf...dT. (2.3.2)

all space

If we return to the time-dependent wavefunction in eqgs. (2.1.5) and (2.1.8) putting C to 1 in
eq. (2.1.8),

iEt

V() =we T , (2.3.3)
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we see that if ¢ is normalized, also W(¢) is normalized. If we in general have
Y (OP() =y, (2.3.4)

we refer to the state as being stationary. For an operator ), the expectation value, (Q);, is
defined as

“Qu.d
Q) = M , (2.3.5)

Jyiw;de

for a system in state i. For a normalized wavefunction, it becomes
Q) = f viQy,dr. (2.3.6)

If y; is an eigenfunction of Q,
“Qu.dt Qi [yiy,d
fwl ,(l/l T — lfwl wl T — Ql , (2.3.7)
Jyividr  Jyiyde

i.e. the expectation value is equal to the eigenvalue, Q;. Thus we can write the energy, E;, as
an expectation value of the Hamiltonian as

(Q); =

Ei= f v Ay, dr, (2.3.8)

for a normalized wavefunction. To simplify the notation, the Dirac bra-c-ket notation is
introduced,

WilQly ) = GIQ1)) Efwmu/j dr, (2.3.9)

where (y;| or (i| is the bra of state i and |y;) or |j) is the ket of state j. The molecular
Hamiltonian is hermitian, i.e. it fulfils

fw;ffzwjdr:f(fw,-)*wjdr, (2.3.10)

which leads to that its eigenvalues are real and that the eigenfunctions are orthogonal
(see exercise 2.1 to show this). Since energies, or to be more precise energy differences,
are measurable quantities and therefore the energies have to be real, it is a requirement
that the molecular Hamiltonian is hermitian. For orthonormal states (i.e. orthogonal and
normalized),

fu/;‘wjdrs Wily ) = (lj) = 65 (2.3.11)

where 6;; is the Kroenecker delta function (1if i = j; 0if i # j).

2.4 The Born-Oppenheimer approximation

In the Born-Oppenheimer approximation, the molecular wavefunction, 1//(}*?1,“1\;, T1..n), is
approximated as the product of an electronic, ¢, and a nuclear, ™, wavefunction,

W(ﬁl...Ny F1.n) = WEI(FI...n;El...N) Wnuc(ﬁl...zv) ) (2.4.1)
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V(R)

Figure 2.1: Sketch of a potential energy surface, V(R), for a regular diatomic molecule. The minimum of V(R)
corresponds to the equilibrium bond length of the molecule.

where wel is a function of the electronic coordinates, 7, _,, and depends parametrically on
the nuclear coordinates, }_fl._. ~.2 It means that we solve the Schrodinger equation for U/el fora
given molecular geometry, the clamped-nucleus approach. The corresponding Hamiltonian,
F¢ s given as

Zr &1 N 717

+ ) —+

i=1 iD= tin i3 rij = Ry
j=i+l J=1+1
= JetVen+VeetVun, (2.4.2)

i.e. the kinetic term for the nuclei is ignored in the clamped-nucleus approach as compared
to the molecular Hamiltonian in eq. (2.2.5). The last term on the right-hand side in eq. (2.4.2),
the nucleus-nucleus potential energy, becomes a “constant” contribution to the molecular
energy since the nuclear positions are regarded as parameters and not as variables in the
electronic wavefunction .. The Schrodinger equation for the electronic state i becomes

el el _ el el
YT =Sy . (2.4.3)

If eq. (2.4.3) is solved repeatedly for different molecular geometries, R, y, a potential energy
surface is obtained for each state i, E?I(le ~). Normally, we refer to the ground state energy
surface, 581 (R,_n), as the potential energy surface, V(R N),

V(RN =ed(Ri..N) (2.4.4)

where a typical potential energy surface for a diatomic molecule is depicted in figure 2.1.
The zero-level of the energy scale is normally shifted for V(R _N) as compared to 581 (R,_N)
so that V(RE; n) approaches zero for an infinite separation of two fragments, whereas
egl(ﬁl_“ ~) approaches zero for an infinite separation of all nuclei and electrons. We define
the Hamiltonian for the nuclei as

N

N 1 -

A=Y z—mlvﬁ +V(R..N), (2.4.5)
I=1

2Note the distinction between f(x,y) and f(x;y). In the first case, x and y are both variables, but in the
second case, y is a parameter, i.e. it has a single, constant value.
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and the corresponding Schrédinger equation becomes
Jgnucwrlguc — gzucwrlguc . (2.4.6)

By applying the Born-Oppenheimer approximation, we have thus separated quantum
chemistry into two problems: the electronic problem in eq. (2.4.3) solved for a given
molecular geometry, and a nuclear problem in eq. (2.4.6) where the potential energy surface
is obtained by solving the electronic Schrédinger equation for a set of molecular geometries.
In this chapter, we focus entirely on the electronic structure of molecules by discussing
methods for solving eq. (2.4.3). In a forthcoming chapter on molecular structure and
vibrational motion, we will discuss how to solve eq. (2.4.6).

2.5 Atomic orbitals

2.5.1 One-electron atom

The starting point for solving the electronic Schrodinger equation is the one-electron
atom. The position of the nucleus is regarded as fixed by adopting the Born-Oppenheimer
approximation in section 2.4. The Hamiltonian, A% for an electron interacting with a
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n | m name
l 01 2 3 4 5 1 0 O 1s
name |s p d f g h 2 0 0 2s
(a) Symbols used for the quantum 2 1 0,1 2p
number / (b) Solutions allowed for
n=1,2
Table 2.2: Notation for atomic orbitals
nucleus becomes in atomic units,
N 1 Z
A =22 (2.5.1)
2 r

where Z is the charge of the nucleus and r is the distance between the electron and
the nucleus. The Hamiltonian thus consists of a kinetic energy operator for the electron
and the Coulomb interaction between the electron and the nucleus. The solutions to the
Schrodinger equation is in spherical polar coordinates given as (see appendix 2.A.5)

Wnlml(r»ey ()0) = Rl’ll(r) Ylml (9! (P) ) (2-5-2)

where R;,(r) is a radial function and Yj,,,(0,¢) is a spherical harmonics. The solution
depends on three quantum numbers, the principal quantum number n and two angular
quantum numbers [/ and m;, which are restricted to the following integer values:

n=123,...
[1=0,1,2,...,n-1

m;=0,+1,42,...,+I

The naming convention for atomic orbitals is given in table 2.2, giving the notation of 1s,
2s, 2p, etc. orbitals. We thus have three 2 p-functions, normally denoted 2py, 2p, and 2p..
For n = 3, we get 3s, 3p (with the components 3py, 3py, and 3p;), and 3d functions. The
d-functions have five components, normally labeled dy, dx., dy., d,2, and d,2_ 2 Itis also
noted that the atomic orbitals form an orthonormal set of functions,

fw:;lml (r,H, (P) 1//n’l’m’l (I‘,H, (P) dr = 5nn’6ll’5mlm; . (2.5.3)
Each electron has a spin, with a spin quantum number, m;,
1
ms = iE . (2.5.4)

Each spatial atomic orbital in eq. (2.5.2), may thus accomodate two electrons without
violating the Pauli principle for fermions (each electron has a unique set of n, I, m;, and
mg). The electron configuration for an atom is given according to the Aufbau principle as for
example

He 1s°
Ne 1s%2s22p5
Cl 1s%2s22p53s22p° or Ne3s?2p°®
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2.5.2 Two-electron atom

If we next regard the Hamiltonian of the two-electron atom, still within the clamped-
nucleues approach,

~ el 1, Z2 1, Z 1
WA =—=Vi—-— Vi —+—, (2.5.5)
2 ri 27 rj Tij
v —
Hi <]f]'

where we have two electrons i and j interacting with a single nucleus. The Hamiltonian
consists of five terms: a kinetic energy for each electron, the Coulomb interaction between
each electron and the nucleus, and the repulsive Coulomb interaction between the two
electrons. If we as a first approximation ignore the electron repulsion, the Hamiltonian
becomes

N = 7+ 7 (2.5.6)
i.e. two one-electron Hamiltonians of the type in eq. (2.5.1) each with a solution given by
eq. (2.5.2). Denoting a one-electron wavefunction, an atomic orbital, with ¢;(7;), we may
anticipate that the Schréodinger equation becomes using variable separation

(72:+ 727) i P () = (1 £) pi P 7, 257

where ¢; is an orbital energy. Since electrons are fermions, they are, however, indistin-
guishable and the wavefunction has to be anti-symmetric with respect to the exchange of
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two electrons. If both electrons are put into the 1s orbital, an occupation denoted 1s?, the
wavefunction may as a first attempt be written as

w(i,j)=1s@)1s(j), (2.5.8)
where the notation 7; = i and 7; = j is adopted. In eq. (2.5.8), the electrons are
indistinguishable but the wavefunction is not anti-symmetric. It is the total wavefunction,
however, including also the spin in addition to the spatial coordinates, that has to be anti-
symmetric. Denoting a spin-orbital, y;(7;, s;),

Xi(Fi,si) = i(F)oi(si), (2.5.9)
where o; can be either a for m; = % or f for mg = —%. However, the wavefunction,

(i, j) =1s() a@@) x 1s(j) B(j), (2.5.10)

is not anti-symmetric (nor are the electrons indistinguishable). Constructing the following
linear combinations of the spin-functions,

1
7 (a@B()+a()Bi))  symmetric,
% (@@ B(j) —a(j)Bi))  anti-symmetric,

gives a symmetric and an anti-symmetric spin-function. Here it is assumed that the spin-
functions are orthonormal, i.e.

(@B =0b6apbij, (2.5.11)

giving the normalization factor, 1/v/2, above. The wavefunction,

y(i, j) = 1s(D1s(j) x — (a@B() — a(HBW) , (2.5.12)
V2
is thus acceptable since the wavefunction is anti-symmetric and the electrons are indistin-
guishable and in line with our chemical picture that the helium atom has a 1s? configuration
with a spin-up and and a spin-down electron given schematically in figure 2.2a with two
electrons in the orbital with the lowest energy. For an excited state of He, e.g. 1s(1) 25(2), see
figures 2.2b and (c), the spatial part of the wavefunction becomes

% (Ls()2s(j) = 1s(j)2s(D) , (2.5.13)

where the plus sign gives a symmetric function and the minus sign gives an anti-symmetric
function. If they are then combined with appropriate spin functions, anti-symmetric
wavefunctions can be constructed for both the singlet state and the triplet state.
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Figure 2.2: Some electronic states for the He atom

2.5.3 n-electron atom

Generalizing to an n-electron atom, a Slater determinant (Heisenberg 1926, Dirac 1926,
Slater 1929),

Y1) x21) - xn(D)
1 | X112 x202) - xn2)
=— . ) . ) (2.5.14)
L] E
x1(n) xo(n) --- xn(n)

gives the correct symmetry of the wavefunction as expressed by spin-orbitals.

2.6 Molecular orbitals

A fundamental approximation in molecular orbital theory is to construct molecular orbitals,
@i, as alinear combination of m atomic orbitals, ¢, the LCAO approximation,

m
0i=) cijdj, 2.6.1)
j=1

where ¢;; is an orbital coefficient. For the hydrogen molecule, H,, a molecular orbital, o;
(where o indicates that itis a 0-bond), may be written as a linear combination of two atomic
orbitals, a 1s orbital for the first hydrogen atom, 154, and a 1s orbital for the second hydrogen
atom, 1sg,

ogi=cialsa+ciglsg. (2.6.2)

Using only two atomic orbitals for the hydrogen molecule, the solutions may be found
trivially by regarding the symmetry of the molecule. If the two nuclei are placed at (x,,0,0)
and (—x,,0,0), respectively, the probability to find an electron in x and —x will be equal
because of symmetry reasons. Assuming real wavefunctions,

i) =yP(-x), (2.6.3)
which has two solutions, a symmetric and an anti-symmetric solution,

y(x)=y(-x) and y(x)=-v(-x). (2.6.4)
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Figure 2.3: Molecular orbital diagrams of the hydrogen molecule

Thus, 154 and 1sp are two identical functions (atomic orbitals), centered around x, and —x,,
respectively. Furthermore, c4; = cp; or c4; = —cp;. If the atomic orbitals are orthonormal,
see eq. (2.5.3), orthonormal molecular orbitals are given by

Ug:L(18A+153) and Uu:i(lsA—lsB)» (2.6.5)

V2 V2

where o (the subscript g denotes gerade, German for even) is a bonding o-orbital and o,
(the subscript u denotes ungerade, German for odd) is an antibonding o-orbital. Following
the Aufbau principle, the orbital with the lower energy o, will be doubly occupied (two
electrons with opposite spin), whereas o, is unoccupied.

In general, the molecular wavefunction may be written as a Slater determinant of molecular
orbitals. For a molecule with n electrons, g molecular orbitals are occupied (two electrons
with opposite spin in each molecular orbital), whereas the remaining molecular orbitals are
unoccupied. As an example, the ground state of the hydrogen molecule, ¥, may thus be
written as a Slater determinant of the occupied spin-orbitals,

1
Wo—ﬁ

X1 x2(1)

1
x12) x2(2) =—(1Dr@-n@r0), (2.6.6)

V2

where y1(j) = og(ja(j) and x2(j) = 04(j)B(j) and the wavefunction is normalized.
Molecular orbitals may be depicted in molecular orbital (MO) diagrams, given for the
hydrogen molecule in its ground state in figure 2.3a. If we regard the triplet state of the
hydrogen molecule, the MO diagram is given in figure 2.3b, the wavefunction, ¥, becomes

1
1//1—@

xi@ xs)
X12) x3(2)

1

V2

og(Ma(l) oyMa(l)

0,2)a2) o,2a2) |’ (2.6.7)

where we have used the notation y3(j) = o,(j)a(j).
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2.6.1 Energy of the hydrogen molecule

The electronic Hamiltonian for the hydrogen molecule is

N 1 1 Z V4 Z Z 1 ZuZ
A=y A4 2B 2B, AT (2.6.8)
2 2 "a T2a T T2 T2 Rap
which we rewrite as
0 1 ZuZp
S = SO+ A+ — + , (2.6.9)
"2 Rap
where the one-electron term, J?,-, for electron i is given as
N 1 Z Z
in:__vg__A__B, (2.6.10)
2 riA TiB
We introduce
ZaZg
Eo = Eo(1) + Eo(2) + Ep(1,2) + T (2.6.11)
AB

where the last term on the right-hand side is a classical Coulomb energy between the two
nuclear charges. For the one-electron contribution to electron 1, we get for the ground
state of the hydrogen molecule in eq. (2.6.6), using the expectation value for the energy in
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eqg. (2.3.8) (see exercise 2.3),

Eo(1) = (wolAlyo)
1 . .
= (o) + eIAI00)

= (og()| A |og(D)) . (2.6.12)
Analogously, )
Eo(2) =(0g(2)|#2l04(2)) . (2.6.13)

The two-electron term, Ey(1,2), becomes (again see exercise 2.3)
Ey(1,2) = (ag(l)ag(Z)lélag(l)ag(ZD , (2.6.14)
which may be rephrased as
Ey(1,2) = fag(l)az,@)éag(l)ag@) dr = fp(l)ép(Z) dr, (2.6.15)

where we in line with Born’s interpretation in eq. (2.3.1) relate the electron density for a
molecular orbital as p(j) = o*(j)o(j). Thus, E(1,2) is interpreted as a Coulomb interaction
between two charge distributions and these Coulomb terms are normally denoted as J; ;. We
therefore rewrite eq. (2.6.11) as

ZaZp

Eo=Hi+Hy+ Ji2+ ) (2.6.16)
Rap

where we also have adopted the notation H; = Ey(j) for the one-electron terms.

In addition, the energy of the triplet state of the hydrogen molecule, see eq. (2.6.7) for its
wavefunction, is obtained (see exercise 2.3). The one-electron terms become analogous to
the ground state,

1 N N
Eij) =3 (g Zjlog (D) + @uDIA o)) (2.6.17)

but the two-electron term, E;(1,2), becomes

1 1 1
E(,2) = 5(<ag(1)au(2)|—2|ag(1)au(2)>+<au(1)ag(2)|a|au(1)ag(2)>)

[ rl "
Ji2
1
= (040 2)—log)ouD) . (2.6.18)
12
Kiz

Again, the first term on the right-hand side is interpreted as a Coulomb interaction, J;j,
whereas the second term is referred to as an exchange integral and is denoted as K;;. The
energy for the triplet state of the hydrogen molecule thus becomes

ZaZp

Ey=Hi+Hy+J12— K2+ . (2.6.19)
Rup
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Since an exchange integral, K;j, has a positive sign, it means that the triplet state in eq. (2.6.7)
has a lower energy than the corresponding excited singlet state,

1 | gg(Mad) ouMBM)

V2| 0g@a@ 0,282 |’ (2.6.20)

Yo =

and the interpretation is that the electrons are more delocalized when the system is in the
triplet state.
2.6.2 Energy of a Slater determinant
The Slater determinant in eq. (2.5.14) is rewritten as
¥) = AN x2(2)... xa(n)) (2.6.21)

where o is the antisymmetrizing operator generating the correct Slater determinant by
operating on the direct product of spin-orbitals. </ is given as

A

1 n-1 p (D) 1 . n n . ) n n n . )
o = — NP =—11- 9P+ o -, (2.6.22)
n! pg'o( ) vn! i:zlj;i;rl & 2202 ik

i=1j=i+1k=j+1

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 50 UNIVERSITIES UNDER 50
Interested in Strategy and Management in International

Organisations? Kick-start your career with a master’s degree
from Linképing University, Sweden.

A[{ Linkdping University

Download free eBooks at bookboon.com

Click on the ad to read more

19


http://s.bookboon.com/liu

where 1 is the identity operator, Pff’l(]” is a permutation operator permuting the coordinates
of two electrons i and j,

P2 iOx ) = O xi () - (2.6.23)

)

.. 8ives all possible permutations of the coordinates of three electrons,

Analogously, ?}7’1(]2

PO 1Dk = L@ e (xR + 1 D (D (R) (2.6.24)

etc. By convention, we order the orbitals in the direct products in egs. (2.6.23) and (2.6.24)
by the label of the electronic coordinates. It can be shown that «f commutes with ./,

[w‘%] — AT T =0, (2.6.25)
and that
Ad =Vnld . (2.6.26)

Egs. 2.6.25 and (2.6.26) are derived in exercise (2.4). We rewrite the electronic Hamiltonian
in eq. (2.4.2) in line with eq. (2.6.9) as

n n n
V=T A Vo + Voo + Vpn =Y B+ Y &G, ) +Vnn, (2.6.27)
. L L

i.e. the one-electron term £(i) is the motion of electron i in the potential of all the nuclei
and includes thus the f’fe and 77,,3 terms and g(i, j) is the two-electron term including the
electron-electron Coulomb repulsion term Vpe. The energy of the Slater determinant in
eq. (2.6.21) is given as

Ey = (ylA2%y)
= (A Wx2@) ... xn (AN A x1 (D y2(2)... xu(1))
= Vi Wy2@) ... xn AL x1 (D yr2(2)... xn(m)

n—-1
= Y D7 nWpe@) . xnIAZNPP 1 (D)) xn(m)y . (2.6.28)
p=0

The nucleus-nucleus Coulomb operator, 7,,,,, only depends on the nuclear coordinates,

W VW) = Vanwly) = Vo, (2.6.29)

where we have used that ¥ is normalized. V,,, is thus reduced to a classical Coulomb
interaction energy as in eq. (2.6.11) for the hydrogen molecule. Using that the spin-orbitals
form an orthonormal set, only the identity operator 1 in the expansion of o in eq. (2.6.22)
gives a contribution to the energy of the one-electron operator h(i), e.g.

Q1D r2@) ... xnWIEO 11 D) x22). .. ¥ (1))
QMA@ 1 WY 2@ 1x2)) ... rn (1) Ly n (1))
G MIAM 1) = hy . (2.6.30)
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For the one-electron operator, all energy terms including a permutation gives zero, e.g.

G WE2@) ... xnWIADIPD x1 (D 2(2) ... Y0 ()
= (MR Y2 @31 @) ... (M (m) =0, (2.631)

where the second term on the right-hand side with the integration over the coordinates of
electron 2 is zero because of the orthogonality of the spin-orbitals 1 and 2. For the same
reason, only the identity operator 1 and the two-electron permutation operator @i(]l.) in
eq. (2.6.22) give contributions for the two-electron operator g(i, j). The term for the identity
operator for electrons 1 and 2 becomes

1MW x2)x33) ... xn (M1, 2)Ix1 (M x2@)x3(3) ... xn(1)
1M x2@)18M,2) I x1 (W x2@N <@ x3B) ... xn(MW)xn(n))
1M x22)18(1,2)Ix1 (W x22)) = 12, (2.6.32)

and is referred to as a Coulomb integral in line with eq. (2.6.15) for the hydrogen molecule.
The second term for 3?’1%) becomes

1D x2@)x33)... xn(MIE(L,2IPE 11V x22)x3(3)... xn(n))
122180, 2) [ x2(Mx1@) A3 B3B3 ... (Xn (M) xn (1))
(22181, 2)[x2(D11(2)) = Kiz, (2.6.33)

where Kj» is denoted an exchange integral in line with eq. (2.6.18). The combination of Slater
determinants and orthonormal orbitals to reduce the molecular energy into a sum of one-
and two-electron integrals is referred to as the Slater-Condon rules (Slater 1929, Condon
1930). In egs. (2.6.32) and (2.6.33), we put electrons 1 and 2 in orbitals 1 and 2, however
we integrate over the electronic coordinates so the electrons could have had any labels. We
can therefore drop the electron labels and write the Coulomb and exchange integrals as

Jiz = xaxelglxixz) and Kz = xix218lx2x1) » (2.6.34)

respectively, but where we now have to be observant on the order of the orbitals in the
integrals. The energy in eq. (2.6.28) may thus be written as

EO:ZhiJrZ Z (]ij—Kij)+Vnn, (2.6.35)

where the minus sign for the exchange integrals arises from the (—1)” factor in eq. (2.6.28).
Utilizing that the self-interaction J;; is exactly cancelled by Kj;, see egs. (2.6.32) and (2.6.33),
eq. (2.6.35) is rewritten as

n n
Z > (]ij - Kij) + Van - (2.6.36)

For a closed-shell system, we put two electrons in each spatial orbital but with opposite spin.
As an example, we take

M =¢iMa) and y2(2) = ¢ 2)F2) (2.6.37)
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Let us compute the exchange integral in eq. (2.6.33) for this pair of orbitals,

K1, 1Myx22)18Q,2)1x12) x2(1))

(1M P2(2)18(1,2) 1 (2) 2 (D) a(D)IBM){a(2)If(2)) =0 (2.6.38)

which becomes zero because of the orthogonality of the spin functions, see eq. (2.5.11).
Therefore half of the exchange integrals in eq. (2.6.36) vanish so that

n/2 nl2nl/2

Ey=2) hi+Y Y (2)ij-Kij) (2.6.39)
i=1

i=1j=1

where the sums now run over the number of doubly occupied orbitals.

2.7 The variational principle

Variation theory is a method to obtain approximate solutions to the Schrodinger equation.

We denote the exact wavefunction with y; and an approximate trial function by ;. The

exact eigenenergies are denoted E;. The energy of the trial function, E;, is written as an

expectation value,

5, = il
Wilyi

which is termed the Rayleigh ratio. The variation theorem states (shown in exercise 2.5)

) (2.7.1)

Ey=E, forany choice of /; , (2.7.2)

where the equal sign holds only if the trial function is equal to the exact wavefunction.
Consequently, the energy serves as a measure of how good the trial wavefunction is, and
we search for a trial function with the lowest possible energy. An important use case of the
variational principle is when the trial function is expanded in a set of m functions, ¢,

m

Yo=Y cpPp, (2.7.3)
p=1

where ¢y, is a coefficient to be determined. The Rayleigh ratio in eq. (2.7.1) becomes

m

YL cpcqHpg
~ p,q=1
Bo=—p—

(2.7.4)
Y CpCqSpq
p,q=1

where we have used the notation H,; = ((,b,,lJ?l([)q) and S,; = (Ppldy), respectively.
Applying the variation theorem in eq. (2.7.2) to this trial function leads to the following
conditions

=0 Vr. 2.7.5
3c, r ( )
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The result is obtained as a secular equation (see exercise 2.6)
m ~
Y cp(Hpr = EoSpr) =0 vr, (2.7.6)
p=1

which is fulfilled if its secular determinantis zero (also see exercise 2.6),
IH-EyS|=0, 2.7.7)

where H), is a matrix element of H and S, is a matrix element of S. This method is termed
the Rayleigh-Ritz method.

2.8 Perturbation theory

2.8.1 Time-independent perturbation theory

Rayleigh-Schrodinger perturbation theory (RSPT) is introduced (see e.g. (Hirschfelder et al.
1964)). The purpose is to solve the eigenvalue problem for the Hamiltonian, ./,

i) = (Ao + A7) Iy = exlye) (2.8.1)
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where the Hamiltonian is divided into two parts, Ay and A Tt is assumed that the solutions
are known for the unperturbed Hamiltonian /5,

Holy?y =y, (2.8.2)
whereas ., is regarded as a perturbation and A is an order parameter. It is thus implied that

JCPI in some sense is small compared to JZ”O and thus that the zeroth-order wavefunction,

1//560), is also relatively close to the exact wavefunction, . Both the wavefunction, ¥, and

the energies, €, are expanded in A as
er=eP 4+l +2%P +.. and  lwp =y + Ay 22w+, (2.8.3)

where Iw(")> and sgcn) are the nth order corrections to the wavefunction and the energy,
respectlvely We proceed by putting eq. (2.8.3) into the Schrédinger equation in eq. (2.8.1),

(‘]204”1‘7?1)(|W(°)>+/llw(”>+/12|w(2)>+...) _

( 01 26D 1 1262 4 )(|W(°)>+MW(D>+/12|U/(2)>+---) _ (2.8.4)

This equation must hold for each order n in A" leading to for the lowest orders:

n=0 JLD |w(0)> _ E(O) |w(0)> (2.8.5)
n=1 Feoly'\y+ A1y = 5(0) Dy + e 1y (2.8.6)
n=2 Holy'?y + 1wy =eQ@)y+ Lyl + POy, (2.8.7)

i.e. the leading term in the expansion is the zeroth-order solution in eq. (2.8.2). The
normalization of w(m) is chosen according to intermediate normalization as

Wy =6 . (2.8.8)

The energy for each order n are obtained by projecting egs. (2.8.5)—(2.8.7) by (w(O)I, then
using eq. (2.8.2) and applying the condition in eq. (2.8.8), which leads to

n=1 (1) <w(0)|% |w(0)> (2.8.9)

n=2 (2) = @1 A1yD) . (2.8.10)
The first-order correction to the energy, 8;61), is given as the expectation value of the
perturbation operator, ;. For obtaining a first-order correction to the wavefunction in
Rayleigh-Schrodinger perturbation theory, it is expanded in the spectrum of the unper-
turbed wavefunction,

(1)> _ Z C(l)|1//(0)> (2.8.11)
and by projecting with <1//(0) |, we obtain
<w(0)|w(1)> _ C](cl]) ) (2.8.12)
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The intermediate normalization condition in eq. (2.8.8) gives that c(l) 0, which leads to

(1)> _ Z |1//(0)><1//(0)|1// ). (2.8.13)
j#k

Furthermore, eq. (2.8.6) is rewritten as
(ggco) ) |1//(D> _ (ng (1)) W(O)) 2.8.14)
which is projected by (w;o)l giving
(EECO) (0)) (w(o)lw(”) = (w(O)Iffllw(o)> forall j apart from j=k. (2.8.15)

Thus c,(clj) in eq. (2.8.12) becomes

o _ W) _
k J

The first-order correction to the wavefunction in eq. (2.8.13) may thus be written as

<w(0)|€]£ |w(0)>
W(D)— Z o (0)_|w(0)> (2.8.17)

Egs. (2.8.10) and (2.8.17) are combined to give the second-order contribution to the energy,

<w(0)|% |w(0)><w(0)|(% |1l/(0)>
2 _ (0) (1)
e =AW Z 0,0 : (2.8.18)
j#k k j

Also the second-order correction to the energy, € (2) , is thus given in terms of the solution

to the zeroth-order problem in eq. (2.8.2). From eq (2.8.18), it becomes, however, apparant

where Rayleigh-Schrédinger perturbation theory fails. When sgco) (O), eq. (2.8.18) diverges.

2.8.2 Time-dependent perturbation theory
We consider a time-dependent Hamiltonian, ]?(t), partitioned as
FO(t) = Hy+ VA (1) (2.8.19)

where #, (1) is a time-dependent perturbation and A is an order parameter as in eq. (2.8.1).
Jy is the time-independent Hamiltonian for the unperturbed system for which the
wavefunction is stationary (see eq. (2.3.4)),

PO () =e i 1Dy = e~ 10nt |y 0y (2.8.20)
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where we introduced w, = 85?)/ h in the last step. The solution to the time-independent

Schrédinger equation in eq. (2.1.9) is known for the Hamiltonian .7,
Hooly' Dy = Oy @y (2.8.21)
where 1//5,?) forms an orthonormal set (see eq. (2.3.11)),

We also assume that before the perturbation is turned on (chosen as ¢ = 0), we are in state p
so that

W) = ly}y)) . (2.8.23)

The evolution in time of the wavefunction W (¢) is given by the time-dependent Schrodinger
equation in eq. (2.1.1),

ih%l‘l’(t)) =D (1) . (2.8.24)

We proceed by expanding the wavefunction W (#) in the solutions of the unperturbed system,

W)=Y anYL (@)=Y an()e |y, (2.8.25)

n=0 n=0
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where we used eq. (2.8.20) and a,(t) are time-dependent coefficients to be determined. We
combine egs. (2.8.25) and (2.8.24) leading to

PAG) Z an(H)e”nt |w(0))—1h Z an(D e nt |y )y (2.8.26)
n=0

Using eq. (2.8.19) and the dot notation (Newton’s notation) for time derivatives,

. day,(1)
= 2.8.27
an(1) T ( )
we get
Y (eRanre o y) + anAA e [y =
=0
" o0
Y (1han(t) e i0nl |y Oy 4 £ O g (1) e int |1,u(°)>) (2.8.28)
n=0
where two of the terms cancel each other. Projecting by
PO (1)) = (0| elom! (2.8.29)
gives
Z an(OW QA (0w e Omnt = ihay (1), (2.8.30)

where v, = w,; —w, and we have used the orthonormality condition in eq. (2.8.22). We
expand the time-dependent coefficients a;(¢) in the order parameter A,

o . .
an(t) =Y AMaP (). (2.8.31)
i=0
After substituting eq. (2.8.31) into eq. (2.8.30), the resulting equation has to hold for each
order of A',i = 0,1,...,00. For i = 0, we get the unperturbed and time-independent
wavefunction so a') = 5 pn from eq. (2.8.23). For i = 1, we get

ina) (r) = Za(")(w("’(t)liﬁ(r)lww) fomnt = 76 (1) ly Py elomet (2.8.32)
n=0

where we in the last step have used that a'> =

that the perturbation is turned on at t =0, as

8 pn. We can integrate this equation, assuming

ay) (1) —al)(0) = f WAy Dy elom ! dr (2.8.33)

where a )(O) 0is glven by the initial condition at £ = 0 in eq. (2.8.23) and a(o) 0) =6 mp. If
A, (1) is of the form 2, (t) = ¥ f(t) where ¥ is independent of time and f(#) is a function of
time only,

al) (1) = <w“’) 750 f feyelemt qp . (2.8.34)
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Figure 2.4: The probability versus w. It is noted that the central peak grows as t> and narrows as 1/t.

(,
G2
If the wavefunction in eq. (2.8.25) is normalized,

f‘P*(t)\P(t) dr= ) lam(0F=1, (2.8.35)

m=0

where |a,,(£)|? has the interpretation of being the probability, P, (%), of the system being
in state m at time ¢ if it was in state p at t =0,

Ppm(D) =lam(D*. (2.8.36)
Further developments depend on the form of f(#), where examples are Fermi’s golden rule

in section 2.8.2.1 and the frequency-dependent polarizability in section 2.9.4.

2.8.2.1 Fermi’s golden rule

Ifitis assumed that the perturbation, J?l (1), is independent of time apart from being turned
on at t = 0, we have from eq. (2.8.34) that f(¢’) = 1 leading to (see exercise 2.13)

WV y)y elompt —1
h Omp

all(n = m#p. (2.8.37)

Utilizing eq. (2.8.35) to first order in A, we get (see exercise 2.14)

=201
sin (zwmpt)

P () =1al) (0 =4l 17 1y 17 , m#p, (2.8.38)

w5,
which is the first-order probability for the transition from state p to state m. This probability
is shown as a function of w,;, in Figure 2.4, where the most likely transitions are to states
whose energies lie under the central peak. Since this peak is given by the first zeros of sin(x),
the energies of the most probable states satisfy

2nh
h(l)mp = |Ep —Enl< T . (2.8.39)
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Furthermore, it is supposed that there is a continuum of states around state m, and that we
would like to know the probability of the transition into this group of states rather than into
a single state m. Let us assume that I(u/(o) |7/|w(0)> |2 is a smooth and slowly varying function
of m and let p(E,;) be the density of states around E,,. The probability of a transition from
state p to a state around m becomes
pl
si? (2224

wmp
2
where dE;, = hdwy, and the asterisk indicates that we integrate only over a small region

around E,,. For large enough ¢, the central peak will include all the states around E,,. If
we also assume that p(E,,) is a slowly varying function of E,;,, we get

(22
)

For large t the area under the central peak is essentially all the area and we can extend the
limits to oo and use

P (0 =y T Iy )P f p(En) dE, (2.8.40)

PO (1) = 1 Q17 1y D) P p(En) f dE, 2.8.41)

(e 0] )
f St z(x) dx=n (2.8.42)
X

—00
The probability is written in terms of the transition rate I'" as
1
P (=T (2.8.43)

so that
O 2
I(u/ |7/|1// NG P(Em), where |Ej, — Ep,| < al (2.8.44)

which is known as Fermzs golden rule. A similar result may be obtained by noting that as ¢
becomes large the probability in figure 2.4 becomes more and more peaked around E;;, = Ej,.
Since it has the total area 27 ¢/, it therefore approaches %5 (Ep — Ej) apart from negligible
oscillations in the wings. We thus have

|<w(°) 71\ P8 (E)p — Em) (2.8.45)

as an alternative form of Fermi’s golden rule.

2.8.3 Use cases for perturbation theory

In this text, we will use perturbation theory in several different ways. In general we partition
the Hamiltonian /# in eq. (2.8.1) into

= Hy+ AN, (2.8.46)

where we can solve the Schrodinger equation for 4, and we regard 4, as a perturbation.
The first application area is presented in section 2.9 when #j is the molecular Hamiltonian
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in eq. (2.4.2) and 2 is the interaction with an electric field, i.e. the perturbation in
eq. (2.8.46) is a physical perturbation of the system.

Secondly, if we are not able to solve the Schrodinger equation for the Hamiltonian .# but
instead we have a solution for an approximate Hamiltonian ./, we can regard the difference
between the exact and the approximate Hamiltonian as a perturbation,

SO, = A — Fy (2.8.47)

and apply perturbation theory to include corrections to #. The typical example is that we
cannot solve the Schrédinger equation for the molecular Hamiltonian in eq. (2.4.2). Rather
we introduce the Hartree-Fock approximation as in section 2.10, and in section 2.12.2 we
use perturbation theory to correct for the Hartree-Fock approximation in Moller-Plesset
perturbation theory.

Finally in a very similar use case, we do a Taylor expansion of the Hamiltonian around -,

A N X1 A
H =+ ) E)L”an , (2.8.48)
n=1""

where we again assume that we can solve the Schrédinger equation for /%, and we include
J¢, as perturbations order by order. Here the standard example is vibrational motion
in molecules where we do a Taylor example of the potential energy surface, and #j is
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the harmonic oscillator, given for a diatomic molecule in appendix 2.A.2, and the leading
correction from perturbation theory arises from the anharmonicity of the potential energy
surface.

2.9 First and second-order electric properties

2.9.1 Multipole expansion

The starting point is classical electrostatics where we regard a set of point charges interacting
with a test charge. The interaction energy, V, between a charge distribution described by a
set of N point charges, g;, and a test charge, g; is given by Coulomb’s law as (using atomic
units)

N .

v=y 4t (2.9.1)

i-1 Rit
where R;; is the distance between particles i and ¢t. Note that the Coulomb interactions
within the set of NV point charges are not included in eq. (2.9.1). The electrostatic potential
in a point ¢, ¢y, is defined from the interaction energy V obtained by placing a test charge g,
in point ¢,

V= qdiPz (292)

which leads to the following definition of the electrostatic potential in point ¢ from the
charge distribution,
N g
0=y = (2.9.3)
i=1 vt
Consequently, the electrostatic potential at point charge i, ¢;, arising from the test charge,
t, is given as
_a
Ri;
so that the potential energy can be written as

(2.9.4)

i

N
V=> 9iq;. (2.9.5)
i=1
The next step is to carry out a multipole expansion, i.e. a Taylor expansion of the electrostatic
potential at each point i around a common origin where it is assumed that |Ro;il < | R0l for
the Taylor expansion to converge rapidly. For a Taylor expansion in Cartesian coordinates,
the electrostatic potential at particle 7, ¢;, becomes (see figure 2.5)

q: _ q:
IR;il IR0+ Roil

Yi =

1
= @o+R;aViapo+ ERi,aRi,ﬁvi,,BVi,a(PO +...

1

N (1)) P Y o op. Q)

= ¢, +Rlﬂ‘/’o,a+ERl,aRlyﬁ‘/’o,aﬁJ“'
1

= (m)
= L ﬁRi,al“'Rivam‘P(Tal...am’ (2.9.6)

m=0
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Figure 2.5: Molecular multipole expansion. For each particle (electron or nucleus) i, a Taylor expansion of the
electrostatic potential is carried out around a common origin Rp. Note that R; is used to denote a point so that

the distance vector is given by (Ei - ﬁo). In general, the explicit reference to the origin is however dropped

and thus R; may be interpreted both as the point and the distance vector. The explicit reference to the origin
is only needed in a few cases, for example to investigate the origin dependence of molecular properties (see
exercises 2.7 and 2.8).

where ¢ (also written as (pg))) is the electrostatic potential evaluated at the origin R given
as ¢;/|R;0 and (p(’”) .. 1s the mth derivative of the electrostatic potential with respect
to a Cartesian coordinan{e x, y or z calculated at the origin O. The Einstein summation
convention is used for the subscripts a and  denoting the Cartesian coordinates x, y and
z. In the last line of eq. (2.9.6), a special notation is used for m = 0, where the whole term
is reduced to (p(O) Using the Taylor expansion of the electrostatic potential in eq. (2.9.6), the
interaction energy, V, in eq. (2.9.1) becomes

N
vV = ZCIi(PO+QiRi,a(P8)a+ ~4qiRiaR;, ﬁ(pg)aﬁ
i=1

N N
= (Z ql)(po-F(Z qiRi,a)(Pg)a+_(Z qul och ﬁ)(pg) ﬁ

i=1 i=1

1
_ (1) 1 (2)
= 4™po+uy"0p), + 5Qap Poap
- ( ) (m)
— m m
= Z MY o @O (2.9.7)
m=

where an electric moment of order m, Mé’ﬁ?.am, is defined as

N m
Mg, ZM,"Z)I an= L0 1] Ria, (2.9.8)
ol

In particular, the charge, g (m = 0), the dipole moment, i, (m = 1), and the second moment,
Qqp (m = 2), are defined as

N N N
G=).di, Ha=) diRia, Qap=) qiRiaRip. (2.9.9)

i=1 i=1
The electric field, Ej,, in point k is defined as minus the gradient of the electrostatic
potential in the same point k,

Eta =0 (2.9.10)
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which is consistent with the definition of the force as F, = —V,V, so that the electric field is
the force acting on a particle with unit charge. The electric field gradient, Ey qp, is trivially
defined as

2
Etap = ~Plonp (2.9.11)

and in general the m-th derivative of the electric field, Ey q,..q,,, is defined as

Etaram=—Ppos o - (2.9.12)

The interaction energy in eq. (2.9.7) is written in terms of the electric field as

x© 1
V=qpo— Z ol

m=1 .

M plm ) (2.9.13)

a1...0m " 0,ay...am,

The electrostatic potential at the origin, ¢, from a point charge, g;, is given by using

eq. (2.9.4) as
90 =a-= g, TORop), (2.9.14)
Rot

where the T-tensor (or interaction tensor) of rank 0 is defined as

1
TOR;) = = (2.9.15)

ij
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We now introduce the more compact notation,
TOR) =T} . (2.9.16)

The gradients of the potential as well as the electric field and its gradients are thus obtained
from the gradients of the T-tensor. The T-tensor of rank 1 is defined as

1 -Rjj
1 . 0) _ . _ l,a
Tij,a =Vja Tij = Vj,oc—Rij = (2.9.17)
1]

where R; o is a component of the vector connecting particles i and j, R;j o = Rjq — R a-

Example 2.1: Force on a point charge

Since the potential energy V for a charge g; in an electrostatic potential ¢ is given by
eq. (2.9.5) as V = q;¢;j, the force F; 4 is given as

Fja=-VjaV=qjEja (2.9.18)

where we in the second step have used the definition of the electric field in eq. (2.9.10),
the electric field is the force on a point charge with the value +1. If the electrostatic
potential arises from a charge g;

Fja=-V}aqi Ti(;.)) qj=-aiT};. 4 (2.9.19)
so that
1
Eja=-aiT}}, (2.9.20)
Since R;joa = —Rjj o, we have
1 _ 1)
T3y =T (2.9.21)

The T-tensor of rank 2 is consequently given as

3RijaRijp—Bapk;;

Ty 00 = VibTi e = 25 , (2.9.22)
i
where 6 4 is the Kroenecker delta function. The T -tensor is traceless,
Ty e = Tt iy + Tir = 0. (2.9.23)
We also have
Ts.»’)aﬁy - _% 15R;j,oRijpRijy —3R;; (Ri ja0py +RijpOay+Ri maaﬁ)) , (2.9.24)

1]
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and

1
4) —
T¢ = (105R;j, o RijpRijyRijs
L
~ 1587 (RijaRijpy0 + RijaRijg®po + RijaRijo0py

+ RijpRijy0as+ RijpRijs0ay+ Rij,yRij,65aﬁ)

+ 3R}, (0apOys+ Saylps + 5a55ﬁy)) . (2.9.25)
In general, we have
1
(n) —
i]”l,al...an - vj,an . 'vaal R_z] (2.9.26)

Egs. (2.9.21) and eq. (2.9.23) are generalized to

T = (=T and T =0. (2.9.27)

jiay..an ijay..an ij,a1..0mam...ap

Normally, the second moment in eq. (2.9.9) is instead given as its traceless counterpart, the
quadrupole moment. As an illustration, the interaction energy, V, between a test charge, q;,
and the second moment of the charge distribution is regarded,

1
V= 2Q0.apTopqpd: - (2.9.28)
A constant contribution, A, is added to each of the diagonal terms of Qg 4,

Qo,ap = Qo,ap+Abap (2.9.29)

The modified interaction energy, V, becomes
V:V+§A6aﬁTOtyaﬁqt:V+§AT0maqt:V, (2.9.30)

where we have used that the T®-tensor is traceless (eq. (2.9.23)). It is thus noted that the
trace of the second moment does not contribute to the interaction energy since A can be
chosen as

1
A=—2Qp. (2.9.31)

Therefore, the quadrupole moment is defined as (Buckingham 1967)

3 1
Oup = zQaﬁ - EQ}/)/ Gap (2.9.32)

where a factor of 3/2 is introduced to be consistent with the literature. Since the quadrupole
moment is traceless, it only contains five independent components. This is equivalent
to d-orbitals for describing atomic orbitals, where we have five orbitals in spherical
polar coordinates as compared to six d-orbitals in Cartesian coordinates. Similarly, the
quadrupole moment describes a second-order shape/anisotropy of the charge distribution,

and the term (x2 +y°+ zz) is isotropic.
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2.9.1.1 Units

Even if ST units are recommended, they are often not suitable in chemistry since they become
inconviently large or small. A typical length of a covalent bond is in the order of 0.1 nm,
which indeed would be a suitable unit, but historically we instead use angstrom (1 A =
0.1 nm) so a typical bond length is around 1-2 A. In quantum chemistry, we also commonly
use the atomic unit system, which was introduced in table 2.1, where for example the charge
of an electron is —1.

For dipole moments, we normally use the unit debye, which is a CGS unit and also has
its origin in the electrostatic unit (esu) system. 1 D is the dipole moment of two charges
with different sign, but equal magnitude of 0.2081943 e, separated by 1 A. The conversion
factor from atomic units thus becomes 1 e - bohr = 2.541766 D. In SI units, we have 1 D =
3.33564 - 1073% C-m. A typical molecular dipole moment is of the magnitude 1 — 10 D. Using
the smallest available SI prefix yocto for 1-10724, would still mean that the magnitude of a
typical molecular dipole moment would be around 1-10~° yC-m, illustrating what we above
meant with “inconviently small”.

For quadrupole moments, the buckingham unit is used, where 1 B=1DA, i.e. the quadrupole
moment of two dipoles of the magnitude 1 D, but opposing directions, placed with a distance
1 A from each other. The conversion factor from atomic units becomes 1 e - bohr? =
1.344911 B.

2

e —

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Ro

Figure 2.6: Molecular multipole expansions for intermolecular interactions. The distance vector R p is defined
as Rap = ROB ROA Furthermore, RJ =Fj- Ro andR =7 — Ro

2.9.1.2 Multipole expansion of two interacting molecules

Two charge distributions, A and B, are considered, where system A has N4 point charges and
system B has Np point charges. The Coulomb interaction energy between the two charge
distributions is

NA NB qq NA NB qq
Vap=Y.) ——=3 ) —— (2.9.33)
11]1|R] Ril 11]1|r]_rl+RAB|

where the distance vectors are defined in figure 2.6. If 7; and 7; are small compared to Rag, a
multipole expansion may be carried out around 7; = 0 and 7; = 0. The multipole expansion
of two interacting charge distributions becomes

Nals  qiq;
Vap = )Y —————
i=1j=117j—Ti + R|
Na Np 1
= Y3 g%+ Tiat S diT®  qiriaript
= s qiT,zq;+qiT Baq] j,a 2671 ABapdiTialjpt---
i=1j=

1
1
- qiri,aT/(‘;,aqj_qiria ABaﬁCIﬂ]ﬁ CliriaTABaﬁYquj,ﬁrj,y+...
+ lqiriariﬁT(Z) qj+—qiriar,-ﬁT(3) qirjy
2 ’ P~ AB,af 2 ’ P~ AB,a By ’
1
+ Zqiri,ariﬁTBaﬁY5¢7]r]yr]6+ (2.9.34)

where the definition of the T-tensor in eq. (2.9.21) has been adopted. It is noted that minus
sign appearing in the linear terms in Tia (and subsequently also for other odd order terms
in r; o) arises from the definition of Rap = RO B— RO A as pointing from RO Ato Ro B (see
figure 2.6). Defining an electric moment of order m as in eq. (2.9.8), eq. (2.9.34) can be
rewritten as,

Ny Np ql q] o0 (_1)m m) (m+n) )
Vag = E E = E —M: T M: . (2.9.35)
P | IT] _ rz +R| . m'n! 5L,a1.Qm ~ AB,@1..Qman” [, O&ms1--Amtn
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2.9.2 Polarizability in an external field

The dipole-dipole polarizability, a,g, is defined as the linear response to an electric field,
Eg, (Buckingham 1967)

pd = a,5Eg, (2.9.36)
where i is the induced dipole moment. Frequently, we use a model of representing a
molecular systems by a set of point particles, and we denote the polarizability for particle i
as a; qop. Analogously to eq. (2.9.36), we define a; 45 by

ind

Hiq = %iapEip, (2.9.37)
where uil.ng is the induced dipole moment of particle i and E; g is the local electric field
at particle i. The electrostatic interaction energy, Ve, between a dipole moment and an

electric field is given in eq. (2.9.7) as
Vile = _ugldEﬁ . (2.9.38)

In classical theory, there is, however, an additional energy term arising from the work
required to create the induced dipole moment, the self-energy V. The polarizability
describes the mobility of charges within a charge distribution. The work Vg required to
move a charge, g, in an external force, Fj, is

R
Vself:fFﬁdR,B . (2.9.39)
0

Using that the force is Fg = gEg and the induced dipole moments is d,uiﬁnd = qdRp gives

~ind

i

ind (2.9.36)
Vself = f E/sdu}?d =

ind ind _

-1 -1 1 .
(aaﬁ) Ko d,uﬁ = (aaﬁ) ,ulo?d,ugldziull?dEﬁ, (2.9.40)

N~

o\t%l
(=9

0

where we have used partial integration in the second last step (see exercise 2.9). The total
energy termed the induction energy, Viyq, is the sum of the electrostatic energy and the self-
energy,

Vind = — g Ep + %ugldEﬁ = —%ygldEﬁ = —%aaﬁEﬁEa : (2.9.41)
The self-energy thus cancels exactly half of the electrostatic energy. It is furthermore noted
that the induction energy is quadratic in the electric field.

2.9.3 A molecule in an external potential

2.9.3.1 Dipole and quadrupole moment

To study a molecule in an external electrostatic potential, Rayleigh-Schrodinger perturba-
tion theory (see section 2.8.1) is adopted. The Hamiltonian for a molecule in an external
potential may be written as

T = Aol + AV, (2.9.42)
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where 0 is the molecular Hamiltonian discussed in section 2.2, A is an order parameter
that determines the order in the perturbation expansion, and 7 is the interaction operator
between a molecular charge distribution and an external electrostatic potential,

N n
V=) Zigi-) i, (2.9.43)
I=1 =

where the minus sign arises from the charge of the electron. As in section 2.2, we regard
a molecule consisting of N nuclei and 7 electrons. Using the multipole expansion of the
electrostatic potential in eq. (2.9.6), the interaction operator in eq. (2.9.43) becomes

~ 1 n
V= Z Z ZIRI ap - Rl,am - Z TFia,---Tian (P(Omgn " (2.9.44)
m=o0 M\ 1= i=1

The operator for a molecular electronic moment is identified as
N m n o m
MM 1; Z El Riq, - l:zl El Fia, - (2.9.45)
Consequently, the first-order energy in eq. (2.8.9) using Rayleigh-Schrédinger perturbation
theory becomes

&) = 7y = Y. w”maﬁgM¢%¢W) : (2.9.46)

O,ay...anm
m=0 M

By comparison to eq. (2.9.7), the molecular charge, g™!

, (m =0) is trivially given as
N
=Y Zi-n, (2.9.47)

mol (1, — 1) is identified as

the molecular dipole moment,
et = Z ZiRro + | - Z rialyy, (2.9.48)

and the molecular second moment, Qm(’l, (m = 2) is identified as

gﬁ—zzmmmﬂHMW—anww@» (2.9.49)
The molecular moment of order m is given as
Y 0 L 0
M =% ZiRiq . Riam+ WY1 = Fiay o Tan, W) - (2.9.50)
I=1 i=1
The first-order correction to the energy becomes
1
1 1 (1 1 (2
g = a0+ HEY PG+ S QuE ot

1
4™ 90— 3" Eoa - EQ?EIEO,aﬁ t.
(o]

1
2 gMgf’) POt (2.9.51)

m=0
It has thus been demonstrated by comparing to eq. (2.9.7) that the first-order energy
corresponds to classical electrostatics.
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2.9.3.2 Electrostatic potential

Rewriting eq. (2.9.43) as the electrostatic interaction between a molecule and a test charge
q:, we get

. Nz
7o T Z il (2.9.52)
= Ree Srie

The electrostatic potential at the test charge, ¢, is given by eq. (2.9.3) leading to

N n
. Zy 1
Q= _—— —_— (2.9.53)
! -1 Ry ,; I'it

so that
7 =d.q; . (2.9.54)

Again using the first-order correction to the energy from Rayleigh-Schrodinger perturbation

theory in eq (2.8.9),

e’ = w2 71w = w1 vy, (2.9.55)

where thus the electrostatic potential in point ¢ from a molecule becomes

N
V4
o= W lpdy =Y. 2 (O)lz o) (2.9.56)
=11\t

/
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2.9.3.3 Polarizability

For the second-order contribution to the energy in eq. (2.8.18),

@=L WW(O)IVW(O))W(O)IVWO )y, (2.9.57)

it is noted that only the terms in 7 including explicit dependence on the electronic
coordinates, r; 4, are non-zero since the electronic states are orthogonal, i.e. (1//(0)|1//(0)> =
6 pq- Thus the term for m = 0 in eq. (2.9.44) as well as all nuclear contributions to /%cn...am in
eq. (2.9.45) vanish. The second-order energy becomes

(e oluNe o] 1 o0
@ _ 0), ~(m) (0) 0), ~(m) 0)
(P M ,,Z 0 _ «n(‘/’ Maran W Wy |y, W07
X P anPObr (2.9.58)
Adopting the following notation for a polarizability, P(m ’2 Bro B
(m,n) S O M) 12 O a0 p) 10 (0)
) m n
P mrofn = pzlg(m (O)W |, W YW | M g W) (2.9.59)
=1¢g
eq. (2.9.58) is rewritten as
(2) plmn (m) (n)
mZ 1nzl i L pr P01 PO B (2.9.60)
The leading term (m =1, n = 1) becomes
(e.0)
(()2)_ Z (0) (0) <w(0)| Zrlawf(o) (1) (0)| Zrlﬁmf(m (1) ) (2.9.61)

p=1

Defining the molecular dipole-dipole polarizability (m =1, n = 1), ag‘l‘;l, as

|- 3 rialy Sy D) - z ri plw )
amsl = 2 Z i=1 , (2.9.62)

(0) (0)
€p —&

where we note the factor of 2 and the reverse of sign in the denominator as compared to
eq. (2.9.59). This leads to

1
2 _ mol Q1)
€o 2 aﬂ Po ,B(pO a

1
= _EaglglEO_ﬁEO,a +e, (2.9.63)

so that the expression for the induction energy in eq. (2.9.41) has been obtained. This
second-order energy quadratic in the electric field is therefore termed the induction energy.
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2.9.4 Frequency-dependent polarizabilities

We use the general result from time-dependent perturbation theory in eq. (2.8.34),
) t
- 1 A s !
al) (1) = %up;‘? 71wy f fheemtdr, (2.9.64)
0

so that the first-order correction to the time-dependent wavefunction is

v =Y al ek yl) (2.9.65)
k

The Hamiltonian, /2(), is as in eq. (2.8.19), divided into
FO1) = Ay + A, (1), (2.9.66)
where A, (t) = ¥ f(t). Here we regard the response to an oscillating electric field,

H,(1) =2V el cos(wt) =V (e(”i“’)t + e(E'i“’)t) ) (2.9.67)

where the term e’ ensures that the field is turned on in a distant path. The parameter ¢ is
supposed to be small and will be allowed to approach zero giving a steady-state response
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when the field has been turned on a for a long time. Now we intgrate eq. (2.9.64),

t
agcl)(t) — (1//(0)|7/|1//(0)>fe(£+iwkp+iw)t’+e(8+iwkp—iw)t,dt)
(g Ho)t  le+iog-io)t
_ (w(0)|7/|w(0)> (e £+1wkp+1w.t N elEtioy w).t )
Wptw—ie  wip-w-ic
(i i) (et —iw)
_ (1//(0)|7/|w(0)> £+1wkp+1af t e s+1wkp lai t
wpptw—ie wip-w-ic
_ i(wgpt+w)t i(wrp—w)t
= <1//(°)|7/|w(°)> (e 4+ 8 ) (2.9.68)
Wip W Wip —W
We now regard time-dependent dipole moment of the ground state (p = 0),
pa () =¥ (DIf1a¥(2)), (2.9.69)
with
“I](t) w(()O) —1w0t+ Z/ld(l)(t)w(o) la)kt (2'9.70)
k#0
Considering each order i in A%, we get for i =0,
ug)) — (0) |“a|w(0) (2.9.71)
and fori =1,
py) = ,; W ey Py e 0" ol (0)+ Pl ialy "y el () (1) (2.9.72)
0
Using eq. (2.9.68) with 7 = —13Eg and p =0,
iwt —iwt
o _ Ep I T OITIMON € +- &
Ha kzﬂ(w Aalyi )W gl ) oot
© (©)y 7, (0) o, € el
+ +
o lagly, Ny | faly, ) o wg—w )
_ @(eim+e_im)z <‘/’(O)|“a|‘/’w)><u’(o)|P‘ﬁ|‘/’(0)>
h k#0 Wpo — W
( (0)| | (0))( (0)| | (0))
Vo llalW XY IHBIY (2.9.73)
Wio T+ W

Using the definition of the polarizability in eq. (2.9.36) slightly extended to include
frequency-dependence,

uQ = aap@)Ep e +e7 1) (2.9.74)

leads to the following result for the frequency-dependent polarizability,

0) 0) 0) 0) 0) 0) (0) 0)
o @) = Z (Yo laly ><W laplyy™ <w |alw MW aplyy ™ . (2975
h k#£0 Wio — Wio+w
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2.10 The Hartree-Fock approximation

The starting point for the Hartree-Fock approximation (Hartree 1928, Fock 1930, Roothan
1951) is the energy for the Slater determinant in eq. (2.6.36) using the more compact notation
in eq. (2.6.34),

Ey, = %i—(]l] Kz])+Vnn

n

<xl|h|xl>+£ Y (<Xin|§|Xin>_<Xin|§|Xin>)+Vnn- (2.10.1)
i,j=1

The Slater determinant is an approximate wavefunction and we can thus minimize the
energy in eq. (2.10.1) using the variational principle in section 2.7 by optimizing the
orbitals. We would, however, like to retain that the orbitals form an orthonormal set, and
this condition is imposed by a constrained minimization using the method of Lagrangian
multipliers. The Lagrangian, Ej, becomes

n n
Ey=Ey- Y Aij ((Xil)(j> —5ij) =Ey— Y Ajj (Sij —5ij) , (2.10.2)
i,j=1 ij=1
where we have one Lagrangian multiplier A;; for each pair of orbitals and 6;; is the
Kroenecker delta function indicating the required orthonormality of the orbitals. We define
an element of the overlap matrix S;; as

Sij=<xilx) - (2.10.3)
A small variation of the Lagrangian, 6 Ey becomes
_ n
SEy=06Ey— ) Aij ((5Xi|7(j>+<)(i|57(j>) , (2.10.4)
ij=1

where a small variation of the energy Ej in eq. (2.10.1) becomes

8Ey = Y (Oxilhly:) + il oy
=1

~.

1 & R R R R
2.2 (@i i) + oA + i i) + ixi18ion)

- (<6xlx,|g|x,x,>+<x,6x,|g|x]x,>+<xlx]|gl5x]xz>+<xlleg|x]5xl>)

_ Z<5X,-|fz|xl->+<xi|ﬁl5xi>

i=1

n
Yo Gxixil8lxixi) + xixil816xix;y — Sxixil8lxixid — xix;jl818xxi) (2.10.5)
ij=1

+

In the last step, we have used that i and j are just dummy indexes and can be interchanged.
Introducing two operators, the Coulomb operator,

Filxi) =18l nxid (2.10.6)
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and the exchange operator,
Kilxiy = xjlglxdx (2.10.7)

where the operator exchanges the orbital it operates on. We thus get

n
O0Ey = Z<5Xi|h|7(i>+<7(i|h|5)(i>

i=1

n
+ Y Oxil £ - Flxid) + il £ — Filoxi) - (2.10.8)
i,j=1

Defining the Fock operator f as
A A n A A
f:h"‘Z(fj_jfj), (2.10.9)
j=1

so that the total Hartree-Fock Hamiltonian, %4z, becomes

n

Faw=Y_ fi, (2.10.10)
i=1

where the subscript i denotes that we have one Fock operator for each electron in the system.
We get

0Eo = Z<57Ci|fi|7(i>+<7(i|fi|5)(i> (2.10.11)

i=1
so that the total Lagrangian becomes

8B =Y il filxi + il filsxn = Y Aij(@Grilxjy+ (ilsxp) - (2.10.12)
i=1 ij=1

Assuming that either a small variation (6 y;| or |0 x;) leads to that the variational principle is
fulfilled, i.e. 6 Ey = 0, gives two relations to be fulfilled simultaneously,

n n
Y Gxilfilxiy— Y. Aijxilxj> =0, (2.10.13)
i=1 ij=1
and
n " n
Y il fildxiy— Y. Aijxildx;)=0. (2.10.14)
i=1 ij=1
Using that ) A
Oxilfilxid = xilfilox ™ (2.10.15)

and subtracting eq. (2.10.13) from the complex conjugate of eq. (2.10.14) from each other, we
get

n
> (Aij—/lj,-)@xilxﬂ =0, (2.10.16)
i,j=1
so that the condition is fulfilled if A;; is an element of a Hermitian matrix. In the next step,
eq. (2.10.13) is rewritten as a set of eigenvalue problems rather than an expectation value,
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n
filxiy =Y Aijlaj) Vi (2.10.17)

j=1

We can now make a specific choice of the orbitals in eq. (2.10.17) by a unitary transformation
so that A;; becomes a diagonal matrix. With the notation ¢; = A;;,

filxiy=eilyy vi, (2.10.18)
where this choice of orbitals is termed the canonical orbitals and €; is an orbital energy.
Eq. (2.10.18) is referred to as the Hartree-Fock equations and is a set of coupled eigenvalue
equations since the Fock operator in eq. (2.10.9) depends on all the orbitals through the
Coulomb and exchange operators in eqgs. (2.10.6) and (2.10.7), respectively. An iterative
method, the self-consistent field (SCF) method is therefore commonly employed with a set
of starting orbitals to get an initial guess of f;. Eq. (2.10.18) is then solved for this set of f;

providing an updated set of orbitals and thereby also an updated fl-, and the procedure is
repeated until convergence is reached.

Rewriting the quantum mechanical expression for the molecular electrostatic potential in
eq. (2.9.56) in terms of a Slater determinant,

N 7 n 1
=Y =LY l—Ixi),

(2.10.19)
=R i3 Tit
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where the second term on the right-hand side is the integral that appears for the Coulomb
operator in eq. (2.10.6). The averaging over one of the electronic coordinates in the
definitions of the Coulomb and exchange operators in egs. (2.10.6) and (2.10.7) thus leads
to that the two-electron Coulomb term in eq. (2.10.5) has been replaced by the interaction
between one electron and the average electrostatic potential in eq. (2.10.8). We refer to this
kind of approximation as a mean-field approximation.

The orbital energy €; can be obtained as an expectation value,
R n
€= pilfilxd) = hi+ ) (]ij _Kij) , (2.10.20)
j=1

where we instead of integrating over the Fock operator f; return to the initial two-electron
integrals. Consequently the energy for a Slater determinant in eq. (2.10.1) becomes within
the Hartree-Fock approximation

n 1 n
EO:ZEi—E Z (fij—Kij)+Vnn, (2.10.21)
i=1 ij=1

and is thus not just the sum over the orbital energies. In eq. (2.10.21), we have also added the
classical nucleus-nucleus interaction energy.

2.11 Basis set expansion

We have to represent the spin-orbitals mathematically in some way to be able to do actual
calculations to solve the Hartree-Fock equations in eq. (2.10.18). The set of basis functions,
in quantum chemistry termed the basis set can be chosen in different ways. We will return to
different choices for the basis set, here we just assume that a spin-orbital, y; is expanded in
m basis functions ¢, (Roothan 1951),

lxid =) cipldp), 2.11.1)
p=1

where c;, is an orbital coefficient. The Hartree-Fock equations in eq. (2.10.18) become
n m m
Y cipldpy =€ Y ciplpp) Vi, 2.11.2)
p=1 =1

We introduce the following matrix notation

¢ =(d1,P2,...Im) (2.11.3)
C1i i1 Ci2 ... Cip
Coj C1 Cx2 ... OC2p

c; = . and C= . . . (2.11.4)
Cmi Cm1 Cm2 ... Cmn
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so that we can write
Xi=¢-c; and xy=¢-C. (2.11.5)

We also define the Fock matrix as

il flp  @Iflg2) . (Dilflpm)
(Palflpr) (Dol flp2) ... (Palfldm)

= . : . (2.11.6)
(<Pm|f|</>1> <¢m|.f|¢2> <¢m|}|¢m>
In addition, the overlap matrix is defined as
(P1lPp1)  (Pilg2) ... (Prldpm)
_ <¢2!(P1) <<P2!¢2) (P2 I.(Pm> 2117

Again applying the variational principle and the Rayleigh-Ritz method in section 2.7, we
arrive at (see exercise 2.10) the Roothaan-Hall equations (Roothan 1951, Hall 1951)

Fc; =€;Sc; or FC =SCe, (2.11.8)

where € is a diagonal matrix with the orbital energies €;. We have thus converted the Hartree-
Fock equations in eq. (2.10.18), which are a set of coupled integro-differential equations,
to finding the eigenvalues and eigenvectors of the Fock matrix. The overlap matrix S is
regarded as the metric of the Fock matrix F since it reduces to the unity matrix 1 for an
orthonormal basis. As for the Hartree-Fock equations in eq. (2.10.18), the Roothaan-Hall
equation in eq. (2.11.8) is solved by an iterative method since the Fock matrix F depends on
the eigenvectors, i.e. the orbital coefficients, in C, which we also here refer to as the self-
consistent field (SCF) method.

2.11.1 Density matrices

To introduce density matrices, we regard an element of the Fock matrix F,,, in eq. (2.11.6),

Fpg = (@plfldg)

Pplhlpgy+ Y Dyl Fj— Fjlpg)
j=1

@plhldgy+ Y (Ppxjl8ldax;) — (Ppxilglxidq)
-1

Bplhlpg)+ Y Y cjrcys((bpdriglbad — bpdrlgibsda))

j=1rs=1

Bplilpg)+ Y. Drs(bpdrI81bgds) — Dpibrlglst)) 2.11.9)

r,s=1
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where we have defined the density matrix as

n
Dys=)_ CjrCjs. (2.11.10)
j=1

We also introduce the following notation for the two-electron integrals,

GP”IS = <¢p¢r|§|¢q¢s) - (¢p¢r|§|¢s¢q) (2.11.11)
so that .
Fpq = hpq + Z Drstrqs . (2.11.12)
r,s=1

The energy for a Slater determinant in eq. (2.10.1) is recalled and rephrased in terms of
density matrices,

n R 1 2 R R
By = Y ulhlxo+5 X (axjglixs) - ixil81xixm) + Van

i=1 i,j=1
n m R 1 n m . .

= 2 X CipCigplhlpg+5 3. ) CipCiqCirCjs ((bpdrIgibads) — (bpdr181pby))
i=1p,q=1 i,j=1p,q,r,s=1
m 1 m

= ) Dpghpq +5 Y. DpgDrsGprgs+ Van - (2.11.13)
p,q=1 p,q,1,s=1
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2.11.2 Basis sets

We need to have a mathematical representation of the basis functions ¢, (i) in eq. (2.11.1).
Traditionally there are two approaches, either plane waves are used which is suitable when
applying periodic boundary conditions in solid-state chemistry or as a linear combination
of atomic orbitals (although these “atomic orbitals” may not be a solution to the Schrédinger
equation in eq. (2.5.2) ). Two types of atomic orbitals are commonly employed, Slater-type
orbitals (STOs) that decay exponentially with the distance from the nuclei, and Gaussian-
type orbitals (GTOs) which adopt Gaussian functions.

The choice of GTOs versus STOs as the functions in the basis set is still the subject of a vivic
discussion, although GTOs dominate today in the commonly employed quantum chemical
software. An STO is indeed the exact solution to the one-electron problem as the hydrogen
atom, but on the other hand, we do not know how the exact solution looks like for a many-
electron problem. STOs have a more long-range decay than GTOs, and describes the cusp
at the nucleus. GTOs were originally introduced to describe one STO by several GTOs (Boys
1950) since the two-electron integrals in eq. (2.11.11) are much easier to calculate by using
GTOs as compared to STOs.

A useful relation for a Gaussian function positioned at nucleus I, ¢; 1(r),

3
2a; )4 (F—R
()bl,l(r) = (#) e_al(r R])z (2.11.14)

is its product rule (see exercise 2.11 for a derivation),

i)y = Ce PU-F0* 2.11.15)
where
. aiRj+a;R 2\2 E R By S
ﬁ:ai'i'ah, RK:%]] and C:(_) (aiaj)4eai+aj 1— iy (21116)
(047 aj T

which simplifies the integral calculations greatly for GTOs.

In general we write a Gaussian basis function in Cartesian coordinates as
2
Gi(x,y,2) =xyPz°e™ %" | a,b,c=0, (2.11.17)

where a, b and c are integers and an s-function thus corresponds to a+b+c =0, a p-function
toa+b+c=1,ad-functionto a+ b+ c =2, etc.

There is a huge amount of basis sets available in the literature and accessible by simple key-
words in quantum chemical software. Here we will only discuss some general principles and
we will use the correlation-consistent basis sets (Dunning Jr. 1989, Woon and Dunning Jr.
1993) as an example. If we first assign the number of basis functions to each atom so that
the GTOs can contain all the electrons of the neutral atom, e.g. for C with 6 electrons we
need two s-functions and one p-function (which indeed is three basis functions, py, p), and
pz) denoted [2s1p]. We denote the GTO describing the 1s electrons of C for a core function
and the GTOs describing the 2s and 2p electrons for valence functions. A double-{ basis set
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H-He Li-Ne Na-Ar
cc-pVDZ | [2s1p] [3s2p1d] [4s3p2d]
cc-pVTZ | [3s2pld] [4s3p2d1f] [5s4p3d1f]
cc-pVQZ | [4s3p2d1f] | [5s4p3d2flg] | [6s5p4d2flg]

Table 2.3: The number of basis functions in some of the correlation-consistent basis sets, cc-pVXZ, X={D, T, Q}.

for the C atom contains one additional s- and p-function and in addition one d-function,
denoted [3s2pld]. A table for the correlation-consistent basis sets, cc-pVZX, X={D, T, Q}
including also the number of basis functions for triple-{ and quadruple-{ basis sets is given
in table 2.3.

In this type of hierarchy of basis sets, double-(, triple-{, etc., we add what is called
polarization functions for each level in the hierarchy with the purpose to improve the
description of covalent bonds. The calculated accuracy of many molecular properties
depends strongly on the description of the covalent bonds in the molecule, where the
molecular geometry is a typical example. It is also beneficial to have a family of basis sets
where the hierarchy converges towards the basis set limit, so that we can control the error
introduced in a truncated basis set expansion. The cc-pVXZ basis sets is an example of such
a family of basis sets that converges smoothly to the basis set limit when the basis set is
increased in a systematic way.

Also diffuse functions are often added to a basis set to improve the description of the
electron charge distribution far away from the nuclei, which is important for example for
the calculation of molecular polarizabilities in eq. (2.9.62). Correlation-consistent basis
sets with diffuse functions are denoted as “augmented” basis sets, aug-cc-pVXZ, where for
example for C the cc-pVDZ basis set consisting of [3s2p1d] are extended to [4s3p2d] for aug-
cc-pVDZ. Further augmentation with diffuse functions are denoted doubly augmented, d-
aug-cc-pVXZ, triply augmented, t-aug-cc-pVZX, etc. In comparison to adding polarization
functions, no higher angular-momentum functions are added to the diffuse basis set and
obviously the exponent «; in eq. (2.11.17) are very different when adding polarization or
diffuse functions. There are also other extensions of basis sets, for example in the cc-
pCVXZ basis sets extra core functions are added to improve the description of the electron
distribution close to the nuclei which for example is important in the calculation of the
Fermi-contact term in spin-spin coupling constants.

Example 2.2: Basis set limit of the HF molecule at the Hartree-Fock level.

Hartree-Fock calculations on the HF molecule are presented in table 2.4 using the
NWChem software (Valiev et al. 2010), where molecular properties as the dipole
moment,quadrupole moment, polarizability as well as the equilibrium bond length
are presented for three hierarchies of basis sets: cc-pVXZ, aug-cc-pVXZ and d-aug-cc-
pVXZ with X={D, T, Q, 5} (Dunning Jr. 1989, Kendall et al. 1992, Woon and Dunning Jr.
1994). Since the basis set is increased systematically, we should be able to deduce a
suitable basis set for each property at the Hartree-Fock level.

We define the z-axis along the dipole moment axis of the HF molecule so that
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basis set E/hartree u/D O, /B  an/A a, /A3 R./A

cc-pvDZ -100.019419 1.94920 2.03526  0.22905 0.59513 | 0.90148
cc-pVIZ -100.058021 1.94077 2.09725 0.38085 0.73062 | 0.89794
cc-pvVQZ -100.067695 1.93330 2.11739 0.48097 0.78760 | 0.89685
cc-pVsbZ -100.070440 1.93189 2.13462 0.54619 0.81708 | 0.89685

aug-cc-pvVDZ -100.033474 1.93076 2.15627 0.56147  0.82766 | 0.90019
aug-cc-pVIZ -100.061078 1.92502 2.15742  0.63241  0.84625 | 0.89912
aug-cc-pvQZz -100.068568 1.92206 2.15772  0.65580 0.85106 | 0.89772
aug-cc-pVaZ -100.070583 1.92163 2.15486 0.66118  0.85191 | 0.89595
d-aug-cc-pVDZ | -100.033649 1.92112 2.18807 0.66093  0.84559 | 0.89992
d-aug-cc-pVIZ | -100.061177 1.92134 2.16222 0.66619 0.85126 | 0.89916
d-aug-cc-pVQZ | -100.068605 1.92128 2.15656 0.66575  0.85235 | 0.89727
d-aug-cc-pV5Z | -100.070587 1.92153 2.15440 0.66512  0.85237 | 0.89694

Table 2.4: Basis set convergence for the bond length R,, dipole moment y,, quadrupole moment ©,, and the
polarizability, ax, and @, for the HF molecule at the Hartree-Fock level. See example 2.2 for a discussion.

@yy = Axx and Oy = Oy = —%@zz (since the quadrupole moment is traceless, see
eq. (2.9.32)). All off-diagonal tensor elements, a,5 and O4p for a # B, are 0 because
of symmetry reasons. All the properties (obviously apart from R,) are calculated at an
experimental geometry, R, = 0.9168 A. Thus we look at the basis set dependence of a
property separately from the basis set dependence of the molecular geometry. (It is,
however, common to do the opposite and calculate the properties at the optimized
geometry for each basis set, but then we mix the basis set dependence of the property
and the molecular geometry in the same calculations.)

The total energy, E, cannot be measured experimentally, and its inclusion in the table
only serves as a consistency check. Since the variational principle in section 2.7 is used
in the Hartree-Fock approximation, the energy must be lowered if the size of the basis
set is increased. That is true both for the sequence D—T—Q—5 as well as for cc—aug-
cc—d-aug-cc, and as can be seen in table 2.4 these conditions are fulfilled. If not, it
would be a clear sign of that something is wrong with the calculation, and since human
errors are prone also among computational chemists, it is a good advice to inlude
as many consistency checks as possible. We also see for example that improving the
basis set from aug-cc-pVTZ to d-aug-cc-pVTZ lowers the energy by only 99 phartree,
whereas it has arelatively large effect on the polarizability. In general, diffuse functions
do not decrease the total energy, E, by a lot if the basis set is well converged with
respect to polarization functions, whereas diffuse functions may have a crucial effect
on for example the polarizability where the tail of the orbitals needs to be described
accurately.

The bond length, R,, is well described by the cc-pVTZ basis set and additional diffuse
functions have very little effect. In contrast, the polarizability is well described by the
d-aug-cc-pVDZ basis set, and addition of extra polarization functions have a minor
effect. The dipole and quadrupole moments are somewhere in between and in this
example (the HF molecule using the Hartree-Fock approximation) an aug-cc-pVIZ
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basis set gives a good description.

Normally, we do not present results for the Hartree-Fock approximation and basis sets
are designed to include also what we are missing in the Hartree-Fock approximation,
namely electron correlation (see section 2.12). The requirements on the basis set will
change depending on the computational method, the molecule and the property, and
we will discuss more examples when we have established more accurate computa-
tional methods including also electron correlation. That is also the reason why we do
not include a comparison to experimental results in this example. We demonstrate,
however, that it is important to have hierarchies of basis sets approaching the basis set
limit. The actual basis set used in a study will be a compromise between accuracy and
computational efficiency but the choice of basis set should be based on a systematic
study of the basis set dependence.

A large amount of various basis sets are normally included in a database within the quantum
chemical software, and the user normally only has to provide a simple keyword to use a
basis set in a calculation. However, many software adopting Gaussian basis sets rely on a
common server where most basis sets can be obtained (Feller 1996,
Schuchardt et al. 2007).

2.12 Electron correlation

The electron correlation energy of state i, E;°", is pragmatically defined as (Léwdin 1955)
Efor = pexact _ pHF (2.12.1)

i.e. the energy not included in the Hartree-Fock approximation, E l.HF. The exact energy E fxa“t
here refers to the “exact” solution of the Schrédinger equation within the molecular orbital
ansatz for a given basis set, so the “true” solution to the problem would be to include all
electron correlation as well as an infinitely large basis set (see figure 2.7). Since the molecular
Hamiltonian in eq. (2.4.2) commutes with the Fock operator in eq. (2.10.9) (see exercise 2.12),
the “exact” wavefunction y$*** can be expressed as a linear combination of the states to the
solution to the Hartree-Fock approximation, WEF,

w?xact _ Z Ci,uu/EF (2.12.2)
I

where C;, are expansion coefficients to be determined. Within molecular orbital theory,
we thus focus on which Hartree-Fock states wEF to include and how to determine their
respective coefficients C;,. All methods discussed in this section are based on the restricted
Hartree-Fock method, i.e. a closed-shell system with two electrons in each occupied orbital
(see eq. (2.6.39)). We can therefore depict the methods by using figure 2.8 where we in the
Hartree-Fock ground state have put two electrons in each orbital filling the orbitals with the
lowest orbital energies (see figure 2.8a). The Hartree-Fock states included in eq. (2.12.3) can
be depicted as single excitations (see figure 2.8b), double excitations (see figure 2.8c), etc.
out of the Hartree-Fock ground state.

Download free eBooks at bookboon.com



Correlationa

Full CI

Full CI true result

basis set limit

| } | \

D‘Z TZ dZ Bas’is set

Figure 2.7: Illustration of that we need both electron correlation, ideally in the full CI limit, and very large basis
sets to get the “true result”.

2.12.1 Configuration interaction (CI) methods

In configuration interaction (CI) methods, we rewrite the expansion in eq. (2.12.3) as

we' = Coyg + ) Cuyi+ Y Cuyd +...= Coyg +). Y Clyfi+). Y Cllyil+..., (2.123)
I I i a i @

j;ib>a

where y!!F is the Hartree-Fock ground state (see figure 2.8a), v\’

u
of the Hartree-Fock wavefunction (see figure 2.8b) and ufﬁ) is a double excitation of the
Hartree-Fock wavefunction (see figure 2.8c). In the last part of eq. (2.12.3), i and j refers
to occupied orbitals and a and b to virtual orbitals, respectively, so that y¢ and 1//1‘.‘;’ are
singly and doubly excited states with the Hartree-Fock ground state as the reference state.
Normally we truncate after single and double excitations and this method is termed CISD
(CI with singles and doubles excitations). The coefficients C, are determined variationally.
The orbital coefficients ¢;; in the LCAO approximation in eq. (2.6.1) are not reoptimized, and
therefore a truncated CI method relies on that the Hartree-Fock approximation is a good
starting point.

denotes a single excitation

2.12.1.1 Brillouin’s theorem

We look at one of the energy contributions, the coupling between the Hartree-Fock state and
all single excitations. Adopting the notation in eq. (2.10.1),

. , 1 . .
SN iE | A D <xi|h|xa>+EZ(%xﬂglmﬁ—<Xixj|g|ma>)
i a i a j

Y xilflxa) =X Y eilxiltad = XY €ibia=0,  (2.12.4)
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(c) Examples of double excitations

Figure 2.8: Illustration of (a) the Hartree-Fock ground state, (b) single excitations, and (c) double excitations
for a system of 4 electrons in 4 orbitals.

where we first have used the definition of the Fock operator in eq. (2.10.9) and the Coulomb
and exchange operators in eqgs. (2.10.6) and (2.10.7), and then we have used that the
canonical orbitals are eigenfunctions of the Fock operator f (see eq. (2.10.18)) as well as that
the orbitals form an orthonormal set. The relation in eq. (2.12.4) is the Brillouin’s theorem.
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cc-pvDZ cc-pVIZ cc-pvQzZ
ni m Neci | m Neci | m Nrcr
H,O| 10| 24| 65-10°| 58] 8.2-103 | 115 9.4-10'°
CO, [ 22| 4219.4-10" | 90| 9.6-10% | 165 | 1.1-10%*
CgHg | 42 | 114 | 1.4-10%6 | 264 | 3.0-10% | 510 | 6.9-1074

Table 2.5: Examples of the number of Hartree-Fock states included in a full CI calculation for some typical
molecules and basis sets. 7 is the number of electrons in the molecule, m is the number of basis functions
for the given basis set and molecule, and Ngpcy is the number of Hartree-Fock states included according to
eq. (2.12.5).

2.12.1.2 FullCI

In full CI all possible excitations in eq. (2.12.3) are included. The number of ways, Nrcy, 1
electrons can be distributed in m orbitals (where we can put two electrons in each orbital) is
given by the binomial coefficient,

2m)!

= —n!(Zm mpny (2.12.5)

Nrcr

which is a factorial scaling with the size of the problem and makes full CI a very expensive
method also for relatively small systems (see table 2.5 for some examples). So full CI is
limited by both the number of electrons in the molecule as well as the size of the basis set (m
basis functions give m orbitals). For a given basis set, however, full CI gives the exact solution
and is therefore valuable for validating other methods for including electron correlation.

2.12.2 Moller-Plesset perturbation theory

We introduced perturbation theory as a general tool in section 2.8 and here we will use it for
including electron correlation according to Moller-Plesset (MP) perturbation theory (Moller
and Plesset 1934). In this method, we assume that J?o in eq. (2.8.1) is simply operator given
for the Hartree-Fock approximation in eq. (2.10.10),

R n | no.o .
He=) fi=) [+ Y (47|, (2.12.6)

where it is noted that the Coulomb, _¢ i, and exchange, J,7j, terms are counted twice for each
electron pair i and j, which is also reflected in the Hartree-Fock energy in eq. (2.10.21). The
perturbation operator in eq. (2.8.1), 4, becomes

n

Ty = = Foe =Yoo= Y (= Hj), (2.12.7)
ij=1

where #°! is the molecular Hamiltonian in eq. (2.4.2). A rather peculiar fact about J?l is
that the second term on the right-hand side of eq. (2.12.7) is around twice the size of the first
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term, whereas one in general in perturbation theory should expect the perturbation .7, to

be as small as possible. The zeroth-order energy, e(()o), becomes

el = Zel (2.12.8)

by simply using eq. (2.10.18). The first-order correction to the energy e(()l) is according to
eq. (2.8.9) the expectation value of the perturbation operator .4, which leads to

gg”_—— 5 (i - Kij) (2.12.9)

l]l

where the integration over the first term on the right-hand side of eq. (2.12.7) cancels exactly
half of the integration over the second term. The Hartree-Fock energy Ej in eq. (2.10.21) is
thus retained as

€]

Ey=¢eY +el” + Vyp, (2.12.10)

where we also added the classical nuclear repulsion energy. Electron correlation, as defined
in eq. (2.12.1), thus enters first in the second-order contribution to the energy in Moller-
Plesset perturbation theory since the sum of the zeroth-order contribution and first-order
correction gives the Hartree-Fock energy.

To get the second-order energy, the MP2 energy, we recapitulate the second-order energy
from RSPT in eq. (2.8.18),

(0) (0)y 7,,,(0) )
o |J£|u/ Wy |7 1)
(2)
Z‘ (()0) 0 (2.12.11)
- £

where we here regard a correction to the ground-state energy. As for the CI method in
section 2.12.1, we write the excited states, w(m as a sum of single excitations ¢, double
excitations wi]. , etc. Because of the Slater- Condon rules discussed in section 2.6.2, higher
excitations than double excitations do not contribute to eq. (2.12.11) for an orthogonal

set of states. Furthermore, for the single excitations we can utilize Brillouin’s theorem in
section 2.12.1.1 on one of the terms,

ZZ<wIO‘IF|J?el—ZﬁW,>—ZZ<w ANy D - Y e | @witly® . (21212)
i a j T j Ta
Brillouin’s theorem orthogo_nal states

so neither the single excitations contribute to the MP2 energy. Finally, the double excitations
give the following term

Zzu/f A=Y felwih) = ZZW Feely D) (2.12.13)
]>lb>a k ]>lb>a
= ZZ<Xi)(j|g|)(a)(b)—<Xi)(j|g|)(b)(a>,
jl>ina
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Figure 2.9: Illustration of the CASSCF method for a system of 8 electrons in 8 orbitals. The active space
consists of 4 electrons in 4 orbitals, and in a CASSCF calculation we include all states where the 4 electrons
are distributed over the 4 orbitals. According to eq. (2.12.5) this leads to Ncasscr = 8!/(4!)? = 70 in a CASSCF
calculation whereas Npcp = 16!/(81)? = 12870 for a full CI calculation.

so the MP2 energy becomes

2
’(xileglxam —Xixjl&lxvxa

(€i—€q) +(€j—€p)

) (2.12.14)

552)22;
l

j>ib>a

where we in the denominator have used that the excitation energies for the unperturbed
wavefunction is simply given as orbital energy differences. This can be simplified for a
closed-shell system along the route taken to obtain eq. (2.6.39).

2.12.3 Multiconfigurational SCF

We introduce multiconfigurational SCF (MCSCF) methods by describing the complete active
space SCF (CASSCF) method (Roos 1987). Based on a Hartree-Fock calculation, we select an
active space and within this active space we allow for all excitations from the occupied states
(see figure 2.9 for an example). As for the CI method, the coefficients C;, in eq. (2.12.3) are
determined variationally but in contrast to the CI method, also the orbital coefficients c;;
in eq. (2.6.1) are reoptimized so the molecular orbitals are actually modified in an MCSCF
method as compared to the Hartree-Fock method. MCSCF methods are thus suitable for
molecules where the Hartree-Fock approximation is poor, for example for molecules with a
nearly degenerate ground state or for describing the breaking of chemical bonds. However, a
CASSCEF calculation is by no means a black-box calculation. The selection of the active space
requires a detailed insight about the molecular system and the cost of the calculation scales
factorially with the size of the active space.

2.13 Density functional theory

Through the Hohenberg-Kohn theorem (Hohenberg and Kohn 1964), density functional
theory (DFT) provides an alternative foundation to electronic structure theory as compared
to the Schrédinger equation. DFT gives also a theoretical foundation to concepts of the
electronic structure of molecular systems as electronegativity and chemical hardness. In
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addition, DFT based on the Kohn-Sham approach (KS-DFT) (Kohn and Sham 1965) has,
essentially since the work by Becke (Becke 1993), become the main tool in computational
quantum chemistry. The reason for its success is that KS-DFT includes electron correlation,
and for many properties KS-DFT gives experimental accuracy, with a computational cost
comparable to a Hartree-Fock calculation.

The Hohenberg-Kohn existence theorem states that the ground-state energy and all other
ground-state properties are uniquely defined by the electron density. That, for example,
implies that the Hamiltonian in principle can be derived from the electron density.
Mathematically this is expressed as an energy functional® of the electron density, E[p(7)],

Elp(H)] = f Vext () p(F)di+F[p(F)], (2.13.1)

where Ve (7) is the external electrostatic potential where the most important term normally
arises from the nuclei of the molecular system, and F[p(7)] is a so far unknown energy
functional containing the remaining energy terms as the kinetic energy of the electrons and
the electron-electron interactions.

The number of electrons, n, is conserved,
fp(?) di=n, (2.13.2)

and by applying the variational principle in section 2.7, the energy functional, E[p(7)],
is minimized with respect to the electron density with the constraint that the number of
electrons is kept constant as

il
——= |Elp(M] - f (7) d?) =0, (2.13.3)
6p(7F) P i
where 6 denotes a functional derivative and p is a Lagrangian multiplier for the constraint in
eq. (2.13.2). Eq. (2.13.3) is rewritten as
SElp(P)] ) ~
Vext

2.13.4
6p(7F) ( )

which may be regarded as the DFT equivalent to the Schrédinger equation. We put Vex
as a subscript to denote that it is kept constant (c.f. how we write partial derivatives
in thermodynamics), e.g. the nuclear positions are kept fixed in the clamped-nucleus
approximation as described in section 2.4.

2.13.1 Electronegativity

We identify p in eq. (2.13.4) as the chemical potential for electrons, and it also provides a
definition for the electronegativity ¢ of the entire system (with a minus sign),

OE

2.13.5
an ( )

_fzu:

VEXI

3A simple example of a functional: g[f(x)] = [ f(x)dx, i.e. we provide a function as the argument and the
—00
functional returns a value, e.g. an energy.

Download free eBooks at bookboon.com



The electronegativity is a concept used for a long time (Jensen 1996) and extensively in for
example organic chemistry based on e.g. the electronegativity scales by Pauling (Pauling
1932) and Mulliken (Mulliken 1935) to discuss reactivity in molecules, but it is first with
DFT that the electronegativity obtained a proper definition (Parr and Yang 1989). Similarly,
DFT provides the foundation for other concepts like the chemical hardness, Fukui indexes
for reactivity in molecules, etc. (Parr and Yang 1989, Pearson 1997). We also use these
concepts in the construction of a force field model based on electronegativity equalization
in section 3.3.1.1.

2.13.2 Kohn-Sham approach

DFT has become the workhorse in computational quantum chemistry, and it is the Kohn-
Sham approach that is used in the actual DFT calculations. In KS-DFT (Kohn and Sham
1965), the energy functional F[p(7)] in eq. (2.13.1) is partitioned as

Elp(P)] =fVext(7)p(?) d7+Exelp(P)] + Enlp(P] + Exclp(P)], (2.13.6)

where Exg[p(7)] is the kinetic energy for an electron gas (ideal gas) but with the correct
density, Eg[p(7)] is the Hartree term which corresponds to classical electrostatics and the
Coulomb term in the Hartree-Fock approximation in section 2.10., and, finally, Exclp(7)]
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is the exchange-correlation functional and contains the remaining terms. We need a
mathematical representation of the electron density, and the choice in the Kohn-Sham
approach is to use orbitals, ¢(7;),

p(P = lpF*. (2.13.7)
i=1

We have thus left a 3-variable representation, as in p(¥), and returned to a 3n-variable
representation as in the molecular orbital approach. Furthermore, we can now use the same
basis sets (see section 2.11.2) as in molecular orbital theory. Following eq. (2.13.4) for each
term in eq. (2.13.6), we have for example,

(2.13.8)

0 Exclp(F)]
6p(;:) Vext

where V¢ is the exchange-correlation functional. In the Kohn-Sham approach, eq. (2.13.4)
leads to
(VKE+Vext+ VH+ch) Yi=€iQ;. (2.13.9)

Recall the Fock operator in eq. (2.10.9)

>

A n A A
i:hi"‘Z(ng—J//j)» (2.13.10)
j=1

where fzi is the one-electron term here corresponding to Vkxg and Ve, j ;j is the Coulomb
term which here corresponds to V4, and the exchange term Jf’] is replaced by the exchange-
correlation functional Vxc. Thus it is reasonable to regard the terms in the Kohn-Sham
approach in eq. (2.13.9) as a modified Fock operator,

f;DFT = VKE + Vext + VH + VXC , (2-13-11)

which includes an ad hoc correction for electron correlation in the exchange-correlation
functional Vxc. The exact form of Vx¢ is unknown, but many functionals (and with a
functional, we mean the choice of Vxc) have been suggested. Many of these functionals have
been developed to describe certain properties and many functionals even contain empirical
parameters fitted to experiments, so the choice of a functional in an actual calculation
have to be based on a thorough literature study on DFT calculations on similar molecular
systems. The success of computational DFT is, however, indisputable. With the proper
choice of functional and basis set, results can be obtained that rivals experiments and with
a computational cost that is considerably less expensive than other methods to include
electron correlation.

Exercises

Ex. 2.1 — Show that the eigenvalues are real and that the eigenfunctions are orthogonal for
a Hermitian operator.
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Ex. 2.2 — Show that the normalization factor for an n-electron Slater determinantis 1/v/ n!.

Ex. 2.3 — The energy of the hydrogen molecule in the molecular-orbital model (LCAO
approximation) is regarded. (a) Give an expression for the energy of the ground state. (b)
Give an expression for the triplet state with the lowest energy.

Ex. 2.4 — Show the relations for the antisymmetrizing operator 4 in eqs. (2.6.25)
and (2.6.26).

Ex. 2.5 — Given the exact solution, J‘?wi = E;jv;, show that for a trial function, ¥ ;, the
variation theorem is fulfilled, i.e., Ey = Ey where the equal sign holds when the trial function
is identical to the exact solution.

Ex. 2.6 — Show the Rayleigh-Ritz method, i.e., apply the variational theorem on a trial
function,

Yo = Z ciP;

expanded in a set of functions ¢;. (a) Show first that the Rayleigh-Ritz method leads to the
secular equation

Z Ci (Hik - EOSik) =0
l

where H;j = (gbilfgl(pm and S;x = (pilpx). (b) Rewrite this equation in terms of a secular
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determinant
[H-EyS|=0

where Hjj is a matrix element of H, and similarly, S;i is a matrix element of S.

Ex. 2.7 — What is the dependence of the choice of origin on the molecular dipole moment
for

a) a neutral molecule ?

b) a charged molecule ?

Ex. 2.8 — What is the dependence of the choice of origin on the molecular second moment
for

a) an uncharged and unpolar molecule ?
b) an uncharged and polar molecule ?

c¢) a charged molecule ?

Ex. 2.9 — Show eq. (2.9.40) by using integration by parts (partial integration).
Ex. 2.10 — Show the Roothaan-Hall equations in eq. (2.11.8).
Ex. 2.11 — Show the Gaussian product rule in egs. (2.11.15) and (2.11.16).

Ex. 2.12 — Show that the molecular Hamiltonian in eq. (2.4.2) commutes with the Fock
operator in eq. (2.10.9).

Ex. 2.13 — Show eq. (2.8.37).
Ex. 2.14 — Show eq. (2.8.38).

Ex. 2.15 — Solve the Schrédinger equation in eq. (2.A.40),

’y 2
ag =

and normalize it.
2.A Quantum-mechanical model systems

We here present some model systems in quantum mechanics which can be solved exactly.
The selection is limited to model systems used in subsequent chapters.

2.A.1 Translation - Particle in a one-dimensional box

The model system is described in figure 2.10. It is a one-dimensional system where we in
one region, 0 < x < a, have a potential energy that is zero, V = 0. In the remaining part, x <0
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Figure 2.10: The one-dimensional box.

and x = a, we have an infinite potential energy, V = oo,

V(x):{o O<x<a
fe'e) x<0orx=a

The Schrodinger equation in one dimension is

(2.A.1)

(2.A.2)

In the region outside the box, x < 0 and x = a, the potential energy is infinitely high and
it is therefore not possible for the particle to be in this region. The probability to find the
particle is therefore zero in this region, > = 0, and thus also the wavefunction is zero,
w = 0. It gives two boundary conditions, ¥ (0) = 0 and y(a) = 0, that is used to solve the
Schrodinger equation for the central region. For the central region, 0 < x < a, where V =0,

the Schrodinger equation becomes,

d*y -2mE
dx2  h?

This differential equation has a solution of the form,
w(x) = Asin(ax) + Bcos(bx) .

If the trial solution in eq. (2.A.4) is put into the Schrédinger equation in eq. (2.A.3),

-2mE
— Aa®sin(ax) — Bb? cos(bx) = 7z (Asin(ax) + Bcos(bx)) ,
it leads to o mE
2 _g2_<n
a-=b"= =
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Furthermore, using the boundary condition, y(0) = 0, and that the wavefunction is
continuous leads to that B = 0 since cos(0) # 0. So far, we have achieved,

v2mE
Y(x) = Asin p x) . (2.A.7)
Using the second boundary condition, ¢ (a) = 0, gives
vV2mE
Asin n a) =0, (2.A.8)
and using
sin(u) =0 => u=+nn, n=012,..,00, (2.A.9)
so that
2mE
7 a=zxnm, n=0,12,...,00, (2.A.10)
gives
. nr . [(n7
v(x) :Asm(i7x) = iAsm(;x) , n=012,...,00, (2.A.11)

since sin(—x) = —sin(x). Ais a constant with arbitrary sign, so we can simply replace + A with
A. For n =0, we note that y(x) = 0. This solution is not allowed since the probability to find
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(a) n=1 (b) n=2
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(c) n=3 (d) n=10

Figure 2.11: The wavefunctions, ¥ ,(x), (in blue) for the one-dimensional box

the particle, ¥ (x), becomes zero in the entire space, and the particle has to be somewhere.

For the region, 0 < x < a, the wavefunction thus becomes
. (nm
w(x):Asm(—x) , n=12,...,00.
a

Normally, we assume that the wavefunction is normalized,

; 2 2 . (nn
fw (x)dx=1 = Y(x) = Esm 7x , n=12,...,00.
0

Using eq. (2.A.10), the energies are obtained as

n?m’h? n?h? -
"7 2ma®  8ma?’ = 5HE00.

The excitation energies, AE,, are thus given as

2

ma?

(2.A.12)

(2.A.13)

(2.A.14)

(2.A.15)

The wavefunctions for a few n are shown in figure 2.11 and the corresponding probabilities

are shown in figure 2.12.

2.A.1.1 Particle in a two- and three-dimensional box

The model system for a two-dimensional box (can be used as a model for a surface) is a trivial
extension of the one-dimensional box in section 2.A.1. The box has two side lengths, a and
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Figure 2.12: The probabilities, 12 (x), (in blue) for the one-dimensional box

b, and the potential energy, V/, is given as

0 O<x<aandO<y<b

oo  elsewhere (2.A.16)

Vix,y)= {
As for the one-dimensional box, the wavefunction, y(x, y) = 0, is zero in the region where

V = oo. For the region within the box, 0 < x < aand 0 < y < b, the Schrodinger equation is

o’y s 0y —-2mE
0x2  0y? 2

(2.A.17)

As in eq.2.1.5, we can use separation of variables and the wavefunction is given as the
product of two one-dimensional functions,

v(x,y) = ()Y, (y) (2.A.18)

Using the solutions of the one-dimensional box in egs. (2.A.13) and (2.A.14), the wavefunc-
tion becomes

. nym . ny”
Y(x,y) = sin| —ux|sin Y|, nx=12,...,00,ny=12,...00, (2.A.19)

2
vab a b
and the energy is
h2 ni ny
Enxny = % ? + ﬁ . (2.A.20)

A further generalization to three dimensions where

0 0O<x<aandO<y<bandO<z<c

oo  elsewhere ) (2.A.21)

Vx,y,2) = {
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gives the wavefunction

(x z)—\/isin(mx)sin(M )sin(Mz) (2.A.22)
VoY 2=\ Zbe a b Y c )’ o

which has the following possible quantum numbers: n, = 1,2,...,00,ny, = 1,2,...00, and
n; =1,2,...00. The energy becomes

2 2 2
By, = 2| M T e (2.A.23)
yz T em |l a2 o b2 2| o

2.A.2 Vibrations - Harmonic oscillator

The harmonic oscillator may be regarded as a simple model for the vibration of a diatomic
molecule around the equilibrium bond length, R,, where g = R — R, is thus the deviation
from R,. The Hamiltonian is given as

—— +-kq?, (2.A.24)
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Figure 2.13: Particle on a ring with a radius r. The particle has the momentum p and the angular momentum L.

where p is the reduced mass for a diatomic molecule,

nmiymsy
=—), (2.A.25)
m;+mo
and k is the force constant obtained as the second derivative of V(g) calculated in g = 0. In
eq. (2.A.25), my is the mass of atom I. The solutions for the Schrodinger equation are known

ﬁ
Wn(Q) = Aan(_V)e 2, (2.A.26)
_2
where e 7 is a Gaussian function, H,(y) are the Hermite polynomials, and
2 % 1
A o
y=— _(uk) , An=(an22"n] (2.A.27)
The energies, ¢, are given as
e (n+1 h (n+1)h ( +1)hc (2.A.28)
= — V= — w=|n+-|— A,
" 2 2 2) A

which is expressed either with the frequency, v, the angular frequency, w, or the wavelength,
A.
2.A.3 Rotation - Particle on aring

First we regard classical mechanics for a particle moving on a ring with a radius r = |r|, see
figure 2.13. The particle has a momentum p = mv, where m is the mass of the particle and v
is its velocity, and we define the angular momentum 1 as

I=rxp. (2.A.29)
The velocity v = |v| can be written as

V=2nTrv=rw, (2.A.30)
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where v is the frequency (number of rotations per time unit) and w = 2nv is the angular
velocity (radians per time unit). For [ = [l] and p = [p|, we get from eq. (2.A.29) that [ = rp.
Since p = mv = mro, we get [ = mr?w = Iw where we define the moment of inertia I of the
particle as
I=mr?. (2.A.31)
The kinetic energy K, as well as the total energy E since the potential energy is 0, can thus be
written as
1, 1, I?
E=K=-mv' =—-lw"=—. (2.A.32)
2 2 21

We will now demonstrate that the angular momentum 1 is quantized. A particle can rotate
both ways, +p, thus lin figure 2.13 can be directed both upwards and downwards,
l,=+pr. (2.A.33)

According to de Broglie each particle behave like a wave as
h

A=—, (2.A.34)
p
where A is the wavelength. Thus the angular momentum becomes
l,= iﬂ . (2.A.35)
A

If we rotate the angle 2, we need to get the same [, thus the number of wavelengths per full
rotation have to be an integer m;, i.e. m;A =2nr, leading to

hr
lZ:iT:hml, m;=0,+£1,%2,..., (2.A.36)
where as before 7 = /27 and the + is included in m;. Note that m; = 0 corresponds to an
infinitely large wavelength A. The energy of the system in eq. (2.A.32) becomes

2 mih?
E = — =
21 21
where we have degeneracy for all m; apart from m; = 0. The Schrodinger equation for the
motion in the xy-plane (no z component) is given as

) (2.A.37)

_hz 62 62
o (& + 22| w=Ey (2.A.38)

for the case when the potential energy is zero. For a particle on a ring, we use cylindrical
coordinate, r and ¢, where the radius r is fixed (see figure 2.14), leading to the Schrodinger
equation,
-n* 1 0%y
2m r2 dp?
Using eq. (2.A.37) for the energy and the definition of the moment of inertia in eq. (2.A.31)
leads to

(2.A.39)

02
a—(;g =-myy. (2.A.40)
Thus the wavefunction becomes )
el mp@
Ym, (@) = Nk (2.A.41)

which is normalized (see exercise 2.15).
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Figure 2.14: Coordinate system for cylindrical coordinates

2.A.4 Particle on a sphere

For a particle on a sphere, we adopt spherical polar coordinates, r, 8 and ¢ (Arfken et al.
2013, ch. 3),

x = rsin(f) cos(¢p) 0<0<nm
y = rsin(0) sin(¢) O<sp<2nm
z=rcos(0) r is a constant

As for a particle on a ring, the potential energy is zero resulting in the following Schrédinger
equation,

—h?
—V?y(r,0,¢) = Ey(r,6,¢) (2.A.42)
2m
For spherical polar coordinates,
V2—102r+ LA (2.A.43)
Crorz 2 o
where A? is the Legendrian,
o 1O, O sin@) 2 (2.A.44)
= —sin(@) — . A.
sin?(@) 0¢?  sin(0) 40 00

The Legendrian has known eigenfunctions and eigenvalues a
A Y, 0,9) = =11+ 1) Yy, 0, 9) , (2.A.45)

where Y;,,,(0,¢) is a spherical harmonics which are tabulated (see e.g. (Arfken et al. 2013,
ch. 15)). The eigenvalues ! and m; are quantized as,

* [=0,1,2,...,00

e m;=0,+1,...+1 .
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Note that the allowed values of m; depends on [, which is the reason for its notation (used
also in the previous section). For a particle on a sphere, r is constant, so we get for the
Schrodinger equation,

EA Wim, =1+ 1)21//1,”1 , (2.A.46)

so that
h
Eimy = 10+1) - (2.A.47)

The energy Ej;;, depends only on I so we have a degeneracy factor g = 2/ +1, i.e. the number
of degenerate states.

2.A.5 One-electron atom

We will here solve the Schrédinger equation for the one-electron atom discussed in
section 2.5.1 where atomic orbitals were introduced. Within the Born-Oppenheimer
approximation (see section 2.4) we regard a nucleus at rest in a fixed position. The potential
energy operator 7 is given from eq. (2.5.1) as the Coulomb interaction between the nucleus
and the electron,

~-Ze?
Ameor

7 = (2.A.48)

360°
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Since 7 only depends on one variable, the distance between the nucleus and the electron
r, it is tempting to use spherical polar coordinates (r,8,¢) as in appendix 2.A.4 instead of
Cartesian coordinates (x, y, z). The Schrédinger equation becomes

2

2 Dol —
om, Vy+Vy=Ey (2.A.49)

where m, is the mass of the electron and V? in spherical polar coordinates was given in
eq. (2.A.43). The wavefunction y (r,0, @) is separable as

v(r,0,p)=R(r)Y(0,¢). (2.A.50)

Thus the Schrodinger equation in spherical polar coordinates becomes

30
(1 g (rR(NY©O,9)) +%A2R(r)Y(9,(,0)—4

2me \ 197

eZ
R(r)Y(0,9p)=ER(r)Y(O,¢). (2.A.51)
JTTEYTr

The angular part is identical to the solution for a particle on a sphere in eq. (2.A.45),
A1, 0,9) = =1L+ 1) Y1, 6,9) , (2.A.52)

where Y,,, (0, ¢) were the spherical harmonics. For the radial part, we get the following
equation

2

]. 02 ].
e (;ﬁ (rR(r))) t3 (-1d+D)R(r) - "

R(r)=ER(r), (2.A.53)
TTEYT

for which the solutions are the associated Laguerre functions, R,;(r) (see e.g. (Arfken et al.
2013, ch. 18)). The wavefunction thus becomes

Ynim (1,0,9) = Rpi (1) Y1, (0, ¢) (2.A.54)

which is the result used in eq. (2.5.2).
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FORCE FIELDS

3.1 Introduction to force fields

In a force field, the potential energy surface of a molecule or a system of molecules is
described with a relatively simple model based on atom-type parameters and approximate
analytical expressions for a set of energy terms where each energy term has a physical
interpretation. The motivation for constructing a force field is in particular that we in
molecular dynamics (MD) simulations need to calculate the forces between a large amount
of particles (perhaps 10.000 atoms) repeatedly. A typical time-step in an MD simulationis 1 fs
so for an MD simulation of 100 ns we need to calculate all the interatomic forces 108 times.
A standard force field for the potential energy surface, V(R3N), may look like

bonds k; angles k; torsions /.

2 2
V(R3N) = 2 5 (li=lio)"+ > — (0i=0i0)"+ > El(l""cos(”iwi_?’i))
N l 7 N l - N l 7
bond sEetches angle‘lr)ends torsional motion
0'.. 12 0'4. 6 q.q.
+ Y e |2 R |y — (3.1.1)
i,j>i Rij Rij 47T£0Rij
——

.

Lennard-Jones term Coulomb term

(. J

~
intermolecular interactions

where each energy term will be described in some detail below. Each energy term has
a physical meaning, but is in this chapter introduced in a phenomenological way based
on empirical experience. Each term contains variables related to the molecular geometry,
e.g. the bond length /;, the bond angle, 0;, the torsional angle, w;, and the interatomic
distance, R;;. In addition, each energy term contains atom-type parameters, e.g. the force
constant, k;, and the equilibrium bond length, /; o, for the bond stretching term. Even if it
is desirable to have only one value of each atom-type parameter for each element, it is in
many cases not possible as for example for the carbon atom since a carbon atom in a methyl
group, —CHgs, and in a carbonyl group, >C=0, has quite different properties (e.g. the carbon
atomic charges, ¢g;, have different sign). The transferability of atom-type parameters, i.e. the
applicability of the same set of values of the atom-type parameters to a variety of different
types of molecular systems (e.g. proteins, nonpolar polymers, ionic crystals, etc.) is thus a
central issue when discussing force fields.

In the construction of a force field, we have to make a choice of which energy terms to
include, the functional form of each energy term and how to obtain the values of the atom-
type parameters. Historically, force fields have been parametrized against experimental
data, termed empirical force fields, as for example structural and thermodynamic data.
Semi-empirical force fields are still common, where usually the atomic charges in the
Coulomb term in eq. (3.1.1) are obtianed from quantum chemical calculations and the
remaining energy terms are parametrized from experimental data. Finally, a force field
can be parametrized from a set of quantum chemical calculations on model systems.
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Quantum chemical data is in principle preferred since it provides a consistent data set on
the microscopic level, whereas most available experimental data are on the macroscopic
level, i.e. measured at a given temperature and pressure. The limitation of the data set used
in the parametrization limits the applicabililty of the force field, e.g. if only data at room
temperature and ambient pressure are included in the parametrization it cannot be expected
to be applicable at other thermodynamic states.

We will in this chapter give an introduction to various force field terms based on a
phenomenological approach, i.e. the energy terms are introduced in ad hoc manor and not
derived from an underying and more fundamental theory. However, in section 3.4 some of
the contributions will be derived from quantum mechanics. We divide the force field into
two types of terms, bonded and non-bonded interactions. With bonded interactions, we
refer to terms that describe covalent bonding, whereas non-bonded interactions describe
relatively weak through-space interactions. Non-bonded interactions are not restricted
to intermolecular interactions, but also includes interactions in relatively large molecules
between atoms in different parts of the molecule. For example, atom 1 in the larger of the
two molecules in figure 3.1 cannot see the difference between the interaction with atom N
in the same molecule and the interaction with the atoms in the small molecule, so these
interactions need to be treated on an equal footing in a force field model.
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Figure 3.1: Sketch to illustrate that the interactions Figure 3.2: The Morse potential for a diatomic
between atoms of different parts of the molecule, molecule. D, is the dissociation energy and R, is the
in this case atom 1 and atom N, are essentially the bond distance at the energy minimum, respectively.

same as the interaction between atom 1 and the
atoms in the small molecule.

3.2 Force-field terms for covalent bonding

We will here introduce the most common force-field terms for describing covalent bonding:
bond stretching, angle bending and torsional motion.

3.2.1 Bond stretching

Let us regard the potential energy, V(R), as a function of the bond distance, R, of a
diatomic molecule which often can be represented accurately with a Morse potential (see
figure 3.2) (Morse 1929),

V(R) = D, (e 24RFe) _ pgmalR=Fo)] 3.2.1)

where R, is the equilibrium distance, i.e. the bond distance at the minimum of the potential
well, D, is the depth of the potential surface (dissociation energy), i.e. minus the potential
energy at R, and a is a parameter describing the width of the potential well. The Morse
potential can be written in different ways and is here given so that the potential energy
approaches zero at infinite separation.

As a first approximation, we represent a covalent bond with a classical harmonic oscillator,
i.e. two atoms are connected with a spring with a force constant, k.We make a Taylor
expansion of the potential energy, V(R), around the equilibrium geometry, R.. If we
introduce the Dunham expansion parameter Q = (R — R,)/R, (Dunham 1932a;b), the Taylor
expansion around R = R,, i.e. Q = 0 becomes

———
zero level  V/(0)=0 in the minimum

/ 1 " 2 1 3) 3 1 (4) 4
ViQ= V(0 + V'(0)Q + =-V'0Q +=VV0)Q"+=V*(0)Q , (3.2.2)
SN—— 2 , 6 , 24

(. [ J

-

-
gl W
Harmonic term  Anharmonicity Quartic term

where the zero level, V(0), can be ignored (the potential energy surface can always be shifted
with a constant energy). The linear term in Q is 0 since the gradient is 0 at the minimum. The
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Figure 3.3: A diatomic molecule represen-
ted as two atoms connected with a spring.
According to Hooke’s law, the force as a
function of the bond distance, F(R), is given
as F(R) = —k(R — R,), where k is the force
constant and R, is the equilibrium bond
length.

V(R)

PO g

-D, }

Figure 3.4: A Taylor expansion of the Morse
potential. The full line denotes the Morse
potential, whereas the dash-dotted (red)
line shows a truncation after the harmonic
term, the dashed line (green) shows a trun-
cation after the anharmonic (cubic) term,
and the dotted line (blue) shows a trunca-
tion after the quartic term, respectively.

quadratic term in Q is the harmonic term, we denote the cubic term in Q the anharmonicity
of the potential energy, and we finally have the quartic term. If the anharmonicity and
other higher order terms in the Taylor expansion are ignored, we get the classical harmonic
oscillator,

V(Q) = IECQZ with k= V" (0) . (3.2.3)

A Taylor expansion of the Morse potential in eq. (3.2.1) is shown in figure 3.4. Truncation
after the harmonic term gives a reasonable description around the minimum. At large
separation between the atoms, Q — oo, also V(Q) — oo, so the dissociation limit is
not described correctly. If the model, however, is restricted to describing non-reacting
molecules where the bond length always is expected to be close to R,, truncation after
the harmonic term is a reasonable approximation. Truncation after the anharmonic
term (again see figure 3.4) leads to that the energy V(Q) — —oo for large Q. Whereas a
harmonic approximation may be useful in the sense that it keeps the molecules in a stable
configuration, a truncation after the anharmonic term may be disastrous in an energy
minimization scheme or in a molecular dynamics simulation where the energy cannot
diverge towards —oo. A truncation after the quartic term has essentially the same features as
a truncation after the harmonic term but it resembles the Morse potential more accurately
at slightly larger Q than the harmonic approximation.
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The Simons-Parr-Finlan (SPF) expansion, where the expansion parameter Q is chosen as Q =
(R - R.)/R (Simons et al. 1973) is shown in figure xx and it has a superior performance with
respect to convergence as compared to the Dunham expansion essentially since Q — 1 when
R — oo for this choice of Q. A generalization is given by the Thakkar expansion (Thakkar
1975),

V(R) = co(p)A? (1 +) cn(p)/l") , (3.2.4)
n=1
where
R\P 1 p>0
A(R, p) = sgn(p) (1 - (—e) ) where sgn(p) = 0 p=0 . (3.2.5)
R
-1 p<O0

In eq. (3.2.4), p is a nonzero real number. The Thakkar expansion reduces to the Dunham
expansion for p = —1, to the SPF expansion for p = 1, and to the Lennard-Jones potential
that will be discussed in eq. (3.3.53) for p =6 and ¢, (p) =0forn > 1.

3.2.2 Angle bending

We use the water molecule as a typical example of an angle bending term (see figure 3.5),
where the equilibrium angle, 8., between the O-H bonds is 104.5°. As for bond stretching,
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Figure 3.5: Definition of the internal co- Figure 3.6: A double minimum potential for
ordinates, the bond lengths, Ry and R, and the angle bending term, e.g. for the water
the bond angle 6, for the water molecule. molecule.

we normally use a harmonic oscillator approximation for the angle bending term,

Vo) =~ (0-6.)° (3.2.6)

Ko
2
which is an approximation that is valid when the angle 8 is close to the equilibrium angle
0.. A better model is given in figure 3.6 for the water molecule. However, for example for
the water molecule at § = &, which corresponds to a linear water molecule, the potential
energy barrier is so high that the linear molecule will not exist unless we are at extremely
high temperatures. It is therefore in most cases sufficient to adopt a Taylor expansion around
one of the minima as in eq. (3.2.6). For ammonia, on the other hand, the umbrella motion
that inverts the molecule cannot be ignored at ambient conditions and eq. (3.2.6) would be

a severe approximation.

3.2.3 Dihedral terms

A dihedral angle is defined as the angle between two planes as illustrated in figure 3.7. If the
atoms 1, 2 and 3 define one plane, and the atoms 2, 3 and 4 define the second plane, the
dihedral angle w is the angle between these two planes. The dihedral (or torsional) energy is
given as a periodic function

Viw) = Z% (1+cos(nw-7y) (3.2.7)

n

where n gives the periodicity (e.g. n = 2 for 180° periodicity and n = 3 for 120° periodiicy,
respectively), V,, is the rotational energy barrier and y defines where the dihedral angle is 0.
The energy term can also be written as the real part of a Fourier series,

V(w)=) Cpcos)” (3.2.8)
n

Some molecules, as for example benzene, are expected to be planar, and often we would like
to add a constraint to keep the molecule planar. If we add constraints, for example by adding
Lagrangian multipliers in a constrained energy minimization, the molecule is kept planar all
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Figure 3.7: Definition of dihedral angle.

the time. Alternatively, we can add an extra energy term, referred to as an energy restraint or
an improper torsion term,
V(w) =k, (1—cos2w) (3.2.9)

where the molecule is kept almost planar if k,, has a very large value.

3.2.4 Cross terms

Sometimes cross terms are included describing the coupling between e.g. two bond
stretches or a bond stretch and an angle bending term. Let us take the water molecule in
figure 3.5 as an example where the intramolecular motion is described by two bond lengths
R; and R, and a bond angle 8. We carry out a Taylor expansion around R) g, Rz o and 0,

ov ov
V(R1,Ry,0) = V(Ri0,Rz0,00)+(R1—Riyp) 3R, +(R2 — Rayp) T
1 Ry,0,R2,0,00 2 Ry,0,R2,0,00
ov 1 5 0%V
+ (9 - 90) @ + 5 (Rl - RL()) w
Ry,0,R2,0,00 1 1R1,0,R0,0,60
1 s 0°V 1 2 0°V
+ E(RZ_RZO) ﬁ +§(9—90) W
2 |Ry,0,R2,0,00 R1,0,R2,0,00
% Y%
+ (R1—Rip)(R2—Rap) 3R.OR + (R1 — Ru,0) (0~ 60) R0
15752 Ry,0,R2,0,00 1 R1,0,R2,0,00
%
+ (R2 - Rg’o) (9 - 90) +... (3.2.10)
0R,00
Ry,0,R2,0,00

where the last three terms are coupling terms. It is common that only a few of the coupling
terms are important. For water it is suitable to introduce a symmetric stretch coordinate,

Q1—Q10=(R1—Ri0)+ (R2—Rop) (3.2.11)
and an antisymmetric stretch coordinate,

Q2—Q20=(R1—Ri,0) — (Ro— Ro0) (3.2.12)
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where it turns out that only one of the cross terms,

0%V

V(Q1,Q2,0) =...+(Q1— Q1) (6 —60) 30,00

+... (3.2.13)
Q1,0,Q2,0,60

is of importance. When including cross terms, the atom-type parameters R; o, R and 0
(or Q1,0, Q2,0 and p) do not correspond to the equilibrium geometry, which is realized by
minimizing the potential energy surface in eq. (3.2.10).

3.2.5 Summary of bonding terms

We have from a phenomenological standpoint discussed the regular energy terms included
in a force field to describe covalent bonds: bond stretching, angle terms and torsional
motion, sometimes extended by coupling terms and additional terms for example describing
hyperconjugation (how m-conjugation affects bond stretching in neighbouring groups).
Sometimes the following classification is used (Maple et al. 1994, Hwang et al. 1994, Allinger
et al. 1996):

¢ (Class I: only harmonic terms, not any cross terms
¢ (Class II: anharmonic terms and cross terms

* (lass III: also additional terms, e.g. to describe hyperconjugation

3.3 Intermolecular interactions

In section 3.2, we discussed interactions mainly describing covalent bonds referred to as
bonded interactions. In this section, we discuss intermolecular interactions, i.e. weak
interactions as compared to covalent forces, as for example dispersion interactions in
liquid argon, hydrogen bonding in liquid water and ion-ion interactions in electrolytes.
Furthermore, the energy terms used to describe intermolecular interactions are also adopted
for long-range interactions within the same molecule, as the energy terms discussed in the
previous section are restricted to interactions between an atom and atoms up to three atoms
away within the same molecule (see figure 3.1, i.e. the bonded terms include interactions
between atom 1 and atoms 2, 3 and 4).

As is in the previous section, we will introduce the energy terms for intermolecular
interactions in a phenomenological way, whereas the connection to quantum mechanics
is treated in section 3.4. The four most important intermolecular interaction energies are:

* electrostatic energy: interactions between ions and/or polar systems using classical
electrostatics.

* induction energy: arising from that the electron density of a molecule is polarized by an
electric field from the surrounding molecules resulting in induced electric moments (e.g.
induced dipole moments).
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 short-range repulsion energy: essentially arising from that the Pauli exclusion principle
needs to be fulfilled.

e dispersion energy: arising from that the motion of the electrons is correlated.

3.3.1 Electrostatic interactions

In quantum chemistry, the charge distribution of a molecule with N atoms is represented by
a set of nuclear charges, {ZI, I1=1,2,...,.N }, and an electron density, p(7), so that

fp(?) dr=n, (3.3.1)

where 7 is the number of electrons in the molecule. In a force field, the most simple way to
represent the molecular charge distribution is by a set of atomic charges, {c] nI=12,...,.N },
in conjunction with Coulomb’s law for the interaction between atomic charges,

N qiqp

, 3.3.2)
T+147mE0Ry

N
v=>
I1=1]

where Rj; is the distance between atoms I and J. The key problem in obtaining atomic
charges is therefore how to partition the electron density into atomic contributions. An
atomic charge therefore consists of the part of the electron density assigned to the atom plus
the nuclear charge of the atom. Also, an atomic charge does not have a unique definition
since it is not a measurable quantity, and in the literature we find literally hundreds of
approaches to calculate atomic charges.

It is reasonable to expect that the atomic charges of a molecule should reproduce the
molecular electric moments discussed in section 2.9.1. It is always imposed that the
molecule has the correct total charge,

N
a™'=Y qr. (3.3.3)
I=1

For a neutral molecule, g™°' = 0, even round-off errors giving a small molecular charge

different from zero would give large errors in the electrostatic energy because of the long-
range 1/R distance dependence for charge-charge interactions. For small molecules, it is
reasonable that the molecular dipole moment,

N
gl =" qiRrq (3.3.4)
=1

and the molecular quadrupole moment (see eq. (2.9.32)),

N
3 1
@glgl = Izl qr ERLD«’RI,,B - ERLYRI'Y(saﬁ , (3.3.5)

are well described by the atomic charges ¢q;.
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If atomic charges are not sufficient to represent the molecular charge distribution, there
are several ways to improve the model. A systematic way would be to add atomic dipole
moments, (14, and atomic second moments, Qr,ap, (or alternatively atomic quadrupole
moments, Oy ,5) which would improve the corresponding molecular moments as

mol

Z qiR1a+ Ui, (3.3.6)

and

mol

Qup = Z qiRraR1p+ praRrp+ Rialtr,p+ Qrap (3.3.7)

where the latter can be converted to the quadrupole moment by eq. (2.9.32).

Alternatively, extra charges placed outside the atoms, so-called virtual charges, may be
added for describing lone-pairs, e.g. in water, or m-systems, e.g. in benzene. Again, the
representation of the electrostatics in a force field in terms of distributed charges, dipole
moments, etc. is not unique and many models exist in the literature, but it appears like
atomic charges extended by atomic dipole moments and sometimes atomic quadrupole
moments is a more general and systematic approach.

Atomic charges are often obtained from quantum chemical calculations using various parti-
tion techniques of the electronic charge distribution as for example Mulliken charges (Mul-
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liken 1955), Hirshfeld charges (Hirshfeld 1977), etc., which traditionally often has been com-
bined with experimental data to obtain atom-type parameters for the other energy terms
in a semi-empirical force field. For small molecules, atomic charges may be parametrized
from quantum-chemically derived molecular dipole moments and quadrupole moments
(egs. (3.3.4) and (3.3.5)), but the dipole moment for larger molecules is not a very meaningful
property since it is a sum of numerous important contributions where each contribution
describes the local electrostatics around e.g. a binding site and needs to be modelled
accurately.

One way to address this is to parametrize the electrostatic potential on a set of lattice points
{aj, j=1,...,m} around a molecule,

N

qi
Pa; = )
“ ElRlaj

(3.3.8)

against a quantum-chemically derived electrostatic potential. It is an attractive approach
since the electrostatic potential is probed locally around all important interaction sites of
the molecule. One potential problem is that the electrostatic potential calculated close to
the molecule does not follow the classical behaviour for point charges in eq. (3.3.8) since at
short distances, the quantum-chemically derived electrostatic potential is calculated within
the molecular charge distribution and short-range damping terms are required. In general,
parametrizations like this are tricky because of redundant data and over-fitting so expertise
in multivariate data analysis and chemometrics is highly demanded.

Example 3.1: The dipole moment of HCN.

We can in principle get the correct dipole moment of HCN by using partial atomic
charges in two different ways as illustrated in figure 3.8, i.e. either by a charge transfer
between C and N or between H and C. With the choice of § = 0.5 e, both possibilities
give approximately the correct dipole moment by using eq. 3.3.4, ,u‘zn"l =-2.81 D for
the “CN” case and ! = —2.61 D for the “CH” case, respectively, compared to the
quantum chemical value of u°' = —2.70 D, but the two cases can, for this example,
easily be distinguished by calculating the quadrupole moment. The quadrupole
moments calculated by eq. (3.3.5), @IZ"ZOI, become —0.44 B for the “CN” case and 5.47 B
for the “CH” case, respectively, compared to the quantum chemical value of 1.92 B.

A reasonable distribution of the partial atomic charges for HCN obtained from fitting
the electrostatic potential around the molecule is given in figure 3.9. These partial
atomic charges give a dipole moment u™°! = —2.67 D and a quadrupole moment
©°!l = 1.80 B again using egs. (3.3.4) and (3.3.5), both in good agreement with the
respective quantum chemical value.

The quantum chemical calculations have been carried out with the NWChem
package (Valiev et al. 2010) adopting the PBE functional (Perdew et al. 1996) and the
cc-pVDZ basis set (Dunning Jr. 1989), resulting in the bond lengths Rcy = 1.170 A and

Rcy=1.085A, respectively, in addition to the quantum chemical values given above.

Atomic partial charges are to a very small degree transferable, e.g. there is not one set of
carbon atomic charges that can be used for all types of carbon atoms in e.g. methyl groups,
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Figure 3.8: Two possible distributions of partial atomic Figure 3.9: Partial

charges in HCN. atomic charges of HCN

obtained from fitting the

electrostatic potential

around the molecule.

aromatic rings, carbonyle groups, etc. Let us consider a simple example, F» and HE The
atomic charges in F», gr = 0, because of symmetry reasons whereas HF is highly polar with a
dipole moment of 1.8265 D (Muenter and Klemperer 1970) described by the partial charges
qr = —qu = —0.41 e for the bond length 0.9168 A (Mann et al. 1961). Another example is to
consider the carbon partial charges in benzene and formaldehyde. In benzene, gc = —0.05 e
wheras g¢ = 0.40 e in formaldehyde, again demonstrating the lack of transferability of atomic
partial charges.

3.3.1.1 Electronegativity equalization model

In the electronegativity equalization model (EEM), it is assumed that each atom in a
molecule can be described by an atomic electronegativity, {;, and an atomic chemical
hardness, n; (Mortier et al. 1985). If the electronegativities of two atoms are different, charge
will flow from one atom the other until the molecular electronegativity (chemical potential)
is the same everywhere (equalized). In addition, a work is required to charge an atom, which
is determined by the chemical hardness (or capacitance) of the atom. Electronegativity and
chemical hardness are central concepts in density functional theory and has been discussed
thoroughly (Parr and Yang 1989, Geerlings et al. 2003). The molecular energy, V, for a
molecule with N atoms becomes

N 1 N ) 1 N © i N
V:251q1+52n1q1+5 >, aiTy q1+u(qm° —Zc/z) : (3.3.9)
I I LJ#I I

where the third term is the regular Coulomb interaction between two atomic charges, q;
and g;. The last term is a constraint that preserves the molecular charge, g™°!, where u
is a Lagrangian multiplier. The atomic charges are obtained by minimizing the molecular
energy in eq. (3.3.9) with respect to the atomic charges and the Lagrangian multiplier. We
thus obtain

— =0=¢x+nkgr+ ), T di— 1 (3.3.10)
0qk L#ZK
and
oV N
—:O:quI— CII» (3311)
ou ;
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where the last term is simply the applied constraint. A set of N + 1 coupled linear equations
is obtained which can be solved by standard numerical techniques

TZ(I) N2 ... Tz( 1\)1 1 q> &2
: c Do e : ) (3.3.12)
0 0
T 1O ... nn 1 || an v
1 1 .. 1 o0 v qm°
or alternatively the atomic charges are calculated as
-1
q1 1 TI((Z)) ... Tl(?\), 1 &1
7z 9 n, .. TY 1 &
o=l : (3.3.13)
qn TV TO ... nn 1 éN
Il 1 1 ... 1 0 g™

Thus, the atomic electronegativity, ¢ ;, and chemical hardness, 11, are atom-type parameters
that has to be determined. The method has been parametrized in different ways, e.g. the
Delft molecular mechanics (DMM) force field has been developed for hydrocarbons by
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Figure 3.10: Water dimer. The angles 6 and w refer to the notation in eq. (3.3.15), where the dashed line
indicates the direction of an oxygen lone-pair orbital. The distance Ry...o in eq. (3.3.15) refers to the distance
between the H atom in the hydrogen donor molecule and the O atom in the hydrogen acceptor molecule.

parametrizing experimental data (van Duin et al. 1994). Electronegativity equalization is
useful in organic chemistry to determine where it is likely that electrophilic and nucleophilic
attacks occur in a molecule since these types of reactions highly depend on the local
differences in the electrostatic potential around the molecule.

For a diatomic molecule, using the constraint g; + q; = 0, we get the solution (see
exercise 3.1),

$j—¢1

— o (3.3.14)
nr +1’]]—2TU

—qr=4qr=

The sign of the partial charge is thus determined by the difference in electronegativity
between the two atom-types in the dimer. Consequently, the model works for the example
discussed above, F, and HE The atomic partial charges gr in F, are zero by cancellation of
¢{r—<¢F in eq. (3.3.14), wheras they are non-zero in HF since {y — {r # 0. The magnitude
of the atomic charges depends on all atom-type parameters as well as the bond distance in
TI(?), so the EEM also includes a geometry dependence of the atomic charges important in
e.g. modeling conformational energies in molecules.

3.3.1.2 Hydrogen bonding

Hydrogen bonds are in general difficult to model in a force field and extra terms are
sometimes added to the force field as in the YETI force field (Vedani 1988),

A C
Weri=|——— - cos’0cos*w (3.3.15)
RIZ RIO
H---0 H---O

where A and C are parameters and the notation is explained for the water dimer in
figure 3.10. This energy term is highly dependent on the angles 8 and w with the purpose
to model that hydrogen bonds are strongly orientation dependent.

Since hydrogen bonds are to a large extent electrostatic interactions (Stone et al. 1997), a
more systematic way is to include atomic dipole moments in the model. A dipole-dipole
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interaction can according to eq. (2.9.35) be written as

3 (ﬁz - EU) (fﬁ]'ﬁ]) = (B )
Viw == i (3.3.16)

gives an appropriate dependence on the mutual molecular orientation as seen from the
vector scalar products in eq. (3.3.16).

3.3.2 Electronic polarization

The electronic density of a molecule is polarized by an electric field from the electric
moments of the surrounding molecules, normally referred to as the induction energy in a
force field. We recall from section 2.9.2 that the polarizability a,p is defined as the linear

response to an electric field, Eg,

pind = o, 5B 3.3.17)

where p" is the induced dipole moment. We generalize eq. (3.3.17) to atomic polarizabilit-

ies, ayqp, as
tot

S = arapElg (3.3.18)

where ,u‘nd is the atomic induced dipole moment and ]5tOt is the total electric field at atom

I, i.e. it includes for example the electric field from an apphed external field and the atomic
charges of the surrounding molecules as well as the electric field from all surrounding atomic
induced dipole moments.

The discussion in section 2.9.2 for a classical polarizability in an external field is extended to
a system of many polarizable particles. In addition to the electrostatic energy and self-energy
given in eq. (2.9.41) for a single particle, a dipole-dipole interaction energy (see eq. (3.4.8)) is
also included. The induction energy Viyq of a system of polarizable particles in an external
electric field, ES, is given as (Vesely 1977)

L,a’
Vina = -7 Z Ko T1 apH] 5 +Z VI self = Zulzng ETq (3.3.19)

where ,umd is the induced dipole moment of particle I, Tﬁ) ap’ is the interaction tensor
of rank 2 defined in eq. (2.9.22), and Vs is the self-energy of particle I as defined in

eq. (2.9.40),

1 d d
VI,self = E (al,aﬁ) /Jljnaﬂljnﬁ (3.3.20)

The external electric field may arise from permanent electric moments of the surrounding
particles of the system or other external sources. The system is polarized in such a way that
the induction energy is minimized,

0Vind Y@ d d t
o —0=- ];(T ) +(a,<,ﬁy) pind — Eex (3.3.21)
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which gives
. N .
Y = g py (E?S“y + %{ T },yﬁu‘},‘g) (3.3.22)

The atomic induced dipole moments are thus given from a set of 3N coupled equations and
is a true many-body term. If polarizabilities are included in a force field, the calculation of
induced dipole moments will be relatively time-consuming as compared to other energy
terms. The expression of the potential energy in eq. (3.3.19) may be simplified by using
eq. (3.3.22) as

1 & dr@  ind, 15 ind| pext . & @ L ind| S ind pext
Yind ‘EI%I“ I'aTn,aﬁﬂm;“ ta|FLa* %Twﬂ“w _;” 1atla

18 d pext
jint eX
_EZ, pind g (3.3.23)

The self-energy thus cancels the induced dipole-induced dipole interaction and half of
the interaction between the induced dipoles and the external electric field. By inserting
eq. (3.3.22), eq. (3.3.23) may be rewritten as

1Y N .
Vind = =5 >_@rap| Efp+ 2 Tﬁfﬁywj}ﬁ EX (3.3.24)
2 1 J#1
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Figure 3.11: Polarization in a system divided into two subsystems.

Although the induction energy in eq. (3.3.19) is quadratic in the induced dipole moment, the
final result in eq. (3.3.23) is only linear in ,ullng The result in eq. (3.3.23) is, however, only valid
for the optimum ui;}g fulfilling the requirement in eq. (3.3.21), dVinq/ 6;1?3, =0. Eq. (3.3.24)
can therefore, for example, not be used to calculate the gradient of the induction energy.

3.3.2.1 Distributed polarizabilities

If a system is divided into subsystems (see figure 3.11 for an illustration), as for example a
molecular polarizability into atomic contributions, there are two major contributions to the
polarizability. We have a monopole contribution arising from charge transfter between the
subsystems as a response to the difference in electrostatic potential between the subsystems,
which we will describe by an extension of the electronegativity equalization method in
section 3.3.1.1. Secondly, we have a local polarization within each subsystem where the
leading term is described by an atomic induced dipole moment.

3.3.2.2 Electronegativity equalization methods

The electronegativity equalization method (EEM) for calculating atomic charges in sec-
tion 3.3.1.1 is extended with the interaction with an external potential, (p‘;’“. The molecular
energy V in eq. (3.3.9) becomes thus

V = Z (61 + (pc;xt) q}OI + EZUI(Q}Ot)Z + z Z Q}OtTI(?) CI}Ot + 1 (qmol _Zq}ot) (3.3.25)
1 1 I,J#1 1

Following the same procedure as in section 3.3.1.1, eq. (3.3.12) becomes

n1 Tl((Z)) Tl((])\)f 1 int {1 + QD?Xt
TZ((I)) mn2 e TZ(?\)] 1 q;Ot 52 + (ngt

P S | A E) B (3.3.26)
TWT e L] AR | vt

1 1 ... 1 0 7 q™°
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Dividing ¢*" into the atomic charges defined in section 3.3.1.1 and induced atomic charges,

q}nd arising from the response to external electrostatic potential gives for qmd,
-1
(0) (0)
qinj n}) T, ... Tl(])\)/ 1 P
i O
il T - : (3.3.27)
Q}3d v T N 1 ‘P?\)f(t
0 1 1 ... 1 0 0
or
g = Z Apys™ (3.3.28)
J=1

where Aj; is a relay matrix determining charge flow to atom I from an external electrostatic
potential at atom J.

Ifa homogeneous external electric field, EE’“, is regarded, its electrostatic potential at atom
], ext

@7 =Ry pEg" . (3.3.29)
The response to EE’“ thus becomes
0 qlnd
aEext Z AUR] B (3.3.30)
B

We recall from eq. (2.9.36) that the molecular polarizability is defined as

a'ulnd
Xap =3 rext » (3.3.31)
p

and since

pind = Z g™ R; ., (3.3.32)
we get
N
aap=— Y, RiaAyR;p. (3.3.33)
I1,]=1

For planar molecules, however, only an in-plane polarizability is obtained, and EEM can thus
only give a part of the molecular polarizability.

3.3.2.3 Point-dipole interaction model

The point-dipole interaction model (PDI) model has many similarities with the electroneg-
ativity equalization model in the previous section 3.3.2.2 in the sense that it relies on a set of
native atom-type parameters that couple with each other through electrostatic interactions
to give the molecular property. If we have a molecule of N atoms in an external electric field,
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E¢ and an atom-type polarizability, ap, is assigned to each atom, an atomic induced dipole

ﬁ )
ind :o o3
moment, Hy 1S given as

N
ind _ t 2) ind
o =arap| Efp+ ]Z# L (3.3.34)

where the last term is the electric field from all other atomic induced dipole moments in the
molecule. Since we have 3N coupled equations, the set of equations can be written in matrix

form as ) .
ﬂlnd -« (EEXt + T(Z) ulnd) (3.3.35)

which may be rearranged as
. -1
pd= (et -T®) B = BE (3.3.36)

where B is the relay tensor defined as
-1
B=(a'-T1?) (3.3.37)

The atomic induced dipole moment is given in terms of the relay tensor as

. N
Hiq= Y BrjapESs (3.3.38)
J=1
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It is noted that the molecular induced dipole moment is simply the sum of the atomic
induced dipole moments,

. N .
et =) g (3.3.39)
I=1

In addition, if a homogeneous electric field, E;’% = EE’“, is assumed, the molecular induced
dipole moment is given as

) N
=15 Bijap Eg* (3.3.40)
Ij=1
From its definition in eq. (2.9.36), .
iyt = afg EgY (3.3.41)

the molecular polariazability is obtained as

N
ayf' =Y Bijap (3.3.42)
1,]=1

The definition of atomic polarizabilities is not unique, but one way to define it is as

uilr}ccrl _ a‘}“f;‘;‘ E/ejxt (3.3.43)

which results in N
azli,tgll;l _ ZBH,aﬁ (3.3.44)

J

Even if the atom-type parameter, ap, is isotropic,
Apap = apdap (3.3.45)
the resulting molecular polarizability includes the anisotropy because of the intramolecular

electric fields.

The PDI model thus gives a distributed representation of the molecular polarizability in
terms of the relay tensor By 4. The relay tensor is interpreted as the response in terms of
an atomic induced dipole moment at atom I, ,ui;}g, arising from a perturbation by an electric
field at atom J, E;g. The PDI model may also be regarded as a correction to an additive
model by carrying out a Taylor expansion of the B tensor in eq. (3.3.37) around «T® =0,

B= (a‘l - T(Z))_1 - (1 - aT(z))_l a-= (1 +aT® 4 (aT(z))z +.. ) p (3.3.46)

which converges if aT® < 1. It is also instructive to solve the two-atom problem, which
results in (Silberstein 1917a;b)

ai+a]~+4a,~aj/R3

a) = 3.3.47
” 1 —4a:,-aj/R6 ( )
for the component parallel to the diatomic bond «, and
a;+a; —Zaiaj/R?’
a, = (3.3.48)

l—aiaj/RG
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for the component perpendicular to the bond a . If R~%-term is neglected, the isotropic part
of the molecular polarizability is additive

1
amol — 5 (a" +26¥J_) =a;+a; (3.3.49)

which indicates that the isotropic part of the polarizability is easier to model than the
individual tensor components and thereby also the anisotropy of the polarizability tensor.

3.3.3 Dispersion and short-range repulsion

If we consider the interactions in e.g. liquid argon, where electrostatic and polarization
(in the absence of an external electric field) interactions are not present, the dominating
interactions consist of attractive dispersion interactions and short-range repulsion.

3.3.3.1 Dispersion

Dispersion interactions arises from that the motion of the electrons are correlated, and
London derived an equation for the dispersion energy from second-order perturbation
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theory (see section 3.4.2 for details) resulting in (London 1930)
—Cs
R6
where Cg is a parameter with a postive value since the dispersion energy is always attractive.

Higher-order terms in the perturbation expansion may be included,

-Cs Cg Cyo
Viisp= 5 ~ 8 "R T (3.3.51)

Vdisp = , (3.3.50)

but normally only the R~%-term is included.

3.3.3.2 Repulsion

The physical origin of the exchange-repulsion energy is the Pauli exclusion principle, i.e.
that two electrons cannot be in the same quantum mechanical state. So when two closed-
shell, e.g. two argon atoms, come close to each other they will repell each other just
to fulfil the Pauli exclusion principle. The other energy terms commonly included to
describe intermolecular forces (electrostatics, induction and dispersion), normally have
quite significant approximations at short interatomic distances whereas the long-range
behaviour is more or less correct. It is therefore common to define the repulsion energy
Viep more pragmatically as (Engkvist et al. 2000)

Vrep = Vint = Vele = Vind — Vdisp ’ (3.3.52)

so that it contains also short-range errors in the other energy terms as well as higher-order
energy terms that often are short-range, as e.g. for the dispersion energy in eq. (3.3.51).
The repulsion energy Viep is therefore often parametrized from a set of quantum chemical
calculations of the interaction energy Vi on molecular dimers and clusters and subtracting
the other energy terms.

3.3.3.3 Lennard-Jones potential

Lennard-Jones suggested the following model for the interaction between two rare-gas
atoms (Lennard-Jones 1931),

7 -

R R

which consists of a short-range repulsion energy with an R~'2-dependence and a more
long-range attractive London dispersion energy as in eq. (3.3.50). We express the atom-
type parameters either as € and o or as A and Cg. The reason for the choice of the
R™'2-dependence is that the repulsive (o/R)'? term is the square of the attractive (o/R)®
term, which Lennard-Jones took advantage of in solving some statistical mechanical model
systems analytically.! In a molecular force field, the Lennard-Jones potential is generalized

A C
= _5 (3.3.53)

VL]:4€ Rlz_ﬁ'

1 The choice of the R'?-dependence is often attributed to computational efficiency. It is indeed
computationally efficient, which may explain its present popularity, but Lennard-Jones presented his work
in 1931 long before the first computers in the 1950’s.
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to a pair-wise additive force field,

12 6

Na Np

VL] = Z Z 46[]
I=1]=1

(TU

RU

i
RU

(3.3.54)

where N4 and Np are the number of atoms in molecules A and B, respectively. Eq. (3.3.54)
contains atom-pair parameters, €;; and oj;, which leads to M(M + 1)/2 number of
parameters for M atom types. It is favourable to reduce the number of parameters in the
model to M parameters by applying the Lorentz-Berthelot mixing rules,

1
0]]:5(011+0']]) ) €1 =VEIIE]] (3.3.55)

Example 3.2: Interaction between an Ar atom and an ion.

Is the leading interaction energy between an Ar atom and an ion a dispersion energy
or an induction energy? It is an induction energy, and the argument is as follows. The
ion with a charge g gives an electric field at the Ar atom,

1

Fa="Va (E)

Ry 1

RS R?

where we in the last step have assumed that both particles have been placed along
one of the coordinate axis x, y or z. The Ar atom is polarized by the field and gets an
induced dipole moment, '

Ha = aapEp
We recall the induction energy in eq. (3.3.23)

ind

1 1
Vind = _Eﬂa Eq = _EaaﬁEﬁEa

The electric field from a charge has an R~?-dependence so the induction energy has
an R~*-dependence as compared to an R~°-dependence for the dispersion energy.

3.3.3.4 Many-body interactions

A pair-wise additive force field is of the form

M=

N
v=Y Y vy (3.3.56)
J=1+1

I=1

where Vi is the pair-interaction energy. The electrostatic energy discussed in section 3.3.1
is a true pair-wise additive energy term (see Coulomb’s law in eq. (3.3.2)). This pair-wise
additivity is, however, lost if the atomic charges are calculated by the EEM in section 3.3.1.1
since the values of the atomic charges depend on the surroundings. The induction energy
in section 3.3.2 is a true N-body term in the sense that the induced dipole moment in
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eq. (3.3.22) depends on the electric field of the induced dipole moments of all surrounding
molecules leading to a set of coupled equations.

The repulsion and dispersion energies are in the Lennard-Jones potential in section 3.3.3.3
given as a pair-wise additive energy. The repulsion and dispersion energies are, however,
only approximately pair-wise additive and corrections can be included as three-body, four-
body, etc. energy terms,

N N N N N N N N N
V=Y Y V) Y Y Vgk+d, > Y. > Vykr+... (3.3.57)
I=1]=1+1 I=1]=1+1K=]+1 I=1J=1+1K=J+1L=K+1

A famous example is the three-body dispersion (Axilrod-Teller) term given here for a system
of three identical particles as (Axilrod and Teller 1943)

3cosy1CcosYy2c08y3+1

3 p3 p3
R12R23R31

Var=C , (3.3.58)
where the angles and distances are defined in figure 3.12 and C is a positive number
proportional to Vjpa® where Vjp is the ionization potential and « is the polarizability.
The Axilrod-Teller term, Vjur, is for a system of rare-gas atoms around 8% of the London
dispersion term in eq. (3.3.50) and should not be ignored in a study of e.g. liquid argon.
For a system of polar molecules, e.g. liquid water, the London dispersion energy is only
around 10% of the electrostatic energy so the Axilrod-Teller term can in this case to a good
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Figure 3.12: Three-atom system with the notation for the Axilrod-Teller term. R;; in eq. (3.3.58) are the
distances between the atoms.

approximation be ignored since it contributes with less than 1% of the total interaction
energy.

It is a poor idea to approximate the induction energy in section 3.3.2 with three-body and
possibly four-body terms as demonstrated in exercise 3.4, instead one should rely on the
expression based on classical electrostatics discussed in section 3.3.2.

3.3.4 Effective force fields

With effective force fields, we mean force fields that effectively include some energy terms
into some of the other energy terms simplifying the force field further. Effective force fields
thus include the essence of the interactions needed for modeling a particular type of systems
but their applicability area will be rather restricted. As discussed in eq. (3.3.56), a pair-wise
additive force field is of the form

N N
v=>y > vy (3.3.59)
I=1]=I+1

where Vj; is the pair-interaction energy between atoms I and J. For N atoms, we thus have
to compute N(N —1)/2 pair energies Vj;, and a major saving in computational time may be
achieved from reducing the number of interaction sites N rather than simplifying V;;. This
is particularly true if the most expensive term in the calculation of V;; is to calculate

1 1

Ry o= x02+ (= yi? + (2 - 2202

(3.3.60)

where the divide and square-root operations are computationally expensive.

An important example is electrolytes where it is common to replace the solvent molecules by
a dielectric constant (relative permittivity), €, that shields the interactions between the ions
in the calculation of the electrostatic energy, Ve,

M M

Vele = Z 19y

S E— (3.3.61)
1=1751+1 4mE0ER )

where M is the number of ions in the solution. Typical values for ¢ is € = 2 for unpolar
hydrocarbons and ¢ = 78 for liquid water.

Download free eBooks at bookboon.com



A common example is effective pair potentials where all many-body terms, including also
electronic polarization discussed in section 3.3.2, are described by a pair-wise additive
atomistic force field,

V=Vee+ Vs, (3.3.62)

consisting of an electrostatic term Vg in eq. (3.3.2) and a Lennard-Jones term Vi in
eq. (3.3.54). For example for a pair potential of water, the atomic charges should for an
effective pair potentential not reflect the gas-phase dipole moment of 1.85 D (Clough et al.
1973, Dyke and Muenter 1973), but rather the dipole moment of the water molecule in the
liquid phase of around 2.9 + 0.6 D (Badyal et al. 2000). The difference of around 1.1 +0.6 D
is thus an average induced dipole moment typical for liquid water. This approach works
well for homogeneous surroundings, e.g. liquid water, but is less accurate for heterogeneous
surroundings, e.g. interactions with ions or at surfaces, where the molecular induced dipole
moment will be significantly different from the average value.

Another example of effective force fields is united atom force fields, where functional groups
are represented as pseudo-atoms. Most commonly, hydrogen atoms are suppressed in
unpolar system, e.g. some polymers like polyethylene, where for example the methyl
group -CHj3 is reduced to a one-centre Me group normally placed at the position of the C
atom. Suppressing all hydrogen atoms will drastically reduce the number of interactions to
calculate in eq. (3.3.59), and will speed up the calculation dramatically.

Inorganic systems are in principle more complicated since they include heavier elements
and d- and f-electrons would require higher order atomic multipoles as quadrupole and
possibly octupole moments to describe the electrostatics. Many solid-state systems have,
however, ionic bonds leading to that charge-charge interactions dominate. A simple
example is the Born model for ionic solids,

N N
A
v=y ¥ =19, ZU (3.3.63)
=17=1+1  4meoRyy Ry

electrostatics repulsion

3.3.5 Summary of nonbonding terms

The most important non-bonding energy terms in a force field for modeling intermolecular
interactions as well as long-range interactions within molecules are

* electrostatics

¢ induction

e dispersion

* short-range repulsion
In general for a force field, each energy term relies on a choice of a function form which
in the best case are derived from quantum mechanics. Force fields also rely heavily on a

set of atom-type parameters which needs to be parametrized from e.g. a set of atom-type
parameters. So far we have given a more or less phenomenological introduction to force
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fields. In section 3.4, the force field terms for intermolecular interactions are derived from
quantum mechanical perturbation theory putting this section on a more firm basis.

The advantage of force fields is that they present a rapid way of calculating interaction
energies as well as the force acting on each particle in the system, and force fields are
therefore used extensively in molecular dynamics and Monte Carlo simulations pf liquids
where the interaction between many particles need to be calculated repeatedly.

3.4 Intermolecular forces from quantum mechanics

Perturbation theory may be adopted to link the force field approach to quantum mechan-
ics (Buckingham 1967, Margenau and Kestner 1969, Stone 1996, Engkvist et al. 2000). For
two molecules, A and B, where molecule A has n,4 electrons and N4 nuclei and molecule
B has np electrons and Np nuclei, respectively, the Hamiltonian may be divided into three
contributions as

%:ﬁA+=;?B+7?AB- (3.4.1)

The molecular Hamiltonian of a molecule A is given from eq. (2.4.2) as

. -1

Hy=Y —V+ —+

4 ,:Zi 2 ! ,:Zu; ri i:ZI, rij =1, Ry
j=i+l J=I+1
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and the part describing the interaction between the two molecules, 77AB, is given as

R ns Np _ A Na Ng Z1Z;
%=ZZ ZZ ZZ—-ZZR (3.4.3)
i=1/=1 Ty 1=1j=1 i=1j=1"1] J

It is noted that we in eqs. (3.4.1)-(3.4.3) have assigned some nuclei and electrons to
molecule A and the remaining nuclei and electrons to molecule B, and as compared to
eq. (2.4.2) the only difference is that the summations have been restricted. Within the Born-
Oppenheimer approximation the positions of the nuclei are known and it is in most cases
trivial to assign a nucleus to a molecule. For the electrons, on the other hand, we have stated
that n 4 electrons belong to molecule A and np electrons belong to molecule B, which is an
approximation.

Regular Rayleigh-Schrédinger perturbation theory in section 2.8.1 is adopted on the inter-
action between two molecules. Using multipole expansions (see section 2.9.1) and the long-
range approximation for intermolecular interactions, it is demonstrated that second-order
perturbation theory gives an electrostatic energy, an induction energy and the dispersion
energy.

3.4.1 The first-order energy

Using the multipole expansion in eq. (2.9.35) leads to that the interaction operator in
eq. (3.4.3) is given as

o X (=" . "

o m'n! Aay...ay” AB,ay..amin” B,&mi1...@men

Adopting Rayleigh-Schrédinger perturbation theory, where 7,5 is regarded as a perturbation
to the molecular Hamiltonians, /4 and /g, in eq. (3.4.1), the first order correction to the
energy becomes according to eq. (2.8.9),

ey = Wy Taslwy, (3.4.5)
where the ground state is considered. The molecular wavefunctions are supposed to
be known, e.g. JZ”AW Ai) = €a,il¥ai), and the molecular wavefunction y 4 ; is correctly
antisymmetrized with respect to the n,4 electrons of molecule A. The wavefunction of two
molecules may be written in terms of the molecular wave functions as a generalized Heitler-
London wavefunction (Margenau and Kestner 1969),

(0)> —

lw, AW a0WB0) (3.4.6)

where </, is an operator that ensures that the total wavefunction is correctly antisym-
metrized. In the long-range approximation, it is assumed, however, that the zeroth-order
wavefunction is given as a direct product of the two molecular wavefunctions,

W) = W aowso) - (3.4.7)

The operator, o, ‘4B, wWill construct a set of correctly anti-symmetrized orbitals for the entire
complex. This effect will only be substantial if the wavefunctions for the separate molecules
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overlap, Sap = (W 4,0l¥B,0), which declines exponentially with the distance between the two
molecules. Since ¥4 is a function of only the electronic coordinates of molecule A, and
likewise ¥ is a function of only the electronic coordinates of molecule B, the first-order
energy becomes by using eq. (3.4.4),

(&) m
o _ (-1 ~om) A o
Fo Z m!n! Waollly g, .an VA Tapar..ap., WBOIA [¥B,0)

B,am+1.-@m+n
m,n=0

> ED" g
Z 191 Adr..am AB,a1...m+n”  B,@mi1...Omin
m,n=0 M:n.

= T s g 7D Lo Op s+
= AalapqBT dalpoHBa™ 59AL \pap B ap T - -

_ 7O g 7@ L N
HAa AB,an HAa AB,aﬁuBﬁ E,UA,OC AB,aﬁyQBrﬁY

1 1 1
(2) (3) (4)
+ EQA,CK,B TAB,a,’BqB + EQA,(Xﬁ TAB,(xﬁ)/’uB'Y+ ZQA,(Zﬁ TAB,(xﬁ}/(sQB’Yé\-F ceey (348)

where a molecular moment, MX’ZL“ ) is defined in eq. (2.9.50). The electrostatic energy in
eq. (3.4.8) may be rewritten in terms of the quadrupole moment in eq. (2.9.32) as

0

1
1 1 2
1) qAngJ;qB—I_qATIEU%,auB'a—FquT,Eﬁf)},aﬁeBﬂﬁ—l_“'

€y

1
1 2 3
— Maa T,Elf);,a 4B — HAa TééyaﬁﬂB,ﬁ ~3HAa Tﬁlgyaﬁyf)&ﬁy +...
1 1 1
2) 3) 4)
+ §0A’“ﬁ TAB,aﬁqB + 5914,“’3 TAB,aﬁy'quV + §6A,a,6 TAB,aﬁy6BB>Y5 +.... (3.4.9
In figure 2.6, it is noted that the molecular electric moments are calculated around the local

origin of each molecule. Adopting the definition of the electrostatic potential in eq. (2.9.1),
the electrostatic potential at molecule A becomes

1
_ (0) 1) )
pa = TABqB+TAB,a'uBr“+ETAB,aﬁQBrU‘ﬁ—I—"'

[e.0]

— (n) (n)

- ZOETAB,al...anMB,al...an (3.4.10)
n=0 -

and the electrostatic potential at molecule B becomes,

1
0) ) @
qaTyp—Haa TAB,a + EQA,aﬁ TAB,aﬁ te.

Y =
(o] 1n ( ) ( )
} : n T
° n! MA,al...an AB,ai...ap (3.4.11)
n= :

where the difference in sign for the dipole moment terms again arises from the definition
of the distance vector R4p in figure 2.6. The mth derivative of the electrostatic potential at
molecule A with respect to a displacement is given as

1
(m) _ (m+n) (n)
(pA,ocl...am - Z aTAB,oq...ammMB,amH...amH, (3.4.12)

n=0
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and correspondingly

m) 3 i _1nM(n) Tim+n) (3.4.13)
(pB,al...am - o n! 4.
n= :

Admi1--Amin  AB,ay...Qmin

The first-order energy may thus be written as

) < —1" (m)
_ m m
€ - mZ:O m! MA,al...am(pA,al...am
< 1 m (m)
= Z _|(pB,a1...amMB,a1...am (3.4.14)
m=0 M-

The electrostatic energy may thus be calculated either as the interaction between the electric
moments at the molecules or as the interaction between the electric moment and the Taylor
expansion of the electrostatic potential at one of the molecules.

3.4.2 The second-order energy

For the interaction between two molecules in the long-range limit, where it is again
assumed that the zeroth-order wave function is given as the direct product of two molecular
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wavefunctions as in eq. (3.4.7), the second-order energy in eq. (2.8.18) becomes

(3.4.15)

L0 _ i W a0WB,0lVaABIW A uW B,vY W AW B,v VABIW 0¥ B,0)
@ =

utv=1 EA0—EAuTEBO—EB

where the notation Iwg))) = W A0V¥B0), e(()o) = €40+ €po and €

adopted. Using the multipole expansion of 745 in eq. (3.4.4), the second-order energy
becomes,

g)) = €44 + €p,» have been

o0 (_1)m+p o0 1

e® R
0
m,n,p,q=0 mlnlplq! 7T 1\ €40 —€au+EBO—EBY

X WA, WA T, WBOE g, o, |VB0)
>(p) (p+a) 5(4)
x <1//A,u|'/%Ayﬁln_ﬁp|1//A,0>TAByﬁln_ﬁpw<1VB,U|~/%B”31_“’5{]W/B,O))) (3.4.16)

This energy is divided into three terms that are treated separately: a) u =0, v =1,...,00, b)
u=1,...,0o,v=0,c)u=1,...,00,v=1,...,00. The firstterm (=0, v =1,...,00) becomes

o0 (_1)m+p o0 1

u = 2 2.

m,n,p,q=0 m!n!p!q! v=1\€B,0~€B,v

X WA, 0, VA THE G 0, VB, 1WBL)
> (p) (p+q) > (q)
x (WA,OL/%A?'BIW’BPW/A,O)TAZ'gll.ﬁpw<WB,U|~/%B7ﬁlmﬁq|1//B,O>))

X 1
(n,q) (n) )]
n;I nlq! PB,al...an,ﬁl...ﬁq PB,ay...anPB,p1...n (3.4.17)

which is analogous to the expression obtained in eq. (2.9.60) for a molecule in an external
electrostatic potential. The leading term (n =1, g = 1) becomes

1
582,2 = _EaB,aﬁEB,ﬁEB,a (3.4.18)

which as in eq. (2.9.63) is identified as a induction energy. The second term, (u = 1,...,00,
v =0), becomes

o0 (_1)m+p o0 1
b = X )3

m,n,p,q=0 m!n!p!q! u=1\€40-"€Au

7 (m) (m+n) 7(n)
x (Yao I'/%A,al...ocm ¥ au TAB,al...am+n (¥Bo I'/%B,al...an 1¥B,0)

X AYau I%ffﬁ)l__,ﬁp 1Y 4,00 Tjg’;,*ﬁ‘?_“ﬁw (¥B0 Iuﬁzggl___ﬁq W/B,O)))

- 1 _(mp) (m) () (3.4.19)
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If eq. (3.4.17) gives the energy of the polarization of particle B, eq. (3.4.19) gives the
contribution to the polarization of particle A. Again the leading term (m =1, p = 1) is given
as

1
£0p = ~5%apbapEaa (3.4.20)

2) becomes

and the total induction energy, €0 arh’

2 (2)

_ @ _
0,a+b — gO,a

B
€ tE =~ I_ZAal,aﬁEl,ﬁELa (3.4.21)

N | =

The result obtained in eq. (3.4.21) is not consistent with the classical expression for the
induction energy given in eq. (3.3.24) since the contribution to the electric field from the
induced dipole moments is missing in eq. (3.4.21). It has been demonstrated that the
additional term in eq. (3.3.24) may be obtained from higher order energy terms in the
perturbation expansion (Stone 1989).

The third term (v =1,...,00, v =1,...,00), which will be identified as the dispersion energy,
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o0 ( 1)m+p

m,mprG=0 m!n!p.q.

1

EA0—E€AuTEBO—EBY

(2)
EO,C

Waol s |wA,u>Tg";;7) ap, UBOALGY W)

B,a;...a,

X

X

<wA,u|J%/§Pﬁ) By |1//A,0>Tfj; ﬁ‘? (wBVpﬂ]g /3)1 IwB,o>)) (3.4.22)

is not as straightforward as the induction energy to separate into term that are dependent on
the properties of the separate molecules. The nominator is readily separated into a product
of molecular properties, but in order to resolve the denominator, the following identity is
used,

1 37 ab "
a+b n) (a? + w?) (b? + w?)

0o

_Zf

_7'[
0

The dispersion energy is thus rewritten as

1 1
—+ ;
ativ a—iw

1 1
— + -
b+iw b-iw

) dw, a,b>0 (3.4.23)
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1 1 1 1
— + - — + -
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X

7 (m) (m+n) 7(n)
<1,UAO|=/%AQ,1 Am W/Au) AB,a1...0m+ n<w30|*/%Ba1 an |w3,1}>

Wau ) 5 AT o D |wBo>)) (3.4.24)

X

where the notation wy,, = €1,, — €1,0 has been introduced. The frequency-dependent dipole-
dipole polarizability, aqp(w), is defined in eq. (2.9.75) leading to

rnol 0) 0) (0) (0)
+ ->r r 3.4.25
p (w) = pEl(prw T ) | E LalW Xyl = E i.pl¥o ) ( )
If again, only the leading term in the second order energy, (m=1,n=1, p=1, g=1), is
included, the dispersion energy is given as

[e.@]

2 , .

i f Unapi®)TE,, T o apysio)do (3.4.26)
0

If the frequency-dependent polarizability is approximated according to the Unséld approx-
imation (Unsold 1927)
—2 —2

. w
aaﬁ((j)) = aaﬁm ; aaﬁ(lw) = aaﬁm (3427)
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where w is a kind of average excitation energy of the molecule, the dispersion energy
becomes

@__1 0i0p

o T(Z) T(Z)
0, 4dwps+wp ap

ABay” AB,ps*B.yd (3.4.28)

Finally, if isotropic polarizabilities, a,p = adqp, are regarded, the expression for the
dispersion energy is reduced to the well-known London formula,

@ _ C6,AB

= , (3.4.29)
0, 6
¢ RAB

where Cg 4p is an atom-pair parameter depending on the polarizabilities.

To conclude, the second order energy provides both the induction and dispersion energies.
Both of these energies describes a response to the presence of the other molecule. Since a
system always responds such as the energy is minimized, both the induction and dispersion
energies give attractive contributions to the interaction energy.
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Exercises

Ex. 3.1 — Derive the result for the two-particle system of the EEM in eq. (3.3.14) and from its
general equations in eq. (3.3.10) and (3.3.11),

Lqy =g =—ST4
ni+1; =217
Also explain why this is a reasonable model for

i) having one set of atom-type parameters for each element describing the atomic charges
in both e.g. CO and O,.

ii) describing the geometry-dependence of atomic charges.

Finally, what is the fundamental flaw in the EEM (seen from inspection of the two-particle
equation at R — 00)?

Ex. 3.2 — With a self-energy, TI((ID =17, the Coulomb interaction energy for a set of N atoms
may be written as

1Yo
V= 2 Y arTax
I,K

including also the I = K term. We change to charge-transfer variables,

N N
gr=) qy and  qxk=)_ gk
J L

where we imply that q;; = 0 (i.e. there is no charge transfer to "itself") and that charge
conservation is imposed by q;; = —q;;. Show that V can be rewritten in terms of the charge-
transfer variables g;; in a "symmetrized" way (i.e. with respect to the subscripts I and J as
well as K and L, respectively) so that

N
0 0 0 0
V= Z q]](TI(K)-l-T](L)_TI(L)_T](K)) qkKrL

1
81IK.L

Ex. 3.3 — Consider the interaction energy between methane and the fluorine ion, F~. In
terms of a one-centre multipole expansion for each molecule (ion), which is the leading
term? (Hint: model methane with atomic charges and use carbon as the local origin in
methane for the calculation of its electric moments)

Ex. 3.4 — Consider a system with two atomic charges with magnitude +¢ placed in (0,0, +z)
and an isotropic point polarizability a placed in (0,0,0). What is the interaction energy
(electrostatics and polarization)? Is the interaction energy pair-wise additive?

Recommended literature

* A.]. Stone, The Theory of Intermolecular Forces, Oxford University Press, 1996.

Download free eBooks at bookboon.com



Bibliography

N. L. Allinger, K. Chen, J. A. Katzenellbogen, S. R. Wilson, and G. M. Anstead. Hyperconjugative effects
on carbon-carbon bond lengths in molecular mechanics (MM4). J. Comput. Chem., 17:747-755,
1996. doi:10.1002/(SICI)1096-987X(199604)17:5/6<747::AID-JCC10>3.0.CO;2-5.

B. M. Axilrod and E. Teller. Interaction of the van der Waals type between three atoms. J. Chem. Phys.,
11:299-300, 1943. do0i:10.1063/1.1723844.

Y. S. Badyal, M.-L. Saboungi, D. L. Price, S. D. Shastri, D. R. Haeffner, and A. K. Soper. Electron
distribution in water. J. Chem. Phys., 112:9206-9208, 2000. doi:10.1063/1.481541.

A. D. Buckingham. Permanent and induced molecular moments and long-range intermolecular
forces. Adv. Chem. Phys., 12:107-142, 1967. d0i:10.1002/9780470143582.ch2.

S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman. Dipole moment of water from Stark
measurements of H)O, HDO, and D, 0. J. Chem. Phys., 59:2254-2259, 1973. d0i:10.1063/1.1680328.

J. L. Dunham. The Wentzel-Brillouin-Kramers method of solving the wave equation. Phys. Rev., 41:
713-720, 1932a. d0i:10.1103/PhysRev.41.713.

J. L. Dunham. The energy levels of a rotating vibrator. = Phys. Rev., 41:721-731, 1932b.
do0i:10.1103/PhysRev.41.721.

T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron
through neon and hydrogen. J. Chem. Phys., 90:1007-1023, 1989. d0i:10.1063/1.456153.

T. R. Dyke and J. S. Muenter. Electric dipole moments of low j states of HoO and D,O. J. Chem. Phys.,
59:3125-3127, 1973. do0i:10.1063/1.1680453.

O. Engkvist, P-0. Astrand, and G. Karlstrém. Accurate intermolecular potentials obtained from mo-
lecular wave functions: Bridging the gap between quantum chemistry and molecular simulations.
Chem. Rev., 100:4087-4108, 2000. doi:10.1021/cr9900477.

P. Geerlings, E De Proft, and W. Langenaeker. Conceptual density functional theory. Chem. Rev., 103:
1793-1873, 2003. doi:10.1021/cr990029p.

E L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta,
44:129-138, 1977. doi:10.1007/BF00549096.

M. J. Hwang, T. P. Stockfisch, and A. T. Hagler. Derivation of class II force fields. 2. Derivation
and characteriazation of a class II force field, CFF93, for the alkyl functional group and alkane
molecules. J. Am. Chem. Soc., 116:2515-2525, 1994. d0i:10.1021/ja00085a036.

J. E. Lennard-Jones. Cohesion. Proc. Phys. Soc., 43:461-483, 1931. doi:10.1088/0959-5309/43/5/301.

E London. Zur Theorie und Systematik der Molekularkrifte. Z. Phys., 63:245-279, 1930.
doi:10.1007/BF01421741.

D. E. Mann, B. A. Thrush, D. R. Lide Jr, J. J. Ball, and N. Acquista. Spectroscopy of fluorine flames. I.
hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF. J. Chem. Phys., 34:
420-431, 1961. doi:10.1063/1.1700967.

J. R. Maple, M.-J. Hwang, T. P. Stockfisch, U. Dinur, M. Waldman, C. S. Ewig, and A. T. Hagler.
Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional
group and alkane molecules. J. Comput. Chem., 15:162-182, 1994. doi:10.1002/jcc.540150207.

M. Margenau and N. R. Kestner. Theory of Intermolecular Forces. Pergamon, Oxford, 1969.

P. M. Morse. Diatomic molecules according to the wave mechanics. II. vibrational levels. Phys. Rev.,
34:57-64, 1929. doi:10.1103/PhysRev.34.57.

W. J. Mortier, K. van Genechten, and J. Gasteiger. Electronegativity equalization: Application and
parametrization. J. Am. Chem. Soc., 107:829-835, 1985. doi:10.1021/ja00290a017.

J. S. Muenter and W. Klemperer. Hyperfine structure constants of HF and DF. J. Chem. Phys., 52:
6033-6037, 1970. doi:10.1063/1.1672903.

R. S. Mulliken. Electron population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys.,

Download free eBooks at bookboon.com



23:1833-1840, 1955. doi:10.1063/1.1740588.

R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford Science, Oxford,
1989.

J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev.
Lett., 77:3865-3868, 1996. doi:10.1103/PhysRevLett.77.3865. Erratum in 78, 1396, 1997.

L. Silberstein. VII. Molecular refractivity and atomic interaction. Philos. Mag., 33:92-128, 1917a.
doi:10.1080/14786440108635618.

L. Silberstein. L. Molecular refractivity and atomic interaction. II. Philos. Mag., 33:521-533, 1917b.
doi:10.1080/14786440608635666.

G. Simons, R. G. Parr, and J. M. Finlan. New alternative to the Dunham potential for diatomic
molecules. J. Chem. Phys., 59:3229-3234, 1973. d0i:10.1063/1.1680464.

A.]. Stone. The induction energy of an assembly of polarizable molecules. Chem. Phys. Lett., 155:
102-110, 1989. doi:10.1016/S0009-2614(89)87368-3.

A.]. Stone. The Theory of Intermolecular Forces. Clarendon Press, Oxford, 1996.

A. J. Stone, A. D. Buckingham, and P. W. Fowler. Comment on " Structure and spectroscopy of
(HCN), clusters: Cooperative and electronic delocalization effects in C-H- - -N hydrogen bonding "
[J. Chem. Phys. 103, 333, (1995)]. J. Chem. Phys., 107:1030-1031, 1997. doi:10.1063/1.474471.

A.]. Thakkar. A new generalized expansion for the potential energy curves of diatomic molecules. J.
Chem. Phys., 62:1693-1701, 1975. d0i:10.1063/1.430693.

A. Uns6ld. Quantentheorie des Wasserstroffmolekiilions und der Born-Landéschen Abstofung-
skrifte. Z. Phys., 43:563-574, 1927. doi:10.1007/BF01397633.

M. Valiey, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. ]. Van Dam, D. Wang, J. Nieplocha,
E. Apra, T. L. Windus, and W. A. de Jong. NWChem: A comprehensive and scalable open-source
solution for large scale molecular simulations. Comput. Phys. Commun., 181:1477-1489, 2010.
doi:10.1016/j.cpc.2010.04.018.

A. C. T. van Duin, J. M. A. Baas, and B. van de Graaf. Delft molecular mechanics: a new approach
to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation. J. Chem. Soc.,
Faraday Trans., 90:2881-2895, 1994. do0i:10.1039/FT9949002881.

A. Vedani. YETI: an interactive molecular mechanics program for small-molecule protein complexes.
J. Comput. Chem., 9:269-280, 1988. d0i:10.1002/jcc.540090310.

E J. Vesely. N-particle dynamics of polarizable Stockmayer-type molecules. J. Comput. Phys., 24:
361-371, 1977. do0i:10.1016/0021-9991(77)90028-6.

Download free eBooks at bookboon.com



angle bending force field term, 78

angular momentum, 69

anharmonicity, 77

antisymmetrizing operator, 19

atom-type parameters, 74

atomic number, 7

atomic orbitals, 11

atomic units, 7

atomistic model, 1

Axilrod-Teller three-body dispersion term, 96

ball-and-stick model, 1
basis set, 47

basis set limit, 51

core functions, 50

diffuse functions, 51

double-{, 50

polarization functions, 51

quadruple-(, 50

triple-, 50

valence functions, 50
basis set exchange server, 53
bonded interactions, 75
Born’s interpretation, 8
Born-Oppenheimer approximation, 9
bra-c-ket notation, 9
Brillouin’s theorem, 55
buckingham unit, 36

canonical orbitals, 46
charge

molecular charge, 39
chemical hardness, 59
CISD, 54
clamped-nucleus approach, 10
class I-1I-1II force field, 81
commutator, 19
complete active space SCE 58
configuration interaction methods, 54
correlation-consistent basis set, 50
Coulomb integral, 18
Coulomb interaction, 7
Coulomb operator, 44
Coulomb’s law, 30
cross terms, see force field

INDEX

de Broglie wavelength, 70

debye unit, 36

density functional theory, 58

density matrix, 48

dihedral angle, 79

dipole moment, 32
molecular dipole moment, 39

Dirac bracket notation, 9

dispersion forces, 94

dot notation, 26

Dunham expansion, 76

effective force field, 97

electric field, 32

electric field gradient, 32

electric moment, 32

electron correlation, 53

electron spin, 12

electronegativity, 59
electronegativity equalization model, 85
electrostatic potential, 31
elementary charge, 7

empirical force field, 74

energy constraint, 79

energy restraint, 80

exchange integral, 18

exchange operator, 45
exchange-correlation functional, 61
exchange-repulsion energy, 95
expectation value, 9

Fermi’s golden rule, 29

fermion, 13

Fock matrix, 48

Fock operator, 45

force constant, 76

force field, 74
cross terms, 80
Lennard-Jones potential, 95

Fukui index, 59

full CI, 55

Gaussian product rule, 50
Gaussian-type orbitals, 50

Hamiltonian, 5
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molecular, 6 permutation operator, 19

Harmonic oscillator perturbation theory
Hamiltonian, 68 Mpoller-Plesset, 56

harmonic oscillator, 68 Rayleigh-Schrodinger, 23

Hartree-Fock approximation, 44 polarizability, 37

hermitian operator, 9 potential energy surface, 10

Hohenberg-Kohn theorem, 58

hydrogen bonds, 87 quantization, 6
YETI force field, 87 quantum chemistry, 5

Rayleigh ratio, 22
Rayleigh-Ritz method, 22
Rayleigh-Schrodinger perturbation theory,

identity operator, 19
improper torsion energy term, 80
interaction tensor, 33

intermediate normalization, 24 ) 23
repulsion energy, 95
kinetic energy operator, 5 Roothaan-Hall equations, 48

Kohn-Sham DFT, 60

Kroenecker delta function, 9 Schrodinger equation, 6

time-dependent, 5

LCAOQO, 15 second moment, 32

Legendrian, 71 secular determinant, 22
Lennard-Jones potential, 95 secular equation, 22
Lorentz-Berthelot mixing rules, 95 self-consistent field method, 46, 48

self-interaction, 21
semi-empirical force field, 74
separation of variables, 6
Simons-Parr-Finlan expansion, 78

mean-field approximation, 47
molecular Hamiltonian, 6
molecular modeling, 1
molecular orbital, 15 Slater determinant, 14
molecular orbital diagram, 16 Slater-Condon rules, 21
molecular quantum mechanics, 5 Slater-type orbitals, 50
moment of inertia, 69

) stationary state, 9
Morse potential, 76

MP2, 56 T-tensor, 33
multiconfigurational SCE 58 Thakkar expansion, 78
multipole expansion, 31 )
Mpoller-Plesset perturbation theory, 56 unit

buckingham, 36
non-bonded interactions, 75 debye, 36

united atom force field, 99
one-electron atom, 11, 72

operator variation theorem, 22
hermitian, 9 virtual charges, 83
kinetic energy, 5 volume element, 8

orbital coefficient, 47

orbital energy, 46 water

overlap matrix, 44, 48 dipole moment, 98

wavefunction

particle on a sphere, 71 anti-symmetric, 13
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Born’s interpretation, 8
harmonic oscillator, 68
normalization, 8
orthonormal, 9
ortogonal, 9

YETI force field, 87
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