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Preface

Preface
Since the 1990s, digital signals have been increasingly used not only in various industries and engineering equipments 
but also in everybody’s daily necessities. Mobile phones, TV receivers, music CDs, multimedia computing, etc, are the 
indispensable items in modern life, in which digital formats are taken as a basic form for carrying and storing information. 
The major reason for the advancement in the use of digital signals is the big leap forward in the popularization of 
microelectronics and computing technology in the past three decades. Traditional analogue broadcast is being widely 
upgraded to digital. A general shift from analogue to digital systems has taken place and achieved unequivocal benefits 
in signal quality, transmission efficiency and storage integrity. In addition, data management advantage in digital systems 
has provided users with a very friendly interface. A typical example is the popular pull-down manual, easy to find, make 
choices and more choices are made available.

As marching into the digital era, many people in different sectors are quite keen to understand why this has happened 
and what might be the next in this area. They hope to obtain basic principles about digital signals and associated digital 
systems. Instead of targeting advanced or expert level, they as beginners often hope to grasp the subject as efficient and 
effective as possible without undertaking impossible task under usually limited time and effort available.

This book is written for those beginners who want to gain an overview of the topic, understand the basic methods and 
know how to deal with basic digital signals and digital systems. No matter the incentive is from curiosity, interest or 
urgently acquiring needed knowledge for one’s profession, this book is well suited. The output standards are equivalent 
to university year two which lays a good foundation for further studies or moving on to specialised topics, such as digital 
filters, digital communications, discrete time-frequency representation, and time-scale analysis. The required mathematics 
for the reader is basically at pre-university level, actually only junior high schools maths is mainly involved. The content 
of materials in this book has been delivered to second year engineering and IT students at university for more than 10 
years. A feature in this book is that the digital signal or system is mainly treated as originally existing in digital form rather 
than always regarded as an approximation version of a corresponding analogue system which gives a wrong impression 
that digital signal is poor in accuracy, although many digital signals come from taking samples out of analogue signals. 
The digital signal and system stand as their own and no need to use the analogue counter part to explain how they work. 

To help understanding and gaining good familiarity to the topic, it will be very helpful to do some exercises attached to 
each chapter, which are selected from many and rather minimal in term of work load. 

Weiji Wang
University of Sussex
Brighton, England
January 2012
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1 Digital Signals and Sampling 
1.1 Introduction

Digital signal processing (DSP) has become a common tool for many disciplines. The topic includes the methods of dealing 
with digital signals and digital systems. The techniques are useful for all the branches of natural and social sciences which 
involve data acquisition, analysis and management, such as engineering, physics, chemistry, meteorology, information 
systems, financial and social services. Before the digital era, signal processing devices were dominated by analogue type. 
The major reason for DSP advancement and shift from analogue is the extraordinary growth and popularization of digital 
microelectronics and computing technology. 

The reason that digital becomes a trend to replace analogue systems, apart from it is a format that microprocessors can be 
easily used to carry out functions, high quality data storage, transmission and sophisticated data management are the other 
advantages. In addition, only 0s and 1s are used to represent a digital signal, noise can easily be suppressed or removed. 
The quality of reproduction is high and independent of the medium used or the number of reproduction. Digital images 
are two dimensional digital signals, which represent another wide application of digital signals. Digital machine vision, 
photographing and videoing are already widely used in various areas. 

In the field of signal processing, a signal is defined as a quantity which carries information. An analogue signal is a signal 
represented by a continuous varying quantity. A digital signal is a signal represented by a sequence of discrete values of 
a quantity. The digital signal is the only form for which the modern microprocessor can take and exercise its powerful 
functions. Examples of digital signals which are in common use include digital sound and imaging, digital television, 
digital communications, audio and video devices.

To process a signal is to make numerical manipulation for signal samples. The objective of processing a signal can be to 
detect the trend, to extract a wanted signal from a mixture of various signal components including unwanted noise, to 
look at the patterns present in a signal for understanding underlying physical processes in the real world. To analyse a 
digital system is to find out the relationship between input and output, or to design a processor with pre-defined functions, 
such as filtering and amplifying under applied certain frequency range requirements. A digital signal or a digital system 
can be analysed in time domain, frequency domain or complex domain, etc. 

1.2 Signal representation and processing

Representation of digital signals can be specific or generic. A digital signal is refereed to a series of numerical numbers, 
such as:

 …, 2, 4, 6, 8, … 

where 2, 4, 6 are samples and the whole set of samples is called a signal. In a generic form, a digital signal can be represented 
as time-equally spaced data
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...],2[],1[],0[],1[..., xxxx −

where -1, 0, 1, 2 etc are the sample numbers, x[0], x[1], x[2], etc are samples. The square brackets represent the digital 
form. The signal can be represented as a compact form 

∞<<∞− nnx ][
  (1.1)

In the signal, x[-1], x[1], x[100], etc, are the samples, n  is the sample number. The values of a digital signal are only being 
defined at the sample number variable n , which indicates the occurrence order of samples and may be given a specific 
unit of time, such as second, hour, year or even century, in specific applications.

We can have many digital signal examples: 

 - Midday temperature at Brighton city, measured on successive days,
 - Daily share price, 
 - Monthly cost in telephone bills,
 - Student number enrolled on a course,
 - Numbers of vehicles passing a bridge, etc.

Examples of digital signal processing can be given in the following: 

Example 1.1 To obtain a past 7 day’s average temperature sequence.  The averaged temperature sequence for past 7 days is 

( )]6[]...2[]1[][
7
1][ −+−+−+= nxnxnxnxny . 

For example, if n=0 represents today, the past 7 days average is

( )]6[]...2[]1[]0[
7
1]0[ −+−+−+= xxxxy

where ...],2[],1[],0[ −− xxx   represent the temperatures of today, yesterday, the day before yesterday, …; ]0[y  
represents the average of past 7 days temperature from today and including today. On the other hand,

( )]5[...]1[]0[]1[
7
1]1[ −++−++= xxxxy

represents the average of past 7 days temperature observed from tomorrow and including tomorrow, and so on. In a 
shorter form, the new sequence of averaged temperature can be written as
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∑
=

+−=
7

1
]1[

7
1][

k
knxny

where x[n] is the temperature sequence signal and y[n] is the new averaged temperature sequence. The purpose of average 
can be used to indicate the trend. The averaging acts as a low-pass filter, in which fast fluctuations have been removed as 
a result. Therefore, the sequence y[n] will be smoother than x[n].

Example 1.2. To obtain the past M day simple moving averages of share prices, let x[n] denotes the close price, ][nyM  
the averaged close price over past M days. 

( )]1[]...2[]1[][1][ +−+−+−+= Mnxnxnxnx
M

nyM

or 

 
∑

=

+−=
M

k
M knx

M
ny

1
]1[1][

 (1.2)

For example, M=20 day simple moving average is used to indicate 20 day trend of a share price. M=5, 120, 250 (trading 
days) are usually used for indicating 1 week, half year and one year trends, respectively. Figure 1.1 shows a share’s prices 
with moving averages of different trading days.

 Figure 1.1 S share prices with moving averages
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1.3 Analogue-to-digital conversion

Although some signals are originally digital, such as population data, number of vehicles and share prices, many practical 
signals start off in analogue form. They are continuous signals, such as human’s blood pressure, temperature and heart 
pulses. A continuous signal can be first converted to a proportional voltage waveform by a suitable transducer, i.e. the 
analogue signal is generated. Then, for adapting digital processor, the signal has to be converted into digital form by 
taking samples. Those samples are usually equally spaced in time for easy processing and interpretation. Figure 1.2 shows 
a analogue signal and its digital signal by sampling with equal time intervals. The upper is the analogue signal x(t) and the 
lower is the digital signal sampled at time t = nT, where n is the sample number and T is the sampling interval. Therefore, 

)(][ nTxnx =  

0 20 40 60 80 100

-50

0

50

t

0 20 40 60 80 100

-50

0

50

t

 Figure 1.2 An analogue signal x(t) and digital signal x[n]. The upper is the  
analogue signal and the lower is the digital signal sampled at t = nT.

1.4 Sampling theorem

For ease of storage or digital processing, an analogue signal must be sampled into a digital signal. The continuous signal 
is being taken sample at equal time interval and represented by a set of members. First of all, a major question about it 
is how often should an analogue signal be sampled, or how frequent the sampling can be enough to represent the details 
of the original signal. It is obvious that too often will cause redundancy which will reduce the processing efficiency and 
cause an unnecessarily large size of data storage, but too sparse will cause a loss of signal details.
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 - Shannon’s sampling theorem
Claude E. Shannon 1916-1949) established the sampling theorem that an analogue signal containing components up to 
maximum frequency cf  Hz may be completely represented by samples, provided that the sampling rate sf  is at least 
2 cf  (i.e. at least 2 samples are to present per period). That is

 cs ff 2≥  (1.3)

Let the sampling interval 
sf

T 1
=  , the sampling requirement is equivalently represented as 

cf
T

2
1

≤  (1.4)

Given sampling frequency sf , the maximum analogue frequency allowed in the signal is 

T
ff sc 2

1
2
1

==  (1.5)

Under sampling will cause aliasing. That is, details of original signal will be lost and high frequency waveforms may be 
mistakenly represented as low frequency ones by the sampled digital signal. See Figure 1.3. It is worth noting that use of 
minimum sampling frequency is not absolutely safe, as those samples may just been placed at all zeros-crossing points 
of the waveform.
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Example 1.3 An analogue signal is given as

 tttttx 20cos200sin350cos23000sin)( ++=

where t is the time in seconds, determine the required minimum sampling frequency for the signal and calculate the time 
interval between any two adjacent samples. 

Solution: 

The third term is equivalent to 2 components of frequencies 200+20 hz and 200-20 hz. The highest frequency in the 

signal therefore is hz5.4772/3000 =π . . Required minimum sampling frequency is hzhz 9555.4772 =× , , or 

the sampling interval T is seconds001047.0955/1 = .
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 Figure 1.3 Over sampling and under sampling

1.5 Quantization in an analogue-to-digital converter

The quality of a digital signal is dependent on the quality of the conversion processes. An analogue signal takes on 
a continuous range of amplitudes. However, a practical electronic analogue-to-digital converter has limited levels of 
quantization. An n-bit analogue-to-digital converter has 

n2  levels, i.e. only as many as 
n2  different values can be 

presented in the sampling. 

 - Quantization error
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During an unlimited level of analogue signal being converted into a limited level of digital signal, all possible values have 
to be rounded to those limited 

n2  levels. This means a quantization error (or equivalently termed as quantization noise) 
has been introduced. In practice, n in the 

n2  needs to be chosen to be big enough to satisfy the quantization accuracy. 
When n=3, n2 =8 provides 8 quantization levels. Obviously, there exists big quantization errors in representing the original 
continuous signal by a small number of levels. But when taking n=12, it gives as many as 4096 quantization levels, which 
satisfies many industrial applications. 

The following Figure 1.4 illustrates the quantization process in which the analogue to digital convertor has 8 levels. A 
continuous signal is sampled to a digital signal as …,1, 6, 6, 5, 5, 4, 4, 4, 4, 6,… which have difference, i.e. the error, at 
each sampling point between the analogue and digital values.

 

            

7            

6            

5            

4            

3            

2            

1            

  1            2          3          4          5         6         7          8         9  10       n 

 Figure 1.4 Continuous signal is sampled as 8 levels of digital signal.

Problems

Q1.1 Observe the signals in Fig. Q1.1 and answer the following questions:

a) What is the frequency of the analogue sinusoidal signal (solid line) ? _______.
b) How many samples have been taken from the analogue signal within one second (the sampling frequency)? 

________.
c) Does the digital signal (the dotted line) represent the original analogue signal correctly? _________ . What 

has happened? _____________________.
d) What is the frequency of the digital sinusoidal signal? ______.
e) What should be a required minimum sampling frequency for the original analogue signal? _________.
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 Figure Q1.1

Q1.2 A stock price can be described by a digital series ][nx , where n indicates the day: -∞<n<∞. The past M day (including 
the present day) simple moving average (SMA) series is often used for trend analysis.

Write down the M day SMA for series ][nyM  for indicating price trend. Also, when the 5 day SMA is crossing its 50 
day SMA, the stock may be taken as changed in a medium term trend. Write down an expression to be used to alert this 
change in the trend. 
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2 Basic Types of Digital Signals
2.1 Three basic signals

Unit impulse





≠
=

=
00
01

][
n
n

nd  (2.1)

i.e. the unit impulse has only one non-zero value 1 at n=0, and all other samples are 0. It is the simplest signal but will 
be seen later very important. 

Unit step





<
≥

=
00
01

][
n
n

nu
 (2.2)

where the sample value rises at n=0 from 0 to 1 and keeps it to ∞→n .

Ramp 
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<
≥

=
00
0

][
n
nn

nr
 (2.3)

Figure 2.1 illustrates the unit impulse, unit step and ramp signals. Alternatively, the three basic signals can be expressed 
by a tabular form as below:

n … -3 -2 -1 0 1 2 3 …

d[n] … 0 0 0 1 0 0 0 . . .

u[n] … 0 0 0 1 1 1 1 …

r[n] … 0 0 0 0 1 2 3 …

The unit impulse, unit step and ramp signals are simple and basic signals. Unit impulse is the basic of basic signals. The unit 
step can be regarded as a sum of unit impulse on the positive side of n-axis. The ramp signal can be a set of unit impulses 
shifted to the right axis and scaled by sample number n. Or it can be regarded as the unit step scaled by the corresponding 
sample number n. Actually, later, we will know all signals can be regarded as a sum of shifted and scaled unit impulses. 
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 Figure 2.1 Unit impulse, unit step and ramp signals

2.2 Other basic signals

 - Sinusoidal signals 
Sinusoidal signals are referred to the sine and cosine functions. In digital format, they are 

)sin(][
)cos(][

W=
W=

nAnx
nAnx

 (2.4)

where, it is worth noting, W  is the frequency with a unit of radians/sample, n is the sample number. The sinusoidal 
functions have a period of p2 .

 - Exponential signal

n
Aenx

β=][  

or

)exp(][ nAnx β=
 (2.5)
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where A, β are constants and n the sample number.

 - Complex signals z
A digital signal x[n] can be complex, a simple example is 

)sin()cos(][ W+W= njnnx

where 1−=j , and the signal has real and imaginary parts. Note that according to Euler formula 

( ) ( ) ( )Ω+Ω=Ω njnjn sincosexp , t, there are relationships:

)}exp(){exp(
2
1)sin(

)}exp(){exp(
2
1)cos(

W−−W=W

W−+W=W

jnjn
j

n

jnjnn

 (2.6)
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2.3 Signal shifting, flipping and scaling

 - Signal shifting

A signal can be shifted to left or right by any number of samples. In Figure 2.2 (a), a unit impulse has been shifted to the 

right by one sample; and in Figure 2.2 (b), a unit impulse ][nd  has been shifted to the left by one sample. They should 

be represented by ]1[ −nd  (shifted to the right) and ]1[ +nd  (shifted to the left), respectively. For the general case of 

a signal ][nx , shifting to the right and left by 0n samples generates new signals ][ 0nnx −  and ][ 0nnx + . They are a 

delayed signal and an advanced signal, respectively.

1 0 

n 

-1 0 

n 

   (a)        (b) 

 Figure 2.2 Unit impulse is shifted to left: d[n+1] (a) and Shifted to right: d[n-1] (b)

 - Signal flipping

 A unit step ][nu  flipped about y-axis can generate a new signal ][ nu −  shown in Figure 2.3(a). It can also be flipped 

and then shifted to left by one sample as )]1([ +− nu   or ]1[ −−nu  as shown in Figure 2.3(b). In general cases, a flipped 

signal of ][nx  is ][ nx − . 

 

0 

n 

 

n 

0 -1 

   (a)        (b) 

 Figure2.3 Unit step is flipped as u[-n] (a)  and shifted to the left: u[-n-1] = u[-(n+1)] (b)

 - Signal scaling
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In Figure 2.4, a shifted unit impulse ]1[ −nd  is been scaled by -2 to -2 ]1[ −nd . For general cases, a signal ][nx scaled 
by number a  is ][nax .

 

0 
n 1 

-2 

 Figure 2.4 A shifted unit impulse is being scaled by -2.

2.4 Periodic signals

A periodic signal satisfies the following relationship

][][ nxkNnx =±   (2.7)

where k is an arbitrary integer and N the period. The above relationship indicates that a periodic signal can remain the 
same shape if it shifts to left or right by any integer number of periods. Typical periodic signals are sine and cosine waves.

e.g. For the signal 





=

11
sin][ pnnx , we can find the period by following steps:

We know that the sine function has a period of p2 . Therefore,







 ±

=





 ±=








11
)22(sin2

11
sin

11
sin pppp nnn

This means that on the n-axis, a new signal after being shifted to left or right by 22 samples is still identical to the original 
signal. Therefore, N=22 (samples) is the period.

2.5 Examples of signal operations

For 6 signals in Figure 2.5, the expressions using basic signals, including the unit impulse, unit step and ramp, can be 
found as

a) x[n]=-2 u[n] b) x[n]=-5 u[-n-4]
c) x[n]= u[n+3] - u[n-5] d) x[n]= 5 d[n-6]
e) x[n]= d[n-6]-u[-n] f) x[n]= 2 r[n+6] - 2 r[n+2]
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In b), the signal has been flipped, scaled by -5 and shifted to the left by 4 samples )]4([5]4[5 +−−=−−− nunu . . c) 
is an rectangular function or a window function. In f) the gradient has been changed by scaling factor 2. 
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 Figure 2.5 Examples of signal operations

The unit step consists of infinite number of unit impulses on the positive side of axis. The following are the representations 
between the unit impulse and unit step. The unit step is represented by unit impulses as
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−∞=

∞

=

=−=+−+−+=
n

mk

mknnnnnu ][][...]2[]1[][][
0

δδδδδ  

 (2.8)

And, the unit impulse can be represented by the unit steps as

][][][][][][]1[][
111

nmmnmmnunu
n

m

n

m

n

m

n

m

δδδδδδ =−+=−=−−
−

−∞=

−

−∞=

−

−∞=−∞=  

i.e. the impulse response is the difference of two unit steps.

]1[][][ −−= nunund . (2.9)

Problems

Q2.1  Sketch and label the following digital signals

a) ]1[ +− nu
b) ]1[ +−nu

c) ]3[2]2[ −++ nnu d

d) ]5[3]4[3 −−+ nunu

e) ]2[2]1[ −−+ nrnr

Q2.2 Sketch and label the digital signal 

a) 
2

sin][1][
n

nu
n

nx
p

=

b) ][2]6[]3[]3[]2[][ nnrnrnununx d+−−−+−−+=

where ][ and][,][ nrnund  are the unit impulse, unit step and ramp functions, respectively.

Q2.3 Let ][ and][],[ nrnund  be the unit impulse, unit step and ramp functions, respectively. Given

]5[]4[]2[][][][
]6[][][

2

1

−−−−−++=
−−=

nrnnnnrnx
nununx

ddd

Sketch and label the digital signals ][][ 21 nxnx +  and ][][ 21 nxnx ⋅ .
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Q2.4 Let ][ and][],[ nrnund  be the unit impulse, unit step and ramp functions, respectively. Given

][]2[][
]4[]2[][

2

1

nnrnx
nununx

d−−=
−−−=

Sketch and label the digital signals ][][ 21 nxnx +  and ][][ 21 nxnx ⋅ .

Q2.5 Find the period of the following digital signal: 

(a)  
11

sin][
n

nx
π

=  

(b) −++= π
π

π
π

15

2
cos

3
sin3][

nn
nx  

(c) 
15

2
cos

6
sin4

3
sin32][

nnn
nx

πππ
+++= . 

Q2.6 Two pperiodic digital signals are given as

23

2
sin][,

16
cos1][ 21

n
nx

n
nx

ππ
=+=

Find the period of ][],[ 21 nxnx  and ][][ 21 nxnx − .
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3 Time-domain Analysis 
3.1 Linear time-invariant (LTI) systems

A digital system is also refereed as a digital processor, which is capable of carrying out a DSP function or operation. The 
digital system takes variety of forms, such as a microprocessor, a programmed general-purpose computer, a part of digital 
device or a piece of computing software.

Among digital systems, linear time-invariant (LTI) systems are basic and common. For those reasons, it will be restricted 
to address about only the LTI systems in this whole book.

The linearity is an important and realistic assumption in dealing with a large number of digital systems, which satisfies 

the following relationships between input and output described by Figure 3.1. i.e. a single input ][1 nx  produces a single 

output ][1 ny , Applying sum of inputs ][][ 21 nxnx + produces ][][ 21 nyny + , and applying input ][][ 21 nbxnax +  

generates ][][ 21 nbynay + .
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                                Linear System                            

 

 Input                   Output 

   ][1 nx         ][1 ny  

 ][1 nax           ][1 nay  

  ][2 nx               ][2 ny  

   ][][ 21 nxnx +      ][][ 21 nyny +  

][][ 21 nbxnax +      ][][ 21 nbynay +  

 Figure 3.1 Linearity of a system

The linearity can be described as the combination of a scaling rule and a superposition rule. The time-invariance requires 
the function of the system does not vary with the time. e.g. a cash register at a supermarket adds all costs of purchased 
items ][nx , ]1[ −nx ,… at check-out during the period of interest, and the total cost ][ny is given by

...]2[]1[][][ +−+−+= nxnxnxny  (3.1)

where ][ny is the total cost, and if ]0[x  is an item registered at this moment, ]1[−x then is the item at the last moment, 
etc. The calculation method as a simple sum of all those item’s costs is assumed to remain invariant at the supermarket, 
at least, for the period of interest. 

3.2 Difference equations

Like a differential equation is used to describe the relationship between its input and output of a continuous system, a 
difference equation can be used to characterise the relationship between the input and output of a digital system. Many 
systems in real life can be described by a continuous form of differential equations. When a differential equation takes a 
discrete form, it generates a difference equation. For example, a first order differential equation is commonly a mathematical 
model for describing a heater’s rising temperature, water level drop of a leaking tank, etc:

 
 )()(

)(
tbxtay

dt

tdy
=+  

 (3.2)

where ][nx  is the input and ][ny  is the output. For digital case, the derivative can be described as 

T

nyny

dt

tdy ]1[][)( −−
=  ,  

 (3.3)

i.e. the ratio of the difference between the current sample and one backward sample to the time interval of the two samples. 
Therefore, the differential equation can be approximately represented by a difference equation:
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 ][][
]1[][

nbxnay
T

nyny
=+

−−
 

or 

][]1[][)1( nTbxnynyTa +−=+  

yielding a standard form difference equation:

][]1[][ 11 nxbnyany +−=  (3.4)

where 
Ta

a
+

=
1

1
1 aand 

Ta

Tb
b

+
=

1
1

 are constants.

For input’s derivative, we have similar digital form as

T

nxnx

dt

tdx ]1[][)( −−
= .  

.

Further, the second order derivative in a differential equation contains can be discretised as

2

2 )(

dt

tyd ( )]2[]1[2][
1

]2[]1[]1[][

2
−+−−=

−−−
−

−−

= nynyny
TT

T

nyny

T

nyny

.  (3.5)

When the output can be expressed only by the input and shifted input, the difference equation is called non-recursive 
equation, such as

]2[]1[][][ 321 −+−+= nxbnxbnxbny  (3.6)

On the other hand, if the output is expressed by the shifted output, the difference equation is a recursive equation, such as

]3[]2[]1[][ 321 −+−+−= nyanyanyany  (3.7)

where the output ][ny  is expressed by it shifted signals ]1[ −ny , ]2[ −ny , etc. In general, an LTI processor can be 
represented as

...]2[]1[...]2[]1[][ 2121 +−+−++−+−= nxbnxbnyanyany

or a short form

][][][
01

knxbknyany k

M

k
k

N

k
−+−= ∑∑

==  (3.8)
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or 

∑∑
==

−=−
M

k
k

N

k
k knxbknya

00

' ][][
 (3.9)

A difference equation is not necessarily from the digitization of differential equation. It can originally take digital form, 
such as the difference equation in Eq.(3.1). 

3.3 Block diagram for LTI systems

Alternatively, equivalent to the difference equation, an LTI system can also be represented by a block diagram, which also 
characterises the input and output relationship for the system.

For example, to draw a block diagram for the digital system described by the difference equation:

]2[6.0]1[5.0][]2[8.0]1[7.0][ −−−−=−+−+ nxnxnxnynyny

The output can be rewrite as 

]2[6.0]1[5.0][]2[8.0]1[7.0][ −−−−+−−−−= nxnxnxnynyny

The block diagram for the system is shown in Figure 3.2. 
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In the bock diagram, T is the sampling interval, which acts as a delay or right-shift by one sample in time. For general 
cases, instead of Eq.(3.9), Eq. (3.8) is used for drawing a block diagram. It can easily begin with the input, output flows 
and the summation operator, then add input and output branches. 

 

 

 

 

 

 

 

 

 

 

 

   + 

  x[n]   y[n] 

-0.5 

-0.6 

-0.7 -0.8 

T T  T  T 

 Figure 3.2 Block diagram of an LTI system

3.4 Impulse response 

Both the difference equation and block diagram can be used to describe a digital system. Furthermore, the impulse response 
can also be used to represent the relationship between input and output of a digital system. As the terms suggest, impulse 
response is the response to the simplest input – unit impulse. Figure 3.2 illustrates a digital LTI system, in which the input 
is the unit impulse and the output is the impulse response. 

δ[n]                                               h[n] 

     Digital LTI system           

 Figure 3.2 Unit impulse and impulse response

  Input d[n]       Output  h[n] 

0 n n 

Figure 3.3 Unit impulse and impulse response of a causal system

Once the impulse response of a system is known, it can be expected that the response to other types of input can be derived. 

An LTI system can be classified as causal or non-causal. A causal system is refereeing to those in which the response is no 
earlier than input, or h[n] =0 before n=0. This is the case for most of practical systems or the systems in the natural world. 
However, non-causal system can exist if the response is arranged, such as programmed, to be earlier than the excitation. 
See the illustration in Figure 3.4 below.
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  Input d[n]       Output  h[n] 

0 n n 

 Figure 3.4 Unit impulse and impulse response of a non-causal system

The impulse response of a system can be evaluated from its difference equation. Following are the examples of finding 
the values of impulse responses from difference equations

Example 3.1 Evaluating the impulse response for the following systems

a) y[n]=3 x[n] + x[n-1] + 4 x[n-2]

We know that when the input is the simplest unit impulse d[n], the output response will be the impulse response. Therefore, 
replacing input x[n] by d[n] and response y[n] by h[n], the equation is still holding and has become special:

h[n]=3 d[n] + d[n-1] + 4 d[n-2]

It is easy to evaluate the impulse response by letting n=-1, 0,1,2,3,…

When n=-1, h[-1]=0 
When n=0, h[0]= 3 d[0] +d[-1] + 4 d[-2]=3 
When n=1, h[1]= 1, 
When n=2, h[2]= 4, 
When n=3, h[3]= 0,
…

Therefore, the impulse response h[n]=[3, 1, 4, 0, …]
↑

where ↑indicates the position of origin n=0.

b) Assume the system is causal. With the difference equation

y[n]=1.5 y[n-1] -0.85 y[n-2] + x[n]

We have

h[n]=1.5 h[n-1] -0.85 h[n-2] + δ[n]
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Let n=0, 1, 2, 3,…

h[0]=0-0+1=1
h[1]=1.5 ´1-0 -0=1.5
h[2]=1.5´1.5-0.85´1+0=1.4
h[3]=1.5´1.4-0.85´1.5+0 =0.825
...

Therefore, the impulse response h[n]=[1, 1.5, 1.4, 0.825, …].
↑

Generally for the difference equation:

...]3[]2[]1[...]3[]2[]1[][ 321321 +−+−+−++−+−+−= nxbnxbnxbnyanyanyany

The impulse response can evaluated by the special equation with the simple unit impulse input:

...]2[]1[...]2[]1[][ 2121 +−+−++−+−= nbnbnhanhanh dd  (3.10)
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The step response is also commonly used to characterize the relationship between the input and output of a system. To 
find the step response using the impulse response, we know that the unit step can be expressed by unit impulses as

...]2[]1[][][ +−+−+= nnnnu ddd  (3.11)

The linear system satisfies the superposition rule. Therefore, the step response is a sum of a series of impulse responses 
excited by a series of shifted unit impulses. i.e., the step response is a sum of impulse responses 

∑∑
−∞=

∞

=

=−=+−+−+=
n

mk
mhknhnhnhnhns ][][...]2[]1[][][

0  (3.12)

To better understand Eq. (3.12), we can make use of the linearity of the LTI systems. In Figure 3.5, it has been shown that 
the input is decomposed in to impulses according to Eq.(3.11), and the output is the responses of all individual impulse 
responses described in Eq. (3.12).

 

 

][

......

]2[]1[

]1[]2[

][][

][ ns
nhn

nhn

nhn

nu =

→→

−→→−

−→→−

→→

=
δ

δ
δ

 

LTI  

System 

 Figure 3.5 Multiple unit impulse inputs to an LTI system

Example 3.2: Find the step response s[n] for a system described by 

y[n]=0.6y[n-1] +x[n].

Solution: From the difference equation, h[n]=0.6h[n-1]+d[n], the samples of impulse response can be evaluated as

h[0]=0+1=1
h[1]=0.6´1+0=0.6
h[2]=0.6´0.6+0=0.6´0.6
h[3]=0.6´0.6´0.6+0=0.6´0.6´0.6
...

The samples of step response are

s[0]=h[0]=1
s[1]=h[0]+h[1]=1+0.6
s[2]=h[0]+h[1]+h[2]=1+0.6+0.6´0.6
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s[3]= h[0]+h[1]+h[2]+h[3]=1+0.6+0.6´0.6+0.6´0.6´0.6

s[∞]=1+0.6+0.6´0.6+0.6´0.6´0.6+… 5.2
6.01

1
=

−
= ,

where the following series summation formula is applied.

1
1

1...1 32 <
−

=++++ a
a

aaa
 (3.13)

3.5 Convolution

In order to derive the convolution formula based on clear understanding, a signal is expressed by impulse functions as 
following: 

For a signal ∞<<−∞ nnx ],[ , using the rules of the signal shifting and scaling described Section 2.3, it is decomposed 
into a series of unit impulses scaled by the sample values:

...]2[]2[]1[]1[][]0[]1[]1[]2[]2[...][ +−+−+++−++−+= nxnxnxnxnxnx ddddd

or

∑
∞

−∞=

−=
k

knkxnx ][][][ d
 (3.14)

The above expression can be illustrated as following. For example, a signal ][nx  has 2 non-zero samples, which can be 
represented as a sum of shifted and scaled unit impulses ]2[]2[]1[]1[ −+− nxnx dd , as illustrated in Figure 3.6.

 

X[n] 

= 
+ 

0    1    2 0    1    2 0    1    2 

X[2]d[n-2] X[1]d[n-1] 

 Figure 3.6 A signal can be decomposed into simple sequences.  
(Except those non-zero samples, all other samples have zero values.)

In general cases, assuming the system is causal, if the input x[n] is

d[n]: ... 0 0 1 0 0 ...
↑ 

and ,the impulse response is
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h[n]: ... 0 0 0 h[0] h[1] h[2] ...
↑ 

Then, the output y[n]is h[n].
On the other hand, if the input is
x[0]d[n]: ... 0 x[0] 0 0  ...
The, the output y[n] is x[0]h[n]
Finally, if the input is
x[n]: ... x[-1] x[0] x[1] x[2] ...

↑

Using the linearity again, the output y[n] will be a sum of all responses to individual shifted and scaled impulses as in 
Eq.(3.14), shown in Figure 3.7.
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]1[]1[]1[]1[
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][ ny

nhxnx

nhxnx

nhxnx

nhxnx

nx =

−→→−

−→→−

→→

+−→→+−

=

δ

δ

δ

δ

.

LTI  

System 

. Figure 3.7 Decomposed inputs generate decomposed outputs.

i.e. the output of an LTI system will be

...]2[]2[]1[]1[][]0[]1[]1[...][ +−+−+++−+= nhxnhxnhxnhxny  (3.15)

or  ∑
∞

−∞=

−=
k

knhkxny ][][][  (3.16)

Eq. (3.15) or (3.16) is called the convolution sum or convolution, which describes how the input and impulse response 
are engaged to generate the output in an LTI system. For short, the convolution sum is also represented by

][*][][ nhnxny =  (3.17)

where ‘*’ represents the convolution operation. Explicitly, the samples of the response by the convolution are

y[0]= ...+ x[-1] h[1]+ x[0] h[0]+ x[1] h[-1] + x[2] h[-2] + ... 
y[1]= ...+ x[-1] h[2]+ x[0] h[1]+ x[1] h[0] + x[2] h[-1] + ... (3.18)
y[2]= ...+ x[-1] h[3]+ x[0] h[2]+ x[1] h[1] + x[2] h[0] + ...
… …

Eq. (3.18) describes the way of calculating a convolution. For manually calculating the convolution, put x[n] in normal 
order and put h[n] in a flipped order. x[n] and h[n] are aligned with their origin. The output sample y[0] can be calculated 
by a sum of multiplications between corresponding samples. Shifting h’[n] right by one sample, y[1] can also be calculated 
by a sum of multiplications between new corresponding samples. The following is an example.

Example 3.3 Obtain the output of a system using manual convolution:

n ... -1 0 1 2 3 4 ...

x[n] ... 0 4 5 6 7 8 ...

h[n] ... 0 0.5 0.25 0.125 0.0625 0.03125 …
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k -4 -3 -2 -1 0 1 2 3 4 ...

x[n] 0 0 0 0 4 5 6 7 8 ...

 h’[n] 0.03125 0.0625 0.125 0.25 0.5 0 0 0 0 ... y[0]

0.03125 0.0625 0.125 0.25 0.5 0 0 0 …y[1]

0.03125 0.0625 0.125 0.25 0.5 0 0 …y[2]

0.031 0.062 0.125 0.25 0.5 0 ... y[3]

° ° °

The convolution satisfies the exchange rule. From Eq. (3.16), let r=n-k, then k=n-r. When k runs from -∞ to ∞, r runs 
from ∞ to -∞:

∑
∞

−∞=

−=
r

rhrnxny ][][][

or 

∑
∞

−∞=

−=
k

knxkhny ][][][
 

 i.e. 

][*][][ nxnhny =

Therefore, 

][*][][*][][ nhnxnhnxny ==  (3.19)

i.e. there is no difference if x[n] and h[n] swap their places. Eq.(3.19) is applicable to any 2 signals ][1 nx and ][2 nx :
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][*][][*][ 1221 nxnxnxnx =  (3.20)

Example 3.4: A filter’s difference equation is y[n]-0.5 y[n-1]=0.5 x[n], where x[n]: ...0 0 4 5 6 7 8 9 10 ... 
↑

a) Find the impulse response of the filter and to calculate samples of response y[0], y[1], ... , y[4].
b) Check y[n] can be found by the difference equation.

Solution:

a) From

y[n]=0.5 y[n-1] + 0.5 x[n]

we know

h[n]=0.5 h[n-1]+ 0.5 d[n]

Then, the impulse response can be evaluated 
h[0]= 0.5 ´ 1=0.5
h[1]= 0.5 ´ 0.5 =0.25
h[2]=0.5 ´ 0.25=0.125
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Using the manual convolution method, 
y[0]=4 ×0.5=2
y[1]=4 ×0.25+5 ×0.5=3.5
y[2]=4 ×0.125+5 ×0.25+6 ×0.5=4.75
y[3]=4 ×0.0625+5 ×0.125+6 ×0.25+7 ×0.5=5.875
y[4]=4 ×0.03125+5×0.0625+6 ×0.125+7 ×0.25+7 ×0.5=6.9375

c) Direct calculation

Causality is assumed in this case …, i.e. x[-2]=0, x[-1]=0. Therefore, it can be determined 

…, y[-2], y[-1]=0,

using 

y[n]=0.5 y[n-1] + 0.5 x[n]

y[-1]=0 
y[0]=0.5×0+0.5×4=2
y[1]= 0.5×2+0.5×5=3.5
y[2]=0.5×3.5+0.5×6=4.75
y[3]=0.5×4.75+0.5×7=5.875
y[4]=0.5×5.875+0.5×8=6.9375

3.6 Graphically demonstrated convolution

The following Figure 3.8 illustrates how the convolution between the input and impulse response is carried out. 

a) and b) are the unit impulse and impulse response, respectively. 
c) is the input 1 : x[-1]d[n+1]. The response is in d) : h[n+1]. 
e) and f) are the input 2 : x[0] ]d[n] and response 2 :x[0]h[n]. 
g) and h) are the input 3 : x[1] ]d[n-1] and response 3 : x[1]h[n-1]. 
i) is the total input x[n]=… x[-1]d[n+1]+ x[0] ]d[n]+ x[1] ]d[n-1]+…
j) is the total response y[n]= … x[-1]h[n+1]+ x[0] ]h[n]+ x[1] ]h[n-1]+… 
i.e. 

∑
∞

−∞=

−=
k

knhkxny ][][][
.
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 Figure 3.8 Graphic expression for digital convolution

Problems

Q3.1 Many systems can be described by a continuous form of first order differential equation:

)(
)(

)(
)(

tcx
dt

tdx
btay

dt

tdy
+=+

Derive the corresponding discrete form of difference equation if the sampling interval is T. 
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Q3.2 A second order differential equation is:

)(4
)(

)(3
)(

2
)(

2

2

tx
dt

tdx
ty

dt

tdy

dt

tdy
+=++  

Derive the corresponding discrete form of difference equation if the sampling interval is T. 

Q3.3 Draw a block diagram for the digital system described by the difference equation:

a) ]1[5.0][]1[7.0][ −−+−= nxnxnyny
b) 

]2[55.0][2]2[65.0]1[35.0][ −−+−+−= nxnxnynyny  . 

Q3.4. Evaluate the impulse responses of the following filters upto n=6:

a) ][]1[3][ nxnyny +−=
b) ]2[2]1[3][ −+−= nxnyny

c) ]2[3]1[2][]1[3][ −+−−+−= nxnxnxnyny

Q3.5 Assuming that a digital system described by the following difference equation is causal, evaluate the impulse response 
for the system from −∞=n   up to 4=n .

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


Introduction to Digital Signal and System Analysis

41 

Time-domain Analysis

][]2[25.0]1[5.0][ nxnynyny +−+−=  

Q3.6 For LTI digital systems, the output is the convolution between the input and the impulse response. Calculate the 
output ][ny  by manual convolution up to n=5 for the given impulse responses and inputs: 

a) 
[ ]
↑

= ...4312][nh
 

[ ]
↑

= ...321][nx

b) [ ]
↑

= ...01234][nh  [ ]
↑

−= ...012][nx

c) 
][)5.0(][ nunh n−=

↑

= ]10,10[][nx
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4 Frequency Domain Analysis
4.1 Fourier series for periodic digital signals

Consider a periodic digital signal x[n], n=0,1,2,...,N-1, where N is the number of sample values in each period. From 
Euler’s complex exponential equation: 

−=−
N

kn
j

N

kn

N

kn
j

πππ 2
sin

2
cos

2
exp     k=0,1,2,...,N-1    (4.1)

for each frequency k, Eq. (4.1) contains 2 sinusoidal functions in real and imaginary parts, respectively, with p/2 difference 
in phase. The frequencies of the functions are k=0,1,2,...,N-1. The fundamental sinusoidal function is when the frequency 
k=1. The other higher sinusoidal functions are called harmonics. The coefficients of Fourier Series for a digital signal can 
be calculated by

−

=

−=
1

0

2
exp][

1 N

n

k
N

kn
jnx

N
a

π
     k=1,2,…,N-1 

 (4.2)

where ka  is kth spectral coefficient, indicating the strength of the kth harmonic function. The original digital signal x[n] 
can be represented by its constituent harmonics as the form of discrete Fourier series:

−

=

=
1

0

2
exp][

N

k

k
N

kn
janx

π
.  

 (4.3)

The following Figure 4.1 illustrates how many complex multiplications are required in calculating those coefficients ka  
and from ka  to obtaining ][nx . It is basically 2N  in each occasion.
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 Figure 4.1 Number of complex multiplications

Example 4.1 A periodic signal ]6420[][ =nx  has the period N=4, its coefficients of Fourier series can be calculated 
by the formula
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30
4

2
exp2

4

1 3

0

≤≤−=
=

kfor
kn

jna
n

k

π
 

Therefore, 

( ) ( ) ( )[ ] ( ) 36420
4
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4
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0 =+++=×+×+×+=a
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( )

j

jj

jjja
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1
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4
1

4
332exp32

4
232exp22

4
32exp120

4
1

3
ppp

The spectral coefficients are

]1,1,1,3[ jjak −−−+−= , and the modulus is

]4142.1,1,4142.1,3[=ka
.

Figure 4.2 illustrates one period of the signal and its spectral coefficients.

Example 4.2 A sine wave =
64

42
sin][

n
nx

π
. . With k=4 and N=64, the sine wave and its Fourier spectrum are shown 

in the following Figure 4.3. It can be seen that the single sine wave gives a single spectral line at frequencies of 4 hz and 

64-4=60 hz, or 
8

p  and 
8

15

8
2

ππ
π =− radians/sample. 
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 Figure 4.2 Spectral coefficients of Fourier series
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 Figure 4.3 Sine wave and its spectral coefficients of Fourier series
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4.2 Fourier transform for non-periodic signals

The Fourier series introduced in previous section is only applicable to periodic signals. In general cases, the signal is 
not periodic, and the Fourier series formula Eq. (4.2) is not applicable. Therefore, a Fourier Transform for non-periodic 
signals must be introduced. 

Let frequency N
kp2

=W  (rad/sample) changes continuously between 0 and 2p. This can be achieved by assuming N is 

big enough and the fundamental frequency 
N
p2

0 =W  is very small. Define a Fourier transform as 

( )∑
∞

−∞=

W−=W
n

njnxX exp][)(  (4.4)

where )(WX is the Fourier spectrum, which is a continuous function, therefore, usual round brackets are used. It is also 
a periodic function with a period of p2 as sinusoidal functions are multiplied in the transform. 

Assuming N is big and using Eq.(4.3), the inverse Fourier transform can be defined:
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( )

( )

( ) 0

1

0
00

1

0
00

0

1

0
00

1

0

exp)(
2
1

exp)(
2

exp)(1

2
exp][

WW−W=

W−






 W

W
=

W−






 W=









=

∑

∑

∑

∑

−

=

−

=

−

=

−

=

N

k

N

k

N

k

N

k
k

njkkX

njkkX

njkkX
N

N
kn

janx

p

p

p

With ∞→N , W→W d0  and W→W0k , the above inverse Fourier transform can be expressed as 

( ) WWW= ∫ dnjXnx
p

p
2

0
exp)(

2
1][

 (4.5)

Example 4.3 Find the Fourier transform for the unit impulse signal ][][ nnx d= .

From the definition Eq.(4.4),

( )∑
∞

−∞=

=W−=W
n

njnX 1exp][)( d

If the unit impulse is shifted, 

( ) ( )W−=W−−=W

−=

∑
∞

−∞=

jnjnX

nnx

n
expexp]1[)(

]1[][

d

d

W−=W∠=W )(,1)( XX
.

Example 4.4 Find the Fourier transform of the rectangle signal 

[ ] [ ] [ ] [ ] [ ]{ }2112
5
1][ +++++−+−= nnnnnnx ddddd

( )

[ ] [ ] [ ] [ ] [ ]{ } ( )∑

∑
∞

−∞=

∞

−∞=

W−+++++−+−=

W−=W

n

n

njnnnnn

njnxX

exp21122.0

exp][)(

ddddd

i.e.
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( ) ( ) ( ) ( ){ }
( ) ( ){ }W+W+=

W+W++W−+W−=W
cos22cos212.0

2expexp1exp2exp2.0)( jjjjX

It is a real function. ( ) ( )W+W+=W cos22cos212.0)(X , 0)( =W∠X .

Example 4.5 A signal is described by

[ ] [ ] [ ] ...5.015.05.0][ 32 ++−+= nnnnx ddd

Apply the Fourier transform

( )∑
∞

−∞=

W−=W
n

njnxX exp][)(

( ) ( )

( ){ }
( )Ω−−

=Ω−=

+Ω−+Ω−+=
∞

= j
j

jj

n

n

exp5.01

5.0
exp5.05.0

...2exp125.0exp25.05.0

0

It is a complex function. The magnitude is

( )

( ) ( ){ }

( ) ( ){ }

{ } 2/1

2/122

2/122

cos25.1

5.0

sin25.0cos25.0cos1

5.0

sin5.0cos5.01

5.0

exp5.01

5.0
)(

Ω−
=

Ω+Ω+Ω−
=

Ω+Ω−
=

Ω−−
=Ω

j
X

 

The phase:

( )( )

W−
W

−=

W−−∠−∠=WΦ

−

cos5.01
sin5.0tan

exp5.01)5.0()(

1

jX
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4.3 Properties of Fourier transform

The linearity is held by the Fourier transform, i.e.:

If  ( )W↔ 11 ][ Xnx  and ( )W↔ 22 ][ Xnx

Then ( ) ( )Ω+Ω↔+ 2121 ][][ BXAXnBxnAx  

where ↔ denotes the pair between the Fourier transform and inverse Fourier transform.

The time-shifting property is also held, i.e.:

If ( )W↔ Xnx ][

Then ( ) ( )00 exp][ njXnnx W−W↔−

The Fourier transform of a convolution in time-domain is a product of Fourier transforms in the frequency domain, i.e.: 

If  ( )W↔ 11 ][ Xnx  and   ( )W↔ 22 ][ Xnx ,

Then ( ) ( )WW↔ 2121 ][*][ XXnxnx .
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The Fourier Transform properties and transform pairs are listed in Table 4.1.

4.4 Frequency response 

Consider digital LTI systems, take Fourier transform for the input, impulse response and output:

( )∑
∞

−∞=

W−=W
n

njnxX exp][)(
, 

( )∑
∞

−∞=

W−=W
n

njnhH exp][)(
, 

( )∑
∞

−∞=

W−=W
n

njnyY exp][)(
,

 

                                                 Digital System                            

    

Input                   Output 

  Time domain     ][nx        ][nh          ][*][][ nhnxny =  

            ↑   ↑    ↑ 

                                              ↓             ↓    ↓ 

Frequency domain    ( )ΩX            ( )ΩH   ( ) ( ) ( )ΩΩ=Ω HXY  

 Figure 4.4 Input-output relationships in time and frequency domains

where ( )WH  is known as the frequency response, which describes the gain of a system at different frequencies and can 
be obtained by taking Fourier transform to the impulse response. The input-output relationship in the time and frequency 
domains, and the time-frequency relationships of the three quantities are shown in Figure 4.4.

Using the convolution property of the Fourier transform, for the input-output relationship ∑
∞

−∞=

−=
k

knxkhny ][][][
, apply the Fourier transform on both sides, it can be obtained

)()()( WW=W XHY  (4.6)

The frequency response can be obtained from the transforms of input and output:

)(
)()(

W
W

=W
X
YH

 (4.7)
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Table 4.1: Fourier Transform Properties and Pairs 

Signal ][nx  Fourier Transform )(ΩX  Property 

][][ nbynax +  )()( Ω+Ω bYaX  Linearity 

][ 0nnx −  ( )0exp)( njX Ω−Ω  Time-shift 

][][ nynx ∗  )()( ΩΩ YX  Convolution 

][][ nynx  )(*)( ΩΩ YX  Modulation 

][nδ  1  

][ 0nn −δ  ( )0exp njΩ−   

 

][nu  
( )

∞

−∞=

− −Ω+Ω−−
k

kj )2()exp(1
1 ππδ  

 

1][ <anua
n  ( ) 1

)exp(1
−Ω−− ja   

mnnx

mnnx

>=

≤=

0][

1][
 

( ){ }
( )2/sin

2/1sin

Ω

Ω+m
 

 

 

Example 4.6: Find the frequency response from the impulse responses:

a) h[n]=0.2 {d[n-2]+ d[n-1]+ d[n]+ d[n+1]+ d[n+2]}

Taking the Fourier transform, the frequency response is 

( )

}2cos2cos21{2.0
)}2exp()exp(1)exp()2{exp(2.0

exp][)(

W+W+=
W+W++W−+W−=

W−=W ∑
∞

−∞=

jjjj

njnhH
n

W+W+=W 2cos2cos212.0)(H  and the phase ( ) 0=WΦ H .
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 Figure 4.5 Impulse response and frequency response in Example 4.6 (a)

b) h[n]= 0.5d[n]+ 0.25d[n-1]+ 0.125d[n-2]+...

( )

{ }
n

n

n

j

jjnjnhH

∞

=

∞

−∞=

Ω−=

+Ω−+Ω−+=Ω−=Ω

0

exp(5.05.0

...)2exp(125.0)exp(25.05.0exp][)(

 

i.e. 
)exp(5.01

5.0)(
W−−

=W
j

H .

The modulus and phase are shown in Figure 4.6.

Download free eBooks at bookboon.com



Introduction to Digital Signal and System Analysis

53 

Frequency Domain Analysis

0 2 4 6 8 10 12
0

0.2

0.4

0.6

h[
n]

n

0 1 2 3 4 5 6
0

0.5

1

0 ≤ W  ≤ 2p

|H
( W

)|

0 1 2 3 4 5 6

-1

0

1

- p
/2

 ≤
 Φ

 ≤
 p

/2

0 ≤ W  ≤ 2p

Figure 4.6 Impulse response and frequency response in Example 4.6 (b)
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In general cases, a system can be described by the difference equation

==

−=−
M

k

k

N

k

k knxbknya
00

][][  

Take Fourier transform for both sides,

==

ΩΩ−=ΩΩ−
M

k

k

N

k

k XjkbYjka
00

)()exp()()exp(

or

==

Ω−Ω=Ω−Ω
M

k

k

N

k

k jkbXjkaY
00

)exp()()exp()(  

Therefore, the frequency response can be obtained by

∑

∑

=

=

W−

W−
=

W
W

=W N

k
k

M

k
k

jka

jkb

X
YH

0

0

)exp(

)exp(

)(
)()(

 (4.8)

Example 4.7: A digital high-pass filter is described by

y[n]= - 0.8 y[n-1] + x[n]- x[n-1]

Find the frequency response and sketch its magnitude and phase over the range 0<W<p. 

Solution: Re-arrange the difference equation as 

y[n] + 0.8 y[n-1] = x[n]- x[n-1]

Take Fourier transform for both sides

)()exp()()()exp(8.0)( WW−−W=WW−+W XjXYjY

or

)())exp(1()())exp(8.01( WW−−=WW−+ XjYj
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The frequency response is:

Ω−Ω+

Ω+Ω−
=Ω

Ω−+

Ω−−
=Ω

sin8.0cos8.01

sincos1
)(

)exp(8.01

)exp(1
)(

j

j
Hor

j

j
H  

Its magnitude is

( ) ( ){ }
( ) ( ){ }

2/1

2/122

2/122

cos6.164.1

cos22

sin8.0cos8.01

sincos1

)exp(8.01

)exp(1
)(

Ω+

Ω−
=

Ω+Ω+

Ω+Ω−
=

Ω−+

Ω−−
=Ω

j

j
H

And the phase









W+
W−

−







W−
W

=WΦ
cos8.01
sin8.0tan

cos1
sintan)( arcarcH

. See Figure 4.7. 
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 Figure 4.7 Modulus and phase of frequency response

4.5 Frequency correspondence when sampling rate is given

Let x[n] be a signal discretized with a sampling rate of sf  Hz, we are about to find the position of peak for a complex 

harmonic component with frequency 
0f  Hz 








n

f
fj
s

02exp p
 in the frequency Ω (rad/sample) domain. Its Fourier 

transform is given by

( )

∑

∑
∞

−∞=

∞

−∞=



















W−=

W−







=W

n s

n s

n
f
f

j

njn
f
f

jX

0

0

2
exp

exp
2

exp)(

p

p

i.e.

−Ω=Ω
sf

f
X 02

2)(
π

πδ  

Therefore, the peak appears at 
sf

f02p=W . According to the Nyquist sampling theorem, the maximum frequency in 

the signal is 2/0 sff = , corresponding to pp ==W
s

s

f
f 2/2 (rad/sample). 
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Note the following properties exist: 

( ) )(2exp][)2( W=−W−=+W ∑
∞

−∞=

XnjnjnxX
n

pp
, and 

)()( W−=W+ pp XX

Therefore, with given sampling rate sf (Hz), the correspondence between frequency W (rad/sample) and f (Hz) is 

sf
fp2=W  (rad/sample)

or

sff
p2

W
=  (Hz)

Particularly, for one period in the frequency domain:

s

s

f
f

f

→
→
→

W

p
p
2

2/
00

When sampling rate is given, the frequency correspondence between frequency W  and f domains is depicted in Figure 
4.8.
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         |X( )| 

       0   0Ω                                                     2              

 

       0         0f                 2/sf                            sf           f  

 One period 

Figure 4.8 Frequency correspondence between frequencies in different units.

Problems

Q4.1 Find the frequency response from the impulse response

h[n]= δ[n]+ 0.5δ[n-1]+ 0.25δ[n-2]+...
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Q4.2 A digital system has the difference equation

][]2[]1[5.0][ nxnynyny +−+−=

Find the frequency response.

Q4.3 A digital system has the frequency response:

8.0)exp(
)exp()(

+W
W

=W
j

jH

Sketch the magnitude of its frequency response )(WH  over p<W<0 .
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5 Z Domain Analysis 
5.1 z-transform and inverse z-transform 

In the previous chapters, time domain and frequency domain analysis have been introduced. In each of those domains 
different insights of digital signals are revealed. It is useful to introduce another domain: the z domain. A digital time 
signal can be transferred into z domain by the z-transform. The z-transform is defined as

∑
∞

=

−=
0

][)(
n

nznxzX
 (5.1)

where z is a complex variable. The transform defined by Eq. (5.1) is a unilateral transform as defined on one side of the 
axis ∞<≤ n0 . In the transform, each sample ][nx  is multiplied by the complex variable nz − , i.e.

↑

−−− ...
...]3[]2[]1[]0[

3210 zzzz
xxxx

There is advantage in this unilateral transform definition as it can avoid mathematical inconvenience. One can shift the 
signal of interest to obtain a required origin in its analysis, thus usually causing no trouble in applications.

The inverse z-transform can be found by 

 

−= dzzzX
j

nx
n 1)(

2

1
][

π
 

 (5.2)

It involves contour integration, and further discussion is beyond the scope of this basic content. However, an alternative 
approach is available using partial fractions together with z-transform formulas of basic functions. Table 5.1 lists the basic 
properties of the z transform and Table 5.2 lists some basic z- transform pairs.

Example 5.1 Find the z transform for a signal and reconstruct a signal from its z-transform.

a) x[n]=[ ...8.08.08.01 32
] is shown in Figure 5.1(a), find the z-transform.

↑

Using the definition Eq.(5.1),
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( ) ( )

8.08.01
1

...8.08.08.01

...8.08.08.01][)(

1

31211

3322

0

1

−
=

−
=

++++=

++++==

−

−−−

−−
∞

=

−−∑

z
z

z

zzz

zzzznxzX
n

n

b) Reconstruct the signal corresponding to the z-transform:
2.1

1)(
+

=
z

zX









−

=
+

=
+

=
−

−
−

−

)2.1(1
1

2.112.1
1)( 1

1
1

1

z
z

z
z

z
zX

Using the series summation formula in Eq.(3.13) (where 12.1 1 <−z  is required.),

{ }
...728.144.1_2.1

...)2.1()2.1()2.1(1)(

4321

312111

+−−=

+−+−+−+=
−−−−

−−−−

zzzz

zzzzzX
 

Therefore, the reconstructed original signal can be obtained as

x[n]=[0 1 -1.2 1.44 -1.728 ... ]. 
↑ 

The signal is shown in Figure 5.1(b).

-2 -1 0 1 2 3 4 5 6 7 8 9
0

0.5

1

x[
n]

n

(a)

-2 -1 0 1 2 3 4 5 6 7 8 9

-5

0

5

x[
n]

n

(b)

 Figure 5.1 Signals in the examples
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5.2 Relationship between z-transform and Fourier transform

Let )exp( W= jz , i.e. the complex variable z is only allowed on the unit circle, the z-transform becomes a unilateral 
Fourier transform

( )njnxX
n

W−=W ∑
∞

=

exp][)(
0

Obviously, apart from on the unit circle, the complex operator z can be specified into other curves or region, if necessary. 
Later, it will be shown the unit circle is important boundary on the z-domain.

5.3 Z as time shift operator

Multiplying by z implies a time advance and dividing by z, or multiplying by 1−z , is to cause a time delay. For the unit 
impulse,

1][)(
0

0

===
=

−−
∞

=
∑ n

nn

n
zznzX d
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For the delayed unit impulse,

1

1
0

]1[)( −

=

−−
∞

=

==−= ∑ zzznzX
n

nn

n
d

For more general cases of shifting by 0n  samples,

0

00
0 ][)( n

nn

nn

n
zzznnzX −

=

−−
∞

=

==−= ∑d

For shifted signal x[n], i.e. delayed by 0n samples, the z-transform

0)(][][ 0
0

0
nn

n
zzXznnunnx −−

∞

=

=−−∑

5.4 Transfer function

The transfer function describes the input-output relationship, or the transmissibility between input and output, in the 
z-domain. Applying the z-transform to the output of a system, the relationship between the z-transforms of input and 
output can be found:

)()(][)(

][)(

][][][)(

)(

0

00

zHzXzmhzrx

zrnhzrx

zrnhrxznyzY

m

rm

r

r

rn

n

r

r

n

rn

n

n

==

−=

−==

−
∞

−=

−
∞

−∞=

−−
∞

=

−
∞

−∞=

−
∞

−∞=

∞

=

−
∞

=

∑∑

∑∑

∑∑∑

Therefore,

)(
)()(

zX
zYzH =

 (5.3)

i.e., the transfer function can be obtained from the z-transforms of input and output.

Alternatively, the transfer function )(zH can be obtained by applying z-transform directly to the impulse response ][nh

. The relationships of input ( ][nx  and )(zX ), output ( ][ny  and )(zY ) and system function ( ][nh  and )(zH ) in 

the time and z domains are depicted in Figure 5.2.
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                                        Digital System                            

 

Input                   Output 

     Time domain     ][nx        ][nh          ][*][][ nhnxny =  

        ↑   ↑   ↑ 

                                   ↓             ↓   ↓ 

z-domain   ( )zX         ( )zH          ( ) ( ) ( )zHzXzY =  

Figure 5.2 Input-output relationship in time and z domains  Figure 5.2 Input-output relationship in time and z domains

Instead of using Eq.(5.2), the inverse z-transform can be made through partial fractions. The following are examples.

Example 5.2 A signal has a z-transform )12)(1(

1
)(

−−
=

zzz
zX , , find the corresponding original signal ][nx .

The z-transform can be represented by partial fractions as

121)12)(1(

1
)(

−
+

−
+=

−−
=

z

C

z

B

z

A

zzz
zX  
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where A, B, C are constants, which can be determined by the following steps.

)12)(1(

)1()12()12)(1(

121
)(

−−
−+−+−−

=

−
+

−
+=

zzz

zCzzBzzzA

z

C

z

B

z

A
zX

 

)12)(1(

)3()22(

)12)(1(

)()2()132(

2

222

−−
+−−−+++

=

−−
−+−++−

=

zzz

AzCBAzCBA

zzz

zzCzzBzzA

i.e.

)12)(1(

)3()22(

)12)(1(

1 2

−−
+−−−+++

=
−− zzz

AzCBAzCBA

zzz
 

The numerator of the left hand side is forced to equal to the right hand side, yielding the following simultaneous equations:








=
=++
=++

1
03
022

A
CBA
CBA

 

Solving the equations, the constants can be found as A=1, B=1, C=-4. Therefore,









−
+

−
+=

−
−

−
+= −

5.0
2

1
1

12
4

1
11)( 1

z
z

z
zz

zzz
zX

.

According to basic z-transform pair formulas in Table 5.2,

][)5.0(2][][

5.0
2

1
1

nunun

z
z

z
z

nd


−−

Combining the time-shift factor 1−z , the signal in time domain can be obtained as 

]1[)5.0(2]1[]1[][ 1 −−−+−= − nununnx nd .
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At the values of n this is 

 …
I  x[0]=0
 x[1]=0
 x[2]=0
 x[3]=0.5
 x[4]=0.75 
 x[5]=0.875
 ...

There is an alternative way of finding the coefficients for the partial fractions. For the above example, 

121)12)(1(

1
)(

−
+

−
+=

−−
=

z

C

z

B

z

A

zzz
zX  

A, B and C can be found by the following operations

4
)12)(1(

1
)12(

1
)12)(1(

1
)1(

1
)12)(1(

1

2/1

1

0

−=
−−

−=

=
−−

−=

=
−−

=

=

=

=

z

z

z

zzz
zC

zzz
zB

zzz
zA

 

Therefore, 

12

4

1

11

)12)(1(

1
)(

−
−

−
+=

−−
=

zzzzzz
zX . 

.

Thus, the signal can be found in the same way:

]1[)5.0(2]1[]1[][ 1 −−−+−= − nununnx nd  

Table 5.1 Z-transform definition and properties
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Definition or property Signal z-transform 

z-transform definition x[n] ∞

=

−=
0

][)(
n

n
znxzX  

Inverse z-transform −= dzzzX
j

nx
n 1)(

2

1
][

π
 

 

)(zX  

Linearity ][][ 21 nbxnax +  )()( 21 zbXzaX +  

Time-shifting property ][][ 00 nnunnx −−  0)(
n

zzX
−

 

Convolution ][*][ nynx  ( ) ( )zYzX  

5.5 Z-plane, poles and zeros 

For the z-transform of a digital signal or a transfer function of an LTI system, generally it can be expressed as factorised 
form for both the numerator and denominator: 

)...)()((

)...)()((

)(

)(
)(

321

321

pzpzpz

zzzzzzK

zD

zN
zX

−−−
−−−

==   (5.4)

where 321 ,, zzz ... are called the zeros as which make X(z) =0; and 321 ,, ppp , ... are the poles as which make X(z) ® ¥. 
Zeros and poles are either a real number or complex conjugate pairs. 
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The z-plane is a complex plane in which the zeros and poles of a z-transform are plotted, which is used to visualise the 
properties of a signal or a system. The positions of the poles and zeros on a z-plane determine the frequency properties 
and degree of stability. On the other hand, in designing a digital system, the poles and zeros can be chosen to put in 
appropriate locations for achieving certain required performance.

z-plane 

 

     imaginary 

          real 

Figure 5.3 z-plane 

 Figure 5.3 z-plane

Example 5.3: From the z -transform pair table, we know the unit step pair as

1
][

−
↔

z
znu

The z-transform of the unit step has one zero at origin as 0)(
0

=
=z

zX  and one pole z =1 as ∞→
=1

)(
z

zX , shown 
in Figure 5.3 in which the pole is represented by a cross and the zero is represented by a circle. 

Example 5.4: Find zeros and poles for a z-transform
 

)8.0)(7.05.0)(7.05.0(

)1)(2.1(
)(

2

−−−+−
+−

=
zjzjz

zzz
zX . 

.

Re-write it as 

{ }{ } )8.0()7.05.0()7.05.0(

))1()(2.1)(0)(0(
)(

−+−−−
−−−−−

=
zjzjz

zzzz
zX  

It can be obtained: 4 zeros: 0,0, 1.2, -1; and 3 poles: (0.5-j0.7), (0.5+j0.7), 0.8.
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They are plotted in Figure 5.4.

Table 5.2 z-Transform pairs

 

Signal ][nx  Z-Transform )(zX  

][nδ  1 

][nu  

1−z

z
 

 

][nr  ( )2
1−z

z
 

][nua n  

az

z

−
 

( ) ][1 nua n−  

)1)((

)1(

−−
−

zaz

az
 

( ) ][cos 0 nunΩ  ( )
1cos2

cos

0

2

0

+Ω−

Ω−

zz

zz
 

( ) ][sin 0 nunΩ  

1cos2

sin

0

2

0

+Ω−

Ω

zz

z
 

( ) ][sin 0 nuna
n Ω  

2

0

2

0

cos2

sin

aazz

az

+Ω−

Ω
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 Figure 5.4 Zeros and poles of the signal
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Example 5.5. Find the zeros and poles for a z-transform )1)(1()( 25 +−= zzzX

Note 015 =−z  has 5 complex roots. 

Since the rule for calculating roots for complex numbers is 

 
( ) 1,...,1,0)2exp()exp( /1 −=

+
= nk

n
kjj n pqq

Therefore, the 5 roots are 

( ) 4,...,1,0)
5

2exp()0exp()1( 5/15/1 === kkjj p

In the z-transform, there are 7 zeros: )
5

8exp(),
5

6exp(),
5

4exp(),
5

2exp(,1 pppp jjjj , j,-j

There is no pole in this case as denominator is 1. See Figure 5.5.
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-1 -0.5 0 0.5 1
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0
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0.6

0.8

1

z-plane

(b)

 Figure 5.5 Zeros of the z transform

5.6 Stability of a system

The term stability indicates the self-recovery capability of a system after disturbance is applied. If the impulse response 
decays with the time, the system has the capability of returning it original calm status. Therefore, the stability can be 
judged by whether the impulse response of the system decays to zero as ∞→n . The following will be shown that the 
location of poles gives information about the stability of a system. 

Consider a simple transfer function with one pole α=z :

α−
==

zzX
zYzH 1

)(
)()(  (5.5)

where α  is a real constant. From the above, 

)()()( zXzYzzY =− α  

)()()( 11 zXzzYzzY −− =−α

Apply the inverse z-transform to both sides, yielding the difference equation

]1[]1[][ −+−= nxnyny α  (5.6)

and by specifying an input as a unit impulse it can be known,

]1[]1[][ −+−= nnhnh dα  (5.7)

The impulse response function can be evaluated as
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...,,,,1,0][ 432 αααα=nh  (5.8)

If the impulse response decays with time then the system will return to its initial state before disturbance. Therefore the 
stability requires 1<α  in Eq.(5.8) as when ∞→n  makes 0][ →∞h . i.e. in the z-plane, the real pole α=z  must 
lie on the real axis and inside the unit circle. 

Consider a transfer function with conjugate imaginary poles:

( )( )αα jzjzzX
zYzH

+−
==

1
)(
)()(

 (5.9)

Rearranging, 

)()()( 22 zXzYzYz =+ α

Or 

)()()( 222 zXzzYzzY −− =+ α

Taking the inverse z-transform of both sides yields the difference equation

]2[]2[][ 2 −=−+ nxnyny α

or

]2[]2[][ 2 −+−−= nxnyny α  (5.10)

From the above we use ]2[]2[][ 2 −+−−= nnhnh dα  to evaluate its impulse response, it can be obtained as

,...,0,,0,,0,,0,1,0,0][ 8642 αααα −−=nh  (5.11)

It is clear that the stability condition also requires 1<α , in order to achieve that when ∞→n , 0][ →∞h .

In the case of expression in polar co-ordinates, consider a conjugate pole pair,

( )( ) 22 cos2

1

)exp()exp(

1

)(

)(
)(

rrzzjrzjrzzX

zY
zH

+−
=

−−−
==

θθθ
 

 (5.12)

where r is the radius, q is the angle on the complex plane. The difference equation can be obtained in the same way as
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]2[]2[]1[cos2][ 2 −+−−−= nxnyrnyrny q
.

or

]2[]2[]1[cos2][ 2 −+−−−= nnhrnhrnh dq

By evaluating the impulse response, assuming the system is causal, i.e. 0][ =nh  when 0<n

,cos2]3[

,1]2[,0]1[,0]0[

qrh
hhh

=

===

( )
( )( ) ( )( )( )

...
cos2cos2cos2cos2cos2]5[

cos2]4[
222222

22

rrrrrrrrrh

rrh

−−=−−=

−=

qqqqq

q

It can be found that the stable condition is he modulus |r|<1, i.e. the poles are required inside the unit circle. 

Example 5.6: The transfer function of a digital system is given by 
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)9025.064545.1)(9604.038593.1)(8.0(

)1)(1(
)(

22

22

+++−+

+−
=

zzzzz

zzz
zH , 

, find the zeros and poles.

Re-writing in polar form as:

−−−−−−+

−−−−

=

ππ
ππ

ππ

6

5
exp95.0

6

5
exp95.0

4
exp98.0

4
exp98.0)8.0(

)
2

exp)(
2

exp)(1(

)(

2

jzjzjzjzz

jzjjzzz

zH

The zeros and poles are easily to be found and described as:

5 zeros: 





±

2
exp,1,0,0 pj , and 5 poles: ±±− π

π
6

5
exp95.0,

4
exp98.0,8.0 jj . .

Any zeros or poles at the origin only produce a time advance or delay. A minimum-delay system requires: 

The number of poles = the number of zeros

If zeros are more than poles, a system becomes non-causal. Some poles are needed to be added to change into causal.

Example 5.7: If a transfer function
221

2

22 cos21cos2

1
)(

−−

−

+−
=

+−
=

zrrz

z

rrzz
zH

θθ
, ,

It can be found 

]2[]2[]1[cos2][ 2 −+−−−= nxnyrnyrny q . 

or

]2[]2[]1[cos2][ 2 −+−−−= nnhrnhrnh dq

Assuming the system is causal, 0][ =nh  when 0<n

.0]1[]1[]0[cos2]1[
0]2[]2[]1[cos2]0[

2

2

=−+−−=

=−+−−−=

dq

dq

hrhrh
hrhrh

i.e., from the impulse response it can be seen that in the system, there is time delay of 2 samples. However, alternatively, 
if the z-transform is given by

22122

2

cos21
1

cos2
)( −− +−

=
+−

=
zrrzrrzz

zzH
qq ,
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][]2[]1[cos2][ 2 nxnyrnyrny +−−−= q

By evaluating the impulse response, it can be known that when the numbers of poles and zeros are equal, there is no 
longer a time delay.

5.7 Evaluation of the Fourier transform in the z-plane

Let z = exp(jW), i.e. as the phase angle W varies, but its modulus 1=z  keeps on the unit circle and takes values on the 
circle. From this viewpoint, the Fourier transform is a special z-transform.

Example 5.8 A z-transform function is given by 
8.0
8.0)(

+
−

=
z
zzH , 

Its frequency response is 
( )
( ) 8.0exp

8.0exp)(
+W
−W

=W
j
jH

The magnitude 
( ) ( ){ }
( ) ( ){ } 2/122

2/122

sin8.0cos

sin8.0cos)(
W++W

W+−W
=WH

Therefore, 

1111.1.0
8.01
8.01)2()0( =

+
−

== pHH

and

0.9
8.01
8.01)( =

+−
−−

=pH

Graphically, referring to the following Figure 5.6 (b), let

8.0)exp(

8.0)exp(

1

1

+W=

−W=

jp

jz

it can be seen that the quotient 
1

1
1 )(

p
zH =W  reaches the minimum at 01 =W , and reaches the maximum at p=W1

. This has explained the frequency selective property of a high pass.
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 Figure 5.6 The modulus of frequency response and the illustration of its value as a function of frequency Ω.

Example 5.9: For the transfer function 
)8.0)(7.05.0)(7.05.0(

)1)(2.1(
)(

2

−−−+−
+−

=
zjzjz

zzz
zH , , let ( )W= jz exp , the 

frequency response is
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{ }{ } )8.0)(exp()7.05.0()exp()7.05.0()exp(
))1())(exp(2.1))(exp(0))(exp(0)(exp()(

−W+−W−−W
−−W−W−W−W

=W
jjjjj

jjjjH

The modulus is

{ }{ } )8.0)(exp()7.05.0()exp()7.05.0()exp(
))1())(exp(2.1)(exp(

)(
−W+−W−−W

−−W−W
=W

jjjjj
jj

jH
. 

The modulus is shown in Figure 5.8. Poles or zeros at the origin do not affect the values of modulus.

0 1 2 3 4 5 6
0

2
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|H
( W

)|

0 ≤ W  ≤ 2p

 Figure 5.8 Modulus of frequency response

5.8 Characteristics of 1st and 2nd order systems

Digital systems can be classified into first, second and higher order systems according to the number of poles. The same 
number of zeros is normally chosen to minimise the system delay. 

First-order 
1

1
1 )(

pz
zzzH

−
−

=  (5.13)

Second-order 
( )( )
( )( )32

32
2 )(

pzpz
zzzzzH

−−
−−

=  (5.14)

Higher-order ( )( )( )( )
( )( )( )( )...

...)(
4321

4321

pzpzpzpz
zzzzzzzzzH

−−−−
−−−−

=  (5.15)

A higher-order system can be built up by cascading first and second-order subsystems. The frequency selective properties 
can be controlled by choosing appropriate pole and zero locations.
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For poles, those close to the unit-circle can produce sharp peaks in the frequency response. Therefore, high gain can be 
achieved by placing the poles close to the unit circle. Equal number of zeros and poles are normally placed to ensure 
no system delay or causing non-causality, i.e. the impulse response begins at n=0. Consider the first order system with 
a zero the origin

The first-order system 
α−

=
z

zzH )(1

Its frequency response  
α−W

W
=W

)exp(
)exp()(1 j

jH

To achieve low-pass, adopting 10 << α , i.e. the pole is on the positive axis. The denominator α−1  becomes the 
smallest, and the maximum gain value is 

 αα −
=

−
=

1
1

)0exp(
)0exp(

maxG

and the minimum gain is 

ααp
p

+
=

−
=

1
1

)exp(
)exp(

min j
jG

To achieve a high-pass, adopting 01 <<− α , i.e. the pole is on negative axis, the denominator α+1  becomes the 
biggest, and the maximum gain at peak value is

ααp
p

+
=

−
=

1
1

)exp(
)exp(

max j
jG

, 

and the minimum gain is

αα −
=

−
=

1
1

)0exp(
)0exp(

minG

When α  is close to 1, the peak gain gets high, the bandwidth gets more narrow, and the impulse response decays more 
slowly. The following figures illustrate the above low and high pass filters.
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 Figure 5.9 The frequency response, poles and zeros of low and high pass filters

For a second-order system, the transfer function in polar form is

( )( ) 22

22

2 cos2)exp(exp(
)(

rrzz
z

jrzjrz
zzH

+−
=

−−−
=

qqq

Its frequency response is 
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)2exp()exp(cos21
1

)exp(cos2)2exp(
)2exp()( 222 W−+W−−

=
+W−W

W
=W

jrjrrjrj
jH

qq

The gain is

( ) ( ){ } 2/12222
2

2sinsincos22coscoscos21

1)(
W−W+W+W−

=W
rrrr

H
qq

The peak gain occurs at q±=W :

( ) ( ){ } 2/122222
2max

2sinsincos22coscos21

1)(
ϑqqqq

q
rrrr

HG
−++−

==

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY AT A TOP RANKED 
INTERNATIONAL BUSINESS SCHOOL

Reach your full potential at the Stockholm School of Economics, 
in one of the most innovative cities in the world. The School 
is ranked by the Financial Times as the number one business 
school in the Nordic and Baltic countries. 

Visit us at www.hhs.se

Sw
ed

en

Stockholm

no.1
nine years 
in a row

http://s.bookboon.com/hhs2016


Introduction to Digital Signal and System Analysis

81 

Z Domain Analysis

 

 

 

 

 

 

 

 

 

 

 

p2 

p1 

exp(jΩ) 

 Figure 5.10 Poles of the 2nd order system

 Figure 5.11 Modulus of 2nd order system

An example of a higher order transfer function is 

( )
( )81.09.0

1)1(
)(

2

2

++

+−+
=

zzz

zzz
zH .  

. 

Let )exp( W= jz , the frequency rejections are at pp ,
3

±=W  and frequency passes are at 
3

2p
±=W . The poles 

and zeros, and the frequency response are shown in Figure 5.12.
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Figure 5.12 Zeros, poles, and frequency response

A more general expression for 2nd order systems, in which there are two zeros and two poles, is given by its transfer function

( )( )
( )( ) 2

222
2

2
111

2

2222

1111

cos2
cos2

)exp(exp(
)exp(exp()(

rzrz
rzrz

jrzjrz
jrzjrzzH

+−
+−

=
−−−
−−−

=
q
q

qq
qq
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The frequency response is given by

2
222

2
111

)exp(cos2)2exp(
)exp(cos2)2exp()(

rjrj
rjrjH

+W−W
+W−W

=W
q
q

where if 11 =r  there will be a frequency rejection at 1q=W . 

The gain is

( ) ( ){ }
( ) ( ){ } 2/122

222

22
222

2/122
111

22
111

2sinsincos22coscoscos21

2sinsincos22coscoscos21)(
W−W+W+W−

W−W+W+W−
=W

rrrr

rrrrH
qq

qq

A summary if its frequency properties in relation to the zeros and poles is listed in Table 5.3.
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Table 5.3 Summary of properties of 2nd order systems

System function About Zeros About Poles

Transfer 
function

H(z) Zeros:
When z =Zero, H(z) = 0

Poles:
When z =Pole, H(z) = ∞

Frequency 
response

|H(Ω)| When Ω = 1q  |H| = min
If 1r =1 and Ω = 

1q , |H|=0  
(reject frequency)

When Ω = 2q  ,
|H| = max (peak gain)

Problems

Q5.1 Find the Z-transform for a digital signal given by

( ) ( )
↑

= ...],35.0,35.0,35.0,1[][
32

nx
 

and find the Z-transform if the signal has been changed to 

( ) ( )
↑

= ...],35.0,35.0,35.0,1[][
32

nx
 

Q5.2 A digital signal is described as 

 
( )




≥
<

=
09.0
00

][
nfor
nfor

nx n

 Find the sum ∑
∞

=0
][

n
nx  and the Z-transform of the signal.

Q5.3 Expend the following z-transform functions as power series in 1−z , and find their first five sample values (starting 
at n=1):

a) 
6.0

1)(
−

=
z

zX

b) 
2.1

)(
+

=
z

zzX

c) 
1
1)(

−
+

=
z
zzX
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d) 
5.0

5.0)( 2 +−
=

zz
zzX

e) 
)1)(8.0(

5.0
)(

−−
−

=
zzz

z
zX

Q5.4 Find the transfer function H(z) and frequency response H(W) of an LTI system whose impulse response is defined by:

]2[]1[][]2[81.0]1[9.0][ −+−−+−−−= nnnnhnhnh δδδ . .

Q5.5 Find the zeros and poles of the following transfer functions and identify their stability and causality:

a) 4.03.1
2)( 2

2

+−
−−

=
zz
zzzH

b) 
1.15.1
9.05.1)( 2

2

+−
++

=
zz
zzzH

c) 
1

1)( 2

2

+
+−

=
z

zzzH

d) 

25.0

1
)(

2

23

−

−+−
=

z

zzz
zH  

e) 
( )1

1)( 8

9

−
−

=
zz

zzH

f) 
8.0

2
)(

10

5

−

−
=

z

z
zH  

Q5.6 Find the transfer function )(zH and frequency response )(WH of a system whose impulse response is defined by:

]2[][]2[9.0]1[][ −++−−−= nnnhnhnh dd .

Q5.7 A digital system is described as

][2]2[]1[][ 2 nxnynyny =−+−− αα .

By considering the pole locations of the associated transfer function, determine the range of the real number, α , for 
which the system is stable.

Q5.8 A digital system is described by:

]2[][]2[]1[][ −++−−−= nxnxnynyny βα .
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By considering the pole locations of the associated transfer function, determine the ranges of the real numbers α  and 
β  for which the system can be stable and find the poles and zeros.

Q5.9 A digital filter has the transfer function:

α+
=

z
zzH )(

Describe the frequency characteristic with reference to the range of values of α  for which the system is stable.

Q5.10 A digital system has the transfer function:

8.0
)( 2

2

−
=

z
zzH

Sketch the magnitude of its frequency response )(WH  over p<W<0 .

Q5.11 sketch the magnitude and phase for the frequency responses of filters: 

a) 922.036.1
)(

2 +−
=

zz

z
zH

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Introduction to Digital Signal and System Analysis

87 

Z Domain Analysis

b) 
)922.036.1)(8.0(

)(
22

4

+−+−
=

zzzz

z
zH  

Q5.12 Find the pass and reject frequencies for the filter given by the transfer function:

( )
( )81.09.0

1)1(
)(

2

2

++

+−−
=

zzz

zzz
zH . 

.

Q5.13 Find the digital signal x[n] and y[n] given by the Z-transforms

25.0
)(

−
=

z

z
zX , and  

25.0

75.0
)(

−
+

=
z

z
zY . 

Q5.14 Using the smallest possible number of z-plane poles and zeros, design a filter with the following frequency 
performance:

Complete rejection at 0=W
Complete rejection at 3/p=W
A pass-band at 3/2p=W

The poles are placed at radius 9.0=r in the z-plane and there should be no unnecessary delay in the output signal. 
Determine the transfer function )(zH  for the filter.

Q5.15 Find and sketch the poles and zeros of the following transfer functions. Visualize and sketch the magnitude of the 
system’s frequency response over p<W<0 .

a) ( )8.0
8.08.0)( 2

23

+
−+−

=
zz

zzzzH

b) 

( )81.09.0

122
)(

2

23

−+

−+−
=

zzz

zzz
zH
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6 Discrete Fourier Transform 
6.1 Definition of discrete Fourier transform

For a digital signal ][nx , the discrete Fourier transform (DFT) is defined as

−=
−

= N

kn
jnxkX

N

n

π2
exp][][

1

0

 

 (6.1)

where the DFT ][kX  is a discrete periodic function of period N. Therefore one period of distinct values are only taken 
at 1,...,2,1,0 −= Nk .

Note that the DFT Eq.(6.1) only has defined the transform over 10 −≤≤ Nn , otherwise not known or not cared. This 
is different from Fourier series in which the signal is strictly periodic or the discrete version of Fourier transform in which 
the signal is non-periodic but defined over ∞<<∞− n . The comparison is made in Table 6.1. The DFT matches most 
of the practical cases in which only limited record is available from a certain measurement. 

The inverse discrete Fourier transform (IDFT) is

=
−

= N

kn
jkX

N
nx

N

k

π2
exp][

1
][

1

0

   1,...,2,1,0 −= Nn    (6.2)

where x[n] is a periodic function of period N. Distinct values can be taken from one period at 1,...,2,1,0 −= Nn

. For this reason, we can assume the original signal x[n] in the above DFT formula has been extended to a signal of 
periodic of N. i.e., the DFT considers a non-periodic signal x[n] to be periodic only for the purpose of mathematic 
convenience. Otherwise, the summation in the DFT formula is not to run for N samples 10 −≤≤ Nn  but the whole 
axis ∞<<∞− n  and to obtain a continuous spectrum )(WX . Table 6.1 has listed the definitions of Fourier series, 
discrete version of Fourier Transform and DFT for comparison. 

Table 6.1 Comparison of 3 different transforms

Signal type Transform Forward  Inverse 

Periodic 

 

Fourier Series −

=

−=
1

0

2
exp][

1 N

n

k
N

kn
jnx

N
a

π

 

−

=

=
1

0

2
exp][

N

k

k
N

kn
janx

π
 

Non-periodic 

 

Discrete version 

of Fourier 

Transform 

( )
∞

−∞=

Ω−=Ω
n

njnxX exp][)(

 

( ) ΩΩ−Ω= dnjXnx
π

π

2

0
exp)(

2

1
][

 

Length N Discrete Fourier 

Transform 
−=

−

= N

kn
jnxkX

N

n

π2
exp][][

1

0

 

=
−

= N

kn
jkX

N
nx

N

n

π2
exp][

1
][

1

0
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In the following Figure 6.2, the difference between the DFT and discrete version of FT are compared. The upper left is a 
non-periodic signal with N samples in 10 −≤≤ Nn  in which zeros are given to all outside the N records. The upper 
right is its discrete version of Fourier transform which is a continuous function. The lower left is the signal in which the 
N samples are regarded as one period and the record has been extended to the whole axis ∞<<∞− n . Therefore, like 
Fourier series, its periodic discrete spectrum is shown in the lower right figure.
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 Figure 6.2 The discrete version of FT for a non-periodic signal and DFT for a periodic signal.

In essence, applying the DFT is to decompose a periodic signal to a series of cosine and sine functions represented by 
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where k is the frequency of the sinusoidal function which runs through all possibilities from 0 (direct current) to N-1. 
The following figure shows the first few sinusoidal components.
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 Figure 6.3 Decomposition of a periodic digital into cosine and sine waves.

6.2 Properties of DFT

1. Periodicity
In the time domain, 

][][ nxrNnx =±  
 (6.3)

and in the frequency domain

][][ kXrNkX =±    (6.4)

where r is an arbitrary integer and N is the period. This property says that the shape of the signal stays the same when it 
is shifted to left or right by integer number of N samples. 
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2. Linearity

If   ][][ 11 kXnx ↔  and ][][ 22 kXnx ↔

then

][][][][ 2121 kBXkAXnBxnAx +↔+    (6.5)

where ↔  represents the pair of DFT and IDFT, and A and B are constants. This property includes an equal magnification 
rule, and a superposition rule between the input and output.

3. Time-shifting

If   ][][ kXnx ↔  
then

−↔−
N

kn
jkXnnx 0

0

2
exp][][

π
  (6.6)

The time shifting will cause a change of spectrum in phase, not in the magnitude, because 1
2

exp 0 =−
N

kn
j

π
. .

4. Convolution

If   ][][ 11 kXnx ↔  and ][][ 22 kXnx ↔
then 

][][][][ 21

1

0
21 kXkXnmxnx

N

m
↔−∑

−

=  (6.7)

The relationship of convolution between two signals in time domain can be simplified to a multiplication in the frequency 
domain. In the formula, the convolution is defined on one period.

5. Modulation

If   ][][ 11 kXnx ↔  and ][][ 22 kXnx ↔
then

−

=

−↔
1

0

2121 ][][][][
N

m

mkXmXnxnx  

 (6.8)

Likewise to the property 4), the relationship of convolution between two spectra in the frequency domain can be simplified 
to a multiplication in the time domain. 
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6. Even and odd signals

From the DFT definition

−=
−

= N

kn
j

N

kn
nxkX

N

n

ππ 2
sin

2
cos][][

1

0

 

where 
N

knπ2
cos   is an even function, and

N

knπ2
sin  is an odd function.

Let 

( )
N

kn
nxkX

N

kn
nxkX

N

n

N

n

π

π

2
sin][][Imag

2
cos][])[(Real

1

0

1

0

−

=

−

=

=

=

 

When x[n] is real signal,

a) if x[n] is an even function, 

Im(X[k]) =0 (6.9)

b) if x[n] is an even function, 

Re(X[k]) =0 (6.10)

This property can be used to simplify and save the calculation.

7. Conjugation

If x[n] is real, ∑
−

=

=
1

0

][]0[
N

n
nxX  and ∑

−

=

−=
1

0

][)1(]2/[
N

n

n nxNX  are real coefficients, and the other N-2 are complex 
coefficients.

][][ * kXkX =−  or ][][ * kXkNX =−  (6.11)

][][ kXkX =−
,    

][][ kXkNX =−
 (6.12)

Only X[0], X[N/2] and X(k), k=1,2,N/2-1 are needed to represent the whole X[k] (k=0,1,2,…,N-1). i.e. there are a total 
of 2 real and N/2-1 complex coefficients. It can also be proved
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]
2

[]
2

[ kNXkNX +=−
 (6.13)

The proof is as below:

]
2

[)2/(2exp][

)2/(2exp][

)2/(2exp][]
2

[

*
1

0

1

0

1

0

kNX
N

nkNjnx

N
nNkNjnx

N
nkNjnxkNX

N

n

N

n

N

n

+=





 +

=







 −−
−=







 −
−=−

∑

∑

∑

−

=

−

=

−

=

p

p

p

Therefore, ]
2

[]
2

[ kNXkNX +=− . This property tells that the modules of the DFT is symmetrical about the vertical 

line 
2
Nn = .

8. Complex signal x[n]

If the signal ][nx  is complex, there is no spectral symmetry, and all N coefficients are distinct in general.

6.3 The fast Fourier transform (FFT)

James W. Cooley and JohnW. Tukey in 1965 made a revolutionary invention in calculating the DFT (published in J.W.Cooley 
and J.W. Tukey in Math. Comput., vol. 19, April 1965, pp297-301). In the algorithm known as FFT, redundancy in direct 
calculating complex DFT due to periodicity in sinusoidal functions has been removed, therefore the computing time has 
been remarkably reduced. The principle can be explained in the following.

For the DFT X k x n j
kn

Nn

N
[ ] [ ]exp= −









=

−

∑
0

1 2p
, let the complex function









−=

N
jWN

p2
exp

 

then 

−=
N

kn
jW

kn

N

π2
exp . 

If separating ][nx  to an eve and an odd sequences

Download free eBooks at bookboon.com



Introduction to Digital Signal and System Analysis

94 

Discrete Fourier Transform
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WnxkX
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0

][][
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N

N

r
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N

N

r

WrxWrx
)12(

12/

0

2
12/

0

]12[]2[ +
−

=
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rk
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k
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rk
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N

r

WrxWWrx 2/

12/
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12/

0

]12[]2[
−

=

−
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++=      

 (6.14)

Eq.(6.14) means a DFT of length N can be equivalent to 2 DFTs of length N/2. As an immediate result, the number 
of distinct complex numbers can be reduced from N 

kn

NW   to N/2 rk

NW 2/
 in the above DFT summation; thus complex 

multiplications can be greatly reduced in computation. The heart of implementing FFT is to make above division further 
until each DFT has only 2 samples. A requirement is the length of data N is an integer power of 2.

Therefore, N is chosen to be an integer power of 2, N/2 is even. 2 N/2-point sequences can be decomposed into 2 shorter 
N/4-point sequences. This decomposition continues until all sequences are 2-point sub-sequences, each of which requires 
only a simple 2-point DFT. This procedure produces a radix-2 FFT algorithm. 

For example: Let N=8, the DFT is

kn

n

WnxkX 8

7

0

][][
=

=  

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

89,000 km
In the past four years we have drilled

That’s more than twice around the world.

careers.slb.com

What will you be?

1 Based on Fortune 500 ranking 2011. Copyright © 2015 Schlumberger. All rights reserved.

Who are we?
We are the world’s largest oilfield services company1.  
Working globally—often in remote and challenging locations— 
we invent, design, engineer, and apply technology to help our  
customers find and produce oil and gas safely.

Who are we looking for?
Every year, we need thousands of graduates to begin  
dynamic careers in the following domains:
n  Engineering, Research and Operations
n  Geoscience and Petrotechnical
n  Commercial and Business

http://s.bookboon.com/Schlumberger1


Introduction to Digital Signal and System Analysis

95 

Discrete Fourier Transform

The number of direct calculation of its DFT will be 6482 = ,  approximately. However, it can be divided into 2 length 
N=4 sequences:

rk

r

krk

r

WrxWWrxkX 4

3

0

84

3

0

]12[]2[][
==

++=   

Further, they can be divided in to 4 length N=2 sequences:

( )

+++++

++=
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==
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s
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r
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]1)12(2[]1)2(2[

]122[)]2(2[][

 

Explicitly, from the above,

 

( )
( )( )kkkkkk
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1
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0
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1
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]7[]3[]5[]1[

]6[]2[]4[]0[][

++++

+++=

where we know 1,1 1
2

0
2 −== WW , therefore,

( ) ( )( )kkkkkkk WxxWWxxWWxxWWxxkX 1

24

1

28

1

24

1

2 ]7[]3[]5[]1[]6[]2[]4[]0[][ +++++++=

where only kW4  and kW8  are actually complex numbers, there are as many as only 3 + 7 = 12.

In original DFT, there are approximately 2N  multiplications in 
−=

N

nk
jW

kn

N

π2
exp

(there are some unities when k 

or n=0). However, in the FFT algorithm, redundant computation in multiplying kn

NW  are reduced by re-arranging samples 

to shorter sequences to enable multiplication by much fewer distinct 1
2

0
24/2/ ,...,, WandWWWW

kn

N

kn

N

kn

N
  in a butterfly shaped 

flow chart. Figure 6.4 illustrates 2
N   multiplications in a length N=8 DFT.
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 Figure 6.4 Number of complex multiplication in DFT

It can be divided into 2 length N=4 DFTs , i.e.
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where 







−=

8
2exp8

kjW k p

and

−=
8

2
exp8

k
jW

k π
 

In the following Figure 6.5, two boxes represents 2 length N=4 DFTs. The solid lines represent moves and the doted lines 
represent complex multiplications. 
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 Figure 6.5 1 N=8 point DFT are changed to 2 N=4 point DFTs

In the two boxes, 4 N=2 DFTs can be obtained as:
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Using the following graphical illustration in Figure 6.6, we can see the complex multiplications are only 4+6+7=17 in this 
case, much fewer than that in the direct calculation of the DFT.
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 Figure 6.6 2 N=4 point DFT are changed to 4 N=2 point DFTs
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It can be proved that the FFT algorithm has saved huge computing time by reducing from 2N  complex multiplications 

to NN 2log , , i.e. saved 
N

N
2log

 times of computation. For example, if N=8, 67.2
3

8

8log

8

2

== ;  if N=1024, 

4.102
10

1024

1024log

1024

2

== .  i.e. saved 102 times of multiplications. The longer the data length N, the more time can 

be saved relative to the direct calculation of the DFT.

Problems

Q6.1 What are the features of the DFT coefficients X[k] of an N-sample signal which is 

a) Real,
b) Real and even,
c) Real and odd, and
d) Complex?

Q6.2 For the digital sequence 

a) x[n] = [1 -1 ], 
b) x[n]= [3 -2],
c) x[n]=[1 -1 0 0],
d) x[n] = [1 0 0 1],
e) x[n]=[1 2 1 3].

Calculate the Discrete Fourier Transform (DFT) .

Q6.3 Explain how the Fast Fourier Transform (FFT) algorithm can be faster than direct calculation of the Discrete Fourier 
Transform (DFT). 

Q6.4 Answer the following questions:

 - With reference to the Fast Fourier Transform (FFT), why is the length, N, normally chosen as an integer 
power of 2? 

 - In brief, what is the reason that the FFT algorithm can be faster than direct calculation of the Discrete 
Fourier Transform (DFT)?

 - If the length of a sequence is not yet an integer power of 2, how is it possible to take advantage of the FFT 
algorithm?
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7 Spectral Analysis by DFT 
7.4 Digital spectral analysis

Spectral analysis for digital signals is referred to a decomposition of a digital signal into its continent components in the 
frequency domain. It is a useful technique in many branches of engineering, natural and social sciences, and information 
technology. The DFT defined in Eq. 6.1 is used to obtain Fourier spectrum for a signal, and the FFT algorithm is widely 
accepted as the choice in implementing the algorithm because of its fast speed. 

The basic assumption behind the digital spectral analysis is that a frequency-domain display is easier to reveal important 
information which is not apparent in the time domain. Unlike digital filtering, it is primarily investigative, not concerned 
with changing the original signal. The information obtained through the digital spectral analysis often leads to important 
insights of associated physical process.

7.5 Spectra of harmonics

Assume the sampling rate is 1024Hz. The maximum frequency at this sampling rate is 512Hz and the minimum frequency 
in the DFT frequency domain is also 1Hz. Any integer frequency components ranging from 1 to 512 Hz are called 
harmonics. A signal 
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=

1024
2sin][ nnx p

  (7.1)

represents a 1Hz sine wave. The 32th harmonics is

=
1024

322sin][
n

nx π   

  (7.2)

which will present a single spectral line in the DFT at k = 32. See Figure 7.1.

If more harmonics are present, like

++=
1024

4672sin
1024

1372sin
1024

322sin][
nnn

nx πππ   
 (7.3)

Three spectral lines will be present, shown in Figure 7.2.
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 Figure 7.1 Single sine wave and its single spectral line.
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 Figure 7.2 3 harmonic waves

7.6 Spectral leakage

In the DFT, the signal of length N is being treated as an exact one period of a periodic signal. If a component is an 
integer multiple or harmonic of the basic frequency, the wave will smoothly continue from one period to the next in the 
time domain. On contrary, if the component is not an integer harmonic, discontinuity will occur from one period to 
another in the time domain. This is particularly the case in practice in which a signal usually contains many components 
of different frequencies. Those frequencies can take any fractional numbers and are rarely exact harmonics of the basic 
frequency. The spectrum will not appear as a single line but a peak with side-lobs on both sides. This can be explained as 
that the discontinuity between periods causes a disturbance or modulation in the magnitude and phase of the component, 
generating a set of new harmonics whose frequencies are close to the main harmonic. For example, a signal with three 
fractional frequencies of 32.5, 137.5 and 467.5 Hz, i.e.

++=
1024

5.4672
sin

1024

5.1372
sin

1024

5.322
sin][

nnn
nx

πππ
   (7.4)

The three components give no longer a single spectral coefficient, but three high coefficients surrounded by side-lobs, which 
represent the spectral leakage, shown in Figure 7.3. As a result, relative to integer harmonic cases, the leakage reduces 
the magnitude of the main spectral line, giving an inaccurate indication of the spectral strength. This phenomenon can 
be improved by windowing, described in the following section.
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 Figure 7.3 Side lobes around main spectral lines.
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7.4 Windowing

In the DFT, only a component at an exact harmonic frequency gives rise to a single and well-defined spectral line. In 
fact, practical digital signals normally contain a majority of fractional frequencies and few of them exact harmonics. This 
means that the spectral leakage is generally present, and it may lead to inaccuracy in analysis and interpretation. It is 
therefore common practice to taper two ends of the original signal before applying the DFT, reducing or removing any 
discontinuities at its two ends. This can be achieved by multiplying the signal with a suitable window function. For a 
signal 1,...2,1,0],[ −= Nnnx , applying an equal length window function 1,...2,1,0],[ −= Nnnw ,  a windowed 
signal is given by

][][][ nwnxnxw =  (7.5)

 - Rectangular window (No Window)

Nnnw <≤= 01][  (7.6)

The windowed signal ][nxw  is not tapered by this rectangular window. The spectral leakage is fully present. 

-Triangular window

  Nn
N
Nnnw <≤

+−
−= 0|12|1][  (7.7)

The windowed signal ][nxw  will be tapered by the straight slopes of the triangle.

-Hamming window

( )
Nn

N

Nn
nw <≤

+−
+= 0

12
cos46.054.0][

π
  (7.8)

The windowed signal ][nxw  will be tapered by the cosine function.

9.8 Performance of windows

In the time domain, applying a window is to multiply by the window function ][nw :

][][][ nwnxnxw =

In the frequency domain, according to the DFT modulation property in Eq.(6.8), two spectra are in convolution:

][][][ kWkXkX w ∗=  (7.9)
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i.e. a signal multiplied by a window in the time domain is equivalent to a convolution between the spectra of the signal and 
window in the frequency domain. The shapes of triangular and Hamming windows in the time and frequency domains 
are shown in Figure 7.4. Therefore, the leakage will be determined by the shape of the window’s Fourier spectrum. 
The rectangular window (no-window) introduces significant side-lobs, which indicate the leakage seriously exists. The 
triangular window can reduce side-lobs but broadens spectral lines of integer harmonics. The Hamming window slightly 
broadens spectral lines of integer harmonics, but leakage can be dramatically reduced. Therefore, the Hamming window 
is a good choice for reducing leakage. In Figure 7.5, the effects of those three windows are illustrated.
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Figure 7.4 The shapes of triangular and Hamming windows in the time and frequency domains
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Figure 7.5 Three windows and their effects on spectral lines.
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7.6 Applications of digital spectral analysis 

- Detection of harmonics of interest from noisy background

A sinusoidal signal may be mixed with strong noise and hard to be observed. It is appropriate to use the Fourier spectrum 
to detect the sinusoidal signal from the noise. In the frequency domain, a signal may be displayed and extracted easily 
from noise background. In the following Figure 7.6, the upper one is the signal mixed with noise in the time domain. It 
is hard to observe what harmonic components are contained inside the signal. The middle curve is the Fourier spectrum 
where a strong harmonic appears. Therefore, it is easy to remove the recognisable noise by reducing its noise spectrum 
and to restore the harmonic shown in the lower plot using the inverse DFT.

- Fault detection 

The distribution of spectra often characterises the operating condition of mechanical systems, and sudden rising of some 
components or any other changes in it may indicate an occurrence of fault. Key machinery or even the whole production 
lines can be monitored and early faults can be reported to prevent from unscheduled shutdown, which causes losses or 
even disasters. Vibration or acoustic signals are normally picked up and digital spectra are calculated regularly with an 
appropriate interval. A computer is programmed to make comparison with the historical data to report any abnormality. 

- Identification of unknown systems

An unknown system is being deliberately excited by a suitable known signal – often an impulse or a step signal – and its 
response is being measured, then yielding the frequency properties of the system. See Figure 7.7.

In the time domain, the input-output relationship of a system is in a form of convolution:

∑
−

=

−=
1

0
][][][

N

k
khhkxny

 (7.10)

Note that this is a periodic or circular convolution, different from Eq.(3.16), as the signal ][nx  is assumed periodic. Take 
the DFT for both sides, using the convolution property of DFT:

][][][ kXkHkY =  (7.11)

Therefore, the frequency response function of the system can be identified by

][
][][

kX
kYkH =

 (7.12)

In practice, due to noise in measurement, the frequency response function must be obtained by averaging of multiple 
records of the input and output.
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Figure 7.6 Detection of a sinusoidal signal from noisy background

Figure 7.7 System identification using input and output spectra

Problems

Q7.1 Examine sinusoidal components in a signal by spectral analysis







+






+






=

1024
5.4222sin15.0

1024
5.1072sin2.0

1024
322sin1.0][ nnnnx ppp

The first component gives a single spectral coefficient. The second and the third components display side-lobes around a 
high coefficient, which represent the spectral leakage. Using the following MATLAB code, plot the signal in the time and 
frequency domains on the screen and sketch them on a paper.
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%Examine signal components 
%sampling rate 1024Hz
N=1024; 
dt=1/N;
t=0:dt:1-dt;

%****define the signal**

x=0.1*sin(2*pi*32 .*t ) + ...
 0.2*sin(2*pi*107.5 .*t )+ ...
 0.15*sin(2*pi* 422.5 .*t ) ;

%***********************
subplot(2,1,1);
plot(t,x);
axis([0 1 -1 1]);

xlabel(‚seconds‘);
ylabel(‚x[n]‘);
X=fft(x);
df=1;
f=0:df:N-1;
subplot(2,1,2);
plot(f,abs(X));
axis([0 N/2 0 120]);
xlabel(‚Hz‘);
ylabel(‚|X[k]|‘);

Q7.2 Use MATLAB code to apply rectangular, triangular and Hamming windows to the signal







+






+






=

1024
4082sin15.0

1024
5.1962sin2.0

1024
722sin1.0][ nnnnx ppp

Observe the level of magnitude and the distribution of side-lobs carefully to find any improvement of leakage reduction. 
Sketch the screen display and make your comments. Make sure the shape of the envelope in the time domain is drawn 
according to the window function. 
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8 Summary
After digesting the content of this book, I hope beginners may have gained an overview of the topic of digital signal and 
system analysis, have understood the basic methods and have known how to personally deal with digital signals and 
digital systems. No matter the incentive is curiosity, interest or acquiring needed knowledge for one’s profession, the 
content selected in this book should be well suited. The standards of learning outcome are equivalent to university year 
two which lays a good foundation for higher level studies or moving on to specialised topics, such as digital filters, digital 
communications, discrete time-frequency and time-scale analysis. 
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