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Introduction

In the second part of the book, we address several topics that come as log-
ical extensions of the elementary tools described in part I Chapter 1 focuses
on vector spaces and linear mappings. These two concepts are especially
useful in economics and finance because the payoffs of financial assets are
modelized as vectors, and portfolio payoffs as combinations of vectors. The
usual no-arbitrage assumption leads to value securities by means of a linear
mapping linking today’s price to future cash-flows.

Chapter 2, devoted to functions depending on several variables, prepares
the two following chapters centered on optimization. Chapter 2 is a direct
extension of chapter 2 in part I. It starts by notions of topology, and then
presents partial derivatives, gradients and Hessian matrices, all fundamental
tools to solve optimization problems.

Hilbert spaces are also an important part of the chapter because, in gen-
eral, properties demonstrated in finite-dimensional spaces are no more valid
in infinite-dimensional spaces. However, some important theorems are still
true in Hilbert spaces. The projection theorem and the representation Riesz
theorem are such emblematic results. These theorems are used in finance
when dealing with martingales' and valuation problems, when the number
of states of nature is infinite.

Chapters 3 and 4 develop the main optimization techniques. Chapter 3
deals with the easy problems that are not constrained, and chapter 4 shows
how to transform a difficult constrained problem in an equivalent easy uncon-
strained one. In other words, chapter shows how to solve optimization prob-
lems using Lagrangian multipliers and Kuhn-Tucker conditions. Of course,
nowadays, these problems are solved by softwares or solver in spreadsheets.

However, it remains important to know how to interpret the results.

1See P. Roger, Stochastic Processes for Finance, 2010, bookboon.com
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Chapter 1

Vector spaces and linear

mappings

Vector spaces are probably the most useful mathematical structure in eco-
nomics and finance, as in many other scientific fields. Elements of vector
spaces are called vectors and the reader already knows this mathematical
object, at least in an intuitive way. In fact, we live in a 3-dimensional vector
space and, as a good approximation, the page you are now reading is part of
a 2-dimensional vector space.

In finance and economics, vectors are generally characterized by more
than 2 or 3 coordinates, and in some cases they are elements of infinite-
dimensional vector spaces. Whatever the case, it is fundamental to master
these mathematical tools because they are important in a number of applica-
tions like arbitrage pricing, portfolio choice, and empirical studies in general.

Section I presents the definition of a vector space and its elementary
properties. In the beginning of the chapter, we restrict the presentation to
finite-dimensional spaces that are natural generalizations of the 2 and 3-
dimensional spaces we are used to. The mathematical concept of a wvector
space is illustrated by means of the economic concept of a complete market.

The second section of the chapter develops the properties of linear map-
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pings. Linear mappings are fundamental components of arbitrage pricing
models. Representation of linear mappings by matrices is developed in sec-
tion 3 and the special case of square matrices is addressed in more details. In
particular, we present the diagonalization of square matrices and the notions

of eigenvalues and eigenvectors.

Norms and inner products, arising naturally in valuation models, are
developed in section 1.4 and their properties are discussed in the general
framework of Hilbert spaces in section 1.5. Finally, section 1.6 presents
separation theorems and Farkas lemma. In financial theory, these results
allow to link the no-arbitrage assumption to the existence of a risk-neutral

probability measure' in an economy with a finite number of states of nature.

1.1 Vector spaces : definitions and general

properties

1.1.1 Definition and examples of vector spaces

Definition 1 A vector space is a set E of elements, called vectors, that
can be added (addition is denoted "+" as usual) and multiplied by real num-
bers (multiplication by a number is denoted "."). E satisfies the following
properties:

1) (E,+) is a commutative group®

2)Y(a,B) €ER? Vu€eE

a(fu) = (af).u (associativity)

!See Roger, P., Probability for Finance, 2010.
2Tt means that + is associative, has an identity element denoted 0, and any element u
has an inverse denoted —u satisfying u 4+ (—u) =0
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Analysis and Linear Algebra for Finance: Part Il Vector spaces and linear mappings

3)V(a,B) ER? VueE,

(a+p8)u=aut+pu (distributivity with respect to the addition in R)
4)Va eR, V(u,v)e E?

a.(u+v) = cutaw (distributivity with respect to the addition in E.)
S5)Vue E, lu=u

Remark : The identity element for addition is the null vector denoted 0
(in bold characters for the moment to avoid possible confusion with the real

number 0).

Example 2 R is a vector space, endowed with the usual addition and the
usual multiplication. The above remark concerning the notation of 0 appears
to be important here because the number 0 is simultaneously the real number
0, and the identity element of the addition for the vector space R. We let the
reader check that R satisfies the statements of definition 1.
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Example 3 Let R" denote the set of n—uples® ' = (x1, %o, ..., T,) where

x; € R for any i; R™ is a vector space if addition is defined by:

1 Y1 1+

x Tro +
Z4y= 2 X Y2 _ 2 T Y2

Tn Yn Tn + Yn

and the product by a scalar is defined by:

T AT

To (64 8))
a.r =« =

Tn axy,

where o € R.

The vector space R" is the natural generalization of the usual 2 and 3-

dimensional spaces.

Example 4 Let E be a vector space and A(E) be the set of mappings® from
E toR; A(FE) is a vector space if addition and product by a scalar are defined

as follows:

(f +9) (u) = f(u) + g(u)

() (1) = af(u) (1)

Y(f,9) € A(E),Yu € E, {

Though these definitions seem intuitive, the space A(E) is much more

complex than the vector space R"; in particular, a vector f € A(F) cannot

3Without precision, = denotes a column vector. x’ (with a prime) is the corresponding
row vector called the transpose of z. These notations are consistent with the notations for
matrices in part I of the book.

4Mappings have been defined in chapter 1 of part I of the book.

Download free eBooks at bookboon.com



be described by a finite set of real numbers because it is a mapping from F
to R.

1.1.2 Vector subspaces

Definition 5 Let E be a vector space and F a subset of E; I is a vector
subspace of E if, for any « € R and any v € F, a.v € F, and if conditions
(2) to (5) of definition 1 are satisfied for F, when addition and multiplication

by a real number ("+" and ".") are restricted to F.

Definition 5 looks complex but its meaning is simple. F' is a vector sub-
space of F if F' is itself a vector space when it is endowed with the same
addition of vectors and the same product by a real number (meaning that
a.v should stay in F if v € F and v+ v is in F' if v and v are in F).

The following proposition provides a simple criterion to check if a subset

of E is a vector subspace.

Proposition 6 Let E be a vector space and F a subset of E; F is a vector

subspace of E if and only if:
Y(a,B) € R? VY(u,v) € F?au+pBuveF
Example 7 Let E = R3 and F, a subset of E defined by:
Fi={x€FE [z +xy+x3=0}

It is obvious to prove that if two vectors x and y in E satisfy the condition
"the sum of their coordinates is zero", any combination o.x+ 5.y also satisfies
the condition, («, [3) being a couple of real numbers. Therefore Fy is a vector
subspace of E. In the same way, consider the subset Fy = {0} which contains
only the vector 0. It is the smallest vector subspace of E and the only one

containing a single vector.
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Therefore, 0 belongs to any vector subspace of E and any intersection of
vector subspaces contains at least the vector 0. This remark is generalized in

the following proposition.

Proposition 8 Any intersection of vector subspaces of E is a vector sub-

space of E.

To illustrate this proposition, let F3 = {x € E / 21 — 225 + 3z3 = 0} and
show that F} (] F3 is a vector subspace de R3. You can use proposition 6.
On the opposite, show that Fj | J F3 is not a vector subspace (Hint. choose
u' € F} and v? € Fy satisfying u' + v® ¢ Fy | F3).

This latter question shows that, in general, the union of two vector sub-
spaces is not a vector subspace (denoted V.S hereafter)

On the contrary, if we define Fi3 as follows:
Flgz{x€R3/ xzy+zw1thy€F1 andzEFg}

then Fi3 is a vector subspace of £ = R?. This remark is generalized in the

proposition below.

Proposition 9 Let Fi, ..., F}, be k vector subspaces of a vector space E and
F be defined by:

[ { v €FE /[ Io,..,ar) € RFand ut € F,...,u* € Fy, such that }

T = Zf:l au

Fisa V.S of E, called the sum of Fy, F», ..., Fy,. We write:
F=F+..+F, (1.2)

Proposition 9 does not say that a1, .., a; and the vectors u' € Fy,...,u* €
F}, are uniquely defined for a given x. In general it is not the case and an

easy counter-example is given by assuming k£ = 2 and F} = F3.
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Analysis and Linear Algebra for Finance: Part Il Vector spaces and linear mappings

If the decomposition is unique, we use the word "direct sum" as defined

below.

Definition 10 a) The direct sum of k vector subspaces Fi, ...., Fy, of E (if
it exists), is a V.S such that any x in F can be written in a unique way as
T = Zle agut where (aq, .., ap) € RFet ut € Fy,...,u* € Fy, . We then note:

b) If E is the direct sum of two V.S Fy and Fy, the two subspaces are said

supplementary.

The direct sum does not always exist because the decomposition of vectors
is not always unique. Some subspaces F; may have common vectors different

from 0. This intuition is formalized in the following proposition.
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Proposition 11 The direct sum of vector subspaces F;,i = 1,....k is prop-
erly defined when for any pair (i, j), F; (| F; = {0}.

Example : Completing a financial market with option contracts

Let E =R" and x € E defined by:
Vi=1,...,n, x; =1

Let 1 denote the vector in R” with all coordinates equal to 1 and 3% € E
defined by:

y" = (y¥,i=1,..,n) where y¥ = max(z; — k ;0),k=1,..,n—1

or equivalently:
y" = max(z — k1 ; 0)

F}, is the V.S containing all the vectors proportional to y;,. We then have’:
n—1
E=F
k=0

where, by convention Fy = {fz,3 € R}
This relation says that any vector z in F can be uniquely decomposed as

follows: X

z = Z ar max(x — k1 ; 0) (1.3)

k=0

The financial interpretation of this example is the following. x denotes
the payoffs of a financial security (a stock or an index for example) which
pays 1,2, ...or n depending on the state of nature that occurs at the final

date’ (there is only one future date T'). The vectors y* are payoffs of call

5The proof is left as an exercise.
6Qur reasoning is valid as soon as payoffs x; are different in different states. Choosing
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options on x with a strike price k. A call option gives the right (and not
the obligation) to its holder to buy asset x at a price k at date T.

Of course, the holder of the option buys the asset x if x > k and the final
net cash-flow is x — k. But if x < k the holder of the option contract does not
exercise the contract and no cash-flow is exchanged at date T. The payoff is
then equal to 0.

Remark that for £ = 0, Fj is the V.S of vectors proportional to x. In fact
there are only n — 1 option contracts with exercise prices k = 1,...,n—1. The
relationship 1.3 shows that any financial security can be written as a portfolio
composed of z and the n — 1 option contracts. A financial market satisfying
this property is said complete. More details on this financial example can be

found in our companion book Probability for Finance’.

1.1.3 Basis and dimension of a vector space

In the previous example, we have shown that it is possible to construct any
vector of R by combining the reference vectors x and v*, k = 1,..,n — 1.
It is time to properly define what means "combining" and to specify the

conditions under which a subset of vectors generates a given vector space.

Spanning sets of vectors

Definition 12 Let u',u?,..,u* be vectors in E and o, ...., oy be real num-
bers; a linear combination of the v, j = 1,..., k with coefficients «; is the

vector v defined by:

k
_21 o
v = OKJU
j=1

payoffs equal to 1,2, ...,n is not crucial but simplifies the example.

"The idea of completing a market by traded options was initially developed by Steve
Ross in a paper entitled "Options and Efficiency", published in the Quarterly Journal of
Economics in 1976.
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Linear combinations are really fundamental tools in financial models be-
cause, as we saw in the previous example, v is the payoff of a portfolio when
the payoffs of individual securities are the vectors v/ and the «; denote the

quantities of assets.

2

Proposition 13 Let u',u?,..,u* be vectors in E, and F be the set of linear

combinations of vectors v’,j = 1, ...k, that is:

k
F:{.IEE/HCVERk, :U:Zajuj}

j=1
then F' is a vector subspace of E.

In financial terms, F' is the subspace of portfolios that can be built with
primary securities u', ..., u*. This result means that, using proposition 6, a,

linear combination of two portfolios is a portfolio.

Definition 14 Let u',u?, ..,u* be vectors in E; they are linearly depen-

dent if there exist coefficients o/ = (ayq, ..., o) with o # 0 such that:

k
Zozjuj =0 (1.4)
j=1

k

The set u',u?,..,u" is called a linearly dependent family.

This definition says that any vector «’ in the family with a weight a; # 0,
can be written as a linear combination of the other £ — 1 vectors.

Moreover, if a family of k vectors is linearly dependent, one can add any
number of new vectors to the family, it stays linearly dependent. In fact, it
is sufficient to give null weights to the new vectors to find the same kind of

linear combination.

Remark 15 If a vector in E represents the payoffs of a financial security

in the different states of nature, a linear combination is then a vector of
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portfolio payoffs. If a family of vectors is linearly dependent it means that
you can build a portfolio generating a 0 payoff in each state. In financial
terms, one of the assets is a hedge for a portfolio of the other assets. The
reader can easily imagine that such a situation has some consequences on the
prices of these assets, the intuitive idea being: "a portfolio that pays nothing
(in all states of nature) should cost nothing". We come back to this approach

of arbitrage pricing at the end of the chapter.

Linearly independent vectors and basis of a vector space

Definition 16 Let u',u?,..,u* be a set of vectors in E; they are linearly
independent if they are not linearly dependent. The following implication
1s then true. .
Y ap/ =0=a=0 (1.5)
j=1
In particular, two vectors u' and u? are linearly independent if there does
not exist a real number 3 satisfying u?> = Bu'. The two vectors cannot be

colinear if they are linearly independent.

.
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Example 17 Let £ = R3 and u', u?,u? be three vectors defined by:

1 2 a
ut=11 [;u*=]a ;=] 4
a 3 —1

What are the conditions on the number a under which these three vectors

are linearly independent?

We need to solve the following equations:

a1 + 209 +acs = 0
a) +aas +4a3 = 0

acy +3as —az = 0

and find if there are non zero solutions for o/ = (aq; ag; ag)

The first equation leads to
o] = —209 — aos (1.6)

We replace a; by its expression in the two other equations. It writes:

(a—2)ag+(d—a)az = 0 (1.7)
(3—2a)as — (1 +a*)az = 0
We can now write as as a function of ag to obtain:
—4

(a—2)

In equation (1.8) a must be different from 2. If a = 2, it is obvious
that as = 0 in the first equation of system (1.7). It implies as = 0 in the
second equation and finally c; = 0, showing that the three vectors are linearly

ndependent.
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Assume now that a # 2; using equation (1.8) and replacing ay by its value

in the second equation of system (1.7) gives:

(a —4)as

(3 — 2Q)W

—(1+a*)az =0

For this equation to be satisfied with as # 0, we need:

a—4
(a—2

—~
~—

(3 — 2a) —(14+a*) =0

~—

or, equivalently:

(3—2a)(a—4)—(a—2)(1+a*) = 0
—a®+10a—10 = 0

This equation has, at least, one solution®; the three vectors are then not

linearly independent.

Remark 18 For linearly independent families, we have a property similar
(or more precisely, symmetric) to the one obtained for linearly dependent
families. If k vectors are linearly independent, any subset of these k vectors

s also a linearly independent family.

Definition 19 A family (u,u?,..,u*) of vectors in E is a spanning family

if any x € E can be written as a linear combination of (ut,u?, .., u*).

k
Vo e E, Ja e R tel que x:Zajuj

Jj=1

8In chapter 2 of part I of the book (devoted to limits and continuity), we saw how
this result can be obtained. Intuitively, we observe that if a is positive and large, the left
hand side (LHS) of the equation is negative due to the term —a3. On the opposite, if a is
negative and large in absolute value, this same LHS is positive. Therefore, there is at least
an a for which this LHS is equal to 0 because this third-degree polynomial is a continuous
function of a.

Download free eBooks at bookboon.com



In example of subsection 1.1.2 dealing with option contracts, we showed
that  and call options on = denoted y*, k = 1, ...,n— 1 constitute a spanning
family of R”. When a family U of vectors is a spanning family of a vector
space E, it is clear that any family {/*containing U is also a spanning family
of E. However, if U* D U and U* # U then U* is a linearly dependent family.

The natural question appearing now is: what is the "smallest" spanning

family of a given vector space?

Definition 20 A family U of vectors in E is a basis of E if U is a spanning
and linearly independent family of E.

When U is linearly dependent and spans F, it is always possible to find,
for a given vector x, several linear combinations in I/ that are equal to z. In

fact, assume that:
x = Z o’ (1.9)
i=1

with U ={u!,...,u"} . If U is a linearly dependent family, we can write u! =

S, B;u'. Replacing u' by its value in equation 1.9 leads to:

n

T = Z(Oéi + a1 8;)u’

=2

It is a second linear combination of vectors of & which is equal to z.

But if U is linearly independent, the decomposition of z is unique. This

leads to the following proposition

Proposition 21 A family U = {u',...,u"} is a basis of a vector space E if
and only if any vector x € E can be decomposed in a unique way as a linear

combination of vectors of U.
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Proof. If U is a basis, any vector z can be written as a linear combination

of vectors of U. Assume that there exist two decompositions as follows:
xr = Z o’
i=1
i=1

Substracting the second equation from the first one gives:

n

O=z= Z(ai — B

i=1

Equation 1.5 then implies «; = =, for all i.

To prove the sufficient condition, proceed as follows. If any x € E can
be written as a linear combination of vectors of U, it means that I/ spans
E. But we showed that if I/ is linearly dependent, there exist several linear
combinations to obtain x. Consequently, U/ is linearly independent if the
combination is unique. Therefore, U is linearly independent and spans F, it

is then a basis. =

For any vector x and any basis U, x is characterized by coefficients o/ =
(a1 ..; @) satisfying @ = Y ayu’. These coefficients do depend on the
considered basis . The most simple basis in £ = R" is called the canonical

basis, denoted el, ..., e", where the vectors e’ are defined by :
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e' has all its components equal to 0 except the i-th which is equal to 1.

Therefore, for any n-tuple 2’ = (x1, ..., z,,), we obtain the decomposition:

n
T = g x;e’
i=1

When F is interpreted as the set of all possible portfolio payoffs, the
vectors el,...,e" are financial securities called Arrow-Debreu securities,
or pure contingent securities. They pay one unit in a given state of nature

and nothing in all the other states.

Definition 22 A wvector space E is finite-dimensional if there exists a span-
ning family composed of a finite number of vectors. In this case, the dimen-

sion of E is the number of vectors’ in a basis of E.

This definition characterizes properly the dimension of a vector space only
if all the bases of a given space have the same number of vectors. The proof
of this statement is left to the reader as an exercise (hint: assume it is not
true and exhibit a contradiction). From this remark, we can also deduce the

following proposition.

Proposition 23 Let F denote a V.S of a finite dimensional E with F # E.
Then dim(F) < dim(FE).

Definition 22 shows that the dimension of a vector space cannot be iden-
tified by the number of vectors in a spanning family but only by the number
of elements in a basis (linearly independent spanning family). Therefore,
in a family of vectors included in a finite-dimensional space E, there exists
a maximum number of linearly independent vectors which is equal to the

dimension of the space.

9By convention, the vector space containing only the null vector is 0-dimensional.
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Proposition 24 Let U = (u!,...,u™) be a basis of E and x denote a vector

in E; the family U, = (u',...,u", x) is linearly dependent.

Proof. z can be written ) ;' , z;u’ since U is a basis. Therefore, we can
find (aq, ..., apn, apy1) with at least one of these cefficients different from 0
such that: .

Z aut + Opt1Z =0

i=1
It is enough that «; = x; and «,,,; = —1. Definition 14 implies that U, is
linearly dependent. m

Let U be a set of financial securities and = a new financial contract intro-

duced on the market. The above proposition shows that the payoffs of the
new asset x can be replicated by a portfolio of securities '° of /. In this sit-
uation, x is called a redundant asset. Later on, we analyze the consequences

of this remark on the evaluation of financial securities.

10Replication means that the future payoffs of  are identical to the future payoffs of
the "replicating" portfolio.
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Definition 25 Let U be a family of vectors in E; the rank of U, denoted

rk(U), is the maximum number of vectors in U that are linearly independent.

In proposition 13 we showed that the set of linear combinations of a subset
of vectors of F is a V.S of E/. Moreover, the rank of &/ when we add to U a
linear combination of vectors of U does not change. Consequently, we obtain

the following proposition.

Proposition 26 1)Let U be a family of vectors in E; the set of linear com-
binations of vectors in U is a V.S of dimension p = rk(U).
2) Let v denote a vector which is not a linear combination of vectors of

U; we then have:

rk(Z/IU {v}) =rkUU) + 1

To illustrate the second part of the proposition, consider a vector x € E
defined by :

Denote y the vector defined by y = max(x — k1;0) with £ € N, and 1 the
vector in E with all coordinates equal to 1. As far as n > k > 0, y and
x are linearly independent, that is not colinear!!. Therefore rk({z,y}) =
rk({z}) + 1 = 2. One more time, if x is interpreted as the possible future
prices of a stock, y is the vector of future payoffs of a call option on z with
exercise price k. We observe that portfolios (linear combinations) based on x
and y span a two-dimensional space when asset x only spans a 1-dimensional
space. It explains why (at least in theory) options are able to improve the
allocation of risk and resources in the economy. This property had been

already mentioned in example of subsection 1.1.2.

"'When two vectors are linearly dependent, they are said "colinear".
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1.2 Linear mappings

In finance models, linear mappings are fundamental because of the large
number of applications in which they are involved. It is especially the case
in the theory of valuation based on the no-arbitrage assumption. In fact,
a fundamental result of this approach is that when the market is free from
arbitrage opportunities, the mapping linking future cash-flows to current

prices is linear.

1.2.1 Definitions and notations

Definition 27 Let Fy and Ey be two vector spaces; a mapping f from E; to
Es is linear if:

1)V(u,v) € By X By, f(u+v) = f(u) + f(v)

2)VaeR,Vu e E, f(au)=a.f(u)

o)

As before, it is worth to notice that, in f(u + v), the "+" sign refers the
addition of vectors in the space F; but the same sign "+" in f(u) + f(v)
refers to the addition in 5. Remember that the two additions may be quite
different, depending on the characterizations of £; and E5. The same remark
should be done for the multiplication by a real number, even if the difference
is less striking.

Linearity of a mapping f means that the image of a linear combination
of vectors in FEj is the linear combination of images in F, with the same
coefficients. The following proposition formalizes this remark. It is sometimes

used as the definition of a linear mapping.

Proposition 28 A mapping f : E1 — FEs is linear if and only if for any fam-
ily (ul, ..., uP) of vectors in Ey and any p-tuple (aq, ...cp,) € RP, the following
equality 1s satisfied:

/ (Z Oéiui) = Zaif(ui)
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Remark 29 a) The definition of linearity implies immediately f(0g,) = O,
if Op, and Og, denote the null vectors of the two spaces. Moreover, for any
uwe By, f(-u) = —f(u).

b) If U = {u,...,uP} denotes a linearly dependent family in E; then
FU) ={f(ub),..., f(uP)} is a linearly dependent family in E,. On the oppo-
site, if U = {ul,...,uP} is a linearly independent family in Ey, f(U) is not
always a linearly independent family in Ey (the proof is left to the reader; it
is sufficient to consider the mapping u — f(u) = u1l where uy is the first

coordinate of u and 1 is, as usual, the vector with all coordinates equal to 1).

1.2.2 Kernel and image of a linear mapping

Definition 30 1)Let f denote a linear mapping from E; to Es; the kernel
of f denoted Ker(f) is the set of vectors u € E; satisfying f(u) = 0.

2) The image of f, denoted Im(f) is the subset of Ey defined by :

Im(f)={y € Ey /3 x € Ey such thaty = f(z)}
Ker(f) is then a subset of E; equal to the reciprocal image of the null
vector in F, (sometimes written f~!(0g,)). On the contrary Im(f) is a

subset of Es, sometimes written f(F;) because it contains all vectors in Fy
that can be written f(u) with u € Ej.

Proposition 31 Ker(f) and Im(f) are V.S of Ey and Ey respectively.

Proof. Using proposition 6, it is enough to show, for the kernel Ker(f) :

Y(u,v) € Ker(f) x Ker(f),¥(a, ) € R* a.u+ B.v € Ker(f)
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The linearity of f implies that!?:
flau+Bo)=a.f(u)+p.f(v) =a.0+50=0
For the image, we have to prove that:
V(z,y) € Im(f) x Im(f),¥(, B) € R*, o + By € Im(f)

Let u and v be two vectors in F; such that f(u) = z and f(v) = y. We can

write:

ax+ By=af(u)+p.f(v) = flau+ B.v)

Therefore a.z + .y is the image of av.u+ S.v through f, implying a.x + .y €
Im(f). m

This proposition shows in particular that the image of £ by f is a V.S
of F5. With the same technique of proof as before, we can demonstrate the

following proposition.

12We come back here to standard notations where 0 denotes the null vector in either
space, assuming that the reader is now able to identify the reference space if necessary.
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Proposition 32 Let F} be a V.S of Ey; f(Fy) is a V.S of Es.

Remmember that {0} is a V.S of Ey and the reciprocal image of {0} by
f is the V.S Ker(f). This remark can be generalized as follows.

Proposition 33 If I, is a V.S of Ey, f~Y(Fy) is a V.S of E).

An important property is to characterize the relationship between the
kernel dimension and the properties of f. In particular, the question is to

know if a vector u # 0 can satisfy f(u) =0
Proposition 34 If f is injective then Ker(f) = {0}

Proof. f injective means that y # ©* = f(y) # f(z). As f is a linear

mapping, this implication writes:

y—r#0=fly—2)#0

and therefore Ker(f) = {0}. The reciprocal goes as follows. If Ker(f) =
{0} and if there exist  and y, x # y satisfying f(x) = f(y), an obvious

contradiction arises because f(x — y) = 0, meaning that z —y € Ker(f). =
Proposition 35 If f is surjective then Im(f) = Es

Proof. This result is obvious because f surjective means that any vector in

E5 has a reciprocal image in £; =

Definition 36 A bijective linear mapping from Ey to Es is called an iso-

morphism.

This notion of isomorphism is fundamental when it comes to associate a
space of linear mappings to a space of matrices, or a vector space to its dual

space, as we will see in the next section.
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Proposition 37 Two vector spaces Ey and E5 are isomorphic'? if and only

if their dimensions are equal.

Proof. Denote n and p the respective dimensions of F; and Fy; let U and
V be bases of these two spaces and f be a bijective linear mapping from FE}
to Fjs.

We first show that " f injective" is equivalent to " f(u'),..., f(u™) are lin-
early independent".

If f is injective, Ker(f) = {0}. Therefore, any linear combination

S wiut satisfies:

Zmiui =0« x; =0 for any ¢ (1.10)

=1

In this case,
f (Z xu> =3 wif(ul) = 0
i=1 i=1

which shows that the vectors f(u') are linearly independent. The reciprocal
goes as follows: if the f(u'),i = 1,...,n are linearly independent, we can

write:

lef(uz) =0< z; =0 for any i (1.11)
i=1

but the linearity of f implies that > "1 | z;u’ € Ker(f). Relation (1.11) then
implies Ker(f) =0 and f is injective. It follows directly that n < p.

As f is also surjective, Im(f) = Es and the rank of the family of vectors
fub), ..., f(u™) is p, meaning that n > p.

We show now that if F; and F5 have equal dimensions, they are iso-
morphic. The basis V with p vectors defines a linear mapping f from
E; to Fy such that V is the image of a family W of F;. We then have
rk(W) = n = dim(F,) proving that f is injective.

I3tisomorphic" means that there exists an isomorphism between E; and F.
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But we also know that dim(F;) = dim(F>); therefore f is also surjective.

As a result, f is bijective and F; and F, are isomorphic. ®

1.2.3 The space of linear mappings

The set of linear mappings defined on a vector space F; and taking values in
a vector space Fy is denoted by L(E4, Es), or simply £ when no confusion is
possible.

In example 4, we showed that the set of mappings defined on a vector
space E and taking values in R is a vector space. The property is still valid
if R is replaced by another vector space. Therefore, L(E}, Es) is a subset of

A(FE1, Ey). As the elements in £ are linear mappings, we have the following

property.
Proposition 38 L is a V.S of A(E4, Es)

Proof. Let (f,g) € £? and (a, ) € R; for any couple of vectors (z,y) of

Ey x E4, we have:

(af +8g)(x+y) = af(r+y)+pg(r+y)
= af(z) +af(y) + Bg(x) + Bg(y)
= (af +Bg) (z) + (af + Bg) (v)

For any x € E; and v € R, we also have:

(.f+B.9)(vz) = af(yz)+ Bg(yr)
= qaf(z) +vB9(z)
= v (af +Bg) (z)

One of the most common situations appears if E; is a general vector

Download free eBooks at bookboon.com



space'! and E, is R. In this situation, the elements of L£(F;,R) are called
linear functionals (or one-forms); we will see later on that the mapping
linking a function to its integral is a linear functional. In the same way,
the expectation operator is a linear functional defined on a space on random
variables. In finance models, the no-arbitrage assumption implies that the
valuation operator mapping future cash-flows and today prices is a linear
functional'®.

Definition 39 Let E be a vector space; the set L(E,R) of linear functionals
defined on E is called the dual space of E.

When F is a finite-dimensional space of dimension n, its dual space sat-

isfies the following property.
Proposition 40 If dim(F) =n < +oo; dim (£(F,R)) = dim(FE)

Proof. Let (u',..,u™) be a basis of E and x € F written as:
T = z:x,uZ (1.12)
i=1
Consider f!, ..., f*, a set of linear functionals defined by:

Vi=1,..,n;Vo € E, f'(z) = 2;

The family F = (f!,..., f*) spans L(E,R). In fact, for any given linear

functional g, we have:

g(x) = ing(ui) = Zg(ui)f"(x) = (Z g(ui)fi> () (1.13)

14n particular, F; may be an infinite-dimensional space of random variables in proba-
bility frameworks.

15 A financial security is defined by the future cash-flows it generates. In general, financial
securities can be represented as elements of a general vector space.
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It shows that g can be written as a linear combination of the f?.
We now show that F is a linearly independent family. The equality

Yo, o f" =0 means:
Vo € E,Zaifi(x) =0
i=1
but, according to the definition of f?, this equality is equivalent to:

n
E oG, — 0
=1

For this equality to be satisfied by any x, it is necessary that all the o;

are equal to zero'®, and this ends the proof. m

16The linear mapping f? is called the projection on u'.
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1.3 Finite-dimensional spaces and matrices

In this section, we assume that the two spaces E; and FE, we refer to are
finite-dimensional. The notations are unchanged. E; (F5) denotes a vector
space of dimension n (p). L(E1, E3) is the space of linear mappings from E;
to EQ.

1.3.1 Representation of a linear mapping by a matrix

Proposition 41 Let U = (u',..,u™) be a basis of By and V = (v v?, ... 0P)
be a basis of Eo; any mapping f € L(Ey, Ey) is completely defined by the

family of vectors f(u'),..., f(u™) expressed in the basis V.

Proof. Let z € E; such that = > | zu’; f(z) can be written:

flx)=Ff (Z SEzUZ> = chzf(uz)

Therefore, if the images f(u') of the vectors of the family I are known,
it is possible to characterize the image of any vector z. Each vector f(u’)
belongs to FEjy, it is then a p-dimensional vector. The linear mapping f is
then completely specified by n x p numbers equal to the coordinates of the
n vectors f(u'),i=1,...,n. m

If we denote f(u’) as follows:

we can introduce the following definition.

Definition 42 The matriz of the linear mapping f, denoted M; (U, V)

is a p X n matriz whose columns are the vectors f(u'),i =1,...,n.
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According to the above notation for f(u'), we have:

ai; a2 .... QAip
Gp1 «o Qpn

The notation M (U, V) is cumbersome but it is used here to emphazise
that the matrix representing f depends on the two bases on E; and F,. Of
course, in the next sections, we will simply write /M when no confusion can
be made.

The above remarks show that being given ¢/ and V), the matrix M; is
linked to f. But more generally any p x n matrix defines a linear mapping
from E; (of dimension n) to Fy (of dimension p). The most usual case is the

one where U/ and V are the canonical'” bases of F; and Fs.

1.3.2 Compounding linear mappings

Consider three vector spaces FEi, F», E3 with dimensions n, p, m and bases
U,V, W;let f denote a linear mapping from F; to Fy and g a linear mapping

from Fs to E3. In general we describe this sequence as follows:

J AN S ANy (1.15)

Compounding the mappings f and g aims at defining a new mapping
from E; to Ejs.

I"TRemember that the canonical basis is the basis for which vectors have all their coor-
dinates equal to 0, except one which is equal to 1. For example in R3, the canonical basis

() (3 (1)
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Definition 43 The compound mapping of f and g is the mapping denoted
go f from Ey to E3 defined by:

Vo € Ey; go f(x) = g[f(v)]

x writes Y i z;u’; but f and g are linear, so we have:

go f(x)=glf(x)] =g [Z a:if(ui)] = wigo f(u')
i=1 i=1
This equality shows that g o f is a linear mapping.

The compounding of linear mappings is linked to the product of matrices.
Denote My and M, the matrices associated to the mappings f and g, defined
as before. For any x € Ey, f(x) = Myx. The vector f(x) belongs to Es; as
such it has p coordinates. Therefore, the image of f(x) by ¢ is obtained by
a premultiplication of f(z) by M,. This leads to:

go f(z) = My (Mpx) = MyMyx = Myoy()

To calculate M ¢, we apply successively f and g. Denote for example:

ai; Q12 ... Aip
Mf _ 21

ap1 Qpn,

bir b2 blp

b

brnp brnp
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The generic element of My.s is ¢;;, defined as:

p
Cik = g brjaji
Jj=1

We then observe that M,,s = M,Mjy, the product of M, and M, defined
in part I of the book (chapter 4).

The following proposition is a special case of this relationship.

Proposition 44 A matriz A associated to a linear mapping f is invertible

if and only if f is a bijection. The matriz representing f~' is the inverse of
A denoted A7

In fact, if B is associated to f~!, the relationship AB = I, means that
B = A~!. We obtain the following corollary.

Corollary 45 1) Let A denote a (n,n) invertible matriz. For any u € R™,
the system of equations Ax = u has a solution x € R" defined by v = A~ u.

2) If a matriz A is invertible, its columns are linearly independent vectors

of R™.

We mention these two properties as corollaries but they are equivalent to
proposition 44. When the columns of A are future payoffs of financial assets
in the n states of nature, the columns of A~! are the quantities of securities

to be held to duplicate the Arrow-Debreu securities because AA™! = Ip.

Example 46 Discounting

In chapter 4 of part I, we showed that a bank can create contracts paying
a single future cash-flow by combining bonds of different maturities. We
calculated the prices of the contracts using the prices of the bonds.

Suppose that the cash-flows of the three bonds are stored in a matriz M

as follows:
104 6 4
M = 0 106 4
0 0 104
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The price vector m is:
99,5
™= | 100,4
99,6

Denote now f the linear mapping defined from R3 to R such that f(M7) =
m;, were M7 is the j-th column of M (the cash-flows generated by the j-th
bond) and 7; is the price of bond j'®. The mapping f is represented by a

vector denoted A :
ai

A: a2

as

So we have:

100X a1+ 0 xaz+0xaz = 99,5
6xa+106xas+0xa; = 100,4
Axay+4xay+104x a3 = 99,6

This system can be written as:
MA=m

But M is triangular with non-zero diagonal terms, it is then invertible.

Consequently:
A=M)"'x

The elements in A are in fact the prices of zero-coupon bonds with respec-

tive maturities 1, 2 and 3 years.

18We assume here that this mapping is linear. In fact it is true when the market is
arbitrage-free.
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1.3.3 The vector space of matrices

Being given two bases U and V on the vector spaces F; and Fs (of dimensions
n and p), the set M,,, of matrices with p rows and n columns must have
the same structure as the set L£(FE4, Ey) of linear mappings from E; to F,
that is a structure of vector space. This is the only way to make coherent
the structure of vector space of L(F1, Ey) with the operators (addition and
product by a real number) on M,,. This relationship is formalized in the

following proposition.

Proposition 47 M,,, and L(E1, E3) are isomorphic and the dimension of

these two spaces is p X n.

Proof. If we prove these two spaces are isomorphic, we will be able to
conclude that the dimensions are equal because of proposition 37.

The mapping which links f € L(E, Ey) to My is bijective because My is
defined by the images of the basis vectors of Fj.

Let us denote A;; the matrix with all null elements, except the one on
i-th row and the j-th column which is equal to 1. Any matrix A = (a;;,i =

1,...,p;j =1,..,n) can be decomposed in a unique manner as:

p n
A=) > aydy
i=1 j=1

Therefore the family (A;;,i = 1,...,p;j = 1,..,n) is a basis of M,,, and has

p X n elements. This ends the proof. m

Example 48 Without entering into technical details, consider a set of mu-
tual funds, each fund being a portfolio of individual securities. In a model
with one period and n states of nature, the future payoffs of the individual
securities (let K be the number of traded securities) can be summarized in
a matriz D with n rows and K columns. The mapping "portfolio”, denoted

f, from RE to R™ associates a vector 0 to a vector f(0) = DO where the
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vector 0 contains the quantities of securities in the portfolio and the vector
D0 represents the future payoffs of the portfolio 6. Let now g be the mapping
from R™ to R which links to any vector x a number g(x) = > p;z; where
P = (pi,i = 1,...,n) is the vector of probabilities of occurrence of states
1=1,...,n.

If x represents the payoffs of a portfolio in the different states of nature,
g(x) is the expected payoff of the portfolio. Consequently, the product PDO
is the expected payoff of the mutual fund 6. It can also be written gof(0).

1.3.4 The special case of square matrices

A square matrix has, by definition, the same number of rows and columns.
In particular, the product of two (n,n) square matrices is still a (n, n) square
matrix. In other words, the result of the product stays in the same space
M,,. Consider three vector spaces E1, Fs and Ej, all of dimension n. The
product M,M; is a (n,n) matrix if f is a mapping from F; to E, and g a
mapping from Fs to Fs.

The most important case addressed in what follows is £; = Fy = F3 = F.
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Definition 49 A linear mapping from E to E is called an endomorphism.

We just described the links between matrices and linear mappings. Of
course, an endomorphism is represented by a matrix in M,,. But we also
know by chapter 2 of part I that if a mapping f is bijective, it has an inverse
denoted f~! and satisfying f o f~' = f~'o f = ip where ip is the identity
mapping of E defined by ig(x) = z for any = € F.

1 is obviously linear and it is easy to see that the matrix [,, represents

tg where I, is defined by:

The reader can check that I,,# = x for any x € R". The matrix [, is called
the identity matrix. Finally, we also know that the matrix associated to
the compound of two mappings is the product of the matrices of the two
mappings involved in the compounding. From all these remarks, we deduce

that if A and B are matrices representing f and f~!, we have:
AB =1,

Proposition 50 If f is a bijective endomorphism of E represented by a

matriz My, f~1 is represented by the inverse matriz M i L

Determinants

Knowing if the determinant of a square matrix is zero allows to know if this
matrix is invertible. In a more geometric approach, a zero determinant means

that the columns (or rows) of a given matrix are linearly dependent.
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Determinant of a (2,2) matrix Denote x and y two vectors in R2. They
are colinear if there exists a € R satisfying y = ax. This equality is equivalent

to:

Y1 = ax

Y2 = 0Oy

From these two equations we deduce x1ys — x2y; = 0; on the contrary, if
T1Ys — 2y1 # 0, the vectors x and y are linearly independent. If x and y
are the two columns of a square matrix A, A is invertible if z1yo — w9y # 0.

This remark justifies the definition of the determinant of a (2, 2) matrix.

Definition 51 Let A be a (2,2) matriz with generic term a;;,1,j = 1,2. The
determinant of A (denoted det(A)) the number:

det(A) = 11029 — Q12021

Determinants of larger matrices are defined by induction. The determi-

nant of a (n, n) matrix is a function of determinants of (n—1,n— 1) matrices.

The general case

Definition 52 1) Let A be a (n,n) matriz. Let D;; be the determinant of
the matrixz deduced from A by deleting the i-th row and the j-th column of A.
The (i, j)-th cofactor of A is the number C;; = (—=1)" D;;.

2) The i-th principal minor of A is the (i,1) matriz obtained by deleting

the last n — i rows and columns of A.

Part (1) helps in calculating the determinant of A as shown in the follow-
ing definition. Part (2) will prove useful to characterize positive (negative)

definite matrices later on in this chapter
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Definition 53 Let A be a (n,n) matriz. The determinant of A is defined

as follows:
det(A) = ZaijCl-j
j=1

for any i between 1 and n.

The determinant of a matrix A is also usually denoted as follows (the

matrix is placed between two vertical bars):

aijpr ai2 ... Qin

a21 A2n,
det(A) =

anl e oo Qpp

Example 54 Let A be defined by:

s

I
N = W
o R
NI

Definition 52 for i = 1 gives the following development.

4 2 1 2 1 4
detd) =316 47 2 6
= 3x(4x4-6x2)—1x(1x4—-2x2)+2(1x6—2x4)

= 8
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Suppose now i = 2. We obtain:

1 2 3 2 3 1
det(A) = -1 6 4 +4 - -2 5 6
= —1x(4—12)+4x (12—4)—2x (18— 2)

= 8

Of course, the result is the same. It is not a proof, but the proof itself is

cumbersome and uninteresting on a practical point of view, so we omit it.

One of the main results concerning determinants is related to products

and transposition of matrices.
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Proposition 55 1) Let A and B two (n,n) matrices. We have:

det(AB) = det(A)det(B)
det(AT) = det(A)

2) If a matriz B is deduced from a (n,n) matriz A by swapping two rows

or two columns, the determinants of the two matrices satisfy:
det(B) = —det(A)

3) A square matriz A is invertible if and only if its determinant is different

from zero. If det(A) # 0, the inverse matriz A~' writes:

-1 _ 1 T
Al = det(A)C (1.16)

where C' = (Cij,4,7 = 1,..,n) is the cofactor matriz. Moreover, det(A™') =
1

det(A)*

Proposition 55 gives a way to calculate determinants but this method is
not the most numerically efficient.

Equality 1.16 is illustrated in the following example 56.

Example 56 Let A denote the (3,3) matrix:

S

I
O W
W o W
O = Ot

The determinant of A is calculated as follows:

6 1
2

4 1

det(A) =3
et(A) 5 o
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Applying relation 1.16 leads to:

. 9 11 -—28
A7l = 5 -6 —4 17
0 =5 10

If we apply the same technique to AT, the cofactor matrixz of AT is the trans-

pose of the cofactor matrixz of A. Therefore we obtain:

L[ 9 60
(A7) = Sl 4 s
—28 17 10

1.3.5 Changing the basis
Matrix of a linear mapping after a basis change

A linear mapping f defined on R", endowed with a basisU = (uy, ..., u,) , and
taking values in R™, endowed with a basis V = (vy, ..., v,,), is represented
by a matrix M (U,V). As mentioned before in definition 42, the notation
My (U,V) recalls that M; depends on the two bases. In particular, the
columns of M are the images of vectors of U by f, expressed in the basis V.

It turns out that a modification of one of the two bases changes the matrix
M;. Denote W a second basis of £/ and P the matrix having in columns the
vectors of W, expressed in the initial basis /. This matrix will be called a
change-of-basis matrix from basis U to basis W.

We can show the following proposition.

Proposition 57 Letv be a vector of R™ with coordinates x7 = (x1, 29, ..., T,,)

in basis U and y* = (y1, Y2, ..., yn) in basis W. We then have:

r=Pyandy=P 'z
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My (W,V) is given as follows:

M; (W, V) =P 'M;(U,V) P

Example 58 Let M¢(U,V) and = be defined by:

—_ s =
8
I

12
MU, V)=10 1
2 3

Assume that U is the canonical basis of R® and define W by:

The image f(x) of vector x (in basis U) is given by:

17
6 | =1 10
27

fz) =

—_ s =

2
1
3

N O =

The matrixz P writes:

s
Il
O =
D w O
_— O N

The inverse of P is calculated using the cofactors (equation 1.16). We

obtain:
) 3 4 —6

pPt=Z1 =
- 1 1 2
2 -2 3
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We deduce from this formulation of P~:

) 3 4 —6 1 21 . -9 -8 13
P'MU,V) = -1 12 0 1 4 = 3 5 5
2 -2 3 2 31 8§ 11 -3
) -9 -8 13 10 2 . —-17 2 =5
P'M;(U, V)P = -1 3 5 5 1 30 = 8 25 11
8 11 -3 0 21 19 27 13
Therefore, in the new basis VW, x writes :

3 4 —6 4 30

r==| -1 1 2 6 | =z 4

2 -2 3 1 -1

The following section studies the case where My (W, V) is diagonal when

W and V have the same dimension.

Trace of a square matrix

Definition 59 The trace of a (n,n) square matriz A is the sum of its di-

agonal terms and is denoted Tr(A).

TT(A) = Zn: (077}
=1

The elementary properties of the trace of a matrix are summarized in the

following proposition.
Proposition 60 Let A and B be two (n,n) matrices and ¢ € R:

Tr(cA+B) =
Tr(AB) =

cI'r(A)+Tr(B)
Tr(BA)
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Denote A a matrix representing an endomorphism f of R™ when the bases
are U and V. The columns of A are the basis vectors of R" transformed by f
. If R is endowed with a new basis VW the matrix representing f is modified

(denoted B) but the trace does not change.
Proposition 61 Tr(A) =Tr(B).

The reader can check that the proposition is true in example 58. The

matrices with respect to the two bases were:

121 T2 5
M;UV)y=|0 1 4 et My(W,V)==| 8 25 11
2 3 1 19 27 13

The trace of the two matrices is equal to 3.
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Diagonalization of square matrices

A question coming naturally to mind when dealing with changes of bases is
the following: can we transform the matrix of an endomorphism in a more
simple one, more precisely in a diagonal matrix, by a change of basis?
Methods of data analysis like Principal Component Analysis of Factor
Analysis are based on such transformations. Even if these methods are not
addressed in the present book, the reader should know that they are used in

multifactor models, especially the Arbitrage Pricing Theory!”.

Eigenvalues and eigenvectors Eigenvalues and eigenvectors are the math-
ematical tools allowing to formalize a change of basis in such a way that the
resulting matrix becomes diagonal.

Let f be an endomorphism of R™ and let M denote the matrix of f in
basis U.

Definition 62 An eigenvalue of f (or equivalently of M) is a real number

A such that there exists a non zero vector u € R™ satisfying:

flu) = Mu=Mu

u is then called an eigenvector of f (of M) associated to the eigenvalue

Several linearly independent vectors can satisfy Mu = Au. But if two

linearly independent vectors u and v satisfy Mu = Au and Mv = \v, then

9The seminal paper is Ross, S. (1976),"The Arbitrage Theory of Capital Asset Pricing".
Journal of Economic Theory 13 (3): 341-360.

Two examples of papers using data analysis methods are Roll, R. and Ross, S. (1980).
"An Empirical Investigation of the Arbitrage Pricing Theory". Journal of Finance 35 (5):
1073-1103.

Chamberlain, G. and Rothschild, M. (1983), "Arbitrage, Factor Structure, and Mean
Variance Analysis on Large Asset Markets." Fconometrica 51, 1281-1304.
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the same relationship is true for any linear combination of v and v:
Y(a,b) € R x R, M(au + bv) = Aau + bv)
Of course, this relation is satisfied because f is a linear mapping:

flau+bv) = af(u)+bf(v) = M(au+ bv)
= alu+ b v = Aau + bv)

We then obtain the following definition.

Definition 63 The eigenspace of the eigenvalue X is the vector subspace
F\ defined by:

F\ = {u € R" such that f(u) = Mu = \u}

To determine the eigenvalues of a linear mapping f, we use the charac-

teristic polynomial.

The characteristic polynomial

Definition 64 Denote M — \I,, the following matriz:

mi1 — A mio min
may Moz — A Man
M — )\, =
m33 — )\
Mmn1 L) Mag — A

The characteristic polynomial of f is the polynomial Q(N\) defined by:
Q(\) = det(M — \I,)

M — M\, is obtained by substracting A\ times the identity matrix 7,, to M.
Solving Q(A) = 0 provides all the eigenvalues of M.
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Proposition 65 The eigenvalues of f are the solutions of Q(\) = 0.

By definition, A is an eigenvalue of M associated to the eigenvector w if:
Mu = Au
This equality is equivalent to:
(M —X,)u=0

The matrix M — AI, is then not invertible because u # 0. Therefore its
determinant det(M — AI,,) = Q(A) is equal to 0.

Example 66 Let [ be a linear mapping represented by M in the canonical
basis of R3 :

=

Il
o O =
= NN O

2
2
1

Calculating the determinant of M — A\I,, along the first line leads to:

= (1-N(@-NA-Y)-2)
= (1= (-3
— A1L=N(A-3)

Equation Q(\) = 0 has three solutions that are \y = 3 ;A = 0 and
A3 =1.

What are the corresponding eigenvectors u*,u® u3? First, we need to
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solve (M — M\ I3)u' =0, that is:

-2 0 2 uj 0
0 -1 2 w =10
0 1 —2/) \u 0

The solution satisfies u} = ul and ui = 2ui. The following vector is an

example of solution:

What is the matriz of f in the basis (u', u? u3)?

The change-of-basis matriz P is the matriz built with u', u?, u? as columns

because the initial basis was the canonical basis:

1 -2 1
P=|2 -1 0
1 1 0
The inverse of P is equal to:
0 1/3 1/3
Prt=1[0 -1/3 2/3
1 -1 1
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As a consequence, we have:

0 1 1
PM = 0 0 0
1 -1 1
300
pPiMp = 000
00 1

Example 66 illustrates how M becomes a diagonal matrix when M is
written in the basis of eigenvectors. Moreover, the elements on the diagonal
are exactly the eigenvalues. We let the reader check the result of proposition
61, that is Tr(M) = Tr(P~'MP) = 4.

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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When can we diagonalize a matrix?

Definition 67 A (n,n) matriz M is diagonalizable if it has n eigenvalues

and n linearly independent eigenvectors.

An equivalent definition could be: M is diagonalizable if there exists a
diagonal matrix D (contenant les eigenvalues) and an invertible matrix P
satisfying:

M =P'DP

Of course, the diagonal elements of D are the eigenvalues of M and the
columns of P are the corresponding eigenvectors of M.
It may happen that two eigenvalues are equal, for example if the charac-

teristic polynomial is:

Q) =(A-1) (-3

In this situation, M is diagonalizable if the dimension of the eigenspace
F3 (associated to A = 3) is equal to 2.
On the contrary if dim(F3) = 1, M is not diagonalizable. We cannot find

an invertible change-of-basis matrix P.

Symmetric matrices A non negligible part of financial theory deals with
portfolio choice and portfolio management. In this framework, an important
piece of information is the covariance matrix of returns which is a symmetric

matrix. These matrices are special because of the following proposition.

Proposition 68 Any square symmetric matrixz M is diagonalizable and we

have:

P—l —_ Pl
M = PDP

where P denotes the matriz of eigenvectors.
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The first result says that the inverse of P is its transpose P’. Such a

property characterizes orhogonal®® matrices.

1.4 Norms and inner products

1.4.1 Normed vector spaces

In the section devoted to topology in chapter 1 of Part I, we defined the
concepts of distance (metric) and metric spaces. The Euclidean distance on
R™ was defined by:

(1.17)

If n = 2, d(x,y) is the length of the straight line joining ' = (z1,x2)
to ¥ = (y1,y2) . More generally, in a finite-dimensional space, the concept
of "length" of a vector is defined through a norm on the vector space under

consideration.

Definition 69 Let E be a vector space; a morm on E is a mapping, denoted

Il.Il, defined on E and taking values in Rt satisfying:

|lz]] = 0<2=0
Vr,y) € Elz+yll <l + [yl
Ve € E,VeeR" |cx| = |||z
It appears that a norm ||.|| on a vector space induces a metric d on the

same space if the metric is defined by :

d(z,y) = ||z =yl

20Tn the next section, we justify the word "orthogonal".
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The Euclidean metric on R™ defined in relation 1.17 is induced by the

following Euclidean norm on R":

As for metrics, many different norms can be defined on a vector space.

For example the mapping ||z, .. = max;|z;| can be used as a norm.

max
In finance, norms are associated to risk measures. For example if x;
denotes the future value of a portfolio in state i, the two abovementioned
norms are interpreted differently.
Let 1 denote as usual the vector with all coordinates equal to 1 and
T = 15" x; the average payoff. A usual measure of risk is the empirical

T n

variance calculated as:

n

1 1
2 2 2
(@) == |lz =L == (z; —

=1

But in a different approach called Value at Risk*', we could use ||z — Z1|| .
as a measure of risk??; risk is then evaluated as the maximum difference with
respect to the average payoff.

The second important tool to structure a vector space is the concept of
inner product. In finite-dimensional spaces, norms and inner products are

closely related. It is not always the case in infinite-dimensional spaces.

1.4.2 Inner products in vector spaces

Definition 70 An inner product on a vector space E is a mapping, de-

noted < .,. >, defined on E x E and taking values in R, symmetric, bilinear

21For a detailed presentation of Value-at-Risk, see Jorion (2006), Value at Risk: The
New Benchmark for Managing Financial Risk, McGraw-Hill Professional.

22This measure is not exactly what is called Value at Risk in the financial literature but
it is in the same spirit.
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and positive, that is satisfying:
1. <z,y>=<y,x>

2. V¥ (a,b,c,d) € R,V (z,y,2,t) € E*,

< ax+by,cz+dt >=ac < x,z > +ad < x,t > +bc < y,z > +bd < y,t >

3. <xz,x>=0<%< 2 =0 otherwise < z,x > > 0.

Part 1 defines symmetry, part 2 bilinearity and part 3 positivity. The

usual inner product on R" is defined by:

n
<wy>=Y wy;
=1

Alternative notations of the inner product of two vectors x and y are
(z,y) or x'y. The latter is consistent with the rules used to multiply matrices
(see part I, chapter 4). The reason is that a column-vector is a matrix with n
rows and 1 column. Consequently, 2’ is a matrix with 1 row and n columns.
The product z'y is then a matrix with 1 row and 1 column, that is a number.

Definition 70 allows for general inner products. However, we need to
recall what is a positive-definite matrix to generalize inner products beyond

the usual Euclidean ones.

Definition 71 A square matriz A of dimension n is positive (negative)
semzi-definite if:
Ve e R", 2’Ax > ()0

A square matriz A of dimension n is positive (negative) definite if:
Ve e R", x #0=2"Az > (<)0

This definition allows a general characterization of inner products on R™.
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Proposition 72 Let A be a square symmetric positive definite matrix; the
mapping (x,y) — ' Ay associating any pair of vectors of R™ to the product
x' Ay is an inner product on R" denoted < .,. >4 . The norm associated to

this inner product, denoted ||.|| 4 is defined by ||z| , = Va'Ax

Without entering into the details of the proof, remark that the condition
< xz,x >4 > 0for x # 0 is satisfied because A is positive definite. In the same
way, A is symmetric, property ensuring that the inner product is symmetric.
Moreover, if A is the identity matrix, we are back to the definition of the

usual inner product.
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Definition 73 Two vectors of E are orthogonal if their inner product is

equal to 0.

This definition of orthogonality refers to "right angles" when the usual
two-dimensional space is endowed with the standard inner product. But the
definition also shows that orthogonality is a much more general concept and,
mainly, that being orthogonal for a pair of vectors depends on the inner
product the vector space is endowed with. For example, if A is a diagonal
matrix with strictly positive numbers on the diagonal satisfying > a; = 1, A
defines an inner product allowing to calculate the expectation of the product
of two random variables because the diagonal terms of A define a probability
measure. In this example, orthogonality is far from the usual geometric

interpretation?.

Geometric interpretation

To elaborate on geometric aspects, consider the space R” endowed with the
usual norm and inner product. Let x and y denote two vectors in R"; the
norm of the normalized vector z* = ﬁ is equal to 1 by construction. Let y°
be the projection of y on the line A, generated by x. y° is proportional to z,

and more precisely we have the following equality:
Y=<y, x* >z

In other words, the inner product of x and y is equal to the coordinate
of the projection of y on A, (apart from the standardisation factor ||z||), as
illustrated by figure 1.1.

Let a denote the angle between = and y, we can establish the following

Z3For example the expectation of a random variable X can be written as 1’AX =
n
Z a;; X; where X; is the value of X in state ¢ and a;; is the probability of occurrence of
i=1

state 1.
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Figure 1.1: Geometric interpretation of the inner product

relationship between the inner product < z,y > and the cosine of a :
<,y >= cos(a). [|z[| ||yl

We are back to the well-known relationship saying that the cosine is equal

to the ratio of the inner product divided by the product of norms.

1.4.3 Quadratic forms

Definition 74 A quadratic form f, defined on an open subset D C R",
taking values in R, is defined by :

Ve e D, f(x) =2 Az
where A is a symmetric square matriz.

Proposition 75 A quadratic form is convexr (concave) if and only if A
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is positive(negative) semi-definite. If A is positive(negative) definite, f is

strictly convex (concave).

Quadratic forms are naturally present in portfolio management because
the variance of the return of a portfolio x containing n stocks writes 'V
where V is the covariance matrix of returns of the n stocks.

In finance models, V is generally assumed positive definite, meaning that
it is not possible to build a zero-variance portfolio (that is a risk-free portfolio)
by combining n risky assets. It is an assumption but what is sure is that V is
positive semi-definite because a variance of return '’V cannot be negative.

The other domain where quadratic forms arise naturally is non linear
optimization. We will see later on that it is easy to find the maximum

(minimum) of a quadratic form when it is concave (convex).

1.5 Hilbert spaces

1.5.1 Definition

We mentioned several times that mathematical properties satisfied in finite-
dimensional spaces could be false in more general spaces. However, there
exists a category of infinite-dimensional vector spaces for which important
properties remain valid. These spaces are called Hilbert spaces and they are
well fitted to study financial problems, as it is illustrated in Probability for

Finance.

Definition 76 A Hilbert space is a vector space E whose norm is deduced

from an inner product and that is complete as a metric space**.

24Remember that a metric space is complete if any Cauchy sequence converges. There-
fore, speaking about a complete normed vector space is not really correct because com-
pleteness is a notion defined in metric spaces. This expression simply means that the
metric d deduced from the norm on E makes (F,d) a complete metric space. This metric
is defined by d(z,y) = ||z — y|| .
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Of course, finite-dimensional spaces like R" are Hilbert spaces when they
are endowed with an inner product like the one defined in proposition 72.

The two essential properties for financial applications are the projection
theorem and the Riesz representation theorem. Before presenting these re-

sults we first recall what is a convex set in a vector space.

Definition 77 Let E denote a vector space and C' a subset of E; C' is convex
if:
V(z,y) e C x CVa € [0;1],az+ (1 —a)ye C

First, it is important to notice that convexity can only make sense in
vector spaces because, in the definition, there is a linear combination of
vectors, ax + (1 — a)y. It is then necessary that this combination belongs
to the vector space for the definition to make sense. As a consequence, in
preceding chapters or in part 1 of the book, we could not have used convexity
in a general framework. Nevertheless, the geometric interpretation of the
convexity of a set is similar to what we proposed in R for intervals. A set is
convex if, as soon as it contains two elements = and y, it also contains the
segment joining these two elements.

Convexity is a standard assumption for consumption sets in microeco-
nomics textbooks. It only means that goods are divisible. The same as-
sumption on a set of portfolios would mean that portfolios and stocks can be

combined in non integer quantities.

1.5.2 The projection theorem

Proposition 78 Let E denote a Hilbert space and C' a non empty convex
set in E; any vector x in E has a unique projection on C, denoted x* and
satisfying:

Vye C,(r—x*,y—2") <0

x — x* is orthogonal to the tangent to C' at x*. Consequently, the angle

iy

between y — x* and x — ™ lies between 3

and 37” The cosine of this angle is
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then negative; but it is proportional to the inner product of the two vectors,
meaning that this inner product is also negative. These remarks do not prove
the proposition but they provide the geometric intuition for this proposition.
One of the fundamental applications of the projection theorem consists in
considering the case where C' is a vector subspace of E. It is exactly the
proposition allowing to define the conditional expectation of a random vari-
able as a projection on a subspace of the vector space of square integrable
random variables (see Probability for Finance).

The representation theorem presented below can also be interpreted with

the same geometric approach.
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1.5.3 The Riesz representation theorem

We saw in a preceding section of this chapter that a linear mapping defined
on R™ and taking values in R™ can be associated to a matrix. In particular
if m = 1, this matrix is a vector and the mapping is a linear form. In other

words, if this mapping is denoted f, we write:

flz) = Z ;%

and the vector a’ = (ay, ..., a,) represents f. This result may be generalized

in the framework of Hilbert spaces, provided that f is continuous.

Proposition 79 Let E be a Hilbert space and f be a continuous linear form

defined on E; there exists a unique vector yy € E such that:

Ve e E, f(x) = (2,yy)

The vector y; represents the linear mapping f and the important result
is that y; belongs to E.

In a financial framework the vector y; has a natural interpretation if f
is a valuation operator linking the future payoffs of a financial security x
to its date-0 price f(z). The coordinates of y; are linked to the prices of
the Arrow-Debreu securities. We already mentioned this characteristic in

finite-dimensional spaces.

1.6 Separation theorems and Farkas lemma

1.6.1 Introductive example

Let f be a linear form defined on R?, characterized by the relation:

f(l') = Q11 + a9
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where 2’ = (21, x5) and ay, as are real numbers. The equation f(z) = ayz1 +
asry = 0 defines a line D in R?. Therefore, for any linear form f, the space
R? is divided in three regions denoted R;, R, and D. These regions are

characterized by:

Ve € Ry, f(x)>0
Ve € Ry, f(x) <0
Ve € D,f(z)=0

Let C denote a non empty convex set not containing 0; there exists a

linear form f, that is coefficients a; and a, satisfying:
Vee O, f(z) >0

In other words, the convex set C'is entirely in R;. This result is intuitive
because any tangent to C induces a separation such that C'is on one side of
the tangent. For a given tangent A, separing 0 and C', consider the parallel
to A containing 0. C'is entirely on one side of this parallel to A. This line
is defined by an equation like ayx1 4+ asxo = 0. If the elements x € C' satisfy
f(z) > 0, the desired result is obtained. If f(x) < 0 for x € C, it is enough

to choose the linear form ¢ defined by g(z) = — f(x) = —ay1x1 — aszs.

1.6.2 Separation theorems and Farkas lemma

The following proposition is a generalization of the approach illustrated in

the introductive example.

Proposition 80 Separation theorem
Let E be an Fuclidean vector space, C' be a non empty convexr subset of

E that does not contain the null vector. There exists a linear form f defined
on E such that for any x in C, f(x) > 0.
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The matrix expression of this separation theorem is called Farkas lemma.
We propose hereafter two versions of this lemma, the second being usually
called lemma of the alternative. This result has a beautiful financial inter-

pretation, as we will illustrate later on.

Proposition 81 Farkas lemma

Let A be a matriz with m rows and n columns; a vector x € R" satisfies
'y >0 for any y € R"™ such that Ay > 0 if and only if there exists a vector
z € (]Ri)m satisfying x’ = 2' A.

Proposition 82 Lemma of the alternative

Let A be a matrixz with m rows and n columns; one and only one of the

two following properties is true.

1. The equation Ax = 0 has a solution in R™ with all strictly positive

coordinates.

2. Inequality y' A > 0 has a solution in R™.

1.6.3 Application to no-arbitrage pricing

Consider a one-period financial market on which investors trade securities at
date 0, these securities providing random payoffs at date 7. Recall that an
arbitrage opportunity is a portfolio that costs nothing at date 0 (or maybe
the cost is negative) and pays a positive amount at date 7" in all states of
nature. Assume there are n possible states of nature and K securities traded
on the market. The date-T" payoffs are stored in a matrix D with n rows and
K columns, each column corresponding to a security and each row to a state

of nature.
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Denote IT" = (71, ...mx) the date-0 price vector; an arbitrage opportunity

is a portfolio # € R that satisfies one of the two following properties:

a) DO > 0and IT'0 <0
b)DO > 0 and IT'0 <0

The first case (a) means that the portfolio has a strictly negative cost
(I8 < 0). Moreover, D6 > 0 means that final payoffs are never negative.
Consequently, an investor characterized by a strictly increasing utility func-
tion would be ready to buy an infinite quantity of this portfolio because
holding this portfolio increases date-0 utility without decreasing date-T" ex-
pected utility.

Case (b) is a little bit more subtle. Remember that D@ > 0.2 Therefore,
the date-T expected utility increases by holding portfolio . But, at the
same time, IT'# < 0, meaning that date-0 utility does not decrease when
buying portfolio f. As in case (a), an investor with a strictly increasing utility
function would ask an infinite quantity of 6. In a well-functioning market,
arbitrage opportunities should disappear very quickly by price adjustments
due to excess supply or excess demand.

At a first glance, it may be difficult to see the relationship between the de-
finition of an arbitrage opportunity and the lemma of the alternative...except

that the two use matrix notations! The difficulty comes from the fact that

% Being given a matrix A, writing A > 0 means that all elements of A are positive,
A > 0 means A > 0 and at least one element is strictly positive, and finally, A >> 0
means that all elements of A are strictly positive.
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the definition of an arbitrage opportunity takes simultaneously into account

date 0 and date T

We are going to "forget" this specificity by defining a matrix D* which is

the concatenation of D and of —II'(minus the price vector).

[ di dik
i,
D* =
dn1 dnr
| - —TK

This notation allows to define an arbitrage opportunity as a vector § € R¥

satisfying:
D*0 >0

(1.18)
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In fact, D*¢ > 0 means that portfolio § generates non negative cash-
flows in all states and has a non positive cost. Moreover, at least one of
the components of D*6 is strictly positive. If the last component is strictly
positive, we have a type (a) arbitrage opportunity. If this last component is
zero, one of the other components is strictly positive and we face a type (b)

arbitrage opportunity.

After transposing the two sides of inequality 1.18, we obtain:
0'D* >0

This inequality corresponds to part (2) of lemma 82 when applied to D*.
We just showed that arbitrage opportunities are incompatible with equilib-

rium prices. We then have to assume that D*# > 0 has no solution in 6.

As a consequence, lemma 82 implies there exists 3 € R™*! the components

of which being all strictly positive, such that:

D3 =0 (1.19)

This equality must be true because part (b) of the lemma is false....then
(a) is true!

The financial interpretation of relation 1.19 goes as follows. For the sake
of clarity, focus on the first term of D*(; it is the inner product of 5 and

of the first row of D* (which corresponds to the first security). This inner

product writes:
n+1

Z Ba‘d}a -
j=1

with d3; = dj; if j < n and dj; = —m if j = n + 1. The above equality is

then equivalent to:

Zﬁjdjl = Bppm (1.20)
j=1
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Denote v; = 56 i - (these coefficients are well-defined because /3,,,; > 0);

relation 1.20 can be transformed in:
> ydp=m (1.21)
j=1

In the financial approach, this equality is very important because the
left-hand side contains future cash-flows and the right-hand side contains
the initial price. This equality is a typical valuation model (cash-flows on
one side, price on the other side). However, the economic interpretation of

equation 1.21 is difficult. But if we define v} = %, we obtain:
=1

(Z ’Yk) Zﬁdﬂ =
k=1 j=1

In this formula, the 7} are positive numbers between 0 and 1 and satisfying
Z?Zl 7; = 1. They define a probability measure on the set of states of nature.
It is also remarkable that this probability measure does not depend on the
asset we considered (here we selected the first but it does not matter). It

remains to give an economic interpretation to Y, _; ;.

To simplify this interpretation, assume that asset numbered 1 is a risk-

free asset paying 1 in each state, that is a zero-coupon bond. From equation
1.21 we deduce : .

Z 7 =M

j=1

The quantity Z?Zl 7, is the price of a security paying 1 at date 7" in
each state of nature. If r denotes the risk-free rate, that is the return on the

risk-free asset, we can write:

" 1
Z% - 1+7r
j=1
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It turns out that the valuation of any asset k writes:

1 <.,
e 1+r;%‘djk
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The price is then equal to the weighted average (an expectation using
probabilistic vocabulary) of future cash-flows, discounted at the risk-free rate.
Of course this interpretation can only be done when there is a risk-free asset
traded on the market. But it can be generalized if there exists a portfolio
generating strictly positive payoffs in any state of nature. Such a portfolio is

named a numéraire.
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Chapter 2
Functions of several variables

Most financial models include several variables. Portfolio choice depends
on at least two variables, the expected return and the variance of returns
of the portfolio. When n assets are traded on the market, the utility of a
portfolio depends on the n weights of the assets in the portfolio. Functions of
several variables also appear naturally in option pricing. The standard Black-
Scholes option pricing model (1973) allows to evaluate an option contract as
a function of six variables, namely the price of the underlying asset, the
time to maturity, the volatility of the underlying asset, the strike price, the

risk-free rate and the dividends paid on the underlying.

In this chapter, we start by concepts generalizing chapter 2 of part I
which was focused on single-variable functions. First, we need to generalize
some results of chapter 1 of part I. Section 2.1 defines a metric space and
the notion of distance (also called metric) on a metric space. The concept of
distance is very general, but in the present chapter we essentially apply it to
finite-dimensional spaces like R?, to study functions depending on p variables.
Section 2.2 presents continuity and differentiability of functions depending on
several variables and some important results like multidimensional Taylor’s
formulas. These formulas are interesting when it comes to approximating

functions by polynomials ot to stating optimality conditions (see chapters 3

Download free eBooks at bookboon.com



and 4). Finally, section 3 deals with implicit differentiation and homogeneous

functions.

2.1 Metric spaces

If you are interested in overseas races, like the Vendée Globe Challenge, you
want to know the ranking of boats at regular time intervals. On the website
of the race! you can download a map where the boats are represented on the
ocean and you can also see the total remaining distance. If you think to the
problem a few minutes, you see that it is not a trivial matter to calculate
a distance between two points A and B on a sphere (a reasonable approxi-
mation for our planet). It becomes even more difficult when constraints are
added to the problem (boats are supposed to stay on the water!). The dis-
tance is not the same as the crow flies or for people who possibly need to
climb mountains or stay on oceans. Think to people walking in New York
City, or in major U.S towns. As streets are orthogonal to each other it is not
very useful to know that, the distance between A to B as the crow flies is 5
miles.

In mathematical terms, a distance should be a mapping linking the pair
(A, B) to a positive number and satisfying some reasonable properties. But
this mapping should also be sufficiently general to adapt to many different

contexts.

2.1.1 Metric on a set

Definition 83 A distance (metric) on a set E is a mapping d from Ex E
to R, satisfying:
1)Y(z,y) € Ex E, d(z,y) = d(y,x) (symmetry).

Thttp://www.vendeeglobe.org
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2)¥(xz,y) € EX E, dz,y) = 0 if x =y and d(z,y) > 0 otherwise
(positivity).
3)V(x,y,2) € EXEXE, d(x,z) < d(z,y)+d(y, z) (triangular inequality).

The pair (E,d) is called a metric space.

Part (2) says that if the distance between two elements is zero, they are
identical. Though this property seems very intuitive, we are going to provide
examples showing that this intuition can be misleading. Part (3) says, in
everyday language, that the shortest route between two points z and z is
a straight line. One more time, it seems intuitive when a distance on real
numbers is defined by d(z,y) = | — y|. In this case the distance between
x and z is the length of the segment joining the two points. But recall the

Vendée Globe Challenge! On a sphere, there are no straight lines!

Consider for example the 2-dimensional space R?; the usual metric on

this space, called the Euclidian distance, is defined by:

dol, ) = 1/ (@1 — ) + (@2 — p2)? (2.1)

with © = (21, 22) and y = (y1, ya)-

This metric measures the "physical" distance between x and y. The reader

can easily check this is the case by using the Pythagorean theorem.

Of course, the Fuclidian metric is easily generalized to p-dimensional

spaces as follows:

p

do(w,y) = | D (or = y)’ (2.2)

k=1
with © = (21, 22, ...,x,) and y = (y1, Y2, ..., yp) two elements of RP.

However, our "sailing" example shows that there are many ways to mea-

sure distances on a sphere or in New York City. In this latter case, the real

Download free eBooks at bookboon.com



Analysis and Linear Algebra for Finance: Part Il Functions of several variables

distance should be defined as d*?:
d*(z,y) = |x1 — y1] + |x2 — v

The reader can check that d* satisfies the three properties of definition

83 and that any norm ||.|| on a vector space F induces a metric d on E. d is
defined as:

d(z,y) = [z = yll

where x and y are two vectors in F. Consequently, a normed vector space is

also a metric space (F,d) when d is the metric induced by the norm on E.

2We assume that streets are either parallel or orthogonal to axes in the two-dimensional
space.

(]
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Example 84 Forecasts by financial analysts

Financial analysts publish earnings and dividends forecasts, and target
prices as well. These forecasts are important for fund managers, banks and
mvestment advisors. Some firms also calculate a market consensus to sum-
marize the forecasts of a set of analysts. For a given firm, the most simple
summary consists in averaging the forecasts of analysts. However, such an
average provides no clue about the dispersion of forecasts. Imagine that there
are two firms Fy and Fy, and two analysts Ay and As. The following matrix

shows the earnings forecasts:

A Ay
M=|F 11 9 (2.3)
F, 2 18

The consensus (average) is 10 for the two stocks, but the forecasts are
much more dispersed for the second stock. Using the consensus to take in-
vestment decisions is more risky and error-prone if individual forecasts are
more dispersed. More generally, assume that the two analysts provide fore-
casts on N stocks and denote (pi,...,pY) et (p?,...,p%) these forecasts. For

each company, i, the consensus is defined as the average:

(! +p7)

N | —

Di =

The risk of the consensus forecast for firm i can then be defined as the distance
d; between the vector of individual forecasts (p}, p?) and the pair of consensus
forecasts (p;, p;) that would obtain if the two analysts were predicting the same

earnings.

4= /(=) + (02 — )

Of course if the forecasts are actually equal, the distance is 0, meaning that
there is no divergence between analysts. The geometric interpretation of this

result is simply that identical forecasts lie on the first bisector of the two-
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dimensional space where the first (second) axis represents the forecasts of the
first (second) analyst. d; is in fact the distance between firm i and the first
bisector. Of course, d; is an oversimplified measure of divergence but it is

important to note that all dispersion measures are built in the same spirit.

In our example, the benchmark is the bisector where all forecasts concern-
ing a gien firm are identical. However, suppose that analysts build their
forecasts using two types of factors. First, there are macroeconomic factors
(or common factors) influencing all firms, and firm-specific factors. In such
a framework, it could be better to neutralize the divergence on common fac-
tors to measure the forecasting risk of firm i. For example, if the first analyst
s much more optimistic than the second about common factors, her forecasts
will be higher on a large part of the firms under scrutiny. The consequence is
that most p; will be under the first bisector and this bisector is not the good
benchmark! It is necessary to find another benchmark taking into account the
divergence about macroeconomic factors. One of the popular methods to do so
is Principal Component Analysis which allows to find the line D minimizing

the following quantity:
N

Zd(Pia D)?

i=1
We do not elaborate in more details this example but the reader should

remember that this topic is extensively studied in finance research.

2.1.2 Open sets in metric spaces

Open and closed sets in R have been introduced in chapter 1 of part I. These

concepts are still valid in metric spaces with minor changes in the definitions.

Definition 85 Let (E,d) denote a metric space. An open ball centered at
x with radius r, denoted B"(x,7), is the set of elements y € E satisfying
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d(x,y) < r. This set can be formally written as:
B’ (x,r)={y € E such that d(z,y) < r}

A closed ball centered at & with radius r, denoted B(z,r), is the set of

elements y € E satisfying d(x,y) < r. This set can be formally written as:

B(z,r) ={y € E such that d(z,y) <r}

In the set R of real numbers, equipped with the usual metric, the open
ball centered at € R with radius r is simply the interval |x — r;x + 7|

The corresponding closed ball is the closed interval [z —r;z +r]. As a
consequence, the concept of an open ball in a metric space is the natural

generalization of open intervals in R.

Definition 86 Let G be a subset of a metric space E.
x € G is interior to G if there exists an open ball centered at x with
radius r > 0, satisfying B” (x,7) C G.

G is an open set in E if any element in G is interior to G, that is:
Vo € G,3r € R%. such that B’ (z,7) C G

As before, we deduce immediately the definition of a closed set.

Definition 87 A subset F' of a metric space E is closed if the complement
F¢={x € E such that x ¢ F'} is an open set.

The disc G C R? that appears on figure 2.1 is open if the boundary circle
is not in G} it is closed otherwise.

The following proposition is valid in any metric space.

Proposition 88 a) Any union of open sets in E is an open set and any

finite union of closed sets in E is a closed set in E.
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Figure 2.1: Disc in the plane

b) Any intersection of closed sets in E is a closed set and any finite
intersection of open sets in E is an open set.

¢) E and ) are simultaneously open and closed.

Proposition 88 shows that there is an asymmetry between open and closed
subsets. In (a), the union is considered over any number (finite or not) of
open subsets but only over a finite number of closed subsets. In (b), the
intersection is over any number of closed subsets but over a finite number of

open subsets. The difference may be illustrated by the following example;

consider the sequence of open intervals (} —%; % [ ,n € N*). We get:
11
N]-zz-o
neN*

The set {0} is a closed subset of R but is written as an infinite intersection
of open subsets.
The other topological concepts are generalizations (more or less intuitive)

of what we presented in chapter 1 of part I for the set R. We briefly recall

Download free eBooks at bookboon.com



Analysis and Linear Algebra for Finance: Part Il Functions of several variables

these definitions for the sake of completeness.

Definition 89 a) The closure of a subset H of a metric space (E,d), de-
noted H, is the smallest closed subset such that H C H. It is also the inter-
section of all closed subsets containing H.

b) The interior of a subset H of a metric space (E,d), denoted H', is

the largest open subset such that H C H, or the union of all open subsets
wncluded in H.

c) The exterior of a subset H of a metric space (E,d), is the interior of
the complement of H in E.
d) The frontier of a subset H of a metric space (E,d), is the set of

elements in E that are neither in the interior nor in the exterior of H.

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
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All these definitions were already given in the framework of the metric
space R. We need now to add a more abstract concept which will be useful

later on.

Definition 90 a) A subset H in E is a dense subset of E if H = E where
H is the closure of H.

b) A metric space (E,d) is separable if E contains a dense countable
subset®.

Another way to say the same thing is that for any x in F, there exists a

sequence in H converging to x. In short:

Ve € FE,3(y, € H,neN), lirf d(yn,x) =0 (2.4)
or
Ve € E,Ve>0,3z" € Hd(z",z) <e¢ (2.5)

Property 2.5 shows that saying a set is dense has something to do with an
approximation. For any element x of E and any distance ¢, it is possible to

find an element of H as close as desired (at a distance lower than ¢) of .

Example 91 The most standard (which also proves the most useful) example
is the set Q of rational numbers which is dense in R. For example, in any
calculator, numbers like m or e are approzimated by rational numbers (that is
ratios of integers), with the desired level of accuracy. Doing so is relatively

safe because Q s dense in R.

In R, a set is bounded if it is included in an interval with finite ends.
This definition can be easily adapted to metric spaces, using balls instead of

intervals.

3Recall that a set A is countable if one can "count" its elements. In other words A is
countable if there exists a bijection between the set N of positive integers and A.
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Definition 92 A subset G of a metric space (E,d) is said bounded if it is
included in a ball B(x,r) with r < 4+o00.

A counterintuitive result is that boundedness depends on the metric. A
set can be bounded for a given metric and unbounded for another metric.

For example, there exists on R a metric called the discrete metric , defined

by :
lifx#y
d*(z,y) =
(z,9) { 0 otherwise

The interval |—oo; 5] is bounded under d* because it is included in B*(0, 1).
This mapping d* gives almost no information about the location of points in
the metric space. We can only say if two elements are identical or not when
we know the distance between them (0 or 1).

Finally, a compact set in R was a bounded and closed subset. It is still
true in RP, but it is false in general metric spaces?. In chapter 2 of part I we
saw that a function defined on a compact set reaches its bounds and possesses
a maximum and a minimum. This proposition is still valid for functions of

several variables considered in this chapter.

2.1.3 Sequences in metric spaces

To define the convergence of a sequence in R, we used absolute values |z,, — z|,
where x denoted the limit. The same concept in metric spaces uses dis-
tances, in particular in RP. Nothing surprising here because the mapping

(r,y) — |z — y| is a metric on R.

Definition 93 Let (E,d) denote a metric space, (x,,n € N) a sequence of

elements of E and x an element of E.

4In a general metric space, a set A is compact if, from any sequence of elements of A,
it is possible to extract a convergent sub-sequence. In this book we will not need such a
general definition.
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(xn,n € N) converges to z iflim, ., d(z,,z) = 0. We writelim,,_, ;o , =

(xn,n € N) is called a Cauchy sequence if lim; ;. d(x;,x;) = 0.

Proposition 48 in chapter 1 of part 1, related to the convergence of Cauchy
sequences in R, does not remain valid in general metric spaces, but remains
true in £ = RP.

2.2 Continuity and differentiability

This section introduces continuity and differentiability of functions defined
on a subset of R? and taking their values in R. The set R? is endowed with
the Euclidean metric, unless otherwise stated. Tools of the previous section
will allow to generalize the notions of limit, continuity and differentiability
presented in part I for functions of one variable. Taylor’s formula is also

generalized.

2.2.1 Limits and continuity

Definition 94 Let f be a function defined on an open set D C RP. f has a
limit b € R, at a € D if, for any sequence (z,,n € N) in D that converges

to a, the sequence (f(x,),n € N) converges to b. We write:

lim f(x) =0

r—a

This definition is almost identical to the definition of a limit in chapter
2 of part I. However, here the convergence of (x,,n € N) refers to definition
93.

Definition 95 Let f be a function defined on an open set D C RP. f s
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continuous at ©* = (z7, ...,x;) e D if:

lim f(z) = f(z")

r—x*

Here too, the definition is very close to the definition of continuity for
functions of one variable. The only difference lies in the use of a metric on
RP. Moreover, it turns out that left and right continuity are meaningless in
multidimensional spaces.

Remember that lim, .« f(z) = f(2*) can also be written as:

lim

r—x*

f@) = fa)] =0 (2.6)

Therefore, continuity could be defined in a much more general way for func-
tions f defined on an open subset D of a metric space (E, d) and taking values
in another metric space (F,dp). In this general framework, f is continuous
at o* € E if:

lim - dp (f(z), f(z%)) =0

We just replaced the metric on R (defined by the absolute value | f(x) — f(z*)])
by dr (f(x), f(z*)). In particular, we encounter this situation when consid-

ering functions defined on R? and taking values in R™.

2.2.2 Partial derivatives

One of the essential differences between functions of one and of several vari-
ables lies in the concept of derivative. Remember that for f : R — R, the

derivative at g is defined as follows:

f’(%) — lim f(l'O + h) B f(mo)

h—0 h

There is no obvious generalization for functions of several variables be-

cause g € RP, p > 1. In fact, h should also have p components, and dividing
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by h would be meaningless. Therefore, for a function depending on p vari-
ables, we define p partial derivatives, each one being defined as a derivative

with respect to one variable, the other variables being assumed constant.

Definition 96 The partial derivative of f at x*, with respect to the i-th

variable, is the limit, if it exists, defined by:

flay, o ai+hy o xy) — f(or)

lim
h—0 h
Alternative notations are gji (x*) or sometimes f, (x*).

We know how to derive a single-variable function. A function of p vari-
ables is a function of one variable when p — 1 variables are held constant. So
the definition works as if p — 1 variables where not changing. In fact, let g
be the function defined by:

* * * *
g(w) = fa, .., 0, 2,27, 4, ..., 7))
the derivative of g at 2] writes:

9@ +h) — g(x7)

R T
. f@d, o wp b ) — f(at)  Of

What we just wrote for the i-th variable can be written the same way for
the other p — 1 variables. Consequently, we get p partial derivatives (when
the corresponding limits exist).

In financial and economic models, it is common to assume that partial

derivatives are continuous functions. Such functions are said C'-functions.

Example 97 Let f be a function on Ry xR, taking values in R and defined
by:

r = (x1,22) — f(x) = /129
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At any x* € R x R this function has partial derivatives defined by:

of o _ 1 |z
8x1(x)— 2\ 3

Of oy _ 1 [ri

81’2(&:) -2 l’_

In fact we can write:

fz) = Vaer/z,

To compute g—gfl(x*), we consider that \/T3 is a number equal to \/x} (let
us denote ¢ this number) and we compute the derivative at x3 of the one-

variable g(x1) = c\/x1. This derivative is equal to:

(7)) = ¢ x !
N

Replace now c by its value, that is \/x5. The result is:
af 1 [xb
1%\ o 2
90 = ) =5/

The computation of g—xj;(x*) can be done in the same way, replacing /1
by a number b equal to \/z7. The single-variable function is now denoted m

and defined by m(z2) = b\/T5. m' is then calculated as usual.

m(as) =bx —— = Ly 2 L /5

2\/(13—; a 8x2

Definition 98 The p—dimensional vector %(:c*),z’ =1,...,p, 1s called the
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gradient of f at x*. It is denoted V f(x*) (spell nabla for V ):

V") =

V f(z*) is an element of the vector space RP. Therefore, V f(x*) denotes
a matrix with p rows and 1 column, containing the partial derivatives of f

valued at x*.

EXPERIENCE THE POW
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

88

Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/Gaiteye

2.2.3 Derivatives of compound functions

Calculation of partial derivatives of compound functions obeys the same rules
as the ones used for functions of one variable, but the formulation is a bit
more complex.

The proposition hereafter presents the case of functions depending on two

variables.

Proposition 99 Let f, g, h three continuously differentiable functions, de-
fined on a open set D C R2. We have:

9 of du f dv

- [f (9(z,y), h(z,y))] = guor T ovor

where uw = g(x,y) and v = h(x,y). The partial derivative with respect to the
second variable y is defined accordingly (replacing Ox by Oy).

Example 100 Let f,g and h be defined as follows:

flu,v) = exp(uv) (2.7)
g(z,y) = z+y (2.8)
h(z,y) = =—y (2.9)

First, calculation of% and g—f :

of
= 2.1
o g (2.10)
of
- = 2.11
= s (2.11)
Second, calculation of % and % :

ou v

ou__ v 2.12

Ox Ox (2.12)
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Finally

9 [f (g(z,y), bz, )] = (2 —y)exp(a® —y?) + (x + y) exp(a® — (F)3)

Ox
= 2wexp(x® —1?) (2.14)

Of course, in this example it would have been easier to directly replace u

and v by their values and start with f(z,y) = exp(2? — y?)

2.2.4 Differential of a function depending on several

variables

In chapter 2 of part I, a C''-function was approximated at x + h by f(z) +
hf'(x) (first-order approximation). The mapping h — hf’(z) is linear. The
differential of a function of several variables carries the same idea. However,
starting from x € RP, we can move in different directions. In other words,

writing x + h refers to a vector like

1+ hy
r+h=
p + hy

We then refer to a displacement in the direction of vector h.

The fact that partial derivatives exist is not sufficient to ensure that a
function of several variables is continuous. There exist some pathological
cases where the function possesses partial derivatives according to definition
95 but is not continuous. To solve this difficult question we need a little
bit more, that is differentiability. We provide hereafter the definition of this
word but in the sequel of the book we will in fact use a stronger (but much

more intuitive) assumption.

Definition 101 A function f defined on an open subset D of R? is differ-
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entiable at x € D if there exists a € RP such that:

flx+h) = +Zaz () + ||k e(h)

with limy, 0 e(h) = 0.

Remember that ||h| denotes the norm of vector h. In the limit, we used
bold characters for the null vector to emphasize the fact that h is a vector, not
a number. In the remaining of the text, we use proposition 102 to simplify

the formulation of propositions.
Proposition 102 Any C! function at x is differentiable at x.

In the following definitions and propositions we assume that functions
are C! over the interior of their domain. Mathematicians would say that
weaker assumptions are better, but assuming C'-functions is general enough

for economics and finance.

Definition 103 Let f be a C'-function defined on an open set D C RP. The
differential of f at x* is the linear form, denoted df,-, defined on RP as

follows:

df o (R Z 70,
with K = (hy, ..., hy) .

Using notations of chapter 1, df,«(h) writes as the following inner product
in RP :
dfp«(h) =< V f(z*),h >

Proposition 79 of chapter 1 (Riesz representation theorem) allows to say

that V f(z*) represents the linear mapping df,~ because, for any h:

df e (h) =< Vf(2*), h >
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The cases p = 1 and p = 2 reveal the intuition behind the definition
of differentials. Assume that the components of h are close to 0; df,(h)
then approximates the difference f(z* + h) — f(z*). If p = 1,hf'(2*) is a
first-order approximation of f(z* 4+ h) — f(z*). The derivative f'(z*) also
denotes the slope of the tangent to the curve representing f. If p = 2, the
geometric interpretation of the differential is the same; the mapping h —
dfe+(h) = hlg—afl(m*) + hg%(ﬂ?*) approximates the surface f at z* by the
two-dimensional space tangent to the surface at z*. As f is a C'-function, it
is differentiable; therefore this approximation is valid when the norm of A is

small, that is when x* + h is close to z* in the space RP.

Example 104 Interpretation of differentials
Come back to the function f(x) = /T1xs and define dfy-(h) for (z*)" =
(1;1). Example 97 indicates that:

Bon () = 5 (ha + o)

The set of all points such that f(z) = 1 is called a level curve of f°.
This set contains x* and the equation \/r1xy = 1 implies that elements in

this set satisfy:

To9 — —
T

On figure 2.2, x1 (x3) is the coordinate on the horizontal (vertical) axis.
The slope at (x1,22) = (1,1) is —1 because the derivative of g(x1) = 1/x1
at x1 = 1 is equal to —1. Moreover, the coordinates of the gradient of f are
(1/2;1/2). The arrow on the figure gives the direction of the gradient; it lies
on the line x1 = x9. This gradient is orthogonal to the tangent to the level
curve. This remark is not a surprise because the level curve is the curve along

which the function f(xy1,x3) is constant, equal to 1. Therefore, moving from

®The general definition is the following: a level curve ¢ € R of a function f is the set
of elements x satisfying f(z) = c.
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x* to x* + h along this curve keeps the differential equal to 0, that is:

of of ,
axl hl + athQ =0

Using the inner product, this equation writes:
< Vf(z*),h>=0

In the neighborhood of x*, this relationship means that the gradient and
the tangent to the level curve are orthogonal.

If f represents the utility function of an investor, the level curve f(x1,xs) =
1 defines the pairs of consumed quantities generating the same level (equal to
1) of utility. The set of all these pairs is called an indifference curve.

At (1,1), the investor is indifferent if the quantity of one good marginally
increases while the quantity of the other marginally decreases. At y* = (2,1),

the story is different. The differential writes:

1
df,+(h) = V/2hy + Ei@
For df,«(h) to be zero and the investor be indifferent to a substitution
between the two goods, it is necessary that he obtains twice as much of good
2 than the quantity of good 1 he gives up. This ratio is the well-known

marginal rate of substitution between the goods.

Differentials follow the same rules as derivatives, as can be seen in the

following proposition.

Proposition 105 Let f and g be two C*-functions, defined on an open set
D C RP, and denote x* an element of D. We have:

1) d(f+9)ge = dfar + dga-

2) d(af),. = adfy~ for any a € R

3) d(fg)z = f(27)dgar + g(2")dfo
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1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2.2: Gradient of f(z1,x2) = z122

4) If g(z*) # 0, then d (5) _ gla)dfyr—f(a)dg,

g(z*)?
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(1) and (2) are obvious as consequences of the definition of partial deriv-

atives. To prove (3), just write:

o) = 3 A =3 (s + 1)L @) ) 1

=1 =1

’ o "o
= 0 2Lt 7)Y S (ah = Fa g+ o)
i=1 v 1

The proof of (4) uses the same method, applying the rules of derivation

for ratios of functions.

Alternate notations In most academic papers and economic textbooks,
authors do not write h — df,(h), even if it is the right way to understand
that df, is a linear mapping. In most cases, authors write:

af of

df (x)

This simplified notation means that dz,, dxzs, ..., dz, correspond to h;,7 =
1,...,p and df (z) means df,(h), the differential of f evaluated at x.

2.2.5 The mean value theorem

In chapter 2 of part I, Rolle’s theorem says that if a function g, defined on
[a; b] , is differentiable on |a; b[, there exists ¢ € |a; b satisfying ¢g(b) — g(a) =
(b—a)g'(c).

A similar result is valid for two-variable functions. However, one needs
to be prudent in interpreting the result because of the existence of several
partial derivatives.

The following example shows that the intuition is the same as in the
single-variable case.

Denote f the function defined by :
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f(l’,y) :xz_yz

The graph of f over the square [1;3] x [1;3] appears on figure 2.3.

Figure 2.3: The function f(x,y) = 2% — ¢?

f satisfies f(1,1) = 0 and f(3,2) = 5. We can decompose f(3,2)— f(1,1)

as follows:
f3,2) = f(1L,1) = f(3,2) = f(1,2) + f(1,2) = F(1,1) (2.15)
Let h(x) = f(z,2) and k(y) = f(1,y). Equation (2.15) writes:
f3,2) = f(1,1) = h(3) = h(1) + k(2) — k(1)

We now apply Rolle’s theorem (chapter 2, part I) to the functions h and
k. Therefore, there exist ¢; € |1;3] and ¢3 € ]1;2[ such that:

h(3) —h(1) = (3—1)x (1)
k2) - k(1) = (2—1) % K(c2)

26
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h'(c1) is the partial derivative of f with respect to x, evaluated at (cq;2).
k'(c2) is the partial derivative of f with respect to y, evaluated at (1, cs) .
The mean value theorem hereafter formalizes the idea of the above ex-

ample.

Proposition 106 Let f be a C*-function, defined on D = |ay; bi[ X Jag; by| C
R? and (z1,v1), (T2, y2) be two elements of D.
There ezists (z1,22) € D such that:

Flaas) = Flormn) = (@ = 205 (o) + (02— )5

(1’1, 22)
In this proposition, we restrict the domain to a rectangle of R%. This

assumption is not the most general but the key point is that (z1, 25) is in D.

2.2.6 Second-order partial derivatives

In the preceding section we showed that a p-variable function has p first-order
partial derivatives. The calculation of second-order partial derivatives needs

to derive any of the p first-order derivatives with respect to any of the p
of

dz;

derived with respect to each variable z;,j = 1,2, ...,p. As a consequence, the

variables. More precisely, each partial derivative 5+(x),i = 1,2, ...,p can be
function possesses p? second-order partial derivatives. They are organized in

a (p,p) matrix called the Hessian matrix or, in short, the Hessian of f.

Definition 107 Let f a C'-function, defined on an open set D C RP. The
Hessian matriz (or Hessian) of f at x*, denoted H¢(x*), is the (p,p)

matriz defined by:

) *f .
Hya?) = Lﬂxﬁm(x )} i=
0% =
‘7:

where 8{?3@ (x*) = % (%(m*)) is the partial derivative with respect to x;

(when it exists) of the partial derivative of f with respect to x;.

1,....p
1,...p
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Diagonal elements of H(z*) are denoted:

Oy = DL oy

Proposition 108 If the second-order partial derivatives of a function f are
continuous at x* (f is called a C*-function), the Hessian matrix is symmetric,

that is:
0 f 0*f

This proposition shows that when calculating the second-order deriva-

tives, the order you choose to derive does not matter, the final result, either
> f > f

8:&;8%]' 6x]8m2

solving optimization problems, especially to get sufficient conditions of op-

(z*) or (*), is the same. The Hessian matrix is important when

timality (chapters 3 and 4). Fortunately, in finance problems, the Hessian

matrix is always symmetric.
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Example 109 Coming back to the function defined in example 97, that is
f(z) = /r129

we calculated:

of

oy

Of oy _ L joi 1 o1 -l
o) T g\ T ) @)

The Hessian matrix is then obtained as follows:

(") =

0 f 1 _s 1 1 [as
4 (¥ - __ ¥\ T2 N2 — __ 4
o2f . 11
) = =
0x1014 4\ i3
0 f 1 1,3 1 [a
4 (¥ - __ *\2 N\NT2 — -1
52 = 3Dt - 8
o2f . 1/ 1
) = -
O0x90x1 4\ iz
In short we write Hy(z*):
1 Jmoo1 )1 w3
1/ 1 1 ju dy/ajay | 1 =2
4 iz} 4z 5 Ta

2.2.7 Taylor’s formula

When a function f depends on a single variable, we know (chapter 2, part I)

that the graph of f can be approximated by a straight line or by a curve rep-
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resenting a polynomial. Taylor’s formula allows to calculate the coefficients
of this polynomial.

Differentials allow to approximate C!-functions of several variables at
the first order. To approximate functions at higher orders, the right tool
is a Taylor’s series expansion. We restrict our presentation to second-order
approximations because such a choice covers 99.9% of economic and financial

models.

Definition 110 Let $ and v two functions depending on a single variable

h. We say that B has the same order of magnitude as v in the neighborhood

of 0, and we write § = O(7), if limy,_ % < +4o00. In the same way, [
is negligible with respect to v in the neighborhood of 0 if hmhﬂo =0. In

this case, we note B = o(y). These two notations O and o are called Landau

notations.

Using Landau notations allows to simplify formulas. g = O(v) means
that S(h) and y(h) are comparable in the following sense. The function 3 is
not infinitely larger (smaller) than the function v when h tends to 0.

S = o(7) means that [ is negligible with respect to v when h tends to 0. If
such a situation occurs, that is 5 = o(y), the sum 5(h)+~(h) is approximated
by v(h) because [(h) is negligible. Of course this approximation is valid only

if A is close to 0.

Proposition 111 Taylor’s formula
Let f denote a C*-function, defined on an open set D C RP, and (x,x*) €
D x D such that the line joining x and x* is in D. We have:

fl@) = +Z o) g ()

p P 52 ) 2
% ;; (2 = ) (; - 5) axing (z") + 0 (Z (2, — z7) )
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The expression o (Y i (z; — z}

2)2) means that, when the distance be-

tween x and x* tend to zero, all terms of order greater than 2 are negligible
with respect to first and second-order terms that appear in the formula as
coefficients of the partial derivatives. This Taylor’s formula allows to approx-

imate a function of p variables by a second-degree polynomial.

Matrix notation Using the Hessian matrix and the gradient of f shortens

the above formula as follows:
* * * 1 * * * *
f(x) = fa")+ < Vf(z"),x—z" > +§(x—56 ) Hy(a*)(x—a*)+o(||z — z*||)

This alternative formulation is based on notions presented in chapter 4
of the part I and in chapter 1 of the present book, (inner product of vectors

or product of matrices).

Example 112 Let [ be a function defined on R? taking values in R, and
defined by :

1
f(z,y) = exp <—§ (2 + y2))
The partial derivatives of f are equal to:

g_i = TTexp (—5 (" + 3/2)) ;% = —yexp (—% (2? +y2))

2 2
o = e (367 e) SE = 00 ew (<5 0 4)

>’ f _ 2 2
o0y TY exXp <—§ (a: —i—y))

Applying Taylor’s formula at (0,0) leads to write:

1
f(hy,hy) =1— 3 [h7 + R3] + o (kT + h3)
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Figure 2.4: Approximation error

Figure 2.4 shows the difference between f and the second-degree polyno-
mial when hy and hs move between —0,5 and 0,5. This difference is repre-
sented by o (h? + h3). We observe that, even "far" from (0,0), the approzi-
mation is quite good. The error is not larger than 0.03 with the function being
valued 1 at 0. Of course, this case is specific; choosing a more complicated

function could lead to approximations of lower quality.

2.2.8 Convex and concave functions

We presented in the chapter 2 of part I the definition of a convex single-
variable function f defined on an interval I C R. You will see in the following
that the definition is almost the same when f depends on p variables, except
for the domain of definition D. Of course, D must be included in R” but we
have to be sure that the definition of a convex function is meaningful. It is

the reason why we first introduce convex sets in a vector space like RP.
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Definition 113 Let C' be a subset of RP. C' is convez if:
V(z,y) € C x CVa € [0;1],az+ (1 —a)ye C

The geometric interpretation of this definition is simple If any two ele-
ments x and y are in the same convex set, all the segment joining = and y is
also included in C. Remark in passing that if p = 1, C' is an interval.

R? being a vector space, the combination ax + (1 — )y in definition 113
is a linear combination of the vectors x and y. This linear combination has
two specific features; the coefficients o and 1 — o are positive and their sum

equals 1. Such a combination of vectors is called a convex combination.
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We can now rigorously define convex and concave functions.

Definition 114 1) Let f be a function defined on a convexr domain D C RP.
f is a convex function on D if, for any o € [0;1] and any couple (z,y) €
D x D, we have:

flaz+(1—a)y) <af(z)+(1-a)f(y)

2) Under the same assumptions on D, [ is a concave function on D if
the inequality is reversed.

3) The function f is strictly convex (concave) if the inequality is strict
in part 1 (2) of the definition.

Assuming convex or concave functions is very common in finance or
economic models. Utility functions are usually concave and cost functions
are convex. These assumptions make easier solving optimization problems.
These issues are addressed in chapters 3 and 4.

In chapter 2 of part I, we characterized convex (concave) functions by
positive (negative) second-order derivatives. For a function f depending on
p variables, the corresponding result uses second-order partial derivatives, by

means of a condition on the Hessian matrix of f.

Proposition 115 Let f be a C?-function defined on a convex open domain
D C Rp.

1) f is convex (concave) on D if and only if the Hessian matriz H(x) is
positive (negative) semi-definite at any x € D.

2) If Hy(x) is positive (negative) definite, f is strictly convex (concave).

Recall that positive semi-definite matrices have been presented in chapter
4 of part I (definition 52).
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Example 116 Consider a two-goods economy; an agent is characterized by

the following utility function U defined on D = R x R

U(z) = In(zq27)

where x = (1, T3) s the vector of consumed quantities and U(x) measures

the welfare generated by consumption. U is strictly concave on D. In fact,

we have:
w1 w1
6:1:1 N T 8352 N i)
0*U B i 02U B i
x? x? ord a3
0*U
=0
8x18x2
It follows:
_1 0
Hy(w)={ =
: ( 0 -3 )

We can check that Hy(z) is negative definite by computing y* Hy(x)y,

where y s a non zero vector in R2.
0 _ Y1 Y
ri’ 3

8
S L

yTHU(x) = (3/1442)( 1
0 -2
2

i Y2 hn :_y_%_y_S
rf

T
T Hy )y — (——,
I% I% y2

We get y* Hy(x)y < 0 showing that U is strictly concave. The interpreta-
tion of the concavity of U is the same as the one provided for single-variable
functions. The utility obtained by consuming one more unit of a given good

decreases with the quantity already consumed.
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2.3 Implicit and homogeneous functions

2.3.1 The implicit function theorem

Several economic variables are often linked by complex relationships so that
it is impossible to express these relationships explicitly. The most well-known
example of such a relationship is the definition of the internal rate of return
or, equivalently, of the yield of a coupon-bearing bond. The yield r of a
bond is linked to the price p and to the future payoffs Fi, ..., Fr of the bond
(coupons plus reimbursment price). Though economically intuitive, it is
impossible to express r as an explicit function of the variables (p, Fi, ..., Fr).
In the same spirit, the utility provided by the consumption of a bundle of
goods (1, ..., z,) is measured by a utility function U(zy, ..., z,) taking values
in R. For a given utility level u, the equation U(xy,...,z,) = u creates a
relationship between x; and the p — 1 other variables. In general, no explicit
formulation exists for this relationship.

In this section, we develop some results allowing to measure the sensitivity
of a given variable with respect to variations in other variables. We start by

the most simple case where a function F' only depends on two variables.

Definition 117 Let F' be a function defined on an open subset D C R%. The
equation F(x,y) = 0 defines an implicit function if there exists a function

g(x) =y, defined on an interval and taking values in an interval such that
F(z,g(x)) = 0.

Of course the relationship between x and y is said implicit when g cannot
be defined explicitly.
Proposition 118 Implicit function theorem (2 variables)

If F : R? — R is C' and defines an implicit function g by means of the
relationship F(z,y) = 0, we have :

, . oy %
g(@)=o"=—9r
dy
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The notation g—g may seem surprising: it is not really a rigorous way to

write such a derivative but this formulation is common. It is the reason why

or
ox

look precise enough because we do not specify the values at which the partial

we use this expression. In the same spirit, the notations and ‘?9—1; do not
derivatives are calculated. But these notations are commonly used as long
as they do not introduce confusion or ambiguity. In our example, we know
that the partial derivatives are calculated at (x,y) such that F(z,y) = 0.
Theorem 118 is useful to perform comparative statics. Being given the
value of a function of two variables (production function, utility function, net
present value, etc.), comparative statics tests the impact of the variation of

one variable on the value of the other variable.
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Example 119 The internal rate of return

An investment project needs an initial outflow followed (in general) by
inflows at future dates. Let Fy denotes the initial negative cashflow and
Fy,t = 1,...,T the future positive cashflows, where T" denotes the maturity
date of the project. The met present value of this project, discounted at a
rate r, 1s defined by:

Fy
(14 7r)t

NPV (r) = XT:

t=0

The internal rate of return (IRR) is the rate r* satisfying N PV (r*) =

This equation defines an implicit relationship between the discount rate r*
and any given cashflow of the project. This relationship is called an implicit

function because you cannot write r* as follows:
r*=f(T,F,t=0,..,T)

But the implicit function theorem allows to calculate the sensitivity of r*

with respect to variations in any given cashflow. For example:

ONPV
or __om 1 (2.16)
ONPV ONPV :
aFO or or
We can also write:
ON PV T 4R
= — — 2.17
or — (14 )ttt ( )

Equations (2.16) and (2.17) lead to:

or B 1
OFy S tFy(1+7)-t1

A too superficial look at this formula could let the reader think that the IRR

Download free eBooks at bookboon.com



is an increasing function of the initial cost of the project because the deriv-
ative is positive. But remember that Fy < 0. As a consequence, a marginal
increase in Fy is in fact a marginal decrease of the cost of the project, every-
thing else equal. Proposition 118 can be generalized to p-variable functions
almost without modifications. Any equation F(z) = 0 where x = (x1, ..., xp)

defines an implicit function between components x; and xj for any (j,k) in

{1,...,p}2.

Proposition 120 Implicit function theorem (p variables)
Let F be a C-function, defined on an open set D C RP. Assume that
F defines an implicit function linking x; and i, by means of the equation

F(z) =0. It follows that:

oF
0z o
Ar. | OF
Ox; B

xy is the k-th variable and x; the j-th variable. This proposition is not
very different from proposition 118 because the other variables do not play
any role. It is as if we were dealing with a two-variable function, the (p — 2)

others being kept constant.

2.3.2 Homogeneous functions and Euler theorem

Homogeneous functions are common in economics. The most well known
example is the production function of a firm. When all production factors
are doubled, the usual assumption is to consider that production will double.
In such a situation, the function is said homogeneous of degree 1. A second
example in finance is the price of an option contract when considered as a
function of two variables, the strike price and the underlying price. When
you double the two, the price of the option doubles. The definition below is

the generalization of this intuitive example.

Definition 121 Let f be a function defined on a set D C RP, taking values

in R, and let D* denote a subset de D. f is homogeneous of degree v on
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D* if:
Ve e D" VYA e R, Az € D and f(Ax) = \“f(x)

When a function is homogeneous of degree o > 1, doubling the inputs
more than doubles the output. For production functions, it is the sign of
economies of scale. The unit cost of production decreases when produced
quantities increase.

A homogeneous function of degree 1 satisfies f(2x) = 2f(x); this equality
is also true for a linear function. However, if linear forms are homogeneous of
degree 1 the reciprocal is false. The function f(z1,x2) = \/Z122 is a simple
counterexample. Of course, f is not linear but is homogeneous of degree 1
because f(2x1,22) = /221 X 2x1 = 2\/T1@3 = 2f(x1, T2).

The following proposition shows that a homogeneous function has homo-

geneous partial derivatives. Only the degree of homogeneity changes.

Proposition 122 Let f be a C! function defined on an open set D C RP,
homogeneous of degree o« on D* C D. The functions Of /Ox; are homogeneous

of degree o — 1 on D*.
Proof. We can write:

) )
gz, S A2 =5

fQx) =2 f(x) = (A f ()] (2.18)

Let h be defined by x — f(A\x). h writes fog where g(x) = Az. Consequently:

O (roay =2

8xi ZT;

(Az)

The linearity of derivations leads to:

0 ... o Of
A @) = X (@)
It implies: of of
o (Az) = Ao‘_lé—%(fﬁ)
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This equality shows that % is homogeneous of degree « — 1. m

When functions are homogeneous of degree 1 (for example f(z1,x2) =
\/Z1Z3), the proposition means that partial derivatives are homogeneous of
degree 0. In fact we have:

of 1 [z

ory 2\ =y
Multiplying x; and zo by a non-zero number does not change the value
of 88—;1. If f is the utility function of an investor, the proposition shows that
the marginal utility provided by the consumption of a marginal quantity of
good 1 is the same when the quantity already consumed is (x1, x2) or when it
is (Az1, Azg) with A > 0. Geometrically, this result is not surprising because,
along the line x; = x5, f is a linear function. In fact, f(z,z) = x for any z.
The specific features of homogeneous functions lead to the Euler theorem
that links the value of a homogeneous function at a given point to the values

of its partial derivatives at this same point.

Proposition 123 The Fuler theorem
Let f be a C* function defined on (]Rj)p, homogeneous of degree a.. At

any r € (R’jr)p, we have:
p
> g () = afi@)

We only provide hereafter a sketch of the proof. By definition of homo-

geneity we know that:
fx) = A" f(x) (2.19)

Each side of equation 2.19 is a function of A (that is the point!). The
derivatives of the two sides with respect to A must be equal. Assume that h

is a small real number such that:

F(A+h)z) ~ f(Ox) + Z hxig—i;(/\m)
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We neglect the second-order terms whose order of magnitude is h? because

they are negligible in the following limit.

of - f((A+h)x) = f( i ~ a1 Of

i=1 i=1

The last equality is obtained because g—:fi is homogeneous of order a — 1
by proposition 122.
The derivative of the right-hand side of equation (2.19) writes:

a7 f ()
As a consequence we obtain:
P
ZZ:; xi)\a_lg—i(x) = a)\a_lf(m)

Simplifying by \*~! leads to the result:
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Chapter 3

Optimization without

constraints

When facing problems of the real life, investors, and more generally economic
agents, try to do their best. This means that they try to take the best
decision, taking into account the information they have.

In most cases, the real world is too complex to be entirely embedded in
the formulation of the optimization problem. Models of decision making use
simplified representations of the real world. In these simplified frameworks,
taking a decision often means maximizing or minimizing a function depending
on several variables.

In microeconomics, all the theory is based on the assumption that agents
maximize their expected utility. The utility functions are assumed concave
and, of course, non-linear, because of the decreasing marginal utility.

In Markowitz portfolio theory!, investors minimize the risk (measured
by the variance of returns) of their portfolio, being given a threshold of
expected return they want to reach. Equivalently, the problem can be solved
by maximizing the expected return, being given a level of risk the investor

accepts to bear.

"Markowitz, H.(1952), Portfolio Selection, Journal of Finance, 7(1), 77-91.
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In corporate finance, firms try to maximize their profits but have to take
into account the inverse relationship between the prices of the products they
sell and the demand for these products. The firms also try to minimize their
costs which are decomposed between fixed and variable costs. In general,
decisions that decrease fixed costs have a tendency to increase variable costs.
Solving this kind of problem is a matter of optimization.

All these examples show that economic life is paved with the resolution
of optimization problems. These problems may include constraints on the
possible values of decision variables.

This chapter is devoted to the methods adapted to the resolution of non-
linear optimization problems. We assume that no constraint on the decision
variables makes the problem more complex to solve. The following chapter
will be devoted to these constrained optimization problems.

For the sake of simplicity, we start by single-variable optimization. In
principle, the reader already knows these preliminary results. They are in-
tuitive if derivatives of functions had been well understood.

Optimizing functions of several variables is a little bit more difficult
because optimality conditions are related to partial derivatives and to the
Hessian matrix. Here too, these optimality conditions are natural if partial

derivatives and Hessian matrix are understood.

3.1 Preliminaries

3.1.1 The domain of optimization

In general, the functions f to be optimized are defined on a domain D C R",
and take their values in R. An optimization problem can then be written in

one of the two following ways:

max f(x) or minf(x)
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The first formulation means that we look for z* € D such that f(z*) is
the maximum value taken by f on the domain D; in the second formulation
we look for x* € D such that f(z*) is the minimum value taken by f on D.

As already mentioned, D can be equal to R", but in most cases D is a
subset of R", either because f is not defined on all R™ or because of the
characteristics of the problem. For example, when minimizing the risk of a
portfolio, assuming that shortsales are forbidden imply restrictions on the

domain D.
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Let the function f be defined by:

f(x) = /x 129
D is written as follows:
D={zeR® [z >0}

because square roots are defined only for positive numbers.

Optimization criteria also depend on the shape of the domain D. More
precisely, the fact that D is open or closed has an influence on the existence
of a solution to the problem at hand.

To illustrate this remark, consider the following problem:

grélgf(x) = 2> —4 (3.1)
D = [-3;+2] (3.2)

This function has a minimum value equal to —4 for x = 0, that is f(0) =
—4 < f(z) for any x € D. Figure 3.1 shows the graph of the function; you
can observe that the first derivative of f at = 0 is equal to 0. In fact, f’ is
given by:

f(z) =2 (3.3)

Moreover, the sign of the derivative changes at * = 0 but f” is always
positive (f”(x) = 2). The function f is then convex and "easier" to minimize.

Suppose now that you are looking for a maximum. Figure 3.1 shows
that the maximum is reached for #** = —3 with f(2**) = 5. However, the
criterion based on the value of the derivative cannot be applied because ** is
on the frontier of D. In this kind of situation, the solution is called a corner
solution. The difficulty is that D is closed. On the contrary, if D = |-3;2]
(D is open), f hasno maximum but the minimum stays unchanged at z* = 0.

These preliminary remarks show that solving an optimization problem
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Figure 3.1: The function f(z) = 2% — 4

using the successive derivatives works well if the domain is open. The solution

can be more complicated to find when the domain is closed.

3.1.2 Regularity of the function to be optimized

The second feature playing a role in optimization programs is to know if the
function to be optimized is sufficiently regular. Of course, if optimization
criteria are based on derivatives the least we can ask is that these derivatives
exist.

For example, consider the function defined on R by f(x) = |z|; f reaches
its minimum for x = 0, but f is not differentiable at 0 (see figure 3.2). In fact,
the derivative of f is nowhere equal to 0. The kind of irregularity observed
at 0 is not that "wild", because f possesses at that point a right-derivative
and a left-derivative. Nevertheless, no simple criterion can be found to solve
the problem.

The example of f(z) = |z| allows to understand why standard optimiza-
tion conditions presented in the next sections require that the functions to
be optimized are sufficiently regular. In financial applications, this regularity

assumption is not too constraining or, more precisely, seems reasonable in a
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Figure 3.2: The function f(x) = |z

number of circumstances.

3.1.3 Local and global optimum

Consider the function f(x) = zsin(x) depicted on figure 3.3; the graph is
limited to the domain D = [—7;+7]. This function does not often show
up in financial models but it is nevertheless interesting to understand the
distinction between different types of optima.

First, f is regular and possesses all derivatives you might need. Second,
it is clear that there are several points where the first derivative is equal to
0.

However, we immediately observe that the natural criterion of a null first
derivative is not sufficient to distinguish maxima and minima. Looking at
second-order derivatives allows to distinguish the two but only locally, that
is on a short interval around the optimum under consideration.

The fact that derivatives provide local conditions to optimize functions is
a serious problem in practical issues because all methods based on derivatives
provide at best a local optimum (they are called gradient methods).

Finally, in this preliminary analysis, we have to mention that even the two
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Figure 3.3: The function f(x) = xsin(z) on the domain [—7;47]

first derivatives are often not sufficient to identify a maximum or a minimum.

3 over the domain

Look at figure 3.4 that represents the function f(z) =«
D = [—2;+2] . The first two derivatives of f are equal to 0 at z* = 0. However,
the function has neither a minimum nor a maximum at z*. One more time,
a first derivative equal to 0 does not guarantee the existence of an optimum,
without assuming something else.

Consider now the function f(z) = 2* (figure 3.5); the function reaches its
minimum at z* = 0 with the two first derivatives equal to 0 at x*.

In short, all these examples show that life may be complicated when it
comes to optimizing. It is the reason why the different cases are examined

in some details in the following sections.
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Figure 3.4: The function f(x) = 23

Figure 3.5: The function f(x) = z*

3.2 Optimizing a single-variable function

We start by the most simple case: a function f depending on a single variable
x. We are going to characterize minima and maxima of f, defined on a domain

D C R and taking values in R.

reD— f(z) eR (3.4)

The examples of the preceding section show that restrictions are neces-

sary, either on D or on f, to obtain tractable optimality conditions. The first
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restriction, valid for the remainder of the section, is the following.
Assumption: D is an open subset of R and the functions con-
sidered in this section are twice continuously differentiable.
To avoid going back to part I of the book, we recall hereafter the definition

of global and local optima.

Definition 124 a) xg is a local maximum (minimum) of f if:
Vo € oy —e;x0+ &, [ f(zo) > (L) f(x)

b) xg is a global maximum (minimum) of f if there exists € > 0 such
that:
Va € D, f(z) > (<) f()

3.2.1 Necessary conditions of optimality

Proposition 125 If xy is a local optimum of f then f'(xy) =0

Keep in mind that this condition is necessary, not sufficient. You need
to know that xy is an optimum to say that the first-derivative is equal to 0
at o. To emphazise the intuition that drives the result, consider the case
of a local minimum. In a narrow interval including x,, the function f is
decreasing (increasing) on the left (right) of o (otherwise xy would not be
a minimum). Therefore, f’ is negative on the left of zq and positive on the
right. But we assumed that f is at least twice continuously differentiable;
it means in particular that f’ is continuous. A continuous function being
negative (positive) on the left(right) of x, is equal to 0 at x.

Of course, a necessary condition is not very useful to solve empirical
problems because in such problems we are looking for x(; in most cases we
do not look for properties of f at xy when we know that z( is an optimum.

It is the reason why sufficient conditions are more popular.
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3.2.2 Sufficient conditions of local optimality

Proposition 126 z is a local mazimum (minimum) of f if:
a) f'(zo) =0
b) f7 (o) < (>)0

This proposition comes from the Taylor series expansions presented in
part I of the book for single-variable functions and in the preceding chapter

for functions depending on several variables. In fact, we can write:

Flao + 1) = F(a0) + hF (o) + o (x0) + (1)

If f'(zg) = 0 and (h?) is negligible with respect to h? the difference
f(zo+h)— f(zo) has the sign of f” (o). If f7(xo) <0, then f(zo) > f(zo+h)
meaning that zy is a local maximum of f. Figure 3.1 is an illustration of
the proposition. The minimum is obtained at xy = 2 and the derivative is
increasing over an interval including xg. Therefore, the derivative of f’ is

positive but this derivative is f”.

Remark 127 Proposition 126 gives a sufficient condition but this condition
is not necessary. The function f(x) = x* represented on figure 3.5 provides
a good counter-example. In fact, there is a minimum at 0 but the two first
deriwatives are equal to 0. In general, for polynomials like x™, a minimum
exists if n is even and an inflection point appears for n odd. This remark

justifies the general result hereafter.

3.2.3 Necessary and sufficient optimality conditions

Proposition 128 z, is a local mazimum (minimum) of f if and only if*:
a) f'(xo) =0
b) The order of the first non zero derivative at xy is even and the corre-

sponding derivative is negative (positive).

2nif and only if" is often shortened in "iff".
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The optimality conditions presented so far are local optimality conditions.
To obtain global conditions, we need to impose more assumptions on the
behavior of f. The idea is that f should not be "authorized" to behave like

x sin(z) with multiple changes in the sign of derivatives.

3.2.4 Global optimality conditions

Proposition 129 If f is concave (convex) on the open convex domain D,

xg s a global mazximum (minimum) of f if f'(x¢) = 0.

This result provides a very simple optimality condition only depending
on the first derivative of f. Of course, the simplicity of the result comes from
the concavity /convexity assumption which determines the sign of the second-
order derivative. Knowing that many functions in finance or microeconomics
problems satisfy this concavity /convexity assumption® is important. In such
problems, checking if the first-order derivative is equal to 0 is enough to

characterize a global optimum of f.

3The optimisation problems to solve are called "concave problems" in this case.
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Corollary 130 If f is strictly concave (convex), the first-order condition

provides the unique optimum.

All the propositions of this section refer to single-variable functions. How-
ever, the geometric approach underlying the results is general. If z( is an
optimum, the first-order condition says that the tangent to the curve repre-
senting f at xq is horizontal (its slope is 0). In the same spirit, the second-
order condition is justified by the second-order Taylor series expansion which
determines the sign of the changes in f around x(. In the next section de-
voted to the optimization of functions depending on several variables, the
tools are different, maybe a little bit more complex, but the logic and the
geometry of the problem remain the same.

There is no difficulty to address a 30-variable problem when you know how
to deal with a 29-variable problem. The "difficult" step is from single-variable
functions to two-variable functions. It is the reason why we introduce an

intermediate section devoted to the optimization of functions of two variables.

3.3 Optimizing a function of two variables

Devoting some place to optimizing functions of two variables is justified by
the fact that such functions are represented by surfaces in three-dimensional
spaces. It is then possible to draw their graphs, even if we are limited to two
dimensions on the paper. With more than two variables, no graph can be
drawn (as far as I know!) by standard means. Figure 3.6 is an example of
the graph of a two-variable function.

The function f is defined by :

[z, 33) = exp (—a] — 23)

f has a maximum at (0,0) where it is worth 1, because exp(0) = 1.
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Figure 3.6: The function f(z1,22) = exp(—z% — 13)

Suppose now that the second variable x5 is constant, equal to 1. f(z1, x2)

becomes the single-variable function g(x;) defined by:
g(x1) = f(1,1) = exp(—ai — 1)
g is represented on figure 3.7.

exp(—af — 1)

g reaches a maximum at z] = 0 and its derivative equals 0 at z]. In
the same spirit we can define h(z3) by keeping x; constant. In such a case,
h also has a maximum at xo, = 0 with a null derivative at that point. But
remember that keeping one variable constant is exactly what we did in the

first part of the book to define partial derivatives of f(xy,x2).

These remarks mean that partial derivatives are important in characteriz-
ing optima in multidimensional problems. The definitions of ¢ and h and the
properties of their derivatives show that two directions (along the z-axis and
along the z,-axis) should be considered when dealing with f. A maximum

(27, 23) of f should be a maximum for g when the value of x5 is fixed to x}
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Figure 3.7: La fonction f(z1,1) = exp(—x%)

and a maximum for h when the value of z; is fixed to x]. The geometric
interpretation of this intuition is that the two-dimensional space tangent to
the graph of f should be horizontal, that is parallel to the (xy, z5) plane. In
fact, if it is not the case, we could find directions toward which f increases,
a contradiction if (z},z}) is a maximum.

The following subsections formalize the intuitions we just described. As
in the preceding section we assume the following.

Assumption: D is an open subset of R? and the functions con-
sidered in this section are twice continuously differentiable.

Continuous second-order partial derivatives ensure that the Hessian ma-
trix is symmetric. For applications in finance and economics, it is not a

restrictive assumption.

3.3.1 Local optimality conditions

Proposition 131 If z* = (23, x3) is a local optimum of f, then:

Of  wy_ OF .
—(2%) = =—(z

(9x1 N 81’2 ) =0

This proposition formalizes the intuition we just described by means of
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functions g and h. In the neighborhood of a maximum z*, the values of f are
lower than f(x*), especially toward the directions of z; and x5 (that is if f is
replaced by g or h). The conditions on partial derivatives say nothing else.
These conditions can be shortened by writing V f(z*) = 0 where V f(z*) is
the gradient of f at z*, (remember that the gradient is the vector of partial

derivatives).

Of course, the gradient condition cannot be sufficient, simply because
it does not allow to distinguish minima and maxima. Moreover, we already
showed for single-variable functions that inflection points can exist. For func-
tions depending on two variables, other more tricky situations can appear.
Consider the function f defined by :

fla) = o) — 23
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Figure 3.8: Example of a saddle point

The two first-order partial derivatives are equal to 0 at x = (0;0). In
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fact, these derivatives are equal to:

However, x = (0;0) is neither a maximum nor a minimum. The problem
comes from the fact that, on one side, g (as a function of z; only) is convex
and has a minimum at 0, but, on the other side, h (as a function of s
only) is concave and has a maximum at 0. This kind of situation is called
a saddle point because, as you can see on figure 3.8, the graph of f in the
neighborhood of (0, 0) looks like a horse saddle.

This example shows that obtaining sufficient optimality conditions is go-
ing to require some precautions, even for local optima. In part I, we showed

2 second-order partial derivatives for a function depending

that there are n
on n variables. Therefore, we have 4 elements in the Hessian matrix for
our functions depending on two variables. Eventually, the properties of the
Hessian matrix are driving the sufficient conditions of optimality. They also

allow to distinguish between optima and saddle points.
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Proposition 132 z* is a local mazimum (minimum) of f if the following
conditions are satisfied:

1) Vf(x*)=0

2) Hy(x*) is negative (positive) definite

As for single-variable functions, the proof of this proposition is based on
Taylor’s formula. Let us denote h' = (hy, hy); we can approximate f(z* + h)

as follows:
fa® +h) = f(z") + MV (") + %h/Hf(ﬂf*)h +e(1h]1*)

f(z* 4+ h) — f(z*) and h'Hy(x*)h have the same sign when condition (1)
is satisfied; if Hy(x*) is negative definite, h'H(2z*)h < 0, and then f(z*) >
f(x*+ h). Symetrically, if Hy(z*) is positive definite, 2* is a local minimum.

Positive and negative definite matrices have been characterized in chapter

1. Using this characterization, proposition 132 can be rewritten as follows.

Corollary 133 z* is a local mazimum (minimum) of f if:
1) Vf(x*)=0
2
2) %(m*) < (>)0 and Det(Hs(z*)) >0

In fact, for a matrix to be negative definite, the signs of its principal
minors must alternate, the first one being negative. For a matrix to be
positive definite, all principal minors must be positive.

Looking more closely to the corollary can give the false idea that variable
1 is more important than variable 2. Of course, it is not the case because the

determinant of H(z*) writes

_ %/

= 52
Oxy

Det(Hy(x"))

L *>r

8_37% 03718332 (:C

If this determinant is positive, the two second-order partial derivatives 227{ (x*)
1

and %(x*) have the same sign because the product of the two is positive.
2
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But the formulation of the corollary says nothing about what happens
when the determinant is not strictly positive.
Considering the example presented at the beginning of the section (f(z1,x2) =

Hf(ib’)zl2 ! ]

x] — x3) leads to:
0 -2

and Det (H(x)) = —4. The signs of the principal minors alternate but the
first one is positive and the determinant is negative. These features charac-

terize a saddle point.

3.3.2 Global optimality conditions

The reasoning is exactly the same as the one we used for single-variable
functions. To obtain global optimality conditions, we need to impose some
restrictions (convexity or concavity) on the behavior of f.

We then obtain the following proposition.

Proposition 134 If f, defined on a convex D C R?, is concave (convex), x*

is a global mazimum(minimum) if V f(x*) = 0.

This proposition is a direct generalization of proposition 129. The global
optimum is obtained by means of a first-order condition because second-order
conditions are automatically satisfied when f is concave (for a maximum) or
convex (for a minimum). Corollary 130 can be rewritten for functions of two

variables without changing a single word.

Corollary 135 If f is strictly concave (convex), the first-order condition

provides the unique maximum (minimum,).

Figure 3.9 represents the function f(x) = 2?2 + 2 which reaches its min-
imum at z* = (0,0). The principal minors of H(z) are positive because

the Hessian matrix is diagonal, each term of the diagonal being equal to 2.
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We observe on figure 3.9 that the null gradient at (0,0) is equivalent to a

horizontal tangent plane at that point.
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Figure 3.9: Horizontal tangent plane at the minimum of f(xq,z2) = 2% + 23

Many problems in finance assume the convexity (concavity) of the func-
tion to be minimized (maximized). Therefore, solutions often come by means
of first-order conditions only, even if the concavity (convexity) of the func-
tion is not recalled systematically. For example, it is not always recalled that
utility functions are assumed concave because it is a standard assumption in

99.9% of the models.

3.4 Functions of n variables

The general case of functions depending on n variables is not very different
from the case n = 2 addressed in the preceding section....except that we
cannot visualize the functions. The consequence of this proximity is that the
statements of this section, especially the optimality conditions, are almost
the same as the ones developed in the preceding section.

All the functions considered hereafter are defined on an open set D C R™.

As usual, they are supposed twice continuously differentiable.
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3.4.1 Local optimality conditions

Proposition 136 If x* is a local optimum of f, then the gradient of f at

x*18 0.

Remember that, in problems with two variables, this condition means that
the tangent plane at x* is horizontal, that is parallel to the plane x1Ox5. In R™
surfaces are called hypersurfaces and planes are hyperplanes. The meaning
of "horizontal" is not intuitive in higher dimensions...but the idea is still the
same. If f is reduced to a single-variable function by fixing, say, the values
of the last n — 1 variables, the partial derivative of f with respect to the
first variable must be 0 if * is an optimum. If it was not the case, we could
find a direction toward which the function f increases (for a maximum) or

decreases (for a minimum). It would be a clear contradiction.

Proposition 137 z* is a local mazimum (minimum) of f if the gradient of

f 1is zero at x* and the Hessian matriz is negative(positive) definite at x*.

Corollary 138 1) z* is a local mazimum of f if its gradient is 0 at x* and
if the signs of the principal minors of Hy(xz*) alternate, the first one being
negative.

2) x* is a local minimum of f if its gradient is 0 at x* and if the principal

minors of H(x*) are positive.

We let the reader check that corollary 133 is a special case of the above

corollary.

Example 139 In this example, we are going to show how to build a term
structure of (continuous) interest rates in a very simple case. We assume
that three bonds are traded with respective maturities 1, 2 and 4 years. Table
3.1 summarizes the data.

We assume a simple term structure of the following form:

T =a -+ th.S
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Bond | Maturity | Coupon rate | Price(in %)
XXX |1 6% 101

YYY |2 5% 99.5

177 4 5.5% 100.5

Table 3.1: Bonds description

where t denotes the horizon under consideration, a and b are parameters to
be estimated by minimizing the sum of the squares of the differences between
observed prices and estimated prices. Note that if only the first two bonds
are considered, a and b can be estimated without errors on prices. In fact,

we should solve:

101 = 106exp(—a —b)
99.5 = 5exp(—a —b) + 105exp(—a — b2°¥)

The first equality is justified because the first bond pays a unique cash-flow of
106 in 1 year (the coupon rate is 6%). The second equality states the equality
of the price and of the sum of the discounted cash-flows for the second bond.

Solving these simple equations leads to:

a = —25287 x 1072
b = .0736

Applying this estimation to the last bond gives a theoretical price of:

4
D 5.5xexp(2.5287x 1077 —. 0736t"%)+105.5 exp(2.5287x 10> . 0736x4"%) = -
t=1

But the market price is 100.5. There is a large difference, meaning that

a perfect match of the three prices is impossible.
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Analysis and Linear Algebra for Finance: Part Il Optimization without constraints

a and b must be estimated by minimizing the following function:

3
fla,b) =" (mi —7:)?
i=1
where ; is the market price and 7; is the theoretical price.
Of course, in practice the problem is not solved manually but using a

computer program or, at least, a spreadsheet. For example, the Excel Solver

can easily solve this problem.
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3.4.2 Global optimality conditions

We can repeat word by word what we said for functions of two variables; we
just need to adapt the dimensions. To obtain global optimality conditions,
we impose convexity or concavity of f.

We then obtain the following proposition.

Proposition 140 If f, defined on a convex subset D C R™, is concave (con-

vez), x* is a global mazimum(minimum) if V f(z*) = 0.

The global optimum is obtained by means of a first-order condition be-
cause second-order conditions are automatically satisfied (f concave for a

maximum and f convex for a minimum).

Download free eBooks at bookboon.com



Analysis and Linear Algebra for Finance: Part Il Optimization without constraints

Corollary 141 If f is strictly concave (convex), the first-order condition

provides the unique optimum.

This corollary is exactly the same as corollary 135. The reader under-
stands now why it was useful to devote some place to functions depending

on two variables.
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Chapter 4
Constrained optimization

Most economic problems consist in finding how to optimally allocate scarce
resources. This sentence describes what will be done in this chapter, that
is optimizing a function when the decision variables are constrained within
limits.

Chapter 3 offered only a few examples because practical problems of fi-
nance are constrained optimization problems. However, the "trick" to solve
a constrained problem is to transform it in an unconstrained problem hav-
ing the same solutions, then justifying chapter 3. The price to pay for this
transformation is an increase in the number of decision variables.

Of course, to be interesting to study, a constrainted problem should de-
pend at least on two decision variables!.

Section 4.1 deals with the optimization of functions depending on two
variables with one equality constraint. We introduce the Lagrangian in this
simple framework. The Lagrangian is the essential tool to solve constrained
problems.

Section 4.2 generalizes results of section 4.1 to problems with p variables

'With only one variable, two situations are possible: either the solution is in the interior
of the domain limited by the constraint or it is on the frontier. In the first case, methods
of chapter 3 are still valid, and in the second case, it is enough to compare the values of
the function on the frontier to find the optimal one.
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and m equality constraints. The final section deals with the most general

problem with equality and inequality constraints.

4.1 Functions of two variables and equality

constraint

In this section, we focus on the most simple constrained optimization prob-
lem (two variables, one constraint). The results are easy to interpret, and
their generalization is natural afterwards. This presentation avoids losing the

reader into unimportant calculation details.

4.1.1 Problem statement

The objective function f is defined on an open subset D C R? and is twice
continuously differentiable. The constraint is written by means of a function
g, defined on D and also twice continuously differentiable. We develop here-
after the case of a maximization problem, but the reasoning is similar for
a minimization. The two cases (maximum and minimum) will be separated
when necessary.

The optimization problem, denoted P, writes:

max f(l'l,l’g) (P)

(z1,x2)ED

u.c. g(xy,z9) =c

where ¢ € R is given?.

For example, if g is a budget constraint in a utility maximization problem,
g(z1,x2) = ¢ means pyx; + pary = R where ¢ = R is the wealth of the
consumer. Such a linear constraint induces an explicit relationship between

the two decision variables, that is xo = (R — p1x1)/pe. In such a simple case,

21.¢ is a shortcut for "under the constraints”
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the constraint writes xo = h(x;) where h is a one-variable function. When
this kind of transformation is possible, we are back to the single-variable

(unconstrained) problem written as:
I%?X f(l’l, h (371))

In general, this transformation cannot be used. This is the reason why
the Lagrangian has been introduced to solve optimization problems. It is an-
other way to transform a constrained problem into an unconstrained problem

(without changing the optimal values of the decision variables).

To illustrate what is going on, denote x5 = ¢(x7) where (27, 23) is a local
optimum of f, and z% is an implicit function de z7] (see chapter 2), by means

of the constraint g(xy,z5) = c.

The derivation of compound functions can be used to calculate the deriv-
ative of F(z1) = f(z1,¢ (1)) at 1 = z] (chapter 2 of part I). We then
write: o of

F(a}) = g (ah, 0 (27) + 0 (D)5 (0] 0 a) (1)

The implicit function theorem allows to deduce:

2 ()
Ioox\ Ox1
¢'(a]) = ;_3392(%*)

(4.2)

At the optimum we know that F’(z7) = 0. Equations (4.1) and (4.2) lead

to:
) _ @) (4.3)
ﬁ(x*) N ﬁ(x*) ’
Oxo Ox2
If A is defined by:
s o)
2 (o)
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we obtain:

of , . 99 o
0xy (27) = 0y (z) =0 (4.4)
of , .« 99

Equation (4.5) comes from relation (4.3). More generally, equations (4.4)
and (4.5) are useful to specify the intuition behind the definition of the

Lagrangian.

4.1.2 Lagrangian and optimality conditions

Definition 142 The Lagrangian of problem P is the function L(\,z) de-
fined by:
L z) = f(z) +X(c—g(x))

A is the Lagrange multiplier of the constraint g(x) = c.

Remark 143 In some books, the right-hand side of the constraint is 0. Of
course, defining g*(x) = g(x) — ¢ leads to write the Lagrangian as f(x) —

Ag*(z) and the constraints as g*(x) = 0.

The following proposition shows how problem P is solved with the meth-
ods developed in chapter 3 by optimizing L. It is worth noticing that if f is
a function depending on two variables, £ is a function of three variables.

Solving P is equivalent to optimize the Lagrangian without constraints
(denote P’ this problem):

L, P
max (A, ) (P")

If (A", 2*) is a local optimum of P’, proposition 136 of chapter 3 says that
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the partial derivatives of £ are equal to 0 at (A", z*), that is:

OL v o _ Of o 09 o .
a—:ﬁ(k,f) = axl(x) Aaxl(ﬂf)—O
OL v o _ Of o x99 .
a—@(AJ) = ax2($) )\am(x)—o
oL

— (N2") = ¢c—g(2*)=0

() e
The last equation ¢ — g (2*) = 0 simply means that the constraint is

satisfied. A consequence is that the optimal value of L is also the optimal

value of f. This method kills two birds with one stone. It transforms a

difficult problem in an easy one by optimizing another function, but the

optimal values are the same in the two problems.

Proposition 144 If z* is a local mazimum of f under the constraint g(x) =

¢ and if the gradient of g is not zero at x*, there exists \* satisfying:

oL of

- e
6_xi(/\’x)_8xi

@) =X 5% (@) =0

fori=1,2.

Proposition 144 is a necessary optimality condition. z* must be an op-
timum for the relationship to be satisfied. As in chapter 3, second-order
conditions involving the Hessian matrix of £ are required to obtain sufficient
optimality conditions.

The condition on the gradient of g (it should not be zero) is satisfied
in most finance problems. In fact, the standard finance problem has linear
constraints, either a budget constraint to maximize an expected utility or a
portfolio constraint in portfolio choice problems. The gradient of g cannot

be 0 when the constraint is linear.

Proposition 145 (\*,z*) is a local mazimum (minimum) of L if the fol-

lowing conditions are satisfied:
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1) VL (N, z*) = 0.
2) The determinant of Hp(N*,x*) is positive (negative).

Condition (2) deserves some comments, because only the determinant of
H (A", x*) seems to be involved, and not all the principal minors, contrary
to the sufficient optimality conditions in chapter 3. In fact, the formulation
of the condition comes from the structure of H,. £ is a linear function of
A, so the first principal minor of H, is always 0 because it is equal to the
second-order derivative of £ with respect to A.

The second principal minor, denoted M, is equal to:

=— (5—51 (a:"‘))2 <0

M, is always negative, meaning that the effective optimality condition

2] *
0 ’ 0?2 _8_51 (xaz
o () B (at) - A2 (2)

M2:

can only concern the sign of the last principal minor, that is the determinant
of Hp(A\", z*).

Notice that proposition 144 includes a condition on the gradient of g.
This condition appears here in part (2) of proposition 145. In fact, if the
gradient of g was 0, the first line of H.(2*) would be null and det(H,(z*))

would also be equal to 0.
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Example 146 Consider the utility mazimization problem under a budget

constraint (the notations are as usual):

max U(l’l,.TQ) = A/ T1X2

(z1,x2)€ER*
U.C. P11 + P2l = R

The Lagrangian of the problem is:
LA, x) =Ul(xy,12) + MR — p171 — paa)

The first-order conditions are the following:

ou , ., .
8—961(55)—)\171 =0
aU * * _
8_x2<x)_)\p2 =0

R—piz] +px; = 0
Replacing U by its definition leads to:

*
1 [x3

2w = 0
2\ 23 p1

1 [z3

SR, = 0
o\ P2

R —pix] +pexy; = 0

We are back to the standard result of microeconomics. The ratio of marginal

utilities is equal to the ratio of prices.

Consider the following parameters, R = 10 ; p; = 3 ; po = 4. We obtain
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the following conditions:

i 3

72 & 4.7

x] 4 (47)
3x] +4x5 = 10

meaning that 5 = % and x] = g
First, we observe that R is equally shared between the two goods because
3 X g =4 x i = 5. This result is in line with intuition. The utility function
18 symmetric, so the optimal amounts spent in each good are equal.
Second, the Lagrange multiplier is equal to:
N oY

=4 =-7=014
2p1 \| x] 12

and the utility at x* is /2 x 2 =1.4434
Imagine now that system (4.7) is solved twice, first with R = 9.8 and
second with R = 10.2.

If R = 9.8, we obtain:

0.1 10.2 5.1 10.2
R=102; :c}‘:? ; szY ; U(xf,x;):\/? X T:1.4722

The objective function decreases by 0.0289 when R decreases by 0.2 units. A
linear approximation gives a decrease in utility of 0.1445 for one unit less in
the budget constraint. Symetrically, if R increases by 0.2, utility increases
by 0.0288, that is an increase of 0.144 for one more unit spent. 0.144 1is
exactly the value of the Lagrange multiplier. It is the reason why the Lagrange

multiplier measures the sensitivity of utility (objective function) with respect
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to variations in available wealth (constraint). The other more direct route to
come to this interpretation is to verify that the derivative of the Lagrangian
with respect to wealth is exactly \.

It remains to check that our solution is a maximum. The Hessian matrix

of the Lagrangian is:

0 -1 -1
He (N, 2%) = -1 _4i; 2_? _% m{lz;
-1 _%1 x;*lx; _49103 i_;

A few calculations lead to:
2

det(He (V7)) = |~ - 2
(25 ()

_ lE@em?

RG]

This determinant is positive. x* then maximizes U under the budget con-

straint.
Example 146 is a specific case of the following proposition.

Proposition 147 If a C?—function f, defined on an open convexr subset
D C R?, is concave (convex) and if the constraint g is affine on D, then any

local mazimum (minimum) is a global maximum (minimum,).

4.2 Functions of p variables with m equality

constraints

We consider now twice continuously differentiable functions f, g1, ..., g, de-

fined on an open domain D C RP and taking their values in R. We also
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assume m < p. The optimization problem addressed in this section is:

ma /() ()
uc. gjx) = ¢, j=1,...,m

Following the approach of the preceding section, the Lagrangian of the

problem is:
m

L) = fl@)+ ) Ai(e —gi(@))

j=1
There exists one Lagrange multiplier per constraint; the initial problem
with p variables and m constraints has become an unconstrained maximiza-

tion problem with p 4+ m variables.
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4.2.1 Local optimality conditions
Necessary conditions

We follow the same structure as before and start with a necessary optimality

condition in the following proposition.

Proposition 148 Let x* be a local optimum of f, satisfying the constraints
of problem (P) and such that the gradients Vg;(z*),j =1,...,m are linearly
independent vectors in RP.

There exists \* € R™ such that the gradient of L is the null vector at x*,
that is:

9, L 09, .
f(a:*)—Z)\iZ(:U) = 0¢i=1,...,p
cj—gi(xz*) = 0ifj=1...m

Why should the gradients be linearly independent? This condition is not
intuitive at all. Consider the following example with three variables and two

constraints defined as follows:

J]1+2l’2+1‘3 =

2r1 +4x9 + 223 = o

The left hand side of the second equality is twice the left hand side of
the first one. Therefore, we can face two situations. If c5 # 2¢;, the problem
has no solution. But if ¢; = 2¢y, the two constraints are redundant, one is

enough. The gradients are equal to:

2
Vgi() =1 2 | et Vga(z) = | 4
2

These two vectors are colinear because Vgy(z) = 2 x Vg (z).
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In general when the gradients are not linearly independent, at least one
constraint can be removed before applying proposition 148.

In problems with constraints, Lagrange multipliers are interpreted as in
single-variable problems. Each multiplier measures the sensitivity of the ob-
jective function with respect to variations in the right-hand side of the con-
straints. These multipliers lose their significance when gradients are colinear.
The problem has the same nature as the one of multicolinearity in multiple
regression. When independent variables are colinear, nothing relevant can

be said about the significance of the regression coefficients.

Sufficient optimality conditions

After reading chapter 3, the reader knows that sufficient optimality condi-
tions are based on the Hessian matrix of the Lagrangian. However, this
matrix is really special because £ is a linear function of the multipliers A;.
Therefore the second-order derivatives with respect to the multipliers A; are
0. In a problem with m constraints, the (m, m)-dimensional North-West cor-
ner of H.(z) only contains zeros. For example, in a problem with 3 variables

and two constraints, H.(z) is as follows:

0 0 ) ) %)
00 ) Ee E= )

e = | ) 6 e stk e | - [Hl
) I PL () PE() L () 2
—m(a) —02(2) STEL(2) ZE () S ()

H, is a (2,2) null matrix. H, is a (3,2) matrix containing the derivatives
of the constraints with respect to the variables and Hj is a (3, 3) matrix the
elements of which are the second-order derivatives of £ with respect to the
three variables.

The structure of H.(x) implies that the first 2m principal minors are not
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significant in characterizing the optimum. In general, if the problem has p
variables and m constraints, only the sign of the p —m last principal minors
matter. In fact, H; is (p +m,p+ m)-dimensional and, as just described,
the 2m first principal minors are not significant. The number of significant

minors is then p +m — 2m =p — m.

Proposition 149 z* is a local mazimum of f if:
1) The constraints are satisfied at x*.
2) There exists a vector of multipliers \* satisfying VL(N", z*) = 0.
3) The signs of the last p — m principal minors of Hp (N, x*) alternate,

the first one being negative if m is even and positive if m is odd.

Part (3) means that, if the condition is satisfied, the Hessian matrix is

negative semi-definite.

Proposition 150 z* is a local minimum of f if:
1) The constraints are satisfied at x*.
2) There exists a vector of multipliers \* satisfying VL(N", z*) = 0.
3) The last p — m principal minors of Hp(\*,x*) have the same sign as

(—1)™.

Part (3) means that, if the condition is satisfied, the Hessian matrix is

positive semi-definite.

4.2.2 Global optimality conditions

The global optimality conditions are quite close to the conditions proposed
for functions depending on two variables. The difference comes from the
existence of multiple constraints. It is the reason why we do not comment
this proposition. The reasoning used for functions of two variables is still

valid here.
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Proposition 151 If f, defined on an open convex set D C RP, is concave
(convez), and if the constraints g; are affine functions on D, any local max-

imum(minimum,) is also global.

We can now address the general case in which the two types of constraints

(equalities and inequalities) coexist.

4.3 Functions of p variables with mixed con-

straints

4.3.1 The problem

This last section addresses the most general problem where inequality and
equality constraints coexist. The functions f,g;, hy of problem (4.8) are
defined on an open subset D in RP and twice continuously differentiable.

The optimization problem writes:

max f(z)
uc. gi(z)=¢;,j=1,....m (4.8)
hk<l’) S bk, k= 1, ., n

Remark 152 Choosing inequality constraints as « < » does not matter be-

cause any inequality h(zx) > c is equivalent to —h(z) < —c.

To gain in clarity when stating the optimality conditions we used different
notations depending on the type of constraint (h for inequalities and ¢ for
equalities).

To emphasize the link with the results of the preceding section, imagine
that a solution x* to problem (4.8) has been found. The set of inequal-
ity constraints may be divided in two subsets: the first subset contains the

constraints satisfying hg(z*) = by, and the second subset contains the con-
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straints satisfying hg(z*) < by. The following definition specifies the concept

of binding constraints.
Definition 153 A constraint k is binding at x* if hy(z*) = by.

As mentioned in the introduction of the chapter, the constraints often
refer to scarce resources. b, then denotes the quantity of the available resource
and the equality hy(z*) = by means that all the resource has been consumed

at z*. It explains why the word binding is used.

4.3.2 The solution

Finding a solution may be difficult because, at an optimum x* some con-
straints may be binding and other ones not binding. We usually interpret
Lagrange multipliers as measures of the sensitivity of the objective function
to variations of the right-hand side of the constraint. But in this approach,
the multiplier of a constraint should be 0 when a constraint is not binding.
In fact, consider the standard economic problem of utility maximization un-
der a budget constraint, but assume that the utility function is not strictly
increasing®. It may happen that a part of the budget is not "consumed" at
the optimum x* because the marginal utility is 0 at «*. In this situation, one
more unit of wealth would not increase utility and the multiplier would be 0.

The Lagrangian of problem (4.8) is:

m

L) = fl2)+ > N6 —gi(@) + Y g (b — ha())

j=1 k=1

If 2* is an optimum for multipliers \* = (A],...,\;)) and p* = (ui, ..., 1),

3In many restaurants, the quantity of soft drinks (or sometimes appetizers) you can
consume is unlimited. The reason is simply that the optimal choice of a client is not
to drink an unlimited quantity of soda. The utility function for soda cannot be strictly
increasing everywhere.
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then:

p > 0and by — hy(z) = 0 if constraint & is binding.
pp, = 0and by — hg(z) > 0 if constraint % is not binding.

In the two cases the product p, (by, — hi(z)) is equal to zero. This remark
is used to shorten the formulation of optimality conditions. The coefficients

i, are called Kuhn-Tucker multipliers.

4.3.3 Necessary optimality condition

Proposition 154 If x* is a local maximum of f in problem 4.8 and if the

gradients of all functions g; and hy, for which hy(x*) = 0 are linearly inde-

*

pendent, there exist m + n numbers ], ..., A,

s 1T, -y Hyy Satisfying the three

following conditions:

V) =D AVgi(aT) = D i Vhi(a") =0
Jj=1 k=1

Vk € {1,2, ,n} ,ﬂ;(bk - hk(ﬂj*)) =0
Yk € {1,2,...p}, AL > 0

In this proposition, the multipliers p; are positive or equal to 0. In fact,
if a constraint is binding (think to these constraints as limitations for some
resources), it means that all the resource is consumed at the optimum z*. Ob-
taining one more unit of the resource would improve the optimal value of the
objective function. pj then measures the variation of the objective function

that would arise if one more unit of the resource & was made available.

Proposition 154 could be written for a minimization problem by simply

changing the sign of coefficients .
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4.3.4 Necessary and sufficient global optimality condi-

tions

In the preceding section we obtained a global maximum if D is convex, f
concave and the functions g; affine. When the problem includes inequality

constraints,this result is generalized as follows.

Proposition 155 If f is concave, the functions g; affine and the functions
hy convezx, the conditions of proposition 154 mean that x* is a global maxi-

mum of f under the constraints of problem (4.8).

If the problem is a minimization problem, replace « f concave » by « f

convex » and change the signe of the coefficients p} (they would be negative).
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