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Preface

Welcome to College Algebra, an OpenStax College resource. This textbook has been created with several goals in mind:
accessibility, customization, and student engagement—all while encouraging students toward high levels of academic
scholarship. Instructors and students alike will find that this textbook offers a strong foundation in College Algebra in an
accessible format.

About OpenStax College

OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our
free textbooks go through a rigorous editorial publishing process. Our texts are developed and peer-reviewed by educators
to ensure they are readable, accurate, and meet the scope and sequence requirements of today’s college courses. Unlike
traditional textbooks, OpenStax College resources live online and are owned by the community of educators using them.
Through our partnerships with companies and foundations committed to reducing costs for students, OpenStax College
is working to improve access to higher education for all. OpenStax College is an initiative of Rice University and is made
possible through the generous support of several philanthropic foundations. OpenStax College textbooks are used at many
colleges and universities around the world. Please go to https://openstaxcollege.org/pages/adoptions to see our rapidly
expanding number of adoptions.

About OpenStax College’s Resources

OpenStax College resources provide quality academic instruction. Three key features set our materials apart from others:
they can be customized by instructors for each class, they are a "living" resource that grows online through contributions
from educators, and they are available free or for minimal cost.

Customization

OpenStax College learning resources are designed to be customized for each course. Our textbooks provide a solid
foundation on which instructors can build, and our resources are conceived and written with flexibility in mind. Instructors
can select the sections most relevant to their curricula and create a textbook that speaks directly to the needs of their classes
and student body. Teachers are encouraged to expand on existing examples by adding unique context via geographically
localized applications and topical connections.

College Algebra can be easily customized using our online platform (http://cnx.org/content/col11759/latest/). Simply select
the content most relevant to your current semester and create a textbook that speaks directly to the needs of your class.
College Algebra is organized as a collection of sections that can be rearranged, modified, and enhanced through localized
examples or to incorporate a specific theme to your course. This customization feature will ensure that your textbook truly
reflects the goals of your course.

Curation

To broaden access and encourage community curation, College Algebra is “open source” licensed under a Creative Commons
Attribution (CC-BY) license. The mathematics community is invited to submit feedback to enhance and strengthen the
material and keep it current and relevant for today’s students. Submit your suggestions to info@openstaxcollege.org, and
check in on edition status, alternate versions, errata, and news on the StaxDash at http://openstaxcollege.org.

Cost

Our textbooks are available for free online, and in low-cost print and e-book editions.

Xi
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About College Algebra

Written and reviewed by a team of highly experienced instructors, College Algebra provides a comprehensive and
multilayered exploration of algebraic principles. The text is suitable for a typical introductory algebra course, and was
developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular
approach and the richness of content ensures that the book meets the needs of a variety of programs.

College Algebra guides and supports students with differing levels of preparation and experience with mathematics. Ideas
are presented as clearly as possible, and progress to more complex understandings with considerable reinforcement along
the way. A wealth of examples—usually several dozen per chapter—offer detailed, conceptual explanations, in order to build
in students a strong, cumulative foundation in the material before asking them to apply what they’ve learned.

Coverage and Scope

In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of
student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility
in instruction.

Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors
recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have
a cohort that need the prerequisite skills built into the course.

Chapter 1: Prerequisites
Chapter 2: Equations and Inequalities
Chapters 3-6: The Algebraic Functions
Chapter 3: Functions
Chapter 4: Linear Functions
Chapter 5: Polynomial and Rational Functions
Chapter 6: Exponential and Logarithm Functions

Chapters 7-9: Further Study in College Algebra
Chapter 7: Systems of Equations and Inequalities
Chapter 8: Analytic Geometry
Chapter 9: Sequences, Probability and Counting Theory
All chapters are broken down into multiple sections, the titles of which can be viewed in the Table of Contents.

Development Overview

Openstax College Algebra is the product of a collaborative effort by a group of dedicated authors, editors, and instructors
whose collective passion for this project has resulted in a text that is remarkably unified in purpose and voice. Special
thanks is due to our Lead Author, Jay Abramson of Arizona State University, who provided the overall vision for the book
and oversaw the development of each and every chapter, drawing up the initial blueprint, reading numerous drafts, and
assimilating field reviews into actionable revision plans for our authors and editors.

The collective experience of our author team allowed us to pinpoint the subtopics, exceptions, and individual connections
that give students the most trouble. And so the textbook is replete with well-designed features and highlights, which help
students overcome these barriers. As the students read and practice, they are coached in methods of thinking through
problems and internalizing mathematical processes.

For example, narrative text is often followed with the “How To” feature, which summarizes the presentation into a series
of distinct steps. This approach addresses varying learning styles, and models for students an important learning skill for
future studies. Furthermore, the extensive graphical representations immediately connect concepts with visuals.

Accuracy of the Content

We understand that precision and accuracy are imperatives in mathematics, and undertook a dedicated accuracy program
led by experienced faculty.
1. Each chapter’s manuscript underwent rounds of review and revision by a panel of active instructors.
2. Then, prior to publication, a separate team of experts checked all text, examples, and graphics for mathematical
accuracy; multiple reviewers were assigned to each chapter to minimize the chances of any error escaping notice.
3. A third team of experts was responsible for the accuracy of the Answer Key, dutifully re-working every solution to
eradicate any lingering errors. Finally, the editorial team conducted a multi-round post-production review to ensure
the integrity of the content in its final form.



The Solutions Manual, which was written and developed after the Student Edition, has also been rigorously checked for
accuracy following a process similar to that described above. Incidentally, the act of writing out solutions step-by-step served
as yet another round of validation for the Answer Key in the back of the Student Edition. In spite of the efforts described
above, we acknowledge the possibility that—as with any textbook—some errata may have been missed. We encourage users
to report errors via our Errata (https://openstaxcollege.org/errata) page.

Pedagogical Foundations and Features
Learning Objectives

Each chapter is divided into multiple sections (or modules), each of which is organized around a set of learning objectives.
The learning objectives are listed explicitly at the beginning of each section, and are the focal point of every instructional
element.

Narrative Text

Narrative text is used to introduce key concepts, terms, and definitions, to provide real-world context, and to provide
transitions between topics and examples. Throughout this book, we rely on a few basic conventions to highlight the most
important ideas:
« Key terms are boldfaced, typically when first introduced and/or when formally defined Key concepts and
definitions are called out in a blue box for easy reference.
o Key concepts and definitions are called out in a blue box for easy reference.

Examples

Each learning objective is supported by one or more worked examples, which demonstrate the problem-solving approaches
that students must master. The multiple Examples model different approaches to the same type of problem, or introduce
similar problems of increasing complexity.

All Examples follow a simple two- or three-part format. The question clearly lays out a mathematical problem to solve.
The Solution walks through the steps, usually providing context for the approach --in other words, why the instructor is
solving the problem in a specific manner. Finally, the Analysis (for select examples) reflects on the broader implications of
the Solution just shown. Examples are followed by a “Try It,” question, as explained below.

Figures

Openstax College Algebra contains many figures and illustrations, the vast majority of which are graphs and diagrams.
Art throughout the text adheres to a clear, understated style, drawing the eye to the most important information in each
figure while minimizing visual distractions. Color contrast is employed with discretion to distinguish between the different
functions or features of a graph.

Function Not a Function Not a Function
A A A

—

Supporting Features

Four unobtrusive but important features, each marked by a distinctive icon, contribute to and check understanding.

A ” is a list of steps necessary to solve a certain type of problem. A How To typically precedes an Example that
proceeds to demonstrate the steps in action.

A “Tiy 1t” exercise immediately follows an Example or a set of related Examples, providing the student with an immediate
opportunity to solve a similar problem. In the Web View version of the text, students can click an Answer link directly
below the question to check their understanding. In the PDF, answers to the Try-It exercises are located in the Answer Key.

A “Q & A.” may appear at any point in the narrative, but most often follows an Example. This feature pre-empts
misconceptions by posing a commonly asked yes/no question, followed by a detailed answer and explanation.

The “Media” links appear at the conclusion of each section, just prior to the Section Exercises. These are a list of links to
online video tutorials that reinforce the concepts and skills introduced in the section.
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Disclaimer: While we have selected tutorials that closely align to our learning objectives, we did not produce these tutorials,
nor were they specifically produced or tailored to accompany Openstax College Algebra. We are deeply grateful to James
Sousa for compiling his incredibly robust and excellent library of video tutorials, which he has made available to the public
under a CC-BY-SA license at http://mathispower4u.yolasite.com/. Most or all of the videos to which we link in our “Media”
feature (plus many more) are found in the Algebra 2 video library at the above site.

Section Exercises

Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used
selectively for guided practice. With over 4,600 exercises across the 9 chapters, instructors should have plenty to choose from'”.

Section Exercises are organized by question type, and generally appear in the following order:
Verbal questions assess conceptual understanding of key terms and concepts.
Algebraic problems require students to apply algebraic manipulations demonstrated in the section.
Graphical problems assess students’ ability to interpret or produce a graph.
Numeric problems require the student perform calculations or computations.
Technology problems encourage exploration through use of a graphing utility, either to visualize or verify algebraic
results or to solve problems via an alternative to the methods demonstrated in the section.
Extensions pose problems more challenging than the Examples demonstrated in the section. They require students
to synthesize multiple learning objectives or apply critical thinking to solve complex problems.

Real-World Applications present realistic problem scenarios from fields such as physics, geology, biology, finance,
and the social sciences.

Chapter Review Features

Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that students
can use to prepare for exams.
Key Terms provides a formal definition for each bold-faced term in the chapter.
Key Equations presents a compilation of formulas, theorems, and standard-form equations.
Key Concepts summarizes the most important ideas introduced in each section, linking back to the relevant
Example(s) in case students need to review.
Chapter Review Exercises include 40-80 practice problems that recall the most important concepts from each section.
Practice Test includes 25-50 problems assessing the most important learning objectives from the chapter. Note that
the practice test is not organized by section, and may be more heavily weighted toward cumulative objectives as
opposed to the foundational objectives covered in the opening sections.

Ancillaries

OpenStax projects offer an array of ancillaries for students and instructors. Currently the following resources are available.
Instructor’s Solutions Manual
Student’s Solutions Manual
PowerPoint Slides

Please visit http://openstaxcollege.org to view an up-to-date list of the Learning Resources for this title and to find
information on accessing these resources.

Online Homework

XYZ Homework is built using the fastest-growing mathematics cloud platform. XYZ Homework
gives instructors access to the Precalculus aligned problems, organized in the College Algebra Course

Homework Template. Instructors have access to thousands of additional algorithmically-generated questions for
unparalleled course customization. For one low annual price, students can take multiple classes through
XYZ Homework. Learn more at www.xyzhomework.com/openstax.

WebAssign is an independent online homework and assessment solution first launched at North Carolina
State University in 1997. Today, WebAssign is an employee-owned benefit corporation and participates
in the education of over a million students each year. WebAssign empowers faculty to deliver fully

WebAssign. customizable assignments and high quality content to their students in an interactive online environment.
WebAssign supports College Algebra with hundreds of problems covering every concept in the course,
each containing algorithmically-generated values and links directly to the eBook providing a completely
integrated online learning experience.

i. 4,649 total exercises. Includes Chapter Reviews and Practice Tests.
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Prerequisites

Figure 1 Credit: Andreas Kambanls

CHAPTER OUTLINE

1.1 Real Numbers: Algebra Essentials
1.2 Exponents and Scientific Notation
1.3 Radicals and Rational Expressions
1.4 Polynomials

1.5 Factoring Polynomials

1.6 Rational Expressions

Introduction

It’s a cold day in Antarctica. In fact, it’s always a cold day in Antarctica. Earth’s southernmost continent, Antarctica
experiences the coldest, driest, and windiest conditions known. The coldest temperature ever recorded, over one hundred
degrees below zero on the Celsius scale, was recorded by remote satellite. It is no surprise then, that no native human
population can survive the harsh conditions. Only explorers and scientists brave the environment for any length of time.

Measuring and recording the characteristics of weather conditions in Antarctica requires a use of different kinds
of numbers. Calculating with them and using them to make predictions requires an understanding of relationships
among numbers. In this chapter, we will review sets of numbers and properties of operations used to manipulate
numbers. This understanding will serve as prerequisite knowledge throughout our study of algebra and trigonometry.



CHAPTER 1 PREREQUISITES

LEARNING OBJECTIVES

In this section students will:

o (lassify a real number as a natural, whole, integer, rational, or irrational number.

e Perform calculations using order of operations.

e Use the following properties of real numbers: commutative, associative, distributive, inverse, and identity.
e FEvaluate algebraic expressions.

e Simplify algebraic expressions.

1.1 REAL NUMBERS: ALGEBRA ESSENTIALS

It is often said that mathematics is the language of science. If this is true, then the language of mathematics is
numbers. The earliest use of numbers occurred 100 centuries ago in the Middle East to count, or enumerate items.
Farmers, cattlemen, and tradesmen used tokens, stones, or markers to signify a single quantity—a sheaf of grain, a
head of livestock, or a fixed length of cloth, for example. Doing so made commerce possible, leading to improved
communications and the spread of civilization.

Three to four thousand years ago, Egyptians introduced fractions. They first used them to show reciprocals. Later, they
used them to represent the amount when a quantity was divided into equal parts.

But what if there were no cattle to trade or an entire crop of grain was lost in a flood? How could someone indicate
the existence of nothing? From earliest times, people had thought of a “base state” while counting and used various
symbols to represent this null condition. However, it was not until about the fifth century A.D. in India that zero was
added to the number system and used as a numeral in calculations.

Clearly, there was also a need for numbers to represent loss or debt. In India, in the seventh century A.D., negative
numbers were used as solutions to mathematical equations and commercial debts. The opposites of the counting
numbers expanded the number system even further.

Because of the evolution of the number system, we can now perform complex calculations using these and other
categories of real numbers. In this section, we will explore sets of numbers, calculations with different kinds of
numbers, and the use of numbers in expressions.

The numbers we use for counting, or enumerating items, are the natural numbers: 1, 2, 3, 4, 5, and so on. We describe
them in set notation as {1, 2, 3,...} where the ellipsis (...) indicates that the numbers continue to infinity. The natural
numbers are, of course, also called the counting numbers. Any time we enumerate the members of a team, count the
coins in a collection, or tally the trees in a grove, we are using the set of natural numbers. The set of whole numbers
is the set of natural numbers plus zero: {0, 1, 2, 3,.. .}.

The set of integers adds the opposites of the natural numbers to the set of whole numbers: {..., —3, =2, —1,0, 1, 2, 3,...}.
It is useful to note that the set of integers is made up of three distinct subsets: negative integers, zero, and positive
integers. In this sense, the positive integers are just the natural numbers. Another way to think about it is that the
natural numbers are a subset of the integers.

negative integers Z€ro positive integers
vy =3, 2,1, 0, L,2,3,...
The set of rational numbers is written as { % ‘m and n are integers and n # 0 } Notice from the definition that

rational numbers are fractions (or quotients) containing integers in both the numerator and the denominator, and the
denominator is never 0. We can also see that every natural number, whole number, and integer is a rational number
with a denominator of 1.

Because they are fractions, any rational number can also be expressed in decimal form. Any rational number can be
represented as either:

15
1. aterminating decimal: e 1.875, or

4 —
2. arepeating decimal: - 0.36363636 ... = 0.36

We use a line drawn over the repeating block of numbers instead of writing the group multiple times.



SECTION 1.1 REAL NUMBERS: ALGEBRA ESSENTIALS

Example 1  Writing Integers as Rational Numbers

Write each of the following as a rational number.

a. 7 b. 0 c. -8
Solution Write a fraction with the integer in the numerator and 1 in the denominator.
7 0 8
7=1" b.0=" L 8=
BT 1 ‘ 1

Try It #1

Write each of the following as a rational number.

a. 11 b. 3 c. —4

Example 2  Identifying Rational Numbers

Write each of the following rational numbers as either a terminating or repeating decimal.

L5 LB
7 "5 T 25
Solution Write each fraction as a decimal by dividing the numerator by the denominator.
5

a —o = —0.714285, a repeating decimal

b. 15—5 = 3 (or 3.0), a terminating decimal

13

¢ == 0.52, a terminating decimal
Try It #2
Write each of the following rational numbers as either a terminating or repeating decimal.
S 17 13 ©20

Irrational Numbers
At some point in the ancient past, someone discovered that not all numbers are rational numbers. A builder, for
instance, may have found that the diagonal of a square with unit sides was not 2 or even g, but was something else.

Or a garment maker might have observed that the ratio of the circumference to the diameter of a roll of cloth was a
little bit more than 3, but still not a rational number. Such numbers are said to be irrational because they cannot be
written as fractions. These numbers make up the set of irrational numbers. Irrational numbers cannot be expressed
as a fraction of two integers. It is impossible to describe this set of numbers by a single rule except to say that a number
is irrational if it is not rational. So we write this as shown.

{h|h is not a rational number }

Example 3 Differentiating Rational and Irrational Numbers
Determine whether each of the following numbers is rational or irrational. If it is rational, determine whether it is a

terminating or repeating decimal.

a. \/25 b. % c. VII d. % e. 0.3033033303333...

Solution
a. V25: This can be simplified as V25 = 5. Therefore, V' 25 is rational.
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b. % : Because it is a fraction, % is a rational number. Next, simplify and divide.
11

33 ¥ 11 -
22— =36
9 .9 3

So, % is rational and a repeating decimal.

¢. V11: This cannot be simplified any further. Therefore, V'11 is an irrational number.

d. ;—Z: Because it is a fraction, % is a rational number. Simplify and divide.
1

7_¥_1_4,4
34 34 2
2

So, % is rational and a terminating decimal.

e. 0.3033033303333 ... is not a terminating decimal. Also note that there is no repeating pattern because the group
of 3s increases each time. Therefore it is neither a terminating nor a repeating decimal and, hence, not a rational
number. It is an irrational number.

Try It #3

Determine whether each of the following numbers is rational or irrational. If it is rational, determine whether it is a
terminating or repeating decimal.

a. 77 b. V81 c. 4.27027002700027 ... d. % e. V39

Real Numbers

Given any number #n, we know that 7 is either rational or irrational. It cannot be both. The sets of rational and irrational
numbers together make up the set of real numbers. As we saw with integers, the real numbers can be divided into
three subsets: negative real numbers, zero, and positive real numbers. Each subset includes fractions, decimals, and
irrational numbers according to their algebraic sign (4- or —). Zero is considered neither positive nor negative.

The real numbers can be visualized on a horizontal number line with an arbitrary point chosen as 0, with negative
numbers to the left of 0 and positive numbers to the right of 0. A fixed unit distance is then used to mark off each
integer (or other basic value) on either side of 0. Any real number corresponds to a unique position on the number line.
The converse is also true: Each location on the number line corresponds to exactly one real number. This is known as
a one-to-one correspondence. We refer to this as the real number line as shown in Figure 2.

o
B LI S . N R R R

-5-4-2-1 0 1 2 3 4 5
Figure 2 The real number line

Example 4  Classifying Real Numbers
Classify each number as either positive or negative and as either rational or irrational. Does the number lie to the left
or the right of 0 on the number line?

a. —13—0 b. V5 c. —V289 d. —6n e. 0.615384615384 ...

Solution

a. — 13—0 is negative and rational. It lies to the left of 0 on the number line.

b. V/5 is positive and irrational. It lies to the right of 0.

c. —V289 = —V172 = —17 is negative and rational. It lies to the left of 0.
d. —6m is negative and irrational. It lies to the left of 0.

e. 0.615384615384 ... is a repeating decimal so it is rational and positive. It lies to the right of 0.
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Iry It #4

Classify each number as either positive or negative and as either rational or irrational. Does the number lie to the left
or the right of 0 on the number line?

47 ] e. 6210735

T3 b, —11.411411411 ... . .
a “ 19 2

Sets of Numbers as Subsets

Beginning with the natural numbers, we have expanded each set to form a larger set, meaning that there is a subset
relationship between the sets of numbers we have encountered so far. These relationships become more obvious when
seen as a diagram, such as Figure 3.

N: the set of natural numbers
W: the set of whole numbers

I: the set of integers

Q: the set of rational numbers
Q’: the set of irrational numbers

Figure 3 Sets of numbers

sets of numbers

The set of natural numbers includes the numbers used for counting: {1, 2, 3, ...

The set of whole numbers is the set of natural numbers plus zero: {0, 1, 2, 3, ...}J.

The set of integers adds the negative natural numbers to the set of whole numbers: {.., =3, -2, —1,0, 1, 2, 3, ... }.
The set of rational numbers includes fractions written as { % ‘m and n are integers and n # O}

The set of irrational numbers is the set of numbers that are not rational, are nonrepeating, and are nonterminating:
{h| h is not a rational number}.

Example 5 Differentiating the Sets of Numbers

Classify each number as being a natural number (N), whole number (W), integer (I), rational number (Q), and/or
irrational number (Q").

a. \/36 b. % c. V73 d. —6 e. 32121121112 ...
Solution
N 174 I Q'
a. V36 =6 X X X X
8 —
b. - =26 X
3
c. V73 X
d. -6 X X

. 3.2121121112... X

o
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TV/V It #5
Classify each number as being a natural number (N), whole number (W), integer (I), rational number (Q), and/or
irrational number (Q").

a. —— b. 0 c. V169 d V24 e. 4.763763763 ...

When we multiply a number by itself, we square it or raise it to a power of 2. For example, 4> = 4 - 4 = 16. We can
raise any number to any power. In general, the exponential notation 4" means that the number or variable a is used

as a factor n times.

n factors
at=a-a-a-...-a

In this notation, a” is read as the nth power of a, where a is called the base and 7 is called the exponent. A term in
exponential notation may be part of a mathematical expression, which is a combination of numbers and operations.

For example, 24 + 6 - % — 4? is a mathematical expression.

To evaluate a mathematical expression, we perform the various operations. However, we do not perform them in any
random order. We use the order of operations. This is a sequence of rules for evaluating such expressions.

Recall that in mathematics we use parentheses ( ), brackets [ ], and braces { } to group numbers and expressions so that
anything appearing within the symbols is treated as a unit. Additionally, fraction bars, radicals, and absolute value
bars are treated as grouping symbols. When evaluating a mathematical expression, begin by simplifying expressions
within grouping symbols.

The next step is to address any exponents or radicals. Afterward, perform multiplication and division from left to right
and finally addition and subtraction from left to right.

Let’s take a look at the expression provided.

24462 — 4
There are no grouping symbols, so we move on to exponents or radicals. The number 4 is raised to a power of 2, so
implify 4% as 16.
simplify 4* as 2462 g
3
2446-2 16
3
Next, perform multiplication or division, left to right.
24+6- 2 16
3
24+4-—16
Lastly, perform addition or subtraction, left to right.
24+4-16
28 — 16
12

Therefore, 24 + 6 - % — 42 =12.

For some complicated expressions, several passes through the order of operations will be needed. For instance, there
may be a radical expression inside parentheses that must be simplified before the parentheses are evaluated. Following
the order of operations ensures that anyone simplifying the same mathematical expression will get the same result.

order of operations

Operations in mathematical expressions must be evaluated in a systematic order, which can be simplified using
the acronym PEMDAS:

P(arentheses)

E(xponents)

M(ultiplication) and D(ivision)

A(ddition) and S(ubtraction)




SECTION 1.1 REAL NUMBERS: ALGEBRA ESSENTIALS

Given a mathematical expression, simplify it using the order of operations.

1. Simplify any expressions within grouping symbols.
2. Simplify any expressions containing exponents or radicals.

3. Perform any multiplication and division in order, from left to right.
4. Perform any addition and subtraction in order, from left to right.

Example 6  Using the Order of Operations

Use the order of operations to evaluate each of the following expressions.

a. (3-2—4(6+2)

14—3.2
T 2.5-32
Solution
a. (3-2)2—4(6+2)=(6)>—4(8)
=36 — 4(8)
=36 — 32
=4
2 2_ 4
b.%f\/1172:5 V9
52— 4
= 5 —3
25— 4
7
21
==_3
7
=3-3
=0

52— 4
b. T—\/II—Z

C. 6—15—8|+34—1)

e. 7(5-3) —2[(6 —3) — 4% + 1

Simplify parentheses.
Simplify exponent.
Simplify multiplication.
Simplify subtraction.

Simplify grouping symbols (radical).
Simplify radical.
Simplify exponent.

Simplify subtraction in numerator.

Simplify division.
Simplify subtraction.

Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step,
the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.

c. 6—|5—8|+34—1)=6—|-3+30)

=6—-3+303)
=6—-349
=349
=12
. ;42333 = 124 _5 i 92 Simplify exponent.

14-6

S 10-9

_ 8

1

=38

Simplify inside grouping symbols.
Simplify absolute value.

Simplify multiplication.

Simplify subtraction.

Simplify addition.

Simplify products.

Simplify differences.

Simplify quotient.

In this example, the fraction bar separates the numerator and denominator, which we simplify separately until

the last step.

e 7(5-3) —2[(6 — 3) — 42 + 1 = 7(15) — 2[(3) — 4?] + 1
=7(15) — 2(3 — 16) + 1
=7(15) — 2(=13) + 1

=105+26+1
=132

Simplify inside parentheses.
Simplify exponent.
Subtract.

Multiply.

Add.
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Try It #6
Use the order of operations to evaluate each of the following expressions.
7-5—8-4
a. V52— & 4 7(5 — 4y b1 — c. [1.8 — 4.3 + 0.4V/15 + 10
0 (53 7] +59 e [(3—8)—4]—(3-8)

Using Properties of Real Numbers

For some activities we perform, the order of certain operations does not matter, but the order of other operations does.
For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does
matter whether we put on shoes or socks first. The same thing is true for operations in mathematics.

Commutative Properties

The commutative property of addition states that numbers may be added in any order without affecting the sum.
a+b=b+a

We can better see this relationship when using real numbers.
(-2)+7=5 and 74+ (=2)=5

Similarly, the commutative property of multiplication states that numbers may be multiplied in any order without

ffecting th duct.
affecting the produc a-b=b-.a

Again, consider an example with real numbers.
(—11)-(—4) =44 and  (—4)-(=11) =44

It is important to note that neither subtraction nor division is commutative. For example, 17 — 5 is not the same as
5 — 17. Similarly, 20 < 5 # 5 + 20.

Associative Properties

The associative property of multiplication tells us that it does not matter how we group numbers when multiplying.
We can move the grouping symbols to make the calculation easier, and the product remains the same.

a(bc) = (ab)c
Consider this example.
(3-4-5=60 and 3-(4-5) =60

The associative property of addition tells us that numbers may be grouped differently without affecting the sum.
at+(b+c=@+b+c
This property can be especially helpful when dealing with negative integers. Consider this example.
(15+(=9]1+23=29 and 15+ [(—9)+23] =29

Are subtraction and division associative? Review these examples.

8—-(3—-15=(@8—-3)—15 64+ (8+4)L(64+-8 4
8—(—12)£5—-15 64+2L8+4
20 # —10 3242

As we can see, neither subtraction nor division is associative.

Distributive Property

The distributive property states that the product of a factor times a sum is the sum of the factor times each term in

the sum.
a-b+o=a-b+a-c
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This property combines both addition and multiplication (and is the only property to do so). Let us consider an

example.
—

4- 124 (=7)]=4-1244-(=7)
=48 + (—28)
=20

Note that 4 is outside the grouping symbols, so we distribute the 4 by multiplying it by 12, multiplying it by —7, and
adding the products.

To be more precise when describing this property, we say that multiplication distributes over addition. The reverse is
not true, as we can see in this example.
6+3B-5=(6+3)6+5)
6+ (15) = (9) - (11)
21499

Multiplication does not distribute over subtraction, and division distributes over neither addition nor subtraction.

A special case of the distributive property occurs when a sum of terms is subtracted.

a—b=a+(-b)

For example, consider the difference 12 — (5 4 3). We can rewrite the difference of the two terms 12 and (5 + 3) by
turning the subtraction expression into addition of the opposite. So instead of subtracting (5 + 3), we add the opposite.
124 (=1 -G +3)

Now, distribute —1 and simplify the result.
12— G5+3)=12+(=1)-(5+3)
=124+ [(-1) -5+ (-1)-3]
=12+ (-8)
=4
This seems like a lot of trouble for a simple sum, but it illustrates a powerful result that will be useful once we introduce
algebraic terms. To subtract a sum of terms, change the sign of each term and add the results. With this in mind, we
can rewrite the last example.
12— G5+3) =12+ (-5-13)
=12+ (-8)
=4

Identity Properties

The identity property of addition states that there is a unique number, called the additive identity (0) that, when added
to a number, results in the original number.

a+0=a
The identity property of multiplication states that there is a unique number, called the multiplicative identity (1) that,
when multiplied by a number, results in the original number.

a-l=a

For example, we have (—6) + 0 = —6 and 23 - 1 = 23. There are no exceptions for these properties; they work for every
real number, including 0 and 1.

Inverse Properties

The inverse property of addition states that, for every real number g, there is a unique number, called the additive

inverse (or opposite), denoted—a, that, when added to the original number, results in the additive identity, 0.
a+(—a)=0

For example, if a = —8, the additive inverse is 8, since (—8) + 8 = 0.

The inverse property of multiplication holds for all real numbers except 0 because the reciprocal of 0 is not defined.

The property states that, for every real number g, there is a unique number, called the multiplicative inverse (or

reciprocal), denoted % , that, when multiplied by the original number, results in the multiplicative identity, 1.

1 _
ﬂa—l
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For example, if a = —%, the reciprocal, denoted %, is —% because

i ()

properties of real numbers
The following properties hold for real numbers a, b, and c.
Addition Multiplication
Commutative Property a+b=b+a a-b=b-a
Associative Property a+b+c)=@+b+c a(be) = (ab)c
Distributive Property a-b+c)=a-b+a-c
There exists a unique real number There exists a unique real number
) called the additive identity, 0, such called the multiplicative identity, 1,
Identity Property
that, for any real number a such that, for any real number a
a+0=a a-l1=a
Every real number a has an additive Every nonzero real number a has a
inverse, or opposite, denoted —a, multiplicative inverse, or reciprocal,
Inverse Property such that denoted é, such that
a+(—a)=0 < 1 > _
a- a)= 1

Example 7  Using Properties of Real Numbers

Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.

a.3.6+3-4 b 5+8+(—8 c 6—(15+9) d.%-(%%) e. 100-[0.75 + (—2.38)]
Solution
a. 3:-6+3-4=3-(64+4) Distributive property
=3.10 Simplify.
=30 Simplify.
b. 5+8)+(—8)=5+[8+(—8)] Associative property of addition
=540 Inverse property of addition
=5 Identity property of addition
c. 6—(15+9) =6+ [(—15) + (—9)] Distributive property
=6+ (—24) Simplify.
=—18 Simplify.
4 (2 7 4 (7 2
d. —. (— . —) == <— . —) Commutative property of multiplication
7 \3 4/ 7 \4 3 Property P
4 7\ 2 L. T
= (; . Z) . 5 Associative property of multiplication
2 1.
=1 3 Inverse property of multiplication
= % Identity property of multiplication
e. 100-[0.75 + (—2.38)] =100 -0.75 + 100 - (—2.38) Distributive property
=75+ (—238) Simplify.
= —163 Simplify.
TV/V It #7

Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.

a_(,?).[n.(,i)] b 5-(62+04) ¢ 18— (7— 15) d.%+[%+<{—;>] e. 6-(—3)+6-3




SECTION 1.1 REAL NUMBERS: ALGEBRA ESSENTIALS

Evaluating Algebraic Expressions

So far, the mathematical expressions we have seen have involved real numbers only. In mathematics, we may see
expressions such as x + 5, %nrﬂ or V2m’n®. In the expression x + 5, 5 is called a constant because it does not vary
and x is called a variable because it does. (In naming the variable, ignore any exponents or radicals containing the

variable.) An algebraic expression is a collection of constants and variables joined together by the algebraic operations
of addition, subtraction, multiplication, and division.

We have already seen some real number examples of exponential notation, a shorthand method of writing products
of the same factor. When variables are used, the constants and variables are treated the same way.
(-3 =(-3)-(-3)-(-3) - (-3)- (-3) X = Xoxoxexox
2-77=2-7-2-7-2-7) b2’ = (y2) - (y2) - (y2)
In each case, the exponent tells us how many factors of the base to use, whether the base consists of constants or
variables.

Any variable in an algebraic expression may take on or be assigned different values. When that happens, the value of
the algebraic expression changes. To evaluate an algebraic expression means to determine the value of the expression
for a given value of each variable in the expression. Replace each variable in the expression with the given value, then
simplify the resulting expression using the order of operations. If the algebraic expression contains more than one
variable, replace each variable with its assigned value and simplify the expression as before.

Example 8  Describing Algebraic Expressions

List the constants and variables for each algebraic expression.

a. x+5 b. %nﬁ c. V2m*n?
Solution
Constants Variables
a. x+5 5 X
4 4
b. —nar? —, 7T r
3 3
c 2mPn? 2 m, n
TV)/ It #8

List the constants and variables for each algebraic expression.

a. 2nr(r + h) b. 2(L+ W) c. 4°+y

Example 9 Evaluating an Algebraic Expression at Different Values

Evaluate the expression 2x — 7 for each value for x.

a. x=0 b. x=1 C'XZE d. x=—-4
Solution
a. Substitute 0 for x. 2x —7=2(0)—7
=0—7
=_7
b. Substitute 1 for x. 2x—7=2(1)-7
=2-7

=5

11



12

1
c. Substitute E for x.
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2x77:2<l>—7

2
=1-7
——6
d. Substitute —4 for x. 2x —7=2(—4) -7
=_-8-7
=-15
Try It #9
Evaluate the expression 11 — 3y for each value for y.
a y=2 b. y=0 c.y:% d y=-5
Example 10 Evaluating Algebraic Expressions
Evaluate each expression for the given values.
a. x+5forx=-5 b. 2tt—1 fort=10 c. %ﬂr3forr:5

d.atab+bfora=11,b=-8

Solution
a. Substitute —5 for x.

b. Substitute 10 for ¢.

c. Substitute 5 for r.

d. Substitute 11 for a and —8 for b.

e. Substitute 2 for m and 3 for n.

e. V2mPn’form=2,n=3

Xx+5=(-5)+5

=0
t (10
20—1  2(10) — 1
_ 10
20—1
_10
19
%nr3:%n(5)3

4
= Z7(125
3 n(125)

500

3

a-+ab+b=(11) 4 (11)(—8) + (—8)
=11-88—38
= -85

Vomin: = V2(2)*(3)?
=V2(8)(9)
=V144
12

Tr)/ It #10

Evaluate each expression for the given values.

+3
3
d. (p’qPforp=-2,9=3

a

fory=5

b.7 —2tfort= -2 c.%nrzforrzll

1

e.4(m —n) — 5(n — m) form = ,n:§

[SSRR S}
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Formulas

An equation is a mathematical statement indicating that two expressions are equal. The expressions can be numerical
or algebraic. The equation is not inherently true or false, but only a proposition. The values that make the equation
true, the solutions, are found using the properties of real numbers and other results. For example, the equation
2x 4+ 1 = 7 has the unique solution x = 3 because when we substitute 3 for x in the equation, we obtain the true
statement 2(3) +1="7.

A formula is an equation expressing a relationship between constant and variable quantities. Very often, the equation
is a means of finding the value of one quantity (often a single variable) in terms of another or other quantities. One
of the most common examples is the formula for finding the area A of a circle in terms of the radius r of the circle:
A = nir?. For any value of 7, the area A can be found by evaluating the expression 772

Example 11 Using a Formula

A right circular cylinder with radius r and height h has the surface area S (in square units) given by the formula
S = 2ar(r + h). See Figure 4. Find the surface area of a cylinder with radius 6 in. and height 9 in. Leave the answer

in terms of 7.
TN

~_

Figure 4 Right circular cylinder
Solution Evaluate the expression 27r(r + h) for r = 6 and h = 9.
S=2nr(r+h)
= 2n(6)[(6) + (9)]
= 271(6)(15)
= 1807

The surface area is 1807 square inches.

Iry It #1171

A photograph with length L and width W is placed in a matte of width 8 centimeters (cm). The area of the matte
(in square centimeters, or cm?) is found to be A = (L + 16)(W + 16) — L - W. See Figure 5. Find the area of a matte
for a photograph with length 32 cm and width 24 cm.

8 cm

Figure 5
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Simplifying Algebraic Expressions

Sometimes we can simplify an algebraic expression to make it easier to evaluate or to use in some other way. To do
so, we use the properties of real numbers. We can use the same properties in formulas because they contain algebraic
expressions.

Example 12 Simplifying Algebraic Expressions

Simplify each algebraic expression.

a 3x—2y+x—3y—7 b. 2r—53—-r+4 c. <4t—§s>—<%t+25> d. 2mn —5m + 3mn+n
Solution

a. 3x —2y+x—3y—7=3x+x—-2y—3y—7 Commutative property of addition
=4x—5y—7 Simplify.

b. 2r—5B3—1r)+4=2r—15+5r+4 Distributive property
=2r+5y—15+4 Commutative property of addition
=7r—11 Simplify.

5 2 5 2 T
c. 4t — 4(1‘ - —s> - (—t + 25> =4t—>s— >t—2s Distributive property
4 3 4 3
=4t — %t — %s —2s Commutative property of addition
_ 0, 13 ol
=3 t 2S Simplify.
d. mn — 5m + 3mn +n=2mn+ 3mn —5m+n Commutative property of addition
=5mn—5m+n Simplify.
Try It #12
Simplify each algebraic expression.
a. %y—Z(%)H—Z) b.%—z—%ﬂ c. 4p(q— 1) +q(1 — p) d. 97 — (s +21) + (6 —s)

Example 13 Simplifying a Formula
A rectangle with length L and width W has a perimeter P given by P =L + W + L + W. Simplify this expression.

Solution
P=L+W+L+W
P=L+L+W+W Commutative property of addition
P=2L42W Simplify.
P=2(L+ W) Distributive property
Try It #13

If the amount P is deposited into an account paying simple interest r for time t, the total value of the deposit A is given
by A = P + Prt. Simplify the expression. (This formula will be explored in more detail later in the course.)

Access these online resources for additional instruction and practice with real numbers.

e Simplify an Expression (http://openstaxcollege.org/l/simexpress)
e FEvaluate an Expression1 (http://openstaxcollege.org/l/ordofoper1)
e FEvaluate an Expression2 (http://openstaxcollege.org/l/ordofoper2)
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1.1 SECTION EXERCISES

VERBAL

1. Is V2 an example of a rational terminating, rational
repeating, or irrational number? Tell why it fits that

category.

3. What do the Associative Properties allow us to do
when following the order of operations? Explain

your answer.

NUMERIC

For the following exercises, simplify the given expression.

4.10+2-(5—3)

84—6+2-7
12. (4 +5)*+3
16.9 — 18 +— 3?

20.64+-(8+4-2)

24.(15-7)-(3-7)

ALGEBRAIC

5.6 -2 —(81~=3%

9.3(5—8)

13.3—-12-2+19

17.14-3+7 -6

21. 9 + 4(2?)

25.2-4—9(—1)

For the following exercises, solve for the variable.

28. 8(x + 3) = 64

32, 49(7 — 2)* = —200

36.43 — 1)x=14

For the following exercises, simplify the expression.

38. 4x + x(13 — 7)
42. 5] - 3]-(9 —6)

9
46. | =t —4)2
(6 )

50, 8(3 — m) + 1(—8)

20. 4y + 8 =2y
33, —(2x)*+1=-3

37. i(sw —4)=0

39.2y — (4)’y — 11
43.7z2—3+4z-6°

47.6 +12b—3-6b

51. 9x + 4x(2 + 3) — 4(2x + 3x)

2. What is the order of operations? What acronym is
used to describe the order of operations, and what

6.

10.

14.

18.

22,

26.

30.

34.

40.

44

48

does it stand for?

18 + (6 — 8)°
44+6—10+2
24+8:-7+4
9—-(3+11)-2
(12 +3-3)?

1
42 —25- =
5

(1la+3) — 18a = —4

8(2+4)—15b=0b

a .
;(64)—12a76
4-34+18x+9—12

18y — 2(1 + 7y)

1.

15.

19.

23.

27.

31.

35.

4.

45,

49.

52.

=216+ (8 — 4)]?

12+-(36+9)+6

54+ (6+4)—11

6+2-2—-1
25 +52—-7
123—-1)+6

4z — 2z(1 +4) =36

2(11c — 4) =36

8b — 4b(3) + 1
9(y+8) —27

4 2
= .27
(9) .

52 — 4(3x)

15
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CHAPTER 1 PREREQUISITES

REAL-WORLD APPLICATIONS

For the following exercises, consider this scenario: Fred earns $40 mowing lawns. He spends $10 on mp3s, puts half
of what is left in a savings account, and gets another $5 for washing his neighbor’s car.

53. Write the expression that represents the number of ~ 54. How much money does Fred keep?
dollars Fred keeps (and does not put in his savings
account). Remember the order of operations.

For the following exercises, solve the given problem.

55. According to the U.S. Mint, the diameter of a 56. Jessica and her roommate, Adriana, have decided
quarter is 0.955 inches. The circumference of the to share a change jar for joint expenses. Jessica put
quarter would be the diameter multiplied by 7. Is her loose change in the jar first, and then Adriana
the circumference of a quarter a whole number, a put her change in the jar. We know that it does not
rational number, or an irrational number? matter in which order the change was added to the

jar. What property of addition describes this fact?

For the following exercises, consider this scenario: There is a mound of g pounds of gravel in a quarry. Throughout the
day, 400 pounds of gravel is added to the mound. Two orders of 600 pounds are sold and the gravel is removed from
the mound. At the end of the day, the mound has 1,200 pounds of gravel.

57. Write the equation that describes the situation. 58. Solve for g.

For the following exercise, solve the given problem.

59. Ramon runs the marketing department at his company. His department gets a budget every year, and
every year, he must spend the entire budget without going over. If he spends less than the budget, then his
department gets a smaller budget the following year. At the beginning of this year, Ramon got $2.5 million
for the annual marketing budget. He must spend the budget such that 2,500,000 — x = 0. What property of
addition tells us what the value of x must be?

TECHNOLOGY
For the following exercises, use a graphing calculator to solve for x. Round the answers to the nearest hundredth.
60. 0.5(12.3)> — 48x = % 61. (0.25 — 0.75)% — 7.2 = 9.9
EXTENSIONS
62. If a whole number is not a natural number, what 63. Determine whether the statement is true or false:
must the number be? The multiplicative inverse of a rational number is
also rational.
64. Determine whether the statement is true or false: 65. Determine whether the simplified expression is
The product of a rational and irrational number is rational or irrational: VV—18 — 4(5)(—1).
always irrational.
66. Determine whether the simplified expression is 67. The division of two whole numbers will always result
rational or irrational: V' —16 + 4(5) + 5. in what type of number?

68. What property of real numbers would simplify the
following expression: 4 + 7(x — 1)?



SECTION 1.2 EXPONENTS AND SCIENTIFIC NOTATION

LEARNING OBJECTIVES

In this section students will:

e Use the product rule of exponents.

e Use the quotient rule of exponents.

e Use the power rule of exponents.

e Use the zero exponent rule of exponents.

e Use the negative rule of exponents.

¢ Find the power of a product and a quotient.
¢ Simplify exponential expressions.

e Use scientific notation.

1.2 EXPONENTS AND SCIENTIFIC NOTATION

Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not
be obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be
perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536
pixels, which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits
per frame, and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information
used to film a one-hour (3,600-second) digital film is then an extremely large number.

Using a calculator, we enter 2,048 - 1,536 - 48 - 24 - 3,600 and press ENTER. The calculator displays 1.304596316E13.
What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a maximum of
approximately 1.3 - 10" bits of data in that one-hour film. In this section, we review rules of exponents first and then
apply them to calculations involving very large or small numbers.

Consider the product x* - x*. Both terms have the same base, x, but they are raised to different exponents. Expand each
expression, and then rewrite the resulting expression.
3 factors 4 factors
X ext=x-Xx"X"X'X"X'X
7 factors
=X XX X X XX

= x7
The resultis that x° - x* = x> "4 =x".
Notice that the exponent of the product is the sum of the exponents of the terms. In other words, when multiplying
exponential expressions with the same base, we write the result with the common base and add the exponents. This
is the product rule of exponents.

ar-a'=am"t"
Now consider an example with real numbers.
23 .04 — 93+4 — )7
We can always check that this is true by simplifying each exponential expression. We find that 2° is 8, 2 is 16, and 2’

is 128. The product 8 - 16 equals 128, so the relationship is true. We can use the product rule of exponents to simplify
expressions that are a product of two numbers or expressions with the same base but different exponents.

the product rule of exponents
For any real number a and natural numbers m and #, the product rule of exponents states that

at - at=qgm"t"

17



CHAPTER 1 PREREQUISITES

Example 1  Using the Product Rule
Write each of the following products with a single base. Do not simplify further.
a. t°-t3 b. (—=3)°-(=3) c. x?-x°-x°
Solution  Use the product rule to simplify each expression.
a. - P=pr3=¢
b. (=3)*-(=3)=(=3)"- (=3)' = (=3)" "' = (-3)°
c x*-x’-x?
At first, it may appear that we cannot simplify a product of three factors. However, using the associative property
of multiplication, begin by simplifying the first two.

X2 x5 a3 =(x2x%) - x3= (k25 xP=x7 - xP=x7F3 = x1
Notice we get the same result by adding the three exponents in one step.

X2 x5 3= x2H5+3 — 410

Try It #1
Write each of the following products with a single base. Do not simplify further.
2\* (2
kSR o (3)(3) R
a 5 5 c

Using the Quotient Rule of Exponents

The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but

m

different exponents. In a similar way to the product rule, we can simplify an expression such as ))}/—n, where m > n.
9

Consider the example )LS Perform the division by canceling common factors.
y

Y _YYYyyyyyy
Y yyyyy
VYIS Yy
IAVAS S S
_yryyy
- 1
:y4
Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend.
A gmen
aYl

In other words, when dividing exponential expressions with the same base, we write the result with the common base
and subtract the exponents. X

%=f*=¢

For the time being, we must be aware of the condition m > n. Otherwise, the difference m — n could be zero or negative.
Those possibilities will be explored shortly. Also, instead of qualifying variables as nonzero each time, we will simplify
matters and assume from here on that all variables represent nonzero real numbers.

the quotient rule of exponents
For any real number a and natural numbers m and n, such that m > n, the quotient rule of exponents states that

Example 2  Using the Quotient Rule

Write each of the following products with a single base. Do not simplify further.
) L R € VD)
(-2 T V2
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Solution Use the quotient rule to simplify each expression.

(=2)" -
. — (=2)4-9 — (—2)5
A
b. ﬁ: t23715 — t8
tlS
5
. M: (v2) ' =(2v2)'
V2
Try It #2
Write each of the following products with a single base. Do not simplify further.
75 _ 2)6 2\5
a. = b. =3y C. &)
s -3 (ef?)?

Using the Power Rule of Exponents

Suppose an exponential expression is raised to some power. Can we simplify the result? Yes. To do this, we use the power
rule of exponents. Consider the expression (x?)’. The expression inside the parentheses is multiplied twice because it has

an exponent of 2. Then the result is multiplied three times because the entire expression has an exponent of 3.
3 factors

(x?) = (x?) - (x?) - (x?)
3 factors
o ( 2 factors > . < 2 factors ) . ( 2 factors )
T\ Xxx XX XX

=X X" X"X"X"X

= x6
The exponent of the answer is the product of the exponents: (x?)* = x?'3 = x°. In other words, when raising an
exponential expression to a power, we write the result with the common base and the product of the exponents.
(a m)n =gm"
Be careful to distinguish between uses of the product rule and the power rule. When using the product rule, different

terms with the same bases are raised to exponents. In this case, you add the exponents. When using the power rule, a
term in exponential notation is raised to a power. In this case, you multiply the exponents.

Product Rule Power Rule
53.5¢ — 53+4 = g but ()% = 534 — 52
x5.x2 = x5+2 = 57 but (x5 = x52 — 410
(361)7 . (3a)10 — (3a)7+ 10 — (3a)17 but ((3“)7)10 — (3a)7» 10 — (3a)70

the power rule of exponents
For any real number a and positive integers m and », the power rule of exponents states that

(am)n = am~n

Example 3  Using the Power Rule
Write each of the following products with a single base. Do not simplify further.
a. (x?)’ b. ((20°)° c. ((=3)"
Solution  Use the power rule to simplify each expression.
a. (x) =x*"=x"
b. ((2t)°)* = (2t)°* = (20"
& () = (3 = (-3

19
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Try It #3
Write each of the following products with a single base. Do not simplify further.

a. ((3y)°)° b. (£°) c. (=Y

Using the Zero Exponent Rule of Exponents

Return to the quotient rule. We made the condition that m > n so that the difference m — n would never be zero or
negative. What would happen if m = »? In this case, we would use the zero exponent rule of exponents to simplify
the expression to 1. To see how this is done, let us begin with an example.

tt £
—_— == l
s A
If we were to simplify the original expression using the quotient rule, we would have
t_s — t8 -8 — tO

. I . .
If we equate the two answers, the result is t° = 1. This is true for any nonzero real number, or any variable representing

a real number. o
a=1

The sole exception is the expression 0°. This appears later in more advanced courses, but for now, we will consider the
value to be undefined.

the zero exponent rule of exponents
For any nonzero real number a, the zero exponent rule of exponents states that

a’=1

Example 4  Using the Zero Exponent Rule

Simplify each expression using the zero exponent rule of exponents.

2l I . I 5(rs?)?
o Cox " (R - Gk C ey
Solution  Use the zero exponent and other rules to simplify each expression.
cé B
a. = =773
= CO
2.5 5
b X _ 3. X
x° x°
= _3.x5-5
= 3.0
= _3.1
=-3
(R (R Use th duct rule in the d inat
. = n nominator.
c -G R se the product rule in the denominator.
(j?k)* .
= —(jzk)“ Simplify.
= (k) Use the quotient rule.
= (j*k)° Simplify.
=1
2)2
5((r_sz))2 = 5(rs?)?2 Use the quotient rule.
rs
= 5(rs?)° Simplify.
=5-1 Use the zero exponent rule.

=5 Simplify.
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TV/V It #4
Simplify each expression using the zero exponent rule of exponents.
t7 deZ 11 4, 2 3, 44
a. — b {49 c. ¥ 7 d. L1
t7 z(deZ)ll ‘W6 tz . tS

Another useful result occurs if we relax the condition that m > » in the quotient rule even further. For example, can we

3
simplify % ? When m < n —that is, where the difference m — n is negative—we can use the negative rule of exponents

to simplify the expression to its reciprocal.

3
Divide one exponential expression by another with a larger exponent. Use our example,

E.
W ___h-h-h
h> h-h-h-h-h
__h-h-h
h-h-h-h-h
=_1
h-h
_ 1
G
If we were to simplify the original expression using the quotient rule, we would have
E — -5
h5
= h_2

: - 1 . . .
Putting the answers together, we have h 2 = W This is true for any nonzero real number, or any variable representing
a nonzero real number.

A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction
bar—from numerator to denominator or vice versa.
1 1
a"=—anda" = —
a

—n

We have shown that the exponential expression a” is defined when n is a natural number, 0, or the negative of a natural
number. That means that an is defined for any integer n. Also, the product and quotient rules and all of the rules we
will look at soon hold for any integer n.

the negative rule of exponents
For any nonzero real number a and natural number 7, the negative rule of exponents states that

1
w1
at=_

Example 5  Using the Negative Exponent Rule

Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

A z2.z (—=5t°)*
b. c.
610 z* (_5t3)8
Solution
6 —pg3-0_—9g7= 2
610 97
Z .z Z2+1
b. z4 = z4
(—513)? 1
. = (=548 = (—5¢°
© Capp T = =y

21
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Iry It #5
Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.
_2f)2 47 4
a. ﬂ b. f C. &
(—31)? fe-f 5k7

Example 6  Using the Product and Quotient Rules

Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.

. _ —7z
a. b>. bt b. (—x)°- (—x)—° c. 72y
Solution
a b bt=ht=po= -
. s
b. (0 () = (97 = (-9 = 1
—7z (—7Z)1 1
. = :—7 1-5— —7 —
e & 2T
Try It #6
Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.
12
a. t'"-tf b. 25
2513

Finding the Power of a Product

To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents,
which breaks up the power of a product of factors into the product of the powers of the factors. For instance, consider
(pg)°. We begin by using the associative and commutative properties of multiplication to regroup the factors.

3 factors

(pa)’ = (pq) - (pq) - (pq)
=p-q-p-q:p-q
3factors 3 factors
=p-q
In other words, (pq)* =p* - ¢*.

the power of a product rule of exponents
For any nonzero real number a and natural number #, the negative rule of exponents states that

(ab)" = a" b

Example 7  Using the Power of a Product Rule

Simplify each of the following products as much as possible using the power of a product rule. Write answers with
positive exponents.

a. (ab?? b. (26)" c. (2w’ !

d. W e. (e*f?y

Solution Use the product and quotient rules and the new definitions to simplify each expression.
(ab?) = (@) - (b =a'? - b**=a’°

. (28)5 = (2)'3 - ()5 = 25015 = 32,7681

d

-2

¢ (2w = (=20 W)= —8-w'3= 8w’
PR 1 _ 1

(=72 (=7 - (¢ 2,401z f
e. (6—72)7 = (e?) - (f2)7 —e 27 'f2'7 — efmfm — ;
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TV)/ It #7
Simplify each of the following products as much as possible using the power of a product rule. Write answers with
positive exponents.
1
a. (g?h’)y b. (5¢t)° c. (—3y°)° d. e. (r’s2)?
@h) (50) (~359) i (rs?)

Finding the Power of a Quotient

To simplify the power of a quotient of two expressions, we can use the power of a quotient rule, which states that
the power of a quotient of factors is the quotient of the powers of the factors. For example, let’s look at the following
example. fu

(6_2]62)7 =—
(4

Let’s rewrite the original problem differently and look at the result.

Y
f14
el4
It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule.

-

€
B (f2)7
(e
:f2~7

o7
_f

el4

the power of a quotient rule of exponents
For any real numbers a and b and any integer #, the power of a quotient rule of exponents states that

(5) =%

Example 8  Using the Power of a Quotient Rule

Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with
4 \3
« (o)

p 6
b ()
Solution

( 4 )3 4 64 64

; = (') = JSTRE ;
b p\s o p° prtp°
: (q3> - (qa)s - q3-6 qls

S R = |
c. ( )

£ - (t2)27 - 227 - 54 - 54

positive exponents.

—1\2 .
c. <?> d. (k) e. (m32n7?%)>

- (k) Y = E

3 \4 ('3)4 s3.4 :12
d. (j%%“:(%) S A

e (m*zn*2)3:< 1 )3:( 13 ): 1 _ 1 _ 1
m2n2 (m2n2)3 (m2)3(n2)3 m2~3 . n2~3 m61’l6
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Try It #8

Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with

positive exponents.
b. (3) c. (‘—1> d. (p~ig’)® e. (cd)
Simplifying Exponential Expressions

Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the
expression more simply with fewer terms. The rules for exponents may be combined to simplify expressions.

Example 9  Simplifying Exponential Expressions

Simplify each expression and write the answer with positive exponents only.

-1 2
a. (6mn1y b. 175174172« (” z d. (—2a°b")(5a72b?)
e
4 —4 3 2)5
e. (2v2) (v2) f. (3w)
(6w2)*
Solution
a. (6m?*n=1)® = (6)’(m*>*(n1)° The power of a product rule
=6’m?3n!3 The power rule
=216mn=? Simplify.
6
= 21::” The negative exponent rule
b. 17°-17*. 1773 =173 The product rule
=177 Simplify.
_ L or L The negative exponent rule
17> 289
1., \2 —1,,))2
c. ( 4y ) = S The power of a quotient rule
V71 (V71)2
u?
=5 The power of a product rule
=y 2 The quotient rule
=uv! Simplify.
vt .
= The negative exponent rule
d. (—2a°bY)(5a7b>) =—-2-5-a*-a2-b'-b? Commutative and associative laws of multiplication
=—-10-a*>"2-b'*? The product rule
= —10ab Simplify.
4 —4 —
e. (v2)(evz) =(v2)'™! The product rule
=(v2) Simplify.
=1 The zero exponent rule

(3u?)’ B 35. (w2)’
: (6w2)? - 6% - (w2)?

The power of a product rule

540,25

= 63; v:V‘Z = The power rule

243w1° . .
= Simplify.

36w* PHY

27w - , ,
R The quotient rule and reduce fraction
_ 27wt

) Simplify.
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Try It #9

Simplify each expression and write the answer with positive exponents only.
ef
f*l

)2 d. (9r=s%)(3r5%) e. (étw*)%(

2]-)4
é1‘w‘2>3 f S

9

a. Quv?)3 b. x-x2-x c. ( 5

Recall at the beginning of the section that we found the number 1.3 x 10" when describing bits of information in
digital images. Other extreme numbers include the width of a human hair, which is about 0.00005 m, and the radius
of an electron, which is about 0.00000000000047 m. How can we effectively work read, compare, and calculate with
numbers such as these?

A shorthand method of writing very small and very large numbers is called scientific notation, in which we express
numbers in terms of exponents of 10. To write a number in scientific notation, move the decimal point to the right of
the first digit in the number. Write the digits as a decimal number between 1 and 10. Count the number of places n
that you moved the decimal point. Multiply the decimal number by 10 raised to a power of #. If you moved the decimal
left as in a very large number, n is positive. If you moved the decimal right as in a small large number, # is negative.

For example, consider the number 2,780,418. Move the decimal left until it is to the right of the first nonzero digit,

hich is 2.
WhE s 6 places left
—

2,780418 —— 2.780418
YV,

We obtain 2.780418 by moving the decimal point 6 places to the left. Therefore, the exponent of 10 is 6, and it is positive
because we moved the decimal point to the left. This is what we should expect for a large number.

2.780418 x 10°
Working with small numbers is similar. Take, for example, the radius of an electron, 0.00000000000047 m. Perform
the same series of steps as above, except move the decimal point to the right.

13 places right
————
0.00000000000047 —— 09}(\)}(\)}(\)}(\)}(\)}(\)}(\)}(\)}(\)}(\)}(\)}%7

Be careful not to include the leading 0 in your count. We move the decimal point 13 places to the right, so the exponent
of 10 is 13. The exponent is negative because we moved the decimal point to the right. This is what we should expect
for a small number.

4.7 x 107"

scientific notation
A number is written in scientific notation if it is written in the form a x 10", where 1 < |a| < 10 and # is an integer.

Example 10 Converting Standard Notation to Scientific Notation

Write each number in scientific notation.
a. Distance to Andromeda Galaxy from Earth: 24,000,000,000,000,000,000,000 m
b. Diameter of Andromeda Galaxy: 1,300,000,000,000,000,000,000 m
c. Number of stars in Andromeda Galaxy: 1,000,000,000,000
d. Diameter of electron: 0.00000000000094 m
e. Probability of being struck by lightning in any single year: 0.00000143

Solution

a. 24,000,000,000,000,000,000,000 m
«— 22 places
24 x 107 m

b. 1,300,000,000,000,000,000,000 m
«— 21 places
1.3 X 10 m

' (7]’1’1]{2)2
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c. 1,000,000,000,000
«— 12 places
1 x 10"

d. 0.00000000000094 m
— 13 places
94 x 107®m

e. 0.00000143
— 6 places
1.43 x 10~°

Analysis  Observe that, if the given number is greater than 1, as in examples a-c, the exponent of 10 is positive; and if
the number is less than 1, as in examples d-e, the exponent is negative.

Iry It #10

Write each number in scientific notation.

a. U.S. national debt per taxpayer (April 2014): $152,000

. World population (April 2014): 7,158,000,000

World gross national income (April 2014): $85,500,000,000,000

. Time for light to travel 1 m: 0.00000000334 s

Probability of winning lottery (match 6 of 49 possible numbers): 0.0000000715

Converting from Scientific to Standard Notation

To convert a number in scientific notation to standard notation, simply reverse the process. Move the decimal # places
to the right if n is positive or n places to the left if n is negative and add zeros as needed. Remember, if 7 is positive, the
value of the number is greater than 1, and if # is negative, the value of the number is less than one.

Example 11 Converting Scientific Notation to Standard Notation
Convert each number in scientific notation to standard notation.

a. 3.547 x 10" b. —2 x 10°¢ c. 791 x 1077 d. —8.05 x 1012
Solution

a. 3.547 x 10"
3.54700000000000
— 14 places
354,700,000,000,000

b. —2 x 10°
—2.000000
— 6 places
-2,000,000

c. 791 x 1077
0000007.91
«— 7 places
0.000000791

d. —8.05 x 107*
—000000000008.05
«— 12 places
—0.00000000000805
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Iry It #1171

Convert each number in scientific notation to standard notation.
a. 7.03 x 10° b. —8.16 x 10" c. —39x101 d 8 x10°°

Using Scientific Notation in Applications

Scientific notation, used with the rules of exponents, makes calculating with large or small numbers much easier
than doing so using standard notation. For example, suppose we are asked to calculate the number of atoms in 1 L of
water. Each water molecule contains 3 atoms (2 hydrogen and 1 oxygen). The average drop of water contains around
1.32 x 10* molecules of water and 1 L of water holds about 1.22 x 10* average drops. Therefore, there are approximately
3 x (1.32 x 10?") x (1.22 x 10*) =~ 4.83 x 10* atoms in 1 L of water. We simply multiply the decimal terms and add
the exponents. Imagine having to perform the calculation without using scientific notation!

When performing calculations with scientific notation, be sure to write the answer in proper scientific notation.
For example, consider the product (7 x 10%) x (5 x 10%) = 35 x 10". The answer is not in proper scientific notation
because 35 is greater than 10. Consider 35 as 3.5 x 10. That adds a ten to the exponent of the answer.

(35) x 101 = (3.5 x 10) x 10 = 3.5 x (10 x 10") = 3.5 x 10"

Example 12 Using Scientific Notation
Perform the operations and write the answer in scientific notation.
a. (8.14 x 1077) (6.5 x 10')
b. (4 x 10°) = (—1.52 x 10°)
c. (2.7 x 10%) (6.04 x 107)
d. (1.2 x 108) + (9.6 x 10°)
e. (3.33 x 10%) (=105 x 107) (5.62 x 10%)

Solution

a. (8.14 x 107) (6.5 x 10'%) = (8.14 x 6.5) (10”7 x 10')

= (52.91) (10°)

=5.291 x 10*

b. (4 x 10°) = (—1.52 x 10°) = (L) (1_05)
~1.52) \10°
~ (=2.63) (10%)
=263 x 10

c. (2.7 x 10°) (6.04 x 107) = (2.7 x 6.04) (10° x 10"

= (16.308) (10%)

=1.6308 x 10

d. (1.2 x 10%) = (9.6 x 10°) = <£> (1_08)
9.6/ \10°

= (0.125) (10%)
=1.25 x 10?

Commutative and associative
properties of multiplication

Product rule of exponents

Scientific notation

Commutative and associative
properties of multiplication

Quotient rule of exponents
Scientific notation

Commutative and associative
properties of multiplication

Product rule of exponents

Scientific notation

Commutative and associative
properties of multiplication

Quotient rule of exponents

Scientific notation

e. (3.33 x 10*)(—1.05 x 107) (5.62 x 10°) = [3.33 x (—1.05) x 5.62] (10* x 107 x 10°)

~ (—19.65) (10'°)
= —1.965 x 107
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Try It #12

Perform the operations and write the answer in scientific notation.
a. (=7.5 x 109(1.13 x 1072

b. (1.24 x 10") = (1.55 x 10%)

. (3.72 x 10°)(8 x 10°)

d. (9.933 x 10%) + (—2.31 x 107)

e. (—6.04 x 10°)(7.3 x 10%)(—2.81 x 10?)

o

Example 13 Applying Scientific Notation to Solve Problems

In April 2014, the population of the United States was about 308,000,000 people. The national debt was about
$17,547,000,000,000. Write each number in scientific notation, rounding figures to two decimal places, and find the
amount of the debt per U.S. citizen. Write the answer in both scientific and standard notations.

Solution The population was 308,000,000 = 3.08 x 10°.
The national debt was $17,547,000,000,000 ~ $1.75 x 10%.
To find the amount of debt per citizen, divide the national debt by the number of citizens.
(1.75 x 10°) = (3.08 x 10%) = (ﬂ) x (ﬁ)
3.08 108
~0.57 x 10°
=57 x10*

The debt per citizen at the time was about $5.7 x 10*, or $57,000.

Iry It #13

An average human body contains around 30,000,000,000,000 red blood cells. Each cell measures approximately
0.000008 m long. Write each number in scientific notation and find the total length if the cells were laid end-to-end.
Write the answer in both scientific and standard notations.

Access these online resources for additional instruction and practice with exponents and scientific notation.

e Exponential Notation (http://openstaxcollege.org/l/exponnot)

e Properties of Exponents (http://openstaxcollege.org/l/exponprops)

e Zero Exponent (http://openstaxcollege.org/l/zeroexponent)

e Simplify Exponent Expressions (http://openstaxcollege.org/l/exponexpres)
e (Quotient Rule for Exponents (http://openstaxcollege.org/l/quotofexpon)

e Scientific Notation (http://openstaxcollege.org/l/scientificnota)

e (Converting to Decimal Notation (http://openstaxcollege.org/l/decimalnota)


http://openstaxcollege.org/l/exponnot
http://openstaxcollege.org/l/exponprops
http://openstaxcollege.org/l/zeroexponent
http://openstaxcollege.org/l/exponexpres
http://openstaxcollege.org/l/quotofexpon
http://openstaxcollege.org/l/scientificnota
http://openstaxcollege.org/l/decimalnota
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1.2 SECTION EXERCISES

VERBAL
1. Is 2° the same as 3*? Explain. 2. When can you add two exponents?
3. What is the purpose of scientific notation? 4. Explain what a negative exponent does.
NUMERIC
For the following exercises, simplify the given expression. Write answers with positive exponents.
5. 92 6. 1572 7.32-3° 8.4'+-4
9.(2) " 10. (5 — 8)° 1M1+ 114 12.6°- 67
13. (8°)° 14,5225

For the following exercises, write each expression with a single base. Do not simplify further. Write answers with

positive exponents. 5
6 -
15. 4% - 43 = 44 6.~ 17. (120 - 12)" 18.10° = (10'%) °

19, 77673 20, (3° = 3%’

For the following exercises, express the decimal in scientific notation.

21. 0.0000314 22. 148,000,000

For the following exercises, convert each number in scientific notation to standard notation.

23. 1.6 x 10% 24.9.8 x 10~°
ALGEBRAIC
For the following exercises, simplify the given expression. Write answers with positive exponents.
-5
a’a? mn? 3 42 x
25 < %% 27. (bc*) 28. ( e
29. ab? = d-3 0,5) " 1m4 2 —4(12)
9. ab? +— 30. (W'x°) 3.; 32. y4(y?)
p 74612 3 2
33. 34. (I x w)? 35. (y)) +x™ 4
IE (I x w) () 3. (23>
2 23
37. 5*m + 5°m 38. M 39. a0, (mas) ——
)fl (3a)*2 mSaZ
M. (b 2. (xyB + ") 43. (92°) 'y
REAL-WORLD APPLICATIONS
44, To reach escape velocity, a rocket must travel at the ~ 45. A dime is the thinnest coin in U.S. currency. A
rate of 2.2 x 10° ft/min. Rewrite the rate in standard dime’s thickness measures 2.2 x 10° m. Rewrite the
notation. number in standard notation.

46. The average distance between Earth and the Sun is 47. A terabyte is made of approximately
92,960,000 mi. Rewrite the distance using scientific 1,099,500,000,000 bytes. Rewrite in scientific
notation. notation.
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48. The Gross Domestic Product (GDP) for the United 49. One picometer is approximately 3.397 x 107! in.
States in the first quarter of 2014 was $1.71496 x 10" Rewrite this length using standard notation.
Rewrite the GDP in standard notation.

50. The value of the services sector of the U.S. economy
in the first quarter of 2012 was $10,633.6 billion.
Rewrite this amount in scientific notation.

TECHNOLOGY
For the following exercises, use a graphing calculator to simplify. Round the answers to the nearest hundredth.
2
51, (123 ’”33) 52.17° = 15%°
473
EXTENSIONS
For the following exercises, simplify the given expression. Write answers with positive exponents.
32\ 2 g1\ - m*n® a'n? 613 -7\
5. =] (& 54, (6 —24) = (2) 85, ——  —— 56, 2.2
a 22 y asc mc Xy xod
2
2~)—3
o ()
b*3
58. Avogadro’s constant is used to calculate the number ~ 59. PlancK’s constant is an important unit of measure
of particles in a mole. A mole is a basic unit in in quantum physics. It describes the relationship
chemistry to measure the amount of a substance. between energy and frequency. The constant is
The constant is 6.0221413 x 10%. Write Avogadro’s written as 6.62606957 x 107*%. Write PlancK’s

constant in standard notation. constant in standard notation.



SECTION 1.3 RADICALS AND RATIONAL EXPRESSIONS

LEARNING OBJECTIVES

In this section, you will:

e Evaluate square roots.

e Use the product rule to simplify square roots.
e Use the quotient rule to simplify square roots.
e Add and subtract square roots.

e Rationalize denominators.

e Use rational roots.

1.3 RADICALS AND RATIONAL EXPRESSIONS

A hardware store sells 16-ft ladders and 24-ft ladders. A window is located 12 feet above the ground. A ladder needs to
be purchased that will reach the window from a point on the ground 5 feet from the building. To find out the length
of ladder needed, we can draw a right triangle as shown in Figure 1, and use the Pythagorean Theorem.

12 feet

5 feet
Figure 1

a?+ b=
54 122=¢?
169 = ¢?

Now, we need to find out the length that, when squared, is 169, to determine which ladder to choose. In other words, we
need to find a square root. In this section, we will investigate methods of finding solutions to problems such as this one.

When the square root of a number is squared, the result is the original number. Since 4*> = 16, the square root of 16
is 4. The square root function is the inverse of the squaring function just as subtraction is the inverse of addition. To
undo squaring, we take the square root.

In general terms, if a is a positive real number, then the square root of a is a number that, when multiplied by itself,
gives a. The square root could be positive or negative because multiplying two negative numbers gives a positive
number. The principal square root is the nonnegative number that when multiplied by itself equals a. The square
root obtained using a calculator is the principal square root.

The principal square root of a is written as V/a. The symbol is called a radical, the term under the symbol is called
the radicand, and the entire expression is called a radical expression.

Radical
Radicand

™— Radical expression

principal square root

The principal square root of a is the nonnegative number that, when multiplied by itself, equals a. It is written as

a radical expression, with a symbol called a radical over the term called the radicand: Va.

31
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Q& A..
Does V25 = %52

No. Although both 5% and (—5)* are 25, the radical symbol implies only a nonnegative root, the principal square root.
The principal square root of 25 is V'25 = 5.

Example 1 Evaluating Square Roots
Evaluate each expression.

a. V100 b. V16 c. V25+144 d. V49 — V81
Solution

a. V100 = 10 because 10> = 100

b. VV16 = V4 = 2 because 4= 16 and 22 = 4
c. V254 144 = V169 = 13 because 13> = 169
d. V49 — V81 =7 — 9 = —2because 7> = 49 and 9> = 81

Q& A..
For V25 + 144, can we find the square roots before adding?

No. V25 + V144 = 5 + 12 = 17. This is not equivalent to V' 25 + 144 = 13. The order of operations requires us to

add the terms in the radicand before finding the square root.

Try It #1
a. v225 b. V81 c. V25—-9 d. V36 +VI21

Using the Product Rule to Simplify Square Roots

To simplify a square root, we rewrite it such that there are no perfect squares in the radicand. There are several
properties of square roots that allow us to simplify complicated radical expressions. The first rule we will look at is
the product rule for simplifying square roots, which allows us to separate the square root of a product of two numbers

into the product of two separate rational expressions. For instance, we can rewrite V15 as V'3 - V5. We can also use
the product rule to express the product of multiple radical expressions as a single radical expression.

the product rule for simplifying square roots

If a and b are nonnegative, the square root of the product ab is equal to the product of the square roots of a and b.

Vab=Va-Vb

Given a square root radical expression, use the product rule to simplify it.

1. Factor any perfect squares from the radicand.
2. Write the radical expression as a product of radical expressions.
3. Simplify.

Example 2  Using the Product Rule to Simplify Square Roots

Simplify the radical expression.

a. V300 b. V162a°b*
Solution
a. V1003 Factor perfect square from radicand.
V100 - V'3 Write radical expression as product of radical expressions.

10V3 Simplify.
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b. V/81a%* 2a Factor perfect square from radicand.
V81la*t* - V2a Write radical expression as product of radical expressions.
9a’°b*V'2a Simplify.

Try It #2
Simplify V 50x%°z.

Given the product of multiple radical expressions, use the product rule to combine them into one radical expression.

1. Express the product of multiple radical expressions as a single radical expression.
2. Simplify.

Example 3  Using the Product Rule to Simplify the Product of Multiple Square Roots

Simplify the radical expression. VI2-V3

Solution
Vi2-3 Express the product as a single radical expression.
V36 Simplify.
6

TI’)/ It #3

Simplify V'50x - V' 2x assuming x > 0.

Using the Quotient Rule to Simplify Square Roots

Just as we can rewrite the square root of a product as a product of square roots, so too can we rewrite the square root
of a quotient as a quotient of square roots, using the quotient rule for simplifying square roots. It can be helpful to
separate the numerator and denominator of a fraction under a radical so that we can take their square roots separately.

5 V5

We can rewrite \/ = as——.

2 \V2

the quotient rule for simplifying square roots

The square root of the quotient % is equal to the quotient of the square roots of a and b, where b # 0.

Given a radical expression, use the quotient rule to simplify it.

1. Write the radical expression as the quotient of two radical expression.
2. Simplify the numerator and denominator.

Example 4  Using the Quotient Rule to Simplify Square Roots

Simplify the radical expression. %

Solution NG . ' . .
Ve Write as quotient of two radical expressions.
V5

r Simplify denominator.
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Simplify

Example 5 Using the Quotient Rule to Simplify an Expression with Two Square Roots

V 234x'"y

Simplify the radical expression.

V26x7y
Solution
234x!y . . . . .
W Combine numerator and denominator into one radical expression.
V9x! Simplify fraction.
3x? Simplify square root.
Try It #5
Simplify Y22 0
Py \V3a'h

Adding and Subtracting Square Roots

We can add or subtract radical expressions only when they have the same radicand and when they have the same
radical type such as square roots. For example, the sum of V2 and 32 is 4V/2. However, it is often possible to
simplify radical expressions, and that may change the radicand. The radical expression V18 can be written with a 2

in the radicand, as 3V/2, so V2 + V18 = V2 + 3V2 = 4V 2.

Given a radical expression requiring addition or subtraction of square roots, solve.

1. Simplify each radical expression.
2. Add or subtract expressions with equal radicands.

Example 6  Adding Square Roots

Add 5V12 + 2V3.

Solution

We can rewrite 5V'12 as 5V/4 - 3. According the product rule, this becomes 54 /3. The square root of V4 is 2, so
the expression becomes 5(2)\/3, which is 10V/3. Now the terms have the same radicand so we can add.

10V3 +2V3 =12V3

Tr)/ It #6
Add V5 + 6\ 20.

Example 7  Subtracting Square Roots

Subtract 20V 72a*b*c — 14V 8a’b’c.
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Solution
Rewrite each term so they have equal radicands.

20V 72abc = 20V/9VANV2VaVa V() Ve
= 20(3)(2)alb*V2ac
= 120a|b*V2ac
14V8ab'c = 14V2VEVaVa V() Ve
= 14(2)|a|b*\/ 2ac
= 28|alb*V2ac
Now the terms have the same radicand so we can subtract.

120]alb*NV 2ac — 28|a|b*N 2ac = 92|a|b*V 2ac

TV/V It #7
Subtract 3V 80x — 4V 45x.

Rationalizing Denominators

When an expression involving square root radicals is written in simplest form, it will not contain a radical in the
denominator. We can remove radicals from the denominators of fractions using a process called rationalizing the
denominator.

We know that multiplying by 1 does not change the value of an expression. We use this property of multiplication to
change expressions that contain radicals in the denominator. To remove radicals from the denominators of fractions,
multiply by the form of 1 that will eliminate the radical.

For a denominator containing a single term, multiply by the radical in the denominator over itself. In other words, if

the denominator is b\/c, multiply by TC
c

For a denominator containing the sum of a rational and an irrational term, multiply the numerator and denominator
by the conjugate of the denominator, which is found by changing the sign of the radical portion of the denominator.

If the denominator is a + bV/c, then the conjugate is a — bVc.

Given an expression with a single square root radical term in the denominator, rationalize the denominator.

1. Multiply the numerator and denominator by the radical in the denominator.
2. Simplify.

Example 8 Rationalizing a Denominator Containing a Single Term

2V3
Write ——1in simplest form.

3V10

Solution V10
The radical in the denominator is V' 10. So multiply the fraction byWO. Then simplify.

2V3 V1o
3V10 V10

2V30
30

V30

15

35
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Try It #8

1
Write

in simplest form.

Given an expression with a radical term and a constant in the denominator, rationalize the denominator.

1. Find the conjugate of the denominator.

2. Multiply the numerator and denominator by the conjugate.
3. Use the distributive property.

4. Simplify.

Example 9  Rationalizing a Denominator Containing Two Terms

4
Write RV in simplest form.

+V5
Solution
Begin by finding the conjugate of the denominator by writing the denominator and changing the sign. So the conjugate
of 1 +V/5is 1 — /5. Then multiply the fraction by ﬂ
1-V5
4 1-V5
1+V5 1-V5
4 44\/§ Use the distributive property.
V5 -1 Simplify.

Try It #9

7
Write T3 in simplest form.

+V3

Although square roots are the most common rational roots, we can also find cuberoots, 4th roots, 5th roots, and more.
Just as the square root function is the inverse of the squaring function, these roots are the inverse of their respective
power functions. These functions can be useful when we need to determine the number that, when raised to a certain
power, gives a certain number.

Understanding nth Roots

Suppose we know that g’ = 8. We want to find what number raised to the 3rd power is equal to 8. Since 2° = 8, we say
that 2 is the cube root of 8.

The nth root of a is a number that, when raised to the nth power, gives a. For example, —3 is the 5th root of —243
because (—3)°= —243. If a is a real number with at least one nth root, then the principal nth root of a is the number
with the same sign as a that, when raised to the nth power, equals a.

The principal nth root of a is written as \/a, where 7 is a positive integer greater than or equal to 2. In the radical
expression, # is called the index of the radical.

principal nth root
If a is a real number with at least one nth root, then the principal nth root of a, written as Va, is the number with
the same sign as a that, when raised to the nth power, equals a. The index of the radical is .
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Example 10 Simplifying nth Roots

Simplify each of the following:

- 6
a. V-32 b. V4 .V1,024 c.—3% d. 8V/3 — V48
Solution

a. V=32 = —2 because (—2)° = —32
b. First, express the product as a single radical expression. V4,096 = 8 because 8* = 4,096

3

c. _378’(6 Write as quotient of two radical expressions.
V125
92
zx Simplify.
d. 8V3 —2V3 Simplify to get equal radicands.
6V3 Add.
Try It #10
Simplify.
4
a. V216 b. -3 \;0 ¢. 6V/9,000 + 7V/576
5

Using Rational Exponents

Radical expressions can also be written without using the radical symbol. We can use rational (fractional) exponents.

The index must be a positive integer. If the index n is even, then a cannot be negative.
1 n
arn=Va
We can also have rational exponents with numerators other than 1. In these cases, the exponent must be a fraction in
lowest terms. We raise the base to a power and take an nth root. The numerator tells us the power and the denominator

tells us the root. .
ot = (Va) =

All of the properties of exponents that we learned for integer exponents also hold for rational exponents.

rational exponents
Rational exponents are another way to express principal nth roots. The general form for converting between a

radical expression with a radical symbol and one with a rational exponent is

an =(a)" =/a"

Given an expression with a rational exponent, write the expression as a radical.

1. Determine the power by looking at the numerator of the exponent.
2. Determine the root by looking at the denominator of the exponent.
3. Using the base as the radicand, raise the radicand to the power and use the root as the index.

Example 11 Writing Rational Exponents as Radicals

2
Write 3433 as a radical. Simplify.

Solution
The 2 tells us the power and the 3 tells us the root.

3435 = (/343 )" = V/343

37
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We know that V/343 = 7 because 7° = 343. Because the cube root is easy to find, it is easiest to find the cube root before
squaring for this problem. In general, it is easier to find the root first and then raise it to a power.

343° = (V/343)" =7 =49

TI’)/ It #1171
5
Write 92 as a radical. Simplify.

Example 12 Writing Radicals as Rational Exponents

Write

—— using a rational exponent.
2
Va

Solution

The power is 2 and the root is 7, so the rational exponent will be % We get iz Using properties of exponents, we get
4 =2 a7

Iry It #12
Write xV/ (5y)° using a rational exponent.

Example 13 Simplifying Rational Exponents

Simplify:
: 5 16\ -1
a. 5(2x4)(3x5) b. (;) 2
Solution o
a. 30x'x° Multiply the coefficient.
3,1
30xt Use properties of exponents.
19
30x% Simplify.
9\1
b. <R> : Use definition of negative exponents.
% Rewrite as a radical.
% Use the quotient rule.
3 Simplify.
4
TV)/ It #13 \ )
Simplify 8x” ( 14x° ) .

Access these online resources for additional instruction and practice with radicals and rational exponents.

e Radicals (http://openstaxcollege.org/l/introradical)

e Rational Exponents (http://openstaxcollege.org/l/rationexpon)

e Simplify Radicals (http://openstaxcollege.org/l/simpradical)

e Rationalize Denominator (http://openstaxcollege.org/l/rationdenom)


http://openstaxcollege.org/l/introradical
http://openstaxcollege.org/l/rationexpon
http://openstaxcollege.org/l/simpradical
http://openstaxcollege.org/l/rationdenom
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1.3 SECTION EXERCISES

VERBAL
1. What does it mean when a radical does not have 2. Where would radicals come in the order of
an index? Is the expression equal to the radicand? operations? Explain why.
Explain.
3. Every number will have two square roots. What is 4. Can a radical with a negative radicand have a real
the principal square root? square root? Why or why not?
NUMERIC
For the following exercises, simplify each expression.
5.V 256 6.V V256 7.V4(9 + 16) 8.Vv289 — V121
9.\/196 10.V1 11.\/98 12\ 2
13.1/ 8L 14./800 15.\/169 + \/144 18/ >
17. 8 18.V/192 19.14V6 — 6V24 20.15V/5 + 7V/45
V162
21. /150 2.\ 2. (vVa2)(v/30) 20,12\/3 — 4\/75
4 405 360 5
25.\/ — 26.\/ — 27.\/ — 28.
225 324 V 361 113
8 4 3 3 5/—32
29 ——— 30. V16 31. V128 +3V2 32.\/——
1-vV17 243
4
33, -12V125 34. 3V/—432 + V16
Vs
ALGEBRAIC
For the following exercises, simplify each expression.
1
35. \/400x" 36. \/4)? 37.\/49p 38. (144p°q°)>
5 N
39. m’\/289 40. 9\/3m? + /27 M. 3Vab? — bVa a2, 22"
V'16n*
3
13.\/ 2595)’: a8, 3\/44z + /992 45.\/50)° 46.\/490b¢
A /32 T V8 1/ 20
47.\/ — 48. g2V 63 49, —— 50.
14d 1 P 1—V3x 121d*
3 3 12
51. w>\/32 — w50 52.V/108% + V27 53— —— 54.\/T47K°
2+2V3
\/ 10 429 81m
55. V'125n 56. \/ — 57. 58.\V72¢c — 2V 2c
36q° 361m?
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60. V/24x5 + V/81x5

4/ 144
59.
3244°

63. V1282 — V —162°

64. V'1,024¢%°

REAL-WORLD APPLICATIONS

65. A guy wire for a suspension bridge runs from the
ground diagonally to the top of the closest pylon
to make a triangle. We can use the Pythagorean
Theorem to find the length of guy wire needed. The
square of the distance between the wire on the
ground and the pylon on the ground is 90,000 feet.
The square of the height of the pylon is 160,000
feet. So the length of the guy wire can be found by

evaluating V90,000 + 160,000. What is the length
of the guy wire?

EXTENSIONS
For the following exercises, simplify each expression.
3 3
_IE ! ERp
67. u 22 68. #
4-V2 g’
;. XV6Yy +4Vy 7 (\/250;8)( 7V'b
T VI2gy " \W1006°/\\/125x

62. 64y

‘4/162966
61.
16x*

V4
66. A car accelerates at a rate of 6 — —— m/s?> where ¢

Vit

is the time in seconds after the car moves from rest.
Simplify the expression.

3 -7 2
6o 4" 70. —°
a*\Ve—3 m>ct a—Vc
7 V64 + V256
V64 + V256



SECTION 1.4 POLYNOMIALS

LEARNING OBJECTIVES

In this section, you will:

e |dentify the degree and leading coefficient of polynomials.
e Add and subtract polynomials.

e Multiply polynomials.

e Use FOIL to multiply binomials.

e Perform operations with polynomials of several variables.

1.4 POLYNOMIALS

Earl is building a doghouse, whose front is in the shape of a square topped with a triangle. There will be a rectangular
door through which the dog can enter and exit the house. Earl wants to find the area of the front of the doghouse so
that he can purchase the correct amount of paint. Using the measurements of the front of the house, shown in Figure 1,
we can create an expression that combines several variable terms, allowing us to solve this problem and others like it.

3
2 feet

\ 2x
-

1 foot

X —_

Figure 1

First find the area of the square in square feet.

Then find the area of the triangle in square feet.

Next find the area of the rectangular door in square feet.
A=lw
=x-1

The area of the front of the doghouse can be found by adding the areas of the square and the triangle, and then
subtracting the area of the rectangle. When we do this, we get 4x* + %x — x ft?, or 4x2 + %x ft2.

In this section, we will examine expressions such as this one, which combine several variable terms.

The formula just found is an example of a polynomial, which is a sum of or difference of terms, each consisting of
a variable raised to a nonnegative integer power. A number multiplied by a variable raised to an exponent, such as
384, is known as a coeflicient. Coefficients can be positive, negative, or zero, and can be whole numbers, decimals,
or fractions. Each product a,x’, such as 3847w, is a term of a polynomial. If a term does not contain a variable, it is
called a constant.
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A polynomial containing only one term, such as 5x*, is called a monomial. A polynomial containing two terms, such
as 2x — 9, is called a binomial. A polynomial containing three terms, such as —3x? 4 8x — 7, is called a trinomial.

We can find the degree of a polynomial by identifying the highest power of the variable that occurs in the polynomial.
The term with the highest degree is called the leading term because it is usually written first. The coefficient of the
leading term is called the leading coefficient. When a polynomial is written so that the powers are descending, we
say that it is in standard form.

Leading coefficient Degree
ax'+..+ax’+ax+a,

—
Leading term

polynomials
A polynomial is an expression that can be written in the form

ax"+..+ax’+ax+a,
Each real number g, is called a coefficient. The number a that is not multiplied by a variable is called a constant.
Each product ax' is a term of a polynomial. The highest power of the variable that occurs in the polynomial

is called the degree of a polynomial. The leading term is the term with the highest power, and its coeflicient is
called the leading coefficient.

Given a polynomial expression, identify the degree and leading coeflicient.

1. Find the highest power of x to determine the degree.
2. Identify the term containing the highest power of x to find the leading term.
3. Identify the coefficient of the leading term.

Example 1 Identifying the Degree and Leading Coefficient of a Polynomial

For the following polynomials, identify the degree, the leading term, and the leading coefficient.
a. 3+2x —4x° b. 5 -2 47t c.6p—p—2

Solution

a. The highest power of x is 3, so the degree is 3. The leading term is the term containing that degree, —4x>.
The leading coefficient is the coefficient of that term, —4.

b. The highest power of t is 5, so the degree is 5. The leading term is the term containing that degree, 5¢°.
The leading coeflicient is the coefficient of that term, 5.

c. The highest power of p is 3, so the degree is 3. The leading term is the term containing that degree, —p°,
The leading coefficient is the coefficient of that term, —1.

TV)/ It #1

Identify the degree, leading term, and leading coeflicient of the polynomial 4x? — x¢ 4 2x — 6.

We can add and subtract polynomials by combining like terms, which are terms that contain the same variables raised
to the same exponents. For example, 5x? and —2x? are like terms, and can be added to get 3x?2, but 3x and 3x?* are not
like terms, and therefore cannot be added.



SECTION 1.4 POLYNOMIALS

Given multiple polynomials, add or subtract them to simplify the expressions.

1. Combine like terms.
2. Simplify and write in standard form.

Example 2  Adding Polynomials
Find the sum.
(12x%* 4 9x — 21) + (4x° + 8x2 — 5x + 20)
Solution
4x3 + (12x?* + 8x2%) + (9x — 5x) + (—21 + 20) Combine like terms.
4x° +20x* +4x — 1 Simplify.
Analysis  We can check our answers to these types of problems using a graphing calculator. To check, graph the problem

as given along with the simplified answer. The two graphs should be equivalent. Be sure to use the same window to
compare the graphs. Using different windows can make the expressions seem equivalent when they are not.

TI’)/ It #2
Find the sum.

(2x3+5x2—x+ 1)+ (2x*— 3x — 4)

Example 3  Subtracting Polynomials

Find the difference.

(7x*—x*+6x+1) — (65x°> —2x2+3x+2)

Solution
7xt —5x3 4+ (—x2 4+ 2x) + (6x — 3x) + (1 — 2) Combine like terms.
7x* —5x° + x>+ 3x— 1 Simplify.

Analysis  Note that finding the difference between two polynomials is the same as adding the opposite of the second
polynomial to the first.

TV)/ It #3
Find the difference.
(—7x3 — 7x* 4+ 6x — 2) — (4x> — 6x> — x + 7)

Multiplying Polynomials

Multiplying polynomials is a bit more challenging than adding and subtracting polynomials. We must use the
distributive property to multiply each term in the first polynomial by each term in the second polynomial. We then
combine like terms. We can also use a shortcut called the FOIL method when multiplying binomials. Certain special
products follow patterns that we can memorize and use instead of multiplying the polynomials by hand each time.
We will look at a variety of ways to multiply polynomials.

Multiplying Polynomials Using the Distributive Property

To multiply a number by a polynomial, we use the distributive property. The number must be distributed to each term
of the polynomial. We can distribute the 2 in 2(x + 7) to obtain the equivalent expression 2x + 14. When multiplying
polynomials, the distributive property allows us to multiply each term of the first polynomial by each term of the
second. We then add the products together and combine like terms to simplify.

43



44

CHAPTER 1 PREREQUISITES

Given the multiplication of two polynomials, use the distributive property to simplify the expression.

1. Multiply each term of the first polynomial by each term of the second.
2. Combine like terms.
3. Simplify.

Example 4  Multiplying Polynomials Using the Distributive Property

Find the product.
2x+1) (Bx*—x+4)
Solution
2x(3x* —x+4) + 13x2 - x + 4) Use the distributive property.
(6x° —2x*4+8x) + (B3x>*—x+4) Multiply.
6x3 4+ (—2x2+3x) 4+ 8x —x) + 4 Combine like terms.
6x°+ x>+ 7x+ 4 Simplify.

Analyses We can use a table to keep track of our work, as shown in Table 1. Write one polynomial across the top and
the other down the side. For each box in the table, multiply the term for that row by the term for that column. Then add
all of the terms together, combine like terms, and simplify.

3x? —X +4
2x 6x3  —2x? 8x
+1 3x? —x 4
Table 1
TV)/ It #4
Find the product.

(Bx+2)(xX*—4x*+7)

Using FOIL to Multiply Binomials

A shortcut called FOIL is sometimes used to find the product of two binomials. It is called FOIL because we
multiply the first terms, the outer terms, the inner terms, and then the last terms of each binomial.

First terms Last terms

— 1
(ax + b)(cx + d) = acx? + adx + bex + bd

——
Inner terms

Outer terms

The FOIL method arises out of the distributive property. We are simply multiplying each term of the first binomial by
each term of the second binomial, and then combining like terms.

Given two binomials, use FOIL to simplify the expression.

1. Multiply the first terms of each binomial.
2. Multiply the outer terms of the binomials.
3. Multiply the inner terms of the binomials.
4. Multiply the last terms of each binomial.
5. Add the products.

6. Combine like terms and simplify.
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Example 5  Using FOIL to Multiply Binomials
Use FOIL to find the product.
(2x — 10)(3x + 3)

Solution
Find the product of the first terms.
2x—18  3x+3 2x - 3x = 6x7
Find the product of the outer terms.
2x—18  3x+3 2x-3 =6x
Find the product of the inner terms.
2x—18  3x+3 —18 - 3x = —54x
Find the product of the last terms.
2x — 18 3x+3 —-18.-3=-54
6x* + 6x — 54x — 54 Add the products.
6x> + (6x — 54x) — 54 Combine like terms.
6x* — 48x — 54 Simplify.
Try It #5

Use FOIL to find the product.
(x+7)(3x—5)

Perfect Square Trinomials

Certain binomial products have special forms. When a binomial is squared, the result is called a perfect square
trinomial. We can find the square by multiplying the binomial by itself. However, there is a special form that each
of these perfect square trinomials takes, and memorizing the form makes squaring binomials much easier and faster.
Let’s look at a few perfect square trinomials to familiarize ourselves with the form.

(x+5)*=x*+ 10x + 25
(x—32=x*—6x+9
(4x—1) =4x*—8x+1
Notice that the first term of each trinomial is the square of the first term of the binomial and, similarly, the last term of

each trinomial is the square of the last term of the binomial. The middle term is double the product of the two terms.
Lastly, we see that the first sign of the trinomial is the same as the sign of the binomial.

perfect square trinomials
When a binomial is squared, the result is the first term squared added to double the product of both terms and
the last term squared.

(x+a)P=(x+a)(x+a) =x*+2ax + a®
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Given a binomial, square it using the formula for perfect square trinomials.

1. Square the first term of the binomial.

2. Square the last term of the binomial.

3. For the middle term of the trinomial, double the product of the two terms.
4. Add and simplify.

Example 6  Expanding Perfect Squares
Expand (3x — 8)%.

Solution Begin by squaring the first term and the last term. For the middle term of the trinomial, double the product
of the two terms.
(3x)* — 2(3x)(8) + (—8)’

Simplify.
Py 9x? — 48x + 64

TV)/ It #6
Expand (4x — 1)

Difference of Squares

Another special product is called the difference of squares, which occurs when we multiply a binomial by another
binomial with the same terms but the opposite sign. Let’s see what happens when we multiply (x + 1)(x — 1) using
the FOIL method.
x+Dx—-1)=x*—-x+x—1
=x*—1
The middle term drops out, resulting in a difference of squares. Just as we did with the perfect squares, let’s look at a
few examples.
(x+5)(x—5)=x*—25
(x+11)(x — 11) = x> — 121
2x+3)2x —3) =4x*—9

Because the sign changes in the second binomial, the outer and inner terms cancel each other out, and we are left only
with the square of the first term minus the square of the last term.

Q& A..
Is there a special form for the sum of squares?

No. The difference of squares occurs because the opposite signs of the binomials cause the middle terms to disappear.
There are no two binomials that multiply to equal a sum of squares.

difference of squares
When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the
square of the first term minus the square of the last term.

(a+b)a—b)=a*— b

Given a binomial multiplied by a binomial with the same terms but the opposite sign, find the difference of squares.

1. Square the first term of the binomials.
2. Square the last term of the binomials.
3. Subtract the square of the last term from the square of the first term.
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Example 7  Multiplying Binomials Resulting in a Difference of Squares
Multiply (9x + 4)(9x — 4).

Solution Square the first term to get (9x)> = 81x2. Square the last term to get 4> = 16. Subtract the square of the last
term from the square of the first term to find the product of 81x* — 16.

TV}/ It #7
Multiply (2x + 7)(2x — 7).

Performing Operations with Polynomials of Several Variables

We have looked at polynomials containing only one variable. However, a polynomial can contain several variables. All
of the same rules apply when working with polynomials containing several variables. Consider an example:

(a+2b)(4a —b—¢)

a(4a —b—c)+2b(4a—b—o) Use the distributive property.
4a*> — ab — ac + 8ab — 2b* — 2bc Multiply.

4a’> + (— ab + 8ab) — ac — 2b* — 2bc Combine like terms.

4a> 4 7ab — ac — 2bc - 2b° Simplify.

Example 8  Multiplying Polynomials Containing Several Variables
Multiply (x + 4)(3x — 2y + 5).

Solution  Follow the same steps that we used to multiply polynomials containing only one variable.

x(3x —2y+5)+4(3x —2y+5) Use the distributive property.
3x* — 2xy + 5x + 12x — 8y + 20 Multiply.

3x? — 2xy + (5x + 12x) — 8y + 20 Combine like terms.

3x% — 2xy + 17x — 8y + 20 Simplify.

Tr}/ It #8
Multiply (3x — 1)(2x + 7y — 9).

Access these online resources for additional instruction and practice with polynomials.

e Adding and Subtracting Polynomials (http://openstaxcollege.org/I/addsubpoly)
e Multiplying Polynomials (http://openstaxcollege.org/l/multiplpoly)
e Special Products of Polynomials (http://openstaxcollege.org/l/specialpolyprod)
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1.4 SECTION EXERCISES

VERBAL

1. Evaluate the following statement: The degree of a 2. Many times, multiplying two binomials with two
polynomial in standard form is the exponent of the variables results in a trinomial. This is not the case
leading term. Explain why the statement is true or when there is a difference of two squares. Explain
false. why the product in this case is also a binomial.

3. You can multiply polynomials with any number of 4. State whether the following statement is true and
terms and any number of variables using four basic explain why or why not: A trinomial is always a
steps over and over until you reach the expanded higher degree than a monomial.
polynomial. What are the four steps?

ALGEBRAIC
For the following exercises, identify the degree of the polynomial.
5. 7x —2x*+ 13 6. 14m* + m* — 16m + 8 7. —625a° 4 16b* 8. 200p — 30p*m + 40m’
9. x> +4x+4 10. 6y* — y° + 3y — 4
For the following exercises, find the sum or difference.
11, (12x% + 3x) —(8x* —19) 12. (422 + 822 —z) + (222 + 2+ 6)
13. (6w? + 24w + 24) — Bw — 6w + 3) 14. (7a° + 64> — 4a — 13) + (—3a®> — 4a*> + 6a + 17)

15. (116" — 6b° + 18b* — 4b + 8) — (3b* + 6b* + 3b) 16. (49p* — 25) + (16p* — 32p* + 16)

For the following exercises, find the product.
17. (4x + 2) (6x — 4) 18. (14 + 4¢) (26 — 3¢)  19. (66> — 6) (4b> — 4) 20. (3d — 5)(2d + 9)
21. (9v —11) (11v — 9) 22. (422 +7t) (=32 +4) 23. (8n —4) (1 +9)

For the following exercises, expand the binomial.

24. (4x + 5) 25. (3y — 7)? 26. (12 — 4x)? 27. (4p + 9)?
28. 2m — 3)? 29, 3y — 6)? 30. (9b + 1)?
For the following exercises, multiply the binomials.
31. (4c+ 1)(4c— 1) 32. (9a — 4)(9a + 4) 33. (15n — 6)(15n + 6) 34. (25b + 2)(25b — 2)
35. (4 + 4m)(4 — 4m) 36. (14p + 7)(14p — 7) 37. (11g — 10)(11q + 10)
For the following exercises, find the sum or difference.
38. 2 +2x+1)(4x—1) 3. (42 +t—7) (42— 1) 4. (x — 1) (x> —2x+ 1)
MN.(y—2) 0> —4y-9) 42. (6k — 5) (6k* + 5k — 1) 43.3p°+2p—10)(p—1)
44. (4m — 13) 2m?* — 7m +9) 45. (a+b) (a—Db) 46. (4x — 6y) (6x — 4y)
47. (4t — 5u)? 48. (9m +4n — 1) 2m + 8) 49. (4t — x)(t —x+ 1)
50. (b* — 1) (a®> + 2ab + b?) 51. (4r — d)(6r + 7d) 52. (x + y) (x> — xy + »?)
REAL-WORLD APPLICATIONS
53. A developer wants to purchase a plot of land to build  54. A prospective buyer wants to know how much grain
a house. The area of the plot can be described by the a specific silo can hold. The area of the floor of the
following expression: (4x + 1)(8x — 3) where x is silo is (2x 4 9)% The height of the silo is 10x + 10,
measured in meters. Multiply the binomials to find where x is measured in feet. Expand the square and
the area of the plot in standard form. multiply by the height to find the expression that
shows how much grain the silo can hold.
EXTENSIONS
For the following exercises, perform the given operations.
55. (4t — 7)? (2t + 1) — (4 + 2t + 11) 56. (3b + 6)(3b — 6) (9b* — 36)

57. (a* 4 4ac + 4¢%) (a* — 4¢?)
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LEARNING OBJECTIVES

In this section, you will:

e Factor the greatest common factor of a polynomial.

e Factor a trinomial.

e Factor by grouping.

e Factor a perfect square trinomial.

e Factor a difference of squares.

e Factor the sum and difference of cubes.

e Factor expressions using fractional or negative exponents.

1.5 FACTORING POLYNOMIALS

Imagine that we are trying to find the area of a lawn so that we can determine how much grass seed to purchase. The
lawn is the green portion in Figure 1.

6x

10x

Figure 1

The area of the entire region can be found using the formula for the area of a rectangle.
A=lw
= 10x - 6x
= 60x* units®
The areas of the portions that do not require grass seed need to be subtracted from the area of the entire region. The
two square regions each have an area of A = s> = 4> = 16 units® The other rectangular region has one side of length

10x — 8 and one side of length 4, giving an area of A = Iw = 4(10x — 8) = 40x — 32 units So the region that must be
subtracted has an area of 2(16) + 40x — 32 = 40x units>

The area of the region that requires grass seed is found by subtracting 60x> — 40x units® This area can also be expressed
in factored form as 20x(3x — 2) units. We can confirm that this is an equivalent expression by multiplying.

Many polynomial expressions can be written in simpler forms by factoring. In this section, we will look at a variety
of methods that can be used to factor polynomial expressions.

Factoring the Greatest Common Factor of a Polynomial

When we study fractions, we learn that the greatest common factor (GCF) of two numbers is the largest number that
divides evenly into both numbers. For instance, 4 is the GCF of 16 and 20 because it is the largest number that divides
evenly into both 16 and 20 The GCF of polynomials works the same way: 4x is the GCF of 16x and 20x?> because it is
the largest polynomial that divides evenly into both 16x and 20x2.

When factoring a polynomial expression, our first step should be to check for a GCF. Look for the GCF of the
coeflicients, and then look for the GCF of the variables.
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greatest common factor
The greatest common factor (GCF) of polynomials is the largest polynomial that divides evenly into the
polynomials.

Given a polynomial expression, factor out the greatest common factor.

1. Identify the GCF of the coefficients.

2. Identify the GCF of the variables.

3. Combine to find the GCF of the expression.

4. Determine what the GCF needs to be multiplied by to obtain each term in the expression.

5. Write the factored expression as the product of the GCF and the sum of the terms we need to multiply by.

Example 1  Factoring the Greatest Common Factor
Factor 6x°y* + 45x%y? + 21xy.

Solution  First, find the GCF of the expression. The GCF of 6, 45, and 21 is 3. The GCF of x°, x2, and x is x. (Note that
the GCF of a set of expressions in the form x" will always be the exponent of lowest degree.) And the GCF of 53, y2,
and y is y. Combine these to find the GCF of the polynomial, 3xy.

Next, determine what the GCF needs to be multiplied by to obtain each term of the polynomial. We find that
3xy(2x*y?) = 6x°y*, 3xy(15xy) = 45x%?%, and 3xy(7) = 21xy.

Finally, write the factored expression as the product of the GCF and the sum of the terms we needed to multiply by.
(3xy)(2x%y* + 15xy + 7)

AM/LZVI}: After factoring, we can check our work by multiplying. Use the distributive property to confirm that
(3xy)2x%y* + 15xy + 7) = 6x%y* + 45x%y* 4 21xy.

TV)/ It #1
Factor x(b* — a) + 6(b* — a) by pulling out the GCE

Factoring a Trinomial with Leading Coefficient 1

Although we should always begin by looking for a GCF, pulling out the GCF is not the only way that polynomial
expressions can be factored. The polynomial x* + 5x + 6 has a GCF of 1, but it can be written as the product of the
factors (x + 2) and (x + 3).

Trinomials of the form x2 + bx + c can be factored by finding two numbers with a product of ¢ and a sum of b. The
trinomial x? 4 10x + 16, for example, can be factored using the numbers 2 and 8 because the product of those numbers
is 16 and their sum is 10. The trinomial can be rewritten as the product of (x + 2) and (x + 8).

factoring a trinomial with leading coefficient 1

A trinomial of the form x* 4 bx + ¢ can be written in factored form as (x + p)(x + q) where pg =candp + g ="0.

Q& A..
Can every trinomial be factored as a product of binomials?

No. Some polynomials cannot be factored. These polynomials are said to be prime.
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Given a trinomial in the form x? + bx + ¢, factor it.

1. List factors of c.
2. Find p and g, a pair of factors of ¢ with a sum of b.
3. Write the factored expression (x + p)(x + g).

Example 2  Factoring a Trinomial with Leading Coefficient 1
Factor x* 4 2x — 15.

Solution We have a trinomial with leading coefficient 1, b = 2, and ¢ = —15. We need to find two numbers with a
product of —15 and a sum of 2. In Table 1, we list factors until we find a pair with the desired sum.

Factors of —15 Sum of Factors
1, —15 —14
—1, 15 14
3,—5 -2
-3,5 2
Table 1

Now that we have identified p and q as —3 and 5, write the factored form as (x — 3)(x + 5).
AWZM'/; We can check our work by multiplying. Use FOIL to confirm that (x — 3)(x + 5) = x> + 2x — 15.

Q& A...
Does the order of the factors matter?

No. Multiplication is commutative, so the order of the factors does not matter.

Try It #2

Factor x2 — 7x + 6.

Factoring by Grouping

Trinomials with leading coefficients other than 1 are slightly more complicated to factor. For these trinomials, we can
factor by grouping by dividing the x term into the sum of two terms, factoring each portion of the expression separately,
and then factoring out the GCF of the entire expression. The trinomial 2x? 4 5x + 3 can be rewritten as 2x + 3)(x + 1)
using this process. We begin by rewriting the original expression as 2x2 + 2x + 3x + 3 and then factor each portion
of the expression to obtain 2x(x + 1) + 3(x + 1). We then pull out the GCF of (x + 1) to find the factored expression.

factor by grouping

To factor a trinomial in the form ax? + bx + ¢ by grouping, we find two numbers with a product of ac and a sum
of b. We use these numbers to divide the x term into the sum of two terms and factor each portion of the expression
separately, then factor out the GCF of the entire expression.

Given a trinomial in the form ax? 4 bx + ¢, factor by grouping.

List factors of ac.
. Find p and g, a pair of factors of ac with a sum of b.
. Rewrite the original expression as ax? + px + gx + c.
. Pull out the GCF of ax? + px.
. Pull out the GCF of gx + c.
. Factor out the GCF of the expression.

oo~ N~
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Example 3  Factoring a Trinomial by Grouping
Factor 5x% + 7x — 6 by grouping.

Solution We have a trinomial with a = 5, b = 7, and ¢ = —6. First, determine ac = —30. We need to find two numbers
with a product of —30 and a sum of 7. In Table 2, we list factors until we find a pair with the desired sum.

Factors of —30 Sum of Factors

1, =30 -29

-1, 30 29

2,—15 -13

-2,15 13

3,-10 -7

-3,10 7

Table 2
Sop=—3and g = 10.

5x*—3x 4 10x — 6 Rewrite the original expression as ax* + px + gx + c.
x(5x — 3) 4+ 2(5x — 3) Factor out the GCF of each part.
(5x — 3)(x + 2) Factor out the GCF of the expression.

Anadysis - We can check our work by multiplying. Use FOIL to confirm that (5x — 3)(x + 2) = 5x* + 7x — 6.

Ty It #3

Factor. a 2x2+9x+9 b. 6x2+x—1

Factoring a Perfect Square Trinomial

A perfect square trinomial is a trinomial that can be written as the square of a binomial. Recall that when a binomial
is squared, the result is the square of the first term added to twice the product of the two terms and the square of the
last term.

a* + 2ab + b* = (a + b)?

and
a’> — 2ab + b* = (a — b)?

We can use this equation to factor any perfect square trinomial.

perfect square trinomials
A perfect square trinomial can be written as the square of a binomial:

a’+ 2ab + b*> = (a + b)?

Given a perfect square trinomial, factor it into the square of a binomial.

1. Confirm that the first and last term are perfect squares.
2. Confirm that the middle term is twice the product of ab.
3. Write the factored form as (a + b)>.
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Example 4  Factoring a Perfect Square Trinomial
Factor 25x% 4 20x + 4.

Solution Notice that 25x% and 4 are perfect squares because 25x2? = (5x)* and 4 = 22. Then check to see if the middle
term is twice the product of 5x and 2. The middle term is, indeed, twice the product: 2(5x)(2) = 20x.

Therefore, the trinomial is a perfect square trinomial and can be written as (5x + 2)%

Tr)/ It #4
Factor 49x2 — 14x + 1.

Factoring a Difference of Squares

A difference of squares is a perfect square subtracted from a perfect square. Recall that a difference of squares can
be rewritten as factors containing the same terms but opposite signs because the middle terms cancel each other out
when the two factors are multiplied.

a—b=@+b)(a—0D)

We can use this equation to factor any differences of squares.

differences of squares
A difference of squares can be rewritten as two factors containing the same terms but opposite signs.

@ —b=(a+Db)a—0D)

Given a difference of squares, factor it into binomials.

1. Confirm that the first and last term are perfect squares.
2. Write the factored form as (a + b)(a — b).

Example 5 Factoring a Difference of Squares
Factor 9x% — 25.

Solution Notice that 9x2 and 25 are perfect squares because 9x? = (3x)? and 25 = 5% The polynomial represents a
difference of squares and can be rewritten as (3x + 5)(3x — 5).

Try IL#5
Factor 81y* — 100.

Q& A..
Is there a formula to factor the sum of squares?

No. A sum of squares cannot be factored.

Factoring the Sum and Difference of Cubes

Now, we will look at two new special products: the sum and difference of cubes. Although the sum of squares cannot
be factored, the sum of cubes can be factored into a binomial and a trinomial.

@+ b= (a+b)(a*—ab+b)
Similarly, the sum of cubes can be factored into a binomial and a trinomial, but with different signs.

a— b= (a— b)a®+ ab+ b?)
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We can use the acronym SOAP to remember the signs when factoring the sum or difference of cubes. The first letter
of each word relates to the signs: Same Opposite Always Positive. For example, consider the following example.

X =22=(x—-2)(*+2x+4)

The sign of the first 2 is the same as the sign between x* — 2°. The sign of the 2x term is opposite the sign between
x3 — 2% And the sign of the last term, 4, is always positive.

sum and difference of cubes
We can factor the sum of two cubes as

@+ b= (a+b) (a> —ab+ b?)
We can factor the difference of two cubes as

a—b*=(a—b)(a®+ ab+ b?)

Given a sum of cubes or difference of cubes, factor it.

1. Confirm that the first and last term are cubes, a* + b® or a® — b>.
2. For a sum of cubes, write the factored form as (a + b)(a®> — ab + b?). For a difference of cubes, write the factored
form as (a — b)(@®> + ab + b?).

Example 6  Factoring a Sum of Cubes
Factor x* + 512.

Solution Notice that x* and 512 are cubes because 8 = 512. Rewrite the sum of cubes as (x + 8)(x* — 8x + 64).

Analysis  After writing the sum of cubes this way, we might think we should check to see if the trinomial portion can be
factored further. However, the trinomial portion cannot be factored, so we do not need to check.

TV}/ It #6
Factor the sum of cubes: 216a° + b°.

Example 7  Factoring a Difference of Cubes

Factor 8x3 — 125.

Solution Notice that 8x3 and 125 are cubes because 8x* = (2x)* and 125 = 5°. Write the difference of cubes as
(2x — 5)(4x* + 10x + 25).

AM/LZW: Just as with the sum of cubes, we will not be able to further factor the trinomial portion.

TV)/ It #7
Factor the difference of cubes: 1,000x> — 1.
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Factoring Expressions with Fractional or Negative Exponents

Expressions with fractional or negative exponents can be factored by pulling out a GCF. Look for the variable or
exponent that is common to each term of the expression and pull out that variable or exponent raised to the lowest
1 3

power. These expressions follow the same factoring rules as those with integer exponents. For instance, 2x1 + 5x1 can

1 1 1
be factored by pulling out x7 and being rewritten as x1(2 +5x2).
Example 8  Factoring an Expression with Fractional or Negative Exponents
_1 2
Factor 3x(x + 2) 3 + 4(x + 2)3.

Solution  Factor out the term with the lowest value of the exponent. In this case, that would be (x + 2)%.
1
(x+2)303x+4(x+2) Factor out the GCF.
(x+ 2)7%(3x + 4x + 8) Simplify.

(c+2)3(7x+ 8)

TI’/V It #8
3 1
Factor 2(5a — 1)% + 7a(5a — 1) 4.

Access these online resources for additional instruction and practice with factoring polynomials.

e |dentify GCF (http://openstaxcollege.org/l/findgcftofact)

e Factor Trinomials when a Equals 1 (http://openstaxcollege.org/I/facttrinom1)

e Factor Trinomials when ais not equal to 1 (http://openstaxcollege.org/l/facttrinom?2)
e Factor Sum or Difference of Cubes (http://openstaxcollege.org/I/sumdifcube)


http://openstaxcollege.org/l/findgcftofact
http://openstaxcollege.org/l/facttrinom1
http://openstaxcollege.org/l/facttrinom2
http://openstaxcollege.org/l/sumdifcube
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1.5 SECTION EXERCISES

VERBAL

1. If the terms of a polynomial do not have a GCF, does
that mean it is not factorable? Explain.

3. How do you factor by grouping?

ALGEBRAIC

2. A polynomial is factorable, but it is not a perfect

For the following exercises, find the greatest common factor.

4. 14x + 4xy — 18xy”
6. 30x’y — 45x%* 4 135xy°
8. 36j'k? — 187Kk + 5472k
For the following exercises, factor by grouping.
10. 6x> + 5x — 4 11. 2a> + 9a — 18

14, 20W2 — 47w + 24 15.2p* —5p — 7

For the following exercises, factor the polynomial.

16. 7x° + 48x — 7 17. 10W* — 9h — 9

20. 90v* —181v + 90 21,12+t —13

24. 25y — 196 25.121p* — 169

28. 324x% — 121 29, 144b* — 2572

32. 121x* — 88x + 16 33. 225y* + 120y + 16

36. 36q” + 60q + 25

For the following exercises, factor the polynomials.
37. X’ + 216 38.27y° — 8

4. 64x> — 125 42. 7294° + 1331
_2 1
4. 4x(x — 1) 3 +3(x — 1)3
1 4
46. 3t(10t + 3)3 + 7(10t + 3)3
1 6
48. 9y(3y — 13)5 — 2(3y — 13)3

50. 64(2d + 3) b + 5(2d + 3)¢

5.

7.

9.

22.

26.

30.

39.

43

45.

47.

49,

square trinomial or a difference of two squares. Can
you factor the polynomial without finding the GCF?

49mb* — 35m*ba + 77ma>
200p'm?® — 30p*m? + 40m?
6y — 2 + 3y —y
. 6¢2 4+ 41c + 63 13. 6n* — 19n — 11
. 2b* — 25b — 247 19.9d* —73d + 8
2nr —n—15 23. 16x* — 100
am* — 9 27. 3614* — 81
16a> — 8a + 1 31. 491 4 168n + 144
. m* —20m + 100 35. m* — 20m + 100
125a° + 343 40. b® — 84°
. 125r° 4 1,7285°
3c(2c+3) 1 — 52+ 3)7
14x(x +2) 5+ 5(x + 2)%
52022 —9) 2 + 112z 9) =



SECTION 1.5 SECTION EXERCISES 57

REAL-WORLD APPLICATIONS
For the following exercises, consider this scenario:

Charlotte has appointed a chairperson to lead a city beautification project. The first act is to install statues and fountains
in one of the city’s parks. The park is a rectangle with an area of 98x? 4 105x — 27 m?, as shown in the following figure.

The length and width of the park are perfect factors of the area.

I x w=98x?+ 105x — 27

51. Factor by grouping to find the length and width of =~ 52. A statue is to be placed in the center of the park. The
the park. area of the base of the statue is 4x2 + 12x + 9 m>
Factor the area to find the lengths of the sides of the
statue.
53. At the northwest corner of the park, the city is going
to install a fountain. The area of the base of the
fountain is 9x* — 25 m?. Factor the area to find the
lengths of the sides of the fountain.

For the following exercise, consider the following scenario:

A school is installing a flagpole in the central plaza. The plaza is a square with side length 100 yd as shown in the figure
below. The flagpole will take up a square plot with area x* — 6x + 9 yd*.

Area: x* — 6x+9

100 yards

100 yards

54. Find the length of the base of the flagpole by factoring.

EXTENSIONS
For the following exercises, factor the polynomials completely.
55. 16x* — 200x* 4 625 56. 81y* — 256 57. 16z — 2,401a*

2 3
58. 5x(3x +2) 1+ + (12x + 8)2 5. (32x° + 48x2 — 162x — 243)""



CHAPTER 1 PREREQUISITES

LEARNING OBJECTIVES

In this section, you will:

e Simplify rational expressions.

e Multiply rational expressions.

¢ Divide rational expressions.

¢ Add and subtract rational expressions.
e Simplify complex rational expressions.

1.6 RATIONAL EXPRESSIONS

A pastry shop has fixed costs of $280 per week and variable costs of $9 per box of pastries. The shop’s costs per week
in terms of x, the number of boxes made, is 280 + 9x. We can divide the costs per week by the number of boxes made

to det ine th t b f pastries.
o determine the cost per box of pastries 280 + 9x

X
Notice that the result is a polynomial expression divided by a second polynomial expression. In this section, we will
explore quotients of polynomial expressions.

Simplifying Rational Expressions

The quotient of two polynomial expressions is called a rational expression. We can apply the properties of fractions
to rational expressions, such as simplifying the expressions by canceling common factors from the numerator and
the denominator. To do this, we first need to factor both the numerator and denominator. Let’s start with the rational

expression shown.
x4 8x 4+ 16

x>+ 11x + 28
We can factor the numerator and denominator to rewrite the expression.
(x +4)
(x+4)(x+7)
Then we can simplify that expression by canceling the common factor (x + 4).
x+4
x+7

Given a rational expression, simplify it.
1. Factor the numerator and denominator.
2. Cancel any common factors.

Example 1  Simplifying Rational Expressions

x*—9
Simplify ——————.
Py x4+ 4x+3

Solution w Factor the numerator and the denominator.
(x+3)x+1
x—3

Cancel common factor (x + 3).

x+1

AM/LZM'A We can cancel the common factor because any expression divided by itself is equal to 1.

Q& A...
Can the x? term be cancelled in Example 1?

No. A factor is an expression that is multiplied by another expression. The x? term is not a factor of the numerator or
the denominator.
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Try It #1

Simplif .
P sz — 36

Multiplying Rational Expressions

Multiplication of rational expressions works the same way as multiplication of any other fractions. We multiply the
numerators to find the numerator of the product, and then multiply the denominators to find the denominator of the
product. Before multiplying, it is helpful to factor the numerators and denominators just as we did when simplifying
rational expressions. We are often able to simplify the product of rational expressions.

Given two rational expressions, multiply them.

1. Factor the numerator and denominator.
2. Multiply the numerators.

3. Multiply the denominators.

4. Simplify.

Example 2  Multiplying Rational Expressions

Multiply the rational expressions and show the product in simplest form:

x?+4x—5 2x—1
3x+18  x+5

Solution
(x+5x—1) ‘ 2x—1
3(x + 6) (x+5)

Factor the numerator and denominator.

(x+5kx—12x—1)
3(x 4 6)(x + 5)
x+5)(x — D2x—1)
3(x + 6)(x+75)
x—D2x—-1
3(x + 6)

Multiply numerators and denominators.

Cancel common factors to simplify.

TV}/ It #2

Multiply the rational expressions and show the product in simplest form:

x2+11x+30_x2+7x+12
x*+5x+6 x>2+8x+16

Dividing Rational Expressions

Division of rational expressions works the same way as division of other fractions. To divide a rational expression
by another rational expression, multiply the first expression by the reciprocal of the second. Using this approach, we

2
would rewrite % = % as the product % . % Once the division expression has been rewritten as a multiplication
X

expression, we can multiply as we did before.

T3

3
xr x

b
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Given two rational expressions, divide them.

1. Rewrite as the first rational expression multiplied by the reciprocal of the second.
2. Factor the numerators and denominators.
3. Multiply the numerators.

4. Multiply the denominators.

5. Simplify.

Example 3

Dividing Rational Expressions

Divide the rational expressions and express the quotient in simplest form:

Solution

Tl’)/ It #3

2%*+x—6

x> —4

x—1

2x2—|—x—6.x2+2x+l

x> —1 x*—4

2x —3)(x+2) ) (x+Dx+1
x+Dx—-1) (x+2)(x—2)
2x—3)(x+2)(x+D(x+1)
(x+ D(x — D(x+2)(x — 2)
(2x = 3)(x+2)(x+T)(x + 1)
AT (x — D(x+2)(x — 2)
2x —3)(x+ 1)

(x— Dx—2)

T+ 2x+ 1
Rewrite as multiplication.
Factor the numerator and denominator.
Multiply numerators and denominators.

Cancel common factors to simplify.

Divide the rational expressions and express the quotient in simplest form:

9x* — 16

L3 —2x—8

35+ 17x — 28

Adding and Subtracting Rational Expressions

Adding and subtracting rational expressions works just like adding and subtracting numerical fractions. To add
fractions, we need to find a common denominator. Let’s look at an example of fraction addition.

5 1

24 40

x*+5x— 14

25 3
= — —|— _—

120 120
28

120

- L
30

We have to rewrite the fractions so they share a common denominator before we are able to add.We must do the same
thing when adding or subtracting rational expressions.

The easiest common denominator to use will be the least common denominator, or LCD. The LCD is the smallest
multiple that the denominators have in common. To find the LCD of two rational expressions, we factor the expressions
and multiply all of the distinct factors. For instance, if the factored denominators were (x + 3)(x + 4) and (x + 4)(x + 5),
then the LCD would be (x + 3)(x + 4)(x + 5).

Once we find the LCD, we need to multiply each expression by the form of 1 that will change the denominator to the

LCD. We would need to multiply the expression with a denominator of (x + 3)(x + 4) by
with a denominator of (x + 3)(x + 4) by

x+3
x+3°

x+5
x+5

and the expression
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Given two rational expressions, add or subtract them.
1. Factor the numerator and denominator.
2. Find the LCD of the expressions.

3. Multiply the expressions by a form of 1 that changes the denominators to the LCD.
4. Add or subtract the numerators.
5. Simplify.

Example 4  Adding Rational Expressions

Add the rational expressions:

5,6

xTy

Solution  First, we have to find the LCD. In this case, the LCD will be xy. We then multiply each expression by the
appropriate form of 1 to obtain xy as the denominator for each fraction.

5 Y , 6 «x
x 3ty x

o, 6x
v Xy

Now that the expressions have the same denominator, we simply add the numerators to find the sum.
6x + 5y
Xy
AWM Multiplying by % or % does not change the value of the original expression because any number divided by

itself is 1, and multiplying an expression by 1 gives the original expression.

Example 5  Subtracting Rational Expressions

Subtract the rational expressions:

6 2
x*+4x+4 x*—4
Solution
6 — 2 Factor.
(x+2? E+2)x—2)
6 > X2 2 Xtz Multiply each fraction to get LCD as denominator.
x+2 x—2 x+2Dx—-2) x+2
6(x—2) B 2(x + 2) Multiply.
x+2Px—2) x+2x—2)
6x— 12— 2x+4) s
Apply distributive property.
1 270 — 2) pply property.
_ ax—16 Subtract.
(x 4+ 2P2(x—2)
4(x — 4) .
A lify.
(x 4+ 22(x—2) Simplity.
Q& A..

Do we have to use the LCD to add or subtract rational expressions?

No. Any common denominator will work, but it is easiest to use the LCD.
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Iry It #4

Subtract the rational expressions:

Simplifying Complex Rational Expressions

A complex rational expression is a rational expression that contains additional rational expressions in the numerator,
the denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator
as single rational expressions and dividing. The complex rational expression

can be simplified by rewriting the

E—FC

. . o . 1+ bc
numerator as the fraction % and combining the expressions in the denominator as +

. We can then rewrite the

expression as a multiplication problem using the reciprocal of the denominator. We get % T1 b
ab ¢

1+ bc

, which is equal
to

Given a complex rational expression, simplify it.

Combine the expressions in the numerator into a single rational expression by adding or subtracting.

. Combine the expressions in the denominator into a single rational expression by adding or subtracting.
. Rewrite as the numerator divided by the denominator.

. Rewrite as multiplication.

. Multiply.

. Simplify.

p o N =

o o

Example 6  Simplifying Complex Rational Expressions

1

Y+~

Simplify: Tx .
y

Solution Begin by combining the expressions in the numerator into one expression.

y- % + % Multiply by % to get LCD as denominator.
X1
x Tx
xy+ 1
4 P Add numerators.

Now the numerator is a single rational expression and the denominator is a single rational expression.

xy+1
X
x
Y
We can rewrite this as division, and then multiplication.
xy+1
x Ty
xy+1
yx . % Rewrite as multiplication.
yixy +1)

e Multiply.
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2/}/[1‘:#5
X y
y X

Simplify: 7

Q& A..
Can a complex rational expression always be simplified?

Yes. We can always rewrite a complex rational expression as a simplified rational expression.

Access these online resources for additional instruction and practice with rational expressions.

¢ Simplify Rational Expressions (http://openstaxcollege.org/l/simpratexpress)

e Multiply and Divide Rational Expressions (http://openstaxcollege.org/l/multdivratex)
e Add and Subtract Rational Expressions (http://openstaxcollege.org/l/addsubratex)
e Simplify a Complex Fraction (http://openstaxcollege.org/l/complexfract)


http://openstaxcollege.org/l/simpratexpress
http://openstaxcollege.org/l/multdivratex
http://openstaxcollege.org/l/addsubratex
http://openstaxcollege.org/l/complexfract
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1.6 SECTION EXERCISES

VERBAL
1. How can you use factoring to simplify rational 2. How do you use the LCD to combine two rational
expressions? expressions?

3. Tell whether the following statement is true or false
and explain why: You only need to find the LCD
when adding or subtracting rational expressions.

ALGEBRAIC
For the following exercises, simplify the rational expressions.
x*—16 5y2+10y+25 66a2—24a+24 7 9b* +18b + 9
" x2—5x+4 Ty 4 11y + 30 T 6a2— 24 " 3b+3
m— 12 92x2+7x—4 10 6x% + 5x — 4 » a*+9a + 18
m?— 144 4x? 4 2x -2 " 3x2+ 19x + 20 ‘@ +3a—18
) 3¢+ 25¢ — 18 13 12n* — 29n — 8
3¢t —23c+ 14 " 28n—5n—3

For the following exercises, multiply the rational expressions and express the product in simplest form.

1 xz—x—6.2x2—|—7x—15 15 Cz+26—24.62—10C+24
T2 4 x—6 x—9 "2+ 12c+36 ¢ —8c+16
16 2d° +9d —35 3d>+2d —21 47 10P*—9h —9  h—16h + 64
" d2+10d+21 3d*+ 14d — 49 "2W — 19h +24 S5k —37h— 24
.8 6>+ 13b+6 6b> + 31b — 30 19 2d> +15d +25 2d* — 15d + 25
o4 -9 18 — 3b — 10 " 4d>— 25 254 — 1
20 6x% — 5x — 50 _20x2—7x—6 o1 2 —1 _t2+2t—15
" 15x2 — 44x — 20 2x2+9x+ 10 TP 4443 22— 4t+3
gy 2= n—15 120~ 13n+3 2 36x2—25  3x’+32x+20
"6+ 13n—5 4 —15n+9 " 6x> 4 65x + 50 18x2+ 27x + 10
For the following exercises, divide the rational expressions.

0 V=TV =6 yty-—2 g5 PP tP—12 . 6p’—11p+4
2P —3y—9 2P 4y—3 8PP+ 18p+9 " 2p?+11p—6
2 F-9 .¢—-29-3 27 18d> + 77d — 18 | 3d>429d — 44
"F+6q+9  F+29-3 " 27d* —15d+2 94> —15d + 4
28 16x 4+ 18x — 55 | 2x>+ 17x + 30 2 1440 —25 | 180> —21b+5
" 32x2—36x— 11~ 4x2+ 25x+ 6 " 720> — 6b — 10~ 36b* — 18b — 10
20 164> —24a+9 | 162 —9 51 22y + 59y +10 | 11"+ 46y + 8
"4 +17a— 15 " 42+ 1la+6 T 122428y —5 247 —10y+1

- 9x2+3x—20;6x2+4x—10
T3 —T7x4+4 0 xX—2x+1




SECTION 1.6 SECTION EXERCISES 65

For the following exercises, add and subtract the rational expressions, and then simplify.

33.é+E 34.E—£ 35. 4 + >
x y 2qg 3p at+1 a-—3

36.C+2—C_4 37_)/—1—3_1_)/—3 38_x—1_2x—|—3
3 4 y—2 y+1 x+1 2x+1
3 2z45 4

39, 22 22T w0 P Pt m—>_ 4y 2
z+1 z—-2 p+1 4p x+1 y+1

For the following exercises, simplify the rational expression.

2. ¢ 4 43-24_2 M. x P
y T x a b 4 8
y b p
4. 3 b 46. 3 2 4. a b
a6 X+l x—1 b @
2b x—1 a+b
3a x+1 ab
48. 2x | 4x 49. 2c c—1 50, x V)
3 7 c+2 c+1 y X
x 2c+1 x 7
2 c+1 y X
REAL-WORLD APPLICATIONS
51. Brenda is placing tile on her bathroom floor. The area
of the floor is 15x* — 8x — 7 ft>. The area of one tile
is x2 — 2x + 1 ft% To find the number of tiles needed, Area=15x> — 8x — 7
L . .15 —8x—7
lify the rational =
simplify the rational expression e Zx il

52, The area of Sandy’s yard is 25x? — 625 ftZ. A patch of ~ 53. Aaron wants to mulch his garden. His garden is

sod has an area of x> — 10x + 25 ft>. Divide the two x* + 18x + 81 ft2 One bag of mulch covers
areas and simplify to find how many pieces of sod x* — 81 ft% Divide the expressions and simplify to
Sandy needs to cover her yard. find how many bags of mulch Aaron needs to mulch
his garden.
EXTENSIONS
For the following exercises, perform the given operations and simplify.
51 ¥+x—6 2x*—3x—9  10x*+27x+ 18 5 3y —10y+3 2y°—3y—20
R—2x—3 xX—x—-2  x+42x+1 " 32459y—2 22—y—15
y—4
56 4a—|—1+2a—3 57 X+ 7x+12 33X +19x+28  2x+x—3
'2a-3 2a+3 "X tx—6 8¢ —4x—24 3 +4x—7
4a*+9

a
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CHAPTER 1 REVIEW

algebraic expression constants and variables combined using addition, subtraction, multiplication, and division

associative property of addition the sum of three numbers may be grouped differently without affecting the result; in
symbols,a+ b +c)=@+b +¢

associative property of multiplication the product of three numbers may be grouped differently without affecting the
result; in symbols,a- (b-c)=@-b) - ¢

base in exponential notation, the expression that is being multiplied
binomial a polynomial containing two terms
coefficient any real number 4, in a polynomial in the forma x" + ... + a,x> + a x + a,

commutative property of addition two numbers may be added in either order without affecting the result; in symbols,
a+b=b+a

commutative property of multiplication two numbers may be multiplied in any order without affecting the result; in
symbols,a-b=0b"-a

constant a quantity that does not change value
degree the highest power of the variable that occurs in a polynomial

difference of squares the binomial that results when a binomial is multiplied by a binomial with the same terms, but the
opposite sign

distributive property the product of a factor times a sum is the sum of the factor times each term in the sum; in
symbols, a-(b+c)=a-b+a-c

equation a mathematical statement indicating that two expressions are equal

exponent in exponential notation, the raised number or variable that indicates how many times the base is being
multiplied

exponential notation a shorthand method of writing products of the same factor

factor by grouping a method for factoring a trinomial in the form ax? 4 bx + ¢ by dividing the x term into the sum of
two terms, factoring each portion of the expression separately, and then factoring out the GCF of the entire expression

formula an equation expressing a relationship between constant and variable quantities
greatest common factor the largest polynomial that divides evenly into each polynomial

identity property of addition there is a unique number, called the additive identity, 0, which, when added to a number,
results in the original number; in symbols,a +0=a

identity property of multiplication there is a unique number, called the multiplicative identity, 1, which, when
multiplied by a number, results in the original number; in symbols,a -1 =a

index the number above the radical sign indicating the nth root
integers the set consisting of the natural numbers, their opposites,and 0: { ..., =3, —2,—-1,0, 1,2, 3,...}

inverse property of addition for every real number a, there is a unique number, called the additive inverse (or opposite),
denoted —a, which, when added to the original number, results in the additive identity, 0; in symbols, a + (—a) =0
inverse property of multiplication for every non-zero real number g, there is a unique number, called the multiplicative
1
inverse (or reciprocal), denoted —, which, when multiplied by the original number, results in the multiplicative
identity, 1; in symbols,a - - =1

irrational numbers the set of all numbers that are not rational; they cannot be written as either a terminating or
repeating decimal; they cannot be expressed as a fraction of two integers

leading coeflicient the coefficient of the leading term
leading term the term containing the highest degree

least common denominator the smallest multiple that two denominators have in common
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monomial a polynomial containing one term

natural numbers the set of counting numbers: {1, 2, 3,...}

order of operations a set of rules governing how mathematical expressions are to be evaluated, assigning priorities to operations

perfect square trinomial the trinomial that results when a binomial is squared

polynomial a sum of terms each consisting of a variable raised to a nonnegative integer power

principal nth root the number with the same sign as a that when raised to the nth power equals a

principal square root the nonnegative square root of a number a that, when multiplied by itself, equals a

radical the symbol used to indicate a root

radical expression an expression containing a radical symbol

radicand the number under the radical symbol

rational expression the quotient of two polynomial expressions

rational numbers the set of all numbers of the form %, where m and » are integers and n # 0. Any rational number may be
written as a fraction or a terminating or repeating decimal.

real number line a horizontal line used to represent the real numbers. An arbitrary fixed point is chosen to represent 0; positive
numbers lie to the right of 0 and negative numbers to the left.

real numbers the sets of rational numbers and irrational numbers taken together

scientific notation a shorthand notation for writing very large or very small numbers in the form a x 10" where 1 <|a| <10
and # is an integer

term of a polynomial any a x'of a polynomial in the forma x" + ... + a,x*> + a x + q,
trinomial a polynomial containing three terms
variable a quantity that may change value

whole numbers the set consisting of 0 plus the natural numbers: {0, 1, 2, 3,...}

Rules of Exponents

For nonzero real numbers a and b and integers m and n

Product rule am-a'=am*"
Quotient rule Zn =qg" "
Power rule (@mr =qgmn
Zero exponent rule a’=1
1
Negative rule at=—
Power of a product rule (@a-b)yr=a-b
Power of a quotient rule (%) = %
perfect square trinomial (x+aPl=Kx+alx+a=x*+2ax+ a?
difference of squares @a+ba—>b=a*-">
difference of squares a?—b*=(@a+b)a—Db)
perfect square trinomial a*+ 2ab + b*= (a + by’
sum of cubes @+ b*=(a+ b)a*>— ab + b?)

difference of cubes ad—b=@a—b)@a+ab+ b?

67
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Key Concepts

1.1 Real Numbers: Algebra Essentials

Rational numbers may be written as fractions or terminating or repeating decimals. See Example 1 and Example 2.
Determine whether a number is rational or irrational by writing it as a decimal. See Example 3.

The rational numbers and irrational numbers make up the set of real numbers. See Example 4. A number can be
classified as natural, whole, integer, rational, or irrational. See Example 5.

The order of operations is used to evaluate expressions. See Example 6.

The real numbers under the operations of addition and multiplication obey basic rules, known as the properties of
real numbers. These are the commutative properties, the associative properties, the distributive property, the identity
properties, and the inverse properties. See Example 7.

Algebraic expressions are composed of constants and variables that are combined using addition, subtraction,
multiplication, and division. See Example 8. They take on a numerical value when evaluated by replacing variables
with constants. See Example 9, Example 10, and Example 12.

Formulas are equations in which one quantity is represented in terms of other quantities. They may be simplified or
evaluated as any mathematical expression. See Example 11 and Example 13.

1.2 Exponents and Scientific Notation

Products of exponential expressions with the same base can be simplified by adding exponents. See Example 1.
Quotients of exponential expressions with the same base can be simplified by subtracting exponents. See Example 2.
Powers of exponential expressions with the same base can be simplified by multiplying exponents. See Example 3.
An expression with exponent zero is defined as 1. See Example 4.

An expression with a negative exponent is defined as a reciprocal. See Example 5 and Example 6.

The power of a product of factors is the same as the product of the powers of the same factors. See Example 7.

The power of a quotient of factors is the same as the quotient of the powers of the same factors. See Example 8.

The rules for exponential expressions can be combined to simplify more complicated expressions. See Example 9.

Scientific notation uses powers of 10 to simplify very large or very small numbers. See Example 10 and
Example 11.

Scientific notation may be used to simplify calculations with very large or very small numbers. See Example 12
and Example 13.

1.3 Radicals and Rational Expressions

The principal square root of a number a is the nonnegative number that when multiplied by itself equals a. See
Example 1.

If a and b are nonnegative, the square root of the product ab is equal to the product of the square roots of a and b
See Example 2 and Example 3.
a

b

If a and b are nonnegative, the square root of the quotient
See Example 4 and Example 5.

is equal to the quotient of the square roots of a and b

We can add and subtract radical expressions if they have the same radicand and the same index. See Example 6
and Example 7.

Radical expressions written in simplest form do not contain a radical in the denominator. To eliminate the square
root radical from the denominator, multiply both the numerator and the denominator by the conjugate of the
denominator. See Example 8 and Example 9.

The principal nth root of a is the number with the same sign as a that when raised to the nth power equals a. These
roots have the same properties as square roots. See Example 10.

Radicals can be rewritten as rational exponents and rational exponents can be rewritten as radicals. See
Example 11 and Example 12.

The properties of exponents apply to rational exponents. See Example 13.
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1.5

1.6

CHAPTER 1 REVIEW

Polynomials

« A polynomial is a sum of terms each consisting of a variable raised to a non-negative integer power. The degree
is the highest power of the variable that occurs in the polynomial. The leading term is the term containing the
highest degree, and the leading coeflicient is the coefficient of that term. See Example 1.

» We can add and subtract polynomials by combining like terms. See Example 2 and Example 3.

o To multiply polynomials, use the distributive property to multiply each term in the first polynomial by each term
in the second. Then add the products. See Example 4.

« FOIL (First, Outer, Inner, Last) is a shortcut that can be used to multiply binomials. See Example 5.
o Perfect square trinomials and difference of squares are special products. See Example 6 and Example 7.

« Follow the same rules to work with polynomials containing several variables. See Example 8.

Factoring Polynomials

« The greatest common factor, or GCF, can be factored out of a polynomial. Checking for a GCF should be the first
step in any factoring problem. See Example 1.

o Trinomials with leading coefficient 1 can be factored by finding numbers that have a product of the third term and

a sum of the second term. See Example 2.
o Trinomials can be factored using a process called factoring by grouping. See Example 3.

o Perfect square trinomials and the difference of squares are special products and can be factored using equations.
See Example 4 and Example 5.

« The sum of cubes and the difference of cubes can be factored using equations. See Example 6 and Example 7.

o Polynomials containing fractional and negative exponents can be factored by pulling out a GCFE. See Example 8.

Rational Expressions

« Rational expressions can be simplified by cancelling common factors in the numerator and denominator. See
Example 1.

» We can multiply rational expressions by multiplying the numerators and multiplying the denominators. See
Example 2.

« To divide rational expressions, multiply by the reciprocal of the second expression. See Example 3.

« Adding or subtracting rational expressions requires finding a common denominator. See Example 4 and
Example 5.

» Complex rational expressions have fractions in the numerator or the denominator. These expressions can be
simplified. See Example 6.
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CHAPTER 1 REVIEW EXERCISES

REAL NUMBERS: ALGEBRA ESSENTIALS

For the following exercises, perform the given operations.

1.(5-3-22-6 2.64+(2-8)+14=7 3254622
For the following exercises, solve the equation.

4, 5x+9=-11 5.2y + 4 =64
For the following exercises, simplify the expression.

6.9y +2)+3-2+1 7.3m(4+7)—m

For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive
answer.

8.11 9.0 10.% 1. V11

EXPONENTS AND SCIENTIFIC NOTATION

For the following exercises, simplify the expression.

5 4 2. 40
12,27 24 13,2 w2 15, 544
4 "\ p 2a7*
(X)/)4 2 4*2x3y*3 2\ 2 1643
16. e 17. — 2 2x° a “1y-2
y % g0 18. ( 1 ) 19, ( 7 )(4ab )
20. Write the number in standard notation: 21. Write the number in scientific notation: 16,340,000
2.1314 x 10~°
RADICALS AND RATIONAL EXPRESSIONS
For the following exercises, find the principal square root.
22.\/ 121 23. V' 196 24. V361 25.\V75
Vig (22 1 /80 |/
26. V' 162 27. E 28. 31 29. 1250
2 5
30. 31.4V3 +6V3 32.12V5 — 13V5 33.V —243
44+V2
3
34. 250




POLYNOMIALS

CHAPTER 1

REVIEW

For the following exercises, perform the given operations and simplify.

35. B3 +2x— 1)+ (Ux*—2x+7)

37. 2x*+3x —6) + (3x* — 4x +9)

39. (k+ 3)(k—6)
M. (x+ 12+ 1)
43. (a + 2b)(3a — b)

36. 2y +1)— (2y*—2y—5)

38. (6a* + 3a + 10) — (6a* —3a + 5)
40. 2h + 1)(3h — 2)

42. (m — 2)(m?> + 2m — 3)

4. (x+y)(x—y)

71

FACTORING POLYNOMIALS

For the following exercises, find the greatest common factor.

45. 81p + 9pq — 27p*q’ 46. 12x°y + 4xy> —18xy 47. 88a’b + 4a’b — 144a’

For the following exercises, factor the polynomial.

48. 2x> — 9x — 18 49. 8a*> 4 30a — 27 50. d*> — 5d — 66
51. x> + 10x + 25 52. y* — 6y +9 53. 4h* — 12hk + 9K?
54. 361x? — 121 55. p*> 4+ 216 56. 8x> — 125
1 3 1 4
57. 64q° — 27p° 58, 4x(x — 1) 1 + 3(x — 1)* 59. 3p(p + 3)3 — 8(p + 3)>

2 1
60. 4r(2r — 1) 3 — 52r —1)3

RATIONAL EXPRESSIONS
For the following exercises, simplify the expression.
X —x—12 4y* — 25
61. — = 62 — 2 — =2
x*—8x+ 16 4y — 20y + 25
2’ —a—3 5a>—19a—4 d—4 d-3

"2a>—6a—8 10a*—13a—3

5 m?+5m+ 6 ;2m2+3m—9

omP—5m—3  4m? —4m — 3

67.

10
=+

=N

69. 1 2
i’

6¢c + 12d
dc

64.

-9 d—16

o Ad’—7d—2 . 8d’+6d+1
"6d?—17d+10  6d*+7d — 10

12 3
68. —
a?+2a+1 a>-1

~l

o
R|lw
=N

R
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CHAPTER 1 PRACTICE TEST

For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive
answer.

1. -13 2.\V2

For the following exercises, evaluate the equations.

3.2(x+3)—12=18 4. y(3+32—26=10
5. Write the number in standard notation: 3.1415 x 10° 6. Write the number in scientific notation:
0.0000000212.
For the following exercises, simplify the expression.
7.-2-(2+3-202+ 144 8. 4(x + 3) — (6x+2) 9.3 33
8x°
2’ 1. 12. (16y°)2y 2
10. (3 > (2x)? Ve
13. V441 14.V 490 15.'\/ %366
V1210 V-
6. V12107 17.6V24 + 7V54 — 12V6 18. 8
1+Vb /625
19. (13¢° +2¢* —3) — (64> +59 —3) 20. (6p*+2p+ 1)+ (9p*— 1) 21. (n — 2)(n* —4n + 4)
22, (a — 2b)(2a+ b)
For the following exercises, factor the polynomial.
23. 16x> — 81 24. y* + 12y 4 36 25, 27¢3 — 1331
1 3
26. 3x(x — 6) 4 + 2(x — 6)4
For the following exercises, simplify the expression.
27 4z — 1
o7, z—2k7z+3‘ z 252%—9 28.%—1—% 2, a 2b
3a—2b

6a



Equations and Inequalities

Figure 1

CHAPTER OUTLINE

2.1 The Rectangular Coordinate Systems and Graphs
2.2 Linear Equations in One Variable

2.3 Models and Applications

2.4 Complex Numbers

2.5 Quadratic Equations

2.6 Other Types of Equations

2.7 Linear Inequalities and Absolute Value Inequalities

Introduction

For most people, the term territorial possession indicates restrictions, usually dealing with trespassing or rite of passage
and takes place in some foreign location. What most Americans do not realize is that from September through December,
territorial possession dominates our lifestyles while watching the NFL. In this area, territorial possession is governed
by the referees who make their decisions based on what the chains reveal. If the ball is at point A (x,, y,), then it is up
to the quarterback to decide which route to point B (x,, y,), the end zone, is most feasible.
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LEARNING OBJECTIVES

In this section you will:

e Plot ordered pairs in a Cartesian coordinate system.
e (Graph equations by plotting points.

e (raph equations with a graphing utility.

¢ Find x-intercepts and y-intercepts.

e Use the distance formula.

e Use the midpoint formula.

21 THE RECTANGULAR COORDINATE SYSTEMS AND GRAPHS

>
'

Schiller/ Avenue

Mannhelm
Bertau Road
Avenue
McLean Street
b
Wolf
Road
North Avenue

Figure 1

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each stop
is indicated by a red dot in Figure 1. Laying a rectangular coordinate grid over the map, we can see that each stop
aligns with an intersection of grid lines. In this section, we will learn how to use grid lines to describe locations and
changes in locations.

An old story describes how seventeenth-century philosopher/mathematician René Descartes invented the system that
has become the foundation of algebra while sick in bed. According to the story, Descartes was staring at a fly crawling
on the ceiling when he realized that he could describe the fly’s location in relation to the perpendicular lines formed by
the adjacent walls of his room. He viewed the perpendicular lines as horizontal and vertical axes. Further, by dividing
each axis into equal unit lengths, Descartes saw that it was possible to locate any object in a two-dimensional plane
using just two numbers—the displacement from the horizontal axis and the displacement from the vertical axis.

While there is evidence that ideas similar to Descartes’ grid system existed centuries earlier, it was Descartes who
introduced the components that comprise the Cartesian coordinate system, a grid system having perpendicular axes.
Descartes named the horizontal axis the x-axis and the vertical axis the y-axis.

The Cartesian coordinate system, also called the rectangular coordinate system, is based on a two-dimensional plane
consisting of the x-axis and the y-axis. Perpendicular to each other, the axes divide the plane into four sections. Each
section is called a quadrant; the quadrants are numbered counterclockwise as shown in Figure 2.
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y-axis
A

Quadrant IT Quadrant I

< » X-axis

Quadrant III Quadrant IV

4

Figure 2

The center of the plane is the point at which the two axes cross. It is known as the origin, or point (0, 0). From the
origin, each axis is further divided into equal units: increasing, positive numbers to the right on the x-axis and up
the y-axis; decreasing, negative numbers to the left on the x-axis and down the y-axis. The axes extend to positive and
negative infinity as shown by the arrowheads in Figure 3.

Figure 3

Each point in the plane is identified by its x-coordinate, or horizontal displacement from the origin, and its
y-coordinate, or vertical displacement from the origin. Together, we write them as an ordered pair indicating the
combined distance from the origin in the form (x, y). An ordered pair is also known as a coordinate pair because it
consists of x- and y-coordinates. For example, we can represent the point (3, —1) in the plane by moving three units
to the right of the origin in the horizontal direction, and one unit down in the vertical direction. See Figure 4.

Figure 4

When dividing the axes into equally spaced increments, note that the x-axis may be considered separately from the
y-axis. In other words, while the x-axis may be divided and labeled according to consecutive integers, the y-axis may
be divided and labeled by increments of 2, or 10, or 100. In fact, the axes may represent other units, such as years
against the balance in a savings account, or quantity against cost, and so on. Consider the rectangular coordinate
system primarily as a method for showing the relationship between two quantities.
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Cartesian coordinate system

A two-dimensional plane where the

o x-axis is the horizontal axis

o y-axis is the vertical axis

A point in the plane is defined as an ordered pair, (x, y), such that x is determined by its horizontal distance from
the origin and y is determined by its vertical distance from the origin.

Example 1  Plotting Points in a Rectangular Coordinate System

Plot the points (—2, 4), (3, 3), and (0, —3) in the plane.
Solution To plot the point (-2, 4), begin at the origin. The x-coordinate is —2, so move two units to the left. The
y-coordinate is 4, so then move four units up in the positive y direction.

To plot the point (3, 3), begin again at the origin. The x-coordinate is 3, so move three units to the right. The
y-coordinate is also 3, so move three units up in the positive y direction.

To plot the point (0, —3), begin again at the origin. The x-coordinate is 0. This tells us not to move in either direction
along the x-axis. The y-coordinate is -3, so move three units down in the negative y direction. See the graph in Figure 5.

33

2,4)

> X

S-4-3-2-1 | 123 45

- Gle)

Y

Figure 5

Analysis  Note that when either coordinate is zero, the point must be on an axis. If the x-coordinate is zero, the point
is on the y-axis. If the y-coordinate is zero, the point is on the x-axis.

We can plot a set of points to represent an equation. When such an equation contains both an x variable and a y
variable, it is called an equation in two variables. Its graph is called a graph in two variables. Any graph on a two-
dimensional plane is a graph in two variables.

Suppose we want to graph the equation y = 2x — 1. We can begin by substituting a value for x into the equation and
determining the resulting value of y. Each pair of x- and y-values is an ordered pair that can be plotted. Table 1 lists
values of x from —3 to 3 and the resulting values for y.

x y=2x—1 ()
-3 y=2(-3)-1=-7 (=3, =7)
2 y=2(-2)—-1=-5 (—2,-5)
—1 y=2(-1)-1=-3 (—1, —3)
0 y=20—-1=-1 0, —1)
1 y=21)-1=1 (1,1
2 y=22)—-1=3 (2,3)
3 y=208)—1=5 3,5)

Table 1
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We can plot the points in the table. The points for this particular equation form a line, so we can connect them. See
Figure 6. This is not true for all equations.

Figure 6

Note that the x-values chosen are arbitrary, regardless of the type of equation we are graphing. Of course, some
situations may require particular values of x to be plotted in order to see a particular result. Otherwise, it is logical
to choose values that can be calculated easily, and it is always a good idea to choose values that are both negative and
positive. There is no rule dictating how many points to plot, although we need at least two to graph a line. Keep in
mind, however, that the more points we plot, the more accurately we can sketch the graph.

Given an equation, graph by plotting points.

1. Make a table with one column labeled x, a second column labeled with the equation, and a third column listing the
resulting ordered pairs.

2. Enter x-values down the first column using positive and negative values. Selecting the x-values in numerical order
will make the graphing simpler.

3. Select x-values that will yield y-values with little effort, preferably ones that can be calculated mentally.

4. Plot the ordered pairs.

5. Connect the points if they form a line.

Example 2  Graphing an Equation in Two Variables by Plotting Points
Graph the equation y = —x + 2 by plotting points.

Solution  First, we construct a table similar to Table 2. Choose x values and calculate y.

x y=—x+2 (%, y)
5 y=—(-5+2=7 (=57
3 y=—(=})+2=5 (-3,
-1 y=—(-1)+42=3 (-1, 3)
0 y=—0)+2=2 0,2)
1 y=—0+42=1 1,1
3 y=—@+2=-1 (-1
5 y=—0B)+2=-3 (5, -3)
Table 2
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Now, plot the points. Connect them if they form a line. See Figure 7.
Y

(s, 7)\\ A

(3,5)

XN U1 N

CL3INL0,2)
1

[Ean
~—

—7—5—5—4%5— 2 1 5 6 7
(3,-1)
(5;-3)

@ N e

Y

Figure 7

Try It #1

Construct a table and graph the equation by plotting points: y = %x + 2.

Graphing Equations with a Graphing Utility

Most graphing calculators require similar techniques to graph an equation. The equations sometimes have to be
manipulated so they are written in the styley=___ . The TI-84 Plus, and many other calculator makes and models,
have a mode function, which allows the window (the screen for viewing the graph) to be altered so the pertinent parts
of a graph can be seen.

For example, the equation y = 2x — 20 has been entered in the TI-84 Plus shown in Figure 8a. In Figure 8b, the
resulting graph is shown. Notice that we cannot see on the screen where the graph crosses the axes. The standard
window screen on the TI-84 Plus shows —10 < x < 10, and —10 < y < 10. See Figure 8c.

Plot1 Plot2 Plot3 B WINDOW
\Y = 2X-20 3 Xmin=-10

\Y=0 Xmax =10
\Y,= Xscl=1

Y= t ...... J ,/J Ymin=-10
\Y,= ] Ymax =10
Y= 1 Yscl=1
\Y,= ] X Xres=1

(a) (b) ()
Figure 8 (a) Enter the equation. (b) This is the graph in the original window. (c) These are the original settings.

By changing the window to show more of the positive x-axis and more of the negative y-axis, we have a much better
view of the graph and the x- and y-intercepts. See Figure 9a and Figure 9b.

WINDOW

Xmin =-5

Xmax =15

Xscl=1

Ymin =-30

Ymax =10

Yscl=1

Xres =1 X

@ O
Figure 9 (a) This screen shows the new window settings. (b) We can clearly view the intercepts in the new window.

Example 3  Using a Graphing Utility to Graph an Equation
Use a graphing utility to graph the equation: y = —%x — %

Solution Enter the equation in the y = function of the calculator. Set the window settings so that both the x- and
y-intercepts are showing in the window. See Figure 10.

W«
N

SINEN)

-

A
Y
x

1
1

-

\
Figure 10



SECTION 21 THE RECTANGULAR COORDINATE SYSTEMS AND GRAPHS

The intercepts of a graph are points at which the graph crosses the axes. The x-intercept is the point at which the graph
crosses the x-axis. At this point, the y-coordinate is zero. The y-intercept is the point at which the graph crosses the
y-axis. At this point, the x-coordinate is zero.

To determine the x-intercept, we set y equal to zero and solve for x. Similarly, to determine the y-intercept, we set x
equal to zero and solve for y. For example, lets find the intercepts of the equation y = 3x — 1.

To find the x-intercept, set y = 0.

y=3x-1
0=3x—-1
1=3x
1_,
3
1 .
(5, 0) x-intercept
To find the y-intercept, set x = 0.
y=3x-1
y=3(0)—1
y=-1
(0, -1) y-intercept

We can confirm that our results make sense by observing a graph of the equation as in Figure 11. Notice that the graph
crosses the axes where we predicted it would.

>\

3x—1

N~

N W

4

4
4

Y
Figure 11

given an equation, find the intercepts.

o Find the x-intercept by setting y = 0 and solving for x.
« Find the y-intercept by setting x = 0 and solving for y.

Example 4  Finding the Intercepts of the Given Equation
Find the intercepts of the equation y = —3x — 4. Then sketch the graph using only the intercepts.
Solution  Set y = 0 to find the x-intercept.

y=-3x—4
0=-3x—4
4=—-3x
4
3
(—%, 0> x—intercept
Set x = 0 to find the y-intercept.
y=-3x—4
y=-3(0)—4
=—4

(0, —4) y—intercept
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Plot both points, and draw a line passing through them as in Figure 12.

A

mn
[SSRITN
(=

o\, > x

A

(0, =4
\

\

\

Try It #2
Find the intercepts of the equation and sketch the graph: y = —%x + 3.

Using the Distance Formula

Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the
plane. The Pythagorean Theorem, a* + b* = ¢?, is based on a right triangle where a and b are the lengths of the legs
adjacent to the right angle, and c is the length of the hypotenuse. See Figure 13.

Yy

A
A
] (x,,)

) d

ld=kc :
: ‘}’2 - yl‘: b
5 :

(x,9)
oy = X, —x|=a :

—t—F—F—+—+—+» X
1 2 3 45 6 7

Figure 13

The relationship of sides |x, — x [ and |y, — y,| to side d is the same as that of sides a and b to side c. We use the absolute
value symbol to indicate that the length is a positive number because the absolute value of any number is positive.
(For example, | 3| = 3.) The symbols |x, — x | and |y, — y | indicate that the lengths of the sides of the triangle are
positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.

c=a+b—-c=Va+ ¥
It follows that the distance formula is given as
d*=(x,—x)+ (y, =y —d=V(,—x)+ (y,— )

We do not have to use the absolute value symbols in this definition because any number squared is positive.

the distance formula
Given endpoints (x, y,) and (x,, y,), the distance between two points is given by

d= \/(x2 —x)+ @, —y)

Example 5  Finding the Distance between Two Points
Find the distance between the points (—3, —1) and (2, 3).
Solution  Let us first look at the graph of the two points. Connect the points to form a right triangle as in Figure 14.
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y
A
N (2,3)
'
A
- e > X
b 4 5
(=3, -1 5 2,-1
R
Figure 14

Then, calculate the length of d using the distance formula.
d=V(x,—x)+(,—y)
d=V@2~(=3)+ G~ (-Dy
=V () + @)’
=V25+16

Iry It #3

Find the distance between two points: (1, 4) and (11, 9).

Example 6  Finding the Distance Between Two Locations
Let’s return to the situation introduced at the beginning of this section.

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each stop is
indicated by a red dot in Figure 1. Find the total distance that Tracie traveled. Compare this with the distance between
her starting and final positions.

Solution  The first thing we should do is identify ordered pairs to describe each position. If we set the starting position
at the origin, we can identify each of the other points by counting units east (right) and north (up) on the grid. For
example, the first stop is 1 block east and 1 block north, so it is at (1, 1). The next stop is 5 blocks to the east, so it is at
(5, 1). After that, she traveled 3 blocks east and 2 blocks north to (8, 3). Lastly, she traveled 4 blocks north to (8, 7). We
can label these points on the grid as in Figure 15.

y
A
Schiller Avenue (8,7)
Mannhelm
Bertau Road
Avenue
McLean Street
(8, 3)
Wolf
Road
North Avenue
) )
1,1 51
0,0) (1,1) (5,1)
< > X
Y

Figure 15
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Next, we can calculate the distance. Note that each grid unit represents 1,000 feet.

o From her starting location to her first stop at (1, 1), Tracie might have driven north 1,000 feet and then east 1,000
feet, or vice versa. Either way, she drove 2,000 feet to her first stop.

o Her second stop is at (5, 1). So from (1, 1) to (5, 1), Tracie drove east 4,000 feet.

o Her third stop is at (8, 3). There are a number of routes from (5, 1) to (8, 3). Whatever route Tracie decided to
use, the distance is the same, as there are no angular streets between the two points. Let’s say she drove east 3,000
feet and then north 2,000 feet for a total of 5,000 feet.

o Tracie’s final stop is at (8, 7). This is a straight drive north from (8, 3) for a total of 4,000 feet.
Next, we will add the distances listed in Table 3.

From/To Number of Feet Driven
(0,0) to (1, 1) 2,000
1,Dto(5,1) 4,000
(5,1) to (8, 3) 5,000
8,3)t0(8,7) 4,000

Total 15,000
Table 3

The total distance Tracie drove is 15,000 feet, or 2.84 miles. This is not, however, the actual distance between her
starting and ending positions. To find this distance, we can use the distance formula between the points (0, 0) and (8, 7).

d=V(8—0)0+(7—0)
=164 + 49
=V113

=~ 10.63 units

At 1,000 feet per grid unit, the distance between Elmhurst, IL, to Franklin Park is 10,630.14 feet, or 2.01 miles. The
distance formula results in a shorter calculation because it is based on the hypotenuse of a right triangle, a straight
diagonal from the origin to the point (8, 7). Perhaps you have heard the saying “as the crow flies,” which means the
shortest distance between two points because a crow can fly in a straight line even though a person on the ground has
to travel a longer distance on existing roadways.

When the endpoints of a line segment are known, we can find the point midway between them. This point is known
as the midpoint and the formula is known as the midpoint formula. Given the endpoints of a line segment, (x,, y,)
and (x,, y,), the midpoint formula states how to find the coordinates of the midpoint M.
xl + xZ yl + yZ
M:<2 ’ 2)
A graphical view of a midpoint is shown in Figure 16. Notice that the line segments on either side of the midpoint
are congruent.

Y
A

(% 72)

<%+% x+n>
2 4 2

(xl’yl)

Figure 16
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Example 7  Finding the Midpoint of the Line Segment
Find the midpoint of the line segment with the endpoints (7, —2) and (9, 5).

Solution  Use the formula to find the midpoint of the line segment.

<x1+x2 y1+y2>_ 749 —245
2 ? 2 o 27 2

Iry It #4

Find the midpoint of the line segment with endpoints (—2, —1) and (-8, 6).

Example 8  Finding the Center of a Circle
The diameter of a circle has endpoints (—1, —4) and (5, —4). Find the center of the circle.

Solution  The center of a circle is the center, or midpoint, of its diameter. Thus, the midpoint formula will yield the
center point.

<x1+x2 yl+y2>

2 2
—1+5 —4—4) (4 8>
> :_)__:2)_4
( 2 2 22 ( )

Access these online resources for additional instruction and practice with the Cartesian coordinate system.

¢ Plotting Points on the Coordinate Plane (http://openstaxcollege.org/l/coordplotpnts)
e Find x- and y-intercepts Based on the Graph of a Line (http://openstaxcollege.org/l/xyintsgraph)


http://openstaxcollege.org/l/coordplotpnts
http://openstaxcollege.org/l/xyintsgraph
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21 SECTION EXERCISES

VERBAL
1. Is it possible for a point plotted in the Cartesian 2. Describe the process for finding the x-intercept and
coordinate system to not lie in one of the four the y-intercept of a graph algebraically.

quadrants? Explain.
3. Describe in your own words what the y-intercept of 4. When using the distance formula
a graph is. d= \/(x2 —x,)*+ (y, — »,)%, explain the correct
order of operations that are to be performed to
obtain the correct answer.

ALGEBRAIC

For each of the following exercises, find the x-intercept and the y-intercept without graphing. Write the coordinates
of each intercept.

5.y=-3x+6 6.4y=2x—1 7.3x —2y=6 8.4x—3=2
9.3x +8y=9 10.2x—%:%y+3
For each of the following exercises, solve the equation for y in terms of x.
11.4x+2y=38 12.3x —2y=6 13.2x=5—3y 14.x—2y=7
15. 5y +4 = 10x 16. 5x +2y =0

For each of the following exercises, find the distance between the two points. Simplify your answers, and write the
exact answer in simplest radical form for irrational answers.

17. (—4, 1) and (3, —4) 18. (2, —5) and (7, 4) 19. (5, 0) and (5, 6) 20. (—4, 3) and (10, 3)

21. Find the distance between the two points given using your calculator, and round your answer to the nearest

hundredth. (19, 12) and (41, 71)

For each of the following exercises, find the coordinates of the midpoint of the line segment that joins the two given points.
22. (-5, —6)and (4,2) 23. (—1,1)and (7, —4) 24. (—5, —3)and (-2, —8) 25.(0,7) and (4, —9)
26. (—43,17) and (23, —34)

GRAPHICAL

For each of the following exercises, identify the information requested.

27. What are the coordinates of the origin? 28. If a point is located on the y-axis, what is the

x-coordinate?
29. If a point is located on the x-axis, what is the
y-coordinate?

For each of the following exercises, plot the three points on the given coordinate plane. State whether the three points
you plotted appear to be collinear (on the same line).

30. (4, 1)(—2, —3)(5,0) 31. (—1,2)(0,4)(2, 1)
y y
A A
5 54
4,,
3 3+
..... > o]
1 1T
< ———+—+ ———+—+ X < ———+—+ —+——+—+ X
—5—4—3—2—171” 12345 —5—4—3—2—11 12 345
fsz ‘‘‘‘‘‘ 2,
73,, ‘‘‘‘‘ 3,
..‘477 ‘‘‘‘‘‘ 4 -
o O U O N ]
A Y
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32. (—3,0)(—3,4)(—3, —3) 33. Name the coordinates of the points graphed.
y
A A .
5+ 51 :
4+ 41 B
3T A 3o
..... 21 ® 2+
11 1+ C
V% T T N N N S N 1 > x
S-432-1,[ 123 S-432-1,[ 12345
94 s J IR SO SUNUL SONOE SOUONE
—3—— 73,,
4t 4t
_577 o)
1 ' Y

34. Name the quadrant in which the following points would be located. If the point is on an axis, name the axis.

a. (=3, -4) b. (-5,0) c. (1,-4) d (-2,7) e. (0, —3)
For each of the following exercises, construct a table and graph the equation by plotting at least three points.
35.y:%x+2 36. y = —3x + 1 7.2y =x+3
NUMERIC

For each of the following exercises, find and plot the x- and y-intercepts, and graph the straight line based on those
two points.

38. 4x — 3y =12 39.x—2y=38 40.y —5=>5x MN.3y=-2x+6 42.y:xT

For each of the following exercises, use the graph in the figure below.

{ 43. Find the distance between the two endpoints using
sl the distance formula. Round to three decimal places.
H K 4,, H H
‘\\3\‘ 44, Find the coordinates of the midpoint of the line
f: segment connecting the two points.
e e L e e e e S
32l 123405 45. Find the distance that (—3, 4) is from the origin.
B B =24 3 H H
I e 46. Find the distance that (5, 2) is from the origin.
' :é: ' Round to three decimal places.
Y 47. Which point is closer to the origin?

TECHNOLOGY

For the following exercises, use your graphing calculator to input the linear graphs in the Y= graph menu.

After graphing it, use the 2" CALC button and 1:value button, hit ENTER. At the lower part of the screen you will
see “x="and a blinking cursor. You may enter any number for x and it will display the y value for any x value you
input. Use this and plug in x = 0, thus finding the y-intercept, for each of the following graphs.

35— 8 5
a 50y, =X+

48. Yl =-2x+5 49, Y1 =

For the following exercises, use your graphing calculator to input the linear graphs in the Y= graph menu.

After graphing it, use the 2" CALC button and 2:zero button, hit ENTER. At the lower part of the screen you will see
“left bound?” and a blinking cursor on the graph of the line. Move this cursor to the left of the x-intercept, hit ENTER.
Now it says “right bound?” Move the cursor to the right of the x-intercept, hit ENTER. Now it says “guess?” Move your
cursor to the left somewhere in between the left and right bound near the x-intercept. Hit ENTER. At the bottom of
your screen it will display the coordinates of the x-intercept or the “zero” to the y-value. Use this to find the x-intercept.
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Note: With linear/straight line functions the zero is not really a “guess,” but it is necessary to enter a “guess” so it will
search and find the exact x-intercept between your right and left boundaries. With other types of functions (more
than one x-intercept), they may be irrational numbers so “guess” is more appropriate to give it the correct limits to
find a very close approximation between the left and right boundaries.

3x+5

51.Y = —8x+6 52.Y, =4x—7 53.Y, = Round your answer to the nearest thousandth.

EXTENSIONS

54. A man drove 10 mi directly east from his home, 55. If the road was made in the previous exercise, how

made a left turn at an intersection, and then traveled
5 mi north to his place of work. If a road was made
directly from his home to his place of work, what
would its distance be to the nearest tenth of a mile?

much shorter would the man’s one-way trip be
every day?

56. Given these four points: A(1, 3), B(—3, 5), C(4, 7), 57. After finding the two midpoints in the previous
and D(5, —4), find the coordinates of the midpoint exercise, find the distance between the two
of line segments AB and CD. midpoints to the nearest thousandth.
58. Given the graph of the rectangle shown and the 59. In the previous exercise, find the coordinates of the
coordinates of its vertices, prove that the diagonals midpoint for each diagonal.
of the rectangle are of equal length.
Y
(-6:5) o1 (10,5)
I o4t o -
~ \3:; - -
24 : < :
- At T <
<ttt X
—7 A== *3*2*1} 1 2 3 4567879 11
(=6,-1) Sl (10,-1)
' 3y ‘
REAL-WORLD APPLICATIONS
60. The coordinates on a map for San Francisco are 61. If San Jose’s coordinates are (76, —12), where the

(53, 17) and those for Sacramento are (123, 78).
Note that coordinates represent miles. Find the
distance between the cities to the nearest mile.

62. A small craft in Lake Ontario sends out a distress

64.

signal. The coordinates of the boat in trouble were
(49, 64). One rescue boat is at the coordinates

(60, 82) and a second Coast Guard craft is at
coordinates (58, 47). Assuming both rescue craft
travel at the same rate, which one would get to the
distressed boat the fastest?

If we rent a truck and pay a $75/day fee plus $.20
for every mile we travel, write a linear equation that
would express the total cost y, using x to represent
the number of miles we travel. Graph this function
on your graphing calculator and find the total cost
for one day if we travel 70 mi.

coordinates represent miles, find the distance
between San Jose and San Francisco to the
nearest mile.

63. A man on the top of a building wants to have a guy

wire extend to a point on the ground 20 ft from the
building. To the nearest foot, how long will the wire
have to be if the building is 50 ft tall?

(20, 50)

50

(0,0)



SECTION 2.2 LINEAR EQUATIONS IN ONE VARIABLE

LEARNING OBJECTIVES

In this section you will;

e Solve equations in one variable algebraically.

e Solve a rational equation.

¢ Find a linear equation.

e (iven the equations of two lines, determine whether their graphs are parallel or perpendicular.
e Write the equation of a line parallel or perpendicular to a given line.

2.2 LINEAR EQUATIONS IN ONE VARIABLE

Caroline is a full-time college student planning a spring break vacation. To earn enough money for the trip, she has
taken a part-time job at the local bank that pays $15.00/hr, and she opened a savings account with an initial deposit
of $400 on January 15. She arranged for direct deposit of her payroll checks. If spring break begins March 20 and the
trip will cost approximately $2,500, how many hours will she have to work to earn enough to pay for her vacation? If
she can only work 4 hours per day, how many days per week will she have to work? How many weeks will it take? In
this section, we will investigate problems like this and others, which generate graphs like the line in Figure 1.

y

u
3000
2500 ———
2000+
1500+
1000t

Savings Account Balance

> X
0 20 40 60 80 100 120 140 160 180 200
Hours Worked

Figure 1

A linear equation is an equation of a straight line, written in one variable. The only power of the variable is 1. Linear
equations in one variable may take the form ax 4+ b = 0 and are solved using basic algebraic operations.

We begin by classifying linear equations in one variable as one of three types: identity, conditional, or inconsistent.
An identity equation is true for all values of the variable. Here is an example of an identity equation.

3x=2x+x
The solution set consists of all values that make the equation true. For this equation, the solution set is all real numbers

because any real number substituted for x will make the equation true.

A conditional equation is true for only some values of the variable. For example, if we are to solve the equation
5x + 2 = 3x — 6, we have the following:
5x4+2=3x—-6
2x=—8
x=—4
The solution set consists of one number: {—4}. It is the only solution and, therefore, we have solved a conditional
equation.

An inconsistent equation results in a false statement. For example, if we are to solve 5x — 15 = 5(x — 4), we have the
following:

5x —15=5x — 20
5x — 15 — 5x = 5x — 20 — 5x  Subtract 5x from both sides.
—15# —-20 False statement
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Indeed, —15 # —20. There is no solution because this is an inconsistent equation.

Solving linear equations in one variable involves the fundamental properties of equality and basic algebraic
operations. A brief review of those operations follows.

linear equation in one variable

A linear equation in one variable can be written in the form
ax+b=0

where a and b are real numbers, a # 0.

Given a linear equation in one variable, use algebra to solve it.

The following steps are used to manipulate an equation and isolate the unknown variable, so that the last line reads
x= , if x is the unknown. There is no set order, as the steps used depend on what is given:

1. We may add, subtract, multiply, or divide an equation by a number or an expression as long as we do the same thing
to both sides of the equal sign. Note that we cannot divide by zero.

2. Apply the distributive property as needed: a(b + ¢) = ab + ac.

3. Isolate the variable on one side of the equation.

4. When the variable is multiplied by a coefficient in the final stage, multiply both sides of the equation by the reciprocal
of the coeflicient.

Example 1  Solving an Equation in One Variable
Solve the following equation: 2x + 7 = 19.

Solution This equation can be written in the form ax + b = 0 by subtracting 19 from both sides. However, we may
proceed to solve the equation in its original form by performing algebraic operations.

2x+7=19
2x =12 Subtract 7 from both sides.
x=6 Multiply both sides by % or divide by 2.
The solution is 6.
TV}/ It #71
Solve the linear equation in one variable: 2x + 1 = —9.

Example 2  Solving an Equation Algebraically When the Variable Appears on Both Sides
Solve the following equation: 4(x — 3) + 12 = 15 — 5(x + 6).
Solution Apply standard algebraic properties.
4(x —3)+12=15— 5(x + 6)
4x — 12+ 12=15—-5x—30  Apply the distributive property.

4x = —15—5x Combine like terms.
9x=—15 Place x- terms on one side and simplify.
x=— 19—5 Multiply both sides by %, the reciprocal of 9.
x=—2
3

AMLZ%'/; This problem requires the distributive property to be applied twice, and then the properties of algebra are used

to reach the final line, x = 7%
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Tr)/ It #2

Solve the equation in one variable: —2(3x — 1) + x = 14 — x.

In this section, we look at rational equations that, after some manipulation, result in a linear equation. If an equation
contains at least one rational expression, it is a considered a rational equation.

Recall that a rational number is the ratio of two numbers, such as % or % A rational expression is the ratio, or quotient,
of two polynomials. Here are three examples.

x+1 1 4
¥—4'x=3"" X+x-2
Rational equations have a variable in the denominator in at least one of the terms. Our goal is to perform algebraic

operations so that the variables appear in the numerator. In fact, we will eliminate all denominators by multiplying
both sides of the equation by the least common denominator (LCD).

Finding the LCD is identifying an expression that contains the highest power of all of the factors in all of the
denominators. We do this because when the equation is multiplied by the LCD, the common factors in the LCD and
in each denominator will equal one and will cancel out.

Example 3  Solving a Rational Equation

. . 7 5 22
Solve the rational tion: — — — = ==,
olve the rational equation: -~ — = = =

Solution We have three denominators; 2x, 3x, and 3. The LCD must contain 2x, 3x, and 3. An LCD of 6x contains
all three denominators. In other words, each denominator can be divided evenly into the LCD. Next, multiply both
sides of the equation by the LCD 6x.

(2 >(6x)

(6x)<%c - 357c> 3

7 5 22 s .
(6x)< o > - (6x)< ™ <? > (6x) Use the distributive property.

7 5\_ (22
(%)< %C> N (6’/‘)< %> = ( 3 )(596) Cancel out the common factors.

3(7) — 2(5) = 22(2x) Multiply remaining factors by each numerator.
21 — 10 =44x
11 = 44x
E =X
44
1
4

A common mistake made when solving rational equations involves finding the LCD when one of the denominators is
a binomial—two terms added or subtracted—such as (x + 1). Always consider a binomial as an individual factor—the
terms cannot be separated. For example, suppose a problem has three terms and the denominators are x, x — 1, and
3x — 3. First, factor all denominators. We then have x, (x — 1), and 3(x — 1) as the denominators. (Note the parentheses
placed around the second denominator.) Only the last two denominators have a common factor of (x — 1). The x in
the first denominator is separate from the x in the (x — 1) denominators. An effective way to remember this is to write
factored and binomial denominators in parentheses, and consider each parentheses as a separate unit or a separate
factor. The LCD in this instance is found by multiplying together the x, one factor of (x — 1), and the 3. Thus, the LCD
is the following:
x(x —1)3 =3x(x — 1)

So, both sides of the equation would be multiplied by 3x(x — 1). Leave the LCD in factored form, as this makes it easier
to see how each denominator in the problem cancels out.
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Another example is a problem with two denominators, such as x and x* + 2x. Once the second denominator is factored
as x2 + 2x = x(x + 2), there is a common factor of x in both denominators and the LCD is x(x + 2).

Sometimes we have a rational equation in the form of a proportion; that is, when one fraction equals another fraction

and there are no other terms in the equation.
a_c

b d
We can use another method of solving the equation without finding the LCD: cross-multiplication. We multiply terms
by crossing over the equal sign.
If2 = £ then 7€,
b X
Multiply a(d) and b(c), which results in ad = bc.

Any solution that makes a denominator in the original expression equal zero must be excluded from the possibilities.

rational equations

A rational equation contains at least one rational expression where the variable appears in at least one of the
denominators.

Given a rational equation, solve it.

Factor all denominators in the equation.
. Find and exclude values that set each denominator equal to zero.
. Find the LCD.
. Multiply the whole equation by the LCD. If the LCD is correct, there will be no denominators left.
. Solve the remaining equation.
. Make sure to check solutions back in the original equations to avoid a solution producing zero in a denominator.

o oA~ W N =

Example 4  Solving a Rational Equation without Factoring

Solve the following rational equation: s g
2 2«

Solution  We have three denominators: x, 2, and 2x. No factoring is required. The product of the first two denominators
is equal to the third denominator, so, the LCD is 2x. Only one value is excluded from a solution set, 0.

=N

Next, multiply the whole equation (both sides of the equal sign) by 2x.

(3 -3)= (e

2% (% > - Zx(% ) = < %c )%c Distribute 2x.
212) —3x=7 Denominators cancel out.
4—-3x=7
—3x=3
x=-1
or {—1}

The proposed solution is —1, which is not an excluded value, so the solution set contains one number, —1, or {—1}
written in set notation.

Tl’)/ It #3

. . 2 1 1
Solve the rational tion: — = — — —.
olve the rational equation: = = 7 — —
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Example 5  Solving a Rational Equation by Factoring the Denominator

. . . 1 1 3
lve the foll tional tion: — = — — —.
Solve the following rational equation: 0 1
Solution First find the common denominator. The three denominators in factored form are x, 10 =2 - 5, and
4x =2 -2 - x. The smallest expression that is divisible by each one of the denominators is 20x. Only x = 0 is an excluded

value. Multiply the whole equation by 20x.
1y _ (1 3

20=2x—15
35 =2x
35 _

5 2

The solution is 37 .

Tr)/ It #4

. . 5 3 7
Solve the rat 1 tion: —— + — = —=.
olve € rationa equa 10on x 4x 4

Example 6  Solving Rational Equations with a Binomial in the Denominator
Solve the following rational equations and state the excluded values:

L3 5 oox 5 1 1
‘x—6 X "x—3 x—-3 2 Tx—2 x—2 2

Solution
a. The denominators x and x — 6 have nothing in common. Therefore, the LCD is the product x(x — 6).

However, for this problem, we can cross-multiply.

3 _5
x—6 X
3x =5(x — 6) Distribute.
3x=5x—30
—2x=—-30
x=15

The solution is 15. The excluded values are 6 and 0.

b. The LCD is 2(x — 3). Multiply both sides of the equation by 2(x — 3).
2(x—3)< X ):( > —%)2(x—3)

x—3 x—3
206=73)x 2x=3)5 Z(x—3)
=3  x=3 1
2x =10 — (x — 3)
2x=10—x+3
2x=13 — x
3x =13
13
3

The solution is 1—3. The excluded value is 3.
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c. The least common denominator is 2(x — 2). Multiply both sides of the equation by x(x — 2).

2(x_2)<xi2>:<xiz _%>2(x_2)

2x=10 — (x — 2)

2x =12 — x
3x=12
x=4

The solution is 4. The excluded value is 2.

Try It #5

_3 o
2x+1 3x+1

Solve

. State the excluded values.

Example 7  Solving a Rational Equation with Factored Denominators and Stating Excluded Values
1 2

x+1 x—1 xt—1

Solution We must factor the denominator x* — 1. We recognize this as the difference of squares, and factor it as

(x — I)(x + 1). Thus, the LCD that contains each denominator is (x — 1)(x + 1). Multiply the whole equation by the
LCD, cancel out the denominators, and solve the remaining equation.

Solve the rational equation after factoring the denominators:

. State the excluded values.

2 1 _ 2x _
(x — 1)(x+1)<erl 7x—1>_((x—1)(x+1)>(x D(x+1)

2x—1) - 1(x+1)=2x
X —2—x—1=2 Distribute the negative sign.
—3—-x=0
—3=x

The solution is —3. The excluded values are 1 and —1.

Try It #6

. . 2 1 1
Solve the rat 1 tion: = .
olve the rationa equalonx_erx_‘_1 R

Finding a Linear Equation

Perhaps the most familiar form of a linear equation is the slope-intercept form, written as y = mx + b, where
m = slope and b = y-intercept. Let us begin with the slope.

The Slope of a Line

The slope of a line refers to the ratio of the vertical change in y over the horizontal change in x between any two points
on a line. It indicates the direction in which a line slants as well as its steepness. Slope is sometimes described as rise
over run.

yz - y1

XX

m

If the slope is positive, the line slants to the right. If the slope is negative, the line slants to the left. As the slope increases,
the line becomes steeper. Some examples are shown in Figure 2. The lines indicate the following slopes: m = —3,

1
=2,andm= <.
m and m = -
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)i y=2x+1

>

2 24 6 81012

Y
Figure 2

the slope of a line
The slope of a line, m, represents the change in y over the change in x. Given two points, (x, y,) and (x,, y,), the
following formula determines the slope of a line containing these points:

_ yz - yl

B

Example 8  Finding the Slope of a Line Given Two Points
Find the slope of a line that passes through the points (2, —1) and (-5, 3).

Solution We substitute the y-values and the x-values into the formula.

_3—(=1
S
4
-7
4
-7

The slope is —%.

Analysis It does not matter which point is called (x, y,) or (x,, y,). As long as we are consistent with the order of the y
terms and the order of the x terms in the numerator and denominator, the calculation will yield the same result.

Iry It #7

Find the slope of the line that passes through the points (—2, 6) and (1, 4).

Example 9  Identifying the Slope and y-intercept of a Line Given an Equation
Identify the slope and y-intercept, given the equation y = — %x —4.
Solution As theline is in y = mx + b form, the given line has a slope of m = —% The y-intercept is b = —4.

Analysis  The y-intercept is the point at which the line crosses the y-axis. On the y-axis, x = 0. We can always identify
the y-intercept when the line is in slope-intercept form, as it will always equal b. Or, just substitute x = 0 and solve for y.

The Point-Slope Formula

Given the slope and one point on a line, we can find the equation of the line using the point-slope formula.
y—y,=mx—x)

This is an important formula, as it will be used in other areas of college algebra and often in calculus to find the

equation of a tangent line. We need only one point and the slope of the line to use the formula. After substituting the
slope and the coordinates of one point into the formula, we simplify it and write it in slope-intercept form.
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the point-slope formula
Given one point and the slope, the point-slope formula will lead to the equation of a line:

y—y,=mx—x)

Example 10 Finding the Equation of a Line Given the Slope and One Point

Write the equation of the line with slope m = —3 and passing through the point (4, 8). Write the final equation in
slope-intercept form.

Solution  Using the point-slope formula, substitute —3 for m and the point (4, 8) for (x, y,).
y—y, =mx—x)
y—8=—-3(x—4)
y—8=—3x+12
y=-3x+20

Analysis  Note that any point on the line can be used to find the equation. If done correctly, the same final equation will
be obtained.

Example 11 Finding the Equation of a Line Passing Through Two Given Points

Find the equation of the line passing through the points (3, 4) and (0, —3). Write the final equation in slope-intercept
form.

Solution  First, we calculate the slope using the slope formula and two points.

_ —3—4
T 0-3
_ =7
-3
_7
3

Next, we use the point-slope formula with the slope of %, and either point. Let’s pick the point (3, 4) for (x,, y,).

7

—4=L(x-3
y ;=3
y—4= gx -7 Distribute the %
7
=Zx-3
y=3%

In slope-intercept form, the equation is written as y = %x —3.
AM/LZM'A To prove that either point can be used, let us use the second point (0, —3) and see if we get the same equation.

T
y—bﬁﬁ—gx 0)

y+3:§x
yz%x—3

We see that the same line will be obtained using either point. This makes sense because we used both points to calculate
the slope.
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Standard Form of a Line

Another way that we can represent the equation of a line is in standard form. Standard form is given as
Ax+By=C

where A, B, and C are integers. The x- and y-terms are on one side of the equal sign and the constant term is on the

other side.

Example 12 Finding the Equation of a Line and Writing It in Standard Form
Find the equation of the line with m = —6 and passing through the point <i, —2). Write the equation in standard form.
Solution We begin using the point-slope formula.
1
oo )
y—(=2) X—y
3
y+2=—6x+ >

From here, we multiply through by 2, as no fractions are permitted in standard form, and then move both variables
to the left aside of the equal sign and move the constants to the right.

2(y +2) :<—6x+ %)2

2y+4=—-12x+3
2x +2y=-1

This equation is now written in standard form.

Try It #9
Find the equation of the line in standard form with slope m = —é and passing through the point <1, % )

Vertical and Horizontal Lines

The equations of vertical and horizontal lines do not require any of the preceding formulas, although we can use the
formulas to prove that the equations are correct. The equation of a vertical line is given as

X=cC

where c is a constant. The slope of a vertical line is undefined, and regardless of the y-value of any point on the line,
the x-coordinate of the point will be c.

Suppose that we want to find the equation of a line containing the following points: (—3, —5), (=3, 1), (-3, 3), and

(=3, 5). First, we will find the slope.
5-3 2
m=————=—

—-3—-(=3) 0
Zero in the denominator means that the slope is undefined and, therefore, we cannot use the point-slope formula.
However, we can plot the points. Notice that all of the x-coordinates are the same and we find a vertical line through

x = —3. See Figure 3.

The equation of a horizontal line is given as

y=c
where c is a constant. The slope of a horizontal line is zero, and for any x-value of a point on the line, the y-coordinate
will be c.

Suppose we want to find the equation of a line that contains the following set of points: (-2, —2), (0, —2), (3, —2), and
(5, —2). We can use the point-slope formula. First, we find the slope using any two points on the line.
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_ —2—(-2)
00— (=2)

Use any point for (x,, y,) in the formula, or use the y-intercept.
y—(=2)=0(x—-3)
y+2=0

y=-2
The graph is a horizontal line through y = —2. Notice that all of the y-coordinates are the same. See Figure 3.

x=-=3 ]

TR e o
————

=34
g
P e

A

Figure 3 The line x= -3 is a vertical line. The line y = -2 is a horizontal line.

Example 13 Finding the Equation of a Line Passing Through the Given Points

Find the equation of the line passing through the given points: (1, —3) and (1, 4).

Solution The x-coordinate of both points is 1. Therefore, we have a vertical line, x = 1.

Iry It #10
Find the equation of the line passing through (-5, 2) and (2, 2).

Determining Whether Graphs of Lines are Parallel or Perpendicular

Parallel lines have the same slope and different y-intercepts. Lines that are parallel to each other will never intersect.
For example, Figure 4 shows the graphs of various lines with the same slope, m = 2.

y y=2x-3

Figure 4 Parallel lines

All of the lines shown in the graph are parallel because they have the same slope and different y-intercepts.

Lines that are perpendicular intersect to form a 90° -angle. The slope of one line is the negative reciprocal of the other.
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We can show that two lines are perpendicular if the product of the two slopes is —1: m, - m, = —1. For example,

Figure 5 shows the graph of two perpendicular lines. One line has a slope of 3; the other line has a slope of —%.

m1~m2:—1

Figure 5 Perpendicular lines

Example 14 Graphing Two Equations, and Determining Whether the Lines are Parallel, Perpendicular, or Neither

Graph the equations of the given lines, and state whether they are parallel, perpendicular, or neither: 3y = — 4x + 3
and 3x — 4y = 8.

Solution The first thing we want to do is rewrite the equations so that both equations are in slope-intercept form.

First equation:

3y=—4x+3
y= —%x +1
Second equation:
3x —4y =28
—4y=-3x+8
_3
7%

See the graph of both lines in Figure 6.

Figure 6

From the graph, we can see that the lines appear perpendicular, but we must compare the slopes.

3
|

o (33

The slopes are negative reciprocals of each other, confirming that the lines are perpendicular.
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T/’)/ It #1171

Graph the two lines and determine whether they are parallel, perpendicular, or neither: 2y — x = 10 and 2y = x + 4.

Writing the Equations of Lines Parallel or Perpendicular to a Given Line

As we have learned, determining whether two lines are parallel or perpendicular is a matter of finding the slopes. To
write the equation of a line parallel or perpendicular to another line, we follow the same principles as we do for finding
the equation of any line. After finding the slope, use the point-slope formula to write the equation of the new line.

Given an equation for a line, write the equation of a line parallel or perpendicular to it.

1. Find the slope of the given line. The easiest way to do this is to write the equation in slope-intercept form.
2. Use the slope and the given point with the point-slope formula.
3. Simplify the line to slope-intercept form and compare the equation to the given line.

Example 15 Writing the Equation of a Line Parallel to a Given Line Passing Through a Given Point
Write the equation of line parallel to a 5x + 3y = 1 and passing through the point (3, 5).

Solution  First, we will write the equation in slope-intercept form to find the slope.

Sx+3y=1
3y=5x+1
— 5.1
y=-3% + 3
The slope is m = — g The y-intercept is %, but that really does not enter into our problem, as the only thing we need

for two lines to be parallel is the same slope. The one exception is that if the y-intercepts are the same, then the two
lines are the same line. The next step is to use this slope and the given point with the point-slope formula.

y—5=—§(x—3)

y—5:—§x+5

<

Tr/v It #12

Find the equation of the line parallel to 5x = 7 + y and passing through the point (—1, —2).
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Example 16 Finding the Equation of a Line Perpendicular to a Given Line Passing Through a Given Point
Find the equation of the line perpendicular to 5x — 3y + 4 = 0 and passes through the point (—4, 1).

Solution  The first step is to write the equation in slope-intercept form.

5x—3y+4=0
—3y=-5x—4
_o,. 4
y= 3x—!— 3

We see that the slope is m = g This means that the slope of the line perpendicular to the given line is the negative

reciprocal, or — % Next, we use the point-slope formula with this new slope and the given point.

yl==30- (-4)

312
Y 57 5
_ 3 12 5
L
_ 3,7
V=755

Access these online resources for additional instruction and practice with linear equations.

e Solving rational equations (http://openstaxcollege.org/l/rationaleqs)

e Equation of a line given two points (http://openstaxcollege.org/l/twopointsline)

¢ Finding the equation of a line perpendicular to another line through a given point (http://openstaxcollege.org/l/findperpline)
¢ Finding the equation of a line parallel to another line through a given point (http://openstaxcollege.org/l/findparaline)
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2.2 SECTION EXERCISES

VERBAL
1. What does it mean when we say that two lines are 2. What is the relationship between the slopes of
parallel? perpendicular lines (assuming neither is horizontal
nor vertical)?
3. How do we recognize when an equation, for 4. What does it mean when we say that a linear
example y = 4x + 3, will be a straight line (linear) equation is inconsistent?
when graphed?
. . . 4
5. Wh lving the foll tion: =
en solving the following equation: —=— = ——
explain why we must exclude x = 5and x = —1 as
possible solutions from the solution set.
ALGEBRAIC
For the following exercises, solve the equation for x.
6.7x+2=3x—9 7.4x—3=5 8.3(x+2)— 12=5(x+1)
_ 1 1,4 x_3_2x+3
9.12—5(x+3)=2x—5 0.5 — 3x=7 3 -1="0
2 1 _ 31 2x 3 _x | 21
12. = —_ = — 13. 2x — 1 = 14, =— — = = it
3x+2 G 332x—1)+x=5x+3 3 4 6+4

x+2 x-1
15. —
4 3

=2

For the following exercises, solve each rational equation for x. State all x-values that are excluded from the solution set.

3 1 1 3 x+2 3 1 7
16. - — — = — 17. 2 — = 18. =
7376 xt4 xt4 =2 x—1 o Dx-2)
3x 3 5 1 —6 1 1 3
19. 2= 20. = 2, - == + 2
x—1+ x—1 x+1+x—3 x*—2x—3 X 5+2x

For the following exercises, find the equation of the line using the point-slope formula. Write all the final equations
using the slope-intercept form.

22, (0, 3) with a slope of% 23. (1, 2) with a slope of — %

24. x-intercept is 1, and (—2, 6) 25. y-intercept is 2, and (4, —1)

26. (—3,10) and (5, —6) 27. (1, 3) and (5, 5)

28. parallel to y = 2x + 5 and passes through the 29. perpendicular to 3y = x — 4 and passes through
point (4, 3) the point (-2, 1).

For the following exercises, find the equation of the line using the given information.
30. (—2,0) and (-2, 5) 31.(1,7) and (3, 7)

32. The slope is undefined and it passes through the 33. The slope equals zero and it passes through the point
point (2, 3). (1, —4).

34. The slope is Z and it passes through the point (1,4).  35. (—1, 3) and (4, —5)
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GRAPHICAL

For the following exercises, graph the pair of equations on the same axes, and state whether they are parallel,
perpendicular, or neither.

3x+1

36. y=2x+7 37.3x —2y=5 38. y= 39. x=4
1 6y —9x =6 i =-3
NUMERIC
For the following exercises, find the slope of the line that passes through the given points.
40. (5,4) and (7, 9) 4. (=3,2)and (4, —7) 42. (—5,4)and (2,4) 43. (—1,—2)and (3,4)

44. (3, —2) and (3, —2)

For the following exercises, find the slope of the lines that pass through each pair of points and determine whether
the lines are parallel or perpendicular.

45, (—1,3)and (5, 1) 46. (2,5) and (5,9)
(—2,3) and (0,9) (=1, —1)and (2, 3)
TECHNOLOGY

For the following exercises, express the equations in slope intercept form (rounding each number to the thousandths
place). Enter this into a graphing calculator as Y1, then adjust the ymin and ymax values for your window to include
where the y-intercept occurs. State your ymin and ymax values.

200 — 30y
47. 0.537x — 2.19y = 100 48. 4,500x — 200y = 9,528 49, —— = 70
EXTENSIONS
50. Starting with the point-slope formula 51. Starting with the standard form of an equation
y —y, = m(x — x,), solve this expression for x in Ax + By = C, solve this expression for y in terms of
terms of x, y, y,, and m. A, B, C, and x. Then put the expression in

slope-intercept form.

52. Use the above derived formula to put the following ~ 53. Given that the following coordinates are the vertices

standard equation in slope intercept form: of a rectangle, prove that this truly is a rectangle
7x — 5y = 25. by showing the slopes of the sides that meet are
perpendicular.

(_1> 1)> (2> O)> (3’ 3)’ and (07 4)
54, Find the slopes of the diagonals in the previous
exercise. Are they perpendicular?

REAL-WORLD APPLICATIONS
55. The slope for a wheelchair ramp for a home has to 56. If the profit equation for a small business selling x
be é If the vertical distance from the ground to number of item one and y number of item two is
the door bottom is 2.5 ft, find the distance the ramp i : ;;C + 4y, find the y value when p = $453 and

has to extend from the home in order to comply
with the needed slope.

2.5 feet
x feet

For the following exercises, use this scenario: The cost of renting a car is $45/wk plus $0.25/mi traveled during that
week. An equation to represent the cost would be y = 45 + 0.25x, where x is the number of miles traveled.

57. What is your cost if you travel 50 mi? 58. If your cost were $63.75, how many miles were you
charged for traveling?
59. Suppose you have a maximum of $100 to spend
for the car rental. What would be the maximum
number of miles you could travel?
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LEARNING OBJECTIVES

In this section you will:
e Set up a linear equation to solve a real-world application.
e Use a formula to solve a real-world application.

2.3 MODELS AND APPLICATIONS

Figure 1 Credit: Kevin Dooley

Josh is hoping to get an A in his college algebra class. He has scores of 75, 82, 95, 91, and 94 on his first five tests. Only
the final exam remains, and the maximum of points that can be earned is 100. Is it possible for Josh to end the course
with an A? A simple linear equation will give Josh his answer.

Many real-world applications can be modeled by linear equations. For example, a cell phone package may include a
monthly service fee plus a charge per minute of talk-time; it costs a widget manufacturer a certain amount to produce
x widgets per month plus monthly operating charges; a car rental company charges a daily fee plus an amount per
mile driven. These are examples of applications we come across every day that are modeled by linear equations. In
this section, we will set up and use linear equations to solve such problems.

Setting up a Linear Equation to Solve a Real-World Application

To set up or model a linear equation to fit a real-world application, we must first determine the known quantities
and define the unknown quantity as a variable. Then, we begin to interpret the words as mathematical expressions
using mathematical symbols. Let us use the car rental example above. In this case, a known cost, such as $0.10/mi,
is multiplied by an unknown quantity, the number of miles driven. Therefore, we can write 0.10x. This expression
represents a variable cost because it changes according to the number of miles driven.

If a quantity is independent of a variable, we usually just add or subtract it, according to the problem. As these amounts
do not change, we call them fixed costs. Consider a car rental agency that charges $0.10/mi plus a daily fee of $50. We
can use these quantities to model an equation that can be used to find the daily car rental cost C.

C=0.10x 4+ 50

When dealing with real-world applications, there are certain expressions that we can translate directly into math.
Table 1 lists some common verbal expressions and their equivalent mathematical expressions.

Verbal Translation to Math Operations
One number exceeds another by a X, x+a
Twice a number 2x
One number is a more than another number X, X+ a
One number is a less than twice another number X, 2x—a
The product of a number and g, decreased by b ax—b
The quotient of a number and the number plus a is Y 3
three times the number x+a

The product of three times a number and the number

decreased by bis ¢ 3x(x —b)=c

Table 1
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Given a real-world problem, model a linear equation to fit it.

1. Identify known quantities.

2. Assign a variable to represent the unknown quantity.

3. If there is more than one unknown quantity, find a way to write the second unknown in terms of the first.
4. Write an equation interpreting the words as mathematical operations.

5. Solve the equation. Be sure the solution can be explained in words, including the units of measure.

Example 1  Modeling a Linear Equation to Solve an Unknown Number Problem

Find a linear equation to solve for the following unknown quantities: One number exceeds another number by 17 and
their sum is 31. Find the two numbers.

Solution Let x equal the first number. Then, as the second number exceeds the first by 17, we can write the second
number as x + 17. The sum of the two numbers is 31. We usually interpret the word is as an equal sign.

x+ (x+17) =31

2x+17 =31 Simplify and solve.
2x =14
x=7
x+17=7+17
=24

The two numbers are 7 and 24.

TV)/ It #1

Find a linear equation to solve for the following unknown quantities: One number is three more than twice another
number. If the sum of the two numbers is 36, find the numbers.

Example 2 Setting Up a Linear Equation to Solve a Real-World Application

There are two cell phone companies that offer different packages. Company A charges a monthly service fee of $34
plus $.05/min talk-time. Company B charges a monthly service fee of $40 plus $.04/min talk-time.

a. Write a linear equation that models the packages offered by both companies.
b. If the average number of minutes used each month is 1,160, which company offers the better plan?
c. If the average number of minutes used each month is 420, which company offers the better plan?

d. How many minutes of talk-time would yield equal monthly statements from both companies?
Solution

a. The model for Company A can be written as A = 0.05x + 34. This includes the variable cost of 0.05x plus the
monthly service charge of $34. Company B’s package charges a higher monthly fee of $40, but a lower variable
cost of 0.04x. Company B’s model can be written as B = 0.04x + $40.

b. If the average number of minutes used each month is 1,160, we have the following:
Company A = 0.05(1,160) + 34
=58+ 34
=92
Company B = 0.04(1,160) + 40
=464+ 40
= 86.4

So, Company B offers the lower monthly cost of $86.40 as compared with the $92 monthly cost offered by
Company A when the average number of minutes used each month is 1,160.
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c. If the average number of minutes used each month is 420, we have the following:
Company A = 0.05(420) + 34
=21+34
=55
Company B = 0.04(420) + 40
=16.8 40
=56.8

If the average number of minutes used each month is 420, then Company A offers a lower monthly cost of $55
compared to Company B’s monthly cost of $56.80.

d. To answer the question of how many talk-time minutes would yield the same bill from both companies, we
should think about the problem in terms of (x, y) coordinates: At what point are both the x-value and the y-value
equal? We can find this point by setting the equations equal to each other and solving for x.

0.05x + 34 = 0.04x 4+ 40
0.0lx=6
x =600
Check the x-value in each equation.
0.05(600) + 34 = 64
0.04(600) + 40 = 64
Therefore, a monthly average of 600 talk-time minutes renders the plans equal. See Figure 2.

Y
90

80+
B = 0.04x + 40
70+
60+
50+
A =0.05x + 34
40+

30+

100 200 300 400 500 600 700 800 900 100011001200
Figure 2

Iry It #2

Find a linear equation to model this real-world application: It costs ABC electronics company $2.50 per unit to
produce a part used in a popular brand of desktop computers. The company has monthly operating expenses of $350
for utilities and $3,300 for salaries. What are the company’s monthly expenses?

Using a Formula to Solve a Real-World Application

Many applications are solved using known formulas. The problem is stated, a formula is identified, the known
quantities are substituted into the formula, the equation is solved for the unknown, and the problem’s question
is answered. Typically, these problems involve two equations representing two trips, two investments, two areas,
and so on. Examples of formulas include the area of a rectangular region, A = LW; the perimeter of a rectangle,
P =2L + 2W; and the volume of a rectangular solid, V = LWH. When there are two unknowns, we find a way to write
one in terms of the other because we can solve for only one variable at a time.

Example 3  Solving an Application Using a Formula

It takes Andrew 30 min to drive to work in the morning. He drives home using the same route, but it takes 10 min
longer, and he averages 10 mi/h less than in the morning. How far does Andrew drive to work?
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Solution This is a distance problem, so we can use the formula d = rt, where distance equals rate multiplied by time.

Note that when rate is given in mi/h, time must be expressed in hours. Consistent units of measurement are key to
obtaining a correct solution.

First, we identify the known and unknown quantities. Andrew’s morning drive to work takes 30 min, or Lhat
rate r. His drive home takes 40 min, or %h, and his speed averages 10 mi/h less than the morning drive. Both trips

cover distance d. A table, such as Table 2, is often helpful for keeping track of information in these types of problems.

d r t

1

To Work d r 5

2

To Home d r—10 3

Table 2
Write two equations, one for each trip. .

d= r< 5 ) To work
d=(r— 10)(%) To home

As both equations equal the same distance, we set them equal to each other and solve for .

(3)=¢-0(3)

1.2 20

2 3 3
1,2, 2
2 3 3
120
6 3
20

5 (-6)

r=40

We have solved for the rate of speed to work, 40 mph. Substituting 40 into the rate on the return trip yields 30 mi/h.
Now we can answer the question. Substitute the rate back into either equation and solve for d.

1
d = 40 < 1 )
2
=20
The distance between home and work is 20 mi.

AWZM'/: Note that we could have cleared the fractions in the equation by multiplying both sides of the equation by the

LCD to solve for r.
LY _ o —10)( 2
r(z)‘“ 10)(3)
LY _6.(r—10)( 2
o 1) o3
3r=4(r — 10)
3r=4r — 40
—r=—40
r=40
TV)/IL‘#.?

On Saturday morning, it took Jennifer 3.6 h to drive to her mother’s house for the weekend. On Sunday evening, due

to heavy traffic, it took Jennifer 4 h to return home. Her speed was 5 mi/h slower on Sunday than on Saturday. What
was her speed on Sunday?
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Example 4  Solving a Perimeter Problem
The perimeter of a rectangular outdoor patio is 54 ft. The length is 3 ft greater than the width. What are the dimensions
of the patio?

Solution The perimeter formula is standard: P = 2L + 2W. We have two unknown quantities, length and width.
However, we can write the length in terms of the width as L = W + 3. Substitute the perimeter value and the expression
for length into the formula. It is often helpful to make a sketch and label the sides as in Figure 3.

L=W+3
Figure 3
Now we can solve for the width and then calculate the length.
P=2L+2W
54 =2(W+3) +2W
54=2W+6+2W

54 =4W + 6
48 = 4W
2=Ww
(12+3) =L
15=1

The dimensions are L = 15 ftand W = 12 ft.

Tr)/ It #4

Find the dimensions of a rectangle given that the perimeter is 110 cm and the length is 1 cm more than twice the width.

Example 5  Solving an Area Problem

The perimeter of a tablet of graph paper is 48 in.%. The length is 6 in. more than the width. Find the area of the graph
paper.

Solution The standard formula for area is A = LW; however, we will solve the problem using the perimeter formula.
The reason we use the perimeter formula is because we know enough information about the perimeter that the formula

will allow us to solve for one of the unknowns. As both perimeter and area use length and width as dimensions, they
are often used together to solve a problem such as this one.

We know that the length is 6 in. more than the width, so we can write length as L = W + 6. Substitute the value of the
perimeter and the expression for length into the perimeter formula and find the length.

P=2L+2W
48 =2(W +6) +2W
48 =2W + 12 +2W

48 = 4W + 12

36 =4W

9=W
(9+6)=L

15=1L
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Now, we find the area given the dimensions of L = 15 in. and W =9 in.

A=ILW
A =15(9)
=135 in.?

The area is 135 in.2.

Iry It #5

A game room has a perimeter of 70 ft. The length is five more than twice the width. How many ft* of new carpeting
should be ordered?

Example 6  Solving a Volume Problem

Find the dimensions of a shipping box given that the length is twice the width, the height is 8 inches, and the volume
is 1,600 in”.

Solution The formula for the volume of a box is given as V = LWH, the product of length, width, and height. We are
given that L = 2W, and H = 8. The volume is 1,600 cubic inches.

V=LWH
1,600 = 2W)W(8)
1,600 = 16 W?

100 = W?
10=W

The dimensions are L = 20 in., W = 10 in., and H = 8 in.

A/M/LZM'/: Note that the square root of W? would result in a positive and a negative value. However, because we are
describing width, we can use only the positive result.

Access these online resources for additional instruction and practice with models and applications of linear equations.

¢ Problem Solving Using Linear Equations (http://openstaxcollege.org/l/linegprobsolve)

Problem Solving Using Equations (http://openstaxcollege.org/l/equationprsolve)

Finding the Dimensions and Area Given the Perimeter (http://openstaxcollege.org/l/permareasolve)

Find the Distance Between the Cities Using the distance = rate * time formula (http://openstaxcollege.org/l/ratetimesolve)
Linear Equation Application (Write a cost equation) (http://openstaxcollege.org/l/lineqappl)
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2.3 SECTION EXERCISES

VERBAL
1. To set up a model linear equation to fit real-world 2. Use your own words to describe this equation where
applications, what should always be the first step? n is a number: 5(n + 3) = 2n
3. If the total amount of money you had to invest was 4. If a man sawed a 10-ft board into two sections and
$2,000 and you deposit x amount in one investment, one section was # ft long, how long would the other
how can you represent the remaining amount? section be in terms of n ?

5. If Bill was traveling v mi/h, how would you represent
Daemon’s speed if he was traveling 10 mi/h faster?

REAL-WORLD APPLICATIONS
For the following exercises, use the information to find a linear algebraic equation model to use to answer the question
being asked.
6. Mark and Don are planning to sell each of their 7. Beth and Ann are joking that their combined ages
marble collections at a garage sale. If Don has 1 equal Sam’s age. If Beth is twice Ann’s age and Sam is
more than 3 times the number of marbles Mark 69 yr old, what are Beth and Ann’s ages?

has, how many does each boy have to sell if the total
number of marbles is 113?

8. Ben originally filled out 8 more applications than
Henry. Then each boy filled out 3 additional
applications, bringing the total to 28. How many
applications did each boy originally fill out?

For the following exercises, use this scenario: Two different telephone carriers offer the following plans that a person
is considering. Company A has a monthly fee of $20 and charges of $.05/min for calls. Company B has a monthly fee
of $5 and charges $.10/min for calls.

9. Find the model of the total cost of Company A’s plan, 10. Find the model of the total cost of Company B’s plan,
using m for the minutes. using m for the minutes.

11. Find out how many minutes of calling would make  12. If the person makes a monthly average of 200 min of
the two plans equal. calls, which plan should for the person choose?

For the following exercises, use this scenario: A wireless carrier offers the following plans that a person is considering.
The Family Plan: $90 monthly fee, unlimited talk and text on up to 5 lines, and data charges of $40 for each device for
up to 2 GB of data per device. The Mobile Share Plan: $120 monthly fee for up to 10 devices, unlimited talk and text
for all the lines, and data charges of $35 for each device up to a shared total of 10 GB of data. Use P for the number of
devices that need data plans as part of their cost.

13. Find the model of the total cost of the Family Plan. ~ 14. Find the model of the total cost of the Mobile Share
Plan.

15. Assuming they stay under their data limit, find the 16. If a family has 3 smart phones, which plan should
number of devices that would make the two plans they choose?
equal in cost.
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For exercises 17 and 18, use this scenario: A retired woman has $50,000 to invest but needs to make $6,000 a year
from the interest to meet certain living expenses. One bond investment pays 15% annual interest. The rest of it she
wants to put in a CD that pays 7%.

17. If we let x be the amount the woman invests in the 18. Set up and solve the equation for how much the
15% bond, how much will she be able to invest in the woman should invest in each option to sustain a
CD? $6,000 annual return.

19. Two planes fly in opposite directions. One travels 450 20. Ben starts walking along a path at 4 mi/h. One and a
mi/h and the other 550 mi/h. How long will it take half hours after Ben leaves, his sister Amanda begins
before they are 4,000 mi apart? jogging along the same path at 6 mi/h. How long will

it be before Amanda catches up to Ben?

21. Fiora starts riding her bike at 20 mi/h. After a while, 22, A chemistry teacher needs to mix a 30% salt solution
she slows down to 12 mi/h, and maintains that speed with a 70% salt solution to make 20 qt of a 40% salt
for the rest of the trip. The whole trip of 70 mi takes solution. How many quarts of each solution should
her 4.5 h. For what distance did she travel at 20 mi/h? the teacher mix to get the desired result?

23. Paul has $20,000 to invest. His intent is to earn 11%
interest on his investment. He can invest part of his
money at 8% interest and part at 12% interest. How
much does Paul need to invest in each option to
make get a total 11% return on his $20,000?

For the following exercises, use this scenario: A truck rental agency offers two kinds of plans. Plan A charges $75/wk
plus $.10/mi driven. Plan B charges $100/wk plus $.05/mi driven.

24. Write the model equation for the cost of renting a 25. Write the model equation for the cost of renting a
truck with plan A. truck with plan B.

26. Find the number of miles that would generate the 27. If Tim knows he has to travel 300 mi, which plan
same cost for both plans. should he choose?

For the following exercises, find the slope of the lines that pass through each pair of points and determine whether
the lines are parallel or perpendicular.

28. A = P(1 + rt) is used to find the principal amount P 29. The formula F = mv relates force (F), velocity (v),
deposited, earning r% interest, for ¢ years. Use this R
to find what principal amount P David invested at a
3% rate for 20 yr if A = $8,000.

mass (m), and resistance (R). Find R when m = 45,
v =7, and F = 245.

is the formula for an infinite series

30. F = ma indicates that force (F) equals mass (m) 31. Sum = 1 1
times acceleration (a). Find the acceleration of a
mass of 50 kg if a force of 12 N is exerted on it.

sum. If the sum is 5, find r.

For the following exercises, solve for the given variable in the formula. After obtaining a new version of the formula,
you will use it to solve a question.

32. Solve for W: P =2L + 2W 33. Use the formula from the previous question to find
the width, W, of a rectangle whose length is 15 and
whose perimeter is 58.

34. Solve for f: Il’ + % =1 35. Use the formula from the previous question to find f
f when p =8 and g = 13.
36. Solve for m in the slope-intercept formula: 37. Use the formula from the previous question to find
y=mx+b m when the coordinates of the point are (4, 7) and

b=12.
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40.

42,

44

46.

48.

50.

52.

54,
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. The area of a trapezoid is given by A = %h(b1 +b,).

Use the formula to find the area of a trapezoid with
h=6,b = 14,and b, = 8.

Use the formula from the previous question to find
the height of a trapezoid with A = 150, b, = 19, and
b, =1L

Distance equals rate times time, d = rt. Find the
distance Tom travels if he is moving at a rate of
55 mi/h for 3.5 h.

. What is the total distance that two people travel in
3 h if one of them is riding a bike at 15 mi/h and the
other is walking at 3 mi/h?

Solve for h: A = %bh

The volume formula for a cylinder is V = nr* h.
Using the symbol 7 in your answer, find the volume
of a cylinder with a radius, , of 4 cm and a height of
14 cm.

Use the formula from the previous question to find
the height of a cylinder with a radius of 8 and a
volume of 167

Use the formula from the previous question to find
the radius of a cylinder with a height of 36 and a
volume of 3247.

Solve the formula from the previous question for 7.
Notice why 7 is sometimes defined as the ratio of
the circumference to its diameter.

39.

4.

43.

45.

47.

49,

51.

53.

Solve for hi: A = Zh(b, +b,)

Find the dimensions of an American football field.
The length is 200 ft more than the width, and the
perimeter is 1,040 ft. Find the length and width. Use
the perimeter formula P = 2L + 2W.

Using the formula in the previous exercise, find the
distance that Susan travels if she is moving at a rate
of 60 mi/h for 6.75 h.

If the area model for a triangle is A = 1 bh, find the

area of a triangle with a height of 16 in. and a base
of 11 in.

Use the formula from the previous question to find
the height to the nearest tenth of a triangle with a
base of 15 and an area of 215.

Solve for h: V = nr’h

Solve for r: V = nr’h

The formula for the circumference of a circle is

C = 27r. Find the circumference of a circle with a
diameter of 12 in. (diameter = 2r). Use the symbol 7
in your final answer.



SECTION 2.4 COMPLEX NUMBERS

LEARNING OBJECTIVES

In this section you will;

¢ Add and subtract complex numbers.

e Multiply and divide complex numbers.

¢ Solve quadratic equations with complex numbers

2.4 COMPLEX NUMBERS

Figure 1

Discovered by Benoit Mandelbrot around 1980, the Mandelbrot Set is one of the most recognizable fractal images. The
image is built on the theory of self-similarity and the operation of iteration. Zooming in on a fractal image brings many
surprises, particularly in the high level of repetition of detail that appears as magnification increases. The equation
that generates this image turns out to be rather simple.

In order to better understand it, we need to become familiar with a new set of numbers. Keep in mind that the study
of mathematics continuously builds upon itself. Negative integers, for example, fill a void left by the set of positive
integers. The set of rational numbers, in turn, fills a void left by the set of integers. The set of real numbers fills a void
left by the set of rational numbers. Not surprisingly, the set of real numbers has voids as well. In this section, we will
explore a set of numbers that fills voids in the set of real numbers and find out how to work within it.

Expressing Square Roots of Negative Numbers as Multiples of /

We know how to find the square root of any positive real number. In a similar way, we can find the square root of any
negative number. The difference is that the root is not real. If the value in the radicand is negative, the root is said to
be an imaginary number. The imaginary number i is defined as the square root of —1.

V-o1=i
p=(vVT1)'=1

We can write the square root of any negative number as a multiple of i. Consider the square root of —49.
V—49 =V49 . (—1)
=V49 V-1
=7i
We use 7i and not —7i because the principal root of 49 is the positive root.

So, using properties of radicals,

A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard

form when written a + bi where a is the real part and b is the imaginary part. For example, 5 + 2i is a complex number.

So, too, is 3 + 4iV/3.
5+ 2i

SN

Real part Imaginary part

Imaginary numbers differ from real numbers in that a squared imaginary number produces a negative real number.

Recall that when a positive real number is squared, the result is a positive real number and when a negative real number
is squared, the result is also a positive real number. Complex numbers consist of real and imaginary numbers.
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imaginary and complex numbers

A complex number is a number of the form a + bi where
o ais the real part of the complex number.

« b is the imaginary part of the complex number.

If b = 0, then a + bi is a real number. If a = 0 and b is not equal to 0, the complex number is called a pure
imaginary number. An imaginary number is an even root of a negative number.

Given an imaginary number, express it in the standard form of a complex number.
1. Write \V—a as Va'V/—1.

2. Express V-lasi.

3. Write V/a - i in simplest form.

Example 1 Expressing an Imaginary Number in Standard Form

Express V —9 in standard form.
Solution V-9 =V9oV-1

=3i
In standard form, this is 0 + 3i.

Iry It #1
Express V —24 in standard form.

We cannot plot complex numbers on a number line as we might real numbers. However, we can still represent them
graphically. To represent a complex number, we need to address the two components of the number. We use the
complex plane, which is a coordinate system in which the horizontal axis represents the real component and the vertical
axis represents the imaginary component. Complex numbers are the points on the plane, expressed as ordered pairs
(a, b), where a represents the coordinate for the horizontal axis and b represents the coordinate for the vertical axis.

Let’s consider the number —2 + 3i. The real part of the complex number is —2 and the imaginary part is 3. We plot
the ordered pair (—2, 3) to represent the complex number —2 + 34, as shown in Figure 2.

Y
A

—243i

e :
R

S-4-3-2-1 | 12345
ot
sl
g
Lolst

A

Figure 2
complex plane imaginary
In the complex plane, the horizontal axis is the real axis, and the vertical axis is the
imaginary axis, as shown in Figure 3. . real

Figure 3
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Given a complex number, represent its components on the complex plane.

1. Determine the real part and the imaginary part of the complex number.

2. Move along the horizontal axis to show the real part of the number.

3. Move parallel to the vertical axis to show the imaginary part of the number.
4. Plot the point.

Example 2  Plotting a Complex Number on the Complex Plane
Plot the complex number 3 — 4i on the complex plane.

Solution The real part of the complex number is 3, and the imaginary part is —4. We plot the ordered pair (3, —4)
as shown in Figure 4.

Y

Iry It #2

Plot the complex number —4 — i on the complex plane.

Adding and Subtracting Complex Numbers

Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract complex
numbers, we combine the real parts and then combine the imaginary parts.

complex numbers: addition and subtraction
Adding complex numbers:

(@+bi)+(c+d)y=@+c)+ b+ di
Subtracting complex numbers:

(@a+bi)—(c+di)=(@—c)+ (b—ad)i

Given two complex numbers, find the sum or difference.

1. Identify the real and imaginary parts of each number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

Example 3  Adding and Subtracting Complex Numbers
Add or subtract as indicated.
a. (3 —4i)+ (2 + 5i) b. (=5+ 7i) — (=11 + 2i)
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Solution We add the real parts and add the imaginary parts.
a. 3—4i)+(2+5))=3—4i+2+5i
=3+ 2+ (—4i) + 5i
=0B+2)+ (—4+5)
=5+i

b. (=5+7i) — (=11 4+2i) = —5+7i+ 11 — 2i

=—-5+4+11+7i—2i
=(=5411)+ (7 —2)i
=6+ 5i

Tr/v It #3

Subtract 2 + 5i from 3 — 4i.

Multiplying Complex Numbers

Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with the real
and imaginary parts separately.

Multiplying a Complex Number by a Real Number

Lets begin by multiplying a complex number by a real number. We distribute the real number just as we would with
a binomial. Consider, for example, 3(6 + 2i):

A\
36 4+2i)=(3-6)+ (3-2i) Distribute.
=18+ 6i Simplify.

Given a complex number and a real number, multiply to find the product.

1. Use the distributive property.
2. Simplify.

Example 4  Multiplying a Complex Number by a Real Number
Find the product 4(2 + 5i).

Solution Distribute the 4.
424+ 5))=(4-2)+ (4 - 5i)

=8 + 20i

Try It #4
Find the product: %(S — 2i).

Multiplying Complex Numbers Together

Now, let’s multiply two complex numbers. We can use either the distributive property or more specifically the FOIL
method because we are dealing with binomials. Recall that FOIL is an acronym for multiplying First, Inner, Outer,
and Last terms together. The difference with complex numbers is that when we get a squared term, 7%, it equals —1.

(a + bi)(c + di) = ac + adi + bci + bd#?
= ac + adi + bci — bd iP=—1
= (ac — bd) + (ad + bc)i Group real terms and imaginary terms.
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Given two complex numbers, multiply to find the product.

1. Use the distributive property or the FOIL method.
2. Remember that i = —1.
3. Group together the real terms and the imaginary terms

Example 5  Multiplying a Complex Number by a Complex Number

Multiply: (4 4 34)(2 — 5i).

Solution (4 + 3i)(2 — 5i) = 4(2) — 4(5i) + 3i(2) — (3i)(51)
=8 — 20i + 6i — 15(%)
= (8 + 15) + (—20 + 6)i
=23 —14i

Tl’/l/ It #5
Multiply: (3 — 4i)(2 + 3i).

Dividing two complex numbers is more complicated than adding, subtracting, or multiplying because we cannot
divide by an imaginary number, meaning that any fraction must have a real-number denominator to write the answer
in standard form a + bi. We need to find a term by which we can multiply the numerator and the denominator that
will eliminate the imaginary portion of the denominator so that we end up with a real number as the denominator.
This term is called the complex conjugate of the denominator, which is found by changing the sign of the imaginary
part of the complex number. In other words, the complex conjugate of a + bi is a — bi. For example, the product of
a+bianda — biis
(a + bi)(a — bi) = a®> — abi + abi — b*
=a’+ b
The result is a real number.

Note that complex conjugates have an opposite relationship: The complex conjugate of a + bi is a — bi, and the complex
conjugate of a — bi is a + bi. Further, when a quadratic equation with real coefficients has complex solutions, the
solutions are always complex conjugates of one another.

Suppose we want to divide ¢ + di by a + bi, where neither a nor b equals zero. We first write the division as a fraction,
then find the complex conjugate of the denominator, and multiply.

c+di

a+ bi

wherea # 0and b # 0

Multiply the numerator and denominator by the complex conjugate of the denominator.

(c+ di) . (a —bi) (c+ di)(a — bi)
(@a+bi) (a—bi) (a+ bi)a— bi)

Apply the distributive property.
_ ca — cbi + adi — bdi®
~ a?— abi+ abi — b*

. . . 0
Simplify, remembering that i = —1. ca — cbi+ adi — bd(—1)

a* — abi + abi — b*(—1)

_ (ca+ bd) + (ad — cb)i
N at+ b
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the complex conjugate

The complex conjugate of a complex number a + bi is a — bi. It is found by changing the sign of the imaginary
part of the complex number. The real part of the number is left unchanged.

o When a complex number is multiplied by its complex conjugate, the result is a real number.

o When a complex number is added to its complex conjugate, the result is a real number.

Example 6  Finding Complex Conjugates

Find the complex conjugate of each number.

a. 24+ i1V5 b. —%i

Solution
a. The number is already in the form a + bi. The complex conjugate is a — bi, or 2 — iV/5.
b. We can rewrite this number in the form a + bias 0 — %i. The complex conjugate is a — bi, or 0 + %i.

This can be written simply as %i.

Anatysis  Although we have seen that we can find the complex conjugate of an imaginary number, in practice we
generally find the complex conjugates of only complex numbers with both a real and an imaginary component. To obtain a
real number from an imaginary number, we can simply multiply by i.

T/’)/ It #6

Find the complex conjugate of —3 + 4i.

Given two complex numbers, divide one by the other.

1. Write the division problem as a fraction.

2. Determine the complex conjugate of the denominator.

3. Multiply the numerator and denominator of the fraction by the complex conjugate of the denominator.
4. Simplify.

Example 7  Dividing Complex Numbers
Divide: (2 4 5i) by (4 — i).
Solution We begin by writing the problem as a fraction.
(2 + 5i)
(4—1)
Then we multiply the numerator and denominator by the complex conjugate of the denominator.
(2+50) @4+
@—i) @+
To multiply two complex numbers, we expand the product as we would with polynomials (using FOIL).
(2+5i) (4+1i)  8+2i+20i+ 57
(4—0) (4+i) 16+ 4i—4i— 7
_ 842 +20i+5(71) Because i* = —1.
16 + 4i — 4i — (—1)
 3422i
17
3 22

+ —i
17 17

Separate real and imaginary parts.

Note that this expresses the quotient in standard form.




SECTION 2.4 COMPLEX NUMBERS 117

Simplifying Powers of j
The powers of i are cyclic. Let’s look at what happens when we raise i to increasing powers.

i'=i

P=it-i=1-i=1i
We can see that when we get to the fifth power of 4, it is equal to the first power. As we continue to multiply i by
increasing powers, we will see a cycle of four. Let’s examine the next four powers of i.

=i i=ii=i=-1

=P i=P =

The cycle is repeated continuously: i, —1, — i, 1, every four powers.

Example 8  Simplifying Powers of i
Evaluate: .

Solution  Since i* = 1, we can simplify the problem by factoring out as many factors of i* as possible. To do so, first
determine how many times 4 goes into 35: 35 =4 - 8 + 3.

Pt =@gs =) . P=1 P=P=—i

Iry It #7

Evaluate: i 8

Q& A..
Can we write i*® in other helpful ways?

As we saw in Example 8, we reduced i* to i* by dividing the exponent by 4 and using the remainder to find the
simplified form. But perhaps another factorization of i** may be more useful. Table 1 shows some other possible
factorizations.

Factorization of i%° P 42 Pt i 1
Reduced form (1’2)17 - i (=1) A | iv. (i“)4
Simplified form =D —i% 3! i
Table 1

Each of these will eventually result in the answer we obtained above but may require several more steps than our
earlier method.

Access these online resources for additional instruction and practice with complex numbers.

Adding and Subtracting Complex Numbers (http://openstaxcollege.org/l/addsubcomplex)
Multiply Complex Numbers (http://openstaxcollege.org/l/multiplycomplex)

Multiplying Complex Conjugates (http://openstaxcollege.org/l/multcompconj)

Raising / to Powers (http://openstaxcollege.org/l/raisingi)


http://openstaxcollege.org/l/addsubcomplex
http://openstaxcollege.org/l/multiplycomplex
http://openstaxcollege.org/l/multcompconj
http://openstaxcollege.org/l/raisingi
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2.4 SECTION EXERCISES

VERBAL
1. Explain how to add complex numbers. 2. What is the basic principle in multiplication of
complex numbers?
3. Give an example to show that the product of two 4. What is a characteristic of the plot of a real number
imaginary numbers is not always imaginary. in the complex plane?
ALGEBRAIC
For the following exercises, evaluate the algebraic expressions.
5. If y = x* + x — 4, evaluate y given x = 2i. 6. If y = x° — 2, evaluate y given x = i.
7. If y=x>+ 3x + 5, evaluate y given x = 2 + . 8. If y =2x* + x — 3, evaluate y given x = 2 — 3i.
_x+1 ) s _1+2x ) Y
9.Ify= Py evaluate y given x = 5i. 10. If y = 13’ evaluate y given x = 4i.
GRAPHICAL
For the following exercises, plot the complex numbers on the complex plane.
1.1 -2 12, -2+ 3i 13. i 14. -3 —4i
NUMERIC
For the following exercises, perform the indicated operation and express the result as a simplified complex number.
15. (3 + 2i) + (5 — 3i) 16. (=2 — 4i) + (1 + 6i)  17. (=5 + 3i) — (6 — i) 18. (2 — 3i) — (3 + 2i)
19, (—4 + 4i) — (=6 +9i)  20. (2 + 3i)(4i) 21. (5 — 2i)(3i) 22. (6 — 2i)(5)
23. (—2 + 4i)(8) 24. (2 + 3i)(4 — i) 25. (—1 + 2i)(—2 + 3i) 26. (4 — 2i)(4 + 2i)
27. (3 + 4i)(3 — 4i) 28, S+ 4 29, 0 =21 30, >3
2 3 2i
6+ 4i 2—3i 3+4i 2+ 3i
1. 2, . 4,
3 i 3 4+ 3i 3 2—i 3 2—3i
3.V -9 +3V-16 36. —V—4 —4V-25 37.2+T - 38. HT —
39. 40. i M. i*
TECHNOLOGY
For the following exercises, use a calculator to help answer the questions.
42, Evaluate (1 + i)* for k = 4, 8, and 12. Predict the 43, Evaluate (1 — i) for k = 2, 6, and 10. Predict the
value if k = 16. value if k = 14.
44. Evaluate (I + i)* — (I — i)* for k = 4, 8, and 12. 45. Show that a solution of x* +1 = 0 isﬁ + 1
Predict the value for k = 16. 2 2
46. Show that a solution of x* —1 =10 is? + %i.
EXTENSIONS
For the following exercises, evaluate the expressions, writing the result as a simplified complex number.
1 4 1 1
47. - + = 48 — — — 49. (1 + i2) 50. i3 + 57
1' i3 ill 1’21
N Ny A N2 .
51. 2 +1i)(4 — 2i) - (1+30)(2 —4i) 53, 3+1) 54, 3 4 2i 430
(1+19) (1+24) (1 + 2i)? 24
4+i 3—4i 3+2i 2-3i

55.

+ 56.
i 1—i 1+2i 341




SECTION 2.5 QUADRATIC EQUATIONS

LEARNING OBJECTIVES

In this section you will;

e Solve quadratic equations by factoring.

¢ Solve quadratic equations by the square root property.

e Solve quadratic equations by completing the square.

e Solve quadratic equations by using the quadratic formula.

2.5 QUADRATIC EQUATIONS

Figure 1

The computer monitor on the left in Figure 1 is a 23.6-inch model and the one on the right is a 27-inch model.
Proportionally, the monitors appear very similar. If there is a limited amount of space and we desire the largest
monitor possible, how do we decide which one to choose? In this section, we will learn how to solve problems such
as this using four different methods.

An equation containing a second-degree polynomial is called a quadratic equation. For example, equations such as
2x*+ 3x — 1 = 0 and x* — 4 = 0 are quadratic equations. They are used in countless ways in the fields of engineering,
architecture, finance, biological science, and, of course, mathematics.

Often the easiest method of solving a quadratic equation is factoring. Factoring means finding expressions that can
be multiplied together to give the expression on one side of the equation.

If a quadratic equation can be factored, it is written as a product of linear terms. Solving by factoring depends on the
zero-product property, which states thatif a - b = 0, then a = 0 or b = 0, where a and b are real numbers or algebraic
expressions. In other words, if the product of two numbers or two expressions equals zero, then one of the numbers
or one of the expressions must equal zero because zero multiplied by anything equals zero.

Multiplying the factors expands the equation to a string of terms separated by plus or minus signs. So, in that sense,
the operation of multiplication undoes the operation of factoring. For example, expand the factored expression
(x — 2)(x + 3) by multiplying the two factors together.

(x—2)(x+3)=x*+3x—2x—6
=x*4+x—6
The product is a quadratic expression. Set equal to zero, x> + x — 6 = 0 is a quadratic equation. If we were to factor
the equation, we would get back the factors we multiplied.

The process of factoring a quadratic equation depends on the leading coefficient, whether it is 1 or another
integer. We will look at both situations; but first, we want to confirm that the equation is written in standard form,
ax* + bx + ¢ = 0, where g, b, and c are real numbers, and a # 0. The equation x* + x — 6 = 0 is in standard form.

We can use the zero-product property to solve quadratic equations in which we first have to factor out the greatest
common factor (GCF), and for equations that have special factoring formulas as well, such as the difference of squares,
both of which we will see later in this section.

119



120 CHAPTER 2 EQUATIONS AND INEQUALITIES

the zero-product property and quadratic equations

The zero-product property states
Ifa-b=0,thena=00rb=0,

where a and b are real numbers or algebraic expressions.

A quadratic equation is an equation containing a second-degree polynomial; for example
ax*+bx+c=0

where a, b, and ¢ are real numbers, and if a # 0, it is in standard form.

Solving Quadratics with a Leading Coefficient of 1

In the quadratic equation x* + x — 6 = 0, the leading coeflicient, or the coeflicient of x%, is 1. We have one method of
factoring quadratic equations in this form.

Given a quadratic equation with the leading coefficient of 1, factor it.

1. Find two numbers whose product equals ¢ and whose sum equals b.

2. Use those numbers to write two factors of the form (x + k) or (x — k), where k is one of the numbers found in step 1.
Use the numbers exactly as they are. In other words, if the two numbers are 1 and —2, the factors are (x + 1)(x — 2).

3. Solve using the zero-product property by setting each factor equal to zero and solving for the variable.

Example 1 Factoring and Solving a Quadratic with Leading Coefficient of 1
Factor and solve the equation: x> + x — 6 = 0.

Solution  To factor x* 4+ x — 6 = 0, we look for two numbers whose product equals —6 and whose sum equals 1. Begin

by looking at the possible factors of —6. 1 (6)

(=6)-1
2-(-3)
3-(=2)
The last pair, 3 - (—2) sums to 1, so these are the numbers. Note that only one pair of numbers will work. Then, write
the factors.
(x—2)(x+3)=0
To solve this equation, we use the zero-product property. Set each factor equal to zero and solve.
(x—2)(x+3)=0

(x—2)=0
x=2

(x+3)=0
x=-3

The two solutions are 2 and —3. We can see how the solutions relate to the graph in Figure 2. The solutions are the
x-intercepts of x> +x — 6 = 0.

x2+x—6:0y
=04

5
4,,
3,,
- 5
(+3,0) 1
53X -]

1+

O
=34
41
N5

Figure 2
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Iry It #1

Factor and solve the quadratic equation: x* — 5x — 6 = 0.

Example 2  Solve the Quadratic Equation by Factoring
Solve the quadratic equation by factoring: x* 4+ 8x + 15 = 0.
Solution Find two numbers whose product equals 15 and whose sum equals 8. List the factors of 15.
1-15
3.5
(=1 - (~15)
(=3)- (=5
The numbers that add to 8 are 3 and 5. Then, write the factors, set each factor equal to zero, and solve.

(x+3)(x+5) =0

(x+3)=0
x=-3

(x+5)=
x= -5

The solutions are —3 and —5.

Iry It #2

Solve the quadratic equation by factoring: x? — 4x — 21 = 0.

Example 3 Using the Zero-Product Property to Solve a Quadratic Equation Written as the Difference of Squares
Solve the difference of squares equation using the zero-product property: x> — 9 = 0.

Solution Recognizing that the equation represents the difference of squares, we can write the two factors by taking
the square root of each term, using a minus sign as the operator in one factor and a plus sign as the operator in the
other. Solve using the zero-factor property.

x2—9=0

(x—=3)(x+3)=0

(x—3)=0

x=3

(x+3)=0
x=-3

The solutions are 3 and —3.

TV)/ It #3

Solve by factoring: x* — 25 = 0.

Factoring and Solving a Quadratic Equation of Higher Order

When the leading coefficient is not 1, we factor a quadratic equation using the method called grouping, which requires
four terms. With the equation in standard form, let’s review the grouping procedures:

1. With the quadratic in standard form, ax* 4+ bx + ¢ = 0, multiply a - c.

N

. Find two numbers whose product equals ac and whose sum equals b.

W

. Rewrite the equation replacing the bx term with two terms using the numbers found in step 1 as coefficients of x.

W~

. Factor the first two terms and then factor the last two terms. The expressions in parentheses must be exactly the
same to use grouping.

9}

. Factor out the expression in parentheses.

6. Set the expressions equal to zero and solve for the variable.
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Example 4  Solving a Quadratic Equation Using Grouping

Use grouping to factor and solve the quadratic equation: 4x*> + 15x + 9 = 0.

Solution  First, multiply ac : 4(9) = 36. Then list the factors of 36.
1-36

- 18

<12

-9

-6

AN W

The only pair of factors that sums to 15 is 3 + 12. Rewrite the equation replacing the b term, 15x, with two terms using

3 and 12 as coefficients of x. Factor the first two terms, and then factor the last two terms.

4x*4+3x+12x+9=0
x(4x +3) +3(4x+3)=0
(Ax+3)(x+3)=0

Solve using the zero-product property.
(dx+3)(x+3)=0

(4x+3)=0
3
4
(x+3)=0
x=-3
The solutions are —% and —3. See Figure 3.
Y

Iry It #4
Solve using factoring by grouping: 12x>+ 11x + 2 = 0.

Example 5 Solving a Higher Degree Quadratic Equation by Factoring

Solve the equation by factoring: —3x* — 5x* — 2x = 0.

Solution This equation does not look like a quadratic, as the highest power is 3, not 2. Recall that the first thing we
want to do when solving any equation is to factor out the GCF, if one exists. And it does here. We can factor out —x

from all of the terms and then proceed with grouping.
—3x*—5x*—2x=0
—x(3x>+5x+2)=0
Use grouping on the expression in parentheses.
—x(3x*4+3x+2x+2)=0
—x[B3x(x+1)+2(x+1)]=0
—x(Bx+2)(x+1)=0
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Now, we use the zero-product property. Notice that we have three factors.

—x=0
x=0
3x+2=0
e 2
3
x+1=0
x=-—1

The solutions are 0, — %, and —1.

Try It #5
Solve by factoring: x* + 11x* + 10x = 0.

When there is no linear term in the equation, another method of solving a quadratic equation is by using the square
root property, in which we isolate the x* term and take the square root of the number on the other side of the equals
sign. Keep in mind that sometimes we may have to manipulate the equation to isolate the x* term so that the square
root property can be used.

the square root property
With the x? term isolated, the square root property states that:
if x2 =k, then x = + Vk

where k is a nonzero real number.

Given a quadratic equation with an x* term but no x term, use the square root property to solve it.
1. Isolate the x> term on one side of the equal sign.

2. Take the square root of both sides of the equation, putting a + sign before the expression on the side opposite the
squared term.

3. Simplify the numbers on the side with the & sign.

Example 6  Solving a Simple Quadratic Equation Using the Square Root Property
Solve the quadratic using the square root property: x> = 8.

Solution Take the square root of both sides, and then simplify the radical. Remember to use a + sign before the
radical symbol.

x?=8
x=+V8
= +2V2

The solutions are 2V/2 and —2V/2.

Example 7  Solving a Quadratic Equation Using the Square Root Property
Solve the quadratic equation: 4x* + 1 = 7.
Solution  First, isolate the x* term. Then take the square root of both sides.

4>+ 1=7
4x> =6
6
pa—d
YTy
Y
2

Ve

The solutions are ﬁ and -
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T/’)/ It #6

Solve the quadratic equation using the square root property: 3(x — 4)> = 15.

Completing the Square

Not all quadratic equations can be factored or can be solved in their original form using the square root property.
In these cases, we may use a method for solving a quadratic equation known as completing the square. Using this
method, we add or subtract terms to both sides of the equation until we have a perfect square trinomial on one side of
the equal sign. We then apply the square root property. To complete the square, the leading coeflicient, a, must equal 1.
If it does not, then divide the entire equation by a. Then, we can use the following procedures to solve a quadratic
equation by completing the square.

We will use the example x* 4+ 4x + 1 = 0 to illustrate each step.

1. Given a quadratic equation that cannot be factored, and with a = 1, first add or subtract the constant term to
the right sign of the equal sign.

x*+4x=—1
2. Multiply the b term by % and square it. )
22=4

3. Add (%b)z to both sides of the equal sign and simplify the right side. We have
xX*+4x+4=—-1+4

x*+4x+4=3

4. The left side of the equation can now be factored as a perfect square.
x*+4x+4=3
(x+2)=3

5. Use the square root property and solve.
Vix+2r=+V3
x+2=£V3
x=-2+V3
6. The solutions are —2 + V/3 and —2 — /3.
Example 8  Solving a Quadratic by Completing the Square
Solve the quadratic equation by completing the square: x> — 3x — 5 =0.
Solution  First, move the constant term to the right side of the equal sign.
x*—=3x=5

Then, take % of the b term and square it.

Add the result to both sides of the equal sign.

a5 ()
x 3x+<2 5+ 5

9 9
23 Z =54
X x+4 +4

Factor the left side as a perfect square and simplify the right side.

32
2 4
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3 =+V%
V29
2

(-3)-2

Use the square root property and solve.

3—-V29
> .

Try It #7

d

The solutions are

3+V29
> an

Solve by completing the square: x* — 6x = 13.

The fourth method of solving a quadratic equation is by using the quadratic formula, a formula that will solve all
quadratic equations. Although the quadratic formula works on any quadratic equation in standard form, it is easy to
make errors in substituting the values into the formula. Pay close attention when substituting, and use parentheses
when inserting a negative number.

We can derive the quadratic formula by completing the square. We will assume that the leading coeflicient is positive;
if it is negative, we can multiply the equation by —1 and obtain a positive a. Given ax? 4+ bx 4+ ¢ =0, a # 0, we will
complete the square as follows:

1. First, move the constant term to the right side of the equal sign:
ax?* +bx=—c

2. As we want the leading coefficient to equal 1, divide through by a:

b ¢
x? + ax = — a
1 . 16\ _ p? : .
3. Then, find 3 of the middle term, and add %) 1w to both sides of the equal sign:
a a
b b» _ b <
PTG e T a

4. Next, write the left side as a perfect square. Find the common denominator of the right side and write it as a
single fraction:
& <x+£>2:b2—4ac
2a 4q

5. Now, use the square root property, which gives

b b* — 4ac
Y pn/2—2ac
X 2a 4a?
Vi —
x + b _ iu
2a 2a
6. Finally, add — b to both sides of the equation and combine the terms on the right side. Thus,
2a
_ —bx Vb —dac
2a

the quadratic formula
Written in standard form, ax? + bx + ¢ = 0, any quadratic equation can be solved using the quadratic formula:

—b+ VDb — 4dac
2a

where a, b, and ¢ are real numbers and a # 0.
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Given a quadratic equation, solve it using the quadratic formula

1. Make sure the equation is in standard form: ax* 4+ bx + ¢ = 0.

2. Make note of the values of the coefficients and constant term, a, b, and c.

3. Carefully substitute the values noted in step 2 into the equation. To avoid needless errors, use parentheses around
each number input into the formula.

4. Calculate and solve.

Example 9 Solve the Quadratic Equation Using the Quadratic Formula
Solve the quadratic equation: x* 4+ 5x + 1 = 0.

Solution  Identify the coefficients: a = 1, b = 5, ¢ = 1. Then use the quadratic formula.

—(5) £ V(5) — 4(1)(1)
2(1)
—54+WV25—-4
2

—5+V21
2

Example 10 Solving a Quadratic Equation with the Quadratic Formula
Use the quadratic formula to solve x* + x + 2 = 0.
Solution First, we identify the coefficients:a =1, b =1, and ¢ = 2.

Substitute these values into the quadratic formula.

—b+ Vb —4dac
2a

~M)EVar-@- 1))
2-1
—1+V1-8
2

-1+V-7
2

_—1+iVT7
2

1+iV7 “1-iV7
and .

The solutions to the equation are — 3 5

Iry It #8

Solve the quadratic equation using the quadratic formula: 9x? 4+ 3x — 2 =0.

The Discriminant

The quadratic formula not only generates the solutions to a quadratic equation, it tells us about the nature of the
solutions when we consider the discriminant, or the expression under the radical, b* — 4ac. The discriminant tells us
whether the solutions are real numbers or complex numbers, and how many solutions of each type to expect. Table 1
relates the value of the discriminant to the solutions of a quadratic equation.
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Value of Discriminant Results
b*—4ac=0 One rational solution (double solution)
b* — 4ac > 0, perfect square Two rational solutions
b* — 4ac > 0, not a perfect square Two irrational solutions
b*—4ac<0 Two complex solutions
Table 1

the discriminant

For ax? 4+ bx + ¢ = 0, where g, b, and ¢ are real numbers, the discriminant is the expression under the radical in
the quadratic formula: b*> — 4ac. It tells us whether the solutions are real numbers or complex numbers and how
many solutions of each type to expect.

Example 11 Using the Discriminant to Find the Nature of the Solutions to a Quadratic Equation
Use the discriminant to find the nature of the solutions to the following quadratic equations:

a. x*+4x+4=0 b. 8x*+14x+3=0 €. 3x*—5x—2=0 d. 3x¥* —10x+15=0
Solution Calculate the discriminant b* — 4ac for each equation and state the expected type of solutions.

a. X>’+4x+4=0
b?> — 4ac = (4)*> — 4(1)(4) = 0. There will be one rational double solution.

b. 8x*+14x+3=0

b* — 4ac = (14)* — 4(8)(3) = 100. As 100 is a perfect square, there will be two rational solutions.
c. 3x*—5x—2=0

b* — 4ac = (—5)* — 4(3)(—2) = 49. As 49 is a perfect square, there will be two rational solutions.

d. 32 —10x+15=0
b* — 4ac = (—10)* — 4(3)(15) = —80. There will be two complex solutions.

One of the most famous formulas in mathematics is the Pythagorean Theorem. It is based on a right triangle, and
states the relationship among the lengths of the sides as a* + b* = ¢, where a and b refer to the legs of a right triangle
adjacent to the 90° angle, and c refers to the hypotenuse. It has immeasurable uses in architecture, engineering, the
sciences, geometry, trigonometry, and algebra, and in everyday applications.

We use the Pythagorean Theorem to solve for the length of one side of a triangle when we have the lengths of the
other two. Because each of the terms is squared in the theorem, when we are solving for a side of a triangle, we have

a quadratic equation. We can use the methods for solving quadratic equations that we learned in this section to solve
for the missing side.

The Pythagorean Theorem is given as
=7

where a and b refer to the legs of a right triangle adjacent to the 90° angle, and c refers to the hypotenuse, as shown
in Figure 4.

a
Figure 4
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Example 12 Finding the Length of the Missing Side of a Right Triangle
Find the length of the missing side of the right triangle in Figure 5.

12

a

Figure 5

Solution  As we have measurements for side b and the hypotenuse, the missing side is a.

ad+b=c7
@+ (4 = (127
a4+ 16 =144
a*=128
a=V128
=8V2

Try It #9

Use the Pythagorean Theorem to solve the right triangle problem: Leg a measures 4 units, leg b measures 3 units.
Find the length of the hypotenuse.

Access these online resources for additional instruction and practice with quadratic equations.

e Solving Quadratic Equations by Factoring (http://openstaxcollege.org/l/quadreqfactor)

e The Zero-Product Property (http://openstaxcollege.org/l/zeroprodprop)

e Completing the Square (http://openstaxcollege.org/l/complthesqr)

e Quadratic Formula with Two Rational Solutions (http://openstaxcollege.org/I/quadrformrat)
e Length of a Leg of a Right Triangle (http://openstaxcollege.org/l/leglengthtri)


http://openstaxcollege.org/l/quadreqfactor
http://openstaxcollege.org/l/zeroprodprop
http://openstaxcollege.org/l/complthesqr
http://openstaxcollege.org/l/quadrformrat
http://openstaxcollege.org/l/leglengthtri
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2.5 SECTION EXERCISES

VERBAL
1. How do we recognize when an equation is 2. When we solve a quadratic equation, how many
quadratic? solutions should we always start out seeking? Explain
why when solving a quadratic equation in the
form ax> 4 bx + ¢ = 0 we may graph the equation
y = ax* 4+ bx + ¢ and have no zeroes (x-intercepts).
3. When we solve a quadratic equation by factoring, 4. In the quadratic formula, what is the name of the
why do we move all terms to one side, having zero expression under the radical sign b* — 4ac, and how
on the other side? does it determine the number of and nature of our
solutions?
5. Describe two scenarios where using the square root
property to solve a quadratic equation would be the
most efficient method.
ALGEBRAIC
For the following exercises, solve the quadratic equation by factoring.
6. x> +4x—21=0 7.x2—9x+18=0 82x*4+9%x—5=0 9.6x°+17x+5=0
10. 4x* — 12x+8=0 1.3x2—-75=0 12. 8x2+6x—9=0 13.4x* =9
14. 2x* + 14x = 36 15. 5x* = 5x + 30 16. 4x> = 5x 17. 7x*+3x =0
x 9
18. 3 x" 2
For the following exercises, solve the quadratic equation by using the square root property.
19, x> = 36 20. x> =49 21. (x — 1= 25 2. (x—32=7
23. 2x+1)*=9 24, (x —5)2=4
For the following exercises, solve the quadratic equation by completing the square. Show each step.
2. x*— 9x — 22=0 2. 257 — 8x — 5 =0 27. x> — 6x = 13 2%+ 2x— 3 =0

20,2 +z =62 30. 6p> + 7p — 20 =0 31.2x* —3x—1=0

For the following exercises, determine the discriminant, and then state how many solutions there are and the nature
of the solutions. Do not solve.

32.2x> —6x+7=0 33.x2+4x+7=0 34.3x*+5x—8=0 35.9x2 — 30x+25=0
36.2x>—3x—7=0 37.6x2—x—2=0

For the following exercises, solve the quadratic equation by using the quadratic formula. If the solutions are not real,
state No Real Solution.

38.2x2+5x+3=0 39. x2+x=4 40.2x* —8x —5=0 4.3 —5x+1=0
42. x>+ 4x+2—=0 marl _L_g

X 5
TECHNOLOGY

For the following exercises, enter the expressions into your graphing utility and find the zeroes to the equation (the
x-intercepts) by using 2" CALC 2:zero. Recall finding zeroes will ask left bound (move your cursor to the left of the
zero, enter), then right bound (move your cursor to the right of the zero, enter), then guess (move your cursor between
the bounds near the zero, enter). Round your answers to the nearest thousandth.

MY =4 +3x—2 45. Y = —3x+8x—1 46. Y =05x"+x—7
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To solve the quadratic equation x* 4 5x — 7 = 4, we
can graph these two equations

Y, =x*+5x—7 Y, =4

and find the points of intersection. Recall 2°¢ CALC
5:intersection. Do this and find the solutions to the
nearest tenth.

EXTENSIONS

49,

51.

53.

Beginning with the general form of a quadratic
equation, ax? 4+ bx + ¢ = 0, solve for x by using the
completing the square method, thus deriving the
quadratic formula.

A person has a garden that has a length 10 feet
longer than the width. Set up a quadratic equation
to find the dimensions of the garden if its area is
119 ft. Solve the quadratic equation to find the
length and width.

Suppose that an equation is given

p = —2x*+ 280x — 1000, where x represents the
number of items sold at an auction and p is the
profit made by the business that ran the auction.
How many items sold would make this profit a
maximum? Solve this by graphing the expression
in your graphing utility and finding the maximum
using 2" CALC maximum. To obtain a good
window for the curve, set x [0,200] and y [0,10000].

REAL-WORLD APPLICATIONS

54.

56.

A formula for the normal systolic blood pressure for
a man age A, measured in mmHg, is given as

P =0.006A% — 0.02A + 120. Find the age to the
nearest year of a man whose normal blood pressure
measures 125 mmHg.

A falling object travels a distance given by the
formula d = 5¢ + 16¢* ft, where ¢ is measured in
seconds. How long will it take for the object to
traveled 74 ft?

58. An epidemiological study of the spread of a certain

influenza strain that hit a small school population
found that the total number of students, P, who
contracted the flu f days after it broke out is given by
the model P = — 2+ 13t + 130, where 1 < t < 6.
Find the day that 160 students had the flu. Recall that
the restriction on ¢ is at most 6.

48.

50.

52

55.

To solve the quadratic equation 0.3x*> + 2x — 4 = 2,
we can graph these two equations

Y, =03x 4 2x — 4 Y,=2

and find the points of intersewction. Recall 2*¢ CALC
5:intersection. Do this and find the solutions to the
nearest tenth.

Show that the sum of the two solutions to the

quadratic equation is — g.

Abercrombie and Fitch stock had a price given as

P =0.2* — 5.6t 4+ 50.2, where ¢ is the time in
months from 1999 to 2001. ( t = 1 is January 1999).
Find the two months in which the price of the stock
was $30.

The cost function for a certain company is

C = 60x + 300 and the revenue is given by

R =100x — 0.5x2. Recall that profit is revenue minus
cost. Set up a quadratic equation and find two values
of x (production level) that will create a profit of $300.

57. A vacant lot is being converted into a community

garden. The garden and the walkway around its
perimeter have an area of 378 ft%. Find the width of
the walkway if the garden is 12 ft. wide by 15 ft. long.

S

X
A
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LEARNING OBJECTIVES

In this section you will;

e Solve equations involving rational exponents.
e Solve equations using factoring.

¢ Solve radical equations.

¢ Solve absolute value equations.

e Solve other types of equations.

2.6 OTHER TYPES OF EQUATIONS

We have solved linear equations, rational equations, and quadratic equations using several methods. However, there are
many other types of equations, and we will investigate a few more types in this section. We will look at equations involving
rational exponents, polynomial equations, radical equations, absolute value equations, equations in quadratic form, and
some rational equations that can be transformed into quadratics. Solving any equation, however, employs the same basic
algebraic rules. We will learn some new techniques as they apply to certain equations, but the algebra never changes.

Rational exponents are exponents that are fractions, where the numerator is a power and the denominator is a root.
1 1

For example, 162 is another way of writing V' 16; 83 is another way of writing V/8. The ability to work with rational
exponents is a useful skill, as it is highly applicable in calculus.

We can solve equations in which a variable is raised to a rational exponent by raising both sides of the equation
to the reciprocal of the exponent. The reason we raise the equation to the reciprocal of the exponent is because
we want to eliminate the exponent on the variable term, and a number multiplied by its reciprocal equals 1.

2 §>_ <l>_
Forexample,3<2 =13 3 =1, and so on.

rational exponents
A rational exponent indicates a power in the numerator and a root in the denominator. There are multiple ways
of writing an expression, a variable, or a number with a rational exponent:

a% = (a%)m = (a’”)% =Vam = (%)m

Example 1  Evaluating a Number Raised to a Rational Exponent

2
Evaluate 83.

Solution  Whether we take the root first or the power first depends on the number. It is easy to find the cube root of

(8% )2: (2)?

2 (l)Z
8, so rewrite 83 as \83 / .

Try It #71
)/ _1
Evaluate 64 3.
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Example 2  Solve the Equation Including a Variable Raised to a Rational Exponent
3
Solve the equation in which a variable is raised to a rational exponent: x4 = 32.

Solution The way to remove the exponent on x is by raising both sides of the equation to a power that is the reciprocal

of%,which is %

Ao

x4 =32

>
(S

(x%) =(32)

x=(2)* The fifth root of 32 is 2.
=16

Try It #2
i’ 3

Solve the equation x2 = 125.

Example 3  Solving an Equation Involving Rational Exponents and Factoring

3 1
Solve 3x4 = x2.
Solution This equation involves rational exponents as well as factoring rational exponents. Let us take this one step
at a time. First, put the variable terms on one side of the equal sign and set the equation equal to zero.

3x% — (x%) :x% — (x%)
3 1

3x4 —x2=0

Now, it looks like we should factor the left side, but what do we factor out? We can always factor the term with the
1 2 2
lowest exponent. Rewrite x2 as x4. Then, factor out x4 from both terms on the left.

3 2
3x4 —x4 =0

| x%(3xi—1):0

Where did x4 come from? Remember, when we multiply two numbers with the same base, we add the exponents.
2
Therefore, if we multiply x4 back in using the distributive property, we get the expression we had before the factoring,

which is what should happen. We need an exponent such that when added to % equals % Thus, the exponent on x
in the parentheses is e

Let us continue. Now we have two factors and can use the zero factor theorem.

2 1 1
x4(3x4—1):O 3x4 —1=0
2 1
x4 =0 3x4 =1
x:o i_l PR .
x4 == Divide both sides by 3.

4
% > Raise both sides to the reciprocal of i

The two solutions are 0 and é

TV/V It #3
Solve: (x + 5)2 = 8.

3
2
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Solving Equations Using Factoring

We have used factoring to solve quadratic equations, but it is a technique that we can use with many types of polynomial
equations, which are equations that contain a string of terms including numerical coeflicients and variables. When
we are faced with an equation containing polynomials of degree higher than 2, we can often solve them by factoring.

polynomial equations
A polynomial of degree n is an expression of the type
x" '+ tax’tax+a,

n
ax"+a |

where 7 is a positive integer and a,...,a,are real numbers and a, #0.

Setting the polynomial equal to zero gives a polynomial equation. The total number of solutions (real and
complex) to a polynomial equation is equal to the highest exponent n.

Example 4  Solving a Polynomial by Factoring
Solve the polynomial by factoring: 5x* = 80x2.
Solution  First, set the equation equal to zero. Then factor out what is common to both terms, the GCF.
5x* — 80x*=0
5x%(x*—16) =0
Notice that we have the difference of squares in the factor x> — 16, which we will continue to factor and obtain two
solutions. The first term, 5x?, generates, technically, two solutions as the exponent is 2, but they are the same solution.
5x*=0 x2—16=0
x=0 (x—4Dx+4)=0
x—4=0 or x+4=0

x=4 or x=—4
The solutions are 0 (double solution), 4, and —4.

Analyses  We can see the solutions on the graph in Figure 1. The x-coordinates of the points where the graph crosses the
x-axis are the solutions—the x-intercepts. Notice on the graph that at 0, the graph touches the x-axis and bounces back.
It does not cross the x-axis. This is typical of double solutions.

I

Try It #4
Solve by factoring: 12x* = 3x2.
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Example 5  Solve a Polynomial by Grouping

Solve a polynomial by grouping: x* + x> — 9x — 9 = 0.

Solution  This polynomial consists of 4 terms, which we can solve by grouping. Grouping procedures require factoring
the first two terms and then factoring the last two terms. If the factors in the parentheses are identical, we can continue
the process and solve, unless more factoring is suggested.

xX*4+x*—9%—9=0
xx+1)—9(x+1)=0
(xX*=9x+1)=0

The grouping process ends here, as we can factor x* — 9 using the difference of squares formula.
(=9 +1)=0
(x—3)(x+3)(x+1)=0
x—3=0 or x+3=0 or x+1=0
x=3 or x=-3 or x=-1

The solutions are 3, —3, and —1. Note that the highest exponent is 3 and we obtained 3 solutions. We can see the
solutions, the x-intercepts, on the graph in Figure 2.

y

1 X+ —=9%—-9=0

—25+4

\4
Figure 2

AWZM'/: We looked at solving quadratic equations by factoring when the leading coefficient is 1. When the leading
coefficient is not 1, we solved by grouping. Grouping requires four terms, which we obtained by splitting the linear term
of quadratic equations. We can also use grouping for some polynomials of degree higher than 2, as we saw here, since
there were already four terms.

Solving Radical Equations

Radical equations are equations that contain variables in the radicand (the expression under a radical symbol), such as

V3x+ 18 =x
Vx+3=x-3

Vx+5—-Vx—-3=2

Radical equations may have one or more radical terms, and are solved by eliminating each radical, one at a time. We
have to be careful when solving radical equations, as it is not unusual to find extraneous solutions, roots that are not,
in fact, solutions to the equation. These solutions are not due to a mistake in the solving method, but result from the
process of raising both sides of an equation to a power. However, checking each answer in the original equation will
confirm the true solutions.
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radical equations

An equation containing terms with a variable in the radicand is called a radical equation.

Given a radical equation, solve it.

1. Isolate the radical expression on one side of the equal sign. Put all remaining terms on the other side.

2. If the radical is a square root, then square both sides of the equation. If it is a cube root, then raise both sides of
the equation to the third power. In other words, for an nth root radical, raise both sides to the nth power. Doing
so eliminates the radical symbol.

3. Solve the remaining equation.

4. If a radical term still remains, repeat steps 1-2.

5. Confirm solutions by substituting them into the original equation.

Example 6  Solving an Equation with One Radical

Solve V15 — 2x = x.

Solution The radical is already isolated on the left side of the equal side, so proceed to square both sides.

V15—-2x=x
2
(\/15—2x) = (x)?
15 —2x=x*

We see that the remaining equation is a quadratic. Set it equal to zero and solve.
0=x"+2x—15
0= (x+5)(x—3)
0=(x4+5) or 0=(x—23)

—5=x or 3=x

The proposed solutions are —5 and 3. Let us check each solution back in the original equation. First, check —5.

V15— 2x=x
V15—2(—5) =-5
V25 =—5

54 -5

This is an extraneous solution. While no mistake was made solving the equation, we found a solution that does not
satisfy the original equation.

Check 3.
V15 —2x=x
V15-2(3) =3
V9 =3
3=

The solution is 3.

Try It #5
Solve the radical equation: Vx +3 =3x — 1
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Example 7  Solving a Radical Equation Containing Two Radicals

Solve V2x +3 + Vx — 2 = 4.

Solution  As this equation contains two radicals, we isolate one radical, eliminate it, and then isolate the second

radical.
\/2x+3 —|—\/x—2:4
V2x+3=4—Vx—2 Subtract V' x — 2 from both sides.
( V2x+3 )2 = (4 —Vx—-2 )2 Square both sides.

Use the perfect square formula to expand the right side: (a — b)* = a? —2ab + b2

2x+3=@dr—24)Vi—2+(Vx—2)
2x+3=16—-8Vx—2+(x—2)

2x+3=14+x—-8Vx—2 Combine like terms.
x—11=-8Vx—-2 Isolate the second radical.
2
(x—11)*= (—8 Vx— 2) Square both sides.

x2—22x+ 121 = 64(x — 2)
Now that both radicals have been eliminated, set the quadratic equal to zero and solve.
x* —22x+ 121 = 64x — 128
x* — 86x + 249 =0
(x—3)(x—83)=0 Factor and solve.
x—3=0 or x—83=0

x=3 or x =83

The proposed solutions are 3 and 83. Check each solution in the original equation.

V2x+3+Vx—2=4
mzél— x—2
V2@3)+3=4—-V(3@) -2

V9=4-V1
3=3

One solution is 3.

Check 83.

V2x+3+Vx—2=4
V2x+3=4—Vx-—-2
V2(83) +3=4—V(83—2)

V169 =4 — V81
134 —5

The only solution is 3. We see that 83 is an extraneous solution.

Iry It #6

Solve the equation with two radicals: V3x +7 + Vx +2 = 1.
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Next, we will learn how to solve an absolute value equation. To solve an equation such as |2x — 6| = 8, we notice that
the absolute value will be equal to 8 if the quantity inside the absolute value bars is 8 or —8. This leads to two different
equations we can solve independently.

2x—6=28 or 2x —6=—-8
2x =14 2x = —2
x=7 x=-—1

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify
numbers or points on a line that are at a specified distance from a given reference point.

absolute value equations

The absolute value of x is written as |x|. It has the following properties:
If x > 0, then |x| = x.
If x <0, then |x| = —x.

For real numbers A and B, an equation of the form |A| = B, with B > 0, will have solutions when A = Bor A = —B.
If B < 0, the equation |A| = B has no solution.

An absolute value equation in the form |ax + b| = c has the following properties:
If ¢ <0, |ax + b| = c has no solution.
If ¢ = 0, |ax + b| = c has one solution.

If ¢ > 0, |ax + b| = c has two solutions.

Given an absolute value equation, solve it.

1. Isolate the absolute value expression on one side of the equal sign.
2. If ¢ > 0, write and solve two equations: ax + b=candax+ b= —c.

Example 8  Solving Absolute Value Equations

Solve the following absolute value equations:

a. |6x+4/=38 b. |3x+4|=-9 c. |3x—5|—-4=6 d. |-5x+10/=0
Solution
a. |6x+4/=38

Write two equations and solve each:

6x+4=28 6x+4=-8
6x=14 6x=—12
x:% x=-2

The two solutions are % and —2.

b. [3x+4|= -9

There is no solution as an absolute value cannot be negative.
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c. |3x—5—4=6

Isolate the absolute value expression and then write two equations.

[3x —5| —4=6
|3x — 5| =10
3x —5=10 3x —5=-10
3x=15 3x= -5
5
:5 = ——
X X 3

There are two solutions: 5 and — %
d. |-5x+10/=0

The equation is set equal to zero, so we have to write only one equation.

—5x4+10=0
—5x=-10
xX=2

There is one solution: 2.

Iry It #7

Solve the absolute value equation: |1 — 4x| 4+ 8 = 13.

There are many other types of equations in addition to the ones we have discussed so far. We will see more of them
throughout the text. Here, we will discuss equations that are in quadratic form, and rational equations that result in
a quadratic.

Solving Equations in Quadratic Form

Equations in quadratic form are equations with three terms. The first term has a power other than 2. The middle term
has an exponent that is one-half the exponent of the leading term. The third term is a constant. We can solve equations

in this form as if they were quadratic. A few examples of these equations include x* — 5x* +4 =0, x° + 7x> — 8 =0,
2 1

and x3 + 4x3 + 2 = 0. In each one, doubling the exponent of the middle term equals the exponent on the leading
term. We can solve these equations by substituting a variable for the middle term.

quadratic form

If the exponent on the middle term is one-half of the exponent on the leading term, we have an equation in
quadratic form, which we can solve as if it were a quadratic. We substitute a variable for the middle term to solve
equations in quadratic form.

Given an equation quadratic in form, solve it.

Identify the exponent on the leading term and determine whether it is double the exponent on the middle term.
. Ifit is, substitute a variable, such as u, for the variable portion of the middle term.
. Rewrite the equation so that it takes on the standard form of a quadratic.
. Solve using one of the usual methods for solving a quadratic.
. Replace the substitution variable with the original term.
. Solve the remaining equation.

oo oA w NN -
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Example 9  Solving a Fourth-degree Equation in Quadratic Form

Solve this fourth-degree equation: 3x* — 2x?> — 1 =0.

Solution This equation fits the main criteria, that the power on the leading term is double the power on the middle
term. Next, we will make a substitution for the variable term in the middle. Let u = x2. Rewrite the equation in u.

3P —2u—1=0

Now solve the quadratic.
3P —2u—1=0
Gu+1u—1)=0

Solve each factor and replace the original term for u.

3u+1=0 u—1=0
3u=-1 u=1
U= — =1
x==1

Iry It #8

Solve using substitution: x* — 8x> — 9 = 0.

Example 10 Solving an Equation in Quadratic Form Containing a Binomial

Solve the equation in quadratic form: (x + 2)* 4+ 11(x +2) — 12 =0.

Solution This equation contains a binomial in place of the single variable. The tendency is to expand what is presented.
However, recognizing that it fits the criteria for being in quadratic form makes all the difference in the solving process.

First, make a substitution, letting ¥ = x + 2. Then rewrite the equation in u.
w4+ 1lu—12=0
(u+12)(u—1)=0

Solve using the zero-factor property and then replace u with the original expression.

u+12=0
u=-—12

x+2=-12
x=-—14

The second factor results in

u—1=0
U=

x+2=1
x=-1

We have two solutions: —14 and —1.

TV/V It #9
Solve: (x — 5)> — 4(x — 5) — 21 = 0.
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Solving Rational Equations Resulting in a Quadratic

Earlier, we solved rational equations. Sometimes, solving a rational equation results in a quadratic. When this happens,
we continue the solution by simplifying the quadratic equation by one of the methods we have seen. It may turn out
that there is no solution.

Example 11 Solving a Rational Equation Leading to a Quadratic

. . . —4x 4 —8
lve the foll t 1 tion: = .
Solve the following rational equation o1 + pe E i v
Solution We want all denominators in factored form to find the LCD. Two of the denominators cannot be factored
further. However, x> —1 = (x 4 1)(x — 1). Then, the LCD is (x 4+ 1)(x — 1). Next, we multiply the whole equation by
the LCD.

—4x 4 \ —8 _
(et Dlx— 1)<x—1 +x—|—1>_<(x+1)(x— 1)>(x+1)(x D

—Ax(x+ 1)+ 4(x—1)=-8
—4x* —4x+4x—4=-8
—4x*+4=0
—4(x*—1)=0
—4x+1x—-1)=0
x=—lorx=1

In this case, either solution produces a zero in the denominator in the original equation. Thus, there is no solution.

TV)/ It #10

3 2 1 -2
Solve X +—= .
x—2 x x*—2x

Access these online resources for additional instruction and practice with different types of equations.

e Rational Equation with No Solution (http://openstaxcollege.org/l/rateqnosoln)

e Solving Equations with Rational Exponents Using Reciprocal Powers (http://openstaxcollege.org/l/ratexprecpexp)
e Solving Radical Equations part 1 of 2 (http://openstaxcollege.org/l/radegsolvepart1)

e Solving Radical Equations part 2 of 2 (http://openstaxcollege.org/l/radeqsolvepart2)


http://openstaxcollege.org/l/rateqnosoln
http://openstaxcollege.org/l/ratexprecpexp
http://openstaxcollege.org/l/radeqsolvepart1
http://openstaxcollege.org/l/radeqsolvepart2
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2.6 SECTION EXERCISES

VERBAL
1. In a radical equation, what does it mean if a number 2. Explain why possible solutions must be checked in
is an extraneous solution? R radical equations.
3. Your friend tries to calculate the value — 92 and 4. Explain why |2x + 5| = —7 has no solutions.

keeps getting an ERROR message. What mistake is
he or she probably making?

5. Explain how to change a rational exponent into the
correct radical expression.

ALGEBRAIC
For the following exercises, solve the rational exponent equation. Use factoring where necessary.
2 3 1 1 3
6. x3 =16 7. x4 =27 8.2x2 —x4=0 9.(x—1)4=8
2 2 1 z 4 1
10. (x+1)3 =4 M.x3 —5x34+6=0 12, x3 —3x3 —4x3 =0

For the following exercises, solve the following polynomial equations by grouping and factoring.
13.x°4+2x2—x—2=0 14. 3x° — 6x* — 27x + 54 =0 15.4y* — 9y =0
16. x° 4 3x> — 25x — 75 =0 17.m+m —m—1=0 18. 2x° —14x° =0
19, 5x° + 45x = 2x* + 18

For the following exercises, solve the radical equation. Be sure to check all solutions to eliminate extraneous solutions.

20.V3x—1-2=0 2.Vx—7= 2\Vx—1=x-7
23.V3t+5=7 24.\Vt+1+9=7 25 V12— x=x
26.V2x+3 - Vx+2=2 2. V3x+7 +Vx+2=1 28.V2x+3 - Vx+1l=1
For the following exercises, solve the equation involving absolute value.

29. 3x — 4| =38 30. [2x — 3| = -2 3.1 —4x|—1=5 32 4x+1]—-3=6
3B.2x—1—-7=-2 4. 2x+1|—-2=-3 35. |x+5/=0 36. —[2x+ 1| =-3

For the following exercises, solve the equation by identifying the quadratic form. Use a substitute variable and find
all real solutions by factoring.

37 x*—10x24+9=0 B A4t—1)*—9(t—1)=-2 3. (x2— 1)+ (x*—1)—12=0
40. (x +1?—-8(x+1)—9=0 M. (x—3)P2—-4=0

EXTENSIONS

For the following exercises, solve for the unknown variable.

42, x 2 —x'—-12=0 43. Vx> =x 4. t» —t5+1=0 45. |x* 4 2x — 36| =12

REAL-WORLD APPLICATIONS
For the following exercises, use the model for the period of a pendulum, T, such that T = 27 \/ é , where the length
of the pendulum is L and the acceleration due to gravity is g

46. If the acceleration due to gravity is 9.8 m/s*> and the  47. If the gravity is 32 ft/s* and the period equals 1 s,
period equals 1 s, find the length to the nearest cm find the length to the nearest in. (12 in. = 1 ft).
(100 cm = 1 m). Round your answer to the nearest in.

h , where w = weight in

For the following exercises, use a model for body surface area, BSA, such that BSA = 32}7)

kg and h = height in cm.
48. Find the height of a 72-kg female to the nearest cm  49. Find the weight of a 177-cm male to the nearest kg
whose BSA = 1.8. whose BSA = 2.1.
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LEARNING OBJECTIVES

In this section you will:

e Use interval notation.

e Use properties of inequalities.

e Solve inequalities in one variable algebraically.
¢ Solve absolute value inequalities.

2.7 LINEAR INEQUALITIES AND ABSOLUTE VALUE INEQUALITIES

Figure 1

It is not easy to make the honor role at most top universities. Suppose students were required to carry a course load of
at least 12 credit hours and maintain a grade point average of 3.5 or above. How could these honor roll requirements
be expressed mathematically? In this section, we will explore various ways to express different sets of numbers,
inequalities, and absolute value inequalities.

Indicating the solution to an inequality such as x > 4 can be achieved in several ways.

We can use a number line as shown in Figure 2. The blue ray begins at x = 4 and, as indicated by the arrowhead,
continues to infinity, which illustrates that the solution set includes all real numbers greater than or equal to 4.

01 23 456 7 8 91011
Figure 2
We can use set-builder notation: {x|x > 4}, which translates to “all real numbers x such that x is greater than or equal

to 4.” Notice that braces are used to indicate a set.

The third method is interval notation, in which solution sets are indicated with parentheses or brackets. The solutions
to x > 4 are represented as [4, 00). This is perhaps the most useful method, as it applies to concepts studied later in
this course and to other higher-level math courses.

The main concept to remember is that parentheses represent solutions greater or less than the number, and brackets
represent solutions that are greater than or equal to or less than or equal to the number. Use parentheses to represent
infinity or negative infinity, since positive and negative infinity are not numbers in the usual sense of the word
and, therefore, cannot be “equaled.” A few examples of an interval, or a set of numbers in which a solution falls,
are [—2, 6), or all numbers between —2 and 6, including —2, but not including 6; (—1, 0), all real numbers
between, but not including —1 and 0; and (—o0, 1], all real numbers less than and including 1. Table 1 outlines
the possibilities.

Set Indicated Set-Builder Notation Interval Notation
All real numbers between a and b, but not including a or b fx|a<x<b} (a, b)
All real numbers greater than a, but not including a {x| x > a} (a, 00)
All real numbers less than b, but not including b {x| x < b} (—o0, b)

All real numbers greater than g, including a {x| x > a} [a, o0)
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Set Indicated Set-Builder Notation Interval Notation
All real numbers less than b, including b {x| x < b} (—o0, b]
All real numbers between a and b, including a fxla<x< b} la, b)
All real numbers between a and b, including b fxla<x<b} (a, b]
All real numbers between a and b, including a and b fxla<x<b} [a, b]
All real numbers less than a or greater than b {x| x < a and x > b} (—o0, a) U (b, 00)
All real numbers {x| x is all real numbers} (=00, 00)

Table 1

Example 1  Using Interval Notation to Express All Real Numbers Greater Than or Equal to a
Use interval notation to indicate all real numbers greater than or equal to —2.

Solution Use a bracket on the left of —2 and parentheses after infinity: [—2, 00). The bracket indicates that —2 is
included in the set with all real numbers greater than —2 to infinity.

Tr)/ It #71

Use interval notation to indicate all real numbers between and including —3 and 5.

Example 2 Using Interval Notation to Express All Real Numbers Less Than or Equal to a or Greater Than or
Equalto b

Write the interval expressing all real numbers less than or equal to —1 or greater than or equal to 1.

Solution We have to write two intervals for this example. The first interval must indicate all real numbers less than
or equal to 1. So, this interval begins at — co and ends at —1, which is written as (—oo, —1].

The second interval must show all real numbers greater than or equal to 1, which is written as [1, co). However, we
want to combine these two sets. We accomplish this by inserting the union symbol, U, between the two intervals.

(—o0, —1] U [1, o0)

Iry It #2

Express all real numbers less than —2 or greater than or equal to 3 in interval notation.

When we work with inequalities, we can usually treat them similarly to but not exactly as we treat equalities. We can
use the addition property and the multiplication property to help us solve them. The one exception is when we multiply
or divide by a negative number; doing so reverses the inequality symbol.

properties of inequalities
Addition Property Ifa< b, thena+c<b-+ec.
Multiplication Property Ifa < band ¢ > 0, then ac < bc.

Ifa < band ¢ < 0, then ac > bc.

These properties also apply toa < b,a > b,and a > b.

Example 3  Demonstrating the Addition Property
Ilustrate the addition property for inequalities by solving each of the following:
a. x—15<4 b. 6>x—1 . x+7>9
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Solution The addition property for inequalities states that if an inequality exists, adding or subtracting the same
number on both sides does not change the inequality.
a. x—15<4
x—154+15<4+15 Add 15 to both sides.
x <19
b. 6>x—1
6+1>x—1+1 Add 1 to both sides.
7>x
c. X+7>9
X+7-7>9-7 Subtract 7 from both sides.
x>2

Iry It #3

Solve: 3x—2 < 1.

Example 4  Demonstrating the Multiplication Property

lustrate the multiplication property for inequalities by solving each of the following:

a. 3x<6 b. 2x—1>5 c. 5—x>10
Solution
a. 3x<6
Ly <)L
3 3
x <2
b. —2x—12>5
—2x>6
(— l)(—zx) > (6)(— l) Multiply by — L.
2 - 2 2
x< =3 Reverse the inequality.
c. 5—-x>10
—x>5
(=D(=x)>5B)(—1) Multiply by — 1.
x<—=5 Reverse the inequality.
Try It #4

Solve: 4x + 7 > 2x — 3.

Solving Inequalities in One Variable Algebraically

As the examples have shown, we can perform the same operations on both sides of an inequality, just as we do with
equations; we combine like terms and perform operations. To solve, we isolate the variable.
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Example 5  Solving an Inequality Algebraically
Solve the inequality: 13 — 7x > 10x — 4.
Solution  Solving this inequality is similar to solving an equation up until the last step.
13— 7x>10x — 4
13 —17x> —4 Move variable terms to one side of the inequality.
—17x > —17 Isolate the variable term.
x<1 Dividing both sides by —17 reverses the inequality.

The solution set is given by the interval (—oo, 1], or all real numbers less than and including 1.

TI:/V It #5

Solve the inequality and write the answer using interval notation: —x + 4 < %x + L

Example 6  Solving an Inequality with Fractions

Solve the following inequality and write the answer in interval notation: —Zx > —% + %x.
Solution We begin solving in the same way we do when solving an equation.
3 5,2
2> 24 Ly
17 T3 37
3 2 5 . .
- Zx — gx > — 3 Put variable terms on one side.
9 8 5 . . . .
— Ex — Ex > — s Write fractions with common denominator.
175 5
12— 8
5 12 1o . . .
x< — s\ 15 Multiplying by a negative number reverses the inequality.
15
< ==
=3
The solution set is the interval < —00, 5 }
Try It #6
Solve the inequality and write the answer in interval notation: — %x < % + %x.

Understanding Compound Inequalities

A compound inequality includes two inequalities in one statement. A statement such as 4 < x < 6 means 4 < x and
x < 6. There are two ways to solve compound inequalities: separating them into two separate inequalities or leaving
the compound inequality intact and performing operations on all three parts at the same time. We will illustrate both
methods.

Example 7  Solving a Compound Inequality

Solve the compound inequality: 3 <2x 4 2 < 6.

Solution The first method is to write two separate inequalities: 3 < 2x + 2 and 2x + 2 < 6. We solve them
independently.

3<2x+2 and 2x+2<6
1 <2x 2x < 4
1

=< <2
2 =7 x
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Then, we can rewrite the solution as a compound inequality, the same way the problem began.
% <x<2

In interval notation, the solution is written as [ %, 2 )

The second method is to leave the compound inequality intact, and perform solving procedures on the three parts at
the same time.

3<2x+2<6
1<2x<4 Isolate the variable term, and subtract 2 from all three parts.
% <x<2 Divide through all three parts by 2.

We get the same solution: [ %, 2 )

Iry It #7
Solve the compound inequality: 4 < 2x — 8 < 10.

Example 8  Solving a Compound Inequality with the Variable in All Three Parts
Solve the compound inequality with variables in all three parts: 3 + x > 7x — 2 > 5x — 10.
Solution  Let's try the first method. Write two inequalities:

34x>7x—2 and 7x —2>5x—10
3>6x—2 2x — 2> —10
5> 6x 2x > —8
5
= > > —4
6 x x
5
< = —4 <
X 5 x

The solution setis —4 < x < 2 or in interval notation <—4, 2 > Notice that when we write the solution in interval

notation, the smaller number comes first. We read intervals from left to right, as they appear on a number line. See
Figure 3.

S
ol

Figure 3

Iry It #8
Solve the compound inequality: 3y < 4 — 5y < 5 4 3y.

Solving Absolute Value Inequalities

As we know, the absolute value of a quantity is a positive number or zero. From the origin, a point located at (—x, 0)
has an absolute value of x, as it is x units away. Consider absolute value as the distance from one point to another
point. Regardless of direction, positive or negative, the distance between the two points is represented as a positive
number or zero.

An absolute value inequality is an equation of the form
|A| < B,|A| <B,|A| > B,or |A| > B,

Where A, and sometimes B, represents an algebraic expression dependent on a variable x. Solving the inequality means
finding the set of all x -values that satisfy the problem. Usually this set will be an interval or the union of two intervals
and will include a range of values.
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There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage of the
graphical approach is we can read the solution by interpreting the graphs of two equations. The advantage of the
algebraic approach is that solutions are exact, as precise solutions are sometimes difficult to read from a graph.

Suppose we want to know all possible returns on an investment if we could earn some amount of money within $200
of $600. We can solve algebraically for the set of x-values such that the distance between x and 600 is less than or equal
to 200. We represent the distance between x and 600 as |x — 600|, and therefore, |x — 600| < 200 or
—200 < x — 600 < 200
—200 + 600 < x — 600 4 600 < 200 + 600
400 < x < 800
This means our returns would be between $400 and $800.

To solve absolute value inequalities, just as with absolute value equations, we write two inequalities and then solve
them independently.

absolute value inequalities
For an algebraic expression X, and k > 0, an absolute value inequality is an inequality of the form

|X| < k is equivalent to — k < X < k
|X| > k is equivalent to X < —k or X > k

These statements also apply to |X| < k and |X| > k.

Example 9  Determining a Number within a Prescribed Distance
Describe all values x within a distance of 4 from the number 5.

Solution We want the distance between x and 5 to be less than or equal to 4. We can draw a number line, such as in
Figure 4, to represent the condition to be satisfied.
4 4

5
Figure 4

The distance from x to 5 can be represented using an absolute value symbol, |x — 5|. Write the values of x that satisfy
the condition as an absolute value inequality.
x—5|<4
We need to write two inequalities as there are always two solutions to an absolute value equation.
x—5<4 and x—5>—4
x<9 x>1

If the solution set is x < 9 and x > 1, then the solution set is an interval including all real numbers between and
including 1 and 9.

So |x — 5| < 4 is equivalent to [1, 9] in interval notation.

TI:/V It #9
Describe all x-values within a distance of 3 from the number 2.

Example 10 Solving an Absolute Value Inequality
Solve [x — 1| < 3.

Solution lx—1] <3
—3<x—-1<L3
—2<x<4

[_23 4]



148

CHAPTER 2 EQUATIONS AND INEQUALITIES

Example 11 Using a Graphical Approach to Solve Absolute Value Inequalities

Given the equation y = —% |4x — 5| + 3, determine the x-values for which the y-values are negative.

Solution We are trying to determine where y < 0, which is when —% |4x — 5| + 3 < 0. We begin by isolating the
absolute value.

—% |4x — 5| < —3 Multiply both sides by -2, and reverse the inequality.
l4x — 5/ > 6
Next, we solve for the equality |[4x — 5| = 6.
4x—5=6 or 4x —5=-6
4x =11 4x=—1
x=1 x=—1
4 4

Now, we can examine the graph to observe where the y-values are negative. We observe where the branches are below
the x-axis. Notice that it is not important exactly what the graph looks like, as long as we know that it crosses the

11
horizontal axis at x = — - and x = VR and that the graph opens downward. See Figure 5.

Yy

TI’)/ It #10
Solve — 2|k — 4| < — 6.

Access these online resources for additional instruction and practice with linear inequalities and absolute value
inequalities.

e |nterval Notation (http://openstaxcollege.org/l/intervalnotn)

e How to Solve Linear Inequalities (http://openstaxcollege.org/I/solvelinineq)
e How to Solve an Inequality (http://openstaxcollege.org/l/solveineq)

e Absolute Value Equations (http://openstaxcollege.org/l/absvaleq)

e Compound Inequalities (http://openstaxcollege.org/l/compndineqs)

e Absolute Value Inequalities (http://openstaxcollege.org/l/absvalineqs)


http://openstaxcollege.org/l/intervalnotn
http://openstaxcollege.org/l/solvelinineq
http://openstaxcollege.org/l/solveineq
http://openstaxcollege.org/l/absvaleq
http://openstaxcollege.org/l/compndineqs
http://openstaxcollege.org/l/absvalineqs
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2.7 SECTION EXERCISES

VERBAL
1. When solving an inequality, explain what happened 2. When solving an inequality, we arrive at:
from Step 1 to Step 2: x+2<x+3
Stepl —2x>6 2<3
Step 2 x< 3 Explain what our solution set is.

3. When writing our solution in interval notation, how 4. When solving an inequality, we arrive at:
do we represent all the real numbers? X+2>x+3

2>3
Explain what our solution set is.

5. Describe how to graph y = |x — 3|

ALGEBRAIC
For the following exercises, solve the inequality. Write your final answer in interval notation
6.4x—7<9 7.3x+2>7x—1 8 2x+3>x-—5
1 5 2
9.4(x+3)>2x—1 10. —§x§—1+§x 1. —5(x—1)4+3>3x—4 —4x
x+3 x+4+5 3 x—1  x+2 _3
12. —3(2 1 -2 4 13. — > = 14, <=
3(2x+ 1) > —2(x +4) 3. 3 = 215 5 T <%

For the following exercises, solve the inequality involving absolute value. Write your final answer in interval notation.

15. [x + 9| > —6 16. 2x + 3| <7 17. 3x — 1| > 11

18. 2x+1/+1<6 19. [x — 2| +4>10 20. |-2x+7| <13
x—3

21 [x—7| < —4 22, [x — 20| > —1 23. <2

For the following exercises, describe all the x-values within or including a distance of the given values.

24. Distance of 5 units from the number 7 25. Distance of 3 units from the number 9

26. Distance of 10 units from the number 4 27. Distance of 11 units from the number 1
For the following exercises, solve the compound inequality. Express your answer using inequality signs, and then write
your answer using interval notation.

28. —4<3x+2<18 29.3x+1>2x—5>x—7

30.3y<5-2y<74y 3.2x—5<—1lor5x+1>6

R.x+7<x+2
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GRAPHICAL

For the following exercises, graph the function. Observe the points of intersection and shade the x-axis representing
the solution set to the inequality. Show your graph and write your final answer in interval notation.

3. [x—1]>2 4. |x+3/>5 3. [x+7] <4 3. [x —2| <7 3. |x—2/<0

For the following exercises, graph both straight lines (left-hand side being y, and right-hand side being y,) on the same
axes. Find the point of intersection and solve the inequality by observing where it is true comparing the y-values of
the lines.

1 1
3B.x+3<3x—4 39.x—2>2x+1 0. x+1>x+4 41.Ex+1>5x—5
42.4x—|—1<%x+3

NUMERIC

For the following exercises, write the set in interval notation.
43. {x|-1 <x <3} 4. {x|x > 7} 45. {x|x < 4} 46. { x| x is all real numbers}
For the following exercises, write the interval in set-builder notation.

47. (—00, 6) 48. (4, 00) 49. [-3,5) 50. [—4, 1] U [9, c0)

For the following exercises, write the set of numbers represented on the number line in interval notation.

51. < + 52, % + 53. +
-2 -1 -1 -2 4

TECHNOLOGY

For the following exercises, input the left-hand side of the inequality as a Y1 graph in your graphing utility. Enter
Y2= the right-hand side. Entering the absolute value of an expression is found in the MATH menu, Num, 1:abs(. Find
the points of intersection, recall (2" CALC 5:intersection, 1st curve, enter, 2" curve, enter, guess, enter). Copy a
sketch of the graph and shade the x-axis for your solution set to the inequality. Write final answers in interval notation.

54 |x+2| — 5<2 55.—%|x—|—2|<4 56. |[4x+1|—3>2 57 |x—4/ <3
58. |x +2|>5
EXTENSIONS
59. Solve |3x + 1| = |2x + 3| 60. Solve x> — x > 12
61. 21— > <0,x#—7 62. p = —x* + 130x — 3,000 is a profit formula for a
x+7 small business. Find the set of x-values that will keep
this profit positive.
REAL-WORLD APPLICATIONS
63. In chemistry the volume for a certain gas is given 64. A basic cellular package costs $20/mo. for 60 min
by V' = 20T, where V is measured in cc and T is of calling, with an additional charge of $0.30/min
temperature in °C. If the temperature varies between beyond that time. The cost formula would be
80°C and 120°C, find the set of volume values. C = $20 + .30(x — 60). If you have to keep your

bill lower than $50, what is the maximum calling
minutes you can use?
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absolute value equation an equation in which the variable appears in absolute value bars, typically with two solutions, one
accounting for the positive expression and one for the negative expression

area in square units, the area formula used in this section is used to find the area of any two-dimensional rectangular
region: A = LW

Cartesian coordinate system a grid system designed with perpendicular axes invented by René Descartes

completing the square a process for solving quadratic equations in which terms are added to or subtracted from both sides
of the equation in order to make one side a perfect square

complex conjugate a complex number containing the same terms as another complex number, but with the opposite
operator. Multiplying a complex number by its conjugate yields a real number.

complex number the sum of a real number and an imaginary number; the standard form is a + bi, where a is the real part
and b is the complex part.

complex plane the coordinate plane in which the horizontal axis represents the real component of a complex number, and
the vertical axis represents the imaginary component, labeled i.

compound inequality a problem or a statement that includes two inequalities
conditional equation an equation that is true for some values of the variable

discriminant the expression under the radical in the quadratic formula that indicates the nature of the solutions, real or
complex, rational or irrational, single or double roots.

distance formula a formula that can be used to find the length of a line segment if the endpoints are known
equation in two variables a mathematical statement, typically written in x and y, in which two expressions are equal

equations in quadratic form equations with a power other than 2 but with a middle term with an exponent that is one-
half the exponent of the leading term

extraneous solutions any solutions obtained that are not valid in the original equation

graph in two variables the graph of an equation in two variables, which is always shown in two variables in the two-
dimensional plane

identity equation an equation that is true for all values of the variable

imaginary number the square root of —1:i = V/—1.

inconsistent equation an equation producing a false result

intercepts the points at which the graph of an equation crosses the x-axis and the y-axis
interval an interval describes a set of numbers within which a solution falls

interval notation a mathematical statement that describes a solution set and uses parentheses or brackets to indicate where
an interval begins and ends

linear equation an algebraic equation in which each term is either a constant or the product of a constant and the first
power of a variable

linear inequality similar to a linear equation except that the solutions will include sets of numbers
midpoint formula a formula to find the point that divides a line segment into two parts of equal length

ordered pair a pair of numbers indicating horizontal displacement and vertical displacement from the origin; also known
as a coordinate pair, (x, y)

origin the point where the two axes cross in the center of the plane, described by the ordered pair (0, 0)

perimeter in linear units, the perimeter formula is used to find the linear measurement, or outside length and width,
around a two-dimensional regular object; for a rectangle: P = 2L + 2W

polynomial equation an equation containing a string of terms including numerical coefficients and variables raised to
whole-number exponents
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Pythagorean Theorem a theorem that states the relationship among the lengths of the sides of a right triangle, used to solve
right triangle problems

quadrant one quarter of the coordinate plane, created when the axes divide the plane into four sections
quadratic equation an equation containing a second-degree polynomial; can be solved using multiple methods
quadratic formula a formula that will solve all quadratic equations

radical equation an equation containing at least one radical term where the variable is part of the radicand
rational equation an equation consisting of a fraction of polynomials

slope the change in y-values over the change in x-values

solution set the set of all solutions to an equation

square root property one of the methods used to solve a quadratic equation, in which the x? term is isolated so that the
square root of both sides of the equation can be taken to solve for x

volume in cubic units, the volume measurement includes length, width, and depth: V= LWH

x-axis the common name of the horizontal axis on a coordinate plane; a number line increasing from left to right
x-coordinate the first coordinate of an ordered pair, representing the horizontal displacement and direction from the origin
x-intercept the point where a graph intersects the x-axis; an ordered pair with a y-coordinate of zero

y-axis the common name of the vertical axis on a coordinate plane; a number line increasing from bottom to top
y-coordinate the second coordinate of an ordered pair, representing the vertical displacement and direction from the origin
y-intercept a point where a graph intercepts the y-axis; an ordered pair with an x-coordinate of zero

zero-product property the property that formally states that multiplication by zero is zero, so that each factor of a quadratic
equation can be set equal to zero to solve equations

Key Equations

quadratic formula x=

—b+ Vb — 4ac
2a

Key Concepts

2.1 The Rectangular Coordinate Systems and Graphs

» We can locate, or plot, points in the Cartesian coordinate system using ordered pairs, which are defined as
displacement from the x-axis and displacement from the y-axis. See Example 1.

 An equation can be graphed in the plane by creating a table of values and plotting points. See Example 2.

 Using a graphing calculator or a computer program makes graphing equations faster and more accurate.
Equations usually have to be entered inthe formy=_____ . See Example 3.

« Finding the x- and y-intercepts can define the graph of a line. These are the points where the graph crosses the
axes. See Example 4.

o The distance formula is derived from the Pythagorean Theorem and is used to find the length of a line segment.
See Example 5 and Example 6.

« The midpoint formula provides a method of finding the coordinates of the midpoint dividing the sum of the
x-coordinates and the sum of the y-coordinates of the endpoints by 2. See Example 7 and Example 8.
2.2 Linear Equations in One Variable

o We can solve linear equations in one variable in the form ax + b = 0 using standard algebraic properties.
See Example 1 and Example 2.

o A rational expression is a quotient of two polynomials. We use the LCD to clear the fractions from an equation.
See Example 3 and Example 4.

« All solutions to a rational equation should be verified within the original equation to avoid an undefined term,
or zero in the denominator. See Example 5, Example 6, and Example 7.

« Given two points, we can find the slope of a line using the slope formula. See Example 8.
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+ We can identify the slope and y-intercept of an equation in slope-intercept form. See Example 9.
o We can find the equation of a line given the slope and a point. See Example 10.

o We can also find the equation of a line given two points. Find the slope and use the point-slope formula. See
Example 11.

o The standard form of a line has no fractions. See Example 12.
 Horizontal lines have a slope of zero and are defined as y = ¢, where c is a constant.

« Vertical lines have an undefined slope (zero in the denominator), and are defined as x = ¢, where c is a constant.
See Example 13.

o Parallel lines have the same slope and different y-intercepts. See Example 14 and Example 15.
o Perpendicular lines have slopes that are negative reciprocals of each other unless one is horizontal and the other
is vertical. See Example 16.
2.3 Models and Applications
« A linear equation can be used to solve for an unknown in a number problem. See Example 1.

o Applications can be written as mathematical problems by identifying known quantities and assigning a variable
to unknown quantities. See Example 2.

o There are many known formulas that can be used to solve applications. Distance problems, for example, are
solved using the d = rt formula. See Example 3.

« Many geometry problems are solved using the perimeter formula P = 2L + 2W, the area formula A = LW, or
the volume formula V = LWH. See Example 4, Example 5, and Example 6.
2.4 Complex Numbers
o The square root of any negative number can be written as a multiple of i. See Example 1.

« To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal axis is
the real axis, and the vertical axis is the imaginary axis. See Example 2.

« Complex numbers can be added and subtracted by combining the real parts and combining the imaginary
parts. See Example 3.

o Complex numbers can be multiplied and divided.
o To multiply complex numbers, distribute just as with polynomials. See Example 4 and Example 5.

o To divide complex numbers, multiply both numerator and denominator by the complex conjugate of the
denominator to eliminate the complex number from the denominator. See Example 6 and Example 7.

o The powers of i are cyclic, repeating every fourth one. See Example 8.

2.5 Quadratic Equations

o Many quadratic equations can be solved by factoring when the equation has a leading coefficient of 1 or if the
equation is a difference of squares. The zero-product property is then used to find solutions. See Example 1,
Example 2, and Example 3.

« Many quadratic equations with a leading coefficient other than 1 can be solved by factoring using the grouping
method. See Example 4 and Example 5.

« Another method for solving quadratics is the square root property. The variable is squared. We isolate the squared
term and take the square root of both sides of the equation. The solution will yield a positive and negative solution.
See Example 6 and Example 7.

o Completing the square is a method of solving quadratic equations when the equation cannot be factored.
See Example 8.

« A highly dependable method for solving quadratic equations is the quadratic formula, based on the coefficients
and the constant term in the equation. See Example 9 and Example 10.

o The discriminant is used to indicate the nature of the roots that the quadratic equation will yield: real or complex,
rational or irrational, and how many of each. See Example 11.
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The Pythagorean Theorem, among the most famous theorems in history, is used to solve right-triangle problems
and has applications in numerous fields. Solving for the length of one side of a right triangle requires solving a
quadratic equation. See Example 12.

2.6 Other Types of Equations

Rational exponents can be rewritten several ways depending on what is most convenient for the problem. To
solve, both sides of the equation are raised to a power that will render the exponent on the variable equal to 1.
See Example 1, Example 2, and Example 3.

Factoring extends to higher-order polynomials when it involves factoring out the GCF or factoring by grouping.
See Example 4 and Example 5.

We can solve radical equations by isolating the radical and raising both sides of the equation to a power that
matches the index. See Example 6 and Example 7.

To solve absolute value equations, we need to write two equations, one for the positive value and one for the
negative value. See Example 8.

Equations in quadratic form are easy to spot, as the exponent on the first term is double the exponent on the
second term and the third term is a constant. We may also see a binomial in place of the single variable. We use
substitution to solve. See Example 9 and Example 10.

Solving a rational equation may also lead to a quadratic equation or an equation in quadratic form. See Example 11.

2.7 Linear Inequalities and Absolute Value Inequalities

Interval notation is a method to indicate the solution set to an inequality. Highly applicable in calculus, it is a
system of parentheses and brackets that indicate what numbers are included in a set and whether the endpoints
are included as well. See Table 1 and Example 1 and Example 2.

Solving inequalities is similar to solving equations. The same algebraic rules apply, except for one: multiplying or
dividing by a negative number reverses the inequality. See Example 3, Example 4, Example 5, and Example 6.

Compound inequalities often have three parts and can be rewritten as two independent inequalities. Solutions
are given by boundary values, which are indicated as a beginning boundary or an ending boundary in the
solutions to the two inequalities. See Example 7 and Example 8.

o Absolute value inequalities will produce two solution sets due to the nature of absolute value. We solve by

writing two equations: one equal to a positive value and one equal to a negative value. See Example 9 and
Example 10.

« Absolute value inequalities can also be solved by graphing. At least we can check the algebraic solutions by

graphing, as we cannot depend on a visual for a precise solution. See Example 11.
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CHAPTER 2 REVIEW EXERCISES

THE RECTANGULAR COORDINATE SYSTEMS AND GRAPHS

For the following exercises, find the x-intercept and the y-intercept without graphing.
1.4x — 3y=12 2.2y —4=3x

For the following exercises, solve for y in terms of x, putting the equation in slope-intercept form.
3.5x=3y—12 4. 2x—5y=7

For the following exercises, find the distance between the two points.

5. (—2,5)(4, —1) 6. (—12, —3)(—1, 5)

7. Find the distance between the two points (—71,432) and (511,218) using your calculator, and round your
answer to the nearest thousandth.

For the following exercises, find the coordinates of the midpoint of the line segment that joins the two given points.
8. (—1,5) and (4, 6) 9. (—13,5) and (17, 18)
For the following exercises, construct a table and graph the equation by plotting at least three points.

10.y:%x+4 11.4x—-3y=06

LINEAR EQUATIONS IN ONE VARIABLE

For the following exercises, solve for x.

12.5x+2=7x— 8 13.3(x+2)—10=x+4 14.7x —3=5
=2 — 2x 3 _x 21
15.12 = 5(x + 1) =2x — 5 6 5 - T =2+

For the following exercises, solve for x. State all x-values that are excluded from the solution set.

1 2 3
3,-3 8. Ly2_3
x# > Ty

X 4 3

17. + e
xX*X—9 x+3 x*-9

For the following exercises, find the equation of the line using the point-slope formula.
19. Passes through these two points: (—2, 1),(4, 2). 20. Passes through the point (—3, 4) and has a slope of — %

21. Passes through the point (-3, 4) and is parallel to 22, Passes through these two points: (5, 1),(5, 7).
the graph y = %x +5.

MODELS AND APPLICATIONS
For the following exercises, write and solve an equation to answer each question.
23. The number of males in the classroom is five more 24. A man has 72 ft of fencing to put around a rectangular
than three times the number of females. If the total garden. If the length is 3 times the width, find the
number of students is 73, how many of each gender dimensions of his garden.

are in the class?
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25. A truck rental is $25 plus $.30/mi. Find out how
many miles Ken traveled if his bill was $50.20.

COMPLEX NUMBERS

For the following exercises, use the quadratic equation to solve.

26. x> —5x+9=0 27.2x*+3x+7=0

For the following exercises, name the horizontal component and the vertical component.
28.4 — 3i 29. -2 —i

For the following exercises, perform the operations indicated.

30. (9 — i) — (4 — 7i) 31. (2 + 3i) — (=5 — 8i) 32. 2\/—75 + 3\/25
33./216 + 4V —9 34. —6i(i — 5) 35. (3 — 5i)?
36.V-4.-V-12 37.v/—2(V=8 —\/5) 38-5_231-
30377
i
QUADRATIC EQUATIONS

For the following exercises, solve the quadratic equation by factoring.
40.2x* —7x —4=0 4.3+ 18x+15=0 42, 25x* —9=0
43.7x* —9x =0
For the following exercises, solve the quadratic equation by using the square-root property.
4. > = 49 45. (x — 4)? = 36
For the following exercises, solve the quadratic equation by completing the square.
46. x> +8x—5=0 47.4x* +2x—1=0

For the following exercises, solve the quadratic equation by using the quadratic formula. If the solutions are not real,
state No real solution.

48.2x* —5x+1=0 49.15x* —x—2=0
For the following exercises, solve the quadratic equation by the method of your choice.

50. (x —2) =16 51. x> =10x+ 3
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OTHER TYPES OF EQUATIONS

For the following exercises, solve the equations.

52.x%:27 53.x%—4xi:0 54, 4x° + 8x* — 9x — 18 =0
55. 3x° — 6x° =0 5. Vx+9=x—3 5.V3x+7+Vx+2=1
58. [3x — 7| =5 59, [2x +3| —5=9

LINEAR INEQUALITIES AND ABSOLUTE VALUE INEQUALITIES

For the following exercises, solve the inequality. Write your final answer in interval notation.

x—1 2 3
+x+
5 5

60. 56 — 8 <12 61.—2x+5>x—7 62.
63. \3x+2|+1§9 64. |5x—1|>14 65. |x—3|<—4

For the following exercises, solve the compound inequality. Write your answer in interval notation.

66. —4 <3x+2<18 67.3y<1—-2y<5+y

For the following exercises, graph as described.

68. Graph the absolute value function and graph 69. Graph both straight lines (left-hand side being y,
the constant function. Observe the points of and right-hand side being y,) on the same axes. Find
intersection and shade the x-axis representing the the point of intersection and solve the inequality by
solution set to the inequality. Show your graph and observing where it is true comparing the y-values of
write your final answer in interval notation. the lines. See the interval where the inequality is true.

|x+3]>5 x+3<3x—4
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CHAPTER 2 PRACTICE TEST

1. Graph the following: 2y = 3x + 4.

3. Find the x- and y-intercepts of this equation, and

sketch the graph of the line using just the intercepts

plotted. 3x — 4y =12

5. Write the interval notation for the set of numbers
represented by {x|x < 9}.

7. Solve for x: 3(2x — 5) — 3(x — 7) = 2x — 9.
3

5
9. Solve for x: prrn =4+

11. Solve for x. Write the answer in simplest radical form.

x2 1

3 2
13. Solve: [2x + 3| < 5.

2. Find the x- and y-intercepts for the following:
2x — 5y =6.

4, Find the exact distance between (5, —3) and (-2, 8).
Find the coordinates of the midpoint of the line
segment joining the two points.

6. Solve for x: 5x + 8 = 3x — 10.

X _4
8. Solve for x: 5 +1= P

10. The perimeter of a triangle is 30 in. The longest side
is 2 less than 3 times the shortest side and the other
side is 2 more than twice the shortest side. Find the
length of each side.

12. Solve: 3x — 8 < 4.

14. Solve: |3x — 2| > 4.

For the following exercises, find the equation of the line with the given information.

15. Passes through the points (—4, 2) and (5, —3).

17. Passes through the point (2, 1) and is perpendicular

toy:—%x—l-&

19. Simplify: V —4 + 3V —16.
21. Divide: 4 .
2+ 3i

23. Solve: (Bx — 1)> — 1 =24.

25. Solve: 4x2 —4x—1=0

27. Solve: 2 + V12 — 2x =x

16. Has an undefined slope and passes through the
point (4, 3).

18. Add these complex numbers: (3 — 2i) + (4 — i).

20. Multiply: 5i(5 — 3i).
22. Solve this quadratic equation and write the two

complex roots in a + bi form: x> — 4x +7 =0.

24. Solve: x> — 6x = 13.

26. Solve: Vx —7=x—7

2
3

28. Solve: (x —1)3 =9

For the following exercises, find the real solutions of each equation by factoring.

29, 2x* —x*—8x+4=0

30. (x+52—3(x+5 —4=0
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Figure 1 Standard and Poor’s Index with dividends reinvested
(credit "bull": modification of work by Prayitno Hadinata; credit "graph™: modification of work by MeasuringWorth)

CHAPTER OUTLINE

3.1 Functions and Function Notation

3.2 Domain and Range

3.3 Rates of Change and Behavior of Graphs
3.4 Composition of Functions

3.5 Transformation of Functions

3.6 Absolute Value Functions

3.7 Inverse Functions

Introduction

Toward the end of the twentieth century, the values of stocks of Internet and technology companies rose dramatically.
As a result, the Standard and Poor’s stock market average rose as well. Figure 1 tracks the value of that initial
investment of just under $100 over the 40 years. It shows that an investment that was worth less than $500 until about
1995 skyrocketed up to about $1,100 by the beginning of 2000. That five-year period became known as the “dot-com
bubble” because so many Internet startups were formed. As bubbles tend to do, though, the dot-com bubble eventually
burst. Many companies grew too fast and then suddenly went out of business. The result caused the sharp decline
represented on the graph beginning at the end of 2000.

Notice, as we consider this example, that there is a definite relationship between the year and stock market average.
For any year we choose, we can determine the corresponding value of the stock market average. In this chapter, we
will explore these kinds of relationships and their properties.
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LEARNING OBJECTIVES

In this section, you will:

¢ Determine whether a relation represents a function.
¢ Find the value of a function.

e Determine whether a function is one-to-one.

e Use the vertical line test to identify functions.

e Graph the functions listed in the library of functions.

3.1 FUNCTIONS AND FUNCTION NOTATION

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child
increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities
that we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

A relation is a set of ordered pairs. The set consisting of the first components of each ordered pair is called the domain
and the set consisting of the second components of each ordered pair is called the range. Consider the following set
of ordered pairs. The first numbers in each pair are the first five natural numbers. The second number in each pair is

twice that of the first.
{1,2),(2,4),(3,6),(4,8),(5,10)}
The domain is {1,2, 3,4, 5}. The range is {2,4,6,8, 10}.

Note that each value in the domain is also known as an input value, or independent variable, and is often labeled
with the lowercase letter x. Each value in the range is also known as an output value, or dependent variable, and is
often labeled lowercase letter y.

A function fis a relation that assigns a single element in the range to each element in the domain. In other words, no
x-values are repeated. For our example that relates the first five natural numbers to numbers double their values, this
relation is a function because each element in the domain, {1,2, 3,4, 5}, is paired with exactly one element in the range,
{2,4,6,8, 10}

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It
would appear as {(0dd, 1), (even, 2), (odd, 3), (even, 4), (odd, 5)}

Notice that each element in the domain, {even,odd} is not paired with exactly one element in the range, {1,2,3,4, 5}.
For example, the term “odd” corresponds to three values from the domain, {1, 3,5} and the term “even” corresponds
to two values from the range, {2, 4}. This violates the definition of a function, so this relation is not a function. Figure
1 compares relations that are functions and not functions.

Relation is a Function Relation is a Function Relation is NOT a Function
Inputs Outputs Inputs Outputs Inputs Outputs

[\ |
1 —) —
(a) (b) (c)

Figure 1 (a) This relationship is a function because each input is associated with a single output. Note that input g and r both give output n.
(b) This relationship is also a function. In this case, each input is associated with a single output.
(c) This relationship is not a function because input g is associated with two different outputs.
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function

A function is a relation in which each possible input value leads to exactly one output value. We say “the output
is a function of the input.”

The input values make up the domain, and the output values make up the range.

Given a relationship between two quantities, determine whether the relationship is a function.

1. Identify the input values.

2. Identify the output values.

3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to
two or more outputs, do not classify the relationship as a function.

Example 1  Determining If Menu Price Lists Are Functions

The coffee shop menu, shown in Figure 2 consists of items and their prices.

a. Is price a function of the item? b. Is the item a function of the price?
Merue
Item Price
Plain Donut - -« -« vovee e 1.49
Jelly Donut -« ovee e 1.99
Chocolate Donut -« -« v vvveeveeeenen. 1.99
Figure 2
Solution

a. Let’s begin by considering the input as the items on the menu. The output values are then the prices. See Figure 2.

Each item on the menu has only one price, so the price is a function of the item.

b. Two items on the menu have the same price. If we consider the prices to be the input values and the items to be
the output, then the same input value could have more than one output associated with it. See Figure 3.

Menu
ltem Price
Plain Donut <<+« « - oo 1.49
Jelly Donut <-----------““‘_‘_::‘_:',:'.'.:-.::1 99
Chocolate Donut <~ """
Figure 3

Therefore, the item is a not a function of price.

Example 2  Determining If Class Grade Rules Are Functions

In a particular math class, the overall percent grade corresponds to a grade-point average. Is grade-point average a
function of the percent grade? Is the percent grade a function of the grade-point average? Table 1 shows a possible
rule for assigning grade points.
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Percent grade 0-56  57-61 62-66 67-71 72-77 78-86 87-91 92-100
Grade-point average 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Table 1

Solution For any percent grade earned, there is an associated grade-point average, so the grade-point average is a
function of the percent grade. In other words, if we input the percent grade, the output is a specific grade-point average.

In the grading system given, there is a range of percent grades that correspond to the same grade-point average. For
example, students who receive a grade-point average of 3.0 could have a variety of percent grades ranging from 78 all
the way to 86. Thus, percent grade is not a function of grade-point average

Try It #1
Table 2" lists the five greatest baseball players of all time in order of rank.
Player Rank
Babe Ruth 1

Willie Mays 2

Ty Cobb 3
Walter Johnson 4
Hank Aaron 5

Table 2
a. Is the rank a function of the player name?
b. Is the player name a function of the rank?

Using Function Notation

Once we determine that a relationship is a function, we need to display and define the functional relationships so that
we can understand and use them, and sometimes also so that we can program them into graphing calculators and
computers. There are various ways of representing functions. A standard function notation is one representation that
facilitates working with functions.

To represent “height is a function of age,” we start by identifying the descriptive variables h for height and a for age.
The letters f, g, and h are often used to represent functions just as we use x, y, and z to represent numbers and A, B, and
C to represent sets.

hisfofa We name the function f; height is a function of age.
h=f(a) We use parentheses to indicate the function input.
fla) We name the function f; the expression is read as “fof a”

Remember, we can use any letter to name the function; the notation h(a) shows us that s depends on a. The value a must
be put into the function /ito get a result. The parentheses indicate that age is input into the function; they do not
indicate multiplication.

We can also give an algebraic expression as the input to a function. For example f(a + b) means “first add a and b, and
the result is the input for the function f.” The operations must be performed in this order to obtain the correct result.

function notation
The notation y = f(x) defines a function named f. This is read as “y is a function of x.” The letter x represents the
input value, or independent variable. The letter y, or f(x), represents the output value, or dependent variable.

—

http://www.baseball-almanac.com/legendary/lisn100.shtml. Accessed 3/24/2014.
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Example 3  Using Function Notation for Days in a Month

Use function notation to represent a function whose input is the name of a month and output is the number of days in
that month.

Solution The number of days in a month is a function of the name of the month, so if we name the function f, we
write days = f(month) or d = f(m). The name of the month is the input to a “rule” that associates a specific number
(the output) with each input.

=f(January)

input
rule

Figure 4

For example, f(March) = 31,because March has 31 days. The notation d = f(m) reminds us that the number of days,
d (the output), is dependent on the name of the month, m(the input).

Analysis  Note that the inputs to a function do not have to be numbers; function inputs can be names of people, labels
of geometric objects, or any other element that determines some kind of output. However, most of the functions we will
work with in this book will have numbers as inputs and outputs.

Example 4  Interpreting Function Notation
A function N = f(y) gives the number of police officers, N, in a town in year y. What does f(2005) = 300 represent?

Solution  When we read f(2005) = 300, we see that the input year is 2005. The value for the output, the number of
police officers (N), is 300. Remember N = f(y). The statement f(2005) = 300 tells us that in the year 2005 there were
300 police officers in the town.

Try It #2

Use function notation to express the weight of a pig in pounds as a function of its age in days d.

Q& A...

Instead of a notation such as y = f(x), could we use the same symbol for the output as for the function, such as
y = y(x), meaning “y is a function of x?”

Yes, this is often done, especially in applied subjects that use higher math, such as physics and engineering.
However, in exploring math itself we like to maintain a distinction between a function such as f, which is a rule or
procedure, and the output y we get by applying f to a particular input x. This is why we usually use notation such as
y = f(x), P= W(d), and so on.

Representing Functions Using Tables

A common method of representing functions is in the form of a table. The table rows or columns display the
corresponding input and output values. In some cases, these values represent all we know about the relationship;
other times, the table provides a few select examples from a more complete relationship.

Table 3 lists the input number of each month (January = 1, February = 2, and so on) and the output value of the
number of days in that month. This information represents all we know about the months and days for a given year
(that is not a leap year). Note that, in this table, we define a days-in-a-month function fwhere D = f(mn) identifies months
by an integer rather than by name.

Month number, m (input) 1 2 3 4 5 6 7 8 9 10 11 12

Days in month, D (output) 31 28 31 30 31 30 31 31 30 31 30 31
Table 3
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Table 4 defines a function Q = g(n). Remember, this notation tells us that g is the name of the function that takes the
input n and gives the output Q.
n 1 2 3 4 5
Q 8 6 7 6 8
Table 4

Table 5 below displays the age of children in years and their corresponding heights. This table displays just some of the
data available for the heights and ages of children. We can see right away that this table does not represent a function
because the same input value, 5 years, has two different output values, 40 in. and 42 in.

Age in years, a (input) 5 5 6 7 8 9 10
Height in inches, h (output) 40 42 44 47 50 52 54
Table 5

Given a table of input and output values, determine whether the table represents a function.

1. Identify the input and output values.
2. Check to see if each input value is paired with only one output value. If so, the table represents a function.

Example 5 Identifying Tables that Represent Functions
Which table, Table 6, Table 7, or Table 8, represents a function (if any)?

Input  Output Input  Output Input  Output
2 1 -3 5 1 0
5 3 0 1 > 2
8 6 4 5 > 4
Table 6 Table 7 Table 8

Solution Table 6 and Table 7 define functions. In both, each input value corresponds to exactly one output value.
Table 8 does not define a function because the input value of 5 corresponds to two different output values.

When a table represents a function, corresponding input and output values can also be specified using function
notation.

The function represented by Table 6 can be represented by writing
£2)=1,£(5) = 3,and f(8) = 6
Similarly, the statements
g(=3)=5¢(0)=1,andg(4) =5
represent the function in table Table 7.

Table 8 cannot be expressed in a similar way because it does not represent a function.

TV)/ It #3

Does Table 9 represent a function?

1 10
2 100
3 1000
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Finding Input and Output Values of a Function

When we know an input value and want to determine the corresponding output value for a function, we evaluate the
function. Evaluating will always produce one result because each input value of a function corresponds to exactly one
output value.

When we know an output value and want to determine the input values that would produce that output value, we set
the output equal to the function’s formula and solve for the input. Solving can produce more than one solution because
different input values can produce the same output value.

Evaluation of Functions in Algebraic Forms

When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the
function f(x) = 5 — 3x? can be evaluated by squaring the input value, multiplying by 3, and then subtracting the
product from 5.

Given the formula for a function, evaluate.

1. Replace the input variable in the formula with the value provided.
2. Calculate the result.

Example 6  Evaluating Functions at Specific Values

Evaluate f(x) = x>+ 3x — 4 at:

a2 b.a ca+h d.w

h

Solution Replace the x in the function with each specified value.
a. Because the input value is a number, 2, we can use simple algebra to simplify.
f2)=22+3(2) —4
=4+6—14
=6
b. In this case, the input value is a letter so we cannot simplify the answer any further.
fla)=a*+3a—4
c. With an input value of a 4 h, we must use the distributive property.
fla+h) =(@+h?+3a+h) —4
=a’+ 2ah + h* + 3a + 3h —4

d. In this case, we apply the input values to the function more than once, and then perform algebraic operations
on the result. We already found that

fla+h)=a*+2ah+h +3a+3h—4
and we know that
fla)=a*+3a—4

Now we combine the results and simplify.

fla+h) — fla) _ (@+2ah+h+3a+3h—4)— (@ +3a—4)

_ 2ah+ K +3h
N h

_ hQa+h+3)
- h

=2a+h+3 Simplify.

Factor out A.
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Example 7  Evaluating Functions
Given the function h(p) = p* + 2p, evaluate h(4).

Solution To evaluate h(4), we substitute the value 4 for the input variable p in the given function.

h(p) =p*+2p
h(4) = (4)* 42 (4)
=164+ 8

=24

Therefore, for an input of 4, we have an output of 24.

TV/V It #4
Given the function g(m) = V' m — 4. Evaluate g(5).

Example 8  Solving Functions
Given the function h(p) = p* + 2p, solve for h(p) = 3.

Solution h(p) =3
pPP+2p=3 Substitute the original function h(p) = p* + 2p.
p*+2p—3=0 Subtract 3 from each side.
Pp+3)p—1=0 Factor.

If (p 4+ 3)(p — 1) = 0, either (p + 3) = 0 or (p — 1) = 0 (or both of them equal 0). We will set each factor equal to 0 and
solve for p in each case.
p+3)=0, p=-3

(p—1)=0, p=1

This gives us two solutions. The output h(p) = 3 when the input is either p = 1 or p = —3. We can also verify by
graphing as in Figure 5. The graph verifies that h(1) = h(—3) = 3and h(4) = 24.

h(p)
A
35
30
25
20
15

X ol foi
SN
< > p

Y

p 3 2 0 1 4
h(p) 3 0 0 3 24

Figure 5

Tl’)/ It #5
Given the function g(m) = V'm — 4, solve g(m) = 2.

Evaluating Functions Expressed in Formulas

Some functions are defined by mathematical rules or procedures expressed in equation form. If it is possible to express
the function output with a formula involving the input quantity, then we can define a function in algebraic form. For
example, the equation 2n + 6p = 12 expresses a functional relationship between n and p. We can rewrite it to decide
if p is a function of n.
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Given a function in equation form, write its algebraic formula.

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as an expression
that involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same quantity to or
from both sides, or multiplying or dividing both sides of the equation by the same quantity.

Example 9  Finding an Equation of a Function
Express the relationship 2n + 6p = 12 as a function p = f(n), if possible.

Solution To express the relationship in this form, we need to be able to write the relationship where p is a function
of n, which means writing it as p = [expression involving #].

2n + 6p = 12
6p=12—2n Subtract 2n from both sides.

p= % Divide both sides by 6 and simplify.
_12_m

P="% "%

p=2- %n

Therefore, p as a function of # is written as
1

p=fn)=2- 3"

Example 10 Expressing the Equation of a Circle as a Function

Does the equation x? + y? = 1 represent a function with x as input and y as output? If so, express the relationship as
a function y = f(x).

Solution  First we subtract x? from both sides.
}/2 — 1 — x2
We now try to solve for y in this equation.

y=xVI1—x?
—VI—F ad NVI-F

We get two outputs corresponding to the same input, so this relationship cannot be represented as a single function
y = f(x). If we graph both functions on a graphing calculator, we will get the upper and lower semicircles.

Tr)/ It #6

If x — 8y*> = 0, express y as a function of x.

Q& A...
Are there relationships expressed by an equation that do represent a function but that still cannot be represented
by an algebraic formula?

Yes, this can happen. For example, given the equation x = y + 27,if we want to express y as a function of x, there is no
simple algebraic formula involving only x that equals y. However, each x does determine a unique value for y, and there
are mathematical procedures by which y can be found to any desired accuracy. In this case, we say that the equation
gives an implicit (implied) rule for y as a function of x, even though the formula cannot be written explicitly.
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Evaluating a Function Given in Tabular Form

As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write functions,
and we can evaluate functions using the tables. For example, how well do our pets recall the fond memories we share
with them? There is an urban legend that a goldfish has a memory of 3 seconds, but this is just a myth. Goldfish can
remember up to 3 months, while the beta fish has a memory of up to 5 months. And while a puppy’s memory span
is no longer than 30 seconds, the adult dog can remember for 5 minutes. This is meager compared to a cat, whose
memory span lasts for 16 hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of a
table. See Table 10.”

Pet Memory span in hours
Puppy 0.008
Adult dog 0.083
Cat 16
Goldfish 2160
Beta fish 3600
Table 10

At times, evaluating a function in table form may be more useful than using equations. Here let us call the function P.
The domain of the function is the type of pet and the range is a real number representing the number of hours the pet’s
memory span lasts. We can evaluate the function P at the input value of “goldfish.” We would write P(goldfish) = 2160.
Notice that, to evaluate the function in table form, we identify the input value and the corresponding output value
from the pertinent row of the table. The tabular form for function P seems ideally suited to this function, more so than
writing it in paragraph or function form.

Given a function represented by a table, identify specific output and input values.

1. Find the given input in the row (or column) of input values.

2. Identify the corresponding output value paired with that input value.

3. Find the given output values in the row (or column) of output values, noting every time that output value appears.
4. Identify the input value(s) corresponding to the given output value.

Example 11 Evaluating and Solving a Tabular Function

Using Table 11,
a. Evaluate g(3) b. Solve g(n) = 6.

n 1 2 3 4
g(n) 8 6 7 6
Table 11
Solution

a. Evaluating g(3) means determining the output value of the function g for the input value of n = 3. The table
output value correspondington =3is7,s0g(3) =7.

b. Solving g(n) = 6 means identifying the input values, #, that produce an output value of 6. Table 11 shows two
solutions: 2 and 4. When we input 2 into the function g, our output is 6. When we input 4 into the function g,
our output is also 6.

2 http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590. Accessed 3/24/2014.
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TV/V It #7
Using Table 11, evaluate g(1).

Finding Function Values from a Graph

Evaluating a function using a graph also requires finding the corresponding output value for a given input value, only
in this case, we find the output value by looking at the graph. Solving a function equation using a graph requires finding
all instances of the given output value on the graph and observing the corresponding input value(s).

Example 12 Reading Function Values from a Graph
Given the graph in Figure 6,
a. Evaluate f(2). b. Solve f(x) = 4.

1

EEEEEY

£, 0 RS OO SO PR SO S
-3

Yy
Figure 6
Solution

a. To evaluate f(2), locate the point on the curve where x = 2, then read the y-coordinate of that point. The point
has coordinates (2, 1), so f(2) = 1. See Figure 7.

Figure 7

b. To solve f(x) = 4, we find the output value 4 on the vertical axis. Moving horizontally along the line y = 4, we
locate two points of the curve with output value 4: (—1, 4) and (3, 4). These points represent the two solutions to
f(x) =4: —1 or 3. This means f(—1) = 4 and f(3) = 4, or when the input is —1 or 3, the output is 4. See Figure 8.

J(x)

_3"

Figure 8
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Iry It #8
Using Figure 7, solve f(x) = 1.

Some functions have a given output value that corresponds to two or more input values. For example, in the stock
chart shown in Figure 1 at the beginning of this chapter, the stock price was $1,000 on five different dates, meaning
that there were five different input values that all resulted in the same output value of $1,000.

However, some functions have only one input value for each output value, as well as having only one output for each
input. We call these functions one-to-one functions. As an example, consider a school that uses only letter grades and
decimal equivalents, as listed in Table 12.

Letter grade Grade-point average
A 4.0
B 3.0
C 2.0
D 1.0
Table 12

This grading system represents a one-to-one function, because each letter input yields one particular grade-point
average output and each grade-point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in Figure 1(a) and Figure 1(b). The
function in part (a) shows a relationship that is not a one-to-one function because inputs g and r both give output
n. The function in part (b) shows a relationship that is a one-to-one function because each input is associated with a
single output.

one-to-one function
A one-to-one function is a function in which each output value corresponds to exactly one input value. There
are no repeated x- or y-values.

Example 13 Determining Whether a Relationship Is a One-to-One Function
Is the area of a circle a function of its radius? If yes, is the function one-to-one?

Solution A circle of radius r has a unique area measure given by A = 71+2, so for any input, 7, there is only one output,
A. The area is a function of radius r.

If the function is one-to-one, the output value, the area, must correspond to a unique input value, the radius. Any area
measure A is given by the formula A = nr*. Because areas and radii are positive numbers, there is exactly one solution:

2 A . . . . .
r="\/= So the area of a circle is a one-to-one function of the circle’s radius.
A

Iry It #9

a. Is a balance a function of the bank account number?
b. Is a bank account number a function of the balance?
c¢. Is a balance a one-to-one function of the bank account number?

Tl’)/ It #10

a. If each percent grade earned in a course translates to one letter grade, is the letter grade a function of the percent
grade?

b. If so, is the function one-to-one?
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Using the Vertical Line Test

As we have seen in some examples above, we can represent a function using a graph. Graphs display a great many
input-output pairs in a small space. The visual information they provide often makes relationships easier to understand.
By convention, graphs are typically constructed with the input values along the horizontal axis and the output values

along the vertical axis.

The most common graphs name the input value x and the output value y, and we say y is a function of x, or y = f(x)
when the function is named f. The graph of the function is the set of all points (x, y) in the plane that satisfies the
equation y = f(x). If the function is defined for only a few input values, then the graph of the function consists of
only a few points, where the x-coordinate of each point is an input value and the y-coordinate of each point is the
corresponding output value. For example, the black dots on the graph in Figure 9 tell us that f(0) = 2 and f(6) = 1.
However, the set of all points (x, y) satisfying y = f(x)is a curve. The curve shown includes (0, 2) and (6, 1) because the

curve passes through those points.

The vertical line test can be used to determine whether a graph represents a function. If we can draw any vertical line
that intersects a graph more than once, then the graph does not define a function because a function has only one

A

Figure 9

output value for each input value. See Figure 10.

Function

A

Not a Function

Not a Function
A

Figure 10

Given a graph, use the vertical line test to determine if the graph represents a function.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2. If there is any such line, determine that the graph does not represent a function.
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Example 14 Applying the Vertical Line Test
Which of the graphs in Figure 11 represent(s) a function y = f(x)?

f) Y fx)
A A
4 O ) O
3 IO B I
AN X DI S > X
J S ——
(b) (c)
Figure 11

Solution  If any vertical line intersects a graph more than once, the relation represented by the graph is not a function.
Notice that any vertical line would pass through only one point of the two graphs shown in parts (a) and (b) of Figure
11. From this we can conclude that these two graphs represent functions. The third graph does not represent a function
because, at most x-values, a vertical line would intersect the graph at more than one point, as shown in Figure 12.

i

Tr)/ It #1171

Does the graph in Figure 13 represent a function?

»
>

A
Y
=

\
Figure 13
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Using the Horizontal Line Test

Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is
to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line intersects the graph
more than once, then the graph does not represent a one-to-one function.

Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-one function.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
2. If there is any such line, determine that the function is not one-to-one.

Example 15 Applying the Horizontal Line Test
Consider the functions shown in Figure 11(a) and Figure 11(b). Are either of the functions one-to-one?

Solution The function in Figure 11(a) is not one-to-one. The horizontal line shown in Figure 14 intersects the graph
of the function at two points (and we can even find horizontal lines that intersect it at three points.)

fx)

Figure 14

The function in Figure 11(b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

TV/V It #12

Is the graph shown here one-to-one? y

Identifying Basic Toolkit Functions

In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic
formulas, and how to solve problems with them. When learning to read, we start with the alphabet. When learning
to do arithmetic, we start with numbers. When working with functions, it is similarly helpful to have a base set of
building-block elements. We call these our “toolkit functions,” which form a set of basic named functions for which
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we know the graph, formula, and special properties. Some of these functions are programmed to individual buttons
on many calculators. For these definitions we will use x as the input variable and y = f(x) as the output variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations
frequently throughout this book. It will be very helpful if we can recognize these toolkit functions and their features
quickly by name, formula, graph, and basic table properties. The graphs and sample table values are included with
each function shown in Table 13.

Toolkit Functions

Name Function Graph
fx)
A
x fx)
Constant f(x) = ¢, where c is a constant > X _(? z
2 2
fx)
A
x fx)
Identity flo)=x < > x _j _02
2 2
Y
f)
A
x fx)
Absolute value flx) = ’x‘ < > x _(? (2)
2 2
A
fx)
‘ x  fx)
-2 4
Quadratic flx) =« < > X _01 (1)
1 1
] 2 4
fx)
‘ x  fx)
-1 -1
-0.5  -0.125
Cubic flx) =x° < -x .
05  0.125
] 1 1




SECTION 3.1 FUNCTIONS AND FUNCTION NOTATION

f()f) x fx)
A -2 -0.5
\ -1 -1
i 1 — 05 -2
R 1 == < N
eciproca f(x) < _ o :
o \v L 1 1
B 2 0.5
f(f) x fx)
i -2 0.25
A -1 1
Reciprocal squared fx) = lz et > x 05 4
x 05 4
1 1
| 2 0.25
fx)
A
= x fx)
0 0
Square root o) =Vx < oy 1 \
4 2
Y
fx)
‘ X fm)
-1 -1
Cube root o) =Vx 5 _, 0125 05
' 0.125 0.5
: 1 1

Table 13

Access the following online resources for additional instruction and practice with functions.

e Determine if a Relation is a Function (http://openstaxcollege.org/l/relationfunction)

e \Vertical Line Test (http://openstaxcollege.org/l/vertlinetest)

e [ntroduction to Functions (http://openstaxcollege.org/l/introtofunction)
e Vertical Line Test of Graph (http://openstaxcollege.org/l/vertlinegraph)
e (One-to-one Functions (http://openstaxcollege.org/l/onetoone)

e (Graphs as One-to-one Functions (http://openstaxcollege.org/I/graphonetoone)


http://openstaxcollege.org/l/relationfunction
http://openstaxcollege.org/l/vertlinetest
http://openstaxcollege.org/l/introtofunction
http://openstaxcollege.org/l/vertlinegraph
http://openstaxcollege.org/l/onetoone
http://openstaxcollege.org/l/graphonetoone
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CHAPTER 3

FUNCTIONS

3.1 SECTION EXERCISES

VERBAL

1. What is the difference between a relation and
a function?

3. Why does the vertical line test tell us whether the
graph of a relation represents a function?

5. Why does the horizontal line test tell us whether
the graph of a function is one-to-one?

ALGEBRAIC

2. What is the difference between the input and the
output of a function?

4. How can you determine if a relation is a one-to-one
function?

For the following exercises, determine whether the relation represents a function.

6. {(a, b), (¢, d), (a, c)}

7. {(a, b),(b, c),(c, )}

For the following exercises, determine whether the relation represents y as a function of x.

8.5x+2y=10 9. y=x’
M.3x2+y=14 12. 2x + y*=6
3y+5
14.)/:l 15. x = 4
x 7y —1
17, y= X E5 18. 5>+ =9
7x — 1
20. x=y> 2. y=x°
B.x=xV1-—y 24.y=+V1-—-x
26. y° = x?

10. x = y?

13. y = —2x* 4 40x

16. x=V1 — y?
19. 2xy =1
2.y=V1-x2
25. y? =x?

For the following exercises, evaluate the function fat the indicated values f(—3), f(2), f(—a), —f(a), f(a + h).

27. f(x) =2x—5

6x —1
56+ 2

30. f(x) =

28. f(x) = —-5x*+2x—1

29, f(x) = V2 —x +5

M. flo)=Ix—1]—|x+ 1]
g(x + h) — g(x)

32. Given the function g(x) =5 — x?, simplify p ,h#0
. . _ . 8x) —g(a)
33. Given the function g(x) = x* + 2x, simplify =—————, x #a
34. Given the function k(t) = 2t — 1: 35. Given the function f(x) =8 — 3x:
a. Evaluate k(2). a. Evaluate f(—2).
b. Solve k(t) =7. b. Solve f(x) = —1.
36. Given the function p(c) = ¢ + ¢ 37. Given the function f(x) = x2 — 3x
a. Evaluate p(—3). a. Evaluate f(5).
b. Solve p(c) = 2. b. Solve f(x) =4
38. Given the function f(x) = Vx + 2 39. Consider the relationship 3r + 2t = 18.

a. Evaluate f(7).
b. Solve f(x) =4

a. Write the relationship as a function r = f(¢).
b. Evaluate f(—3).
¢. Solve f(t) = 2.
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GRAPHICAL

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

40. y 1. y 42.
A A
< /,-\\ /,‘ > X » > X
Y Y A7
43, y a4, y 25 y
A A A
< > X - - x » > X
v v ¥
46. y 47. 48. y
A A
—
» > X » < > X
v v ¥
49, y 50. y 51. y
A A A
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52. Given the following graph
a. Evaluate f(—1).
b. Solve for f(x) = 3.

55. Y

58. y

NUMERIC

CHAPTER 3 FUNCTIONS

53. Given the following graph
a. Evaluate f(0).
b. Solve for f(x) = —3.

y
A
54
i

NI f
N

ol
543\2(1\7 45
\VANI
: 44 PR

-—-5,,
y

56.

59.

N W R U

A

/-'\
- _2 2\ bid
Tl 7
‘‘‘‘‘ 2

-3
~4
-5

54. Given the following graph
a. Evaluate f(4).
b. Solve for f(x) = 1.

57. y

For the following exercises, determine whether the relation represents a function.

60. {(—1, —1),(—2, —2),(—3, —3)}

61. {(3,4),(4,5),(5, 6)}

62. {(2,5),(7, 11),(15, 8),(7, 9)}

For the following exercises, determine if the relation represented in table form represents y as a function of x.

63. 5 10 15
y 3 8 14

For the following exercises, use the function frepresented in Table 14 below.

X 0
fx) 74

66. Evaluate f(3).

64.

X 5 10 15
y 3 8 8

2 3 4 5
1 53 56
Table 14

67. Solve f(x) =1

65. 5 10 10

y 3 8 14

7 8 9
45 14 47
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For the following exercises, evaluate the function fat the values f(—2), f(—1), f(0), f(1), and f(2).

68. f(x) =4 — 2x 69. f(x) =8 — 3x 70. f(x) =8x*—7x+ 3
N f(x)=3+Vx+3 72.f(x):xjr§ 73. f(x) = 3
x

For the following exercises, evaluate the expressions, given functions f, g, and h:

flx)=3x—2 gx)=5—x° h(x) = —2x*4+3x — 1
74. 3f(1) — 4g(72) 75f(§> — h(=2)

TECHNOLOGY

For the following exercises, graph y = x* on the given viewing window. Determine the corresponding range for each
viewing window. Show each graph.

76. [—0.1,0.1] 77. [—10, 10] 78. [—100, 100]

For the following exercises, graph y = x* on the given viewing window. Determine the corresponding range for each
viewing window. Show each graph.

79. [—0.1,0.1] 80. [—10, 10] 81. [—100, 100]

For the following exercises, graph y = V/x on the given viewing window. Determine the corresponding range for each
viewing window. Show each graph.

82. [0,0.01] 83. [0, 100] 84. [0, 10,000]

For the following exercises, graph y = V/x on the given viewing window. Determine the corresponding range for each
viewing window. Show each graph.

85. [—0.001, 0.001] 86. [—1,000, 1,000] 87. [—1,000,000, 1,000,000]
REAL-WORLD APPLICATIONS

88. The amount of garbage, G, produced by a city with 89. The number of cubic yards of dirt, D, needed to
population p is given by G = f(p). G is measured in cover a garden with area a square feet is given by
tons per week, and p is measured in thousands of D = g(a).
people. a. A garden with area 5,000 ft* requires 50 yd® of dirt.
a. The town of Tola has a population of 40,000 and Express this information in terms of the function g.

produces 13 tons of garbage each week. Express this b. Explain the meaning of the statement g(100) = 1.

information in terms of the function f.
b. Explain the meaning of the statement f(5) = 2.

90. Let f(#) be the number of ducks in a lake ¢ years after  91. Let h(f) be the height above ground, in feet, of

1990. Explain the meaning of each statement: a rocket ¢ seconds after launching. Explain the
a. f(5) =30 meaning of each statement:
b. £(10) = 40 a. h(1) =200

b. h(2) =350

92. Show that the function f(x) = 3(x — 5)> + 7is
not one-to-one.
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LEARNING OBJECTIVES

In this section, you will:
¢ Find the domain of a function defined by an equation.
e Graph piecewise-defined functions.

3.2 DOMAIN AND RANGE

If you're in the mood for a scary movie, you may want to check out one of the five most popular horror movies of all
time—I am Legend, Hannibal, The Ring, The Grudge, and The Conjuring. Figure 1 shows the amount, in dollars, each
of those movies grossed when they were released as well as the ticket sales for horror movies in general by year. Notice
that we can use the data to create a function of the amount each movie earned or the total ticket sales for all horror
movies by year. In creating various functions using the data, we can identify different independent and dependent
variables, and we can analyze the data and the functions to determine the domain and range. In this section, we will
investigate methods for determining the domain and range of functions such as these.

Top-Five Grossing Horror Movies

for years 2000-2013
350 Market Share of Horror Moveis, by Year
8%

7%
6%
5% —
4%
3% —

50 ] 2%
1% —

The

Iam Hannibal The 0% —
Legend (2001) Ring Grudge Con]urmg A O NI S
(2007) (2002) (2004) (2013) AR AR A A

NN W

S v o u 9O

S o o o O
| | | |

—

—_

Inflation-adjusted Gross,
in Millions of Dollars

o
|

Figure 1 Based on data compiled by www.the-numbers.com."”!

Finding the Domain of a Function Defined by an Equation

In Functions and Function Notation, we were introduced to the concepts of domain and range. In this section, we
will practice determining domains and ranges for specific functions. Keep in mind that, in determining domains and
ranges, we need to consider what is physically possible or meaningful in real-world examples, such as tickets sales and
year in the horror movie example above. We also need to consider what is mathematically permitted. For example,
we cannot include any input value that leads us to take an even root of a negative number if the domain and range
consist of real numbers. Or in a function expressed as a formula, we cannot include any input value in the domain
that would lead us to divide by 0.

We can visualize the domain as a “holding area” that contains “raw materials” for a “function machine” and the range
as another “holding area” for the machine’s products. See Figure 2.

Domain Range

Function
machine

NN
A

Figure 2

We can write the domain and range in interval notation, which uses values within brackets to describe a set of
numbers. In interval notation, we use a square bracket [when the set includes the endpoint and a parenthesis (to
indicate that the endpoint is either not included or the interval is unbounded. For example, if a person has $100 to
spend, he or she would need to express the interval that is more than 0 and less than or equal to 100 and write (0, 100].
We will discuss interval notation in greater detail later.

3 The Numbers: Where Data and the Movie Business Meet. “Box Office History for Horror Movies.” http://www.the-numbers.com/market/genre/Horror. Accessed 3/24/2014


http://www.the-numbers.com
http://www.the-numbers.com/market/genre/Horror
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Let’s turn our attention to finding the domain of a function whose equation is provided. Oftentimes, finding the
domain of such functions involves remembering three different forms. First, if the function has no denominator or an
even root, consider whether the domain could be all real numbers. Second, if there is a denominator in the function’s
equation, exclude values in the domain that force the denominator to be zero. Third, if there is an even root, consider
excluding values that would make the radicand negative.

Before we begin, let us review the conventions of interval notation:
o The smallest number from the interval is written first.
o Thelargest number in the interval is written second, following a comma.
o Parentheses, (or), are used to signify that an endpoint value is not included, called exclusive.
o Brackets, [or], are used to indicate that an endpoint value is included, called inclusive.

See Figure 3 for a summary of interval notation.

Inequality Interval Notation Graph on Number Line Description

x>a (a, o) < ((1 > x is greater than a

x<a (—o0, a) D 3 > x isless than a

x>a [a, o) < El > x is greater than or equal to a

x<a (—00, g] < g > x is less than or equal to a
a<x<b (a, b) < L(l g > x is strictly between a and b
a<x<b [a, b) « El 2 > x is between a and b, to include a
a<x<b (a, b] « 2 l}? > x is between a and b, to include b
a<x<b [a, D] D L[l i x is between a and b, to include a and b

Figure 3

Example 1  Finding the Domain of a Function as a Set of Ordered Pairs
Find the domain of the following function: {(2, 10), (3, 10), (4, 20), (5, 30), (6, 40)}.

Solution  First identify the input values. The input value is the first coordinate in an ordered pair. There are no
restrictions, as the ordered pairs are simply listed. The domain is the set of the first coordinates of the ordered pairs.

{2,3,4,5, 6}

TV)/ It #171
Find the domain of the function: {(—5, 4), (0, 0), (5, —4), (10, —8), (15, —12)}

Given a function written in equation form, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input and exclude those values from the domain.
3. Write the domain in interval form, if possible.
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Example 2  Finding the Domain of a Function

Find the domain of the function f(x) = x* — 1.

Solution The input value, shown by the variable x in the equation, is squared and then the result is lowered by one.
Any real number may be squared and then be lowered by one, so there are no restrictions on the domain of this
function. The domain is the set of real numbers.

In interval form, the domain of fis (—oo, 00).

Tr/ It #2
Find the domain of the function: f(x) =5 — x + x°.

Given a function written in an equation form that includes a fraction, find the domain.

1. Identify the input values.

2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the denominator equal
to zero and solve for x. If the function’s formula contains an even root, set the radicand greater than or equal to 0,
and then solve.

3. Write the domain in interval form, making sure to exclude any restricted values from the domain.

Example 3  Finding the Domain of a Function Involving a Denominator

Find the domain of the function f(x) = }26 i_ 31c

Solution When there is a denominator, we want to include only values of the input that do not force the denominator
to be zero. So, we will set the denominator equal to 0 and solve for x.

2—x=0
—x = -2
x=2

Now, we will exclude 2 from the domain. The answers are all real numbers where x < 2 or x > 2 as shown in Figure

4. We can use a symbol known as the union, U, to combine the two sets. In interval notation, we write the solution:
(—00, 2) U (2, 00).

| | |

‘ I I I

| |

I I

-3 -2 -1 0 1
x<2orx>2

l

bt
2 3

l
(—00,2) U (2, 00)
Figure 4

Tr/v[f#_%
1+ 4x

Find the domain of the function: f(x) = 1

Given a function written in equation form including an even root, find the domain.

1. Identify the input values.

2. Since there is an even root, exclude any real numbers that result in a negative number in the radicand. Set the
radicand greater than or equal to zero and solve for x.

3. The solution(s) are the domain of the function. If possible, write the answer in interval form.
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Example 4  Finding the Domain of a Function with an Even Root
Find the domain of the function f(x) = V7 — x.

Solution  When there is an even root in the formula, we exclude any real numbers that result in a negative number
in the radicand.
Set the radicand greater than or equal to zero and solve for x.
7—x20
—x > —7
x<7
Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less than or equal
to 7, or (—o0, 7].

Q& A..
Can there be functions in which the domain and range do not intersect at all?

Yes. For example, the function f(x) = — \/L_ has the set of all positive real numbers as its domain but the set of all
X

negative real numbers as its range. As a more extreme example, a function’s inputs and outputs can be completely
different categories (for example, names of weekdays as inputs and numbers as outputs, as on an attendance chart), in
such cases the domain and range have no elements in common.

Using Notations to Specify Domain and Range

In the previous examples, we used inequalities and lists to describe the domain of functions. We can also use
inequalities, or other statements that might define sets of values or data, to describe the behavior of the variable in
set-builder notation. For example, {x | 10 < x < 30} describes the behavior of x in set-builder notation. The braces { }
are read as “the set of,” and the vertical bar | is read as “such that,” so we would read {x | 10 < x < 30} as “the set of
x-values such that 10 is less than or equal to x, and x is less than 30.”

Figure 5 compares inequality notation, set-builder notation, and interval notation.

Inequality Set-builder Interval
Notation Notation Notation
L L L L P
<—§ R 5<h<10 {h|5<h<10} (5, 10]
<o L L L L
e f’_’o 5<h<10 {h|5<h<10} (5, 10)
L L L L
<—§ 1 f‘o’ 5<h<10 {h|5<h <10} (5, 10)
- | | | | |
« \5 L 1¢0 h<10 {h|h <10} (=00, 10)
< | | | | | 4 | >
T h> 10 {h| h > 10} 10, c0)
< | L L L L L | >
‘ é ‘ ‘ ' ' 1‘0 ! All real numbers R (—00, 00)

Figure 5
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To combine two intervals using inequality notation or set-builder notation, we use the word “or.” As we saw in earlier
examples, we use the union symbol, U, to combine two unconnected intervals. For example, the union of the sets
{2, 3, 5} and {4, 6} is the set {2, 3, 4, 5, 6}. It is the set of all elements that belong to one or the other (or both) of the
original two sets. For sets with a finite number of elements like these, the elements do not have to be listed in ascending
order of numerical value. If the original two sets have some elements in common, those elements should be listed only
once in the union set. For sets of real numbers on intervals, another example of a union is

{x]| x| > 3} = (o0, =3] U [3, >0)

set-builder notation and interval notation

Set-builder notation is a method of specifying a set of elements that satisfy a certain condition. It takes the
form {x | statement about x} which is read as, “the set of all x such that the statement about x is true.” For
example,

fx|4<x<12}

Interval notation is a way of describing sets that include all real numbers between a lower limit that may or may
not be included and an upper limit that may or may not be included. The endpoint values are listed between
brackets or parentheses. A square bracket indicates inclusion in the set, and a parenthesis indicates exclusion
from the set. For example,

4, 12]

Given a line graph, describe the set of values using interval notation.

1. Identify the intervals to be included in the set by determining where the heavy line overlays the real line.

2. At the left end of each interval, use [with each end value to be included in the set (solid dot) or (for each excluded
end value (open dot).

3. At the right end of each interval, use] with each end value to be included in the set (filled dot) or) for each excluded
end value (open dot).

4. Use the union symbol U to combine all intervals into one set.

Example 5  Describing Sets on the Real-Number Line

Describe the intervals of values shown in Figure 6 using inequality notation, set-builder notation, and interval notation.

& |
hd 1

| |
1 1
-2-1 01 2 3 4

R S
[

L |
1 I
6 7
Figure 6

Solution To describe the values, x, included in the intervals shown, we would say, “x is a real number greater than
or equal to 1 and less than or equal to 3, or a real number greater than 5.”

Inequality 1<x<3orx>5
Set-builder notation {x][I <x<3orx>5}
Interval notation [1, 3] U (5, 00)

Remember that, when writing or reading interval notation, using a square bracket means the boundary is included
in the set. Using a parenthesis means the boundary is not included in the set.
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TV/V It #5
Given this figure, specify the graphed set in et
-5-4-3-2-1 0123 435
a. words
Figure 7

b. set-builder notation

¢. interval notation

Finding Domain and Range from Graphs

Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of
possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set
of possible output values, which are shown on the y-axis. Keep in mind that if the graph continues beyond the portion
of the graph we can see, the domain and range may be greater than the visible values. See Figure 8.

y
A
Doimain 7T

Range

N R A
_6—5—4%71 234 46

[ 5 I
_4,,
—~5,,

gt
_7,,
~‘8,,

FRS A N E
Y

T wsad
————

Figure 8

We can observe that the graph extends horizontally from —5 to the right without bound, so the domain is [—5, c0). The
vertical extent of the graph is all range values 5 and below, so the range is (—o0, 5]. Note that the domain and range
are always written from smaller to larger values, or from left to right for domain, and from the bottom of the graph
to the top of the graph for range.

Example 6  Finding Domain and Range from a Graph

Find the domain and range of the function f whose graph is shown in Figure 9.

Figure 9



186

CHAPTER 3 FUNCTIONS

Solution We can observe that the horizontal extent of the graph is —3 to 1, so the domain of fis (-3, 1].
The vertical extent of the graph is 0 to —4, so the range is [—4, 0]. See Figure 10.

y
A
Domain
e
—t—t——+— t F—ft—+—>x
S 44 21y 1 3 4 5
; : ——+ : :
f Range
—4-+ r
>y
Figure 10

Example 7  Finding Domain and Range from a Graph of Oil Production

Find the domain and range of the function f whose graph is shown in Figure 11.

Alaska Crude Oil Production
2200 —

2000 —

1800 — d \,\

1600 /f/

1400 / \\
1200 -]

1000 \,\

800 - o
600 —

400 —
200 —\/
0= T T T T T T

1975 1980 1985 1990 1995 2000 2005

——
——

Thousand barrels per day

Figure 11 (credit: modification of work by the U.S. Energy Information Administration) "

Solution The input quantity along the horizontal axis is “years,” which we represent with the variable ¢ for time. The
output quantity is “thousands of barrels of oil per day,” which we represent with the variable b for barrels. The graph
may continue to the left and right beyond what is viewed, but based on the portion of the graph that is visible, we can

determine the domain as 1973 < t < 2008 and the range as approximately 180 < b < 2010.

In interval notation, the domain is [1973, 2008], and the range is about [180, 2010]. For the domain and the range, we

approximate the smallest and largest values since they do not fall exactly on the grid lines.

TI’}/ It #6 World Population Increase
90
80
70
60

T T T T T T
1950 1960 1970 1980 1990 2000
Year

Given Figure 12, identify the domain and range using interval notation.

Millions of people
wu
(=}

Figure 12

Q& A...
Can a function’s domain and range be the same?

Yes. For example, the domain and range of the cube root function are both the set of all real numbers.

4 http://www.eia.gov/dnav/pet/hist/LeafHandler.ashxn=PET&s=MCRFPAK2&f=A.
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Finding Domains and Ranges of the Toolkit Functions

We will now return to our set of toolkit functions to determine the domain and range of each.

fx) Domain: (—oo, 00)
] Range: [c, (]
fx)=c
- > X
A
Figure 13
fx)
A
Domain: (—oo, 00)
Range: (—o0, 00)
< > X
Y
Figure 14
fx)
A Domain: (—oo, 00)
Range: [0, 00)
> X
Y
Figure 15
fx)

Domain: (—oo, 00)
Range: [0, c0)

. \1/

Figure 16

Jx)
A

J

X

Domain: (—oo, 00)

Range: (—0o0, 00)

4
Figure 17

> X

For the constant function f(x) = c, the domain consists of
all real numbers; there are no restrictions on the input. The
only output value is the constant c, so the range is the set {c}
that contains this single element. In interval notation, this is
written as [¢, c], the interval that both begins and ends with c.

For the identity function f(x) = x, there is no restriction on
x. Both the domain and range are the set of all real numbers.

For the absolute value function f(x) = | x|, there is no
restriction on x. However, because absolute value is defined
as a distance from 0, the output can only be greater than or
equal to 0.

For the quadratic function f(x) = x?, the domain is all
real numbers since the horizontal extent of the graph is
the whole real number line. Because the graph does not
include any negative values for the range, the range is only
nonnegative real numbers.

For the cubic function f(x) = x°, the domain is all real
numbers because the horizontal extent of the graph is the
whole real number line. The same applies to the vertical
extent of the graph, so the domain and range include all
real numbers.
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f Ef) For the reciprocal function f(x) = x, we cannot divide by 0,
Domain: (—o0, 0) U (0, 00) so we must exclude 0 from the domain. Further, 1 divided by
Range: (—oo0, 0) U (0, o) any value can never be 0, so the range also will not include
0. In set-builder notation, we could also write {x | x # 0}, the
< > X set of all real numbers that are not zero.
Y
Figure 18

f)
Domain: (—o0, 0) U (0, 50) For the reciprocal squared function f(x) = xz, we cannot
Range: (0, o) divide by 0, so we must exclude 0 from the domain. There is
also no x that can give an output of 0, so 0 is excluded from
the range as well. Note that the output of this function is

always positive due to the square in the denominator, so the
range includes only positive numbers.

Figure 19
f&) .
Domain: [0, ) For the square root function f(x) = V/x, we cannot take the
Range: [0, c0) square root of a negative real number, so the domain must
be 0 or greater. The range also excludes negative numbers
- > x because the square root of a positive number x is defined to
l be positive, even though the square of the negative number
i —Vx also gives us x.
Figure 20
f() . ,
DRomam: (=00, 00) For the cube root function f(x) = V/x the domain and range
ange: (—00, 0) include all real numbers. Note that there is no problem
- . x taking a cube root, or any odd-integer root, of a negative
number, and the resulting output is negative (it is an odd
function).
Figure 21

Given the formula for a function, determine the domain and range.

1. Exclude from the domain any input values that result in division by zero.

2. Exclude from the domain any input values that have nonreal (or undefined) number outputs.
3. Use the valid input values to determine the range of the output values.

4. Look at the function graph and table values to confirm the actual function behavior.

Example 8  Finding the Domain and Range Using Toolkit Functions
Find the domain and range of f(x) = 2x*> — x.

Solution  There are no restrictions on the domain, as any real number may be cubed and then subtracted from
the result. The domain is (—oo, 00) and the range is also (—oo, co).
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Example 9  Finding the Domain and Range
2
x+1
Solution  We cannot evaluate the function at —1 because division by zero is undefined. The domain is (—oo, —1) U (-1, c0).
Because the function is never zero, we exclude 0 from the range. The range is (—oo, 0) U (0, 00).

Find the domain and range of f(x) =

Example 10 Finding the Domain and Range

Find the domain and range of f(x) = 2Vx + 4.

Solution We cannot take the square root of a negative number, so the value inside the radical must be nonnegative.
x+4>0whenx> —4

The domain of f(x) is [—4, 00).

We then find the range. We know that f(—4) = 0, and the function value increases as x increases without any upper

limit. We conclude that the range of fis [0, 00).

AWM Figure 22 represents the function f.
f)

ERNTA

4

Figure 22

Iry It #7
Find the domain and range of f(x) = —V2 — x.

Graphing Piecewise-Defined Functions

Sometimes, we come across a function that requires more than one formula in order to obtain the given output. For
example, in the toolkit functions, we introduced the absolute value function f(x) = |x|. With a domain of all real
numbers and a range of values greater than or equal to 0, absolute value can be defined as the magnitude, or modulus,
of a real number value regardless of sign. It is the distance from 0 on the number line. All of these definitions require
the output to be greater than or equal to 0.

If we input 0, or a positive value, the output is the same as the input.
fx)=xifx>0

If we input a negative value, the output is the opposite of the input.

flx)=—xifx<0
Because this requires two different processes or pieces, the absolute value function is an example of a piecewise
function. A piecewise function is a function in which more than one formula is used to define the output over different
pieces of the domain.
We use piecewise functions to describe situations in which a rule or relationship changes as the input value crosses
certain “boundaries.” For example, we often encounter situations in business for which the cost per piece of a certain
item is discounted once the number ordered exceeds a certain value. Tax brackets are another real-world example of
piecewise functions. For example, consider a simple tax system in which incomes up to $10,000 are taxed at 10%, and any

additional income is taxed at 20%. The tax on a total income S would be 0.1S if S < $10,000 and $1000 + 0.2(S — $10,000)
if § > $10,000.
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piecewise function

A piecewise function is a function in which more than one formula is used to define the output. Each formula has its
own domain, and the domain of the function is the union of all these smaller domains. We notate this idea like this:

formulal if xisin domain 1
f(x) ={ formula2 ifxisin domain 2
formula 3 if xis in domain 3

In piecewise notation, the absolute value function is
x ifx>0
I = {—x ifx<0

Given a piecewise function, write the formula and identify the domain for each interval.

1. Identify the intervals for which different rules apply.
2. Determine formulas that describe how to calculate an output from an input in each interval.
3. Use braces and if-statements to write the function.

Example 11 Writing a Piecewise Function

A museum charges $5 per person for a guided tour with a group of 1 to 9 people or a fixed $50 fee for a group of 10 or
more people. Write a function relating the number of people, n, to the cost, C.

Solution  Two different formulas will be needed. For n-values under 10, C = 5n. For values of n that are 10 or greater,

C = 50. .
5n if 0 <n<10

C(”):{So if n>10

C(n)
A
Analysis  The function is represented in Figure 23. The graph is
a diagonal line from n = 0 to n = 10 and a constant after that. In S0
. . . C(n)
this example, the two formulas agree at the meeting point where e A0 e
n = 10, but not all piecewise functions have this property. 301
20—
H 10 e
N N S F—t—t—1——n
-25-20-15-10 -5 5 10 15 20 25

Figure 23

Example 12 Working with a Piecewise Function

A cell phone company uses the function below to determine the cost, C, in dollars for g gigabytes of data transfer.

25 ifo<g<?2
C(<€’):{25+10(g—2) if g>2

Find the cost of using 1.5 gigabytes of data and the cost of using 4 gigabytes of data.
Solution To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which part of the domain our input
falls in. Because 1.5 is less than 2, we use the first formula.

C(1.5) = $25

To find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater than 2, so we use the second
formula.

C(4) =25+ 10(4 — 2) = $45
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Analyses  The function is represented in Figure 24. We can see where the function changes from a constant to a shifted
and stretched identity at g = 2. We plot the graphs for the different formulas on a common set of axes, making sure each
formula is applied on its proper domain.

C@

50 -
o
301
0L
o
et 4

-5 -4 -3 -2 -1 1 2 3 4 5

Figure 24

Given a piecewise function, sketch a graph.

1. Indicate on the x-axis the boundaries defined by the intervals on each piece of the domain.
2. For each piece of the domain, graph on that interval using the corresponding equation pertaining to that piece. Do
not graph two functions over one interval because it would violate the criteria of a function.

Example 13 Graphing a Piecewise Function

Sketch a graph of the function.

x* if x<1
f=4{3 if 1<x<2
x if x>2

Solution Each of the component functions is from our library of toolkit functions, so we know their shapes. We can
imagine graphing each function and then limiting the graph to the indicated domain. At the endpoints of the domain,
we draw open circles to indicate where the endpoint is not included because of a less-than or greater-than inequality;
we draw a closed circle where the endpoint is included because of a less-than-or-equal-to or greater-than-or-equal-to
inequality.

Figure 25 shows the three components of the piecewise function graphed on separate coordinate systems.

f) ) f)

A A A

5+ 5+ 5+

4 4 4
3 31o—e 3+ /

2 2 2

1 I+ 1

< F——f—>x <t F——t—t>x —f—1— F——fF—>x

-4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 2 3 4
' ~ly ' ' “ly ' ' ~ly '

(a) (b) (c)
Figure 25 (a) f(x) =x?ifx <1; (D) f(x)=3if1<x<2; (c)f(x)=xifx>?2
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Now that we have sketched each piece individually, we combine them in the same coordinate plane. See Figure 26.
fx)
- A

< | | | I \ I
Il I T I 1 T I

|

T

-4 -3 -2 -1 1 2 3 4
Ty

Figure 26

Analysis  Note that the graph does pass the vertical line test even at x = 1 and x = 2 because the points (1, 3) and
(2, 2) are not part of the graph of the function, though (1, 1) and (2, 3) are.

Iry It #8
Graph the following piecewise function.
® if x<—1

=4 -2 if-1<x<4
Vx if x>4

Q& A..
Can more than one formula from a piecewise function be applied to a value in the domain?

No. Each value corresponds to one equation in a piecewise formula.

Access these online resources for additional instruction and practice with domain and range.

e Domain and Range of Square Root Functions (http://openstaxcollege.org/l/domainsqroot)

e Determining Domain and Range (http://openstaxcollege.org/I/determinedomain)

¢ Find Domain and Range Given the Graph (http://openstaxcollege.org/l/drgraph)

¢ Find Domain and Range Given a Table (http://openstaxcollege.org/I/drtable)

¢ Find Domain and Range Given Points on a Coordinate Plane (http://openstaxcollege.org/l/drcoordinate)


http://openstaxcollege.org/l/domainsqroot
http://openstaxcollege.org/l/determinedomain
http://openstaxcollege.org/l/drgraph
http://openstaxcollege.org/l/drtable
http://openstaxcollege.org/l/drcoordinate
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3.2 SECTION EXERCISES

VERBAL

1. Why does the domain differ for different functions? 2. How do we determine the domain of a function

defined by an equation?

3. Explain why the domain of f(x) = V/x is different

from the domain of f(x) = V'x.

4. When describing sets of numbers using interval
notation, when do you use a parenthesis and when
do you use a bracket?

5. How do you graph a piecewise function?

ALGEBRAIC
For the following exercises, find the domain of each function using interval notation.
6. f(x) = —2x(x — 1)(x — 2) 7. f(x) =5 —2* 8. f(x) =3Vx—2
9. f(x) =3—V6—2x 10. f(x) =V4 —3x 1. f(x) =Vx*+4
12. f(x) = V1 — 2x 13 f(x) =Vx— 1 1. f(x) = ——
C3x+1 N ey 3
15.f(x)—4x+2 16. f()— x‘z 17. f(x) 2+9x
_ 1 -2
18'f(x)_x2—x—6 19f()_xT5015 20. f(x) = —
_ 21 Vi—i ~5
21. f(x) = 22, = 23.
V5 —x 0=V 0=
24 f(x)== _x*—9x
2%5. f(x) = 5—= "
26. Find the domain of the function f(x) = V2x*— 50x by:

a. using algebra.

b. graphing the function in the radicand and determining intervals on the x-axis for which the radicand is
nonnegative.

GRAPHICAL

For the following exercises, write the domain and range of each function using interval notation.

27. J 28. J 29. y

1086-4-2,] 2 46810 -108-6-4-2,[ 2 4 638 10 S-4-3-2-1)
—4t —4t I .
~61 ~61 34
81 8 T SRON POTT SO S
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30. y 31. Y 32. y
A A A
5, N H H i 5,, 5,
n 0 S W A
31 i 3t 3
2 2 N
1 \\L 1 / [
- I I R T - 1 ; L
54 -3 -1 S54-32-1 | 12 345 54 -3 — 12345
=171 1 1
) ! R s
..3,, ..3, B H H B -3,,
.-4,, .-4, B H H B .-4,,
...5,, ,..5, L N = ...5,,
y y Ty
33. Y 34. y

..3, ..3,
,..4, ,..4,
—-5 4 ,,-5,
y y e
36. y 37. y

-10-8—6-4-1/\? 4 6 8 10

AR EE
Y 4t
..6, ..6,,
,.8, ,.8,
~10 ~10
Y Y

For the following exercises, sketch a graph of the piecewise function. Write the domain in interval notation.

x+1 if x<=2 2x —lif x<1 x+1if x<O0
3B'f(x):{—Zx—.’)if x> -2 39-f(x):{l+x if x>1 40'f(x):{x—lifx>0

3 if x<0 x*  if x<0 x*  ifx<0
41'f(x):{\/§ifx20 42'f(x):{l—xifx>0 43'f(x):{x+2ifx20
x+1if x<1 |x] if x <2

44-f(x):{x3 if x>1 45'f(x):{l if x>2
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NUMERIC

For the following exercises, given each function f, evaluate f(—3), f(—2), f(—1), and f(0).
x+1 if x<-2 1if x<-3 —2x*4+3 if x< 1
46'f(x):{—2x—3 if x> -2 47'f(x):{0 if x> -3 48'f(x):{5x—7 if x> -1

For the following exercises, given each function f, evaluate f(—1), f(0), f(2), and f(4).

5x if x<0

7x+3 if x<0 x> =2 if x<2 .

= = = f <x<
49. f(x) {7”61“20 50. £(x) {4+|x75|ifx22 51. f(x) [32% 0<x<3
x? if x>3
For the following exercises, write the domain for the piecewise function in interval notation.

x+1 if x<-=2 x*=2 ifx<1 2x—3 if x<0
52'f(x):{—2x—3 if x> -2 53'f(x):{—x2+2ifx>l 54'f(x):{—3x2 if x>2

TECHNOLOGY

55. Graph y = 1 on the viewing window [—0.5, —0.1] and [0.1, 0.5]. Determine the corresponding range for the
phy 2 8 P g rang

viewing window. Show the graphs.

56. Graph y = % on the viewing window [—0.5, —0.1] and [0.1, 0.5]. Determine the corresponding range for the

viewing window. Show the graphs.

EXTENSION
57. Suppose the range of a function fis [—5, 8]. What is the range of | f(x)|?

58, Create a function in which the range is all nonnegative real numbers.

59. Create a function in which the domain is x > 2.

REAL-WORLD APPLICATIONS
60. The height & of a projectile is a function of the time  61. The cost in dollars of making x items is given by the
tit is in the air. The height in feet for ¢ seconds is function C(x) = 10x + 500.
given by the function h(t) = —16¢* + 96t. What is a. The fixed cost is determined when zero items are
the domain of the function? What does the domain produced. Find the fixed cost for this item.
mean in the context of the problem? b. What is the cost of making 25 items?

¢. Suppose the maximum cost allowed is $1500. What
are the domain and range of the cost function, C(x)?

195
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LEARNING OBJECTIVES

In this section, you will:

¢ Find the average rate of change of a function.

e Use a graph to determine where a function is increasing, decreasing, or constant.
e Use a graph to locate local maxima and local minima.

e Use a graph to locate the absolute maximum and absolute minimum.

3.3 RATES OF CHANGE AND BEHAVIOR OF GRAPHS

Gasoline costs have experienced some wild fluctuations over the last several decades. Table 17 lists the average cost,
in dollars, of a gallon of gasoline for the years 2005-2012. The cost of gasoline can be considered as a function of year.

y 2005 2006 2007 2008 2009 2010 2011 2012
C(y) 2.31 2.62 2.84  3.30 2.41 2.84 3.58 3.68
Table 1

If we were interested only in how the gasoline prices changed between 2005 and 2012, we could compute that the cost
per gallon had increased from $2.31 to $3.68, an increase of $1.37. While this is interesting, it might be more useful to
look at how much the price changed per year. In this section, we will investigate changes such as these.

The price change per year is a rate of change because it describes how an output quantity changes relative to the change
in the input quantity. We can see that the price of gasoline in Table 1 did not change by the same amount each year, so
the rate of change was not constant. If we use only the beginning and ending data, we would be finding the average
rate of change over the specified period of time. To find the average rate of change, we divide the change in the output

value by the change in the input value.
Change in output

Average rate of change =
veres 8 Change in input

Ay
T Ax
N
X5
) - fx)

XX

The Greek letter A (delta) signifies the change in a quantity; we read the ratio as “delta-y over delta-x” or “the change
in y divided by the change in x.” Occasionally we write A finstead of Ay, which still represents the change in the
function’s output value resulting from a change to its input value. It does not mean we are changing the function into
some other function.

In our example, the gasoline price increased by $1.37 from 2005 to 2012. Over 7 years, the average rate of change was

Ay _ $137
Ax 7 years

~ 0.196 dollars per year

On average, the price of gas increased by about 19.6¢ each year.

Other examples of rates of change include:
« A population of rats increasing by 40 rats per week
o A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as time passes)
o A car driving 27 miles per gallon (distance traveled changes by 27 miles for each gallon)
o The current through an electrical circuit increasing by 0.125 amperes for every volt of increased voltage
« The amount of money in a college account decreasing by $4,000 per quarter

5 http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524. Accessed 3/5/2014.


http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524
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rate of change

A rate of change describes how an output quantity changes relative to the change in the input quantity. The units
on a rate of change are “output units per input units.”

The average rate of change between two input values is the total change of the function values (output values)
divided by the change in the input values.

Ay flr) —f&)

Ax X, =%

Given the value of a function at different points, calculate the average rate of change of a function for the interval
between two values x, and x,.

1. Calculate the difference y, — y, = Ay.
2. Calculate the difference x, — x, = Ax.

Ay
3. Find the ratio —=.
Ax

Example 1  Computing an Average Rate of Change
Using the data in Table 1, find the average rate of change of the price of gasoline between 2007 and 2009.

Solution In 2007, the price of gasoline was $2.84. In 2009, the cost was $2.41. The average rate of change is
Ay _N"h
Ax X, — X
$2.41 — $2.84
2009 — 2007

_ —$0.43
2 years

= —$0.22 per year

AWZWS Note that a decrease is expressed by a negative change or “negative increase.” A rate of change is negative when
the output decreases as the input increases or when the output increases as the input decreases.

Iry It #1

Using the data in Table 1 at the beginning of this section, find the average rate of change between 2005 and 2010.

Example 2 Computing Average Rate of Change from a Graph

Given the function g(f) shown in Figure 1, find the average rate of change on the interval [-1, 2].

g

A

Figure 1
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Solution At t= —1, Figure 2 shows g(—1) = 4. At t = 2, the graph shows g(2) = 1.

g(®

A
Figure 2
The horizontal change At = 3 is shown by the red arrow, and the vertical change Ag(f) = —3 is shown by the turquoise

arrow. The average rate of change is shown by the slope of the red line segment. The output changes by —3 while the

input changes by 3, giving an average rate of change of
-4 _ =3_
2—(-1) 3

)/z_yl

AWZM'/K Note that the order we choose is very important. If, for example, we use , we will not get the correct

1
answer. Decide which point will be 1 and which point will be 2, and keep the coordinates fixed as (x,, y,) and (x,, y, ).

Example 3 Computing Average Rate of Change from a Table

After picking up a friend who lives 10 miles away and leaving on a trip, Anna records her distance from home over
time. The values are shown in Table 2. Find her average speed over the first 6 hours.

t (hours) 0 1 2 3 4 5 6 7
D(#) (miles) 10 55 90 153 214 240 282 300
Table 2

Solution  Here, the average speed is the average rate of change. She traveled 282 miles in 6 hours.

292 -10 _ 282
60 6
=47

The average speed is 47 miles per hour.

AM&ZW: Because the speed is not constant, the average speed depends on the interval chosen. For the interval [2, 3],
the average speed is 63 miles per hour.

Example 4  Computing Average Rate of Change for a Function Expressed as a Formula
Compute the average rate of change of f(x) = x? —i on the interval [2, 4].

Solution We can start by computing the function values at each endpoint of the interval.

1 1
2)=22— = 4=4—=
f@) 5 f4) 1
1 1
=4 = =16 — -
2 4

2 4

Now we compute the average rate of change.
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4) — f(2
Average rate of change = %
63 _ 7
_ 42
4—-2
49
_ 4
2
_8
8

Tr/v It #2
Find the average rate of change of f(x) = x — 2V/x on the interval [1, 9].

Example 5  Finding the Average Rate of Change of a Force
The electrostatic force F, measured in newtons, between two charged particles can be related to the distance between

the particles d, in centimeters, by the formula F(d) = % . Find the average rate of change of force if the distance
between the particles is increased from 2 cm to 6 cm.

Solution  We are computing the average rate of change of F(d) = 2 on the interval [2, 6].

dZ
F(6) — F(2
Average rate of change = %
2_2
2 2
= 66 — 22 Simplify.
2 _2
_36 4
4
16
36 .
== Combine numerator terms.
1 . .
=-3 Simplify.

The average rate of change is —é newton per centimeter.

Example 6  Finding an Average Rate of Change as an Expression

Find the average rate of change of g(f) = #* + 3t + 1 on the interval [0, a]. The answer will be an expression involving
a in simplest form.

Solution We use the average rate of change formula.

a) — g0
Average rate of change = % Evaluate.

*+3a+1) — (0°+3(0) + 1

_ (@+3a+1)-(0+30)+1) Simplify:
a—20

2 _
= % Simplify and factor.
= @ Divide by the common factor a.
=a-+3

This result tells us the average rate of change in terms of a between ¢t = 0 and any other point ¢ = a. For example, on
the interval [0, 5], the average rate of change would be 5 + 3 = 8.
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Iry It #3

Find the average rate of change of f(x) = x*> + 2x — 8 on the interval [5, a] in simplest forms in terms of a.

Using a Graph to Determine Where a Function is Increasing, Decreasing, or Constant

As part of exploring how functions change, we can identify intervals over which the function is changing in specific
ways. We say that a function is increasing on an interval if the function values increase as the input values increase
within that interval. Similarly, a function is decreasing on an interval if the function values decrease as the input
values increase over that interval. The average rate of change of an increasing function is positive, and the average
rate of change of a decreasing function is negative. Figure 3 shows examples of increasing and decreasing intervals
on a function.

J)

20

16 o
2 Décreasing

Increasing ~edy
<—— —— > X
S-4fs-2-1 \1 2 3[4 5
=8
12 Iricreasing
~16 ; S
—20
fb)>fla) fb)<fla) fb)>fla)
where b>a where b>a where b>a
> > >

Figure 3 The function f(x) = x® — 12x is increasing on (—oo, —2) U (2, oo) and is decreasing on (—2, 2).

While some functions are increasing (or decreasing) over their entire domain, many others are not. A value of the
input where a function changes from increasing to decreasing (as we go from left to right, that is, as the input variable
increases) is called a local maximum. If a function has more than one, we say it has local maxima. Similarly, a value
of the input where a function changes from decreasing to increasing as the input variable increases is called a local
minimum. The plural form is “local minima.” Together, local maxima and minima are called local extrema, or local
extreme values, of the function. (The singular form is “extremum.”) Often, the term local is replaced by the term
relative. In this text, we will use the term local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A function is also neither
increasing nor decreasing at extrema. Note that we have to speak of local extrema, because any given local extremum
as defined here is not necessarily the highest maximum or lowest minimum in the function’s entire domain.

For the function whose graph is shown in Figure 4, the local maximum is 16, and it occurs at x = —2. The local
minimum is —16 and it occurs at x = 2.

Local maximum = 16
occurs at x = —2

Incrcasing

—— X
4 5

[... Increasing

b
o

B NCRSTS)
% : Local minimum = —16

occursatx =2

Figure 4
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To locate the local maxima and minima from a graph, we need to observe the graph to determine where the graph
attains its highest and lowest points, respectively, within an open interval. Like the summit of a roller coaster, the
graph of a function is higher at a local maximum than at nearby points on both sides. The graph will also be lower at
alocal minimum than at neighboring points. Figure 5 illustrates these ideas for a local maximum.

fix)

A

Local maximum
) -

Increasing | Decreasing

function function

a b c
Figure 5 Definition of a local maximum

These observations lead us to a formal definition of local extrema.

local minima and local maxima

A function fis an increasing function on an open interval if f(b) > f(a) for any two input values a and b in the
given interval where b > a.

A function fis a decreasing function on an open interval if f(b) < f(a) for any two input values a and b in the
given interval where b > a.

A function fhas a local maximum at x = b if there exists an interval (g, ¢) with a < b < c such that, for any x
in the interval (g, ¢), f(x) < f(b). Likewise, f has a local minimum at x = b if there exists an interval (g, ¢) with
a < b < csuch that, for any x in the interval (a, ¢), f(x) > f(b).

Example 7  Finding Increasing and Decreasing Intervals on a Graph

Given the function p(f) in Figure 6, identify the intervals on which the function appears to be increasing.

p

[ I

- At
-1 \1/2 3 4 5 6

Figure 6

Solution We see that the function is not constant on any interval. The function is increasing where it slants upward

as we move to the right and decreasing where it slants downward as we move to the right. The function appears to be
increasing from t = 1 to t = 3 and from ¢ = 4 on.

In interval notation, we would say the function appears to be increasing on the interval (1, 3) and the interval (4, co).
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Analyses  Notice in this example that we used open intervals (intervals that do not include the endpoints), because the
function is neither increasing nor decreasing at t = 1, t = 3, and t = 4. These points are the local extrema (two minima
and a maximum).

Example 8  Finding Local Extrema from a Graph

Graph the function f(x) = % + g Then use the graph to estimate the local extrema of the function and to determine
the intervals on which the function is increasing.
Solution  Using technology, we find that the graph of the function looks like that in Figure 7. It appears there is a low

point, or local minimum, between x = 2 and x = 3, and a mirror-image high point, or local maximum, somewhere
between x = —3 and x = —2.

fx)

A

Figure 7

Amaxézyz'/: Most graphing calculators and graphing utilities can estimate the location of maxima and minima. Figure 8
provides screen images from two different technologies, showing the estimate for the local maximum and minimum.

y
A
6+
i
24494898, 1.6329932 —
o 0 2 4 6 "7 Maximum
X = —2.449491 Y =-1.632993
_24
!
(a) (b)
Figure 8

Based on these estimates, the function is increasing on the interval (—oo, —2.449) and (2.449, cc). Notice that, while we
expect the extrema to be symmetric, the two different technologies agree only up to four decimals due to the differing
approximation algorithms used by each. (The exact location of the extrema is at =\/6, but determining this requires
calculus.)

Iry It #4

Graph the function f(x) = x* — 6x> — 15x + 20 to estimate the local extrema of the function. Use these to determine
the intervals on which the function is increasing and decreasing.
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Example 9  Finding Local Maxima and Minima from a Graph

For the function f whose graph is shown in Figure 9, find all local maxima and minima.

y

A

104

] S Bl R > X
5431/ 1 %345
[ . RS /T K U2 WL OO SORNE N
il d N

~8+4
R ¢ ) ASCIS SRR P NN JOE O

B
DB o

Y

Figure 9

Solution Observe the graph of f. The graph attains a local maximum at x = 1 because it is the highest point in an
open interval around x = 1. The local maximum is the y-coordinate at x = 1, which is 2.

The graph attains a local minimum at x = —1 because it is the lowest point in an open interval around x = —1.

The local minimum is the y-coordinate at x = —1, which is —2.

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in Figure 10, Figure 11, and Figure 12.

Function Increasing/Decreasing Example
y
A
Constant Function Neither increasing -t
flo)=c¢ nor decreasing 1 »x
Y
y
Identity Function
Increasing
fl)=x X
J

Increasing on (0, o)
Quadratic Function
Decreasing on (—o0, 0)
f=x X

Minimum atx =20

Figure 10



204

Function

Cubic Function

J) =%
Reciprocal
foy =1

Reciprocal Squared

-1
fo) =3

Function

Cube Root
fl) =Vx

Square Root

flx) =Vx
Absolute Value
fo) = |«

CHAPTER 3 FUNCTIONS

Increasing/Decreasing

Increasing

Decreasing
(=00, 0) U (0, 00)

Increasing on (—oo, 0)
Decreasing on (0, c0)

Figure 11

Increasing/Decreasing

Increasing

Increasing on (0, co)

Increasing on (0, o)
Decreasing on (—o0, 0)

Figure 12

Example

e

Example

g e e
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Use A Graph to Locate the Absolute Maximum and Absolute Minimum

There is a difference between locating the highest and lowest points on a graph in a region around an open interval
(locally) and locating the highest and lowest points on the graph for the entire domain. The y-coordinates (output) at
the highest and lowest points are called the absolute maximum and absolute minimum, respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the graph
attains it highest and lowest points on the domain of the function. See Figure 13.

51 fdond ;
R ~ Absolute maximum is f(2) = 2
B I :

2 /

1

[ O o O
\ Absolute minimum is f(0) = —2

—4t TR :

Figure 13

Not every function has an absolute maximum or minimum value. The toolkit function f(x) = x° is one such function.

absolute maxima and minima
The absolute maximum of fat x = cis f(c) where f(c) > f(x) for all x in the domain of f.
The absolute minimum of fat x = d is f(d) where f(d) < f(x) for all x in the domain of f.

Example 10 Finding Absolute Maxima and Minima from a Graph

For the function f shown in Figure 14, find all absolute maxima and minima.

A

Figure 14

Solution  Observe the graph of f. The graph attains an absolute maximum in two locations, x = —2 and x = 2, because at
these locations, the graph attains its highest point on the domain of the function. The absolute maximum is the y-coordinate at

x = —2 and x = 2, which is 16.
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The graph attains an absolute minimum at x = 3, because it is the lowest point on the domain of the function’s graph.

The absolute minimum is the y-coordinate at x = 3, which is —10.

Access this online resource for additional instruction and practice with rates of change.

e Average Rate of Change (http://openstaxcollege.org/l/aroc)


http://openstaxcollege.org/l/aroc
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3.3 SECTION EXERCISES

VERBAL

1. Can the average rate of change of a function

be constant?

3. How are the absolute maximum and minimum
similar to and different from the local extrema?

ALGEBRAIC

2. If a function fis increasing on (a, b) and decreasing

on (b, ¢), then what can be said about the local

extremum of fon (g, ¢)?

4. How does the graph of the absolute value function
compare to the graph of the quadratic function,

y = x% in terms of increasing and decreasing

intervals?

For the following exercises, find the average rate of change of each function on the interval specified for real numbers

b or h in simplest form.
5. f(x) =4x*—7on[1, b]
7. p(x) =3x+4on (2,2 + K]
9. f(x) =2x*+ 1 on [x, x + ]

1. a(t) = ti on [9,9 + k]

13. j(x) =3x*on [1, 1 + K]
. flx+h) — fix)

6. g(x) =2x*—9on [4,b]

8. k(x) =4x —2o0n (3,3 + K]
10. g(x) = 3x* — 2 on [x, x + K]
12. b(x) =

1
13 on [1,1+ h]
14. r(t) = 43 on [2, 2 + h]

given f(x) = 2x*> — 3x on [x, x + h]

h
GRAPHICAL !
For the following exercises, consider the graph of f shown in Figure 15. ’
6
16. Estimate the average rate of change from x = 1 to x = 4. 5

17. Estimate the average rate of change from x =2to x = 5.

Figure 15

For the following exercises, use the graph of each function to estimate the intervals on which the function is increasing

or decreasing.

y y
18. A 19. A
5+ 5+
4+ 4+
3,, : H H . 3,,
o i i
\E L/ |
AEEEEENEE AR E R EEET ¥
_.l - l,, L
_2\/ H f _2,, 2,,
..3,, H ..3,, ..3,,
..4,, B B B H ..4,, ..4,,
5+ =54 5+
\ \ 4
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21.
x
For the following exercises, consider the graph shown in Figure 16. y
A
1004
80+
. sol-
22, Estimate the intervals where the function is increasing or decreasing. 4 401
0,,
Y
S-4-32-0 N 2345
23. Estimate the point(s) at which the graph of fhas a local maximum a0t
or a local minimum. L 601
_80,,
~100-+
Y
Figure 16
. . : - y
For the following exercises, consider the graph in Figure 17. A
250+
200+
. 1504 e
24, If the complete graph of the function is shown, estimate the intervals o 100t
where the function is increasing or decreasing. e e R X
-10-8 /-4 —%07\2\)/6 8 10
-100-+
25. If the complete graph of the function is shown, estimate the absolute I ~150+
maximum and absolute minimum. ‘igg’ '
Y
Figure 17

NUMERIC
26. Table 3 gives the annual sales (in millions of dollars) of a product from 1998 to 2006. What was the average rate
of change of annual sales (a) between 2001 and 2002, and (b) between 2001 and 2004?

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006
Sales (millions of dollars) 201 219 233 243 249 251 249 243 233

Table 3

27. Table 4 gives the population of a town (in thousands) from 2000 to 2008. What was the average rate of change
of population (a) between 2002 and 2004, and (b) between 2002 and 20062

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008
Population (thousands) 87 84 83 80 77 76 78 81 85

Table 4
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For the following exercises, find the average rate of change of each function on the interval specified.
28. f(x) =x?on [1, 5] 29. h(x) =5 — 2x%*on [—2, 4]
30. g(x) = x*on [—4, 2] 31. g(x) =3x>—1on[-3,3]

=40+ 1) on[—3,1]

32.y= % on [1, 3]
2+ 3

34, k() = 66 + % on [—1, 3]

33. p(t) =

TECHNOLOGY

For the following exercises, use a graphing utility to estimate the local extrema of each function and to estimate the
intervals on which the function is increasing and decreasing.
3. fx) =x*—4x* +5 36. h(x) = x° + 5x* + 10x> + 10x%> — 1

2
37.g()=tVt+3 38. k() =3t —1t
39. m(x) = x* 4+ 2x> — 12x* — 10x + 4 40. n(x) = x* — 8x> + 18x2 — 6x+ 2

EXTENSION

41. The graph of the function fis shown in Figure 18. Based on the calculator screen shot, the point
\ (1.333, 5.185) is which of the following?

a relative (local) maximum of the function

\
—

nnnnnnnnnnn

a.

b. the vertex of the function

¢. the absolute maximum of the function
d.

a zero of the function

TTTTTTT[TTT

Maximum

X = 1.3333324 L Y = 5.1851852

Figure 18

42. Let f(x) = i Find a number ¢ such that the average  43. Let f(x) = % Find the number b such that the

rate Of Change Of the functionfon the interval (1, C) average rate of Change Offon the interval (2’ b)

. 1
1S —— i _L
4 1S 10 .
REAL-WORLD APPLICATIONS

44. At the start of a trip, the odometer on a car read 45. A driver of a car stopped at a gas station to fill up his

21,395. At the end of the trip, 13.5 hours later, the
odometer read 22,125. Assume the scale on the
odometer is in miles. What is the average speed the
car traveled during this trip?

46. Near the surface of the moon, the distance that
an object falls is a function of time. It is given by
d(t) = 2.6667t%, where t is in seconds and d(t)
is in feet. If an object is dropped from a certain
height, find the average velocity of the object
fromt=1tot=2.

47.

gas tank. He looked at his watch, and the time read
exactly 3:40 p.m. At this time, he started pumping
gas into the tank. At exactly 3:44, the tank was full
and he noticed that he had pumped 10.7 gallons.
What is the average rate of flow of the gasoline into
the gas tank?

The graph in Figure 19 illustrates the decay of a
radioactive substance over ¢ days.

b

Amount (milligrams)

0 f : | 1
5 10 15 20
Time (days)
Figure 19

Use the graph to estimate the average decay rate from
t=5tot=15.



SECTION 3.4 COMPOSITION OF FUNCTIONS

LEARNING OBJECTIVES

In this section, you will:

e Combine functions using algebraic operations.

e (reate a new function by composition of functions.

e FEvaluate composite functions.

¢ Find the domain of a composite function.

e Decompose a composite function into its component functions.

3.4 COMPOSITION OF FUNCTIONS

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house
will depend on the average daily temperature, and in turn, the average daily temperature depends on the particular
day of the year. Notice how we have just defined two relationships: The cost depends on the temperature, and the
temperature depends on the day.

Using descriptive variables, we can notate these two functions. The function C(T') gives the cost C of heating a house
for a given average daily temperature in T degrees Celsius. The function T(d) gives the average daily temperature on
day d of the year. For any given day, Cost = C(T(d)) means that the cost depends on the temperature, which in turns
depends on the day of the year. Thus, we can evaluate the cost function at the temperature T(d). For example, we could
evaluate T(5) to determine the average daily temperature on the 5th day of the year. Then, we could evaluate the cost
function at that temperature. We would write C(T(5)).

Cost for the temperature

——
C(1(5))

T

Temperature on day 5

By combining these two relationships into one function, we have performed function composition, which is the focus
of this section.

Function composition is only one way to combine existing functions. Another way is to carry out the usual algebraic
operations on functions, such as addition, subtraction, multiplication and division. We do this by performing the
operations with the function outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual incomes over a
period of years, with the result being their total household income. We want to do this for every year, adding only that
year’s incomes and then collecting all the data in a new column. If w(y) is the wife’s income and h(y) is the husband’s
income in year y, and we want T to represent the total income, then we can define a new function.

T(y) = h(y) + w(y)

If this holds true for every year, then we can focus on the relation between the functions without reference to a year
and write
T=h+w

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of functions
that have the same kinds of inputs (not necessarily numbers) and also the same kinds of outputs (which do have to
be numbers so that the usual operations of algebra can apply to them, and which also must have the same units or no

units when we add and subtract). In this way, we can think of adding, subtracting, multiplying, and dividing functions.

209
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For two functions f(x) and g(x) with real number outputs, we define new functions f+ g, f — g, fg, and g by the
relations

(f+ &) = f(x) + g(x)
(f — 9(x) = f(x) — glx)
(f)(x) = f(x)g(x)

( ‘g )(x) = {;i; where g(x) # 0

Example 1  Performing Algebraic Operations on Functions

Find and simplify the functions (g — f)(x) and <§ )(x), given f(x) = x — 1 and g(x) = x> — 1. Are they the same
function? f

Solution Begin by writing the general form, and then substitute the given functions.
g —Nx) = glx) — f(x)
E—NE)=x-1-(x—1)
E-NH)=x—x
g =N =x(x—1)

-5

g

2 _
(x) = —};711 where x # 1

)(X) = % where x # 1
)(x)—x—l—l where x # 1

No, the functions are not the same.

Note: For (5 >(x), the condition x # 1 is necessary because when x = 1, the denominator is equal to 0, which makes

the function undefined.

TV)/ It #71
Find and simplify the functions (fg)(x) and (f — g)(x).
f(x)=x—landglx) =x*—1

Are they the same function?

Create a Function by Composition of Functions

Performing algebraic operations on functions combines them into a new function, but we can also create functions by
composing functions. When we wanted to compute a heating cost from a day of the year, we created a new function
that takes a day as input and yields a cost as output. The process of combining functions so that the output of one
function becomes the input of another is known as a composition of functions. The resulting function is known as a
composite function. We represent this combination by the following notation:

(feg)(x) = f(g(x))
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We read the left-hand side as “f composed with g at x,” and the right-hand side as “f of g of x.” The two sides of the
equation have the same mathematical meaning and are equal. The open circle symbol ¢ is called the composition
operator. We use this operator mainly when we wish to emphasize the relationship between the functions themselves
without referring to any particular input value. Composition is a binary operation that takes two functions and forms a
new function, much as addition or multiplication takes two numbers and gives a new number. However, it is important
not to confuse function composition with multiplication because, as we learned above, in most cases f(g(x)) # f(x)g(x).

It is also important to understand the order of operations in evaluating a composite function. We follow the usual
convention with parentheses by starting with the innermost parentheses first, and then working to the outside. In
the equation above, the function g takes the input x first and yields an output g(x). Then the function ftakes g(x) as
an input and yields an output f(g(x)).

g(x), the output of g
is the input of f

(fo9)(x) = f(g(x))

[

x is the input of g

In general, fo g and go fare different functions. In other words, in many cases f(g(x)) # g(f(x)) for all x. We will also
see that sometimes two functions can be composed only in one specific order.

For example, if f(x) = x* and g(x) = x + 2, then
fg(x) =flx+2)
=(x+2)
=x*+4x+4
but
g(f(x) = g(x)

=x*+2
These expressions are not equal for all values of x, so the two functions are not equal. It is irrelevant that the expressions
happen to be equal for the single input value x = — %

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the
outside function. Less formally, the composition has to make sense in terms of inputs and outputs.

composition of functions

When the output of one function is used as the input of another, we call the entire operation a composition of
functions. For any input x and functions fand g, this action defines a composite function, which we write as fo g
such that

(fe@)x) = flg(x)
The domain of the composite function fo gis all x such that x is in the domain of g and g(x) is in the domain of
f It is important to realize that the product of functions fg is not the same as the function composition f(g(x)),

because, in general, f(x)g(x) # f(g(x)).

Example 2  Determining whether Composition of Functions is Commutative

Using the functions provided, find f(g(x)) and g(f(x)). Determine whether the composition of the functions is
commutative.
flx)=2x+1 gx)=3—x
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Solution  Let’s begin by substituting g(x) into f(x).

flgx) =2@ —x) +1
=6—2x+1
=7—2x

Now we can substitute f(x) into g(x).
g(f) =3 — (2x+ 1)
=3-2x—1
=—2x+4+2
We find that g(f(x)) # f(g(x)), so the operation of function composition is not commutative.

Example 3 Interpreting Composite Functions

The function c(s) gives the number of calories burned completing s sit-ups, and s(t) gives the number of sit-ups a person
can complete in t minutes. Interpret c(s(3)).

Solution The inside expression in the composition is s(3). Because the input to the s-function is time, t = 3 represents
3 minutes, and s(3) is the number of sit-ups completed in 3 minutes.

Using s(3) as the input to the function c(s) gives us the number of calories burned during the number of sit-ups that
can be completed in 3 minutes, or simply the number of calories burned in 3 minutes (by doing sit-ups).

Example 4  Investigating the Order of Function Composition

Suppose f(x) gives miles that can be driven in x hours and g(y) gives the gallons of gas used in driving y miles. Which
of these expressions is meaningful: f(g(y)) or g(f(x))?

Solution  The function y = f(x) is a function whose output is the number of miles driven corresponding to the number
of hours driven.
number of miles = f(number of hours)

The function g(y) is a function whose output is the number of gallons used corresponding to the number of miles
driven. This means:
number of gallons = g (number of miles)

The expression g(y) takes miles as the input and a number of gallons as the output. The function f(x) requires a number
of hours as the input. Trying to input a number of gallons does not make sense. The expression f(g(y)) is meaningless.

The expression f(x) takes hours as input and a number of miles driven as the output. The function g(y) requires a
number of miles as the input. Using f(x) (miles driven) as an input value for g(y), where gallons of gas depends on
miles driven, does make sense. The expression g(f(x)) makes sense, and will yield the number of gallons of gas used,
g driving a certain number of miles, f(x), in x hours.

Q& A..
Are there any situations where f(g(y)) and g(f(x)) would both be meaningful or useful expressions ?

Yes. For many pure mathematical functions, both compositions make sense, even though they usually produce
different new functions. In real-world problems, functions whose inputs and outputs have the same units also may
give compositions that are meaningful in either order.

Try It #2
The gravitational force on a planet a distance r from the sun is given by the function G(r). The acceleration of a planet

subjected to any force F is given by the function a(F). Form a meaningful composition of these two functions, and
explain what it means.




SECTION 3.4 COMPOSITION OF FUNCTIONS 213

Evaluating Composite Functions

Once we compose a new function from two existing functions, we need to be able to evaluate it for any input in its
domain. We will do this with specific numerical inputs for functions expressed as tables, graphs, and formulas and
with variables as inputs to functions expressed as formulas. In each case, we evaluate the inner function using the
starting input and then use the inner function’s output as the input for the outer function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and output values from the table entries and always work
from the inside to the outside. We evaluate the inside function first and then use the output of the inside function as
the input to the outside function.

Example 5  Using a Table to Evaluate a Composite Function
Using Table 1, evaluate f(g(3)) and g(f(3)).

x f) 8(x)

1 6 3

2 8 5

3 3 2

4 1 7
Table 1

Solution To evaluate f(g(3)), we start from the inside with the input value 3. We then evaluate the inside expression
g(3) using the table that defines the function g: g(3) = 2. We can then use that result as the input to the function £ so
g(3) is replaced by 2 and we get f(2). Then, using the table that defines the function f, we find that f(2) = 8.

gB3)=2
f(g@)=f2)=38

To evaluate g(f(3)), we first evaluate the inside expression f(3) using the first table: f(3) = 3. Then, using the table for
g we can evaluate

8(f(3) =g(B) =2

Table 2 shows the composite functions fo gand go fas tables.

g  f(g) fl» g(fx)
3 2 8 3 2

Table 2

TV/V It #3
Using Table 1, evaluate f(g(1)) and g(f(4)).

Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure for evaluating composite functions is similar to the
process we use for evaluating tables. We read the input and output values, but this time, from the x- and y-axes of
the graphs.
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Given a composite function and graphs of its individual functions, evaluate it using the information provided by the
graphs.

1. Locate the given input to the inner function on the x-axis of its graph.

2. Read oft the output of the inner function from the y-axis of its graph.

3. Locate the inner function output on the x-axis of the graph of the outer function.

4. Read the output of the outer function from the y-axis of its graph. This is the output of the composite function.

Example 6  Using a Graph to Evaluate a Composite Function

Using Figure 1, evaluate f(g(1)).

8(x) flx)
A A
ol f 6
5 l 5
o]\ / 4
2 2 / \
\ / / \
171 R 171/ 4 5\¢ X
N Ll \
" b {
Y (a) Y (b)
Figure 1

Solution To evaluate f(g(1)), we start with the inside evaluation. See Figure 2.

g(x) flx)
\ 4 SR
o1\ /
4]\ / 4
RAUE SN AREA
t\/ 1/ \
14 R 171/ 4 5\¢ X
s M \
" b \
Y g(1)=3 Y f(3)=6
Figure 2

We evaluate g(1) using the graph of g(x), finding the input of 1 on the x-axis and finding the output value of the graph
at that input. Here, g(1) = 3. We use this value as the input to the function f.

fg(1)) =f(3)

We can then evaluate the composite function by looking to the graph of f(x), finding the input of 3 on the x-axis and
reading the output value of the graph at this input. Here, f(3) = 6, so f(g(1)) = 6.
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Am/zw’r Figure 3 shows how we can mark the graphs with arrows to trace the path from the input value to the output value.

g() fx)

A L i o A

104+ AR SO S Lol 104+

8,, 3 : : N : : : . 8,,

B 67 B (o)

, i I "

N Ll 2

i X > X
-10-8-6-4 2| ™Mi 6 810 ~10-8-6 —4 —32{ 24% 810

2

—61+ ran

~8+ 8+

-10+ -10+

Y Y

Figure 3

Iry It #4

Using Figure 1, evaluate g(f(2)).

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either created or been given formulas, the rule of working from
the inside out remains the same. The input value to the outer function will be the output of the inner function, which
may be a numerical value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula
that will calculate the result of a composition f(g(x)). To do this, we will extend our idea of function evaluation. Recall
that, when we evaluate a function like f(f) = #> — t, we substitute the value inside the parentheses into the formula
wherever we see the input variable.

Given a formula for a composite function, evaluate the function.

1. Evaluate the inside function using the input value or variable provided.
2. Use the resulting output as the input to the outside function.

Example 7 Evaluating a Composition of Functions Expressed as Formulas with a Numerical Input
Given f(f) = #* — tand h(x) = 3x + 2, evaluate f(h(1)).

Solution Because the inside expression is h(1), we start by evaluating h(x) at 1.
h(1) = 3(1) + 2
h(1) =5
Then f(h(1)) = f(5), so we evaluate f(f) at an input of 5.
f(h(1)) = f(5)
fh) =5 -5
f(h(1) =20

Analysis It makes no difference what the input variables t and x were called in this problem because we evaluated for
specific numerical values.
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TV/V It #5
Given f(f) = t* — t and h(x) = 3x + 2, evaluate

a h(f2)) b h(f(~2))

As we discussed previously, the domain of a composite function such as fo g is dependent on the domain of g and the
domain of f. It is important to know when we can apply a composite function and when we cannot, that is, to know
the domain of a function such as fo g. Let us assume we know the domains of the functions f and g separately. If we
write the composite function for an input x as f(g(x)), we can see right away that x must be a member of the domain of
gin order for the expression to be meaningful, because otherwise we cannot complete the inner function evaluation.
However, we also see that g(x) must be a member of the domain of f, otherwise the second function evaluation in f(g(x))
cannot be completed, and the expression is still undefined. Thus the domain of fog consists of only those inputs in the
domain of g that produce outputs from g belonging to the domain of f. Note that the domain of f composed with g is
the set of all x such that x is in the domain of g and g(x) is in the domain of f.

domain of a composite function

The domain of a composite function f(g(x)) is the set of those inputs x in the domain of g for which g(x) is in the
domain of f.

Given a function composition f(g(x)), determine its domain.
1. Find the domain of g
2. Find the domain of f.

3. Find those inputs x in the domain of g for which g(x) is in the domain of f. That is, exclude those inputs x from the
domain of g for which g(x) is not in the domain of f. The resulting set is the domain of fo g.

Example 8  Finding the Domain of a Composite Function

Find the domain of
5
x—1

4

(fog)(x) where f(x) = w3

and g(x) =

Solution  The domain of g(x) consists of all real numbers except x = % , since that input value would cause us to divide by

0. Likewise, the domain of f consists of all real numbers except 1. So we need to exclude from the domain of g(x) that value
of x for which g(x) = 1.

4
w2
4=3x—2
6 =3x
x=2

So the domain of fo g is the set of all real numbers except % and 2. This means that

x # % orx 2
We can write this in interval notation as

e
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Example 9  Finding the Domain of a Composite Function Involving Radicals

Find the domain of

(fog)(x) where f(x) = Vx + 2 and g(x) = V3 — x

Solution Because we cannot take the square root of a negative number, the domain of g is (—o0, 3]. Now we check
the domain of the composite function

(fog)®) = V3 —x+2or (fog)(x) = V5 —x

The domain of this function is (—o0, 5]. To find the domain of fo g, we ask ourselves if there are any further restrictions
offered by the domain of the composite function. The answer is no, since (—oo, 3] is a proper subset of the domain of
fog This means the domain of fo g is the same as the domain of g, namely, (—o0, 3].

Analysis  This example shows that knowledge of the range of functions (specifically the inner function) can also be helpful
in finding the domain of a composite function. It also shows that the domain of fo g can contain values that are not in
the domain of f, though they must be in the domain of g.

Tr)/ It #6
Find the domain of (fe g)(x) where f(x) =

x_zandg(x):Vx—l—AL

Decomposing a Composite Function into its Component Functions

In some cases, it is necessary to decompose a complicated function. In other words, we can write it as a composition
of two simpler functions. There may be more than one way to decompose a composite function, so we may choose the
decomposition that appears to be most expedient.

Example 10 Decomposing a Function
Write f(x) = V5 — x? as the composition of two functions.

Solution We are looking for two functions, g and h, so f(x) = g(h(x)). To do this, we look for a function inside a
function in the formula for f(x). As one possibility, we might notice that the expression 5 — x* is the inside of the square
root. We could then decompose the function as

h(x) =5 — x*and g(x) = Vx
We can check our answer by recomposing the functions.

ghx) =g6—x)=V5—x°

Iry It #7

4

Write f(X) = m

as the composition of two functions.

Access these online resources for additional instruction and practice with composite functions.

e Composite Functions (http://openstaxcollege.org/l/compfunction)

e Composite Function Notation Application (http://openstaxcollege.org/l/compfuncnot)
e (Composite Functions Using Graphs (http://openstaxcollege.org/l/compfuncgraph)

e Decompose Functions (http://openstaxcollege.org/l/decompfunction)

e Composite Function Values (http://openstaxcollege.org/l/compfuncvalue)
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3.4 SECTION EXERCISES

VERBAL

1. How does one find the domain of the quotient of 2. What is the composition of two functions, fo g?

two functions, g{?

3. If the order is reversed when composing two 4. How do you find the domain for the composition of
functions, can the result ever be the same as the two functions, fo g?
answer in the original order of the composition ? If
yes, give an example. If no, explain why not.

ALGEBRAIC

For the following exercises, determine the domain for each function in interval notation.

5. Given f(x) =x?+ 2xand g(x) =6 — x*% find f+ g, 6. Given f(x) = —3x* + xand g(x) =5, find f+ g,

f f
f—&/fgand ;. f—&fgand ;.
g g
7. Given f(x) = 2x* + 4x and g(x) = i, findf+ g 8. Given f(x) = po _1 ) and g(x) = ﬁ , find
7 —
f-gfgandy. f+gf-gfeand .
9. Given f(x) = 3x*and g(x) = Vx — 5, find f+ g, 10. Given f(x) = Vx and g(x) = |x — 3|, find fg
f
f-gfgand .
11. For the following exercise, find the indicated function given f(x) = 2x* + 1 and g(x) = 3x — 5.
a. f(g2)) b f(gx) e g(flx) d (gog)lx) e (fof)(—2)
For the following exercises, use each pair of functions to find f(g(x)) and g(f(x)). Simplify your answers.
12. f(x) = x>+ 1, g(x) = Vx+2 13 f(x) =Vx +2,gx)=x>+3
_ _ x+1
14. f(x) = |x], g(x) = 5x + 1 15, f(x) =V, g0) = =
_ 1 _7 -1 _2
16.f(x)—x_6,g(x)—x +6 17.f(x)_x_4,g(x) >4
For the following exercises, use each set of functions to find f(g(h(x))). Simplify your answers.
1
18. f(x) = x* 4 6, g(x) = x — 6, and h(x) = Vx 19. f(x) = x* 4+ 1,¢(x) = - ,and h(x) = x + 3
20. Given f(x) = %, and g(x) = x — 3, find the 21. Given f(x) = V2 — 4x and g(x) = —%, find the
following: following:
a. (fo g)(x) a. (gof)(x)
b. the domain of (fo g)(x) in interval notation b. the domain of (g0 f)(x) in interval notation
c. (gof)(x)
d. the domain of (gof)(x)

®

(5)
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1-— 1

. . . . 1
22. Given the functions f(x) = * and o(x) = ———, 23. Given functions p(x) = —— and m(x) = x? — 4,
iv unctions f(x) = g(x) T e p(x) v (x)

find the following: state the domain of each of the following functions
a. (gof)(x) usir;% xi)nterval notation:
b. (g2/)(2) g

b. p(m(x))

c. m(p(x))

24. Given functions g(x) = \/L_ and h(x) = x* — 9, state  25. For f(x) = % and g(x) = Vx — 1, write the domain
X

the domain of each of the following functions using of (f°g)(x) in interval notation.

interval notation.
q(x)

a. m

b. g(h(x))

c. h(q(x))

For the following exercises, find functions f(x) and g(x) so the given function can be expressed as h(x) = f(g(x)).

_ 2 —(+ _ E)3 __3 _ 4
26. h(x) = (x +2) 27. h(x) = (x —5) 28. h(x) = P 29. h(x) P
_ 3 :3# 32.hx:; :43x—2
30. h(x) =4 + Vx 3. hex) =\ 57— (%) G a) 33. h(x) e
4
34 k) = ( - ) 35. h(x) = V2x 16 36. h(x) = (5x — 1) 37 h() = V=T
—Xx
1 1 2
38. h(x) =|x*+7 . = =—— MDx —
(x)=|x*+7 39. h(x) x_ 27 40. h(x) <2x_ 3) a1, b x— 1
3x+4
GRAPHICAL
For the following exercises, use the graphs of f, shown in Figure 4, and g, shown in Figure 5, to evaluate the expressions.
fix) fix)
6 2 6 A
4 4

Figure 4 Figure 5

a2. f(g(3)) 43. f(g(1)) a4, g(f(1)) 45. g((0))
46. f(f(5)) 47. f(f(4)) 48. g(g(2)) 49. g(g(0))
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For the following exercises, use graphs of f(x), shown in Figure 6, g(x), shown in Figure 7, and h(x), shown in Figure 8,
to evaluate the expressions.

fx) fx)
A A
5+ 5+
4+ 4+
5 h{x) 51
8(x)
2+ 2+
1 1
<~ 1ttt >x <~ —t—F—f—t+—F+—F+—+>x <~ —t—F+—fF—t+—F+—F—+>x
-4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 2 3 4
' ~ly ' ' ~ly ' ' ~ly '
Figure 6 Figure 7 Figure 8
50. g(f(1)) 51. g(f(2)) 52. f(g(4)) 53. f(g(1))
54. f(h(2)) 55. h(f(2)) 56. f(g(h(4))) 57. f(g(f(=2)))

NUMERIC

For the following exercises, use the function values for fand g shown in Table 3 to evaluate each expression.

x 0 1 2 3 4 5 6 7 8

fx) 7 5 8 4 0 2
g® 9 5 6 2 1 8 7 3 4
Table 3
58. f(g(8)) 59. (g(5)) 60. g(f(5)) 61. g(f(3))
62. f(f(4)) 63. f(f(1)) 64. g(g(2)) 65. g(g(6))

For the following exercises, use the function values for fand g shown in Table 4 to evaluate the expressions.

x -3 =2 -1 0 1 2 3

f(x) 11 9 7 5 3 1 —1
glx) -8 -3 0 1 0 -3 -8
Table 4
66. (fo2)(1) 67. (fo£)(2) 68. (gof)(2)
69. (g2 /)(3) 70. (gog)(1) . (fof)(3)

For the following exercises, use each pair of functions to find f(g(0)) and g(f(0)).

72, f(x) = 4x + 8, g(x) =7 — & 73. f(x) = 5x+ 7, g(x) = 4 — 2x*
78, f(x) = Vx 1 4, gx) = 12 — x° 75. f(x) = ﬁ,g(x) —4x+3

For the following exercises, use the functions f(x) = 2x*> + 1 and g(x) = 3x + 5 to evaluate or find the composite
function as indicated.

6. f(4(2)) 7. f(g() 78. 9(f(— 3)) 79. (g°g)(x)
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EXTENSIONS

For the following exercises, use f(x) = x* + 1 and g(x) = Vx—1.

80. Find (fo g)(x) and (gof)(x). Compare the two answers.

82. What is the domain of (go f)(x)?
_1
84. Let f(x) = e
a. Find (fof)(x).

81. Find (fo£)(2) and (gof)(2).
83. What is the domain of (fo g)(x)?

b. Is (fo f)(x) for any function fthe same result as the answer to part (a) for any function ? Explain.

For the following exercises, let F(x) = (x + 1)°, f(x) = x°, and g(x) = x + L.

85. True or False: (g°f)(x) = F(x).

86. True or False: (fo g)(x) = F(x).

For the following exercises, find the composition when f(x) = x? 4+ 2 for all x > 0 and g(x) = V'x — 2.

87. (f°2)(6); (g°/)(6)

REAL-WORLD APPLICATIONS

90. The function D(p) gives the number of items
that will be demanded when the price is p. The
production cost C(x) is the cost of producing x
items. To determine the cost of production when the
price is $6, you would do which of the following ?
a. Evaluate D(C(6)).
b. Evaluate C(D(6)).
¢. Solve D(C(x)) = 6.
d. Solve C(D(p)) = 6.

92. A store offers customers a 30 % discount on the
price x of selected items. Then, the store takes off
an additional 15 % at the cash register. Write a price
function P(x) that computes the final price of the
item in terms of the original price x. (Hint: Use
function composition to find your answer.)

94. A forest fire leaves behind an area of grass burned
in an expanding circular pattern. If the radius of
the circle of burning grass is increasing with time
according to the formula r(t) = 2t + 1, express the
area burned as a function of time, ¢ (minutes).

96. The radius 7, in inches, of a spherical balloon is

related to the volume, V, by n(V) = Y i—‘; Air is
pumped into the balloon, so the volume after ¢
seconds is given by V() = 10 + 20¢.

a. Find the composite function r(V(#)).

b. Find the exact time when the radius reaches
10 inches.

88. (g°f)(a); (fog)(a)

89. (fog)(11); (gof)(11)

91. The function A(d) gives the pain level on a scale of 0
to 10 experienced by a patient with d milligrams of
a pain- reducing drug in her system. The milligrams
of the drug in the patient’s system after  minutes is
modeled by m(t). Which of the following would you
do in order to determine when the patient will be at
a pain level of 4?

a. Evaluate A(m(4)).
b. Evaluate m(A(4)).
¢. Solve A(m(t)) = 4.
d. Solve m(A(d)) = 4.

93. A rain drop hitting a lake makes a circular ripple. If
the radius, in inches, grows as a function of time in
minutes according to r(t) = 25Vt + 2, find the area
of the ripple as a function of time. Find the area of
the ripple at t = 2.

95. Use the function you found in the previous exercise
to find the total area burned after 5 minutes.

97. The number of bacteria in a refrigerated food
product is given by

N(T)=23T?— 56T+ 1,3 < T < 33,

where T is the temperature of the food. When

the food is removed from the refrigerator, the
temperature is given by T(f) = 5¢ + 1.5, where t is
the time in hours.

a. Find the composite function N(T(¢)).

b. Find the time (round to two decimal places) when
the bacteria count reaches 6,752.
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LEARNING OBJECTIVES

In this section, you will:

e (raph functions using vertical and horizontal shifts.

e (raph functions using reflections about the x-axis and the y-axis.

e Determine whether a function is even, odd, or neither from its graph.
e (raph functions using compressions and stretches.

e Combine transformations.

3.5 TRANSFORMATION OF FUNCTIONS

Figure 1 (credit: "Misko"/Flickr)

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us. When
we tilt the mirror, the images we see may shift horizontally or vertically. But what happens when we bend a flexible
mirror? Like a carnival funhouse mirror, it presents us with a distorted image of ourselves, stretched or compressed
horizontally or vertically. In a similar way, we can distort or transform mathematical functions to better adapt them to
describing objects or processes in the real world. In this section, we will take a look at several kinds of transformations.

Graphing Functions Using Vertical and Horizontal Shifts

Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs,
and equations. One method we can employ is to adapt the basic graphs of the toolkit functions to build new models
for a given scenario. There are systematic ways to alter functions to construct appropriate models for the problems
we are trying to solve.

Identifying Vertical Shifts

One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left. The
simplest shift is a vertical shift, moving the graph up or down, because this transformation involves adding a positive
or negative constant to the function. In other words, we add the same constant to the output value of the function
regardless of the input. For a function g(x) = f(x) + k, the function f(x) is shifted vertically k units. See Figure 2 for
an example.
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S

Figure 2 Vertical shift by k = 1 of the cube root function f(x) = \/x.

To help you visualize the concept of a vertical shift, consider that y = f(x). Therefore, f(x) + k is equivalent to y + k.

Every unit of y is replaced by y + k, so the y-value increases or decreases depending on the value of k. The result is a
shift upward or downward.

vertical shift

Given a function f(x), a new function g(x) = f(x) + k, where k is a constant, is a vertical shift of the function

f(x). All the output values change by k units. If k is positive, the graph will shift up. If k is negative, the graph
will shift down.

Example 1  Adding a Constant to a Function

To regulate temperature in a green building, airflow vents near the roof open and close throughout the day. Figure
3 shows the area of open vents V (in square feet) throughout the day in hours after midnight, t. During the summer,
the facilities manager decides to try to better regulate temperature by increasing the amount of open vents by 20
square feet throughout the day and night. Sketch a graph of this new function.

300

|

N
=)
———

\

\

50 \
|

-4 4 12 16 20 24 28

Figure 3

Solution  We can sketch a graph of this new function by adding 20 to each of the output values of the original function.
This will have the effect of shifting the graph vertically up, as shown in Figure 4.

N
=3
e ——

Figure 4
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Notice that in Figure 4, for each input value, the output value has increased by 20, so if we call the new function S(¥),
we could write
S(t) = V() + 20

This notation tells us that, for any value of t, S(f) can be found by evaluating the function V at the same input and
then adding 20 to the result. This defines S as a transformation of the function V, in this case a vertical shift up 20
units. Notice that, with a vertical shift, the input values stay the same and only the output values change. See Table 1.

t 0 8 10 17 19 24
V) 0 0 220 220 0 0
S@) 20 20 240 240 20 20

Table 1

Given a tabular function, create a new row to represent a vertical shift.

1. Identify the output row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each output cell. Add a positive value for up or a negative value for down.

Example 2  Shifting a Tabular Function Vertically
A function f(x) is given in Table 2. Create a table for the function g(x) = f(x) — 3.

X 2 4 6 8
f(x) 1 3 7 11
Table 2

Solution The formula g(x) = f(x) — 3 tells us that we can find the output values of g by subtracting 3 from the output
values of f. For example:

f2)=1 Given
gx) =f(x) — 3 Given transformation
8(2)=f2) -3

=1-3

=2

Subtracting 3 from each f(x) value, we can complete a table of values for g(x) as shown in Table 3.

X 2 4 6 8
f(x) 1 3 7 11
g(x) -2 0 4 8

Table 3

AWZW; As with the earlier vertical shift, notice the input values stay the same and only the output values change.

Iry It #1

The function h(t) = —4.9¢* + 30¢ gives the height h of a ball (in meters) thrown upward from the ground after ¢ seconds.
Suppose the ball was instead thrown from the top of a 10-m building. Relate this new height function b(¢) to h(t), and
then find a formula for b(¢).
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Identifying Horizontal Shifts

We just saw that the vertical shift is a change to the output, or outside, of the function. We will now look at how changes
to input, on the inside of the function, change its graph and meaning. A shift to the input results in a movement of the
graph of the function left or right in what is known as a horizontal shift, shown in Figure 5.

fx)

A

AL X I

Figure 5 Horizontal shift of the function f(x) = /. Note that h = +1 shifts the graph to the left, that is, towards negative values of x.

For example, if f(x) = x?, then g(x) = (x — 2)* is a new function. Each input is reduced by 2 prior to squaring the
function. The result is that the graph is shifted 2 units to the right, because we would need to increase the prior input
by 2 units to yield the same output value as given in f.

horizontal shift

Given a function £, a new function g(x) = f(x — h), where h is a constant, is a horizontal shift of the function f. If
h is positive, the graph will shift right. If & is negative, the graph will shift left.

Example 3  Adding a Constant to an Input

Returning to our building airflow example from Figure 3, suppose that in autumn the facilities manager decides that
the original venting plan starts too late, and wants to begin the entire venting program 2 hours earlier. Sketch a graph
of the new function.

Solution We can set V(f) to be the original program and F(f) to be the revised program.
V(t) = the original venting plan
F(t) = starting 2 hrs sooner

In the new graph, at each time, the airflow is the same as the original function V was 2 hours later. For example, in
the original function V, the airflow starts to change at 8 a.m., whereas for the function F, the airflow starts to change
at 6 a.m. The comparable function values are V(8) = F(6). See Figure 6. Notice also that the vents first opened to 220
ft* at 10 a.m. under the original plan, while under the new plan the vents reach 220 ft* at 8 a.m., so V(10) = F(8).

In both cases, we see that, because F (f) starts 2 hours sooner, h = —2. That means that the same output values are
reached when F(t) = V(t — (-=2)) = V(t + 2).

I

Lett 2
\ e‘ > 1

-4 0] 4 12 16 20 24 28
0
0

Figure 6
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AWW: Note that V(t + 2) has the effect of shifting the graph to the left.

Horizontal changes or “inside changes” affect the domain of a function (the input) instead of the range and often seem
counterintuitive. The new function F(t) uses the same outputs as V(t), but matches those outputs to inputs 2 hours
earlier than those of V(t). Said another way, we must add 2 hours to the input of V to find the corresponding output
for F: F(t) = V(t + 2).

Given a tabular function, create a new row to represent a horizontal shift.

1. Identify the input row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each input cell.

Example 4  Shifting a Tabular Function Horizontally

A function f(x) is given in Table 4. Create a table for the function g(x) = f(x — 3).

x 2 4 6 8
fx) 1 3 7 11
Table 4
Solution The formula g(x) = f(x — 3) tells us that the output values of g are the same as the output value of f when
the input value is 3 less than the original value. For example, we know that f(2) = 1. To get the same output from the

function g, we will need an input value that is 3 larger. We input a value that is 3 larger for g(x) because the function
takes 3 away before evaluating the function f.

26 =5 - 3)
= f@)
=1

We continue with the other values to create Table 5.

x 5 7 9 11

x—3 2 4 6 8

fx) 1 3 7 11

g(x) 1 3 7 11
Table 5

The result is that the function g(x) has been shifted to the right by 3. Notice the output values for g(x) remain the same
as the output values for f(x), but the corresponding input values, x, have shifted to the right by 3. Specifically, 2 shifted
to 5, 4 shifted to 7, 6 shifted to 9, and 8 shifted to 11.

Analysis  Figure 7 represents both of the functions. We can see the horizontal shift in each point.

> X
-12-1086-4—2] 2 4 6 8 1012

Y
o f(x) o g(x) =flx—3)
Figure 7
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Example 5  Identifying a Horizontal Shift of a Toolkit Function

Figure 8 represents a transformation of the toolkit function f(x) = x2. Relate this new function g(x) to f(x), and then
find a formula for g(x).

fx)

A

T,

Figure 8

Solution Notice that the graph is identical in shape to the f(x) = x* function, but the x-values are shifted to the
right 2 units. The vertex used to be at (0,0), but now the vertex is at (2,0). The graph is the basic quadratic function
shifted 2 units to the right, so

g =flx—2)

Notice how we must input the value x = 2 to get the output value y = 0; the x-values must be 2 units larger because
of the shift to the right by 2 units. We can then use the definition of the f(x) function to write a formula for g(x)
by evaluating f(x — 2).

fl) =

g0 = flx —2)

g(x) =flx —2) = (x — 27

Analysis  To determine whether the shift is +2 or —2, consider a single reference point on the graph. For a quadratic,
looking at the vertex point is convenient. In the original function, f(0) = 0. In our shifted function, g(2) = 0. To
obtain the output value of 0 from the function f, we need to decide whether a plus or a minus sign will work to satisfy
g(2) = f(x — 2) = f(0) = 0. For this to work, we will need to subtract 2 units from our input values.

Example 6 Interpreting Horizontal versus Vertical Shifts
The function G(m) gives the number of gallons of gas required to drive m miles. Interpret G(m) + 10 and G(m + 10).

Solution  G(m) + 10 can be interpreted as adding 10 to the output, gallons. This is the gas required to drive m miles,
plus another 10 gallons of gas. The graph would indicate a vertical shift.

G(m + 10) can be interpreted as adding 10 to the input, miles. So this is the number of gallons of gas required to drive
10 miles more than m miles. The graph would indicate a horizontal shift.

Iry It #2

Given the function f(x) = Vx, graph the original function f(x) and the transformation g(x) = f(x + 2) on the same axes.
Is this a horizontal or a vertical shift? Which way is the graph shifted and by how many units?

Combining Vertical and Horizontal Shifts

Now that we have two transformations, we can combine them. Vertical shifts are outside changes that affect the output
(y-) axis values and shift the function up or down. Horizontal shifts are inside changes that affect the input (x-) axis
values and shift the function left or right. Combining the two types of shifts will cause the graph of a function to shift
up or down and right or left.
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Given a function and both a vertical and a horizontal shift, sketch the graph.

1. Identify the vertical and horizontal shifts from the formula.

2. The vertical shift results from a constant added to the output. Move the graph up for a positive constant and down
for a negative constant.

3. The horizontal shift results from a constant added to the input. Move the graph left for a positive constant and right
for a negative constant.

4. Apply the shifts to the graph in either order.

Example 7  Graphing Combined Vertical and Horizontal Shifts
Given f(x) = | x|, sketch a graph of h(x) = f(x + 1) — 3.

Solution The function fis our toolkit absolute value function. We know that this graph has a V shape, with the
point at the origin. The graph of / has transformed fin two ways: f(x + 1) is a change on the inside of the function,
giving a horizontal shift left by 1, and the subtraction by 3 in f(x + 1) — 3 is a change to the outside of the function,
giving a vertical shift down by 3. The transformation of the graph is illustrated in Figure 9.

Let us follow one point of the graph of f(x) = | x|.
« The point (0, 0) is transformed first by shifting left 1 unit: (0, 0) — (-1, 0)
o The point (-1, 0) is transformed next by shifting down 3 units: (—1, 0) — (-1, —3)

y
Ly =[x+
| | = |X
: i” ‘/{ ; y = |«
\\ 3T // y=|x+1|-3
\\ 2"/
174
:\ A : P

\

Figure 10 shows the graph of h.

TV)/ It #3
Given f(x) = | x|, sketch a graph of h(x) = f(x — 2) + 4.
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Example 8 Identifying Combined Vertical and Horizontal Shifts

Write a formula for the graph shown in Figure 11, which is a transformation of the toolkit square root function.

h(x)

A

4

Figure 11

Solution  The graph of the toolkit function starts at the origin, so this graph has been shifted 1 to the right and up 2.

In function notation, we could write that as
h(x) =f(x— 1) +2
Using the formula for the square root function, we can write

h(x)=Vx—1+2

AWS/V'S Note that this transformation has changed the domain and range of the function. This new graph has domain

[1, 00) and range [2, 00).

Tr)/ It #4

Write a formula for a transformation of the toolkit reciprocal function f(x) = i that shifts the function’s graph one
unit to the right and one unit up.

Graphing Functions Using Reflections about the Axes

Another transformation that can be applied to a function is a reflection over the x- or y-axis. A vertical reflection

reflects a graph vertically across the x-axis, while a horizontal reflection reflects a graph horizontally across the y-axis.

The reflections are shown in Figure 12.

y
\ A
. Hori7(lmta] f(x)
\ reflection )
\ Original
function
AN
N
N
~
~ .
4_// S~ Sf=x)
- C—— 2 x
S o Vertical
> (reflection
N
N\
\
\\*f( x)
|
1

Figure 12 Vertical and horizontal reflections of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph about the
x-axis. The horizontal reflection produces a new graph that is a mirror image of the base or original graph about the
y-axis.
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reflections

Given a function f(x), a new function g(x) = —f(x) is a vertical reflection of the function f(x), sometimes called a
reflection about (or over, or through) the x-axis.

Given a function f(x), a new function g(x) = f(—x) is a horizontal reflection of the function f(x), sometimes
called a reflection about the y-axis.

Given a function, reflect the graph both vertically and horizontally.

1. Multiply all outputs by —1 for a vertical reflection. The new graph is a reflection of the original graph about the x-axis.
2. Multiply all inputs by —1 for a horizontal reflection. The new graph is a reflection of the original graph about the
y-axis.

Example 9  Reflecting a Graph Horizontally and Vertically
Reflect the graph of s(f) = \V/t  a. vertically and b. horizontally.
Solution

a. Reflecting the graph vertically means that each output value will be reflected over the horizontal t-axis as shown
in Figure 13.

s(t) v(t)

A A

54 54

44 41

34 34

24 24

1+ +

e e b L e e B e e o e e e it e e S

S432-1,1 12345 24-32-1, N\l 2 3 45
fsz fsz \
7377 7377 : H

74,, 74,,

st sl
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Figure 13 Vertical reflection of the square root function
Because each output value is the opposite of the original output value, we can write
V(t) = —s(t) or V(t) = =Vt

Notice that this is an outside change, or vertical shift, that affects the output s(¢) values, so the negative sign
belongs outside of the function.

b. Reflecting horizontally means that each input value will be reflected over the vertical axis as shown in Figure 14.

s(t) H(1)
A A
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21 2+
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3l sl
4t 4l
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Figure 14 Horizontal reflection of the square root function
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Because each input value is the opposite of the original input value, we can write

H(t) =s(—t)or H(t) =V —t
Notice that this is an inside change or horizontal change that affects the input values, so the negative sign is on the
inside of the function.

Note that these transformations can affect the domain and range of the functions. While the original square root
function has domain [0, co) and range [0, 00), the vertical reflection gives the V() function the range (—oo, 0] and
the horizontal reflection gives the H(t) function the domain (—o0, 0].

Try It #5
Reflect the graph of f(x) = |x — 1| a. vertically and b. horizontally.

Example 10 Reflecting a Tabular Function Horizontally and Vertically

A function f(x) is given as Table 6. Create a table for the functions below.

a. g(x) = —f(x) b. h(x) =f(—x)

X 2 4 6 8
f(x) 1 3 7 11
Table 6

Solution

a. For g(x), the negative sign outside the function indicates a vertical reflection, so the x-values stay the same and
each output value will be the opposite of the original output value. See Table 7.

X 2 4 6 8
g(x) -1 -3 -7 —-11
Table 7

b. For h(x), the negative sign inside the function indicates a horizontal reflection, so each input value will be the
opposite of the original input value and the /(x) values stay the same as the f(x) values. See Table 8.

X -2 —4 -6 -8
h(x) 1 3 7 11
Table 8

Try It #6
A function f(x) is given as Table 9. Create a table for the functions below.
x -2 0 2 4
fx) 5 10 15 20
Table 9

a. g(x) = —f(%)
b. h(x) = f(—x)
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Example 11 Applying a Learning Model Equation

A common model for learning has an equation similar to k(f) = —27' 4 1, where k is the percentage of mastery that
can be achieved after ¢ practice sessions. This is a transformation of the function f(t) = 2 shown in Figure 15. Sketch
a graph of k(f).
f0)
A

Y
Figure 15

Solution  This equation combines three transformations into one equation.
o A horizontal reflection: f(—t) =27*
o A vertical reflection: —f(—f) = —27*
o A vertical shift: —f(—f) +1=—-2"4+1

We can sketch a graph by applying these transformations one at a time to the original function. Let us follow two
points through each of the three transformations. We will choose the points (0, 1) and (1, 2).

1. First, we apply a horizontal reflection: (0, 1) (—1, 2).
2. Then, we apply a vertical reflection: (0, —1) (1, —2).
3. Finally, we apply a vertical shift: (0, 0) (1, 1).
This means that the original points, (0,1) and (1,2) become (0,0) and (1,1) after we apply the transformations.

In Figure 16, the first graph results from a horizontal reflection. The second results from a vertical reflection. The third
results from a vertical shift up 1 unit.
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72,, 72,,
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(a) (b) (o)

Figure 16

/wam As a model for learning, this function would be limited to a domain of t > 0, with corresponding range [0, 1).

Iry It #7

Given the toolkit function f(x) = x%, graph g(x) = —f(x) and h(x) = f(—x). Take note of any surprising behavior for
these functions.
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Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting
the toolkit functions f(x) = x* or f(x) = |x| will result in the original graph. We say that these types of graphs are
symmetric about the y-axis. A function whose graph is symmetric about the y-axis is called an even function.

If the graphs of f(x) = x* or f(x) = % were reflected over both axes, the result would be the original graph, as shown
in Figure 17.
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(a) (b) ()

Figure 17 (a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function
(c) Horizontal and vertical reflections reproduce the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the origin
is called an odd function.

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example, f(x) = 2* is neither
even nor odd. Also, the only function that is both even and odd is the constant function f(x) = 0.

even and odd functions
A function is called an even function if for every input x: f(x) = f(—x)

The graph of an even function is symmetric about the y-axis.
A function is called an odd function if for every input x: f(x) = —f(—x)

The graph of an odd function is symmetric about the origin.

Given the formula for a function, determine if the function is even, odd, or neither.

1. Determine whether the function satisfies f(x) = f(—x). If it does, it is even.
2. Determine whether the function satisfies f(x) = —f(—x). If it does, it is odd.
3. If the function does not satisfy either rule, it is neither even nor odd.

Example 12 Determining whether a Function Is Even, Odd, or Neither
Is the function f(x) = x* + 2x even, odd, or neither?

Solution  Without looking at a graph, we can determine whether the function is even or odd by finding formulas for

the reflections and determining if they return us to the original function. Let’s begin with the rule for even functions.

flx) = (%) +2(—x) = —x* — 2x

This does not return us to the original function, so this function is not even. We can now test the rule for odd functions.

—flx) = —(—x* — 2x) = x> + 2x
Because —f(—x) = f(x), this is an odd function.
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Analyss - Consider the graph of f in Figure 18. Notice that the graph fx)

is symmetric about the origin. For every point (x, y) on the graph, the v/
corresponding point (—x, —y) is also on the graph. For example, (1, 3) is on z:
the graph of f, and the corresponding point (—1, —3) is also on the graph. AL

TI’)/ It #8
Is the function f(s) = s* + 3s* + 7 even, odd, or neither?

Graphing Functions Using Stretches and Compressions

Adding a constant to the inputs or outputs of a function changed the position of a graph with respect to the axes, but
it did not affect the shape of a graph. We now explore the effects of multiplying the inputs or outputs by some quantity.

We can transform the inside (input values) of a function or we can transform the outside (output values) of a function.
Each change has a specific effect that can be seen graphically.

Vertical Stretches and Compressions

When we multiply a function by a positive constant, we get a function whose graph is stretched or compressed
vertically in relation to the graph of the original function. If the constant is greater than 1, we get a vertical stretch;
if the constant is between 0 and 1, we get a vertical compression. Figure 19 shows a function multiplied by constant
factors 2 and 0.5 and the resulting vertical stretch and compression.

x
compression l

Figure 19 Vertical stretch and compression

vertical stretches and compressions

Given a function f(x), a new function g(x) = af(x), where a is a constant, is a vertical stretch or vertical
compression of the function f(x).

o Ifa > 1, then the graph will be stretched.
o If0 < a < 1, then the graph will be compressed.

o Ifa < 0, then there will be combination of a vertical stretch or compression with a vertical reflection.
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Given a function, graph its vertical stretch.
1. Identify the value of a.
2. Multiply all range values by a.

3. If a > 1, the graph is stretched by a factor of a.
If 0 < a < 1, the graph is compressed by a factor of a.
If a < 0, the graph is either stretched or compressed and also reflected about the x-axis.

Example 13 Graphing a Vertical Stretch
A function P(f) models the population of fruit flies. The graph is shown in Figure 20.

P(t)
A

Figure 20
A scientist is comparing this population to another population, Q, whose growth follows the same pattern, but is twice
as large. Sketch a graph of this population.
Solution Because the population is always twice as large, the new population’s output values are always twice the
original function’s output values. Graphically, this is shown in Figure 21.
If we choose four reference points, (0, 1), (3, 3), (6, 2) and (7, 0) we will multiply all of the outputs by 2.

The following shows where the new points for the new graph will be located.

Q1)
A
0 0,2 ° =
> 1 b
0,1) — ) /
(3,3)—3,6) . /
/
62)—64 \
(7,0) — (7,0) ! \
; 4
; Y
Figure 21
Symbolically, the relationship is written as
Q) = 2P()

This means that for any input ¢, the value of the function Q is twice the value of the function P. Notice that the effect
on the graph is a vertical stretching of the graph, where every point doubles its distance from the horizontal axis. The
input values, t, stay the same while the output values are twice as large as before.
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Given a tabular function and assuming that the transformation is a vertical stretch or compression, create a table for
a vertical compression.

1. Determine the value of a.
2. Multiply all of the output values by a.

Example 14 Finding a Vertical Compression of a Tabular Function

A function fis given as Table 10. Create a table for the function g(x) = % f(x).

X 2 4 6 8
f (x) 1 3 7 11
Table 10

Solution  The formula g(x) = % -f(x) tells us that the output values of g are half of the output values of fwith the same
inputs. For example, we know that f(4) = 3. Then

g =1fW=10=13

We do the same for the other values to produce Table 11.

X 2 4 6 8
1 3 7 11
gx 5 3 3 7
Table 11

AWZS/V'K The result is that the function g(x) has been compressed vertically by % Each output value is divided in half,
so the graph is half the original height.

Iry It #9

A function fis given as Table 12. Create a table for the function g(x) = % f(x).

x 2 4 6 8

flx) 12 16 20
Table 12

Example 15 Recognizing a Vertical Stretch

The graph in Figure 22 is a transformation of the toolkit function f(x) = x°. Relate this new function g(x) to f(x), and
then find a formula for g(x).

8x)

A

Y

Figure 22
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Solution  When trying to determine a vertical stretch or shift, it is helpful to look for a point on the graph that is
relatively clear. In this graph, it appears that g(2) = 2. With the basic cubic function at the same input, f(2) = 2* = 8.

Based on that, it appears that the outputs of g are i the outputs of the function fbecause g(2) = i f(2). From this we
can fairly safely conclude that g(x) = i f(x).
We can write a formula for g by using the definition of the function f.

800 = f@) = 1%

Iry It #10

Write the formula for the function that we get when we stretch the identity toolkit function by a factor of 3, and then
shift it down by 2 units.

Horizontal Stretches and Compressions

Now we consider changes to the inside of a function. When we multiply a function’s input by a positive constant, we
get a function whose graph is stretched or compressed horizontally in relation to the graph of the original function.
If the constant is between 0 and 1, we get a horizontal stretch; if the constant is greater than 1, we get a horizontal
compression of the function.

Y Horizontal

2 :
(2x)~ 10‘ compression

)/ j—

?4--»§Horizontal
i N e il L stretch

5 4 3 2 -l 12 3 1 5
Lo n s
Y

Figure 23

Given a function y = f(x), the form y = f(bx) results in a horizontal stretch or compression. Consider the function
y = x%. Observe Figure 23. The graph of y = (0.5x) is a horizontal stretch of the graph of the function y = x* by a factor
of 2. The graph of y = (2x)* is a horizontal compression of the graph of the function y = x? by a factor of 2.

horizontal stretches and compressions

Given a function f(x), a new function g(x) = f(bx), where b is a constant, is a horizontal stretch or horizontal
compression of the function f(x).

o If b > 1, then the graph will be compressed by %

« If 0 < b < 1, then the graph will be stretched by %

o If b < 0, then there will be combination of a horizontal stretch or compression with a horizontal reflection.

Given a description of a function, sketch a horizontal compression or stretch.

1. Write a formula to represent the function.
2. Set g(x) = f(bx) where b > 1 for a compression or 0 < b < 1 for a stretch.
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Example 16 Graphing a Horizontal Compression

Suppose a scientist is comparing a population of fruit flies to a population that progresses through its lifespan twice
as fast as the original population. In other words, this new population, R, will progress in 1 hour the same amount
as the original population does in 2 hours, and in 2 hours, it will progress as much as the original population does in
4 hours. Sketch a graph of this population.

Solution  Symbolically, we could write

R(1) = P(2),
R(2) = P(4), and in general,
R(t) = P(21).
See Figure 24 for a graphical comparison of the original population and the compressed population.
J) )
A A
: Qriginal : . .
p:)pu atl(n,}(t) 1 TdISIONITICU
4 4 opulation, R(t

2 4 5 6 7 2 4
1 1
1 1

Y Y

() (b)
Figure 24 (a) Original population graph (b) Compressed population graph

Analysis  Note that the effect on the graph is a horizontal compression where all input values are half of their original
distance from the vertical axis.

Example 17 Finding a Horizontal Stretch for a Tabular Function

A function f(x) is given as Table 13. Create a table for the function g(x) = f < %x)

X 2 4 6 8
f(x) 1 3 7 11
Table 13

Solution The formula g(x) :f< %x) tells us that the output values for g are the same as the output values for

the function f at an input half the size. Notice that we do not have enough information to determine g(2) because
g(2) :f<% . 2) = f(1), and we do not have a value for f(1) in our table. Our input values to g will need to be twice as

large to get inputs for f that we can evaluate. For example, we can determine g(4).

s =f(5-4)=f@=1

We do the same for the other values to produce Table 14.

X 4 8 12 16
gx) 1 3 7 11

Table 14
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Figure 25 shows the graphs of both of these sets of points.
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AWZM Because each input value has been doubled, the result is that the function g(x) has been stretched horizontally
by a factor of 2.

Example 18 Recognizing a Horizontal Compression on a Graph

Relate the function g(x) to f(x) in Figure 26.
fx)
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Figure 26

Solution  The graph of g(x) looks like the graph of f(x) horizontally compressed. Because f(x) ends at (6, 4) and g(x) ends at
(2, 4), we can see that the x-values have been compressed by %, because 6(%) = 2. We might also notice that g(2) = f(6)

and g(1) = f(3). Either way, we can describe this relationship as g(x) = f(3x). This is a horizontal compression by %

Analysis  Notice that the coefficient needed for a horizontal stretch or compression is the reciprocal of the stretch or
compression. So to stretch the graph horizontally by a scale factor of 4, we need a coefficient of i in our function: f ( ix)

This means that the input values must be four times larger to produce the same result, requiring the input to be larger,
causing the horizontal stretching.

Try It #11

Write a formula for the toolkit square root function horizontally stretched by a factor of 3.
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When combining transformations, it is very important to consider the order of the transformations. For example,
vertically shifting by 3 and then vertically stretching by 2 does not create the same graph as vertically stretching by
2 and then vertically shifting by 3, because when we shift first, both the original function and the shift get stretched,
while only the original function gets stretched when we stretch first.

When we see an expression such as 2f(x) + 3, which transformation should we start with? The answer here follows
nicely from the order of operations. Given the output value of f(x), we first multiply by 2, causing the vertical stretch,
and then add 3, causing the vertical shift. In other words, multiplication before addition.

Horizontal transformations are a little trickier to think about. When we write g(x) = f(2x + 3), for example, we have
to think about how the inputs to the function g relate to the inputs to the function f. Suppose we know f(7) = 12. What
input to g would produce that output? In other words, what value of x will allow g(x) = f(2x + 3) = 12? We would
need 2x + 3 = 7. To solve for x, we would first subtract 3, resulting in a horizontal shift, and then divide by 2, causing
a horizontal compression.

This format ends up being very difficult to work with, because it is usually much easier to horizontally stretch a graph
before shifting. We can work around this by factoring inside the function.

f(bx + p) :f(b<x+l—;>>

Let’s work through an example.

flx) = (2x + 4)
We can factor out a 2.

f) = Q2+ 2)y

Now we can more clearly observe a horizontal shift to the left 2 units and a horizontal compression. Factoring in this
way allows us to horizontally stretch first and then shift horizontally.

combining transformations
When combining vertical transformations written in the form af(x) + k, first vertically stretch by a and then
vertically shift by k.

When combining horizontal 1transformations written in the form f(bx + h), first horizontally shift by h and
then horizontally stretch by 7

When combining horizontal transformations written in the form f(b(x + h)), first horizontally stretch by 1
. . b
and then horizontally shift by h.

Horizontal and vertical transformations are independent. It does not matter whether horizontal or vertical
transformations are performed first.

Example 19 Finding a Triple Transformation of a Tabular Function

Given Table 15 for the function f(x), create a table of values for the function g(x) = 2f(3x) + 1.

X 6 12 18 24
f(x) 10 14 15 17
Table 15

Solution  There are three steps to this transformation, and we will work from the inside out. Starting with the horizontal
transformations, f(3x) is a horizontal compression by % , which means we multiply each x-value by % . See Table 16.

X 2 4 6 8
f (3x) 10 14 15 17
Table 16
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Looking now to the vertical transformations, we start with the vertical stretch, which will multiply the output values
by 2. We apply this to the previous transformation. See Table 17.

x 2 4 6 8
2f(3x) 20 28 30 34

Table 17

Finally, we can apply the vertical shift, which will add 1 to all the output values. See Table 18.

X 2 4 6 8
g(x) =2f(3x) + 1 21 29 31 35
Table 18

Example 20 Finding a Triple Transformation of a Graph
Use the graph of f(x) in Figure 27 to sketch a graph of k(x) = f ( %x + 1> - 3.

flx)
A

Figure 27

Solution  To simplify, let’s start by factoring out the inside of the function.

f<%x+ 1>—3:f<%(x+2)>—3

By factoring the inside, we can first horizontally stretch by 2, as indicated by the % on the inside of the function.

Remember that twice the size of 0 is still 0, so the point (0, 2) remains at (0, 2) while the point (2, 0) will stretch to
(4, 0). See Figure 28.
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Next, we horizontally shift left by 2 units, as indicated by x + 2. See Figure 29.
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Figure 29

Last, we vertically shift down by 3 to complete our sketch, as indicated by the —3 on the outside of the function. See

Figure 30.
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Figure 30

Access this online resource for additional instruction and practice with transformation of functions.

e Function Transformations (http://openstaxcollege.org/I/functrans)


http://openstaxcollege.org/l/functrans
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3.5 SECTION EXERCISES

VERBAL

1. When examining the formula of a function that is 2. When examining the formula of a function that is
the result of multiple transformations, how can you the result of multiple transformations, how can you
tell a horizontal shift from a vertical shift? tell a horizontal stretch from a vertical stretch?

3. When examining the formula of a function that 4. When examining the formula of a function that is
is the result of multiple transformations, how can the result of multiple transformations, how can you
you tell a horizontal compression from a vertical tell a reflection with respect to the x-axis from a
compression? reflection with respect to the y-axis?

5. How can you determine whether a function is odd
or even from the formula of the function?

ALGEBRAIC
For the following exercises, write a formula for the function obtained when the graph is shifted as described.

6. f(x) = Vx is shifted up 1 unit and to the left 2 units. 7. f(x) = |x| is shifted down 3 units and to the right
1 unit.

8. f(x) = i is shifted down 4 units and to the right 3 9. f(x) = % is shifted up 2 units and to the left 4 units.
units.

For the following exercises, describe how the graph of the function is a transformation of the graph of the original
function f.

10. y = f(x — 49) 1. y=f(x+43) 12 y=f(x+3)
13.y=f(x—4) 14. y=f(x)+5 15. y = f(x) + 8
16. y = f(x) — 2 17.y=f(x) =7 18.y=f(x—2)+3

19. y=f(x+4) — 1

For the following exercises, determine the interval(s) on which the function is increasing and decreasing.
20. f(x) =4(x+1)*—5 21. g(x) =5(x+3)*—2 2. a(x)=V—x+4
23. k(x) = —3Vx — 1

y GRAPHICAL
5“ For the following exercises, use the graph of f(x) = 2* shown in Figure 31 to
4 - sketch a graph of each transformation of f(x).
3,,
2/{
. 2. g(x)=2"+1 25, h(x) =2*—3
S432 112545
Lol [ 26. W(X) =x-1
& 73,, : H
e 74,,
st
\ For the following exercises, sketch a graph of the function as a transformation
Figure 31 of the graph of one of the toolkit functions.
2. f() =(t+1)*—3 28 h(x)=|x—1|+4

29. k(x) =(x—2)’ -1 30. m(t) =3+ Vt+2
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NUMERIC
31. Tabular representations for the functions f, g, and h are given below. Write g(x) and h(x) as transformations
of f(x).
x -2 -1 0 1
flo 2 -1 -3 1
x -1 0 1 2 3
gx) 2 -1 -3
x -2 -1 0
h(x) -1 0 -2 2 3

32. Tabular representations for the functions f, g, and h are given below. Write g(x) and h(x) as transformations

of f(x).
x -2 -1 0 1 2
fx) -3 4 2
x -3 -2 -1 0 1
gx) -1 -3 4 2 1
x -2 -1 0 1 2
h(x) -2 —4 3 1 0

For the following exercises, write an equation for each graphed function by using transformations of the graphs of
one of the toolkit functions.
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39. 40. y

For the following exercises, use the graphs of transformations of the square root function to find a formula for each
of the functions.
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For the following exercises, use the graphs of the transformed toolkit functions to write a formula for each of the
resulting functions.
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For the following exercises, determine whether the function is odd, even, or neither.

47. f(x) = 3x* 48. g(x) = Vx 49. h(x) = i + 3x

50. f(x) = (x — 2)* 51. g(x) = 2x* 52. h(x) =2x — x°
For the following exercises, describe how the graph of each function is a transformation of the graph of the original
function f.

53. g(x) = —f() 54. g(x) = f(—x) 55. g(x) = 4f(x) 56. g(x) = 6f(x)

57. g(x) = f(5x) 58. g(x) = f(2x) 59. g(x) = f(%x> 60. g(x) = f<%x>

61. g(x) = 3f(—x) 62. g(x) = —f(3%)

For the following exercises, write a formula for the function g that results when the graph of a given toolkit function
is transformed as described.

63. The graph of f(x) = | x| is reflected over the y-axis 64. The graph of f(x) = Vx is reflected over the x-axis

and horizontally compressed by a factor of i and horizontally stretched by a factor of 2.

65. The graph of f(x) = % is vertically compressed by a  66. The graph of f(x) = i is vertically stretched by a

factor of %, then shifted to the left 2 units and down factor of 8, then shifted to the right 4 units and up 2
units.

3 units.

68. The graph of f(x) = x? is horizontally stretched by a
factor of 3, then shifted to the left 4 units and down
3 units.

67. The graph of f(x) = x? is vertically compressed by a

factor of l, then shifted to the right 5 units and up
1 unit.

For the following exercises, describe how the formula is a transformation of a toolkit function. Then sketch a graph
of the transformation.

69. g(x) =4(x+1)* -5 70. g(x) =5(x +3)* — 2 7. h(x) = —2|x — 4| + 3
72 k(x) = —3Vx — 1 73. m(x) = % x3 74. n(x) = %|x —2|
3 3
75. p(x) = (%x) -3 76. q(x) = Gx) +1 7. a(x) =V —-x+4
For the following exercises, use the graph in Figure 32 to sketch the given transformations.
y
A
101
gl
6

AT
vV

Y

Figure 32

78. g(x) = f(x) — 2 79. g(x) = —f(x) 80. g(x) =f(x+1) 81. g(x) =f(x —2)
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LEARNING OBJECTIVES

In this section you will;
e Graph an absolute value function.
e Solve an absolute value equation.

3.6 ABSOLUTE VALUE FUNCTIONS

Figure 1 Distances in deep space can be measured in all directions. As such, it is useful to consider distance in terms of absolute values. (credit: “s58y”/Flickr)

Until the 1920s, the so-called spiral nebulae were believed to be clouds of dust and gas in our own galaxy, some tens
of thousands of light years away. Then, astronomer Edwin Hubble proved that these objects are galaxies in their own
right, at distances of millions of light years. Today, astronomers can detect galaxies that are billions of light years away.
Distances in the universe can be measured in all directions. As such, it is useful to consider distance as an absolute
value function. In this section, we will continue our investigation of absolute value functions.

Understanding Absolute Value

Recall that in its basic form f(x) = | x|, the absolute value function, is one of our toolkit functions. The absolute value
function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically,
for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value
functions to solve some kinds of real-world problems.

absolute value function
The absolute value function can be defined as a piecewise function

x if x>0
f(x):|x|:{—x if x<0

Example 1  Using Absolute Value to Determine Resistance

Electrical parts, such as resistors and capacitors, come with specified values of their operating parameters: resistance,
capacitance, etc. However, due to imprecision in manufacturing, the actual values of these parameters vary somewhat
from piece to piece, even when they are supposed to be the same. The best that manufacturers can do is to try to
guarantee that the variations will stay within a specified range, often +1%, +-5%, or £10%.

Suppose we have a resistor rated at 680 ohms, £5%. Use the absolute value function to express the range of possible
values of the actual resistance.

Solution We can find that 5% of 680 ohms is 34 ohms. The absolute value of the difference between the actual and
nominal resistance should not exceed the stated variability, so, with the resistance R in ohms,

|R —680| < 34

Try It #7
Students who score within 20 points of 80 will pass a test. Write this as a distance from 80 using absolute value notation.
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Graphing an Absolute Value Function

The most significant feature of the absolute value graph is the corner point at which the graph changes direction. This
point is shown at the origin in Figure 2.

y —
A U= |x|
54
4
3l
i
1+
EEEEENEEER NN
72,,
._:Jr,
‘‘‘‘‘ ..4,,
..... 5,,
Y
Figure 2

Figure 3 shows the graph of y = 2| x — 3| + 4. The graph of y = | x| has been shifted right 3 units, vertically stretched by
a factor of 2, and shifted up 4 units. This means that the corner point is located at (3, 4) for this transformed function.

Vertical stretch X 0% Up 4
\\‘ CETENTOTNG :
. st
: \.\ f \’X”
y= x| N 6%
\ Noi5\

7
Nt 7 V= lx =3
k) 1 Right 3
PRI 4 7 7
N1+ AY4
- f ‘\\//1 —> X
6 —-5-4-3 -2 —11 1.2.3 456
7
Figure 3

Example 2  Writing an Equation for an Absolute Value Function Given a Graph

Write an equation for the function graphed in Figure 4.

Figure 4

Solution The basic absolute value function changes direction at the origin, so this graph has been shifted to the right
3 units and down 2 units from the basic toolkit function. See Figure 5.
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Figure 5
We also notice that the graph appears vertically stretched, because the width of the final graph on a horizontal line is
not equal to 2 times the vertical distance from the corner to this line, as it would be for an unstretched absolute value
function. Instead, the width is equal to 1 times the vertical distance as shown in Figure 6.

7

Figure 6

From this information we can write the equation
f(x) = 2| x — 3| — 2, treating the stretch as a vertical stretch, or

f(x) =]2(x — 3)| — 2, treating the stretch as a horizontal compression.

Analysis  Note that these equations are algebraically equivalent—the stretch for an absolute value function can be
written interchangeably as a vertical or horizontal stretch or compression.

249

Q& A..
If we couldn’t observe the stretch of the function from the graphs, could we algebraically determine it?

Yes. If we are unable to determine the stretch based on the width of the graph, we can solve for the stretch factor by
putting in a known pair of values for x and f(x).
flx)=alx—3|-2
Now substituting in the point (1, 2)
2=a|1-3|-2

4 =2a
a=2

TV/V It #2
Write the equation for the absolute value function that is horizontally shifted left 2 units, is vertically flipped, and
vertically shifted up 3 units.
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Q& A...
Do the graphs of absolute value functions always intersect the vertical axis? The horizontal axis?

Yes, they always intersect the vertical axis. The graph of an absolute value function will intersect the vertical axis when the
input is zero.

No, they do not always intersect the horizontal axis. The graph may or may not intersect the horizontal axis, depending
on how the graph has been shifted and reflected. It is possible for the absolute value function to intersect the horizontal
axis at zero, one, or two points (see Figure 7).

54 S O SO PP TS 5,, L o 54 N
47/ : 41 4T :
: 1 34 :
2+ 2

i 1\/( /\
—F———— ————t— X <ttt ————F—> X <—+—— t —— }
il 12345 0 imnddngs Ll 123405 LThmy2cl 123 N

2 i 2 .—2,, 2. S T PEPOT SRR FRPRE SORPRE SPRRRE S 24 : 2 2 .—2,, 2. 2
b 3 decdedd 34 3 L 3 .

S4t - gt ‘ bt byt

Figure 7 (a) The absolute value function does not intersect the horizontal axis. (b) The absolute value function intersects the horizontal axis at one point. (c)
The absolute value function intersects the horizontal axis at two points.

Solving an Absolute Value Equation

In Other Types of Equations, we touched on the concepts of absolute value equations. Now that we understand a little
more about their graphs, we can take another look at these types of equations. Now that we can graph an absolute
value function, we will learn how to solve an absolute value equation. To solve an equation such as 8 = | 2x — 6|, we
notice that the absolute value will be equal to 8 if the quantity inside the absolute value is 8 or —8. This leads to two
different equations we can solve independently.

2x —6=8 or 2x —6=—8
2x =14 2x =—2
x=7 x=-—1

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify
numbers or points on a line that are at a specified distance from a given reference point.

An absolute value equation is an equation in which the unknown variable appears in absolute value bars. For example,

x| =4,
|2x—1|=3
|5x+2|—4=9
solutions to absolute value equations
For real numbers A and B, an equation of the form | A | = B, with B > 0, will have solutions when A = Bor A = —B.
If B < 0, the equation | A | = B has no solution.

Given the formula for an absolute value function, find the horizontal intercepts of its graph.

1. Isolate the absolute value term.
2. Use |A| = B to write A = B or —A = B, assuming B > 0.
3. Solve for x.
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Example 3  Finding the Zeros of an Absolute Value Function
For the function f(x) = |4x + 1| — 7, find the values of x such that f(x) = 0.

Solution
0=|4x+1|—7 Substitute 0 for f(x).
7=|4x+1| Isolate the absolute value on one side of the equation.
7=4x+1lor—7=4x+1 Break into two separate equations and solve.
6 =4x —8 =4x
6 -8
Ty T
The function outputs 0 when x = 1.5 or x = —2. See Figure 8.
Y
A
O f
Ne20 2050,
—2.59N5-1-05 | 0.5 1452 2.5 X
x where * here
flx)=0 fy=0
Y
Figure 8
TV)/ It #3

For the function f(x) = |2x — 1| — 3, find the values of x such that f(x) = 0.

Q& A...
Should we always expect two answers when solving | A | = B?

No. We may find one, two, or even no answers. For example, there is no solution to 2 + |3x — 5| = 1.

Access these online resources for additional instruction and practice with absolute value.

e (Graphing Absolute Value Functions (http://openstaxcollege.org/l/graphabsvalue)
e (raphing Absolute Value Functions 2 (http://openstaxcollege.org/l/graphabsvalue?)
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3.6 SECTION EXERCISES

VERBAL

1. How do you solve an absolute value equation?

3. When solving an absolute value function, the
isolated absolute value term is equal to a negative
number. What does that tell you about the graph of
the absolute value function?

ALGEBRAIC

5. Describe all numbers x that are at a distance of 4
from the number 8. Express this using absolute
value notation.

7. Describe the situation in which the distance that
point x is from 10 is at least 15 units. Express this
using absolute value notation.

. How can you tell whether an absolute value function

has two x-intercepts without graphing the function?

. How can you use the graph of an absolute value

function to determine the x-values for which the
function values are negative?

. Describe all numbers x that are at a distance of %

from the number —4. Express this using absolute
value notation.

. Find all function values f(x) such that the distance

from f(x) to the value 8 is less than 0.03 units.
Express this using absolute value notation.

For the following exercises, find the x- and y-intercepts of the graphs of each function.

0. f(x) =4lx — 3| +4
12. f(x) = —5|x + 2| + 15

15. f(x) = —|x — 9|+ 16

GRAPHICAL

10. f(x) = —-3|x — 2| —1

13. f(x)=2|x—1]—6

M. f(x)=—2/x+1|+6

14 f(x) =|—2x+1|—13

For the following exercises, graph the absolute value function. Plot at least five points by hand for each graph.

16. y=|x— 1| 17.y=|x+1]|

18.y=|x|+1

For the following exercises, graph the given functions by hand.

19. y=|x|—2 20. y = —| x|
2.y=—|x—3|-2
25, f(x) =2|x+ 3|+ 1

28. f(x) =|3x+9|+2

31.f(x):%|x+4|—3

23 f(x)=—|x—1]—2
26. f(x) =3|x—2|+3

29, f(x)=—|x—1]—3

2. y=—|x| -2
4. f(x)=—|x+3|+4
27. f(x) = |2x — 4] — 3

30. f(x) = —|x+ 4| =3
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TECHNOLOGY
32. Use a graphing utility to graph f(x) = 10| x — 2|

on the viewing window [0, 4]. Identify the
corresponding range. Show the graph.

33. Use a graphing utility to graph f(x) = —100| x| 4+ 100
on the viewing window [—5, 5]. Identify the
corresponding range. Show the graph.

For the following exercises, graph each function using a graphing utility. Specify the viewing window.

34. f(x) = —0.1/0.1(0.2 — x)| + 0.3

EXTENSIONS

For the following exercises, solve the inequality.

36. If possible, find all values of a such that there are no

x-intercepts for f(x) = 2|x + 1| + a.

REAL-WORLD APPLICATIONS

38.

40.

42

Cities A and B are on the same east-west line.
Assume that city A is located at the origin. If the
distance from city A to city B is at least 100 miles
and x represents the distance from city B to city A,
express this using absolute value notation.

Students who score within 18 points of the number
82 will pass a particular test. Write this statement
using absolute value notation and use the variable x
for the score.

The tolerance for a ball bearing is 0.01. If the true
diameter of the bearing is to be 2.0 inches and the
measured value of the diameter is x inches, express
the tolerance using absolute value notation.

35. f(x) =4 x 10°|x — (5 x 10°)| 4+ 2 x 10°

37. If possible, find all values of a such that there are no
y-intercepts for f(x) = 2| x + 1| + a.

39. The true proportion p of people who give a favorable
rating to Congress is 8% with a margin of error of
1.5%. Describe this statement using an absolute
value equation.

41. A machinist must produce a bearing that is within
0.01 inches of the correct diameter of 5.0 inches.
Using x as the diameter of the bearing, write this
statement using absolute value notation.
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LEARNING OBJECTIVES

In this section, you will:

e \Verify inverse functions.

e Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.
e Find or evaluate the inverse of a function.

e Use the graph of a one-to-one function to graph its inverse function on the same axes.

3.7 INVERSE FUNCTIONS

A reversible heat pump is a climate-control system that is an air conditioner and a heater in a single device. Operated
in one direction, it pumps heat out of a house to provide cooling. Operating in reverse, it pumps heat into the building
from the outside, even in cool weather, to provide heating. As a heater, a heat pump is several times more efficient than
conventional electrical resistance heating.

If some physical machines can run in two directions, we might ask whether some of the function “machines” we have
been studying can also run backwards. Figure 1 provides a visual representation of this question. In this section, we

will consider the reverse nature of functions.
H
?

3 x

y

Figure 1 Can a function “machine” operate in reverse?

X

Verifying That Two Functions Are Inverse Functions
Suppose a fashion designer traveling to Milan for a fashion show wants to know what the temperature will be. He is
not familiar with the Celsius scale. To get an idea of how temperature measurements are related, he asks his assistant,
Betty, to convert 75 degrees Fahrenheit to degrees Celsius. She finds the formula
C=2(F-32)
and substitutes 75 for F to calculate
8(75 —32) ~ 24°C.

Knowing that a comfortable 75 degrees Fahrenheit is about 24 degrees Celsius, he sends his assistant the week’s weather
forecast from Figure 2 for Milan, and asks her to convert all of the temperatures to degrees Fahrenheit.

Mon Tue Web Thu

26°C | 19°C 29°C | 19°C 30°C | 20°C 26°C | 18°C
Figure 2
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At first, Betty considers using the formula she has already found to complete the conversions. After all, she knows her
algebra, and can easily solve the equation for F after substituting a value for C. For example, to convert 26 degrees
Celsius, she could write

F:2@%+&2zm

After considering this option for a moment, however, she realizes that solving the equation for each of the temperatures
will be awfully tedious. She realizes that since evaluation is easier than solving, it would be much more convenient to
have a different formula, one that takes the Celsius temperature and outputs the Fahrenheit temperature.

The formula for which Betty is searching corresponds to the idea of an inverse function, which is a function for which
the input of the original function becomes the output of the inverse function and the output of the original function
becomes the input of the inverse function.

Given a function f(x), we represent its inverse as f ~(x), read as “ finverse of x.” The raised —1 is part of the notation.
It is not an exponent; it does not imply a power of —1. In other words, f ~!(x) does not mean L because -1 is the
reciprocal of fand not the inverse. f® f®

The “exponent-like” notation comes from an analogy between function composition and multiplication: just as a™!
a =1 (1 is the identity element for multiplication) for any nonzero number g, so f * o f equals the identity function,
that is,

(e N =) =" =x
This holds for all x in the domain of f. Informally, this means that inverse functions “undo” each other. However, just
as zero does not have a reciprocal, some functions do not have inverses.

Given a function f(x), we can verify whether some other function g(x) is the inverse of f(x) by checking whether either
g(f(x) = x or f(g(x)) = x is true. We can test whichever equation is more convenient to work with because they are
logically equivalent (that is, if one is true, then so is the other.)

For example, y =4xand y = ix are inverse functions.

(F o) =f (40 = ; (49 = x

and
(fefH(x) :f<ix> = 4<ix> —x

A few coordinate pairs from the graph of the function y = 4x are (=2, —8), (0, 0), and (2, 8). A few coordinate pairs
from the graph of the function y = ix are (—8, —2), (0, 0), and (8, 2). If we interchange the input and output of each

coordinate pair of a function, the interchanged coordinate pairs would appear on the graph of the inverse function.

inverse function

For any one-to-one function f(x) = y, a function f ' (x) is an inverse function of f if f ~'(y) = x. This can also be
written as f '(f(x)) = x for all x in the domain of f. It also follows that f (f '(x)) = x for all x in the domain of f
if f ' is the inverse of f .

The notation f ' is read “ f inverse.” Like any other function, we can use any variable name as the input for f ',
so we will often write f ~'(x), which we read as “f inverse of x.” Keep in mind that

., 1
f(@#fw

and not all functions have inverses.
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Example 1 Identifying an Inverse Function for a Given Input-Output Pair

If for a particular one-to-one function f(2) = 4 and f(5) = 12, what are the corresponding input and output values
for the inverse function?

Solution  The inverse function reverses the input and output quantities, so if
f(2)=4,thenf '(4) =2
f(5) =12, then f ' (12) = 5.

Alternatively, if we want to name the inverse function g, then g(4) =2 and g(12) = 5.

AWWK Notice that if we show the coordinate pairs in a table form, the input and output are clearly reversed. See

Table 1.
xf(x)  (xgH)
(2,4) 4,2)
(5,12) (12, 5)
Table 1
Tl’)/ It #71

Given that h~'(6) = 2, what are the corresponding input and output values of the original function h?

Given two functions f(x) and g (x), test whether the functions are inverses of each other.

1. Determine whether f(g(x)) = x or g(f(x)) = x.
2. If either statement is true, then both are true, and g = f ' and f = g .. I either statement is false, then both are false,

andg#f 'and f#£ g

Example 2  Testing Inverse Relationships Algebraically

If f(x) = x—lk2 and g(x) = % —2,isg=f""
Solution g(f(x) = +_ 2
<x+2>
=x+2-2
=x
$O

g=f'andf=g""

This is enough to answer yes to the question, but we can also verify the other formula.

flgb) = —L—
—2+2

A P I

AWM'A’ Notice the inverse operations are in reverse order of the operations from the original function.

Tl’}/Ii'#Z
Iff(x) =x* —4and g(x) = Vx— 4 ,isg=f "2
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Example 3  Determining Inverse Relationships for Power Functions
If f(x) = x° (the cube function) and g(x) = %x, isg=f""

3
Solution  f(g(x) = ;—7 #*x

No, the functions are not inverses.

AWZM'A The correct inverse to the cube is, of course, the cube root V/x = x'3 that is, the one-third is an exponent,

not a multiplier.

Tr/v It #3
Iff(x) = (x —1)’and g(x) = Vx + 1,isg=/""?

Finding Domain and Range of Inverse Functions

The outputs of the function fare the inputs to f ', so the range of fis also the domain of f . Likewise, because the
inputs to fare the outputs of f ', the domain of fis the range of f ~'. We can visualize the situation as in Figure 3.

Domain of f Range of f
f)
- [
Range of ! Domain of f

Figure 3 Domain and range of a function and its inverse

When a function has no inverse function, it is possible to create a new function where that new function on a limited

domain does have an inverse function. For example, the inverse of f(x) = V'x is f "'(x) = % because a square “undoes”

a square root; but the square is only the inverse of the square root on the domain [0, c0), since that is the range of

flx) = Vx.

We can look at this problem from the other side, starting with the square (toolkit quadratic) function f(x) = x2. If we
want to construct an inverse to this function, we run into a problem, because for every given output of the quadratic
function, there are two corresponding inputs (except when the input is 0). For example, the output 9 from the quadratic
function corresponds to the inputs 3 and —3. But an output from a function is an input to its inverse; if this inverse
input corresponds to more than one inverse output (input of the original function), then the “inverse” is not a function
at all! To put it differently, the quadratic function is not a one-to-one function; it fails the horizontal line test, so it does
not have an inverse function. In order for a function to have an inverse, it must be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict the function to a part of its domain on which it is
one-to-one. For example, we can make a restricted version of the square function f(x) = x* with its range limited to
[0, 00), which is a one-to-one function (it passes the horizontal line test) and which has an inverse (the square-root
function).
If f(x) = (x — 1)*> on [1, o0), then the inverse function is f '(x) = V'x + 1.

o The domain of f = range of f ' = [1, o0).

o The domain of f ' = range of f = [0, c0).

Q& A...
Is it possible for a function to have more than one inverse?

No. If two supposedly different functions, say, g and s, both meet the definition of being inverses of another function
£, then you can prove that g = h. We have just seen that some functions only have inverses if we restrict the domain
of the original function. In these cases, there may be more than one way to restrict the domain, leading to different
inverses. However, on any one domain, the original function still has only one unique inverse.
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domain and range of inverse functions

The range of a function f(x) is the domain of the inverse function f ~'(x). The domain of f(x) is the range of f '(x).

Given a function, find the domain and range of its inverse.

1. If the function is one-to-one, write the range of the original function as the domain of the inverse, and write the
domain of the original function as the range of the inverse.

2. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted domain
becomes the range of the inverse function.

Example 4  Finding the Inverses of Toolkit Functions

Identify which of the toolkit functions besides the quadratic function are not one-to-one, and find a restricted domain
on which each function is one-to-one, if any. The toolkit functions are reviewed in Table 2. We restrict the domain
in such a fashion that the function assumes all y-values exactly once.

Constant Identity Quadratic Cubic Reciprocal
f@)=c f@) =x fl) =x? f) =x fo=1
Reciprocal squared Cube root Square root Absolute value
fe9 = ) =Vx )=V £ =1
Table 2

Solution The constant function is not one-to-one, and there is no domain (except a single point) on which it could
be one-to-one, so the constant function has no meaningful inverse.

The absolute value function can be restricted to the domain [0, 0o), where it is equal to the identity function.

The reciprocal-squared function can be restricted to the domain (0, o).

Analysis  We can see that these functions (if unrestricted) are not one-to-one by looking at their graphs, shown in Figure
4. They both would fail the horizontal line test. However, if a function is restricted to a certain domain so that it passes
the horizontal line test, then in that restricted domain, it can have an inverse.

fx)

Iry It #4

The domain of function fis (1, c0) and the range of function fis (—oo, —2). Find the domain and range of the inverse
function.
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Finding and Evaluating Inverse Functions

Once we have a one-to-one function, we can evaluate its inverse at specific inverse function inputs or construct a
complete representation of the inverse function in many cases.

Inverting Tabular Functions

Suppose we want to find the inverse of a function represented in table form. Remember that the domain of a function
is the range of the inverse and the range of the function is the domain of the inverse. So we need to interchange the

domain and range.

Each row (or column) of inputs becomes the row (or column) of outputs for the inverse function. Similarly, each row
(or column) of outputs becomes the row (or column) of inputs for the inverse function.

Example 5 Interpreting the Inverse of a Tabular Function

A function f(f) is given in Table 3, showing distance in miles that a car has traveled in t minutes. Find and interpret f ~'(70).

t (minutes) 30 50 70 90

f(® (miles) 20 40 60 70
Table 3

Solution  The inverse function takes an output of fand returns an input for f. So in the expression f ~'(70), 70 is an
output value of the original function, representing 70 miles. The inverse will return the corresponding input of the
original function f, 90 minutes, so f '(70) = 90. The interpretation of this is that, to drive 70 miles, it took 90 minutes.

Alternatively, recall that the definition of the inverse was that if f(a) = b, then f ~'(b) = a. By this definition, if we are given
f7'(70) = a, then we are looking for a value a so that f(a) = 70. In this case, we are looking for a f so that f(¢) = 70, which
is when t = 90.

TV/V It #5
Using Table 4, find and interpret a. f (60), and b. f ~'(60).

t (minutes) 30 50 60 70 90

f(® (miles) 20 40 50 60 70

Table 4

Evaluating the Inverse of a Function, Given a Graph of the Original Function

We saw in Functions and Function Notation that the domain of a function can be read by observing the horizontal
extent of its graph. We find the domain of the inverse function by observing the vertical extent of the graph of the
original function, because this corresponds to the horizontal extent of the inverse function. Similarly, we find the
range of the inverse function by observing the horizontal extent of the graph of the original function, as this is the
vertical extent of the inverse function. If we want to evaluate an inverse function, we find its input within its domain,
which is all or part of the vertical axis of the original function’s graph.

Given the graph of a function, evaluate its inverse at specific points.

1. Find the desired input on the y-axis of the given graph.
2. Read the inverse function’s output from the x-axis of the given graph.
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Example 6  Evaluating a Function and Its Inverse from a Graph at Specific Points

A function g(x) is given in Figure 5. Find g(3) and g'(3).

glx)
A

6

5

Figure 5
Solution To evaluate g(3), we find 3 on the x-axis and find the corresponding output value on the y-axis. The point
(3, 1) tells us that g(3) = 1.
To evaluate g7'(3), recall that by definition g~'(3) means the value of x for which g(x) = 3. By looking for the output value 3
on the vertical axis, we find the point (5, 3) on the graph, which means g(5) = 3, so by definition, g7'(3) = 5. See Figure 6.

gx)
A

6

5

1)

I

Figure 6

Tr/v It #6

Using the graph in Figure 6, a. find g7'(1), and b. estimate g~'(4).

Finding Inverses of Functions Represented by Formulas

Sometimes we will need to know an inverse function for all elements of its domain, not just a few. If the original
function is given as a formula—for example, y as a function of x—we can often find the inverse function by solving
to obtain x as a function of y.

Given a function represented by a formula, find the inverse.

1. Make sure fis a one-to-one function.
2. Solve for x.
3. Interchange x and y.

Example 7  Inverting the Fahrenheit-to-Celsius Function

Find a formula for the inverse function that gives Fahrenheit temperature as a function of Celsius temperature.

5
C=2(F-32
o (F—32)
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Solution

By solving in general, we have uncovered the inverse function. If

C=h(F) = g(F —32),
then
F=h'(C) = %C 132

In this case, we introduced a function k to represent the conversion because the input and output variables are
descriptive, and writing C™' could get confusing.

Try It #7

Solve for x in terms of y given y = %(x —5)

Example 8  Solving to Find an Inverse Function

Find the inverse of the function f(x) = 2 + 4.

x—3

Solution y=7 E 3 +4 Setup an equation.

y—4= p E 3 Subtract 4 from both sides.

x—3= }%} Multiply both sides by x — 3 and divide by y — 4.

x=—2 +3 Add 3 to both sides.
y—4
Sof ' (») = L—l— 3orf ' (x) = 2 + 3.
y—4 x—4

AWZM'/; The domain and range of f exclude the values 3 and 4, respectively. fand f ' are equal at two points but are
not the same function, as we can see by creating Table 5.

x 1 2 5  f)
fx) 3 2 5 y
Table 5

Example 9  Solving to Find an Inverse with Radicals
Find the inverse of the function f(x) =2 + Vx — 4.

Solution y=2+Vx—4
(y—2)Y=x—4
x=@p—-2) +4

Sof ! (x)=(x—2P7+4.

The domain of fis [4, 00). Notice that the range of fis [2, 00), so this means that the domain of the inverse function
fisalso [2, 00).

Analysis  The formula we found for f ' (x) looks like it would be valid for all real x. However, f " itself must have an
inverse (namely, f) so we have to restrict the domain of f ' to [2, o) in order to make f ' a one-to-one function. This
domain of f ' is exactly the range of f.
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Iry It #8

What is the inverse of the function f(x) =2 — \/x ? State the domains of both the function and the inverse function.

Finding Inverse Functions and Their Graphs

Now that we can find the inverse of a function, we will explore the graphs of functions and their inverses. Let us return

to the quadratic function f(x) = x? restricted to the domain [0, 00), on which this function is one-to-one, and graph
it as in Figure 7.

fx)

A

————+ et X
5-4-3-2-1 12345

Y

Figure 7 Quadratic function with domain restricted to [0, co).

Restricting the domain to [0, co) makes the function one-to-one (it will obviously pass the horizontal line test), so it
has an inverse on this restricted domain.

We already know that the inverse of the toolkit quadratic function is the square root function, that is, f x) = V.
What happens if we graph both fand f ' on the same set of axes, using the x-axis for the input to both fand f ' ?

We notice a distinct relationship: The graph of f ~'(x) is the graph of f(x) reflected about the diagonal line y = x, which
we will call the identity line, shown in Figure 8.

Figure 8 Square and square-root functions on the non-negative domain

This relationship will be observed for all one-to-one functions, because it is a result of the function and its inverse
swapping inputs and outputs. This is equivalent to interchanging the roles of the vertical and horizontal axes.

Example 10 Finding the Inverse of a Function Using Reflection about the Identity Line

Given the graph of f(x) in Figure 9, sketch a graph of f ' (x).
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Y
Figure 9

Solution This is a one-to-one function, so we will be able to sketch an inverse. Note that the graph shown has an
apparent domain of (0, co) and range of (—o0, 00), so the inverse will have a domain of (—o0, co) and range of (0, co).

If we reflect this graph over the line y = x, the point (1, 0) reflects to (0, 1) and the point (4, 2) reflects to (2, 4). Sketching
the inverse on the same axes as the original graph gives Figure 10.

Try It #9
Draw graphs of the functions fand f ' from Example 8.

Q& A...
Is there any function that is equal to its own inverse?

Yes. If f=f ', then f(f(x)) = x, and we can think of several functions that have this property. The identity function
does, and so does the reciprocal function, because

1
1=x
x

Any function f(x) = ¢ — x, where c is a constant, is also equal to its own inverse.

Access these online resources for additional instruction and practice with inverse functions.
e Inverse Functions (http://openstaxcollege.org/l/inversefunction)
e (One-to-one Functions (http://openstaxcollege.org/I/onetoone)
e Inverse Function Values Using Graph (http://openstaxcollege.org/l/inversfuncgraph)
e Restricting the Domain and Finding the Inverse (http://openstaxcollege.org/l/restrictdomain)


http://openstaxcollege.org/l/inversefunction
http://openstaxcollege.org/l/onetoone
http://openstaxcollege.org/l/inversfuncgraph
http://openstaxcollege.org/l/restrictdomain
http://openstaxcollege.org/l/restrictdomain
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3.7 SECTION EXERCISES

VERBAL

1. Describe why the horizontal line test is an effective
way to determine whether a function is one-to-one?

3. Can a function be its own inverse? Explain.

5. How do you find the inverse of a function
algebraically?

ALGEBRAIC

2. Why do we restrict the domain of the function
f(x) = x* to find the function’s inverse?

4. Are one-to-one functions either always increasing or
always decreasing? Why or why not?

6. Show that the function f(x) = a — x is its own inverse for all real numbers a.

For the following exercises, find f ~'(x) for each function.

7.f(x)=x+3 8 f(x)=x+5
3 _ o X
10. f(x) =3 —x nfw=_

9. f(x)=2—x

2 3
o fo= 242

For the following exercises, find a domain on which each function fis one-to-one and non-decreasing. Write the
domain in interval notation. Then find the inverse of frestricted to that domain.

13. f(x) = (x + 7)?

2x
1—x

16. Given f(x) = x* — 5and g(x) =
a. Find f(g(x)) and g (f(x)).

14, f(x) = (x — 6)?

15. f(x) =x*—5

b. What does the answer tell us about the relationship between f(x) and g(x)?

For the following exercises, use function composition to verify that f(x) and g(x) are inverse functions.

17. f(x) = Vx—1 andg(x) =x°+1

GRAPHICAL

x—5

18. f(x) = —3x +5and g(x) = =

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

19. f(x) = Vx
21. f(x) = —5x + 1

20. f(x) =V3x + 1
22, f(x) =x*—27

For the following exercises, determine whether the graph represents a one-to-one function.

23. y

>

151

e pt] / X
-25-20-15-10-5, [\ 10 1540 25
U O SO FRUOSE S, 'y W : :

i—15+
Le=204
L2514

A

24, y

————0— X
| 246810
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For the following exercises, use the graph of fshown in Figure 11.

Y
1 25, Find £(0).
5,,
) p 26. Solve f(x) = 0.
il
~————— : ———>x
—5-4-3-2 717177 1 2\3 4 5 27. Flndf—l(o)
fz\
& 73 5 3 H
e 28. Solve f '(x) = 0.
Y
Figure 11

For the following exercises, use the graph of the one-to-one function shown in Figure 12.

y 29, Sketch the graph of f .
A
104
2: 30. Find f(6) and f '(2).
4,, f N H H
2l
T N 6:0 X 31. If the complete graph of fis shown, find the domain
Loigd g L Off

32. If the complete graph of fis shown, find the range

Y

Figure 12 Off'
NUMERIC
For the following exercises, evaluate or solve, assuming that the function fis one-to-one.
33. If f(6) = 7, find f (7). 34. If f(3) =2, find f '(2).
35. If f '(—4) = —8, find f(—8). 36. If f'(—2) = —1, find f(—1).

For the following exercises, use the values listed in Table 6 to evaluate or solve.

X 0 1 2 3 4 5 6 7 8 9
fx) 8 0 7 4 2 6 5 3 9 1
Table 6
37. Find f(1). 38. Solve f(x) = 3.
39. Find f '(0). 40. Solve f '(x) = 7.

41. Use the tabular representation of fin Table 7 to create a table for f ' (x).

x 3 6 9 13 14
fx) 1 4 7 12 16

Table 7
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For the following exercises, find the inverse function. Then, graph the function and its inverse.

22, f(x) = ﬁ

43. f(x)=x>—1

44. Find the inverse function of f(x) = ﬁ Use a graphing utility to find its domain and range. Write the domain

and range in interval notation.

REAL-WORLD APPLICATIONS

45. To convert from x degrees Celsius to y degrees
Fahrenheit, we use the formula f(x) = %x + 32.
Find the inverse function, if it exists, and explain

its meaning.

47. A car travels at a constant speed of 50 miles per hour.
The distance the car travels in miles is a function of
time, ¢, in hours given by d(f) = 50¢. Find the inverse
function by expressing the time of travel in terms of
the distance traveled. Call this function #(d). Find
#(180) and interpret its meaning.

46. The circumference C of a circle is a function of its
radius given by C(r) = 27r. Express the radius of a
circle as a function of its circumference. Call this
function #(C). Find r(367) and interpret its meaning.



CHAPTER 3 REVIEW 267

CHAPTER 3 REVIEW

absolute maximum the greatest value of a function over an interval
absolute minimum the lowest value of a function over an interval

average rate of change the difference in the output values of a function found for two values of the input divided by the
difference between the inputs

composite function the new function formed by function composition, when the output of one function is used as the input
of another

decreasing function a function is decreasing in some open interval if f(b) < f(a) for any two input values a and b in the given
interval where b > a

dependent variable an output variable

domain the set of all possible input values for a relation

even function a function whose graph is unchanged by horizontal reflection, f(x) = f(—x), and is symmetric about the y-axis
function a relation in which each input value yields a unique output value

horizontal compression a transformation that compresses a function’s graph horizontally, by multiplying the input by a
constant b > 1

horizontal line test a method of testing whether a function is one-to-one by determining whether any horizontal line
intersects the graph more than once

horizontal reflection a transformation that reflects a function’s graph across the y-axis by multiplying the input by —1

horizontal shift a transformation that shifts a function’s graph left or right by adding a positive or negative constant to the
input

horizontal stretch a transformation that stretches a function’s graph horizontally by multiplying the input by a constant
0<b<1

increasing function a function is increasing in some open interval if f(b) > f(a) for any two input values a and b in the given
interval where b > a

independent variable an input variable
input each object or value in a domain that relates to another object or value by a relationship known as a function

interval notation a method of describing a set that includes all numbers between a lower limit and an upper limit; the
lower and upper values are listed between brackets or parentheses, a square bracket indicating inclusion in the set, and a
parenthesis indicating exclusion

inverse function for any one-to-one function f(x), the inverse is a function f'(x) such that f '(f(x)) = x for all x in the
domain of f; this also implies that f(f '(x)) = x for all x in the domain of f '

local extrema collectively, all of a function’s local maxima and minima
local maximum a value of the input where a function changes from increasing to decreasing as the input value increases.
local minimum a value of the input where a function changes from decreasing to increasing as the input value increases.

odd function a function whose graph is unchanged by combined horizontal and vertical reflection, f(x) = — f(—x), and is
symmetric about the origin

one-to-one function a function for which each value of the output is associated with a unique input value
output each object or value in the range that is produced when an input value is entered into a function
piecewise function a function in which more than one formula is used to define the output

range the set of output values that result from the input values in a relation

rate of change the change of an output quantity relative to the change of the input quantity

relation a set of ordered pairs



268

CHAPTER 3 FUNCTIONS

set-builder notation a method of describing a set by a rule that all of its members obeys; it takes the form
{x| statement about x}

vertical compression a function transformation that compresses the functions graph vertically by multiplying the output by
aconstant0 <a <1

vertical line test a method of testing whether a graph represents a function by determining whether a vertical line intersects
the graph no more than once

vertical reflection a transformation that reflects a functions graph across the x-axis by multiplying the output by —1

vertical shift a transformation that shifts a function’s graph up or down by adding a positive or negative constant to
the output

vertical stretch a transformation that stretches a function’s graph vertically by multiplying the output by a constant a > 1

Constant function
Identity function
Absolute value function
Quadratic function
Cubic function

Reciprocal function

Reciprocal squared function

Square root function

Cube root function
Average rate of change

Composite function
Vertical shift
Horizontal shift
Vertical reflection
Horizontal reflection
Vertical stretch
Vertical compression
Horizontal stretch

Horizontal compression

f(x) = ¢, where c is a constant

flo)=x
fe) = x|
f)=x
f)=x
fo) =1
f=21

X
f)=Vx
f6) =Vx
Ay flx) - flx)
A_x N X, =X

(fog)x) = f(g(x))

g(x) = f(x) + k (up for k > 0)
g(x) = f(x — h) (right for h > 0)
§(x) = —f(x)

8(x) = f(=x)

gx) =af (x) (a>0)
gx)=af(x) (0<a<l)

g) =f(bx) (0<b <1

g(x) =f(bx) (b>1)
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3.1 Functions and Function Notation

A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value, or input,
leads to exactly one range value, or output. See Example 1 and Example 2.

Function notation is a shorthand method for relating the input to the output in the form y = f(x). See Example 3
and Example 4.

In tabular form, a function can be represented by rows or columns that relate to input and output values. See
Example 5.

To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of a function
can be evaluated by replacing the input variable with a given value. See Example 6 and Example 7.

To solve for a specific function value, we determine the input values that yield the specific output value. See
Example 8.

An algebraic form of a function can be written from an equation. See Example 9 and Example 10.
Input and output values of a function can be identified from a table. See Example 11.

Relating input values to output values on a graph is another way to evaluate a function. See Example 12.
A function is one-to-one if each output value corresponds to only one input value. See Example 13.

A graph represents a function if any vertical line drawn on the graph intersects the graph at no more than one point.
See Example 14.

The graph of a one-to-one function passes the horizontal line test. See Example 15.

3.2 Domain and Range

The domain of a function includes all real input values that would not cause us to attempt an undefined
mathematical operation, such as dividing by zero or taking the square root of a negative number.

The domain of a function can be determined by listing the input values of a set of ordered pairs. See Example 1.

The domain of a function can also be determined by identifying the input values of a function written as an equation.
See Example 2, Example 3, and Example 4.

Interval values represented on a number line can be described using inequality notation, set-builder notation, and
interval notation. See Example 5.

For many functions, the domain and range can be determined from a graph. See Example 6 and Example 7.

An understanding of toolkit functions can be used to find the domain and range of related functions. See Example 8,
Example 9, and Example 10.

A piecewise function is described by more than one formula. See Example 11 and Example 12.

A piecewise function can be graphed using each algebraic formula on its assigned subdomain. See Example 13.

3.3 Rates of Change and Behavior of Graphs

A rate of change relates a change in an output quantity to a change in an input quantity. The average rate of change is
determined using only the beginning and ending data. See Example 1.

Identifying points that mark the interval on a graph can be used to find the average rate of change. See Example 2.

Comparing pairs of input and output values in a table can also be used to find the average rate of change. See
Example 3.

An average rate of change can also be computed by determining the function values at the endpoints of an interval
described by a formula. See Example 4 and Example 5.

The average rate of change can sometimes be determined as an expression. See Example 6.

A function is increasing where its rate of change is positive and decreasing where its rate of change is negative. See
Example 7.

A local maximum is where a function changes from increasing to decreasing and has an output value larger (more
positive or less negative) than output values at neighboring input values.
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A local minimum is where the function changes from decreasing to increasing (as the input increases) and has an
output value smaller (more negative or less positive) than output values at neighboring input values.

Minima and maxima are also called extrema.
We can find local extrema from a graph. See Example 8 and Example 9.

The highest and lowest points on a graph indicate the maxima and minima. See Example 10.

3.4 Composition of Functions

We can perform algebraic operations on functions. See Example 1.

When functions are combined, the output of the first (inner) function becomes the input of the second (outer)
function.

The function produced by combining two functions is a composite function. See Example 2 and Example 3.

The order of function composition must be considered when interpreting the meaning of composite functions.
See Example 4.

A composite function can be evaluated by evaluating the inner function using the given input value and then
evaluating the outer function taking as its input the output of the inner function.

A composite function can be evaluated from a table. See Example 5.
A composite function can be evaluated from a graph. See Example 6.
A composite function can be evaluated from a formula. See Example 7.

The domain of a composite function consists of those inputs in the domain of the inner function that correspond to
outputs of the inner function that are in the domain of the outer function. See Example 8 and Example 9.

Just as functions can be combined to form a composite function, composite functions can be decomposed into
simpler functions.

Functions can often be decomposed in more than one way. See Example 10.

3.5 Transformation of Functions

A function can be shifted vertically by adding a constant to the output. See Example 1 and Example 2.
A function can be shifted horizontally by adding a constant to the input. See Example 3, Example 4, and Example 5.

Relating the shift to the context of a problem makes it possible to compare and interpret vertical and horizontal
shifts. See Example 6.

Vertical and horizontal shifts are often combined. See Example 7 and Example 8.

A vertical reflection reflects a graph about the x-axis. A graph can be reflected vertically by multiplying the output
by 1.

A horizontal reflection reflects a graph about the y-axis. A graph can be reflected horizontally by multiplying the
input by - 1.

A graph can be reflected both vertically and horizontally. The order in which the reflections are applied does not
affect the final graph. See Example 9.

A function presented in tabular form can also be reflected by multiplying the values in the input and output rows or
columns accordingly. See Example 10.

A function presented as an equation can be reflected by applying transformations one at a time. See Example 11.
Even functions are symmetric about the y-axis, whereas odd functions are symmetric about the origin.

Even functions satisfy the condition f (x) = f (—x).

Odd functions satisfy the condition f (x) = —f (—x).

A function can be odd, even, or neither. See Example 12.

A function can be compressed or stretched vertically by multiplying the output by a constant. See Example 13,
Example 14, and Example 15.

A function can be compressed or stretched horizontally by multiplying the input by a constant. See Example 16,
Example 17, and Example 18.
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o The order in which different transformations are applied does affect the final function. Both vertical and horizontal

transformations must be applied in the order given. However, a vertical transformation may be combined with a
horizontal transformation in any order. See Example 19 and Example 20.

3.6 Absolute Value Functions

« Applied problems, such as ranges of possible values, can also be solved using the absolute value function. See

Example 1.

The graph of the absolute value function resembles a letter V. It has a corner point at which the graph changes
direction. See Example 2.

In an absolute value equation, an unknown variable is the input of an absolute value function.

If the absolute value of an expression is set equal to a positive number, expect two solutions for the unknown
variable. See Example 3.

3.7 Inverse Functions

If g(x) is the inverse of f(x), then g(f (x)) = f(g(x)) = x. See Example 1, Example 2, and Example 3.
Each of the toolkit functions has an inverse. See Example 4.

For a function to have an inverse, it must be one-to-one (pass the horizontal line test).

A function that is not one-to-one over its entire domain may be one-to-one on part of its domain.
For a tabular function, exchange the input and output rows to obtain the inverse. See Example 5.
The inverse of a function can be determined at specific points on its graph. See Example 6.

To find the inverse of a formula, solve the equation y = f(x) for x as a function of y. Then exchange the labels x and y.
See Example 7, Example 8, and Example 9.

The graph of an inverse function is the reflection of the graph of the original function across the line y = x. See
Example 10.
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CHAPTER 3 REVIEW EXERCISES

FUNCTIONS AND FUNCTION NOTATION

For the following exercises, determine whether the relation is a function.

1.{(a, b), (¢, d), (e, d)}
2. {(5,2), (6, 1), (6,2), (4, 8)}

3. y2 4 4 = x, for x the independent variable and y the dependent variable

4. Is the graph in Figure 1 a function? y
A

>

 —25-20-15—

\
Figure 1

For the following exercises, evaluate the function at the indicated values: f(—3); f (2); f(—a); —f(a); f (a + h).
5. f(x) = —2x2 + 3x 6. f(x) =2[3x — 1]

For the following exercises, determine whether the functions are one-to-one.

7. f(x) = —3x+5 8. f(x) = |x — 3]

For the following exercises, use the vertical line test to determine if the relation whose graph is provided is a function.

9.

10. y

TR
f—F———

e

For the following exercises, graph the functions.

12, f(x) = [x + 1]

13. f(x) =x*—2

1. y

>

N
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For the following exercises, use Figure 2 to approximate the values.

L 14. f(2)
54 L :
4,, o B
; SN 15. f(—2)
\ i/
«—f——— H— x
EEEERNEERRE 16. If f(x) = —2, then solve for x.
_3——
:2: . 17. If f(x) = 1, then solve for x.
.
Figure 2

For the following exercises, use the function h(f) = —16¢2 + 80t to find the values.

. 12— hD o, @) = h(D
2—-1 a—1
DOMAIN AND RANGE
For the following exercises, find the domain of each function, expressing answers using interval notation.
2 x—3
20. f(x) = —— . f(x) = 57— 2. f(x) = Vx—6
3x +2 X —dx— 12 JO="Tr—

x+1 x< =2

23. h this pi ise function: =
3. Graph this piecewise function: f(x) {—Zx— 3 x> 2

RATES OF CHANGE AND BEHAVIOR OF GRAPHS

For the following exercises, find the average rate of change of the functions from x = 1 to x = 2.

24, f(x) =4x — 3 25. f(x) = 10x* + x 2. f(x) = — 2
x2

For the following exercises, use the graphs to determine the intervals on which the functions are increasing, decreasing,
or constant.

27. y 28. y 29, y
3 3 3
H i 10,, L N B H i 5,, L N B H i 5,,
H : 8,, H H B H : 4,, H H B H : 4,, S
6+ 3+ : 3t
+ : 21 . 2
A 1/‘ +
| Y -] e . - x
S5-4-3-2-1,| W24 —5—4 1 —/1” 11345 54324112345
H 3 _677 : : H 3 _377 : : H 3 _377 : :
A i8 44 4_/ 4 - H
PN 0 T O S . (SN0 T AT . sl
r ' r ' /

30. Find the local minimum of the function graphed in Exercise 27.

31. Find the local extrema for the function graphed in Exercise 28.
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32. For the graph in Figure 3, the domain of the y
function is [—3, 3]. The range is [—10, 10]. Find the B
absolute minimum of the function on this interval. A

33. Find the absolute maximum of the function graphed [
in Figure 3. Y x

Figure 3
COMPOSITION OF FUNCTIONS
For the following exercises, find (f° g)(x) and (g ° f)(x) for each pair of functions.
3. f(x) =4 —x, glx) = —4x 3. flx) =3x+2, gx) =5 — 6x 36. f(x) =x%+ 2x, g(x) =5x+1
37.f(x):Vx+2,g(x):% 38.f(x):x“2L3,g(x)= 1—x

For the following exercises, find (f° g) and the domain for (f° g)(x) for each pair of functions.

3. 100 = 211, g =+ 0100 = . g0 = L M) =1, g =V
2. f(x) = ﬁ ) =Va+1

For the following exercises, express each function H as a composition of two functions fand g where H(x) = (f° g)(x).

4 /2x—1 o 1
BHO =V W H) = o

TRANSFORMATION OF FUNCTIONS

For the following exercises, sketch a graph of the given function.

45. f(x) = (x — 3)? 46. f(x) = (x + 4)° 47. f(x) = Vx+5
48. f(x) = —x° 29, f(x) =V —x 50. f(x) =5V —x — 4
51. f(x) = 4[|x — 2| — 6] 52 f(x) = —(x+2)*— 1

For the following exercises, sketch the graph of the function g if the graph of the function fis shown in Figure 4.

A » 53. g(x) = f(x — 1)

I /T\ ﬁ | 54. g(x) = 3f(x)

Figure 4
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For the following exercises, write the equation for the standard function represented by each of the graphs below.

55. ¥ 56. y
A

For the following exercises, determine whether each function below is even, odd, or neither.

57. f(x) = 3* 58. g(x) = V/x 59. h(x) = + +3x

For the following exercises, analyze the graph and determine whether the graphed function is even, odd, or neither.

60.

L5
L2004

e

y

A

25201 5.

—154+
204
L9254

510152025

ABSOLUTE VALUE FUNCTIONS

For the following exercises, write an equation for the transformation of f(x) = | x|.

63. y

61. y

B 25 4
: 20,,
154
M 10,,

62.

5+
=10+

—15+
=20+
254

64.

65.

For the following exercises, graph the absolute value function.

66. f(x) = |x — 5]

67. f(x) = —|x — 3|

>

68. f(x) = |2x — 4|
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INVERSE FUNCTIONS
For the following exercises, find f ~'(x) for each function.
69. =9+410 - X
f( X 0. () =

For the following exercise, find a domain on which the function fis one-to-one and non-decreasing. Write the domain
in interval notation. Then find the inverse of f restricted to that domain.

. f(x) =x*+1

72. Given f(x) = x> — 5and g(x) = Vx+5:

a. Find f(g(x)) and g(f(x)).
b. What does the answer tell us about the relationship between f(x) and g(x)?

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

7. f0) =1 74 f(x) = —3x° + x 75. If£(5) = 2, find f '(2).

76. If (1) = 4, find f ~'(4).
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CHAPTER 3 PRACTICE TEST

For the following exercises, determine whether each of the following relations is a function.

1.y:2x+8 2. {(23 1)) (3) 2)) (_1) 1)) (0) _2)}
For the following exercises, evaluate the function f(x) = —3x* + 2x at the given input.
3. f(=2) 4. f(a)
5. Show that the function f(x) = —2(x — 1)’ + 3isnot g, Write the domain of the function f(x) = V3 — x in
one-to-one. interval notation.
. +1lif—2<x<3
7. Given f(x) = 2x* — 5x, find f(a + 1) — f(1). 8. Graph the function f(x) = { e T
f(b) — f(a)

9. Find the average rate of change of the function f(x) = 3 — 2x? + x by finding )
—a

For the following exercises, use the functions f(x) = 3 — 2x? + x and g(x) = V/x to find the composite functions.

10. (g f)(x) 1. (g°f)(1)

12. Express H(x) = V/5x2 — 3x asa composition of two functions, fand g, where ( f° g)(x) = H(x).

For the following exercises, graph the functions by translating, stretching, and/or compressing a toolkit function.

13.f(x) =Vx+6—1 14,f(x):L_1
X+2
For the following exercises, determine whether the functions are even, odd, or neither.

15. f(x) = —> + 9x° 16. f(x) = —> + 9x°
X X

17. f(x) = % 18. Graph the absolute value function
fl)=—=2|x—1|+3.

For the following exercises, find the inverse of the function.

19. f(x) =3x—5 20. f(x) = j_ -
x

For the following exercises, use the graph of g shown in Figure 1.

y 21. On what intervals is the function increasing?
A
5,,
4t 22. On what intervals is the function decreasing?
3,,
2,
3 {0 o 23. Approximate the local minimum of the function.
L 3.4 Express the answer as an ordered pair.
—2,,
3l
NI T 24. Approximate the local maximum of the function.

Express the answer as an ordered pair.

Figure 1
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For the following exercises, use the graph of the piecewise function shown in Figure 2.

y 25. Find f(2).

26. Find f(—2).

27. Write an equation for the piecewise function.

Y

Figure 2

For the following exercises, use the values listed in Table 1.

X 0 1 2 3 4 5 6 7 8
F(x) 1 3 5 7 9 11 13 15 17
Table 1
28. Find F(6). 29. Solve the equation F(x) = 5.
30. Is the graph increasing or decreasing on its domain? 31. Is the function represented by the graph one-to-one?

32. Find F '(15). 33. Given f(x) = —2x + 11, find f '(x).



Linear Functions

Figure 1 A bamboo forest in China (credit: “JFXie”/Flickr)

CHAPTER OUTLINE

4.1 Linear Functions
4.2 Modeling with Linear Functions
4.3 Fitting Linear Models to Data

Introduction

Imagine placing a plant in the ground one day and finding that it has doubled its height just a few days later. Although
it may seem incredible, this can happen with certain types of bamboo species. These members of the grass family are
the fastest-growing plants in the world. One species of bamboo has been observed to grow nearly 1.5 inches every hour.”
In a twenty-four hour period, this bamboo plant grows about 36 inches, or an incredible 3 feet! A constant rate of change,
such as the growth cycle of this bamboo plant, is a linear function.

Recall from Functions and Function Notation that a function is a relation that assigns to every element in the domain
exactly one element in the range. Linear functions are a specific type of function that can be used to model many

real-world applications, such as plant growth over time. In this chapter, we will explore linear functions, their graphs,
and how to relate them to data.

6 http://www.guinnessworldrecords.com/records-3000/fastest-growing-plant/ 279
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LEARNING OBJECTIVES

In this section, you will:

e Represent a linear function.

e Determine whether a linear function is increasing, decreasing, or constant.
e |nterpret slope as a rate of change.

e Write and interpret an equation for a linear function.

e Graph linear functions.

¢ Determine whether lines are parallel or perpendicular.

¢ \Write the equation of a line parallel or perpendicular to a given line.

41 LINEAR FUNCTIONS

Figure 1 Shanghai MagLev Train (credit: “kanegen”/Flickr)

Just as with the growth of a bamboo plant, there are many situations that involve constant change over time. Consider,
for example, the first commercial maglev train in the world, the Shanghai MagLev Train (Figure 1). It carries
passengers comfortably for a 30-kilometer trip from the airport to the subway station in only eight minutes.”

Suppose a maglev train travels a long distance, and that the train maintains a constant speed of 83 meters per second
for a period of time once it is 250 meters from the station. How can we analyze the train’s distance from the station as
a function of time? In this section, we will investigate a kind of function that is useful for this purpose, and use it to
investigate real-world situations such as the train’s distance from the station at a given point in time.

Representing Linear Functions

The function describing the train’s motion is a linear function, which is defined as a function with a constant rate of
change, that is, a polynomial of degree 1. There are several ways to represent a linear function, including word form,
function notation, tabular form, and graphical form. We will describe the train’s motion as a function using each
method.

Representing a Linear Function in Word Form

Let’s begin by describing the linear function in words. For the train problem we just considered, the following word
sentence may be used to describe the function relationship.

o The train’s distance from the station is a function of the time during which the train moves at a constant speed plus
its original distance from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of how quickly the dependent variable changes
with respect to the independent variable. The rate of change for this example is constant, which means that it is the
same for each input value. As the time (input) increases by 1 second, the corresponding distance (output) increases by
83 meters. The train began moving at this constant speed at a distance of 250 meters from the station.

7 http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm
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Representing a Linear Function in Function Notation

Another approach to representing linear functions is by using function notation. One example of function notation
is an equation written in the slope-intercept form of a line, where x is the input value, m is the rate of change, and b
is the initial value of the dependent variable.

Equation form y=mx+b
Function notation ~ f(x) =mx+ b
In the example of the train, we might use the notation D(f) in which the total distance D is a function of the time ¢. The

rate, m, is 83 meters per second. The initial value of the dependent variable b is the original distance from the station,
250 meters. We can write a generalized equation to represent the motion of the train.

D(t) = 83t + 250

Representing a Linear Function in Tabular Form

A third method of representing a linear function is through the use of a table. The relationship between the distance
from the station and the time is represented in Figure 2. From the table, we can see that the distance changes by 83
meters for every 1 second increase in time.

1second 1second 1 second

NN TN

t 0 1 2 3
D(t) 250 333 416 499

N NSNS

83 meters 83 meters 83 meters

Figure 2 Tabular representation of the function D showing selected input and output values

Q& A...
Can the input in the previous example be any real number?

No. The input represents time, so while nonnegative rational and irrational numbers are possible, negative real
numbers are not possible for this example. The input consists of non-negative real numbers.

Representing a Linear Function in Graphical Form

Another way to represent linear functions is visually, using a graph. We can use the function relationship from above,
D(f) = 83t + 250, to draw a graph, represented in Figure 3. Notice the graph is a line. When we plot a linear function,
the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the line. The point at which the input value is zero
is the vertical intercept, or y-intercept, of the line. We can see from the graph that the y-intercept in the train example
we just saw is (0, 250) and represents the distance of the train from the station when it began moving at a constant speed.

(S

o

o
-
R

400+
300+
2001
100+

Distance (m)

0 T T T T
Time (s)

Figure 3 The graph of D(f) = 83t + 250. Graphs of linear functions are lines because the rate of change is constant.

Notice that the graph of the train example is restricted, but this is not always the case. Consider the graph of the
line f(x) = 2x + 1. Ask yourself what numbers can be input to the function. In other words, what is the domain of
the function? The domain is comprised of all real numbers because any number may be doubled, and then have one
added to the product.
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linear function

A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form
of aline
fx)=mx+b

where b is the initial or starting value of the function (when input, x = 0), and m is the constant rate of change, or
slope of the function. The y-intercept is at (0, b).

Example 1  Using a Linear Function to Find the Pressure on a Diver

The pressure, P, in pounds per square inch (PSI) on the diver in Figure 4 depends upon her depth below the water
surface, d, in feet. This relationship may be modeled by the equation, P(d) = 0.434d + 14.696. Restate this function
in words.

Figure 4 (credit: lise Reijs and Jan-Noud Hutten)

Solution  To restate the function in words, we need to describe each part of the equation. The pressure as a function of
depth equals four hundred thirty-four thousandths times depth plus fourteen and six hundred ninety-six thousandths.

AWW; The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0 feet, which is the surface of the
water. The rate of change, or slope, is 0.434 PSI per foot. This tells us that the pressure on the diver increases 0.434 PSI
for each foot her depth increases.

Determining Whether a Linear Function Is Increasing, Decreasing, or Constant

The linear functions we used in the two previous examples increased over time, but not every linear function does. A
linear function may be increasing, decreasing, or constant. For an increasing function, as with the train example, the
output values increase as the input values increase. The graph of an increasing function has a positive slope. A line
with a positive slope slants upward from left to right as in Figure 5(a). For a decreasing function, the slope is negative.
The output values decrease as the input values increase. A line with a negative slope slants downward from left to right
as in Figure 5(b). If the function is constant, the output values are the same for all input values so the slope is zero. A
line with a slope of zero is horizontal as in Figure 5(c).
Increasing function Decreasing function Constant function

f() fx f(x)
A A

A

(a) (b) (c)
Figure 5
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increasing and decreasing functions

The slope determines if the function is an increasing linear function, a decreasing linear function, or a constant
function.

o f(x) = mx + bis an increasing function if m > 0.
o f(x) = mx + b is an decreasing function if m < 0.

o f(x) = mx + b is a constant function if m = 0.

Example 2  Deciding Whether a Function Is Increasing, Decreasing, or Constant

Some recent studies suggest that a teenager sends an average of 60 texts per day.” For each of the following scenarios,
find the linear function that describes the relationship between the input value and the output value. Then, determine
whether the graph of the function is increasing, decreasing, or constant.

a. The total number of texts a teen sends is considered a function of time in days. The input is the number of days,
and output is the total number of texts sent.

b. A teen has a limit of 500 texts per month in his or her data plan. The input is the number of days, and output is
the total number of texts remaining for the month.

c. A teen has an unlimited number of texts in his or her data plan for a cost of $50 per month. The input is the
number of days, and output is the total cost of texting each month.

Solution Analyze each function.

a. The function can be represented as f(x) = 60x where x is the number of days. The slope, 60, is positive so the
function is increasing. This makes sense because the total number of texts increases with each day.

b. The function can be represented as f(x) = 500 — 60x where x is the number of days. In this case, the slope is
negative so the function is decreasing. This makes sense because the number of texts remaining decreases each
day and this function represents the number of texts remaining in the data plan after x days.

c. The cost function can be represented as f(x) = 50 because the number of days does not affect the total cost. The
slope is 0 so the function is constant.

In the examples we have seen so far, we have had the slope provided for us. However, we often need to calculate the
slope given input and output values. Recall that given two values for the input, x, and x,, and two corresponding values
for the output, y, and y,—which can be represented by a set of points, (x,, y,) and (x,, y,)—we can calculate the slope m.

change in output (rise) Ay  y,—y,

m= = =
change in input (run) Ax X% X

Note in function notation two corresponding values for the output y, and y, for the function f, y, = f(x,) and y, = f(x,),
so we could equivalently write

fx) = flx)
m=t2

XX

Figure 6 indicates how the slope of the line between the points, (x, y,) and (x,, y,), is calculated. Recall that the slope
measures steepness, or slant. The greater the absolute value of the slope, the steeper the line is.

8 http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/
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>

\o
e

=3 \ol
g

X7 X

(x,
y2= )1 [ V27 2

O
5
4+ (-Xl) yl
3 _Ay T
2 Ax %7 X
1

<_7;) > X

Figure 6 The slope of a function is calculated by the change in y divided by the change in x. It does not matter which coordinate
is used as the (x,, y,) and which is the (x, y,), as long as each calculation is started with the elements from the same coordinate pair.

Q& A...

) units for the output
Are the units for slope always ?

units for the input

Yes. Think of the units as the change of output value for each unit of change in input value. An example of slope could
be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output per units for the input.

calculate slope

The slope, or rate of change, of a function m can be calculated according to the following:

change in output (rise) B Ay )

m= = =
change in input (run) Ax X% — X%

where x, and x, are input values, y, and y, are output values.

Given two points from a linear function, calculate and interpret the slope.

1. Determine the units for output and input values.
2. Calculate the change of output values and change of input values.
3. Interpret the slope as the change in output values per unit of the input value.

Example 3  Finding the Slope of a Linear Function

If f(x) is a linear function, and (3, —2) and (8, 1) are points on the line, find the slope. Is this function increasing or
decreasing?

Solution The coordinate pairs are (3, —2) and (8, 1). To find the rate of change, we divide the change in output by the
change in input.
changeinoutput 1 _(—2) 3

m =
change in input 8§-3 5

We could also write the slope as m = 0.6. The function is increasing because m > 0.

Analysis  As noted earlier, the order in which we write the points does not matter when we compute the slope of the line
as long as the first output value, or y-coordinate, used corresponds with the first input value, or x-coordinate, used. Note
that if we had reversed them, we would have obtained the same slope.

(—2—(1) _—-3_3

Mm="33 5 5
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Iry It #1

If f(x) is a linear function, and (2, 3) and (0, 4) are points on the line, find the slope. Is this function increasing or
decreasing?

Example 4  Finding the Population Change from a Linear Function

The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population per
year if we assume the change was constant from 2008 to 2012.

Solution The rate of change relates the change in population to the change in time. The population increased by
27,800 — 23,400 = 4,400 people over the four-year time interval. To find the rate of change, divide the change in the
number of people by the number of years.

4,400 people 10 people

4years year

So the population increased by 1,100 people per year.

AM/LZM'/: Because we are told that the population increased, we would expect the slope to be positive. This positive slope
we calculated is therefore reasonable.

Tr}/ It #2

The population of a small town increased from 1,442 to 1,868 between 2009 and 2012. Find the change of population
per year if we assume the change was constant from 2009 to 2012.

Writing and Interpreting an Equation for a Linear Function

Recall from Equations and Inequalities that we wrote equations in both the slope-intercept form and the point-slope
form. Now we can choose which method to use to write equations for linear functions based on the information we
are given. That information may be provided in the form of a graph, a point and a slope, two points, and so on. Look
at the graph of the function fin Figure 7.

Figure 7

We are not given the slope of the line, but we can choose any two points on the line to find the slope. Let’s choose (0, 7)
and (4, 4). We can use these points to calculate the slope.

yz_y1

XX

m

Now we can substitute the slope and the coordinates of one of the points into the point-slope form.
y—y,=mx—x)
y—4= f%(x —4)
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If we want to rewrite the equation in the slope-intercept form, we would find
3
—4=—>(x—4
y 1 (x —4)

y—4:—%x—|—3

y:—%x+7

If we wanted to find the slope-intercept form without first writing the point-slope form, we could have recognized that
the line crosses the y-axis when the output value is 7. Therefore, b = 7. We now have the initial value b and the slope
m so we can substitute m and b into the slope-intercept form of a line.

fx)=mx+b
T 1

3
~ 7

fx) = —%er 7

So the function is f(x) = — %x + 7, and the linear equation would be y = — %x +7.

Given the graph of a linear function, write an equation to represent the function.

1. Identify two points on the line.

2. Use the two points to calculate the slope.

3. Determine where the line crosses the y-axis to identify the y-intercept by visual inspection.
4. Substitute the slope and y-intercept into the slope-intercept form of a line equation.

Example 5  Writing an Equation for a Linear Function

Write an equation for a linear function given a graph of f shown in Figure 8.

Figure 8

Solution Identify two points on the line, such as (0, 2) and (—2, —4). Use the points to calculate the slope.
yz - yl

m=
XX

_ =6
-2
=3
Substitute the slope and the coordinates of one of the points into the point-slope form.
y—y, =mx—x)
y— (—4) =3(x — (-2))
y+4=3(x+2)
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We can use algebra to rewrite the equation in the slope-intercept form.

y+4=3(x+2)
y+4=3x+6
y=3x+2

Analysvs  This makes sense because we can see from Figure 9 that the line crosses the y-axis at the point (0, 2), which is
the y-intercept, so b = 2.

Figure 9

Example 6  Writing an Equation for a Linear Cost Function

Suppose Ben starts a company in which he incurs a fixed cost of $1,250 per month for the overhead, which includes
his office rent. His production costs are $37.50 per item. Write a linear function C where C(x) is the cost for x items
produced in a given month.

Solution The fixed cost is present every month, $1,250. The costs that can vary include the cost to produce each item,
which is $37.50 for Ben. The variable cost, called the marginal cost, is represented by 37.5. The cost Ben incurs is the
sum of these two costs, represented by C(x) = 1250 + 37.5x.

AWZM}: If Ben produces 100 items in a month, his monthly cost is found by substitution 100 for x.

C(100) = 1,250 + 37.5(100)

= 5,000
So his monthly cost would be $5,000.

Example 7  Writing an Equation for a Linear Function Given Two Points
If fis a linear function, with f(3) = —2, and f(8) = 1, find an equation for the function in slope-intercept form.
Solution We can write the given points using coordinates.

f@)=-2—-03,-2)

f@®=1—(1)

We can then use the points to calculate the slope.

_yz_yl
m_xz_xl

_1-(=2)

-~ 8-3

_3

5

Substitute the slope and the coordinates of one of the points into the point-slope form.
y—y, =mx—x)

y- (=2 (x-3)
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We can use algebra to rewrite the equation in the slope-intercept form.

y+2=3(-3)

3.9
y—|—2—5x z
_3.19

5 5

Iry It #3

If f(x) is a linear function, with f(2) = —11, and f(4) = —25, find an equation for the function in slope-intercept
form.

Modeling Real-World Problems with Linear Functions

In the real world, problems are not always explicitly stated in terms of a function or represented with a graph.
Fortunately, we can analyze the problem by first representing it as a linear function and then interpreting the
components of the function. As long as we know, or can figure out, the initial value and the rate of change of a linear
function, we can solve many different kinds of real-world problems.

Given a linear function fand the initial value and rate of change, evaluate f(c).

1. Determine the initial value and the rate of change (slope).
2. Substitute the values into f(x) = mx + b.
3. Evaluate the function at x = c.

Example 8  Using a Linear Function to Determine the Number of Songs in a Music Collection

Marcus currently has 200 songs in his music collection. Every month, he adds 15 new songs. Write a formula for the
number of songs, N, in his collection as a function of time, ¢, the number of months. How many songs will he own
in a year?

Solution  The initial value for this function is 200 because he currently owns 200 songs, so N(0) = 200, which means
that b = 200.

The number of songs increases by 15 songs per month, so the rate of change is 15 songs per month. Therefore we know
that m = 15. We can substitute the initial value and the rate of change into the slope-intercept form of a line.

fx)=mx+b
T 1
15 200
N(t) = 15t 4+ 200
Figure 10

We can write the formula N(f) = 15¢ + 200.

With this formula, we can then predict how many songs Marcus will have in 1 year (12 months). In other words, we
can evaluate the function at t = 12.
N(12) = 15(12) + 200
=180 + 200
= 380

Marcus will have 380 songs in 12 months.

Analysis  Notice that N is an increasing linear function. As the input (the number of months) increases, the output
(number of songs) increases as well.
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Example 9  Using a Linear Function to Calculate Salary Based on Commission

Working as an insurance salesperson, Ilya earns a base salary plus a commission on each new policy. Therefore, Ilya’s
weekly income, I, depends on the number of new policies, #, he sells during the week. Last week he sold 3 new policies,
and earned $760 for the week. The week before, he sold 5 new policies and earned $920. Find an equation for I(n), and
interpret the meaning of the components of the equation.

Solution The given information gives us two input-output pairs: (3,760) and (5,920). We start by finding the rate of

change.
_ 920 — 760

5-3
_ 8160
2 policies
= $80 per policy
Keeping track of units can help us interpret this quantity. Income increased by $160 when the number of policies
increased by 2, so the rate of change is $80 per policy. Therefore, Ilya earns a commission of $80 for each policy sold
during the week.

We can then solve for the initial value.

I(n) =80n+b

760 = 80(3) + b when n=3,1(3) = 760
760 — 80(3) = b

520=1b

The value of b is the starting value for the function and represents Ilya’s income when # = 0, or when no new policies are
sold. We can interpret this as Ilya’s base salary for the week, which does not depend upon the number of policies sold.

We can now write the final equation.
1(n) = 80n + 520

Our final interpretation is that Ilya’s base salary is $520 per week and he earns an additional $80 commission for each
policy sold.

Example 10 Using Tabular Form to Write an Equation for a Linear Function

Table 1 relates the number of rats in a population to time, in weeks. Use the table to write a linear equation.

Number of weeks, w 0 2 4 6
Number of rats, P(w) 1,000 1,080 1,160 1,240
Table 1

Solution We can see from the table that the initial value for the number of rats is 1,000, so b = 1,000.

Rather than solving for m, we can tell from looking at the table that the population increases by 80 for every 2 weeks

that pass. This means that the rate of change is 80 rats per 2 weeks, which can be simplified to 40 rats per week.
P(w) = 40w + 1000

If we did not notice the rate of change from the table we could still solve for the slope using any two points from the

table. For example, using (2, 1080) and (6, 1240)

1240 — 1080
S 6-2
160

T4

=40

Q& A...
Is the initial value always provided in a table of values like Table 1?

No. Sometimes the initial value is provided in a table of values, but sometimes it is not. If you see an input of 0, then the
initial value would be the corresponding output. If the initial value is not provided because there is no value of input
on the table equal to 0, find the slope, substitute one coordinate pair and the slope into f(x) = mx + b, and solve for b.
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Try It #4

A new plant food was introduced to a young tree to test its effect on the height of the tree. Table 2 shows the height
of the tree, in feet, x months since the measurements began. Write a linear function, H(x), where x is the number of
months since the start of the experiment.

x 0 2 4 8 12
H(x) 12.5 13.5 14.5 16.5 18.5

Table 2

Graphing Linear Functions

Now that we’ve seen and interpreted graphs of linear functions, let’s take a look at how to create the graphs. There
are three basic methods of graphing linear functions. The first is by plotting points and then drawing a line through
the points. The second is by using the y-intercept and slope. And the third method is by using transformations of the
identity function f(x) = x.

Graphing a Function by Plotting Points

To find points of a function, we can choose input values, evaluate the function at these input values, and calculate
output values. The input values and corresponding output values form coordinate pairs.We then plot the coordinate
pairs on a grid. In general, we should evaluate the function at a minimum of two inputs in order to find at least two
points on the graph. For example, given the function, f(x) = 2x, we might use the input values 1 and 2. Evaluating
the function for an input value of 1 yields an output value of 2, which is represented by the point (1, 2). Evaluating the
function for an input value of 2 yields an output value of 4, which is represented by the point (2, 4). Choosing three
points is often advisable because if all three points do not fall on the same line, we know we made an error.

Given a linear function, graph by plotting points.

1. Choose a minimum of two input values.

2. Evaluate the function at each input value.

3. Use the resulting output values to identify coordinate pairs.
4. Plot the coordinate pairs on a grid.

5. Draw a line through the points.

Example 11 Graphing by Plotting Points

Graph f(x) = — %x =+ 5 by plotting points.

Solution Begin by choosing input values. This function includes a fraction with a denominator of 3, so let’s choose
multiples of 3 as input values. We will choose 0, 3, and 6.

Evaluate the function at each input value, and use the output value to identify coordinate pairs.

x=0 f(O):—%(O)+5:5:>(0,5)
x=3 f(3):—§(3)+5:3:>(3,3)
x=6 f(6):—%(6)+5:1:>(6,1)

Plot the coordinate pairs and draw a line through the points. Figure 11 represents the graph of the function

fx) = —§x+ 5.
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fix)

A

6

(3,3)

6 1)

- \ 2 4 5 6

Figure 11 The graph of the linear function f(x) = —%x + 5.

AWM The graph of the function is a line as expected for a linear function. In addition, the graph has a downward slant,
which indicates a negative slope. This is also expected from the negative, constant rate of change in the equation for the function.

Iry It #5

Graph f(x) = — %x =+ 6 by plotting points.

Graphing a Function Using y-intercept and Slope

Another way to graph linear functions is by using specific characteristics of the function rather than plotting points.
The first characteristic is its y-intercept, which is the point at which the input value is zero. To find the y-intercept, we
can set x = 0 in the equation.

The other characteristic of the linear function is its slope.

Let’s consider the following function. :
flx) = Sxt 1

The slope is % Because the slope is positive, we know the graph will slant upward from left to right. The y-intercept is

the point on the graph when x = 0. The graph crosses the y-axis at (0, 1). Now we know the slope and the y-intercept.
We can begin graphing by plotting the point (0, 1). We know that the slope is rise over run, m = % . From our

example, we have m = l, which means that the rise is 1 and the run is 2. So starting from our y-intercept (0, 1), we can

rise 1 and then run 2, or run 2 and then rise 1. We repeat until we have a few points, and then we draw a line through
the points as shown in Figure 12.

>

9]

y-intercept
Le

9

(0, 1) L «—Rise =

TRun = 2

1 2 3 4 5 6 7
Figure 12

=2 -1

graphical interpretation of a linear function
In the equation f(x) = mx+ b
o bis the y-intercept of the graph and indicates the point (0, b) at which the graph crosses the y-axis.

« m is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement (run)
between each successive pair of points. Recall the formula for the slope:
change in output (rise) Ay  y,—y,

m= = =
change in input (run) Ax X% — X%
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Q& A...
Do all linear functions have y-intercepts?

Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line parallel to the y-axis
does not have a y-intercept, but it is not a function.)

Given the equation for a linear function, graph the function using the y-intercept and slope.

1. Evaluate the function at an input value of zero to find the y-intercept.
2. Identify the slope as the rate of change of the input value.
3. Plot the point represented by the y-intercept.

rise
4. Use ru—n

5. Sketch the line that passes through the points.

to determine at least two more points on the line.

Example 12 Graphing by Using the y-intercept and Slope

Graph f(x) = — %x + 5 using the y-intercept and slope.

Solution Evaluate the function at x = 0 to find the y-intercept. The output value when x = 0 is 5, so the graph will
cross the y-axis at (0, 5).
According to the equation for the function, the slope of the line is — 2 This tells us that for each vertical decrease in

the “rise” of —2 units, the “run” increases by 3 units in the horizontal direction. We can now graph the function by
first plotting the y-intercept on the graph in Figure 13. From the initial value (0, 5) we move down 2 units and to the
right 3 units. We can extend the line to the left and right by repeating, and then draw a line through the points.

fx)
A

- > X

- A 1 2 3 4 5 6 7

Figure 13 Graph of f(x) = —%x+ 5 and shows how to calculate the rise over run for the slope.

AM/LZW; The graph slants downward from left to right, which means it has a negative slope as expected.

Iry It #6

Find a point on the graph we drew in Example 12 that has a negative x-value.

Graphing a Function Using Transformations

Another option for graphing is to use a transformation of the identity function f(x) = x. A function may be transformed
by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Vertical Stretch or Compression

In the equation f(x) = mx, the m is acting as the vertical stretch or compression of the identity function. When m is
negative, there is also a vertical reflection of the graph. Notice in Figure 14 that multiplying the equation of f(x) = x
by m stretches the graph of f by a factor of m units if m > 1 and compresses the graph of f by a factor of m units if
0 < m < 1. This means the larger the absolute value of m, the steeper the slope.
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i
Figure 14 Vertical stretches and compressions and reflections on the function f(x) = x.

Vertical Shift

In f(x) = mx + b, the b acts as the vertical shift, moving the graph up and down without affecting the slope of the line.
Notice in Figure 15 that adding a value of b to the equation of f(x) = x shifts the graph of fa total of b units up if b is
positive and |b| units down if b is negative.

I
2 R R =2 R

+ o+
NI

Figure 15 This graph illustrates vertical shifts of the function f(x) = x.

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types
of linear functions. Although this may not be the easiest way to graph this type of function, it is still important to
practice each method.

Given the equation of a linear function, use transformations to graph the linear function in the form f(x) = mx + b.

1. Graph f(x) = x.
2. Vertically stretch or compress the graph by a factor m.
3. Shift the graph up or down b units.

Example 13 Graphing by Using Transformations

Graph f(x) = %x — 3 using transformations.
Solution The equation for the function shows that m = % so the identity function is vertically compressed by % The

equation for the function also shows that b = —3 so the identity function is vertically shifted down 3 units. First, graph
the identity function, and show the vertical compression as in Figure 16.

Then show the vertical shift as in Figure 17.
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<«
<ttt

Y
x

11234567

Yy ' ) -

. . 1
Figure 16 The function, y = x, compressed by a factor of 7 Figure 17 The function y = 1—x, shifted down 3 units.

Iry It #7

Graph f(x) = 4 + 2x, using transformations.

Q& A..
In Example 15, could we have sketched the graph by reversing the order of the transformations?

No. The order of the transformations follows the order of operations. When the function is evaluated at a given input,
the corresponding output is calculated by following the order of operations. This is why we performed the compression
first. For example, following the order: Let the input be 2.

1) = %(z) ~3

=1-3
=2

Writing the Equation for a Function from the Graph of a Line

Earlier, we wrote the equation for a linear function from a graph. Now we can extend what we know about graphing
linear functions to analyze graphs a little more closely. Begin by taking a look at Figure 18. We can see right away that
the graph crosses the y-axis at the point (0, 4) so this is the y-intercept.

Figure 18

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at the point
(=2, 0). To get from this point to the y-intercept, we must move up 4 units (rise) and to the right 2 units (run). So the
slope must be

rise _ 4

fry i—:2
run = )

Substituting the slope and y-intercept into the slope-intercept form of a line gives

y=2x+4
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Given a graph of linear function, find the equation to describe the function.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.
3. Substitute the y-intercept and slope into the slope-intercept form of a line.

Example 14 Matching Linear Functions to Their Graphs
Match each equation of the linear functions with one of the lines in Figure 19.

a f()=2x+3  b.gx)=2x—3 ¢ h)=-2¢+3  d j@)=1x+3

Figure 19
Solution  Analyze the information for each function.

a. This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3) and slant upward
from left to right. We can use two points to find the slope, or we can compare it with the other functions listed.
Function g has the same slope, but a different y-intercept. Lines I and IIT have the same slant because they have
the same slope. Line III does not pass through (0, 3) so f must be represented by line I.

b. This function also has a slope of 2, but a y-intercept of —3. It must pass through the point (0, —3) and slant
upward from left to right. It must be represented by line III.

c. This function has a slope of —2 and a y-intercept of 3. This is the only function listed with a negative slope, so
it must be represented by line IV because it slants downward from left to right.

d. This function has a slope of % and a y-intercept of 3. It must pass through the point (0, 3) and slant upward

from left to right. Lines I and II pass through (0, 3), but the slope of j is less than the slope of f so the line for j
must be flatter. This function is represented by Line II.

Now we can re-label the lines as in Figure 20.

Figure 20



296

CHAPTER 4 LINEAR FUNCTIONS

Finding the x-intercept of a Line

So far, we have been finding the y-intercept of a function: the point at which the graph of the function crosses the
y-axis. Recall that a function may also have an x-intercept, which is the x-coordinate of the point where the graph of
the function crosses the x-axis. In other words, it is the input value when the output value is zero.

To find the x-intercept, set a function f(x) equal to zero and solve for the value of x. For example, consider the function
shown.

fx)=3x—6
Set the function equal to 0 and solve for x.
0=3x—-6
6 =3x
2=x
x=2

The graph of the function crosses the x-axis at the point (2, 0).

Q& A..

Do all linear functions have x-intercepts?
No. However, linear functions of the form y = ¢, where c is a nonzero real number, are the only examples of linear
functions with no x-intercept. For example, y = 5 is a horizontal line 5 units above the x-axis. This function has no
x-intercepts, as shown in Figure 21.

Figure 21

x-intercept

The x-intercept of the function is value of x when f(x) = 0. It can be solved by the equation 0 = mx + b.

Example 15 Finding an x-intercept

Find the x-intercept of f(x) = %x - 3.

Solution  Set the function equal to zero to solve for x.

0==x—3
2x
3:%x
6=x
x=06

The graph crosses the x-axis at the point (6, 0).

Am/zm A graph of the function is shown in Figure 22. We can see that the x-intercept is (6, 0) as we expected.
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Iry It #8

Find the x-intercept of f(x) = ix — 4.

Describing Horizontal and Vertical Lines

There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line indicates a constant
output, or y-value. In Figure 23, we see that the output has a value of 2 for every input value. The change in outputs
between any two points, therefore, is 0. In the slope formula, the numerator is 0, so the slope is 0. If we use m = 0 in
the equation f(x) = mx + b, the equation simplifies to f(x) = b. In other words, the value of the function is a constant.
This graph represents the function f(x) = 2.

y
A
N X —4 -2 0
5 S y 2 2 2 2 2
- | ,
I B A R S R

Figure 23 A horizontal line representing the function f(x) = 2.

A vertical line indicates a constant input, or x-value. We can see that the input value for every point on the line is 2,
but the output value varies. Because this input value is mapped to more than one output value, a vertical line does not
represent a function. Notice that between any two points, the change in the input values is zero. In the slope formula,
the denominator will be zero, so the slope of a vertical line is undefined.

_ change of output . Non-zero real number

change of input «— 0

Figure 24 Example of how a line has a vertical slope. 0 in the denominator of the slope.

Notice that a vertical line, such as the one in Figure 25, has an x-intercept, but no y-intercept unless it’s the line x = 0.
This graph represents the line x = 2.

Figure 25 The vertical line, x = 2, which does not represent a function.
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horizontal and vertical lines
Lines can be horizontal or vertical.

A horizontal line is a line defined by an equation in the form f(x) = b.

A vertical line is a line defined by an equation in the form x = a.

Example 16 Writing the Equation of a Horizontal Line

Write the equation of the line graphed in Figure 26.

y
A
- %
108642, 2 4 6 8 10
ot f.
_877 :
M
Y
Figure 26
Solution  For any x-value, the y-value is —4, so the equation is y = —4.
Example 17 Writing the Equation of a Vertical Line
Write the equation of the line graphed in Figure 27.
J
A
10,, L : H
8,, ‘ B H
6,, f H
4,, H
2,,
e
10-8-6-4-2, 2 4 6[8 10
4+ :
_677 :
_877 :
A
o ,
A
Figure 27

Solution The constant x-value is 7, so the equation is x = 7.

Determining Whether Lines are Parallel or Perpendicular

The two lines in Figure 28 are parallel lines: they will never intersect. They have exactly the same steepness, which
means their slopes are identical. The only difference between the two lines is the y-intercept. If we shifted one line
vertically toward the y-intercept of the other, they would become coincident.

>

\1 P X
A\\z‘sw\é
7

Figure 28 Parallel lines

We can determine from their equations whether two lines are parallel by comparing their slopes. If the slopes are
the same and the y-intercepts are different, the lines are parallel. If the slopes are different, the lines are not parallel.
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flx)=—2x+ 6}

parallel f0) =3x+2 not parallel
flx) =—2x— 4

fx)=2x+2

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-degree, angle. The two
lines in Figure 29 are perpendicular.

Figure 29 Perpendicular lines

Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from one another in a
specific way. The slope of one line is the negative reciprocal of the slope of the other line. The product of a number and

its reciprocal is 1. So, if m, and m, are negative reciprocals of one another, they can be multiplied together to yield —1.

mm, = —1

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is l, and the reciprocal of 1is8.To
. . ; . 8 8
find the negative reciprocal, first find the reciprocal and then change the sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their slopes, assuming
that the lines are neither horizontal nor vertical. The slope of each line below is the negative reciprocal of the other so
the lines are perpendicular.

flx)= ix + 2 negative reciprocal of i is —4

f(x) = —4x + 3 negative reciprocal of —4 is i

()

The product of the slopes is —1.

parallel and perpendicular lines

Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.
f(x) = mx + b, and g(x) = mx + b, are parallel if m = m..
If and only if b, = b, and m = m, we say the lines coincide. Coincident lines are the same line.

Two lines are perpendicular lines if they intersect at right angles.

f(x) = mx + b, and g(x) = m x + b, are perpendicular if and only if m m, = —1, and so m, = fmi
1

Example 18 Identifying Parallel and Perpendicular Lines

Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of perpendicular
lines.
fx)=2x+3 h(x) = —2x+2
1

g(x)zix—él jlx)=2x—6
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Solution Parallel lines have the same slope. Because the functions f(x) = 2x + 3 and j(x) = 2x — 6 each have a slope
of 2, they represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because —2 and 5 are negative

reciprocals, the equations, g(x) = %x — 4 and h(x) = —2x + 2 represent perpendicular lines.

AM/LZM'/; A graph of the lines is shown in Figure 30.

y
h(X)? fZXJ_FZ A f(\)ZZXTL 3

SN S S
? ; g =lx—1
:—10—8—}6—4—!2” Vit s 10 "

Figure 30

The graph shows that the lines f(x) = 2x 4+ 3 and j(x) = 2x — 6 are parallel, and the lines g(x) = %x — 4 and
h(x) = —2x + 2 are perpendicular.

Writing the Equation of a Line Parallel or Perpendicular to a Given Line
If we know the equation of a line, we can use what we know about slope to write the equation of a line that is either
parallel or perpendicular to the given line.
Writing Equations of Parallel Lines
Suppose for example, we are given the equation shown.
flo)=3x+1
We know that the slope of the line formed by the function is 3. We also know that the y-intercept is (0, 1). Any other
line with a slope of 3 will be parallel to f(x). So the lines formed by all of the following functions will be parallel to f(x).
o) = 3x+6 hix) = 3x + 1 P =3x+2

Suppose then we want to write the equation of a line that is parallel to fand passes through the point (1, 7). This type
of problem is often described as a point-slope problem because we have a point and a slope. In our example, we know
that the slope is 3. We need to determine which value for b will give the correct line. We can begin with the point-slope
form of an equation for a line, and then rewrite it in the slope-intercept form.

y—y, =mx—x)

y—7=3x—-1)
y—7=3x—3
y=3x+4

So g(x) = 3x + 4 is parallel to f(x) = 3x + 1 and passes through the point (1, 7).

Given the equation of a function and a point through which its graph passes, write the equation of a line parallel to
the given line that passes through the given point.

1. Find the slope of the function.
2. Substitute the given values into either the general point-slope equation or the slope-intercept equation for a line.
3. Simplify.

Example 19 Finding a Line Parallel to a Given Line

Find a line parallel to the graph of f(x) = 3x + 6 that passes through the point (3, 0).
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Solution The slope of the given line is 3. If we choose the slope-intercept form, we can substitute m = 3, x = 3, and
f(x) = 0 into the slope-intercept form to find the y-intercept.

gx)=3x+b
0=33)+b
b=-9

The line parallel to f(x) that passes through (3, 0) is g(x) = 3x — 9.

Analysis  We can confirm that the two lines are parallel by graphing them.
Figure 31 shows that the two lines will never intersect.

Figure 31

Writing Equations of Perpendicular Lines

We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of using the
same slope, however, we use the negative reciprocal of the given slope. Suppose we are given the following function:

flx)=2x+4

The slope of the line is 2, and its negative reciprocal is — 1 Any function with a slope of —% will be perpendicular to
f(x). So the lines formed by all of the following functions will be perpendicular to f(x).

_ 1 _ 1 _ 1.1
glx) = 2x—|—4 h(x) = 2x+2 plx) = 5

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes through a
given point. Suppose then we want to write the equation of a line that is perpendicular to f(x) and passes through the

point (4, 0). We already know that the slope is — L Now we can use the point to find the y-intercept by substituting

the given values into the slope-intercept form of a line and solving for b.

gx)=mx+0b
1
0= 5 4)+0
0=-2+b
2=5b
b=2
The equation for the function with a slope of —% and a y-intercept of 2 is
1
gx) = 5% + 2.

Sog(x) = —% x + 2 is perpendicular to f(x) = 2x + 4 and passes through the point (4, 0). Be aware that perpendicular

lines may not look obviously perpendicular on a graphing calculator unless we use the square zoom feature.

Q& A...

A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are perpendicular,
but the product of their slopes is not —1. Doesn’t this fact contradict the definition of perpendicular lines?

No. For two perpendicular linear functions, the product of their slopes is —1. However, a vertical line is not a function
so the definition is not contradicted.
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Given the equation of a function and a point through which its graph passes, write the equation of a line perpendicular
to the given line.

1. Find the slope of the function.

2. Determine the negative reciprocal of the slope.

3. Substitute the new slope and the values for x and y from the coordinate pair provided into g(x) = mx + b.
4. Solve for b.

5. Write the equation for the line.

Example 20 Finding the Equation of a Perpendicular Line
Find the equation of a line perpendicular to f(x) = 3x + 3 that passes through the point (3, 0).

Solution The original line has slope m = 3, so the slope of the perpendicular line will be its negative reciprocal, or
— % Using this slope and the given point, we can find the equation for the line.

ox) = —%x +b
__1

0= 3 (3)+b

1=0

b=1
The line perpendicular to f(x) that passes through (3, 0) is g(x) = —%x + 1.

{f(x) =3x+6
AM/LZM'A A graph of the two lines is shown in Figure 32. RN Z/
7,,

T 8x) = f%,x% 1
NREEE
Figure 32

Note that that if we graph perpendicular lines on a graphing calculator using standard zoom, the lines may not appear
to be perpendicular. Adjusting the window will make it possible to zoom in further to see the intersection more closely.

Try It #9

Given the function h(x) = 2x — 4, write an equation for the line passing through (0, 0) that is

a. parallel to h(x) b. perpendicular to h(x)

Given two points on a line and a third point, write the equation of the perpendicular line that passes through the point.
1. Determine the slope of the line passing through the points.

2. Find the negative reciprocal of the slope.

3. Use the slope-intercept form or point-slope form to write the equation by substituting the known values.
4. Simplify.
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Example 21 Finding the Equation of a Line Perpendicular to a Given Line Passing through a Point

A line passes through the points (—2, 6) and (4, 5). Find the equation of a perpendicular line that passes through the
point (4, 5).

Solution From the two points of the given line, we can calculate the slope of that line.

mo—_2—6
14— (=2
_-1
6
1
6
Find the negative reciprocal of the slope.
6
19
=6
We can then solve for the y-intercept of the line passing through the point (4, 5).
gx)=6x+10
5=6(4)+0b
5=24+1D
—-19=b
b=-19

The equation for the line that is perpendicular to the line passing through the two given points and also passes through
point (4, 5) is

TV/V It #10

A line passes through the points, (—2, —15) and (2,—3). Find the equation of a perpendicular line that passes
through the point, (6, 4).

Access this online resource for additional instruction and practice with linear functions.
e Linear Functions (http://openstaxcollege.org/l/linearfunctions)
e Finding Input of Function from the Output and Graph (http://openstaxcollege.org/l/findinginput)
e Graphing Functions Using Tables (http://openstaxcollege.org/l/graphwithtable)
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41 SECTION EXERCISES

VERBAL

1. Terry is skiing down a steep hill. Terry’s elevation, E(f), 2. Jessica is walking home from a friend’s house.
in feet after t seconds is given by E(¢) = 3000 — 70t. After 2 minutes she is 1.4 miles from home.
Write a complete sentence describing Terry’s starting Twelve minutes after leaving, she is 0.9 miles
elevation and how it is changing over time. from home. What is her rate in miles per hour?

3. A boat is 100 miles away from the marina, sailing 4. If the graphs of two linear functions are
directly toward it at 10 miles per hour. Write an perpendicular, describe the relationship between the
equation for the distance of the boat from the slopes and the y-intercepts.

marina after ¢ hours.

5. If a horizontal line has the equation f(x) = aand a
vertical line has the equation x = a, what is the point
of intersection? Explain why what you found is the
point of intersection.

ALGEBRAIC
For the following exercises, determine whether the equation of the curve can be written as a linear function.
B.y:ix+6 7.y=3x—5 8. y=3x*—2
9.3x+5y=15 10. 3x* + 5y =15 1. 3x+5y>=15
12, —2x* 32 =6 13.—";3:2);
For the following exercises, determine whether each function is increasing or decreasing.
14. f(x) =4x+3 15. g(x) =5x+ 6 16. a(x) =5 — 2x
17. b(x) = 8 — 3x 18. h(x) = —2x+4 19. k(x) = —4x+ 1
i) = Lx — =1, =1,
20.](x)—2x 3 21.p(x)—4x 5 22. n(x) = 3x 2

23. m(x) = —%x+ 3

For the following exercises, find the slope of the line that passes through the two given points.
24, (2,4) and (4, 10) 25. (1, 5) and (4, 11) 26. (—1,4) and (5, 2)
27. (8, —2) and (4, 6) 28. (6, 11) and (—4, 3)

For the following exercises, given each set of information, find a linear equation satisfying the conditions, if possible.

29. f(—5) = —4,and f(5) =2 30. f(—1)=4andf(5) =1

31. Passes through (2, 4) and (4, 10) 32. Passes through (1, 5) and (4, 11)

33. Passes through (—1, 4) and (5, 2) 34. Passes through (—2, 8) and (4, 6)

35. x-intercept at (—2, 0) and y-intercept at (0, —3) 36. x-intercept at (—5, 0) and y-intercept at (0, 4)
For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither.

37. 4x — 7y = 10 38. 3y + x = 12 39. 3y + 4x = 12 40. 6x — 9y =10

x+4y=1 —y=8x+1 —6y=8x+1

3x+2y=1
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For the following exercises, find the x- and y-intercepts of each equation

M. f(x)=—x+2 42, g(x) =2x+4 43. h(x) =3x—5

44, k(x) = —5x+1 45. —2x + 5y =20 46. 7x + 2y = 56
For the following exercises, use the descriptions of each pair of lines given below to find the slopes of Line 1 and Line

2.Is each pair of lines parallel, perpendicular, or neither?

47. Line 1: Passes through (0, 6) and (3, —24)
Line 2: Passes through (—1, 19) and (8, —71)

48, Line 1: Passes through (—8, —55) and (10, 89)
Line 2: Passes through (9, —44) and (4, —14)

49, Line 1: Passes through (2, 3) and (4, —1)
Line 2: Passes through (6, 3) and (8, 5)

50. Line 1: Passes through (1, 7) and (5, 5)
Line 2: Passes through (-1, —3) and (1, 1)

51. Line 1: Passes through (2, 5) and (5, —1)
Line 2: Passes through (-3, 7) and (3, —5)

For the following exercises, write an equation for the line described.

52, Write an equation for a line parallel to f(x) = —5x — 3 53. Write an equation for a line parallel to g(x) = 3x — 1
and passing through the point (2, —12). and passing through the point (4, 9).

54, Write an equation for a line perpendicular to
h(t) = —2t + 4 and passing through the point (—4, —1).

55. Write an equation for a line perpendicular to
p () = 3t + 4 and passing through the point (3, 1).

GRAPHICAL
For the following exercises, find the slope of the lines graphed.
56. 57.
y
A
ot
o
4,,
3,,
2,,
: 1,, :
X
65-4-32-10 1234556

58. 59.

305



306 CHAPTER 4 LINEAR FUNCTIONS

61. 62. Y 63. Y
A 7 A
577 5,,
4t ot
. ; N NI
27 2,,
& S : 14+
- ——— x X g
345 —6—5—4—3—2—1197 123456 76—5—4—3—2—1197 123456 *
_2,, i 7277 : -
34 Il 34 ceihoren,
“477 _4,,
_577 _5,,
Y Y
For the following exercises, match the given linear 64. f(x) = —x—1
equation with its graph in Figure 33.
— _ 65. f(x) = —2x— 1

66.f(x):—%x—1

67. f(x) =2

68. f(x) =2+«

69. f(x) = 3x + 2

Figure 33

For the following exercises, sketch a line with the given features.

70. An x-intercept of (—4, 0) and y-intercept of (0, —2)  71. An x-intercept of (—2, 0) and y-intercept of (0, 4)

. 3
72. A y-intercept of (0, 7) and slope -3 73. A y-intercept of (0, 3) and slope %

74. Passing through the points (—6, —2) and (6, —6) 75. Passing through the points (—3, —4) and (3, 0)

For the following exercises, sketch the graph of each equation.

76. f(x) = —2x — 1 77. g(x) = —3x+2 78. h(x) = %x +2
79. k(x) = %x 3 80. f(f) = 3 + 2t 81. p(H) = —2 + 3t
82.x=3 83. x=-2 84. r(x) =4

For the following exercises, write the equation of the line shown in the graph.

85. y 86. y 87. y 88. y

A A A

5. 5 5 5

4 4 4
4 4 & 4
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NUMERIC

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a
linear equation that models the data.

8. » o 5 10 15 %9 x o 5 10 15 9 x 0 5 10 15
glx) 5 —10 —25 —40 h(x) 30 105 230 flx -5 20 45 70

w

9. » 5 10 20 25 B x 0o 2 4 6 N x 2 4 8 10
k(xy 13 28 58 73 gx) 6 —19 —44 —69 hix) 13 23 43 53

% x 2 4 6 8 % 5 0o 2 6 8
fxy -4 16 36 56 k(x) 31 106 231

o))

TECHNOLOGY

For the following exercises, use a calculator or graphing technology to complete the task.

97. If fis a linear function, f(0.1) = 11.5, and f(0.4) = —5.9, find an equation for the function.

98. Graph the function fon a domain of [—10, 10]: f(x) = 0.02x — 0.01. Enter the function in a graphing utility.
For the viewing window, set the minimum value of x to be —10 and the maximum value of x to be 10.

99. Graph the function fon a domain of [—10, 10]: f(x) = 2,500x + 4,000

100. Table 3 shows the input, w, and output, k, for a 101. Table 4 shows the input, p, and output, g, for a linear
linear function k. a. Fill in the missing values of function q. a. Fill in the missing values of the table.
the table. b. Write the linear function k, round to 3 b. Write the linear function k.

decimal places.
p 05 08 12 b

w —-10 55 675 b q 400 700 a 1,000,000

k 30 —26 a —44
Table 4
Table 3

102. Graph the linear function f on a domain of [—10, 10] for the function whose slope is % and y-intercept is %
Label the points for the input values of —10 and 10.

103. Graph the linear function fon a domain of [—0.1, 0.1] for the function whose slope is 75 and y-intercept is
—22.5. Label the points for the input values of —0.1 and 0.1.

104. Graph the linear function f where f(x) = ax + b on the same set of axes on a domain of [—4, 4] for the
following values of a and b.

aa=2b=3 b. a=2;b=4 c.a=2b=—4 d a=2b=-5

EXTENSIONS

105. Find the value of x if a linear function goes through 106. Find the value of y if a linear function goes through
the following points and has the following slope: the following points and has the following slope:
(x) 2)) (_4) 6)) m=3 (103 )’), (257 100)7 m=—5

107. Find the equation of the line that passes through 108. Find the equation of the line that passes through
the following points: (a, b) and (a, b + 1) the following points: (2a, b) and (a, b + 1)

109. Find the equation of the line that passes through 110. Find the equation of the line parallel to the line
the following points: (a, 0) and (c, d) g(x) = —0.01x + 2.01 through the point (1, 2).



308

CHAPTER 4 LINEAR FUNCTIONS

111. Find the equation of the line perpendicular to the line g(x) = —0.01x + 2.01 through the point (1, 2).

For the following exercises, use the functions f(x) = —0.1x + 200 and g(x) = 20x + 0.1.

112

Find the point of intersection of the lines fand g.

REAL-WORLD APPLICATIONS

114.

116.

118.

120.

At noon, a barista notices that she has $20 in her
tip jar. If she makes an average of $0.50 from each
customer, how much will she have in her tip jar if
she serves n more customers during her shift?

A clothing business finds there is a linear
relationship between the number of shirts, #, it

can sell and the price, p, it can charge per shirt.

In particular, historical data shows that 1,000 shirts
can be sold at a price of $30, while 3,000 shirts can
be sold at a price of $22. Find a linear equation in
the form p(n) = mn 4+ b that gives the price p they
can charge for 7 shirts.

A farmer finds there is a linear relationship between
the number of bean stalks, #, she plants and the
yield, y, each plant produces. When she plants 30
stalks, each plant yields 30 oz of beans. When she
plants 34 stalks, each plant produces 28 oz of beans.
Find a linear relationship in the form y = mn + b
that gives the yield when # stalks are planted.

A town’s population has been growing linearly.
In 2003, the population was 45,000, and the
population has been growing by 1,700 people
each year. Write an equation, P(¢), for the
population t years after 2003.

122. When temperature is 0 degrees Celsius, the

Fahrenheit temperature is 32. When the Celsius

temperature is 100, the corresponding Fahrenheit

temperature is 212. Express the Fahrenheit

temperature as a linear function of C, the Celsius

temperature, F(C).

a. Find the rate of change of Fahrenheit temperature
for each unit change temperature of Celsius.

b. Find and interpret F(28).

¢. Find and interpret F(—40).

113.

115.

117.

119.

121.

Where is f(x) greater than g(x)? Where is g(x)
greater than f(x)?

A gym membership with two personal training
sessions costs $125, while gym membership with
five personal training sessions costs $260. What is
cost per session?

A phone company charges for service according

to the formula: C(n) = 24 + 0.1n, where n is the
number of minutes talked, and C(n) is the monthly
charge, in dollars. Find and interpret the rate of
change and initial value.

A city’s population in the year 1960 was 287,500.
In 1989 the population was 275,900. Compute
the rate of growth of the population and make a
statement about the population rate of change in
people per year.

Suppose that average annual income (in dollars) for

the years 1990 through 1999 is given by the linear

function: I(x) = 1,054x + 23,286, where x is the

number of years after 1990. Which of the following

interprets the slope in the context of the problem?

a. As of 1990, average annual income was $23,286.

b. In the ten-year period from 1990-1999, average
annual income increased by a total of $1,054.

¢. Each year in the decade of the 1990s, average
annual income increased by $1,054.

d. Average annual income rose to a level of $23,286 by
the end of 1999.



SECTION 4.2 MODELING WITH LINEAR FUNCTIONS

LEARNING OBJECTIVES

In thi

s section, you will:
Build linear models from verbal descriptions.
Model a set of data with a linear function.

4.2

MODELING WITH LINEAR FUNCTIONS

Figure 1 (credit: EEK Photography/Flickr)

Emily is a college student who plans to spend a summer in Seattle. She has saved $3,500 for her trip and anticipates
spending $400 each week on rent, food, and activities. How can we write a linear model to represent her situation?

What

would be the x-intercept, and what can she learn from it? To answer these and related questions, we can create a

model using a linear function. Models such as this one can be extremely useful for analyzing relationships and making
predictions based on those relationships. In this section, we will explore examples of linear function models.

Building Linear Models from Verbal Descriptions

When building linear models to solve problems involving quantities with a constant rate of change, we typically follow
the same problem strategies that we would use for any type of function. Let’s briefly review them:

1.

Identify changing quantities, and then define descriptive variables to represent those quantities. When
appropriate, sketch a picture or define a coordinate system.

. Carefully read the problem to identify important information. Look for information that provides values for
the variables or values for parts of the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.

L N N wn

. Identify a solution pathway from the provided information to what we are trying to find. Often this will
involve checking and tracking units, building a table, or even finding a formula for the function being used to
model the problem.

. When needed, write a formula for the function.
. Solve or evaluate the function using the formula.
. Reflect on whether your answer is reasonable for the given situation and whether it makes sense mathematically.

. Clearly convey your result using appropriate units, and answer in full sentences when necessary.
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Now let’s take a look at the student in Seattle. In her situation, there are two changing quantities: time and money. The
amount of money she has remaining while on vacation depends on how long she stays. We can use this information
to define our variables, including units.

Output: M, money remaining, in dollars
Input: ¢, time, in weeks
So, the amount of money remaining depends on the number of weeks: M(f)
We can also identify the initial value and the rate of change.

Initial Value: She saved $3,500, so $3,500 is the initial value for M.
Rate of Change: She anticipates spending $400 each week, so —$400 per week is the rate of change, or slope.

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable. Also,
because the slope is negative, the linear function is decreasing. This should make sense because she is spending money
each week.

The rate of change is constant, so we can start with the linear model M(f) = mt + b. Then we can substitute the intercept

and slope provided.
M(t)=mt+b
T
—400 3500

M(t) = —400¢t + 3500

To find the x-intercept, we set the output to zero, and solve for the input.
0 = —400¢ + 3500

,_ 3500
400

=8.75

The x-intercept is 8.75 weeks. Because this represents the input value when the output will be zero, we could say that
Emily will have no money left after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a limited domain over which that model will be
valid—almost no trend continues indefinitely. Here the domain refers to the number of weeks. In this case, it doesn’t
make sense to talk about input values less than zero. A negative input value could refer to a number of weeks before
she saved $3,500, but the scenario discussed poses the question once she saved $3,500 because this is when her trip
and subsequent spending starts. It is also likely that this model is not valid after the x-intercept, unless Emily will
use a credit card and goes into debt. The domain represents the set of input values, so the reasonable domain for this
functionis 0 < t < 8.75.

In the above example, we were given a written description of the situation. We followed the steps of modeling a problem
to analyze the information. However, the information provided may not always be the same. Sometimes we might be
provided with an intercept. Other times we might be provided with an output value. We must be careful to analyze
the information we are given, and use it appropria